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Preface

1 What Is The Companion?

The Princeton Companion to Applied Mathematics de-
scribes what applied mathematics is about, why it
is important, its connections with other disciplines,
and some of the main areas of current research. It
also explains what applied mathematicians do, which
includes not only studying the subject itself but also
writing about mathematics, teaching it, and influencing
policy makers.

The Companion differs from an encyclopedia in that
it is not an exhaustive treatment of the subject, and it
differs from a handbook in that it does not cover all
relevant methods and techniques. Instead, the aim is
to offer a broad but selective coverage that conveys
the excitement of modern applied mathematics while
also giving an appreciation of its history and the out-
standing challenges. The Companion focuses on topics
felt by the editors to be of enduring interest, and so it
should remain relevant for many years to come.

With online sources of information about mathemat-
ics growing ever more extensive, one might ask what
role a printed volume such as this has. Certainly, one
can use Google to search for almost any topic in the
book and find relevant material, perhaps on Wikipedia.
What distinguishes The Companion is that it is a self-
contained, structured reference work giving a consis-
tent treatment of the subject. The content has been
curated by an editorial board of applied mathemati-
cians with a wide range of interests and experience, the
articles have been written by leading experts and have
been rigorously edited and copyedited, and the whole
volume is thoroughly cross-referenced and indexed.

Within each article, the authors and editors have tried
hard to convey the motivation for each topic or concept
and the basic ideas behind it, while avoiding unnec-
essary detail. It is hoped that The Companion will be
seen as a friendly and inspiring reference, containing
both standard material and more unusual, novel, or
unexpected topics.

2 Scope

It is difficult to give a precise definition of applied math-
ematics, as discussed in what is applied mathemat-

ics? [I.1] and, from a historical perspective, in the his-

tory of applied mathematics [I.6]. The Companion
treats applied mathematics in a broad sense, and it
cannot cover all aspects in equal depth. Some parts
of mathematical physics are included, though a full
treatment of modern fundamental theories is not given.
Statistics and probability are not explicitly included,
although a number of articles make use of ideas from
these subjects, and in particular the burgeoning area of
uncertainty quantification [II.34] brings together
many ideas from applied mathematics and statistics.
Applied mathematics increasingly makes use of algo-
rithms and computation, and a number of aspects at
the interface with computer science are included. Some
parts of discrete and combinatorial mathematics are
also covered.

3 Audience

The target audience for The Companion is mathe-
maticians at undergraduate level or above; students,
researchers, and professionals in other subjects who
use mathematics; and mathematically interested lay
readers. Some articles will also be accessible to stu-
dents studying mathematics at pre-university level.

Prospective research students might use the book to
obtain some idea of the different areas of applied math-
ematics that they could work in. Researchers who reg-
ularly attend seminars in areas outside their own spe-
cialities should find that the articles provide a gentle
introduction to some of these areas, making good pre-
or post-seminar reading.

In soliciting and editing the articles the editors aimed
to maximize accessibility by keeping discussions at the
lowest practical level. A good question is how much
of the book a reader should expect to understand.
Of course “understanding” is an imprecisely defined
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concept. It is one thing to read along with an argument
and find it plausible, or even convincing, but another
to reproduce it on a blank piece of paper, as every
undergraduate discovers at exam time. The very wide
range of topics covered means that it would take a
reader with an unusually broad knowledge to under-
stand everything, but every reader from undergradu-
ate level upward should find a substantial portion of
the book accessible.

4 Organization

The Companion is organized in eight parts, which are
designed to cut across applied mathematics in different
ways.

Part I, “Introduction to Applied Mathematics,” begins
by discussing what applied mathematics is and giv-
ing examples of the use of applied mathematics in
everyday life. the language of applied mathemat-

ics [I.2] then presents basic definitions, notation, and
concepts that are needed frequently in other parts of
the book, essentially giving a brief overview of some
key parts of undergraduate mathematics. This arti-
cle is not meant to be a complete survey, and many
later articles provide other introductory material them-
selves. methods of solution [I.3] describes some gen-
eral solution techniques used in applied mathematics.
algorithms [I.4] explains the concept of an algorithm,
giving some important examples and discussing com-
plexity issues. The presence of this article in part I
reflects the increasing importance of algorithms in all
areas of applied mathematics. goals of applied math-

ematical research [I.5] describes the kinds of ques-
tions and issues that research in applied mathematics
addresses and discusses some strategic aspects of car-
rying out research. Finally, the history of applied

mathematics [I.6] describes the history of the subject
from ancient times up until the late twentieth century.

Part II, “Concepts,” comprises short articles that
explain specific concepts and their significance. These
are mainly concepts that cut across different models
and areas and provide connections to other parts of the
book. This part is not meant to be comprehensive, and
many other concepts are well described in later articles
(and discoverable via the index).

Part III, “Equations, Laws, and Functions of Applied
Mathematics,” treats important examples of what its
title describes. The choice of what to include was based
on a mix of importance, accessibility, and interest.
Many equations, laws, and functions not contained in
this part are included in other articles.

Part IV, “Areas of Applied Mathematics,” contains

longer articles giving an overview of the whole sub-

ject and how it is organized, arranged by research

area. The aim of this part is to convey the breadth,

depth, and diversity of applied mathematics research.

The coverage is not comprehensive, but areas that

do not appear as or in article titles may neverthe-

less be present in other articles. For example, there is

no article on geoscience, yet earth system dynam-

ics [IV.30], inverse problems [IV.15], and imaging

the earth using green’s theorem [VII.16] all cover

specific aspects of this area. Nor is there a part IV

article on numerical analysis, but this area is rep-

resented by approximation theory [IV.9], numeri-

cal linear algebra and matrix analysis [IV.10],

continuous optimization (nonlinear and linear

programming) [IV.11], numerical solution of ordi-

nary differential equations [IV.12], and numeri-

cal solution of partial differential equations

[IV.13].

Part V, “Modeling,” gives a selection of mathemati-

cal models, explaining how the models are derived and

how they are solved.

Part VI, “Example Problems,” contains short articles

covering a variety of interesting applied mathematics

problems.

Part VII, “Application Areas,” comprises articles on

connections between applied mathematics and other

disciplines, including such diverse topics as integrated

circuit (chip) design, medical imaging, and the screen-

ing of luggage in airports.

Part VIII, “Final Perspectives,” contains essays on

broader aspects, including reading, writing, and type-

setting mathematics; teaching applied mathematics;

and how to influence government as a mathematician.

The articles within a given part vary significantly in

length. This should not be taken as an indication of the

importance of the corresponding topic, as it is partly

due to the number of pages that could be allocated to

each article, as well as to how authors responded to

their given page limit.

The ordering of articles within a part is alphabeti-

cal for parts II and III. For part IV some attempt was

made to place related articles together and to place

one article before another if there is a natural order

in which to read the two articles. The ordering is never-

theless somewhat arbitrary, and the reader should feel

free to read the articles in any order. The articles within

parts V–VIII are arranged only loosely by theme.
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The editors made an effort to encourage illustrations
and diagrams. Due to the cost of reproduction, color
has been used only where necessary and is restricted
to the color plates following page 364.

Despite the careful organization, the editors expect
that many readers will flick through the book to find
something interesting, start reading, and by following
cross-references navigate the book in an unpredictable
fashion. This approach is perfectly reasonable, as is
starting from a page found via the table of contents
or the index. Whatever the reading strategy, we hope
the book will be hard to put down!

5 Relation to The Princeton
Companion to Mathematics

This Companion follows the highly successful Prince-
ton Companion to Mathematics (PCM), edited by Gow-
ers, Barrow-Green, and Leader (2008), which focuses on
modern pure mathematics. We have tried to build on
the PCM and avoid overlap with it. Thus we do not cover
many of the basic mathematical concepts treated in
parts I and II of the PCM, but rather assume the reader
is familiar with them.

Some crucial concepts that are already in the PCM
are included here as well, but they are approached
from a rather different viewpoint, typically with more
discussion of applications and computational aspects.

Some articles in the PCM, listed in table 1, could
equally well have appeared here, and the editors there-
fore made a decision not to solicit articles on these
same general topics. However, particular aspects of
several of these topics are included.

6 How to Use This Book

Authors were asked to make their articles as self-
contained as possible and to define specific notation
and technical terms. You should familiarize yourself
with the material in the language of applied math-

ematics [I.2], as this background is assumed for many
of the later articles. If you are unsure about notation
consult table 3 in I.2 or, for a definition, see if it is in
the index. The editors, with the help of a professional
indexer, have tried very hard to produce a thorough and
usable index, so there is a good chance that the index
will lead you to a place in the book where a particular
piece of notation or a definition is clarified.

The extensive cross-references provide links between
articles. A phrase such as “this vector can be computed
by the fast fourier transform [II.10]” indicates that

Table 1 Relevant articles from The Princeton Companion
to Mathematics whose topic is not duplicated here.

PCM
article

Title number

Mathematics and Chemistry VII.1
Mathematical Biology VII.2
Wavelets and Applications VII.3
The Mathematics of Traffic in Networks VII.4
Mathematics and Cryptography VII.7
Mathematical Statistics VII.10
Mathematics and Medical Statistics VII.11
Mathematics and Music VII.13

article 10 in part II contains more information on the
fast Fourier transform.

In the research literature it is normal to support
statements by citations to items in a bibliography. It
is a style decision of The Companion not to include
citations in the articles. The articles present core know-
ledge that is generally accepted in the field, and omit-
ting citations makes for a smoother reading experience
as the reader does not constantly have to refer to a list
of references a few pages away. Many authors found it
quite difficult to adopt this style, being so used to lib-
erally sprinkling \cite commands through their LATEX
documents! Most articles have a further reading sec-
tion, which provides a small number of sources that
provide an entrée into the literature on that topic.

7 The Companion Project

I was invited to lead the project in late 2009. After the
editorial board was assembled and the format of the
book and the outline of its contents were agreed at
a meeting of the board in Manchester, invitations to
authors began to go out in 2011. We aimed to invite
authors who are both leaders in their field and excellent
writers. We were delighted with the high acceptance
rate.

Ludwig Boltzmann was a contributor to the six-
volume Encyclopedia of Mathematical Sciences (1898–
1933) edited by Felix Klein, Wilhelm Meyer, and others.
In 1905, he wrote, apropos of the selected author of an
article:

He must first be persuaded to promise a contribution;
then, he must be instructed and pressed with all means
of persuasion to write a contribution which fits into the
general framework; and last, but not least, he must be
urged to fulfill his promise in a timely matter.
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Over a hundred years later these comments remain
true, and one of the reasons for the long gestation
period of a book such as this is that it does take a long
time to sign up authors and collect articles. Occasion-
ally, we were unable to find an author willing and able
to deliver an article on a particular topic, so a small
number of topics that we would have liked to include
had to be omitted.

Of the 165 authors, at least two had babies dur-
ing the course of preparing their articles. Sadly, one
author, David Broomhead, did not live to see the project
completed.

If the project has gone well, one of the reasons is
the thoroughly professional and ever-cheerful support
provided by Sam Clark of T&T Productions Ltd in Lon-
don. Sam acted as project manager, copy editor, and
typesetter, and made the process as smooth and pain-
less for the editors and contributors as it could be. Sam
played the same role for the The Princeton Companion
to Mathematics, and his experience of that project was
invaluable.
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Part I

Introduction to
Applied Mathematics

I.1 What Is Applied Mathematics?
Nicholas J. Higham

1 The Big Picture

Applied mathematics is a large subject that interfaces

with many other fields. Trying to define it is problem-

atic, as noted by William Prager and Richard Courant,

who set up two of the first centers of applied mathemat-

ics in the United States in the first half of the twentieth

century, at Brown University and New York University,

respectively. They explained that:

Precisely to define applied mathematics is next to
impossible. It cannot be done in terms of subject mat-
ter: the borderline between theory and application is
highly subjective and shifts with time. Nor can it be
done in terms of motivation: to study a mathematical
problem for its own sake is surely not the exclusive
privilege of pure mathematicians. Perhaps the best I
can do within the framework of this talk is to describe
applied mathematics as the bridge connecting pure
mathematics with science and technology.

Prager (1972)

Applied mathematics is not a definable scientific field
but a human attitude. The attitude of the applied sci-
entist is directed towards finding clear cut answers
which can stand the test of empirical observation. To
obtain the answers to theoretically often insuperably
difficult problems, he must be willing to make com-
promises regarding rigorous mathematical complete-
ness; he must supplement theoretical reasoning by
numerical work, plausibility considerations and so on.

Courant (1965)

Garrett Birkhoff offered the following view in 1977,

with reference to the mathematician and physicist Lord

Rayleigh (John William Strutt, 1842–1919):

Writing software

Computational experiments

Validation of the model

Modeling a problem mathematically

Analyzing the mathematical problem

Developing algorithms

 

Figure 1 The main steps in solving
a problem in applied mathematics.

Essentially, mathematics becomes “applied” when it is
used to solve real-world problems “neither seeking nor
avoiding mathematical difficulties” (Rayleigh).

Rather than define what applied mathematics is, one
can describe the methods used in it. Peter Lax stated of
these methods, in 1989, that:

Some of them are organic parts of pure mathemat-
ics: rigorous proofs of precisely stated theorems.
But for the greatest part the applied mathematician
must rely on other weapons: special solutions, asymp-
totic description, simplified equations, experimenta-
tion both in the laboratory and on the computer.

Here, instead of attempting to give our own definition
of applied mathematics we describe the various facets
of the subject, as organized around solving a problem.
The main steps are described in figure 1. Let us go
through each of these steps in turn.
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Modeling a problem. Modeling is about taking a phys-
ical problem and developing equations—differential,
difference, integral, or algebraic—that capture the es-
sential features of the problem and so can be used
to obtain qualitative or quantitative understanding of
its behavior. Here, “physical problem” might refer to
a vibrating string, the spread of an infectious disease,
or the influence of people participating in a social net-
work. Modeling is necessarily imperfect and requires
simplifying assumptions. One needs to retain enough
aspects of the system being studied that the model
reproduces the most important behavior but not so
many that the model is too hard to analyze. Different
types of models might be feasible (continuous, discrete,
stochastic), and for a given type there can be many
possibilities. Not all applied mathematicians carry out
modeling; in fact, most join the process at the next step.

Analyzing the mathematical problem. The equations
formulated in the previous step are now analyzed and,
ideally, solved. In practice, an explicit, easily evalu-
ated solution usually cannot be obtained, so approxi-
mations may have to be made, e.g., by discretizing a dif-
ferential equation, producing a reduced problem. The
techniques necessary for the analysis of the equations
or reduced problem may not exist, so this step may
involve developing appropriate new techniques. If ana-
lytic or perturbation methods have been used then the
process may jump from here directly to validation of
the model.

Developing algorithms. It may be possible to solve
the reduced problem using an existing algorithm—a
sequence of steps that can be followed mechanically
without the need for ingenuity. Even if a suitable algo-
rithm exists it may not be fast or accurate enough, may
not exploit available structure or other problem fea-
tures, or may not fully exploit the architecture of the
computer on which it is to be run. It is therefore often
necessary to develop new or improved algorithms.

Writing software. In order to use algorithms on a
computer it is necessary to implement them in soft-
ware. Writing reliable, efficient software is not easy,
and depending on the computer environment being tar-
geted it can be a highly specialized task. The necessary
software may already be available, perhaps in a package
or program library. If it is not, software is ideally devel-
oped and documented to a high standard and made
available to others. In many cases the software stage
consists simply of writing short programs, scripts, or

notebooks that carry out the necessary computations
and summarize the results, perhaps graphically.

Computational experiments. The software is now
run on problem instances and solutions obtained. The
computations could be numeric or symbolic, or a mix-
ture of the two.

Validation of the model. The final step is to take the
results from the experiments (or from the analysis, if
the previous three steps were not needed), interpret
them (which may be a nontrivial task), and see if they
agree with the observed behavior of the original sys-
tem. If the agreement is not sufficiently good then the
model can be modified and the loop through the steps
repeated. The validation step may be impossible, as the
system in question may not yet have been built (e.g., a
bridge or a building).

Other important tasks for some problems, which
are not explicitly shown in our outline, are to cali-
brate parameters in a model, to quantify the uncer-
tainty in these parameters, and to analyze the effect
of that uncertainty on the solution of the problem.
These steps fall under the heading of uncertainty

quantification [II.34].

Once all the steps have been successfully completed
the mathematical model can be used to make predic-
tions, compare competing hypotheses, and so on. A
key aim is that the mathematical analysis gives new
insights into the physical problem, even though the
mathematical model may be a simplification of it.

A particular applied mathematician is most likely to
work on just some of the steps; indeed, except for rela-
tively simple problems it is rare for one person to have
the skills to carry out the whole process from modeling
to computer solution and validation.

In some cases the original problem may have been
communicated by a scientist in a different field. A sig-
nificant effort can be required to understand what the
mathematical problem is and, when it is eventually
solved, to translate the findings back into the language
of the relevant field. Being able to talk to people out-
side mathematics is therefore a valuable skill for the
applied mathematician.

It would be wrong to give the impression that all
applied mathematics is done in the context of model-
ing. Frequently, a mathematical problem will be tack-
led because of its inherent interest (see the quote from
Prager above) with the hope or expectation that a rel-
evant application will be found. Indeed some applied
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mathematicians spend their whole careers working in

this way. There are many examples of mathemati-

cal results that provide the foundations for impor-

tant practical applications but were developed without

knowledge of those applications (sections 3.1 and 3.2

provide such examples).

Before the twentieth century, applied mathematics

was driven by problems in astronomy and mechan-

ics. In the twentieth century physics became the main

driver, with other areas such as biology, chemistry, eco-

nomics, engineering, and medicine also providing many

challenging mathematical problems from the 1950s

onward. With the massive and still-growing amounts

of data available to us in today’s digital society we can

expect information, in its many guises, to be an increas-

ingly important influence on applied mathematics in

the twenty-first century.

For more on the definition and history of applied

mathematics, including the development of the term

“applied mathematics,” see the article history of

applied mathematics [I.6].

2 Applied Mathematics and Pure Mathematics

The question of how applied mathematics compares

with pure mathematics is often raised and has been

discussed by many authors, sometimes in controversial

terms. We give a few highlights.

Paul Halmos wrote a 1981 paper provocatively titled

“Applied mathematics is bad mathematics.” However,

much of what Halmos says would not be disputed by

many applied mathematicians. For example:

Pure mathematics can be practically useful and applied
mathematics can be artistically elegant. . . .

Just as pure mathematics can be useful, applied math-
ematics can be more beautifully useless than is some-
times recognized.. . .

Applied mathematics is an intellectual discipline, not
a part of industrial technology.. . .

Not only, as is universally admitted, does the applied
need the pure, but, in order to keep from becoming
inbred, sterile, meaningless, and dead, the pure needs
the revitalization and the contact with reality that only
the applied can provide.

G. H. Hardy’s book A Mathematician’s Apology (1940)

is well known as a defense of mathematics as a

subject that can be pursued for its own sake and

beauty. As such it contains some criticism of applied

mathematics:

But is not the position of an ordinary applied mathe-
matician in some ways a little pathetic? If he wants to
be useful, he must work in a humdrum way, and he can-
not give full play to his fancy even when he wishes to
rise to the heights. “Imaginary” universes are so much
more beautiful than this stupidly constructed “real”
one; and most of the finest products of an applied
mathematician’s fancy must be rejected, as soon as
they have been created, for the brutal but sufficient
reason that they do not fit the facts.

Halmos and Hardy were pure mathematicians. Ap-
plied mathematicians C. C. Lin and L. A. Segel offer
some insights in the introductory chapter of their clas-
sic 1974 book Mathematics Applied to Deterministic
Problems in the Natural Sciences:

The differences in motivation and objectives between
pure and applied mathematics—and the consequent
differences in emphasis and attitude—must be fully
recognized. In pure mathematics, one is often deal-
ing with such abstract concepts that logic remains the
only tool permitting judgment of the correctness of
a theory. In applied mathematics, empirical verifica-
tion is a necessary and powerful judge. However . . . in
some cases (e.g., celestial mechanics), rigorous theo-
rems can be proved that are also valuable for practical
purposes. On the other hand, there are many instances
in which new mathematical ideas and new mathemati-
cal theories are stimulated by applied mathematicians
or theoretical scientists.

They also opine that:

Much second-rate pure mathematics is concealed be-
neath the trappings of applied mathematics (and vice
versa). As always, knowledge and taste are needed if
quality is to be assured.

The applied versus pure discussion is not always
taken too seriously. Chandler Davis quotes the applied
mathematician Joseph Keller as saying, “pure mathe-
matics is a subfield of applied mathematics”!

The discussion can also focus on where in the spec-
trum a particular type of mathematics lies. An inter-
esting story was told in 1988 by Clifford Truesdell
of his cofounding in 1952 of the Journal of Rational
Mechanics and Analysis (which later became Archive for
Rational Mechanics and Analysis). He explained that

In those days papers on the foundation of continuum
mechanics were rejected by journals of mathematics
as being applied, by journals of “applied” mathematics
as being physics or pure mathematics, by journals of
physics as being mathematics, and by all of them as too
long, too expensive to print, and of interest to no one.
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3 Applied Mathematics in Everyday Life

We now give three examples of applied mathemat-
ics in use in everyday life. These examples were cho-
sen because they can be described without delving
into too many technicalities and because they illus-
trate different characteristics. Some of the terms used
in the descriptions are explained in the language of

applied mathematics [I.2].

3.1 Searching Web Pages

In the early to mid-1990s—the early days of the World
Wide Web—search engines would find Web pages that
matched a user’s search query and would order the
results by a simple criterion such as the number of
times that the search query appears on a page. This
approach became unsatisfactory as the Web grew in
size and spammers learned how to influence the search
results. From the late 1990s onward, more sophisti-
cated criteria were developed, based on analysis of
the links between Web pages. One of these is Google’s
PageRank algorithm [VI.9]. Another is the hyperlink-
induced topic search (HITS) algorithm of Kleinberg.

The HITS algorithm is based on the idea of deter-
mining hubs and authorities. Authorities are Web pages
with many links to them and for which the linking pages
point to many authorities. For example, the New York
Times home page or a Wikipedia article on a popular
topic might be an authority. Hubs are pages that point
to many authorities. An example might be a page on
a programming language that provides links to useful
pages about that language but that does not necessar-
ily contain much content itself. The authorities are the
pages that we would like to rank higher among pages
that match a search term. However, the definition of
hubs and authorities is circular, as each depends on
the other.

To resolve this circularity, associate an authority
weight xi and a hub weight yi with page i, with both
weights nonnegative. Let there be n pages to be con-
sidered (in practice this is a much smaller number than
the total number of pages that match the search term).
Define an n × n matrix A = (aij) by aij = 1 if there
is a hyperlink from page i to page j and by aij = 0
otherwise. Let us make initial guesses x(0)i = 1 and
y(0)i = 1, for i = 1,2, . . . , n. It is reasonable to update
the authority weight xi for page i by replacing it by the
sum of the weights of the hubs that point to it. Simi-
larly, the hub weight yi for page i can be replaced by
the sum of the weights of the authorities to which it

points. In equations, these updates can be written as
x(1)i = ∑

aji �=0y
(0)
j and y(1)i = ∑

aij �=0 x
(1)
j ; note that in

the latter equation we are using the updated author-
ity weights, and the sums are over those j for which
aji or aij is nonzero, respectively. This process can be
iterated:

x(k+1)
i =

∑
aji �=0

y(k)j

y(k+1)
i =

∑
aij �=0

x(k+1)
j

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ k = 0,1,2, . . . .

The circular definition of hubs and authorities has
been turned into an iteration. The iteration is best ana-
lyzed by rewriting it in matrix–vector form. Defining
the n-vectors

xk = [x(k)1 , x(k)2 , . . . , x(k)n ]T,

yk = [y(k)1 , y(k)2 , . . . , y(k)n ]T

and recalling that the elements of A are 0 or 1, we can
rewrite the iteration as

xk+1 = ATyk
yk+1 = Axk+1

⎫⎬⎭ k = 0,1,2, . . . ,

where AT = (aji) is the transpose of A. Combining the
two formulas into one gives xk+1 = ATyk = AT(Axk) =
(ATA)xk. Hence the xk are generated by repeatedly
multiplying by the matrix ATA. Each element of ATA is
either zero or a positive integer, so the powers of ATA
will usually grow without bound. In practice we should
therefore normalize the vectors xk and yk so that the
largest element is 1; this avoids overflow and has no
effect on the relative sizes of the components, which is
all that matters. Our iteration is then

xk+1 = c−1
k A

TAxk,

where ck is the largest element of ATAxk. If the
sequencesxk and ck converge, say tox∗ and c∗, respec-
tively, then ATAx∗ = c∗x∗. This equation says that x∗
is an eigenvector ofATAwith corresponding eigenvalue
c∗. A similar argument shows that, if the normalized
sequence of vectors yk converges, then it must be to
an eigenvector of AAT.

This process of repeated multiplication by a matrix is
known as the power method [IV.10 §5.5]. The perron–

frobenius theorem [IV.10 §11.1] can be used to show
that, provided the matrixATA has a property called irre-
ducibility, it has a unique eigenvalue of largest magni-
tude and this eigenvalue is real and positive, with an
associated eigenvector x having positive entries. Con-
vergence theory for the power method then shows that
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1

2

3

4

Figure 2 Graph representing four Web pages
and the links between them.

xk converges to a multiple of x. Therefore, the vec-
tors x∗ and y∗ required for the HITS algorithm are
the eigenvectors corresponding to the dominant eigen-
values of ATA and AAT, respectively. Another inter-
pretation of these vectors is that they are the right
and left singular vectors [II.32] corresponding to the
dominant singular value of A.

We give a simple example to illustrate the algorithm.
Consider the network of four Web pages shown in fig-
ure 2 in a directed graph [II.16] representation. The
corresponding matrix is

A =

⎡⎢⎢⎢⎢⎣
0 1 1 0

1 0 0 0

0 1 0 1

1 0 0 0

⎤⎥⎥⎥⎥⎦ .
The HITS algorithm produces

x =

⎡⎢⎢⎢⎢⎣
0

1

0.5
0.5

⎤⎥⎥⎥⎥⎦ , y =

⎡⎢⎢⎢⎢⎣
1

0

1

0

⎤⎥⎥⎥⎥⎦ .
This tells us that page 2 is the highest-ranked authority
and pages 1 and 3 are the jointly highest-ranked hubs,
which is an intuitively reasonable ranking.

This Web search example illustrates the steps in fig-
ure 1. The first step, modeling, yields the notion of
hubs and authorities. The production of the iteration
for the weights is the analysis step, which for this prob-
lem overlaps with the third step of developing algo-
rithms, because the iteration is a practical means for
computing the hubs and authorities. However, other
algorithms could be used for this purpose, so much
more can be done in the third step. Implementing the
iteration in software (the fourth step) is straightfor-
ward if we assume the matrix A is given. The compu-
tational experiments in the fifth step should use real
data from particular Web searches. Probably the most
difficult step is the final one: validating the model. The

reason for this is that there is no natural quantitative
measure of the goodness of a ranking based on the
computed authorities; this assessment requires human
judgment.

A final point to note is that further insight into the
HITS algorithm can be obtained using graph theory

[II.16]. In general, there may be multiple ways to analyze
a problem and it may be necessary to employ more than
one technique to obtain a complete understanding.

3.2 Digital Imaging

Image retouching refers to the process of changing
a digital image to make it more visually pleasing by
removing a color cast, creatively adjusting color and
contrast, smoothing out wrinkles on a subject’s face
in a portrait, and so on. In the days of film cameras,
image retouching was carried out by professionals on
scanned images using expensive hardware and soft-
ware. Since the advent of digital cameras retouching
has become something that anyone can attempt, even
on a smartphone with a suitable app. An operation
called “cloning” is of particular interest. Cloning is the
operation of copying one area of an image over another
and is commonly used to remove defects or unwanted
elements from an image, such as dust spots on the cam-
era sensor, litter in a landscape, or someone’s limbs
intruding into the edge of an image.

Cloning tools in modern software use sophisticated
mathematics to blend the image fragment being copied
into the target area. Let us represent the image as a
function f of two variables, where f(x,y) is an RGB
(red, green, blue) triple corresponding to the point
(x,y). In practice, an image is a discrete grid of points
and the RGB values are integers. Our goal is to replace
an open target regionΩ by a source region that has the
same shape and size but is in a different location in
the image, and that therefore corresponds to a trans-
lation (δx,δy). If we simply copy the source region
into the target, the result will not be convincing visu-
ally, as it neither preserves texture nor matches up well
around the boundary ∂Ω (see figure 3). To alleviate
these problems we can replace f inside Ω by the func-
tion g defined by the partial differential equation (PDE)
problem

Δg(x,y) = Δf(x + δx,y + δy), (x,y) ∈ Ω,
g(x,y) = f(x,y), (x,y) ∈ ∂Ω,

where Δ = ∂2/∂x2 + ∂2/∂y2 is the laplace opera-

tor [III.18]. We are forcing g to be identical to f on
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the boundary of the target region, but inside the region
the Laplacian of g has to match that of f in the source
region. This is a Poisson equation with Dirichlet bound-
ary condition. Since the Laplace operator is connected
with diffusion effects in equilibrium, we can think of the
pixels in the image diffusing to form a more convinc-
ing visual result. Another interpretation, which shows
that the solution has optimal smoothness in a certain
sense, is that we are minimizing

∫
Ω ‖∇g −∇f‖2 dΩ,

where ∇ = [∂/∂x ∂/∂y]T is the gradient operator and
‖ · ‖ is the L2-norm [I.2 §19.3]. In practice, the PDE is
solved by a numerical method [IV.13].

Adobe Photoshop, the digital image manipulation
software originally released in 1990, introduced a new
feature called the healing brush in 2002. It carries out
the sophisticated cloning just outlined but solves the
biharmonic equation Δ2g(x,y) = Δ2f(x + δx,y +
δy), where Δ2 = ∂4/∂x4 + 2∂4/(∂x2∂y2) + ∂4/∂y4,
because this has been found to provide better match-
ing of derivatives on the boundary and thereby pro-
duces a better blending of the source into the area
containing the target. In this case we are minimizing∫
Ω(Δg −Δf)2 dΩ. See figure 3.

The idea of using the Poisson equation or the bihar-
monic equation to fill in gaps in two-dimensional data
appears in other application areas too, such as in map-
ping and contouring of geophysical data, where it was
proposed as early as the 1950s.

A related problem is how to detect when an image has
been subject to cloning. Applications include checking
the veracity of images appearing in the media or used
as evidence in legal cases and checking the eligibility of
entries to a photographic competition in which image
manipulation is disallowed. The same ideas that make
cloning possible also enable its use to be detected.
For example, even though the values in the target and
source areas are different, the Laplacian or biharmonic
operators yield the same values, so a systematic search
can be done to find different areas with this property.
One complication is that if the image has been com-
pressed after cloning, as is typically done with jpeg

compression [VII.7 §5], the uncompressed image con-
tains noise that causes the derivatives in question no
longer to match exactly. Having to deal with noise is a
common requirement in applied mathematics.

3.3 Computer Arithmetic

In modern life we rely on computers to carry out arith-
metic calculations for a wide range of tasks, including

computation of financial indices, aircraft flight paths,

and utility bills. We take it for granted that these cal-

culations produce the “correct result,” but they do not

always do so, and there are infamous examples where

inaccurate results have had disastrous consequences.

Applied mathematicians and computer scientists have

been responsible for ensuring that today’s computer

calculations are more reliable than ever.

Probably the most important advance in computer

arithmetic in the last fifty years was the development

of the 1985 IEEE standard for binary floating-point

arithmetic [II.13]. Prior to the development of the

standard, different computers used different imple-

mentations of floating-point arithmetic that were of

varying quality. For example, on some computers of the

1980s a test such as

1 if x �= y
2 f = f/(x −y)
3 end

could fail with division by zero because the difference

x − y evaluated to zero even though x was not equal

to y . This failure is not possible in IEEE-compliant

arithmetic.

Some features of the IEEE standard are more unex-

pected. For example, it includes a special number inf

that represents ∞ and satisfies the natural relations.

For example, 1/0 evaluates to inf, 1/ inf evaluates to 0,

and 1+ inf and inf + inf produce inf. If a program does

divide by zero then this does not halt the program and

it can be tested for and appropriate action taken. But

division by zero does not necessarily signify a problem.

For example, if we evaluate the function

f(x) = 1

1 + 1
1−x

at x = 1, IEEE arithmetic correctly yields f(1) = 1/(1+
∞) = 0. In 1997 the USS Yorktown, a guided missile

cruiser, was paralyzed (“dead in the water” according to

the commander) for 2 3
4 hours when a crewman entered

a zero into a database and a division by zero was trig-

gered that caused the program to crash. The incident

could have been avoided if IEEE standard features such

as inf had been fully utilized.

The development of the IEEE standard took many

years and required much mathematical analysis of

the various options. The benefits brought by the

standard include increased portability of programs
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(a) (b) (c)

Figure 3 Close-up of part of a metal sign with a hot spot from a reflection. (a) Original image showing source and target
regions. (b) The result of copying source to target. (c) The result of one application of Photoshop healing brush with same
target area. In practice, multiple applications of the healing brush would be used with smaller, overlapping target areas.

between different computers and an improved abil-
ity for mathematicians to understand the way algo-
rithms will behave when implemented in floating-point
arithmetic.

In IEEE double-precision arithmetic, numbers are rep-
resented to a precision equivalent to about sixteen
significant decimal digits. In many situations in life,
results are needed to far fewer figures and a final result
must be rounded . For example, a conversion from euros
to dollars producing an answer $110.89613 might be
rounded up to $110.90: the nearest amount in whole
cents. A bank paying the dollars into a customer’s
account might prefer to round down to $110.89 and
keep the remainder. However, deciding on the rules
for rounding was not so simple when the euro was
founded in 1997. A twenty-nine-page document was
needed to specify precisely how conversions among
the fifteen currencies of the member states and the
euro should be done. Its pronouncements included
how many significant figures each individual conver-
sion rate should have (six was the number that was cho-
sen), how rounding should be done (round to the near-
est six-digit number), and how ties should be handled
(always round up).

Even when rounding should be straightforward it
is often carried out incorrectly. In 1982 the Van-
couver Stock Exchange established an index with an
initial value of 1000. After twenty-two months the
index had been hitting lows in the 520s, despite the
exchange apparently performing well. The index was
recorded to three decimal places and it was discov-
ered that the computer program calculating the index
always rounded down, hence always underestimating
the index. Upon recalculation (presumably with round
to nearest) the index almost doubled.

In 2006 athlete Justin Gatlin was credited with a
new world record of 9.76 seconds for the 100 meters.
Almost a week after the race the time was changed to
9.77 seconds, meaning that he had merely equaled the
existing record held by Asafa Powell. The reason for the

change was that his recorded time of 9.766 had incor-
rectly been rounded down to the nearest hundredth of
a second instead of up as the International Association
of Athletics Federations rules require.

4 What Do Applied Mathematicians Do?

Applied mathematicians can work in academia, indus-
try, or government research laboratories. Their work
may involve research, teaching, and (especially for
more senior mathematicians) administrative tasks such
as managing teams of people. They usually spend only
part of their time doing mathematics in the traditional
sense of sitting with pen and paper scribbling formu-
las on paper and trying to solve equations or prove
theorems. Under the general heading of research, a lot
of time is spent writing papers, books, grant propos-
als, reports, lecture notes, and talks; attending semi-
nars, conferences, and workshops; writing and running
computer programs; reading papers in the research lit-
erature; refereeing papers submitted to journals and
grant proposals submitted to funding bodies; and com-
menting on draft papers and theses written by Ph.D.
students.

Mathematics can be a lonely endeavor: one may be
working on different problems from one’s colleagues or
may be the only mathematician in a company. Although
some applied mathematicians prefer to work alone,
many collaborate with others, often in faraway coun-
tries. Collaborations are frequently initiated through
discussions at conferences, though sometimes papers
are coauthored by people who have never met, thanks
to the ease of email communication.

Applied mathematics societies provide an impor-
tant source of identity and connectivity, as well as
opportunities for networking and professional devel-
opment. They mostly focus on particular countries or
regions, an exception being the Society for Industrial
and Applied Mathematics (SIAM), based in Philadelphia.
SIAM is the largest applied mathematics organization
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in the world and has a strong international outlook,
with about one-third of its members residing outside
the United States. A mathematician’s activities are fre-
quently connected with societies, whether it be through
publishing in or editing their journals, attending their
conferences, or keeping up with news through their
magazines and newsletters. Most societies offer greatly
reduced membership fees (sometimes free member-
ship) for students.

Applied mathematicians can be part of multidisci-
plinary teams. Their skills in problem solving, thinking
logically, modeling, and programming are sought after
in other subjects, such as medical imaging, weather
prediction, and financial engineering.

In the business world, applied mathematics can be
invisible because it is called “analytics,” “modeling,” or
simply generic “research.” But whatever their job title,
applied mathematicians play a crucial role in today’s
knowledge-based economy.

5 What Is the Impact of Applied Mathematics?

The impact of applied mathematics is illustrated in
many articles in this volume, and in this section we pro-
vide just a brief overview, concentrating on the impact
outside mathematics itself.

Applied mathematics provides the tools and algo-
rithms to enable understanding and predictive model-
ing of many aspects of our planet, including weather

[V.18] (for which the accuracy of forecasts has im-
proved greatly in recent decades), atmosphere and

the oceans [IV.30], tsunamis [V.19], and sea ice

[V.17]. In many cases the models are used to inform
policy makers.

At least two mathematical algorithms are used by
most of us almost every day. The fast fourier trans-

form [II.10] is found in any device that carries out sig-
nal processing, such as a smartphone. Photos that we
take on our cameras or view on a computer screen are
usually stored using jpeg compression [VII.7 §5].

X-ray tomography devices, ranging from airport

luggage scanners [VII.19] to human body scanners

[VII.9], rely on the fast and accurate solution of inverse

problems [IV.15], which are problems in which we need
to recover information about the internals of a system
from (noisy) measurements taken outside the system.

Investments are routinely made on the basis of math-
ematical models, whether for individual options or col-
lections of assets (portfolios): see financial mathe-

matics [V.9] and portfolio theory [V.10].

The clever use of mathematical modeling offers a
competitive advantage in sports, such as yacht rac-

ing [V.2], swimming [V.2], and formula one racing

[V.3], where small improvements can be the difference
between success and failure.

I.2 The Language of Applied
Mathematics
Nicholas J. Higham

This article provides background on the notation, ter-
minology, and basic results and concepts of applied
mathematics. It therefore serves as a foundation for the
later articles, many of which cross-reference it.

In view of the limited space, the material has been
restricted to that common to many areas of applied
mathematics. A number of later articles provide their
own careful introduction to the language of their par-
ticular topic.

1 Notation

Table 1 lists the Greek alphabet, which is widely used
to denote mathematical variables. Note that almost
always δ and ε are used to denote small quantities, and
π is used as a variable as well as for π = 3.14159 . . . .

Mathematics has a wealth of notation to express com-
monly occurring concepts. But notation is both a bless-
ing and a curse. Used carefully, it can make mathe-
matical arguments easier to read and understand. If
overused it can have the opposite effect, and often
it is better to express a statement in words than in
symbols (see mathematical writing [VIII.1]). Table 2
gives some notation that is common in informal con-
texts such as lectures and is occasionally encountered
in this book. Table 3 summarizes basic notation used
throughout the book.

2 Complex Numbers

Most applied mathematics takes place in the set of com-
plex numbers, C, or the set of real numbers, R. A com-
plex number z = x + iy has real and imaginary parts
x = Rez and y = Imz belonging to R, and the imag-
inary unit i denotes

√−1. The imaginary unit is some-
times written as j, e.g., in electrical engineering and in
the programming language python [VII.11].

We can represent complex numbers geometrically in
the complex plane, in which a complex number a + ib
is represented by the point with coordinates (a, b)
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Table 1 The Greek alphabet. Where an uppercase Greek
letter is the same as the Latin letter it is not shown.

α alpha ν nu
β beta ξ, Ξ xi
γ, Γ gamma o omicron
δ, Δ delta π , �, Π pi
ε, ε epsilon ρ, � rho
ζ zeta σ , ς, Σ sigma
η eta τ tau
θ, ϑ, Θ theta υ, Υ upsilon
ι iota φ, ϕ, Φ phi
κ kappa χ chi
λ, Λ lambda ψ, Ψ psi
μ mu ω, Ω omega

Table 2 Other notation.

⇒ Implies ∃ There exists
⇐ Implied by �∃ There does not exist
� If and only if ∀ For all

r

a

b

x

y

0

θ

a + ib

Figure 1 Complex plane with z = a+ ib = reiθ .

(see figure 1). The corresponding diagram is called the
Argand diagram. Important roles are played by the
right half-plane {z : Rez � 0} and the left half-plane
{z : Rez � 0}. If we exclude the pure imaginary num-
bers (Imz = 0) from these sets we obtain the open
half-planes. Euler’s formula, eiθ = cosθ + i sinθ, is
fundamental.

The polar form of a complex number is z = reiθ ,
where r � 0 and the argument argz = θ are real, and
θ can be restricted to any interval of length 2π , such as
[0,2π) or (−π,π]. The complex conjugate of z = x+iy
is z̄ = x − iy , sometimes written z∗. The modulus, or
absolute value, |z| = (z̄z)1/2 = (x2 +y2)1/2 = r .

x

y

z

r

θ

φ

Figure 2 Spherical coordinates.

Complex arithmetic is defined in terms of real arith-

metic according to the following rules, for z1 = x1+iy1

and z2 = x2 + iy2:

z1 ± z2 = x1 ± x2 + i(y1 ±y2),

z1z2 = x1x2 −y1y2 + i(x1y2 + x2y1),
z1

z2
= x1x2 +y1y2

x2
2 +y2

2

+ i
x2y1 − x1y2

x2
2 +y2

2

.

In polar form multiplication and division become nota-

tionally simpler: if z1 = r1eiθ1 and z2 = r2eiθ2 then

z1z2 = r1r2ei(θ1+θ2) and z1/z2 = (r1/r2)ei(θ1−θ2).

3 Coordinate Systems

We are used to specifying a point in two dimensions by

its x- and y-coordinates, and a point in three dimen-

sions by its x-, y-, and z-coordinates. These are called

Cartesian coordinates. In two dimensions we can also

use polar coordinates, which are as described in the pre-

vious section if we identify (x,y)with x+iy . Spherical

coordinates, illustrated in figure 2, are an extension of

polar coordinates to three dimensions. Here, (x,y, z)
is represented by (r , θ,φ), where

x = r sinθ cosφ, y = r sinθ sinφ, z = r cosθ,

with nonnegative radius r and angles θ and φ in the

ranges 0 � θ � π and 0 � φ < 2π .

Cylindrical coordinates provide another three-dimen-

sional coordinate system. Here, polar coordinates are

used in the xy-plane and z is retained, so (x,y, z) is

represented by (r , θ, z).
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Table 3 Notation frequently used in this book.

Notation Meaning Example

R, C The real numbers, the complex numbers

Rn, Rm×n The real n-vectors and realm×nmatrices; similarly for Cn and Cm×n

Rez, Imz Real and imaginary parts of the complex number z
Z, N The integers, {0,±1,±2, . . . }, and the positive integers, {1,2, . . . }
i = 1,2, . . . , n The integer variable i takes on the values 1, 2, 3, and so on, up to n;

also written 1 � i � n and i = 1 :n
≈ Approximately equal; also written � π ≈ 3.14

∈ Belongs to x ∈ R, n ∈ Z
≡ Identically equal to f ≡ 0 means that f is the zero function, that is,

f is zero for all values, not just some values, of its argument(s)
n! Factorial, n! = n(n− 1) · · ·1

→ Tends to, or converges to n→ ∞∑
Summation

∑3
i=1 xi = x1 + x2 + x3∏

Product
∏3
i=1 xi = x1x2x3

�, � Much less than, much greater than n� 1, 0 � ε� 1

δij Kronecker delta: δij = 1 if i = j and δij = 0 if i �= j
[a, b], (a, b), [a, b) The closed interval {x : a � x � b}, the open interval {x : a < x < b},

and the half-closed, half-open interval {x : a � x < b}
f : P → Q The function f maps the set P to the set Q, that is, x ∈ P implies

f(x) ∈ Q
f ′, f ′′, f ′′′, f (k) First, second, third, and kth derivatives of the function f
ḟ , f̈ First and second derivatives of the function f
C[a,b] Real-valued continuous functions on [a, b] f ∈ C[a,b]
Ck[a, b] Real-valued functions with continuous derivatives of order 0,1, . . . , k

on [a, b]
f ∈ C2[a, b]

L2[a, b] The functions f : R → R such that the Lebesgue integral
∫ b
a f(x)2 dx

exists

f ◦ g Composition of functions: (f ◦ g)(x) = f(g(x)) ex
2 = ex ◦ x2

:=, =: Definition of a variable or function, to distinguish from mathematical
equality

y′ = 1 +y4 =: f(y)

4 Functions

A function f is a rule that assigns for each value of x
a unique value f(x). It can be thought of as a black

box that takes an input x and produces an output y =
f(x). A function is sometimes called a mapping. If we

write y = f(x) then y is the dependent variable and

x is the independent variable, also called the argument

of f .

For some functions there is not a unique value of

f(x) for a given x, and these multivalued functions are

not true functions unless restrictions are imposed. For

example, consider y = logx, which in general denotes

any solution of the equation ey = x. There are infinitely

many solutions, which can be written as y = y0 +2π ik
for k ∈ Z, where y0 is the principal logarithm, defined

as the logarithm whose imaginary part lies in (−π,π].
The principal logarithm is often the one that is needed
in practice and is usually the one computed by soft-
ware. Multivalued functions of a complex variable can
be elegantly handled using riemann surfaces [IV.1 §2]
and branch cuts [IV.1 §2].

A function is linear if the independent variable
appears only to the first power. Thus the function
f(x) = ax + b, where a and b are constants, is lin-
ear in x. In some contexts, e.g., in convex optimization,
ax+b is called an affine function and the term linear is
reserved for f(x) = ax, for which f(tx) = tf (x) for
all t.

A function f is odd if f(x) = −f(−x) for all x and
it is even if f(x) = f(−x) for all x. For example, the
sine function is odd, whereas x2 and |x| are even.
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It is worth noting the distinction between the func-

tion f and its value f(x) at a particular point x. Some-

times this distinction is blurred; for example, one might

write “the function f(u,v),” in order to emphasize the

symbols being used for the independent variables.

Functions with more than one independent variable

are called multivariate functions. For ease of notation

the independent variables can be collected into a vec-

tor. For example, the multivariate function f(u,v) =
cosu sinv can be written f(x) = cosx1 sinx2, where

x = [x1, x2]T.

5 Limits and Continuity

The notion of a function converging to a limit as its

argument approaches a certain value seems intuitively

obvious. For example, the statement that x2 → 4 as

x → 2, where the symbol “→” means tends to or con-

verges to, is clearly true, as can be seen by consider-

ing the graph of x2. However, we need to make the

notion of convergence precise because a large number

of definitions are built on it.

Let f be a real function of a real variable. We say that

f(x) → - as x → a, and we write limx→a f(x) = -, if

for every ε > 0 there is a δ > 0 such that 0 < |x−a| < δ
implies |f(x) − -| < ε. In other words, by choosing x
close enough to a, f(x) can be made as close as desired

to -. Showing that the definition holds in a particular

case boils down to determining δ as a function of ε.
It is implicit in this definition that - is finite. We say

that f(x) → ∞ as x → a if for every ρ > 0 there is a

δ > 0 such that |x − a| < δ implies f(x) > ρ.

In practice, mathematicians rarely prove existence of

a limit by exhibiting the appropriate δ = δ(ε) in these

definitions. For example, one would argue that tanx →
∞ as x → π/2 because sinx → 1 and cosx → 0 as

x → π/2. However, the definition might be used if f
is an implicitly defined function whose behavior is not

well understood.

We can also define one-sided limits, in which the lim-

iting value of x is approached from the right or the

left. For the right-sided limit limx→a+ f(x) = -, the def-

inition of limit is modified so that 0 < |x − a| < δ
is replaced by a < x < a + δ, and the left-sided

limit limx→a− f(x) is defined analogously. The stan-

dard limit exists if and only if the right- and left-sided

limits exist and are equal.

The function f is continuous at x = a if f(a) exists

and limx→a f(x) = f(a).

The definitions of limit and continuity apply equally
well to functions of a complex variable. Here, the con-
dition |x−a| < δ places x in a disk of radius less than
δ in the complex plane instead of an open interval on
the real axis.

The function f is continuous on [a, b] if it is contin-
uous at every point in that interval. A more restricted
form of continuity is Lipschitz continuity. The function
f is Lipschitz continuous on [a, b] if

|f(x)− f(y)| � L|x −y| for all x,y ∈ [a, b]
for some constant L, which is called the Lipschitz con-
stant. This definition, which is quantitative as opposed
to the purely qualitative usual definition of continu-
ity, is useful in many settings in applied mathemat-
ics. A function may, however, be continuous without
being Lipschitz continuous, as f(x) = x1/2 on [0,1]
illustrates.

A sequence a1, a2, a3, . . . of real or complex num-
bers, written {an}, has limit c if for every ε > 0
there is a positive integer N such that |an − c| < ε
for all n � N . We write c = limn→∞ an. An infinite
series

∑∞
i=1 ai converges if the sequence of partial sums∑n

i=1 ai converges.

6 Bounds

In applied mathematics we are often concerned with
deriving bounds for quantities of interest. For example,
we might wish to find a constant u such that f(x) � u
for all x on a given interval. Such a u, if it exists, is
called an upper bound. Similarly, a lower bound is a con-
stant - such that f(x) � - for all x on the interval. Of
particular interest is the least upper bound, also called
the supremum or sup, which is the smallest possible
upper bound. The supremum might not actually be
attained, as illustrated by the function f(x) = x/(1+x)
on [0,∞), which has supremum 1. The infimum, or inf,
is the greatest possible lower bound.

A function that has an upper (or lower) bound is said
to be bounded above (or bounded below). If the func-
tion is bounded both above and below it is said to be
bounded. A function that is not bounded is unbounded.

Determining whether a certain function, perhaps a
function of several variables or one defined in a func-

tion space [II.15], is bounded can be nontrivial and it is
often a crucial step in proving the convergence of a pro-
cess or determining the quality of an approximation.

Physical considerations sometimes imply that a func-
tion is bounded. For example, a function that repre-
sents energy must be nonnegative.
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f (x )  +  ( 1  −    ) f (y )α α

Figure 3 A convex function, illustrating the inequality (1).

7 Sets and Convexity

Three types of sets in R or C are commonly used in

applied mathematics.

An open set is a set such that for every point in the

set there is an open disk around it lying entirely in the

set. An open disk (or open ball ) around a point a in R
or C is the set of all points z satisfying |z − a| < ε
for some specified ε > 0. For example, {z ∈ C : |z| <
1} is an open disk. In R, an open disk reduces to an

open interval (a− ε, a+ ε). A closed set is a set that is

the complement of an open set; that is, it comprises all

the points that are not in some open set. For example,

{z ∈ C : |z| � 1} is a closed disk, the complement of

the open set {z ∈ C : |z| > 1}.

A bounded set is one for which there is a constant M
such that |x| � M for all x in the set. A set is compact

if it is closed and bounded.

A convex set is a set for which the line joining any two

points x and y in the set lies in the set, that is, αx +
(1−α)y is in the set for all α ∈ [0,1]. A related notion

is that of a convex function. A real-valued function f is

convex on a convex set S if

f(αx + (1 −α)y) � αf(x)+ (1 −α)f(y) (1)

for all x,y ∈ S and α ∈ [0,1]. This inequality says that

on the interval defined by x and y the function f lies

below the line joining f(x) and f(y) (see figure 3). An

example of a convex function is f(x) = x2 on the real

line. A concave function is one satisfying (1) with the

inequality reversed.

8 Order Notation

We write x ≈ y to mean that x is approximately

equal to y . The accuracy of the approximation may

be implied by the context or the way y is written. For

example, the statement that π ≈ 3.14 implies that the
approximation is correct to two decimal places.

The big-oh and little-oh notations, O(·) and o(·), are
used to give information about the relative behavior of
two functions. We write

(i) f(z) = O(g(z)) as z → ∞ (or z → 0) if |f(z)| �
c|g(z)| for some constant c for all sufficiently
large |z| (or all sufficiently small |z|);

(ii) f(z) = o(g(z)) as z → ∞ (or z → 0) if
f(z)/g(z)→ 0 as z → ∞ (or z → 0).

In both cases, g is usually a well-understood function
and f is a function whose behavior we are trying to
understand.

To illustrate: z3 + z2 + z + 1 = O(z3) as z → ∞ and
z3 + z2 + z = O(z) as z → 0, while z = o(ez) as z → ∞.

Big-oh notation is frequently used when comparing
the cost of algorithms measured as a function of prob-
lem size. For example, the cost of multiplying twon×n
matrices by the usual formulas is n3 + q(n) additions
andn3 multiplications, where q is a quadratic function.
We can say that matrix multiplication costs 2n3+O(n2)
operations, or simply O(n3) operations.

We write f(z) ∼ g(z) (in words, “f(z) twiddles
g(z)”) if f(z)/g(z) tends to 1 as z tends to some quan-
tity z0 (sometimes the ratio is required only to tend to
a finite, nonzero limit). For example, sinz ∼ z as z → 0,∑n
i=1 i2 ∼ n2/3 as n → ∞, and n! ∼ √

2πn(n/e)n

as n → ∞, the last approximation, called Stirling’s
approximation, being good even for small n.

9 Calculus

The rate of change of a quantity is a fundamental con-
cept. The rate of change of the distance of a moving
object from a given point is its speed, and the rate of
change of speed is acceleration. In economics, inflation
is the rate of change of a price index. The rate of change
of a function is its derivative. Let f be a real function of
a real variable. Intuitively, the rate of change of f at x is
obtained by making a small change in x and taking the
ratio of the corresponding change in f to the change in
x, that is, (f (x + ε) − f(x))/ε for small ε. In order to
get a unique quantity we take the limit as ε → 0, which
gives the derivative

df
dx

= f ′(x) = lim
ε→0

f(x + ε)− f(x)
ε

.

The derivative may or may not exist. For example, the
absolute value function f(x) = |x| is not differentiable
at the origin because the left- and right-sided limits
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Figure 4 The absolute value function, |x|.
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Figure 5 The function f(x) and the tangent g to f at
x = a. The tangent is g(x) = f ′(a)(x − a)+ f(a).

are different: limε→0−(f (x + ε)− f(x))/ε = −1 and

limε→0+(f (x + ε)− f(x))/ε = 1 (see figure 4). Higher

derivatives are defined by applying the definition recur-

sively; thus f ′′(x) is the derivative of f ′(x).
A graphical interpretation of the derivative is that it

is the slope of the tangent to the curve y = f(x) (see

figure 5).

Another way to write the definition of derivative is as

f(x + ε)− f(x)− f ′(x)ε = o(ε).

This definition has the benefit of generalizing naturally

to function spaces [II.15], where it yields the Fréchet

derivative.

A zero derivative identifies stationary points of a

function, with the type of stationary point—maximum,

minimum, or saddle point (also called a point of

inflection)—being determined by the second and pos-

sibly higher derivatives. This can be seen with the aid

 –0.40 0.50 0.75 1.00
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x

Figure 6 The function f(x) = x3 − x4 with a saddle
point at x = 0 and a maximum at x = 3/4.

of a Taylor series about the point a of interest:

f(x) = f(a)+ f ′(a)(x − a)+ f ′′(a)
(x − a)2

2!

+ f ′′′(a)
(x − a)3

3!
+ · · · .

If f ′(a) = 0 and f ′′(a) �= 0 then, for x sufficiently
close to a, f(x) ≈ f(a)+f ′′(a)(x−a)2/2, and so a is
a maximum point if f ′′(a) < 0 and a minimum point if
f ′′(a) > 0. If f ′(a) = f ′′(a) = 0 then we need to look
at the higher-order derivatives to determine the nature
of the stationary point; in particular, if f ′′′(a) �= 0 then
a is a saddle point (see figure 6).

The error in truncating a Taylor series is captured in
the Taylor series with remainder :

f(x) =
n∑
k=0

f (k)(a)
(x − a)k
k!

+ f (n+1)(ξ)
(x − a)n+1

(n+ 1)!
,

where ξ is an unknown point on the interval with end-
points a and x. Forn = 0 this reduces to f(x)−f(a) =
f ′(ξ)(x − a), which is the mean-value theorem.

Rigorous statements of results must include assump-
tions about the smoothness of the functions involved,
that is, how many derivatives are assumed to exist. For
example, the Taylor series with remainder is valid if f is
(n+1)-times continuously differentiable on an interval
containing x and a. In applied mathematics we often
avoid clutter by writing “for smooth functions f ” to
indicate that the existence of continuous derivatives up
to some order is assumed. Underlying such a statement
might be some known minimal assumption on f , or just
the knowledge that the existence of continuous deriva-
tives of all orders is sufficient and that less restrictive
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conditions can usually be derived if necessary. Some-

times, when deriving or using results, it is not possible

to check smoothness conditions and one simply car-

ries on anyway (“making compromises,” as mentioned

in the quote by Courant on page 1). It may be possible

to verify by other means that an answer obtained in a

nonrigorous way is valid.

For a function f(x,y) of two variables, partial

derivatives with respect to each of the two variables are

defined by holding one variable constant and varying

the other:

∂f
∂x

= lim
ε→0

f(x + ε,y)− f(x,y)
ε

,

∂f
∂y

= lim
ε→0

f(x,y + ε)− f(x,y)
ε

.

Higher derivatives are defined recursively. For example,

∂2f
∂x2

= lim
ε→0

∂f
∂x (x + ε,y)− ∂f

∂x (x,y)
ε

,

∂2f
∂x∂y

= lim
ε→0

∂f
∂x (x,y + ε)− ∂f

∂x (x,y)
ε

,

∂2f
∂y∂x

= lim
ε→0

∂f
∂y (x + ε,y)− ∂f

∂y (x,y)

ε
.

Common abbreviations are fx = ∂f/∂x, fxy =
∂2f/(∂x∂y), fyy = ∂2f/∂y2, and so on. As long as

they are continuous the two mixed second-order partial

derivatives are equal: fxy = fyx .

For a function of n variables, F : Rn → R, a Taylor

series takes the form, for x,a ∈ Rn,

F(x) = F(a)+∇F(a)T(x − a)
+ 1

2 (x − a)T∇2F(a)(x − a)+ · · · ,

where ∇F(x) = (∂F/∂xj) ∈ Rn is the gradient vector

and ∇2F(x) = (∂2F/(∂xi∂xj)) ∈ Rn×n is the symmet-

ric Hessian matrix, with xj denoting the jth component

of the vectorx. The symbol ∇ is called nabla. Stationary

points of F are zeros of the gradient and their nature

(maximum, minimum, or saddle point) is determined

by the eigenvalues of the Hessian (see continuous

optimization [IV.11 §2]).

Now we return to functions of a single (real) vari-

able. The indefinite integral of f(x) is
∫
f(x)dx, while

integrating between limits a and b gives the definite

integral
∫ b
a f(x)dx. The definite integral can be inter-

preted as the area under the curve f(x) between a
and b. The inverse of differentiation is integration, as

shown by the fundamental theorem of calculus, which

states that, if f is continuous on [a, b], then the func-
tion g(x) =

∫ x
a f(t)dt is differentiable on (a, b) and

g′(x) = f(x). Generalizations of the fundamental the-
orem of calculus to functions of more than one variable
are given in section 24.

For functions of two or more variables there are
other kinds of integrals. When there are two variables,
x and y , we can integrate over regions in the xy-
plane (double integrals) or along curves in the plane
(line integrals). For functions of three variables, x, y ,
and z, there are more possibilities. We can integrate
over volumes (triple integrals) or over surfaces or along
curves within xyz-space. As the number of variables
increases, so does the number of different kinds of inte-
grals. Multidimensional calculus shows how these dif-
ferent integrals can be calculated, used, and related.
The number of variables can be very large (e.g., in math-
ematical finance) and the curse of dimensionality

[I.3 §2] poses major challenges for numerical evalua-
tion. Numerical integration in more than one dimen-
sion is an active area of research, and Monte Carlo
methods and quasi-Monte Carlo methods are among
the methods in use.

The product rule gives a formula for the derivative of
a product of two functions:

d
dx
f(x)g(x) = f ′(x)g(x)+ f(x)g′(x).

Integrating this equation gives the rule for integration
by parts:∫

f(x)g′(x)dx = f(x)g(x)−
∫
f ′(x)g(x)dx.

In many problems functions are composed: the argu-
ment of a function is another function. Consider the
example f(x) = g(h(x)). We would hope to be able to
determine the derivative of f in terms of the deriva-
tives of g and h. The chain rule provides the necessary
formula: f ′(x) = h′(x)g′(h(x)). An equivalent formu-
lation is that, if f is a function of u, which is itself a
function of x, then

df
dx

= df
du

du
dx
.

For example, if f(x) = sinx2 then with f(x) = sinu
and u = x2 we have df/dx = 2x cosx2.

10 Ordinary Differential Equations

A differential equation is an equation containing one or
more derivatives of an unknown function. It provides a
relation among a function, its rate of change, and (pos-
sibly) higher-order rates of change. The independent
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variable usually represents a spatial coordinate (x) or
time (t). The differential equation may be accompanied
by additional information about the function, called
boundary conditions or initial conditions, that serve to
uniquely determine the solution. A solution to a differ-
ential equation is a function that satisfies the equation
for all values of the independent variables (perhaps in
some region) and also satisfies the required boundary
conditions or initial conditions. A differential equation
can express a law of motion, a conservation law, or con-
centrations of constituents of a chemical reaction, for
example.

Ordinary differential equations (ODEs) contain just
one independent variable. The simplest nontrivial ODE
is dy/dt = ay , where y = y(t) is a function of t. This
equation is linear in y and it is first order because only
the first derivative of y appears. The general solution
is y(t) = ceat , where c is an arbitrary constant. To
determine c, some value of y must be supplied, say
y(0) = y0, whence c = y0.

A general first-order ODE has the form y′ = f(t,y)
for some function f of two variables. The initial-value
problem supplies an initial condition and asks for y at
later times:

y′ = f(t,y), a � t � b, y(a) = ya.
A specific example is the Riccati equation

y′ = t2 +y2, 0 � t � 1, y(0) = 0,

which is nonlinear because of the appearance of y2.

For an example of a second-order ODE initial-value
problem, that is, one involving y′′, consider a mass m
attached to a vertical spring and to a damper, as shown
in figure 7. Let y = y(t) denote how much the spring
is stretched from its natural length at time t. Balancing
forces using Newton’s second law (force equals mass
times acceleration) and hooke’s law [III.15] gives

my′′ =mg − ky − cy′,

where k is the spring constant, c is the damping con-
stant, and g is the gravitational constant. With pre-
scribed values for y(0) and y′(0) this is an initial-
value problem. More generally, the spring might also
be subjected to an external force f(t), in which case
the equation of motion becomes

my′′ + cy′ + ky =mg + f(t).
Second-order ODEs also arise in electrical networks.

Consider the flow of electric current I(t) in a simple
RLC circuit composed of an inductor with inductance

m

Figure 7 A spring system with damping.

+

 vS

R

C

L

−

Figure 8 A simple RLC electric circuit.

L, a resistor with resistance R, a capacitor with capac-
itance C , and a source with voltage vS, as illustrated
in figure 8. The Kirchhoff voltage law states that the
sum of the voltage drops around the circuit equals the
input voltage, vS. The voltage drops across the resis-
tor, inductor, and capacitor are RI, LdI/dt, and Q/C ,
respectively, whereQ(t) is the charge on the capacitor,
so

L
dI
dt

+ RI + Q
C

= vS(t).

Since I = dQ/dt, this equation can be rewritten as the
second-order ODE

L
d2Q
dt2

+ RdQ
dt

+ 1
C
Q = vS(t).

The unknown function y may have more than one
component, as illustrated by the predator–prey model
derived by Lotka and Volterra in the 1920s. In a pop-
ulation of rabbits (the prey) and foxes (the predators)
let r(t) be the number of rabbits at time t and f(t) the
number of foxes at time t. The model is

dr
dt

= r −αrf , r(0) = r0,

df
dt

= −f +αrf , f (0) = f0.

The rf term represents an interaction between the
foxes and the rabbits (a fox eating a rabbit) and the
parameter α � 0 controls the amount of interaction.
For α = 0 there is no interaction and the solution is
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r(t) = r0et , f(t) = f0e−t : the foxes die from starva-
tion and the rabbits go forth and multiply, unhindered.
The aim is to investigate the behavior of the solutions
for various parameters α and starting populations r0

and f0.
As we have described it, the predator–prey model has

the apparent contradiction that r and f are integers by
definition yet the solutions to the differential equation
are real-valued. The way around this is to assume that
r and f are large enough for the error in representing
them by continuous variables to be small.

A boundary-value problem specifies the function at
more than one value of the independent variable, as in
the two-point boundary-value problem

y′′ = f(t,y,y′), a � t � b, y(a) = ya, y(b) = yb.
An example is the Thomas–Fermi equation

y′′ = t−1/2y3/2, y(0) = 1, y(∞) = 0,

which arises in a semiclassical description of the charge
density in atoms of high atomic number. Another exam-
ple, this time of third order, is the blasius equation

[IV.28 §7.2]

2y′′′ +yy′′ = 0, y(0) = y′(0) = 0, y′(∞) = 1,

which describes the boundary layer in a fluid flow.
A special type of ODE boundary-value problem is the

Sturm–Liouville problem

−(p(x)y′(x))′ + q(x)y(x) = λr(x)y(x),
x ∈ [a, b], y(a) = y(b) = 0.

This is an eigenvalue problem, meaning that the aim
is to determine values of the parameter λ for which
the boundary-value problem has a solution that is not
identically zero.

11 Partial Differential Equations

Many important physical processes are modeled by par-
tial differential equations (PDEs): differential equations
containing more than one independent variable. We
summarize a few key equations and basic concepts.
We write the equations in forms where the unknown u
has two space dimensions, u = u(x,y), or one space
dimension and one time dimension,u = u(x, t). Where
possible, the equations are given in parameter-free
form, a form that is obtained by the process of non-

dimensionalization [II.9]. Recall the abbreviations
ut = ∂u/∂t, uxx = ∂2u/∂x2, etc.

laplace’s equation [III.18] is

uxx +uyy = 0.

The left-hand side of the equation is the Laplacian of
u, written Δu. This equation is encountered in electro-
statics (for example), where u is the potential function.
The equation Δu = f , for a given function f(x,y), is
known as Poisson’s equation.

To define a problem with a unique solution it is nec-
essary to augment the PDE with conditions on the solu-
tion: either boundary conditions for static problems
or, for time-dependent problems, initial conditions. In
the former class there are three main types of bound-
ary conditions, with the problem being to determine u
inside the boundary of a closed region.

• Dirichlet conditions, in which the function u is
specified on the boundary.

• Neumann conditions, where the inner product (see
section 19.1) of the gradient

∇u = [∂u/∂x, ∂u/∂y]T

with the normal to the boundary is specified.
• Cauchy conditions, which comprise a combination

of Dirichlet and Neumann conditions.

For time-dependent problems, which are known as evo-
lution problems and represent equations of motion,
initial conditions at the starting time, usually taken to
be t = 0, are needed, the number of initial conditions
depending on the highest order of time derivative in
the PDE.

The wave equation [III.31] is

utt = uxx.
It describes linear, nondispersive propagation of a
wave, represented by the wave functionu, e.g., a vibrat-
ing string. Two initial conditions, prescribing u(x,0)
and ut(x,0), for example, are needed to determine u.

The heat equation [III.8] (diffusion equation) is

ut = uxx, (2)

which describes the diffusion of heat in a solid or the
spread of a disease in a population. An initial condition
prescribing u at t = 0 is usual. When a term f(x, t,u)
is added to the right-hand side of (2) the equation
becomes a reaction–diffusion equation.

The advection–diffusion equation is

ut + vux = uxx,
where v is a given function of x and t. Again, u is usu-
ally given at t = 0. For v = 0 this is just the heat equa-
tion. This PDE models the convection (or transport) of
a quantity such as a pollutant in the atmosphere.
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The general linear second-order PDE

auxx + 2buxt + cutt = f(x, t,u,ux,ut) (3)

is classified into different types according to the (con-
stant) coefficients of the second derivatives. Let d =
ac − b2, which is the determinant of the symmetric
matrix

[ a b
b c
]
.

• If d > 0 the PDE is elliptic . These PDEs, of which
the Laplace equation is a particular case, are asso-
ciated with equilibrium or steady-state processes.
The independent variables are denoted by x and
y instead of x and t.

• If d = 0 the PDE is parabolic . This is an evolution
problem governing a diffusion process. The heat
equation is an example.

• If d < 0 the PDE is hyperbolic . This is an evolution
problem, governing wave propagation. The wave
equation is an example.

Some elliptic PDEs and parabolic PDEs have maxi-
mum principles, which say that the solution must take
on its maximum value on the boundary of the domain
over which it is defined.

In (3) we took a, b, and c to be constants, but they
may also be specified as functions of x and t, in which
case the nature of the PDE can change as x and t vary
in the domain. For example, the tricomi equation

[III.30]
uxx + xuyy = 0

is hyperbolic for x < 0, elliptic for x > 0, and parabolic
for x = 0.

The PDEs stated so far are all linear. Nonlinear PDEs,
in which the unknown function appears nonlinearly,
are of great practical importance. Examples are the
korteweg–de vries equation [III.16]

ut +uux +uxxx = 0,

the cahn–hilliard equation [III.5]

ut = Δ(−u+u3 + ε2Δu),

and Fisher’s equation

ut = uxx +u(1 −u),
a reaction–diffusion equation that describes pattern

formation [IV.27] and the propagation of genes in a
population.

PDEs also occur in the form of eigenvalue prob-
lems. A famous example is the eigenvalue problem
corresponding to the Laplace equation:

Δu+ λu = 0

on a membrane Ω, with boundary conditions that u
vanishes on the boundary of Ω. A nonzero solution
u is called an eigenfunction and λ is the correspond-
ing eigenvalue. In a 1966 paper titled “Can one hear
the shape of a drum?” Mark Kac asked the question of
whether one can determineΩ given all the eigenvalues.
In other words, do the frequencies at which a drum
vibrates uniquely determine its shape? It was shown
in a 1992 paper by Gordon, Webb, and Wolpert that the
answer is no in general.

Higher-order PDEs also arise. For example, fluid
dynamics problems involving surface tension forces
are generally modeled by PDEs in space and time with
fourth-order derivatives in space. The same is true of
the Euler–Bernoulli equation for a beam, which has the
form

ρA
∂2u
∂t2

+ EI ∂
4u
∂x4

= f(x, t),

where u(x, t) is the vertical displacement of the beam
at time t and positionx along the beam, ρ is the density
of the beam, A its cross-sectional area, E is Young’s
modulus, I is the second moment of inertia, and f(x, t)
is an applied force.

12 Other Types of Differential Equations

Delay differential equations are differential equations
in which the derivative of the unknown function y at
time t (in general, a vector function) depends on past
values ofy and/or its derivatives. For example,y′(t) =
Ay(t − 1) is a delay differential equation analogue of
the familiar y′(t) = Ay(t). Looking for a solution of
the form y(t) = ewt leads to the equation wew = A,
whose solutions are given by the lambertW function

[III.17].

integral equations [IV.4] contain the unknown
function inside an integral. Examples are Fredholm
equations, which are of the form either∫ 1

0
K(x,y)f(y)dy = g(x),

where K and g are given and the task is to find f , or

λ
∫ 1

0
K(x,y)f(y)dy + g(x) = f(x),

where λ is an eigenvalue and again f is unknown. These
two types of equations are analogous to a matrix lin-
ear system Kf = g and an eigenvalue problem (I −
λK)f = g, respectively. Integro-differential equations
involve both integrals and derivatives (see, for example,
modeling a pregnancy testing kit [VII.18 §2]).
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Fractional differential equations contain fractional
derivatives. For example, (d/dx)1/2 is defined to be an
operator such that applying (d/dx)1/2 twice in succes-
sion to a function f(x) is the same as differentiating it
once (that is, applying d/dx).

Differential–algebraic equations (DAEs) are systems
of equations that contain both differential and alge-
braic equations. For example, the DAE

x′′ = −2λx,

y′′ = −2λy − g,
x2 +y2 = L2

describes the coordinates of an infinitesimal ball of
mass 1 at the end of a pendulum of length L, where
g is the gravitational constant and λ is the tension in
the rod. DAEs often arise in the form My′ = f(t,y),
where the matrix M is singular.

13 Recurrence Relations

Recurrence relations are the discrete counterpart of
differential equations. They define a sequence x0, x1,
x2, . . . recursively, by specifying xn in terms of ear-
lier terms in the sequence. Such equations are also
called difference equations, as they arise when deriva-
tives in differential equations are replaced by finite

differences [II.11].
A famous recurrence is the three-term recurrence

that defines the Fibonacci numbers:

fn = fn−1 + fn−2, n � 2, f0 = f1 = 1.

This recurrence has the explicit solution fn = (φn −
(−φ)−n)/√5, where φ = (1 + √

5)/2 is the golden
ratio. An example of a two-term recurrence is f(n) =
nf(n − 1), with f(0) = 1, which defines the factorial
function f(n) = n!. Both the examples so far are linear
recurrences, but in some recurrences the earlier terms
appear nonlinearly, as in the logistic recurrence

[III.19] xn+1 = μxn(1 − xn).
Although one can evaluate the terms in a recur-

rence one often needs an explicit formula for the gen-
eral solution of the recurrence. Recurrence relations
have a theory analogous to that of differential equa-
tions, though it is much less frequently encountered in
courses and textbooks than it was fifty years ago.

The elements in a recurrence can be functions as well
as numbers. Most transcendental functions that carry
subscripts satisfy a recurrence. For example, the bessel

function [III.2] Jn(x) of order n satisfies the three-
term recurrence

Jn+1(x) = 2n
x
Jn(x)− Jn−1(x).

An important source of three-term recurrences is
orthogonal polynomials [II.29].

14 Polynomials

Polynomials are one of the simplest and most familiar
classes of functions and they find wide use in applied
mathematics. A degree-n polynomial

pn(x) = a0 + a1x + · · · + anxn

is defined by its n+ 1 coefficients a0, . . . , an ∈ C (with
an �= 0). Addition of two polynomials is carried out by
adding the corresponding coefficients. Thus, if qn(x) =
b0 + b1x + · · · + bnxn then pn(x) + qn(x) = a0 +
b0 + (a1 + b1)x + · · · + (an + bn)xn. Multiplication is
carried out by expanding the product term by term and
collecting like powers of x:

pn(x)qn(x) = a0b0 + (a0b1 + a1b0)x + · · ·
+ (a0bn + a1bn−1 + · · · + anb0)xn.

The coefficient of xn,
∑n
i=0 aibn−i, is the convolu-

tion of the vectors a = [a0, a1, . . . , an]T and b =
[b0, b1, . . . , bn]T. Polynomial division is also possible.
Dividing pn by qm with m � n results in

pn(x) = qm(x)g(x)+ r(x), (4)

where the quotient g and remainder r are polynomials
and the degree of r is less than that of qm.

The fundamental theorem of algebra says that a
degree-n polynomial pn has a root in C; that is, there
exists z1 ∈ C such that pn(z1) = 0. If we take qm(x) =
x−z1 in (4) then we have pn(x) = (x−z1)g(x)+r(x),
where deg r < 1, so r is a constant. But setting x = z1

we see that 0 = pn(z1) = r , so pn(x) = (x − z1)g(x)
and g clearly has degree n − 1. Repeating this argu-
ment inductively on g, we end up with a factorization
pn(x) = (x − z1)(x − z2) · · · (x − zn), which shows
that pn has n roots in C (not necessarily distinct). If
the coefficients of pn are real it does not follow that the
roots are real, and indeed there may be no real roots at
all, as the polynomial x2 + 1 shows; however, nonreal
roots must occur in complex conjugate pairs xj ± iyj .

Three basic problems associated with polynomials
are as follows.

Evaluation: given the polynomial (specified by its coef-
ficients), find its value at a given point. A standard
way of doing this is horner’s method [I.4 §6].

Interpolation: given the values of a degree-n polyno-
mial at a set of n + 1 distinct points, find its coeffi-
cients. This can be done by various interpolation

schemes [I.3 §3.1].
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Root finding: given the polynomial and the ability to
evaluate it, find its roots. This is a classic problem
with a vast literature, including methods specific to
polynomials and specializations of general-purpose
nonlinear equation solvers.

15 Rational Functions

A rational function is the ratio of two polynomials:

rmn(x) = pm(x)qn(x)
=
∑m
i=0 aixi∑n
i=0 bixi

, am,bn �= 0.

Rational functions are more versatile than polynomials
as a means of approximating other functions. As x
grows larger, a polynomial of degree 1 or higher neces-
sarily blows up to infinity. In contrast, a rational func-
tion rmm with equal-degree numerator and denomi-
nator is asymptotic to am/bm, as x → ∞, while for
m < n, rmn(x) converges to zero as x → ∞. Moreover,
a rational function has poles: certain finite values of x
for which it is infinite (the roots of the denominator
polynomial qn).

The representation of a rational function as a ratio
of polynomials is just one of several possibilities. We
can write rmn in partial fraction form, for example. If
m < n and qn has distinct roots x1, . . . , xn, then

rmn(x) =
n∑
i=1

ci
x − xi

(5)

for some c1, . . . , cn. One reason to put a rational func-
tion in partial fraction form is in order to integrate it,
since the integral of (5) is immediate:

∫
rmn(x)dx =∑n

i=1 ci log |x − xi| + C , where C is a constant.

An important class of rational functions is the Padé
approximants to a given function f , which are defined
by the property that rmn(x) − f(x) = O(xk) with k
as large as possible. Since rmn has m + n + 1 degrees
of freedom (one having been lost due to the division),
generically k = m + n + 1, but k can be smaller or
larger than this value (see approximation theory

[IV.9 §2.4]). When m = 0, a Padé approximant reduces
to a truncated Taylor series.

16 Special Functions

Applied mathematicians make much use of functions
that are not polynomial or rational, though they may
ultimately use polynomial or rational approximations
to such functions. A larger class of functions is the
elementary functions, which are made up of polyno-
mials, rationals, the exponential, the logarithm, and

all functions that can be obtained from these by addi-
tion, subtraction, multiplication, division, composition,
and the taking of roots. Another important class is
the transcendental functions: those that are not alge-
braic, that is, that are not the solution f(x) of an equa-
tion p(x, f (x)) = 0, where p(x,y) is a polynomial in
x and y with integer coefficients. Examples of tran-
scendental functions include the exponential, the loga-
rithm, the trigonometric functions, and the hyperbolic
functions.

In solving problems we talk about the ability to obtain
the solution in closed form, which is an informal con-
cept meaning that the solution is expressed in terms of
elementary functions or functions that are “well under-
stood,” in that they have a significant literature and
good algorithms exist for computing them.

The special functions [IV.7] provide a large set of
examples of well-understood functions. They arise in
different areas, such as physics, number theory, and
probability and statistics, often as the solution to a
second-order ODE or as the integral of an elementary
function. A general example is the hypergeometric

function [IV.7 §5]

F(a, b; c;x) = 1 + ab
c
x + a(a+ 1)b(b + 1)

2!c(c + 1)
x2 + · · ·

=
∞∑
i=0

(a)i(b)i
i!(c)i

xi.

Here, a,b, c ∈ R, c is not zero or a negative integer,
and (a)i ≡ a(a + 1) · · · (a + i − 1) for i � 1, with
(a)0 = 1. The hypergeometric function is a solution
of the second-order differential equation

x(1−x)w′′(x)+(c−(a+b+1)x)w′(x)−abw(x) = 0.

The hypergeometric functions contain many interest-
ing special cases, such as F(a, b;b;x) = (1 − x)−a and
F(1,1; 2;x) = −x−1 log(1 − x).

Other special functions include the following.

• The error function

erf(x) = 2√
π

∫ x
0

e−t
2

dt,

which is closely related to the standard normal
distribution in probability and statistics.

• The gamma function [III.13]

Γ (z) =
∫∞

0
e−ttz−1 dt,

which satisfies Γ (n) = (n − 1)! for positive inte-
gers n and so generalizes the factorial function.
Note that the argument z is a complex number.
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Figure 9 The gamma function in the complex plane. The
height of the surface is |Γ (z)|. The function has poles at
the negative integers; in this plot the infinite peaks have
been truncated at different heights.

Figure 9 is modeled on a classic, hand-drawn plot

of the gamma function in the complex plane from

the book Tables of Functions with Formulas and

Curves by Eugene Jahnke and Fritz Emde, first

published in 1909.

• bessel functions [III.2], the lambert W func-

tion [III.17], elliptic functions, and the riemann

zeta function [IV.7 §4].

The class of special functions can be enlarged by

identifying useful functions, giving them a name,

studying their properties, and deriving algorithms and

software for evaluating them. Of the examples men-

tioned above, the most recent is the Lambert W func-

tion, whose significance was realized, and to which the

name was given, only in the 1990s.

17 Power Series

A power series is an infinite expansion of the form

a0 + a1z + a2z2 + a3z3 + · · · ,

where z is a complex variable and the ai are complex

constants. Results from complex analysis [IV.1 §5]

tell us that such a series has a radius of convergence

R such that the series converges for |z| < R, diverges

for |z| > R, and may either converge or diverge for

|z| = R. For example, the power series 1+z+z2 +· · ·
converges for |z| < 1, and inside this disk it agrees with

the function f(z) = (1−z)−1. More generally, a power-
series expansion can be taken about an arbitrary point
z0: a0 + a1(z − z0)+ a2(z − z0)2 + a3(z − z0)3 + · · · .

Some functions have power series with an infinite
radius of convergence, R = ∞. Perhaps the most
important example is the exponential:

ez = 1 + z + z
2

2!
+ z

3

3!
+ · · · .

Suppose a function f has a power-series expansion
f(z) = a0 + a1z + a2z2 + a3z3 + · · · . Then f(0) = a0

and differentiating gives f ′(z) = a1 + 2a2z + 3a3z2 +
· · · and, hence, on setting z = 0, a1 = f ′(0). What
we have just done is to differentiate this infinite series
term by term, something that in general is of dubious
validity but in this case is justified because a power
series can always be differentiated term by term within
its radius of convergence. Continuing in this way we
find that all the ak are derivatives of f evaluated at the
origin and the expansion can be written as the Taylor
series expansion

f(z) = f(0)+ f ′(0)z + f ′′(0)
z2

2!
+ f ′′′(0)

z3

3!
+ · · · .

18 Matrices and Vectors

A matrix is an m × n (read as “m-by-n”) array of real
or complex numbers, written as

A = (aij) =

⎡⎢⎢⎢⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

⎤⎥⎥⎥⎥⎥⎦ .

The element at the intersection of row i and column j
is aij . The matrix is square if m = n and rectangular
otherwise. A vector is a matrix with one row or column:
anm×1 matrix is a column vector and a 1×nmatrix is
a row vector. A number is often referred to as a scalar
in order to distinguish it from a vector or matrix.

The sets of m × n matrices and n × 1 vectors over
R are denoted by Rm×n and Rn, respectively, and
similarly for C.

A notation that is common, though not ubiquitous,
in applied mathematics employs uppercase letters for
matrices and lowercase letters for vectors or, when
subscripted, matrix elements. Similarly, matrices or
vectors are sometimes written in boldface.

What distinguishes a matrix from a mere array of
numbers is the algebraic operations defined on it.
For two matrices A, B of the same dimensions, addi-
tion is defined element-wise: C = A + B means that
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cij = aij + bij for all i and j. Multiplication by a scalar
is defined in the natural way, so C = αA means that
cij = αaij for all i and j. However, matrix multiplica-
tion is not defined element-wise. If A ism× r and B is
r ×n then the product C = AB ism×n and is defined
by

cij =
r∑
k=1

aikbkj.

This formula can be obtained as follows. Write B =
[b1, b2, . . . , bn], where bj is the jth column of B; this
is a partitioning of B into its columns. Then AB =
A[b1, b2, . . . , bn] = [Ab1, Ab2, . . . , Abn], where each
Abj is a matrix–vector product. Matrix–vector products
Ax with x an r × 1 vector are in turn defined by

Ax = [a1, a2, . . . , ar ]

⎡⎢⎢⎢⎢⎢⎣
x1

x2
...
xr

⎤⎥⎥⎥⎥⎥⎦ = x1a1+x2a2+· · ·+xrar ,

so that Ax is a linear combination of the columns of A.
Matrix multiplication is not commutative: AB �= BA

in general, as is easily checked for 2 × 2 matrices. In
some contexts the commutator (or Lie bracket) [A, B] =
AB − BA plays a role.

A linear system Ax = b expresses the vector b as
a linear combination of the columns of A. When A is
square and of dimension n, this system provides n lin-
ear equations for the n components of x. The system
has a unique solution when A is nonsingular, that is,
when A has an inverse. An inverse of a square matrix
A is a matrix A−1 such that AA−1 = A−1A = I, where
I is the identity matrix, which has ones on the diago-
nal and zeros everywhere else. We can write I = (δij),
where δij is the Kronecker delta defined in table 3. The
inverse is unique when it exists. IfA is nonsingular then
x = A−1b is the solution to Ax = b. While this formula
is useful mathematically, in practice one almost never
solves a linear system by invertingA and then multiply-
ing the right-hand side by the inverse. Instead, gauss-

ian elimination [IV.10 §2] with some form of pivoting
is used.

Transposition turns anm×nmatrix into ann×m one
by interchanging the rows and columns: C = AT ⇐⇒
cij = aji for all i and j. Conjugate transposition also
conjugates the elements: C = A∗ ⇐⇒ cij = aji for all
i and j. The conjugate transpose of a product satisfies
a useful reverse-order law: (AB)∗ = B∗A∗.

Matrices can have a variety of different structures
that can be exploited both in theory and in computa-
tion. A matrix A ∈ Rn×n is upper triangular if aij = 0

for i > j, lower triangular ifAT is upper triangular, and
diagonal if aij = 0 for i �= j. For n = 3, such matrices
have the forms⎡⎢⎢⎣

× × ×
0 × ×
0 0 ×

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
× 0 0

× × 0

× × ×

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
d1 0 0

0 d2 0

0 0 d3

⎤⎥⎥⎦ ,
respectively, where × denotes a possibly nonzero entry;
the third matrix is abbreviated diag(d1, d2, d3). The
matrix A ∈ Rn×n is symmetric if AT = A, while
A ∈ Cn×n is Hermitian if A∗ = A. If in addition
the quadratic form xTAx (or x∗Ax) is always pos-
itive for nonzero vectors in Rn (or Cn), then A is
positive-definite. The term self-adjoint is sometimes
used instead of symmetric or Hermitian. Also funda-
mental is the notion of orthogonality: A ∈ Rn×n is
orthogonal if ATA = I, and A ∈ Cn×n is unitary if
A∗A = I. These properties mean that the inverse of
A is its (conjugate) transpose, but deeper properties
of unitary matrices such as preservation of angles,
norms, etc., under multiplication are what make them
so important.

Structures can correspond to the pattern of the ele-
ments. A Toeplitz matrix has constant diagonals, made
up from 2n− 1 parameters ai, i = −(n− 1), . . . , n− 1.
Thus a 5 × 5 Toeplitz matrix has the form⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 a3 a4

a−1 a0 a1 a2 a3

a−2 a−1 a0 a1 a2

a−3 a−2 a−1 a0 a1

a−4 a−3 a−2 a−1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

Toeplitz matrices arise in signal processing [IV.35].
A circulant matrix is a special type of Toeplitz matrix
in which each row is a cyclic permutation (one ele-
ment to the right) of the row above. Circulant matrices
have many special properties, including that an explicit
formula exists for their inverses and their eigenvalues.

A Hamiltonian matrix is a 2n×2nmatrix of the block
form [

A F
G −A∗

]
,

where A, F , and G are n × n matrices and F and G
are Hermitian. Hamiltonian matrices play an important
role in control theory [III.25].

The determinant of an n×nmatrix A is a scalar that
can be defined inductively by

det(A) =
n∑
j=1

(−1)i+jaij det(Aij)
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for any i ∈ {1,2, . . . , n}, whereAij denotes the (n−1)×
(n − 1) matrix obtained from A by deleting row i and
column j, and det(a) = a for a scalar a. This formula
is called the expansion by minors because det(Akj) is
a minor of A. The determinant is sometimes written
with vertical bars, as |A|. Although determinants came
before matrices historically, determinants have only a
minor role in applied mathematics.

The quantity obtained by modifying the definition
of determinant to remove the (−1)i+j term is the per-
manent, which is the sum of all possible products of
n elements of A in which exactly one is taken from
each row and each column. The permanent arises in
combinatorics and in quantum mechanics.

19 Vector Spaces and Norms

A vector space is a mathematical structure in which a
linear combination of elements can be taken, with the
result remaining in the vector space. A vector space V
has a binary operation, which we will write as addition,
that is associative, is commutative, and has an identity
(the “zero vector,” written 0) and additive inverses. In
other words, for any a,b, c ∈ V we have (a+ b)+ c =
a + (b + c), a + b = b + a, a + 0 = a, and there is a
d such that a + d = 0. There is also an underlying set
of scalars, R or C, such that V is closed under scalar
multiplication. Moreover, for all x,y ∈ V and scalars
α, β we have α(x+y) = αx+αy , (α+β)x = αx+βx,
and α(βx) = (αβ)x.

A vector space can take many possible forms. For
example, the set of real-valued functions on an interval
[a, b] is a vector space over R, and the set of polyno-
mials of degree less than or equal to n with complex
coefficients is a vector space over C. Most importantly,
the sets of n-vectors with real or complex coefficients
are vector spaces over R and C, respectively.

An important concept is that of linear independence.
Vectors v1, v2, . . . , vn in V are linearly independent if
no nontrivial linear combination of them is zero, that
is, if the equation α1v1 +α2v2 +· · ·+αnvn = 0 holds
only when the scalars αi are all zero. If a collection of
vectors is not linearly independent then it is linearly
dependent .

Given vectors v1, v2, . . . , vn in V we can form their
span, which is the set of all possible linear combina-
tions of them. A linearly independent collection of vec-
tors whose span is V is a basis for V , and any vector
in V can be written uniquely as a linear combination of
these vectors.

The number of vectors in a basis for V is the dimen-
sion of V , written dimV , and it can be finite or infi-
nite. The vector space of functions mentioned above is
infinite dimensional, while the vector space of polyno-
mials of degree at most n has dimension n + 1, with
a basis being 1, x, x2, . . . , xn or any other sequence of
polynomials of degrees 0,1,2, . . . , n.

A subspace of a vector space V is a subset of V that
is itself a vector space under the same operations of
addition and scalar multiplication.

19.1 Inner Products

Some vector spaces can be equipped with an inner prod-
uct, which is a function 〈x,y〉 of two arguments that
satisfies the conditions (i) 〈x,x〉 � 0 and 〈x,x〉 = 0
if and only if x = 0, (ii) 〈x + y,z〉 = 〈x, z〉 + 〈y,z〉,
(iii) 〈αx,y〉 = α〈x,y〉, and (iv) 〈x,y〉 = 〈y,x〉 for all
x,y, z ∈ V and scalars α. The usual (Euclidean) inner
product on Rn is 〈x,y〉 = xTy ; on Cn the conjugate
transpose must be used: 〈x,y〉 = x∗y . For the vector
space C[a,b] of real-valued continuous functions on
[a, b] an inner product is

〈f ,g〉 =
∫ b
a
w(x)f(x)g(x)dx, (6)

where w(x) is some given, positive weight function,
while for the vector space of n-vectors of the form
[f (x1), f (x2), . . . , f (xn)]T for fixed points xi ∈ [a, b]
and real-valued functions f an inner product is

〈f ,g〉 =
n∑
i=1

wif(xi)g(xi), (7)

where thewi are positive weights. Note that (7) is not an
inner product on the space of real-valued continuous
functions because 〈f , f 〉 = 0 implies only that f(xi) =
0 for all i and not that f ≡ 0.

The vector space Rn with the Euclidean inner product
is known as n-dimensional Euclidean space.

19.2 Orthogonality

Two vectors u, v in an inner product space are orthog-
onal if 〈u,v〉 = 0. For Rn and Cn this is just the usual
notion of orthogonality: uTv = 0 and u∗v = 0, respec-
tively. A set of vectors {ui} forms an orthonormal set
if 〈ui,uj〉 = δij for all i and j.

For an inner product space with inner product (6)
or (7), useful examples of orthogonal functions are
orthogonal polynomials [II.29], which have the
important property that they satisfy a three-term recur-
rence relation. For example, the Chebyshev polynomials
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Tk satisfy T0(x) = 1, T1(x) = x, and

Tk+1(x) = 2xTk(x)− Tk−1(x), k � 1, (8)

and they are orthogonal on [−1,1] with respect to the
weight function (1 − x2)−1/2:∫ 1

−1

Ti(x)Tj(x)
(1 − x2)1/2

dx = 0, i ≠ j.

Another commonly occurring class of orthogonal
polynomials is the Legendre polynomials Pk, which are
orthogonal with respect to w(x) ≡ 1 on [−1,1] and
satisfy the recurrence

Pk+1(x) =
2k+ 1
k+ 1

xPk(x)−
k

k+ 1
Pk−1(x), (9)

with P0(x) = 1 and P1(x) = x, when they are normal-
ized so that Pi(1) = 1.

Figure 10 plots some Chebyshev polynomials and
Legendre polynomials on [−1,1]. Both sets of poly-
nomials are odd for odd degrees and even for even
degrees. The values of the Chebyshev polynomials
oscillate between −1 and 1, which is explained by the
fact that Tk(x) = cos(kθ), where θ = cos−1 x.

A beautiful theory surrounds orthogonal polyno-
mials and their relations to various other areas of
mathematics, including Padé approximation, spectral
theory, and matrix eigenvalue problems.

If φ1, φ2, . . . is an orthogonal system, that is,
〈φi,φj〉 = 0 for i �= j, then the φi are necessarily
linearly independent. Moreover, in an expansion

f(x) =
∞∑
i=1

aiφi(x) (10)

there is an explicit formula for the ai. To determine it,
we take the inner product of this equation with φj and
use the orthogonality:

〈f ,φj〉 =
∞∑
i=1

ai〈φi,φj〉 = aj〈φj,φj〉,

so that aj = 〈f ,φj〉/〈φj,φj〉.
An important example of an orthogonal system of

functions that are not polynomials is 1, cosx, sinx,
cos(2x), sin(2x), cos(3x), . . . , which are orthogonal
with respect to the weight function w(x) ≡ 1 on
[−π,π], and for this basis (10) is a Fourier series
expansion.

19.3 Norms

A common task is to approximate an element of a vec-
tor space V by the closest element in a subspace S. To
define “closest” we need a way to measure the size of
a vector. A norm provides such a measure.

A norm is a mapping ‖ · ‖ from V to the nonnegative
real numbers such that ‖x‖ = 0 precisely when x = 0,
‖αx‖ = |α| ‖x‖ for all scalars α and x ∈ V , and the
triangle inequality ‖x + y‖ � ‖x‖ + ‖y‖ holds for all
x,y ∈ V . There are many possible norms, and on a
finite-dimensional vector space all are equivalent in the
sense that for any two norms ‖ · ‖ and ‖ · ‖′ there are
positive constants c1 and c2 such that c1‖x‖′ � ‖x‖ �
c2‖x‖′ for all x ∈ V .

An example of a norm on C[a,b] is

‖f‖∞ = max
x∈[a,b]

|f(x)|, (11)

known as the L∞-norm, the supremum norm, the max-
imum norm, or the uniform norm. For p ∈ [1,∞),

‖f‖p =
(∫ b

a
|f(x)|p dx

)1/p

is the Lp-norm on the space Lp[a, b] of functions
for which the (Lebesgue) integral is finite. Important
special cases are the L2-norm and the L1-norm.

In an inner product space the natural norm is ‖x‖ =
〈x,x〉1/2, and indeed the L2-norm corresponds to the
inner product (6) with unit weight function. A very
useful inequality involving this norm is the Cauchy–
Schwarz inequality:

|〈x,y〉|2 � 〈x,x〉〈y,y〉 = ‖x‖2‖y‖2

for all x,y ∈ V . This inequality shows that we can
define the angle θ between two vectors x and y by
cosθ = 〈x,y〉|/(‖x‖‖y‖) ∈ [−1,1]. Thus orthogonal-
ity corresponds to an angle θ = ±π/2.

Several different norms are commonly used on the
vector spaces Rn and Cn. The vector p-norm is defined
for real p by

‖x‖p =
( n∑
i=1

|xi|p
)1/p

, 1 � p <∞.

It includes the important special cases

‖x‖1 =
n∑
i=1

|xi|,

‖x‖2 =
( n∑
i=1

|xi|2
)1/2

= (x∗x)1/2,

‖x‖∞ = max
1�i�n

|xi|.

The 2-norm is Euclidean length. The 1-norm is some-
times called the “Manhattan” or “taxi cab” norm, as
when x,y ∈ R2 contain the coordinates of two loca-
tions in Manhattan (which has a regular grid of streets),
‖x − y‖1 measures the distance by taxi cab from x
to y . Figure 11 shows the boundaries of the unit balls
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Figure 10 Selected (a) Chebyshev polynomials Tk(x) and (b) Legendre polynomials Pk(x) on [−1,1].
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Figure 11 The boundary of the unit ball
in R

2 for the 1-, 2-, and ∞-norms.

{x ∈ Rn : ‖x‖ = 1} for the latter three p-norms. The
very different shapes of the unit balls suggest that
the appropriate choice of norm will depend on the
problem, as is the case, for example, in data fitting

[IV.9 §3.2].

Related to norms is the notion of a metric, defined
on a set M called a metric space. A metric on M is a
nonnegative function d such that d(x,y) = d(y,x)
(symmetry), d(x, z) � d(x,y) + d(y, z) (the triangle
inequality), and for all x,y, z ∈ M , d(x,y) = 0 pre-
cisely when x = y . An example of a metric on the set
of positive real numbers is d(x,y) = |log(x/y)|. For a
normed vector space, the function d(x,y) = ‖x − y‖
is always a metric, so a normed vector space is always
a metric space.

19.4 Convergence

We say that a sequence of points x1, x2, . . . , each
belonging to a normed vector space V , converges to a
limit x∗ ∈ V , written limi→∞ xi = x∗ (or xi → x∗ as
i → ∞), if for any ε > 0 there exists a positive integer
N such that ‖x∗ − xi‖ < ε for all i � N .

The sequence is a Cauchy sequence if for any ε > 0
there exists a positive integerN such that ‖xi−xj‖ < ε
for all i, j � N . A convergent sequence is a Cauchy
sequence, but whether or not the converse is true
depends on the space V .

A normed vector space is complete if every Cauchy
sequence in V has a limit in V . A complete normed vec-
tor space is called a Banach space. In a Banach space we
can therefore prove convergence of a sequence with-
out knowing its limit by showing that it is a Cauchy
sequence.

A complete inner product space is called a Hilbert
space. The spaces Rn and Cn with the Euclidean inner
product are standard examples of Hilbert spaces.

20 Operators

An operator is a mapping from one vector space, U , to
another, V (possibly the same one). A linear operator
(or linear transformation) A is an operator such that
A(α1x1+α2x2) = α1Ax1+α2Ax2 for all scalarsα1,α2

and vectorsx1, x2 ∈ U . For example, the differentiation
operator is a linear operator that maps the vector space
of polynomials of degree at most n to the vector space
of polynomials of degree at most n− 1.

A natural measure of the size of a linear operator A
mapping U to V is the induced norm (also called the
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operator norm or subordinate norm),

‖A‖ = max
{‖Ax‖

‖x‖ : x ∈ U, x �= 0
}
,

where on the right-hand side ‖ ·‖ denotes both a norm
on U (in the denominator) and a norm on V (in the
numerator). For the rest of this section we assume that
U = V for simplicity. If ‖A‖ is finite then A is said to
be a bounded linear operator. On a finite-dimensional
vector space all linear operators are bounded.

The definition of an operator norm yields the inequal-
ities ‖Ax‖ � ‖A‖‖x‖ (immediate) and ‖AB‖ �
‖A‖‖B‖ (using the previous inequality), both of which
are indispensable.

The operator Amaps vectors in U to other vectors in
U , and it may change the norm by as much as ‖A‖. For
some vectors, called eigenvectors, it is only the norm,
and not the direction, that changes. A nonzero vec-
tor v is an eigenvector, with eigenvalue λ, if Av =
λv . Eigenvalues and eigenvectors play an important
role in many areas of applied mathematics and appear
in many places in this book. For example, spectral

theory [IV.8] is about the eigenvalues and eigenvec-
tors of linear operators on appropriate function spaces.
The adjective spectral comes from spectrum, which is
a set that contains the eigenvalues of an operator.

On taking norms in the relation Av = λv and using
‖v‖ �= 0 we obtain |λ| � ‖A‖. Thus all the eigenvalues
of the operator A lie in a disk of radius ‖A‖ centered at
the origin. This is an example of a localization result.

An invariant subspace of an operator A that maps a
vector space U to itself is a subspace X of U such that
AX is a subset of X, so that x ∈ X implies Ax ∈ X.
An eigenvector is the special case of a one-dimensional
invariant subspace.

For n×nmatrices, the eigenvalue equation Av = λv
says that A − λI is a singular matrix, which is equiv-
alent to the condition p(λ) = det(λI − A) = 0. The
polynomial p is the characteristic polynomial of A, and
since it has degree n it follows from the fundamen-
tal theorem of algebra (section 14) that it has n roots
in the complex plane, which are the eigenvalues of A.
Whether there are n linearly independent eigenvectors
associated with the eigenvalues depends on A and can
be elegantly answered in terms of the jordan canoni-

cal form [II.22]. For real symmetric and complex Her-
mitian matrices, the eigenvalues are all real and there
is a set of n linearly independent eigenvectors, which
can be taken to be orthonormal. If A is in addition
positive-definite, then the eigenvalues are all positive.

For matrices on Cm×n the operator matrix norms cor-
responding to the 1, 2, and∞ vector norms have explicit
formulas:

‖A‖1 = max
1�j�n

m∑
i=1

|aij|, “max column sum,”

‖A‖∞ = max
1�i�m

n∑
j=1

|aij|, “max row sum,”

‖A‖2 = (ρ(A∗A))1/2, spectral norm,

where the spectral radius

ρ(B) = max{|λ| : λ is an eigenvalue of B}.
Another useful formula is ‖A‖2 = σmax(A), where
σmax(A) is the largest singular value [II.32] of A.
A further matrix norm that is commonly used is the
Frobenius norm, given by

‖A‖F =
( m∑
i=1

n∑
j=1

|aij|2
)1/2

= (trace(A∗A))1/2,

where the trace of a square matrix is the sum of its
diagonal elements. Note that ‖A‖F is just the 2-norm
of the vector obtained by stringing the columns of A
out into one long vector. The Frobenius norm is not
induced by any vector norm, as can be seen by taking
A as the identity matrix.

21 Linear Algebra

Associated with a matrix A ∈ Cm×n are four important
subspaces, two in Cm and two in Cn: the ranges and
the nullspaces of A and A∗. The range of A is the set
of all linear combinations of the columns: range(A) =
{Ax : x ∈ Cn}. The null space of A is the set of vectors
annihilated by A: null(A) = {x ∈ Cn : Ax = 0}.

The two most important laws of linear algebra are

dim range(A) = dim range(A∗),

dim range(A)+ dim null(A) = n,
where dim denotes dimension. These equalities can
be proved in various ways, one of which is via the
singular value decomposition [II.32].

Suppose x ∈ null(A). Then x is orthogonal to every
row of A and hence is orthogonal to the subspace
spanned by the rows of A. Since the rows of A are the
columns of A∗, it follows that null(A) is orthogonal to
range(A∗), where two subspaces are said to be orthog-
onal if every vector in one of the subspaces is orthogo-
nal to every vector in the other. In fact, it can be shown
that null(A) and range(A∗) together span Cn, and this
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implies that dim range(A∗) + dim null(A) = n, which
can also be obtained by combining the two laws.

The rank of A is the maximum number of linearly
independent rows or columns of A. The rank plays an
important role in linear equation problems. For exam-
ple, a linear system Ax = b has a solution if and only if
A and the augmented matrix [A b] have the same rank.

The Fredholm alternative says that the equation
Ax = b has a solution if and only if b∗v = 0 for every
vector v satisfying A∗v = 0. This is a special case of
more general versions of the alternative, e.g., in inte-

gral equations [IV.4 §3]. The “only if” part is easy,
since if A∗v = 0 and Ax = b then b∗v = (v∗b)∗ =
(v∗Ax)∗ = ((A∗v)∗x)∗ = 0. For the “if” part, sup-
pose b∗v = 0 for every vector v such that A∗v = 0.
The latter equation says that v ∈ null(A∗), and from
what we have just seen this means that v is orthogonal
to range(A). So every vector orthogonal to range(A) is
orthogonal to b, which means that b is in range(A) and
so Ax = b has a solution.

22 Condition Numbers

A condition number of a problem measures the sensi-
tivity of the solution to perturbations in the data. For
some problems there is not a unique solution and the
problem can be regarded as infinitely sensitive; such
problems fall into the class of ill-posed problems

[I.5 §1.2]. Consider a function f mapping a vector space
to itself such that f(x) is defined in some neighbor-
hood of x. A (relative) condition number for f at x is
defined by

cond(f ,x) = lim
ε→0

sup
‖δx‖�ε‖x‖

‖f(x + δx)− f(x)‖
ε‖f(x)‖ .

The condition number cond measures by how much,
at most, small changes in the data can be magnified in
the function value when both changes are measured in
a relative sense. This definition implies that

‖f(x + δx)− f(x)‖
‖f(x)‖ � cond(f ,x)

‖δx‖
‖x‖ + o(‖δx‖)

(12)
and so provides an approximate perturbation bound
for small perturbations δx. In practice, δx in the latter
bound might represent inherent errors in the data from
a physical experiment or rounding errors when the data
is stored on a computer.

A problem is said to be ill-conditioned if its condi-
tion number is large and well-conditioned if its condi-
tion number is small, where the meaning of “large” and
“small” depends on the context.

For many problems, explicit expressions can be
obtained for the condition number. For a continu-
ously differentiable function f : R → R, cond(f ,x) =
|xf ′(x)/f(x)|. For the problem of matrix inversion,
f(A) = A−1, the condition number turns out to be
κ(A) = ‖A‖‖A−1‖ for any matrix norm; this is known
as the condition number of A with respect to inver-
sion. For the linear system Ax = b, with data the
matrix A and vector b, the condition number is also
essentially κ(A).

One role of the condition number is to provide a link
between the residual of an approximate solution of an
equation and the error of that approximation. This is
most easily seen for a nonsingular linear system Ax =
b. For any approximate solution x̂ the residual satisfies
r = b − Ax̂ = A(x − x̂), so the error is related to the
residual by x − x̂ = A−1r , which leads to the upper
bound ‖x − x̂‖ � κ(A)‖r‖/‖A‖.

23 Stability

The term “stability” is widely used in applied math-
ematics, with different meanings that depend on the
context. A general meaning is that errors introduced in
the initial stages of a process do not grow (or at least
are bounded) as the process evolves. Here “process”
could mean an iteration, a recurrence, or the evolution
of a time-dependent differential equation. Stability is
usually a necessary attribute and so a lot of effort is
put into analyzing whether processes are stable or not.
Discussions of stability can be found throughout this
book.

Here we focus on numerical stability, in the context
of evaluating a function y = f(x) in floating-point
arithmetic by some given algorithm, where x and y are
scalars. If ŷ is an approximation toy then one measure
of its quality is the forward error ŷ −y , which is often
called, simply, “the error.” The forward error is usually
unknown and may be difficult to estimate. As an alter-
native we can ask whether we can perturb the data x so
that ŷ is the exact solution to the perturbed problem;
that is, can we find a δx such that ŷ = f(x + δx)? In
general, there may be many such δx; the smallest pos-
sible value of |δx| is called the backward error. If the
backward error is sufficiently small relative to the pre-
cision of the underlying arithmetic, then the algorithm
is said to be backward stable.

It can be much easier to analyze the backward error
than the forward error. Backward error analysis origi-
nates in numerical linear algebra [IV.10 §8], where
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the underlying errors are rounding errors, but it has
been used in various other contexts, including in the
numerical solution of ordinary differential equations.
Once the backward error is known, the forward error
can be bounded by using the inequality (12), provided
that an estimate of the relevant condition number is
available.

24 Vector Calculus

While n-dimensional vector spaces, with n possibly
infinite, are the appropriate setting for much applied
mathematics, the world we live in is three dimensional
and so three coordinates are enough in many situa-
tions, such as in mechanics. Let i, j, and k denote unit
vectors along the x-, y-, and z-axes, respectively. As
this notation suggests, we will use boldface to denote
vectors in this subsection. A vector x in R3 can then
be expressed as x = x1i+ x2j + x3k. The scalar prod-
uct or dot product of two vectors x and y is x · y =
x1y1+x2y2+x3y3, which is a special case of the Euclid-
ean inner product of vectors in Rn. The cross prod-
uct or vector product does not have an n-dimensional
analogue; it is the vector

x ×y =

∣∣∣∣∣∣∣∣
i j k
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣
= (x2y3 − x3y2)i+ (x3y1 − x1y3)j

+ (x1y2 − x2y1)k,

which is orthogonal to the plane in which x and y lie.
Note that x ×y = −y × x. The vector triple product of
three vectors x,y, and z is the vector x×(y×z), which
can be expressed as

x × (y × z) = (x · z)y − (x ·y)z.
If f is a scalar function of three variables, then its

gradient is

∇f = ∂f
∂x
i+ ∂f

∂y
j + ∂f

∂z
k.

We can think of

∇ = ∂
∂x
i+ ∂

∂y
j + ∂

∂z
k

as an operator: the gradient operator. There is nothing
to stop us forming the dot product of the two vectors
∇ and ∇f :

∇ ·∇f = ∂2f
∂x2

+ ∂
2f
∂y2

+ ∂
2f
∂z2

.

This “del squared” operator is called the Laplacian, Δ =
∇2 ≡ ∇ ·∇.

Now let F = F1i+F2j+F3k be a vector function map-
ping R3 to R3. The divergence of F is the dot product
of ∇ and F:

divF = ∇ · F = ∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z
.

Another operator on vector functions that is commonly
encountered is the curl : curlF = ∇× F.

The divergence theorem says that, if V is a vector
field enclosed by a smooth surface S oriented by an
outward-pointing unit normaln and F is a continuously
differentiable vector field over V , then∫∫∫

V
divF dV =

∫∫
S
F · ndS.

In other words, the triple integral of the divergence of
F over V is equal to the surface integral of the normal
component, F · n. Many equations of physical interest
can be derived using the divergence theorem.

Another important theorem is Stokes’s theorem. It
says that, for an oriented smooth surface S with
outward-pointing unit normal n, bounded by a smooth
simple closed curve C , if F is a continuously differen-
tiable vector field over S, then∫∫

S
(∇× F) · ndS =

∫
C
F · t ds,

where t = t(x,y, z) is a unit vector tangential to the
curve C . Stokes’s theorem says that the integral of the
normal component of the curl of F over a surface S is
equal to the integral of the tangential component of F
along the boundary C of the surface.

I.3 Methods of Solution
Nicholas J. Higham

Problems in applied mathematics come in many shapes
and forms, and a wide variety of methods and tech-
niques are used to solve them. In this article we outline
some key ideas that underlie many different solution
approaches.

1 Specifying the Problem

Before we can set about choosing a method to solve
a problem we need to be clear about our assump-
tions. For example, if our problem is defined by a func-
tion (which could be the right-hand side of a differen-
tial equation), what can we assume about the smooth-
ness of the function, that is, the number of continuous
derivatives? If our problem is to find the eigenvalues
of an n × n matrix A, are the elements of A explicitly
stored and accessible or is A given only in the form of
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a “black box” that takes a vector x as input and returns
the product Ax?

The problem of finding a minimum or maximum of
a scalar function f of n variables provides a good
example of a wide range of possible scenarios. At one
extreme, f has derivatives of all orders and we can com-
pute f and its first and second derivatives at any point
(most methods do not use derivatives of higher than
second order). At another extreme, f may be discon-
tinuous and only function values may be available. It
may even be that we are not able to evaluate f but only
to test whether, for a given x and y , f(x) < f(y)
or vice versa. This is precisely the scenario for an
optometrist formulating a prescription for a patient.
The optometrist asks the patient to compare pairs of
lenses and say which one gives the better vision. By
suitably choosing the lenses the optometrist is able
to home in on a prescription within a few minutes.
In numerical optimization, derivative-free methods

[IV.11 §4.3] use only function values and many of them
are based solely on comparisons of these values.

Another fundamental question is what is meant by a
solution. If the solution is a function, would we accept
its representation as an infinite series in some basis
functions, or as an integral, or would we accept values
of the function on a finite grid of points? If an inexact
representation is allowed, how accurate must it be and
what measure of error is appropriate?

2 Dimension Reduction

A common theme in many contexts is that of approx-
imating a problem by one of smaller dimension and
using the solution of the smaller problem to approx-
imate the solution of the original problem. The moti-
vation is that the large problem may be too expen-
sive to solve, but of course this approach is viable
only if the smaller problem can be constructed at low
cost. In some situations the smaller problem is solved
repeatedly, perhaps as some parameter varies, thereby
amortizing the cost of producing it.

A ubiquitous example of this general approach con-
cerns images displayed on Web pages. Modern dig-
ital cameras (even smartphones) produce images of
5 megapixels (million pixels) or more. Yet even a 27-
inch monitor with a resolution of 2560 × 1440 pixels
displays only about 3.7 megapixels. Since most images
on Web pages are displayed at a small size within a
page, it would be a great waste of storage and band-
width to deal with them at their original size. They

are therefore interpolated down to smaller dimensions
appropriate for the intended usage (e.g., with longest
side 400 pixels for an image on a news site). Here,
dimension reduction is relatively straightforward and
error is not an issue.

Often, though, an image is of intrinsic interest and
we wish to keep it at its original dimensions and reduce
the required storage, with minimal loss of quality. This
is the more typical scenario for dimension reduction.
The reason that dimension reduction is possible is that
many images contain a high degree of redundancy.
The singular value decomposition [II.32] (SVD) pro-
vides a way of capturing the important information in
an image in a small number of vectors, at least for
some images. A generally more effective reduction is
produced by jpeg compression [VII.7 §5], which uses
two successive changes of basis in order to identify
information that can be discarded.

A dynamical system may have many parameters
but the behavior of interest may take place in a low-
dimensional subspace. In this case we can try to iden-
tify that subspace and work within it, gaining a reduc-
tion in computation and storage. The general term for
reducing dimension in a dynamical system is model

reduction [II.26]. Model reduction has been an area of
intensive research in the last thirty years, with applica-
tions ranging from the design of very large scale inte-
gration circuits to data assimilation in modeling the
atmosphere.

Dimension reduction is fundamental to data analy-

sis [IV.17 §4], where large data sets are transformed
via a change of basis into lower-dimensional spaces
that capture the behavior of the original data. Clas-
sic techniques are principal component analysis and
application of the SVD. In the context of linear matrix
equations such as the lyapunov equation [III.28],
an approximation to a dominant invariant subspace
of the solution (that is, an invariant subspace corre-
sponding to the k eigenvalues of largest magnitude, for
some k) can be as useful as an approximation to the
whole solution, and such an approximation can often
be computed at much lower cost.

A term often used in the context of dimension reduc-
tion is curse of dimensionality, which refers to the fact
that many problems become much harder in higher
dimensions and, more informally, that intuition gained
from two and three dimensions does not necessarily
translate to higher dimensions. A simple illustration is
given by an n-sphere, or hypersphere, of radius r in
Rn, which comprises alln-vectors of 2-norm (Euclidean
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norm) r . A hypersphere has volume

Sn = πn/2rn

Γ (n/2 + 1)
,

where Γ is the gamma function [III.13]. Since Γ (x) ∼√
2π/x(x/e)x (stirling’s approximation [IV.7 §3]),

for any fixed r we find that Sn tends to 0 as n tends
to ∞, that is, the volume of the hypersphere tends to
zero, which is perhaps surprising. For a means of com-
parison, consider the n-cube, or hypercube, with sides
of length 2r . It has volume

Hn = (2r)n

and therefore Sn/Hn → 0 as n → ∞. In other words,
most of the volume of a hypercube lies away from
the enclosed hypersphere, and hence “in the corners.”
For n = 2, the ratio S2/H2 = 0.785 (see figure 11 in
the language of applied mathematics [I.2 §19.3]),
which is already substantially less than 1. The sequence
Sn/Hn continues 0.524, 0.308, 0.164, 0.081, . . . . This
behavior is not too surprising when one realizes that
any corner of the unit hypercube centered on the ori-
gin has coordinates [±1,±1, . . . ,±1]T, and so is at dis-
tance

√
n from the origin, whereas any point on the

unit hypersphere centered on the origin is at distance
1 from the origin, so the latter distance divided by the
former tends to 0 as n → ∞. The term curse of dimen-
sionality was introduced by Richard Bellman in 1961,
with reference to the fact that sampling a function of
n variables on a grid with a fixed spacing requires a
number of points that grows exponentially with n.

3 Approximation of Functions

We consider the problem of approximating a scalar
function f , which may be given either as an explicit
formula or implicitly, for example as the solution to an
algebraic or differential equation. How the problem is
solved depends on what is known about the function
and what is required of the solution. We summarize
some of the questions that must be answered before
choosing a method.

• What form do we want the approximation to take:
power series, polynomial, rational, Fourier series,
. . . ?

• Do we want an approximation that has a desired
accuracy within a certain region? If so, what mea-
sure of error should be used?

• Do we want an approximation that has certain
qualitative features, such as convexity, monotonic-
ity, or nonnegativity?

In this section we discuss a few examples of different
types of approximation, touching on all the questions
in this list. In the next three subsections f is assumed
to be real (its argument being written x), whereas in the
fourth subsection it can be complex (so its argument is
written z). We consider first approximations based on
polynomials.

3.1 Polynomials

Perhaps the simplest class of approximating functions
is the polynomials, pn(x) = a0 + a1x + · · · + anxn.
Polynomials are easy to add, multiply, differentiate,
and integrate, and their roots can be found by stan-
dard algorithms. Justification for the use of polyno-
mials comes from Weierstrass’s theorem of 1885, which
states that for any f ∈ C[a,b] and any ε > 0 there is
a polynomial pn(x) such that ‖f − pn‖∞ < ε, where
the norm is the L∞-norm [I.2 §19.3] given by ‖f‖∞ =
maxx∈[a,b] |f(x)|. Weierstrass’s theorem assures us
that any desired degree of accuracy in the maximum
norm can be obtained by polynomials, though it does
not bound the degree n, which may have to be high.
Here are some of the ways in which polynomial approx-
imations are constructed.

Truncated Taylor series. If f is sufficiently smooth
that it has a Taylor series expansion and its deriva-
tives can be evaluated, then a polynomial approxima-
tion can be obtained simply by truncating the Taylor
series. The Taylor series with remainder tells us that
we can write f(x) = pn(x) + En(x), where pn(x) =
f(0)+f ′(0)x+· · ·+f (n)(0)xn/n! is a degree-n poly-
nomial and the remainder term has the form En(x) =
f (n+1)(ξ)xn+1/(n+ 1)! for some ξ on the interval with
endpoints 0 and x. The value of n and the range
of x for which the approximation f(x) ≈ pn(x) is
applied will depend on f and the desired accuracy. Fig-
ure 1 shows the degree-1, degree-3, and degree-5 Taylor
approximants to the sine function.

Interpolation. We may require pn(x) to agree with
f(x) at certain specified points xi ∈ [a, b]. Since pn
containsn+1 coefficients and each condition pn(xi) =
f(xi) provides one equation, we need n + 1 points in
order to specify pn. It can be shown that then+1 inter-
polation equations in n + 1 unknowns have a unique
solution provided that the interpolation points {xi}ni=0

are distinct, in which case there is a unique interpo-
lating polynomial. There is a variety of ways of repre-
senting pn (e.g., Lagrange form, barycentric form, and
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Figure 1 sinx and its Taylor approximants p1(x) = x,
p3(x) = x − x3/3!, and p5(x) = x − x3/3! + x5/5!.

divided difference form). An explicit formula is avail-
able for the error: if f has n+1 continuous derivatives
on [a, b] then for any x ∈ [a, b]

f(x)− pn(x) = f
(n+1)(ξx)
(n+ 1)!

n∏
i=0

(x − xi),

where ξx is some unknown point in the interval deter-
mined by x0, x1, . . . , xn, and x. This error formula can
be used to obtain insight into how to choose the xi. It
turns out that equally spaced points are poor, whereas
points derived by rescaling to [a, b] the zeros or

extrema of the chebyshev polynomial [IV.9 §2.2] of
degree n+ 1 or n, respectively, are good.

Least-squares approximation. In least-squares ap-
proximation we fix the degree n and then choose the
polynomial pn to minimize the L2-norm(∫ b

a
|f(x)− pn(x)|2 dx

)1/2
,

where [a, b] is the interval of interest. It turns out
that there is a unique pn minimizing the error, and
its coefficients satisfy a linear system of equations
called the normal equations. The normal equations
tend to be ill-conditioned when pn is represented in
the monomial basis, {1, x, x2, . . . }, so in this context
it is usual to write pn = ∑n

i=0 aiφi(x), where the
φi are orthogonal polynomials [II.29] on [a, b]. In
this case the normal equations are diagonal and there
is an explicit expression for the optimal coefficients:
ai =

∫ b
a φi(x)f(x)dx/

∫ b
a φi(x)2 dx.

L∞ approximation. Instead of using the L2-norm we
can use the L∞-norm and so minimize ‖f − pn‖∞. A
best L∞ approximation always exists and is unique,
and there is a beautiful theory that characterizes the
solution in terms of equioscillation, whereby the error
achieves its maximum magnitude at a certain number
of points with alternating sign. An algorithm called
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Figure 2 Error in polynomial approximations to ex on
[−1,1]: solid line, L∞ approximation; dashed line, Cheby-
shev interpolant; dotted line, least squares (L2 approxima-
tion).

the Remez algorithm is available for computing the
best L∞ approximation. One use of it is in evaluating

elementary functions [VI.11].

Figure 2 plots the absolute error |f −pn(x)| in three
degree-10 polynomial approximations to ex on [−1,1]:
the least-squares approximation; the L∞ approxima-
tion; and a polynomial interpolant based on the Cheby-
shev points, cos(jπ/n), j = 0 :n. Note that the L∞
approximation has equioscillating error with maximum
error strictly less than that for the other two approx-
imations, and that the error of the Chebyshev inter-
polant is zero at the eleven points where it interpolates,
which include the endpoints. It is also clear that the
Chebyshev approximation is not much worse than the
L∞ one—something that is true in general.

3.2 Piecewise Polynomials

High-degree polynomials have a tendency to wiggle. A
degree-100 polynomial p has up to 100 points at which
it crosses the x-axis on a plot of y = p(x): the distinct
real zeros of p. This can make high-degree polynomials
unsatisfactory as approximating functions. Instead of
using one polynomial of large degree it can be better
to use many polynomials of low degree. This can be
done by breaking the interval of interest into pieces
and using a different low-degree polynomial on each
piece, with the polynomials joined together smoothly
to make up the complete approximating function. Such
piecewise polynomials can produce functions with high
approximating power while avoiding the oscillations
possible with high-degree polynomials.

A trivial example of a piecewise polynomial is the
absolute value function |x|, which is equal to −x for
x � 0 and x for x � 0 (see figure 4 on p. 13 in the

language of applied mathematics [I.2]). More gen-
erally, a piecewise polynomial g defined on an interval
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Figure 3 A piecewise-linear function (spline).

[a, b] =: [x0, xn] that is the union of n subintervals
[x0, x1], [x1, x2], . . . , [xn−1, xn] is defined by the prop-
erty that g(x) = pi(x) for x ∈ [xi, xi+1], where each
pi is a polynomial. Thus on each interval g is a poly-
nomial, but each of these individual polynomials is
in general different and possibly of different degree.
Such a function is generally discontinuous, but we can
ensure continuity by insisting that pi−1(xi) = pi(xi),
i = 1 :n− 1.

Important examples of piecewise polynomials are
splines, which are piecewise polynomials g for which
each individual polynomial has degree k or less and
for which g has k − 1 continuous derivatives on the
interval. A spline therefore has the maximum possible
smoothness. The most commonly used splines are lin-
ear splines and cubic splines, and an important applica-
tion is in the finite-element method [II.12]. Figure 3
shows an example of a linear spline. Splines are com-
monly used in plotting data, where they provide a way
of “joining up the dots,” e.g., by straight lines in the
case of a linear spline.

In computer-aided design the individual polynomials
in a piecewise polynomial are often constructed as
Bézier curves, which have the form

Bn(x) =
n∑
i=0

(
n
i

)
(b − x)n−i(x − a)i

(b − a)n pi

for an interval [a, b]. The pi are control points in the
plane that the user chooses via a graphical interface in
order to achieve a desired form of curve. Figure 4 shows
a cubic Bézier curve. The polynomials that multiply
the pi are called Bernstein polynomials, and they were
originally introduced by Bernstein in 1912 in order to
give a constructive proof of Weierstrass’s theorem. The
use of Bézier curves as a design tool to intuitively con-
struct and manipulate complex shapes was initiated at
the Citroën and Renault car companies in the 1960s.
Today, cubic Bézier curves are widely used, e.g., in the
design of fonts, in image manipulation programs such

p1

p2

p3

p4

Figure 4 A cubic Bézier curve with four
control points p1, p2, p3, p4.

as Adobe Photoshop, and in the ISO standard for the

Portable Document Format (PDF).

3.3 Wavelets

fourier analysis [I.2 §19.2] decomposes a function

into a linear combination of trigonometric functions

(sines and cosines) with different frequencies and so is

a natural way to deal with periodic functions. Wavelet

analysis, which was first developed in the 1980s, is

designed to handle nonperiodic functions and does

so by using basis functions that are rough and local-

ized. Rather than varying the frequency as with the

Fourier basis, a wavelet basis is constructed by trans-

lation (f(x) → f(x − 1)) and dilation (f(x) → f(2x)).
Given a mother wavelet ψ(x), which has compact sup-

port (that is, it is zero outside a bounded interval),

translations and dilations are created as ψ(2nx − k)
with integer n and k. This leads to many different res-

olutions, and hence the term multiresolution analysis

is used in this context. Larger n correspond to finer

resolutions, and as k varies the support moves around.

The localized nature of the wavelet basis functions

makes wavelet representations of many functions and

data relatively sparse, which makes wavelets particu-

larly suitable for data compression, detection of fea-

tures in images (such as edges and other discontinu-

ities), and noise reduction. These are some of the rea-

sons for the success of wavelets in (for example) imag-

ing, where they are used in the jpeg2000 standard

[VII.7 §5].

3.4 Series Solution

We now turn to the development of explicit series

representations of a function. As an example we take

the Airy function w(z), which satisfies the differential

equation

w′′ − zw = 0.
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We can look for a solution w(z) = ∑∞
k=0 akzk, where

a0 = w(0) and a1 = w′(0) can be regarded as given.
For simplicity we will take a0 = 1 and a1 = 0. Dif-
ferentiating twice givesw′′(z) =∑∞

k=2 k(k− 1)akzk−2.
Substituting the power series for w and w′′ into the
differential equation we obtain

∑∞
k=2 k(k− 1)akzk−2 −∑∞

k=0 akzk+1 = 0. Since this equation must hold for all
z we can equate coefficients of z0, z1, z2, . . . on both
sides to obtain a sequence of equations that provide
recurrence relations for the ak, specifically (k+ 1)(k+
2)ak+2 = ak−1 along with a2 = 0. We find that

w(z) = 1 + z
3

6
+ z6

180
+ z9

12 960
+ · · · .

The modulus of the ratio of successive nonzero terms
tends to zero as the index of the terms tends to infin-
ity, which ensures that the series is convergent for all
z. Since a power series can be differentiated term by
term within its radius of convergence, it follows that
our series does indeed satisfy the Airy equation.

Constructing a series expansion does not always
lead to a convergent series. Consider the exponential
integral

E1(z) =
∫∞

z

e−t

t
dt.

Integrating by parts repeatedly gives

E1(z)= e−z

z
−
∫∞

z

e−t

t2
dt

= e−z

z
− e−z

z2
+2

∫∞

z

e−t

t3
dt

= e−z

z

(
1− 1

z
+ 2!
z2

+ · · · +(−1)k−1 (k− 1)!
zk−1

)
+Rk.

The remainder term, Rk = (−1)kk!
∫∞
z (e−t/tk+1)dt,

does not tend to zero as k→ ∞ for fixed z, so the series
is not convergent. Nevertheless, |Rk| does decrease
with k before it increases, and a reasonable approxi-
mation to E1(z) can be obtained by choosing a suit-
able value of k. For example, with z = 10 the remain-
der starts increasing at k = 11, and taking k = 10 we
obtain the approximation E1(10) ≈ 4.156×10−6, which
is to be compared with E1(10) = 4.157 × 10−6, where
both results have been rounded to four significant fig-
ures. The series above is an example of an asymptotic
series. In general, we say that the series

∑∞
k=0 akz−k is

an asymptotic expansion of f as z → ∞ if

lim
z→∞z

n
(
f(z)−

n∑
k=0

akz−k
)
= 0

for everyn, and we write f(z) ∼∑∞
k=0 akz−k, where the

symbol “∼” is read as “is asymptotic to.” This condition

can also be written as

f(z) =
n−1∑
k=0

akz−k +O(z−n).

For the series for E1 we have

|zkRk| = |z|kk!
∣∣∣∣∫∞

z

e−t

tk+1
dt
∣∣∣∣

� k!
|z|

∣∣∣∣∫∞

z
e−t dt

∣∣∣∣ = k!
|z| |e

−z|,

and the latter bound tends to zero as |z| → ∞ if
argz ∈ (−π/2, π/2), so the series is asymptotic under
this constraint on z.

By summing an appropriate number of terms, asymp-
totic series can deliver approximations of up to a cer-
tain, possibly good, accuracy, for large enough |z|, but
beyond a certain point the accuracy worsens.

Suppose we have the quadratic qε(x) = x2 − x +
ε = 0, where ε is a small parameter and we wish to
obtain a series expansion for x as a function of ε. This
can be done by substituting x(ε) =∑∞

k=0 akεk into the
equation and setting the coefficients of each power of
ε to zero. This produces a system of equations that can
be used to express a1, a2, . . . in terms of a0. The two
solutions of qε(x) = 0 for ε = 0 are 0 and 1, so we take
a0 = 0,1 and obtain the series

x(ε) =
⎧⎨⎩ε + ε2 + 2ε3 + · · · , a0 = 0,

1 − ε − ε2 − 2ε3 + · · · , a0 = 1,
(1)

which describe how the roots 0 and 1 of q0(x) behave
for small ε. Suppose now that it is the leading term
that is small and that we have the quadratic q̃ε(x) =
εx2 −x+1 = 0. If we repeat the process of looking for
an expansion of x(ε), we obtain x(ε) = 1 + ε + 2ε2 +
5ε3+· · · describing the behavior of the root 1 of q̃0(x).
But q̃ is a quadratic and so has two roots. What has hap-
pened to the other one? There is a change of degree as
we go from ε = 0 to ε �= 0, and this takes us into singu-

lar perturbation theory [IV.5 §3.2]. In this simple
case we can use the transformation y = 1/x to write
q̃ε(x) = qε(y)/y2, and so we obtain expansions for
x(ε) by inverting those in (1). Indeed, inverting the sec-
ond expression in (1) and expanding in a power series
recovers the expansion we just derived.

4 Symbolic Solution

Sometimes a useful representation of a solution can
be obtained using a computer symbolic manipulation
package. Such packages are, for example, very good at
determining closed forms for indefinite integrals that
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would be too tedious to derive by hand and for finding
series expansions. We give four examples, each with a
different package.

The MATLAB Symbolic Math Toolbox shows that
the terms in x0, x1, . . . , x6 of the Taylor series of
tan(sinx)− sin(tanx) are zero:

>> syms x
>> taylor(tan(sin(x)) - sin(tan(x)),...

’order’, 8) % Terms up to xˆ7
ans =
xˆ7/30

The SymPy package in Python provides a concise
form for a definite integral (here, the backslash \
denotes that a continuation line follows):

>>> from sympy import *
>>> x = Symbol(’x’)
>>> integrate((sin(x) + cos(x) + 1) / \
... (sin(x) + cos(x) + 1 + sin(x)*cos(x)))
2*log(tan(x/2) + 1)

Maple finds an explicit form for a definite integral:

> int(xˆ2/sin(x)ˆ2, x = 0 .. Pi/2)
Pi*ln(2)

Mathematica solves the first-order PDE initial-value
problem ut + 9ux = u2, u(x,0) = sinx, via the input

DSolve[{D[u[x, t], t] + 9 D[u[x, t], x]
== u[x, t]ˆ2,
u[x, 0] == Sin[x]}, u[x, t], {x, t}]

which yields the output

{{u[x,t]->-1/(t+Csc[9t-x])}}

where Csc denotes the cosecant, cscx = 1/ sinx.

One should never take such results at face value
and should always run some kind of check, e.g., by
substituting the claimed solution into the equation
or comparing a symbolic solution with a numerically
computed one.

5 Working from First Principles

Many mathematical problems can successfully be at-
tacked from first principles, or with the use of heu-
ristics, and applied mathematicians often take this
approach rather than have recourse to general theory.
Indeed, for unsolved research problems there may

be no other way forward. For easier problems these
approaches can provide useful insight and experience.
The techniques in question include

• looking for a solution of a particular form, which
may be constructed from experience or intuition
or just by making an educated guess, and then
showing that a solution of that form exists, and

• deducing what the general form of a solution must
be and then determining the solution.

A standard example taught to undergraduate stu-
dents is finding the general solution of the second-
order ordinary differential equation (ODE)

y′′ + ay′ + by = 0 (2)

for the unknown function y = y(t). The starting point
is to look for a solution of the form y(t) = eλt . Substi-
tuting this purported solution into the equation gives
(λ2 + aλ + b)eλt = 0, which implies λ2 + aλ + b = 0.
If this quadratic has distinct roots λ1 and λ2, then two
linearly independent solutions of the differential equa-
tion, eλ1t and eλ2t , have been determined. The general
solution can be built up, in all cases, from this starting
point.

A guess guided by intuition or experience is called
an ansatz. The assumed form of solution y(t) = eλt

to (2) is an ansatz. The corresponding ansatz for the
difference equation yn + ayn−1 + byn = 0 is yn = λn,
which again yields the quadratic λ2 + aλ + b = 0, and
continuing with this line of investigation leads to the
theory of difference equations.

An example of working from first principles is to
determine a formula for the Vandermonde determinant

D(x1, x2, x2) = det

⎛⎜⎜⎝
⎡⎢⎢⎣

1 1 1

x1 x2 x3

x2
1 x2

2 x2
3

⎤⎥⎥⎦
⎞⎟⎟⎠ .

Instead of laboriously expanding the determinant one
can observe that, since it is a sum of products of terms
with one taken from each row, the result must be a
multivariate polynomial of the form

∑
xi1x

j
2x
k
3 , with i,

j, and k distinct nonnegative integers summing to 3. If
x1 = x2 then the first two columns are linearly depen-
dent and the determinant is zero; hence x1 − x2 is a
factor of the determinant. Continuing to argue in this
fashion, (x1 − x2)(x2 − x3)(x3 − x1) must be a fac-
tor. Since this product has degree 3, it must be that
D(x1, x2, x3) = c(x1 −x2)(x2 −x3)(x3 −x1) for some
constant c, and by considering the terms in x2x2

3 on
both sides of this equation it is clear that c = 1. The
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same argument extends straightforwardly to an n× n
Vandermonde determinant. An advantage of this kind
of reasoning is that it is adaptable: if the first row of the
matrix is replaced by [x3

1 x
3
2 x

3
3], then the same form

of argument can be used.

6 Iteration

Suppose we wish to solve the three equations in three
unknowns

4x −y = a,
−x +4y −z = b,

−y +4z = c
for some given a, b, and c. Because the coefficients on
the diagonal (the 4s) are the largest coefficients in each
row, it is reasonable to expect that x ≈ a/4, y ≈ b/4,
z ≈ c/4 are reasonable approximations. Note that this
corresponds to rewriting the equations as

x = a
4

+ y
4
,

y = b
4

+ x + z
4

,

z = c
4
+ y

4

(3)

and setting x = y = z = 0 on the right-hand side.
If we want to improve our approximation we can try
plugging it into the right-hand side of (3) and reading
off the new values from the left-hand side. By repeating
this process we obtain the iteration

xk+1 = a
4

+ yk
4

yk+1 = b
4

+ xk + zk
4

zk+1 = c
4
+ yk

4

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
k = 1,2, . . . ,

with x0 = y0 = z0 = 0. This notation means that we
are defining infinite sequences {xk}, {yk}, and {zk} by
the given formulas.

If the iteration converges, that is, if limk→∞ xk,
limk→∞yk, and limk→∞ zk all exist, then the limits must
satisfy (3), which is equivalent to the original system, so
the only possible limits are the required solution com-
ponents. This iteration is known as the Jacobi iteration.
It is defined in an analogous way for any linear system
of equationsAx = b for which the diagonal elements of
A are nonzero. Convergence can be proved if the matrix
A has a large diagonal in the sense of being strictly

diagonally dominant by rows [IV.10 §1].
The Jacobi iteration is a special case of a powerful

technique known as fixed-point iteration (or functional
iteration) for solving a nonlinear system of equations.

Consider an equation x = f(x), where f : R → R. Any
scalar nonlinear equation can be put in this form. We
can set up the iteration xk+1 = f(xk), with some choice
of x0 ∈ R. The iteration may or may not converge,
as can be seen by considering the case f(x) = x2,
for which we have convergence to 0 for |x0| < 1 and
divergence for |x0| > 1. But if it does converge, to x̂,
say, then x̂ must be a solution of the equation because
taking limits in the iteration gives x̂ = f(x̂).

To analyze the convergence of fixed-point iteration
we note that ifx∗ is a solution thenx∗−xk+1 = f(x∗)−
f(xk) = f ′(θk)(x∗ − xk) for some θk lying between
x∗ and xk, by the mean-value theorem. Hence |x∗ −
xk+1| < |x∗ −xk| if |f ′(θk)| < 1. This observation can
be made into a proof that xk converges to x∗ if x0 lies
in a neighborhood of x∗ in which |f ′(x)| is less than 1.

The most widely used iteration for solving nonlinear
equations is newton’s method [II.28] and its variants.
Newton’s method for f(x) = 0 is

xn+1 = xn − f(xn)
f ′(xn)

,

where x0 is given. In order to apply the method we need
to be able to compute the derivative f ′(x). Newton’s
method has a tendency to wander away from the root
we are trying to compute if not started close enough to
it. It is therefore common to start the method with a
good approximation, possibly one computed by some
other method, or to modify Newton’s method in some
way that encourages convergence.

In comparing different classes of iteration, the rate
of convergence is an important concept. Let {xk} be a
sequence of scalars converging to x∗ and denote the
error in xn by en = x∗ − xn. If

lim
n→∞

|en+1|
|en|p

= C �= 0,

where C is a constant, the sequence is said to converge
with rate p (or order p). This definition generalizes to
vectors by replacing the absolute values with a vector
norm. Fixed-point iteration has linear convergence in
general, for which p = 1. Newton’s method has (local)
quadratic convergence (p = 2) to a simple root x∗, that
is, one for which f ′(x∗) �= 0. Quadratic convergence
is very desirable as it roughly doubles the number of
correct figures on each step, while linear convergence
merely reduces the error by a fixed percentage each
time. Iterations of arbitrarily high order can be derived
(e.g., by combining several Newton steps into one).

Fixed-point iteration can be used to iterate on func-
tions as well as numbers. Consider the ODE initial-value
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problem

y′(x) = f(x,y), y(0) = y0.

Integrating between 0 and x leads to the equivalent

problem

y(x) = y0 +
∫ x

0
f(x,y(x))dx,

which is a type of equation known as an integral

equation [IV.4] because the unknown function occurs

within an integral. Applying the fixed-point iteration

idea we can make a guessφ0 fory , plug it into the right-

hand side of the integral equation, and call the result

φ1. The process can be iterated to produce a sequence

of functions φk defined by

φk+1(x) = y0 +
∫ x

0
f(x,φk(x))dx, k � 1.

In general, none of the φk will satisfy the differential

equation, but we might hope that the sequence has a

limit that does. Let us try out this idea on the problem

y′ = 2x(1 +y), y(0) = 0

using first guess φ0(x) = 0. Then φ1(x) =
∫ x
0 2x dx =

x2 andφ2(x) =
∫ x
0 2x(1 + x2)dx = x2+x4/2. Contin-

uing in this fashion yieldsφk(x) = x2+x4/2!+x6/3!+
· · · + x2k/k!. The limit as k → ∞ exists and is ex

2 − 1,

which is the required solution.

The procedure we have just carried out is known as

Picard iteration, or the method of successive approxi-

mation. Of course, in most cases it will not be possible

to evaluate the integrals in closed form, and so Picard

iteration is not a practical means for computing a solu-

tion. However, Picard iteration is the basis of the proof

of the standard result on existence and uniqueness of

solutions for ODEs. The result says that, if f(x,y) is

continuous for x ∈ [a, b] and for all y and satisfies a

Lipschitz condition

|f(x,u)− f(x,v)| � L|u− v| ∀x ∈ [a, b], ∀u,v,
with Lipschitz constant L, then for any y0 there is

a unique continuously differentiable function y(x)
defined on [a, b] that satisfies y′ = f(x,y) and

y(a) = y0.

7 Conversion to Another Problem

When we cannot solve a problem it can be useful to

convert it to a different problem that is more amenable

to attack. In this section we give several examples of

such conversions.

We note first that it is not always obvious what is
meant by a solution to a problem. Consider the ODE
problem

dy
dx

= 1 − 2xy, y(0) = 0.

The solution y can be written as

y(x) = e−x
2
∫ x

0
et

2
dt,

which is known as Dawson’s integral or Dawson’s func-
tion. Which representation of y is better? If we need
to obtain higher derivatives dky/dxk, the differen-
tial equation is more convenient. To evaluate y(x)
for a given x, numerical methods can be applied to
either representation. Both representations therefore
have their uses.

7.1 Uncoupling

When we are solving equations, of whatever type, a par-
ticularly favorable circumstance is when the first equa-
tion involves only one unknown and each successive
equation introduces only one new unknown. We can
then solve the equations from first to last. The simplest
example is a triangular system of linear equations, such
as

a11x1 = b1,

a21x1 +a22x2 = b2,

a31x1 +a32x2 +a33x3 = b3,

which can be solved by finding x1 from the first equa-
tion, then x2 from the second, and finally x3 from the
third. This is the process known as substitution.

Most linear equation problems do not have this tri-
angular structure, but the process of gaussian elim-

ination [IV.10 §2] converts an arbitrary linear system
into triangular form.

More generally we might have n nonlinear equations
inn unknowns, and a natural way to solve them is to try
to manipulate them into an analogous triangular form.
In computer algebra a way of doing this for polyno-
mial equations is provided by Buchberger’s algorithm
for computing a gröbner basis [IV.39 §2.1].

A triangular problem is partially uncoupled. In a fully
uncoupled system each equation contains only one
unknown. A linear system of ODEs y′ = Ay with an
n×n coefficient matrixA can be uncoupled ifA is diag-
onalizable. Indeed, if A = XDX−1 with X nonsingular
and D = diag(λi), then the transformation z = X−1y
gives z′ = Dz, which represents n uncoupled scalar
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equations z′i = λizi, i = 1 :n. The behavior of the vec-
tory can now be understood by looking at the behavior
of the n independent scalars zi.

7.2 Polynomial Roots and Matrix Eigenvalues

Consider the problem of finding the roots (zeros) of a
polynomial pn(x) = anxn +an−1xn−1 +· · ·+a0 with
an �= 0, that is, the values of x for which pn(x) = 0.
It is known from Galois theory that there is no explicit
formula for the roots when n � 5. Many methods are
available for computing polynomial roots, but not all
are able to compute all n roots reliably and software
might not be readily available. Consider then×nmatrix

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−an−1/an −an−2/an · · · · · · −a0/an
1 0 · · · · · · 0

0 1
. . . 0

...
. . . 0

...

0 · · · · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let λ be a root of pn. For the vector defined by y =
[λn−1 λn−2 · · · 1]T we have Cy = λy , so λ is an eigen-
value of C with eigenvector y . In fact, the set of roots
of p is the set of eigenvalues of C , so the polynomial
root problem has been converted into an eigenvalue
problem—albeit a specially structured one. The matrix
C is called a companion matrix. Of course, one can go
in the opposite direction: to find the eigenvalues of C
one might look for solutions of det(C − λI) = 0, and
the determinant is precisely (−1)npn(λ)/an.

The eigenvector problem Ax = λx can be converted
into a nonlinear system of equations F(v) = 0, where

F(v) =
[
(A− λI)x
eT
s x − 1

]
, v =

[
x
λ

]
.

The last component of F serves to normalize the eigen-
vector and here s is some fixed integer, with es denot-
ing the sth column of the identity matrix. By solving
F(v) = 0 we obtain both an eigenvalue of A and the
corresponding eigenvector.

7.3 Dubious Conversions

Converting one problem to an apparently simpler one
is not always a good idea. The problem of solving the
scalar nonlinear equation f(x) = 0 can be converted to
the problem of minimizing the function g(x) = f(x)2.
Since the latter problem has a global minimum attained
when f(x) = 0, the conversion might look attractive.
However, it has a pitfall: since g′(x) = 2f ′(x)f(x), the
derivative of g is zero whenever f ′(x) = 0, and this

means that methods for minimizing g might converge
to points that are stationary points of g but not zeros
of f .

For another example, consider the generalized eigen-
problem in n × n matrices A and B, Ax = λBx, which
arises in problems in engineering and physics. It is nat-
ural to attempt to convert it to the standard eigenprob-
lem B−1Ax = λx and then apply standard theory and
algorithms. However, if B is singular this transforma-
tion is not possible, and when B is nonsingular but
ill-conditioned [I.2 §22] the transformation is inad-
visable in floating-point arithmetic as it will be numeri-
cally unstable. A further drawback is that if B is sparse

[IV.10 §6] (has many zeros) then B−1A can have many
more nonzeros than A or B.

7.4 High-Order Differential Equations

Methods of solution of differential equations have been
more extensively developed for first-order equations
than for higher-order ones, where order refers to the
highest derivative in the equation. Fortunately, higher-
order equations can always be converted to first-order
ones. Consider the qth-order ODE

y(q) = f(t,y,y′, . . . , y(q−1))

with y,y′, . . . , y(q−1) given at t = t0. Define new
variables

z1 = y, z2 = y′, . . . , zq = y(q−1).

Then we have the first-order system of equations

z′1 = z2,

z′2 = z3,
...

z′q−1 = zq,
z′q = f(t, z1, z2, . . . , zq),

with z1, z2, . . . , zq given at t = t0. We can write this
system in vector form:

z′ = f(t, z), z = [z1, z2, . . . , zq]T. (4)

So we have traded high order for high dimension. For-
tunately, the theory and the numerical methods devel-
oped for scalar first-order ODEs generally carry over
straightforwardly to vector ODEs. We can go further
and remove the explicit time dependence from (4) to
put the system in autonomous form: with w = [t, zT]T,
we have

w′ =
[

1

f(z)

]
=
[

1

f(w2, . . . ,wn)

]
=: g(w).
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7.5 Continuation

Suppose we have a hard problem “solve f(x) = 0”

and another problem “solve g(x) = 0” that is triv-

ial to solve. Consider the parametrized problem “solve

h(x, t) = tf (x)+ (1 − t)g(x) = 0.” We know the solu-

tion for t = 0 and wish to find it for t = 1. The idea

of continuation (also called homotopy, or incremental

loading in elasticity) is to traverse the interval from 0

to 1 in several steps: 0 < t1 < t2 < · · · < tn = 1. On

the kth step we use the solution xk−1 of the problem

h(x, tk−1) = 0 as the starting point for an iteration for

solving h(x, tk) = 0. We are therefore solving the orig-

inal problem by approaching it gradually from a trivial

problem. Continuation cannot be expected to work well

in all cases. It is particularly well suited to cases where

f already depends on a parameter and the problem is

simpler for some value of that parameter.

Continuation is a very general technique and has

close connections with bifurcation theory [IV.21].

A special case of it is the idea of shrinking [V.10 §2.2],

whereby a convex combination is taken of a given

object with another having more desirable properties.

8 Linearization

A huge body of mathematics is concerned with prob-

lems that are linear in the variables of interest, such as

a system Ax = b of n linear equations in n unknowns

or a system of ODEs dy/dt = A(t)y . For linear prob-

lems it is usually easy to analyze the existence of solu-

tions, to obtain an explicit formula for a solution, and

to derive practical methods of solution that exploit the

linearity. Unfortunately, many real-world processes are

inherently nonlinear. This means, first of all, that it

may not be easy to determine whether or not there is

a solution at all or, if a solution exists, whether it is

unique. Secondly, finding a solution is in general dif-

ficult. A general technique for solving nonlinear prob-

lems is to transform them into linear ones, thereby con-

verting a problem that we cannot solve into one that

we can. The transformation can rarely be done exactly,

so what is usually done is to approximate the nonlin-

ear problem by a linear one—the process of lineariza-

tion—and carry out some sort of iteration or refinement

process.

To illustrate the idea of linear approximations we

consider the quadratic equation

x2 − 10x + 1 = 0. (5)

Because the coefficient of the linear term, 10, is large
compared with that of the quadratic term, 1, we can
think of (5) as a linear equation with a small quadratic
perturbation:

x = 1
10

+ x
2

10
. (6)

Indeed, if we solve the linear part we obtain x = 1/10,
which leaves a residual of just 1/100 when substituted
into the left-hand side of (5). We can therefore say that
x ≈ 1/10 is a reasonable approximation to a root (in
fact, to the smallest root, since the product of the roots
must be 1). Note that this approximation is obtained by
putting x = 0 in the right-hand side of (6). To obtain
a better approximation we might try putting x = 1/10
into the right-hand side. Repeating this process leads
to the fixed-point iteration

xk+1 = 1 + x2
k

10
, x0 = 0,

which yields 0, 0.10, 0.101, . . . . After ten iterations we
have x10 = 0.101020514433644, which is correct to
the fifteen significant digits shown. Of course we could
have obtained this solution as x = 5 − √

24 using the
quadratic formula, but the linearization approach gives
an instant approximation and provides insight. For the
equation x7−10x+1 = 0, for which there is no explicit
formula for the roots, 1/10 is an even better approxi-
mation to the smallest root and the analogue of the
iteration above converges even more quickly.

Linearization is the key concept underlying new-

ton’s method [II.28], which we discussed in section 6.
Suppose we wish to solve a nonlinear system f(x) = 0,
where f : Rn → Rn, and let x be an approximation to a
solution x∗. Writing x∗ = x+h, for sufficiently smooth
f we have 0 = f(x∗) = f(x)+J(x)h+O(‖h‖2), where
J(x) = (∂fi/∂xj) ∈ Rn×n is the Jacobian matrix and
the big-oh term includes the second- and higher-order
terms from a multidimensional Taylor series. Newton’s
method approximates f by the linear part of the series
and so solves the linear system J(x)h = −f(x) in
order to produce a new approximation x +h. The pro-
cess is iterated, yielding xk+1 = xk − J(xk)−1f(xk).
Theorems are available that guarantee when the lin-
ear approximations of the Newton method are good
enough to ensure convergence to a solution. Indeed
the Newton–Kantorovich theorem even uses Newton’s
method itself to prove the existence of a solution under
certain conditions.

An equilibrium point (or critical point) of a nonlin-
ear autonomous system of ODEs y′(t) = f(y), where
f : Rn → Rn, is a vector y0 such that f(y0) = 0. For
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such a point, y(t) = y0 is a constant solution to the
differential equations. Linear stability analysis deter-
mines the effect of small perturbations away from the
equilibrium point. Let y(t) = y0 + h(t) with h(0) =
h0 small. We wish to determine the behavior of h(t)
as t → ∞. A linear approximation to f at y0 yields
h′(t) = y′(t) = f(y0)+J(y0)h = J(y0)h. The solution
to this first-order system is h(t) = eJ(y0)th0, and so the
behavior of h depends on the behavior of the matrix

exponential [II.14] eJ(y0)t . In particular, whether or
not h(t) grows or decays as t → ∞ depends on the real
parts of the eigenvalues of J(y0). For the case where
y has two components (n = 2), it is possible to give
detailed classifications and plots (called phase-plane
portraits) of the different qualitative behaviors that can
occur. For more on the stability of ODEs see ordinary

differential equations [IV.2 §§8, 9].

An example of a nonlinear problem that can be
linearized exactly, without any approximation, is the
quadratic eigenvalue problem [IV.10 §5.8].

Many other uses of linearization can be found
throughout this book.

9 Recurrence Relations

A useful tactic for solving a problem whose solution is
a number or function depending on a parameter is to
try to derive a recurrence. For example, consider the
integral

xn =
∫ 1

0

tn

t + 5
dt.

It is easy to verify that xn satisfies the recurrence
xn + 5xn−1 = 1/n and x0 = log(6/5), so values of xn
can easily be generated from the recurrence. However,
when evaluating a recurrence numerically, one always
needs to be aware of possible instability. Evaluating the
recurrence in IEEE double-precision arithmetic (corre-
sponding to about sixteen significant decimal digits) we
find that x̂21 = −0.0159 . . . , where the hat denotes the
computed result. But

1
6(n+ 1)

=
∫ 1

0

tn

6
dt < xn <

∫ 1

0

tn

5
dt = 1

5(n+ 1)
for all n, so this result is clearly not even of the right
sign. The cause of the inaccuracy can be seen by con-
sidering the ideal case in which the only error, ε, say,
occurs in evaluating x0. That error is multiplied by
−5 in computing x1 and by a further factor of −5 on
each step of the recurrence; overall, xn will be con-
taminated by an error of (−5)nε. This is an example

of numerical instability and it is something that recur-

rences are prone to. We can obtain a more accurate

result by using the recurrence in the backward direc-

tion, which will result in errors being divided by −5, so

that they are damped out. From the inequalities above

we see that for largen, xn ≈ 1/(5(n+1)). Let us simply

set y20 = 1/105. Then, using the recurrence backward

in the formxn−1 = (1/n−xn)/5, we find thatx0 is com-

puted with a relative error of order 10−16. For similar

reasons, the recurrence relation in the language of

applied mathematics [I.2 §13] for the Bessel functions

is also used in the backward direction for x < n.

10 Lagrange Multipliers

Optimization problems abound in applied mathemat-

ics because in many practical situations one wishes

to maximize a desirable attribute (e.g., profit, or the

strength of a structure) or minimize something that is

desired to be small (such as cost or energy). More often

than not, constraints impose limits on the variables and

help to balance conflicting requirements. For example,

in designing a tripod for cameras we may wish to mini-

mize the weight of the tripod subject to it being able to

support cameras up to a certain maximal weight, and

a constraint might be a lower bound on the maximal

height of the tripod.

Calculus enables us to characterize and find max-

ima and minima of functions. In the presence of con-

straints, though, the standard results are not so helpful.

Consider the problem in three variables

minimize f(x1, x2, x3)
subject to c(x1, x2, x3) = 0, (7)

where the objective function f and constraint function

c are scalars. We know that any minimizer of the uncon-

strained problem minf(x1, x2, x3) has to have a zero

gradient; that is, ∇f(x) = [∂f/∂x1, ∂f/∂x2, ∂f/∂x3]T

must be the zero vector. How can we take account of

the constraint c(x1, x2, x3) = 0?

Let x∗ ∈ R3 be a feasible point , that is, a point sat-

isfying the constraint c(x∗) = 0. Consider a smooth

curve z(t) with z(0) = x∗ that remains on the con-

straint, that is, c(z(t)) = 0 for all sufficiently small t.
Differentiating the latter equation and using the chain

rule gives (dz(t)/dt)T∇c(z(t)) = 0. Setting t = 0 and

putting p∗ = dz/dt|t=0 gives

pT
∗∇c(x∗) = 0. (8)
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For x∗ to be optimal, the rate of change of f along z
must be zero at x∗, so, using the chain rule again,

0 = d
dt
f (z(t))

∣∣∣∣
t=0

=
3∑
i=1

∂f
∂zi

dzi
dt

∣∣∣∣
t=0

= ∇f(x∗)Tp∗. (9)

Now assume that ∇c(x∗) �= 0, which is known as a
constraint qualification. This assumption ensures that
every vector p∗ satisfying (8) is the tangent at t = 0 to
some curve z(t). It then follows that since (8) and (9)
hold for all p∗,

∇f(x∗) = λ∗∇c(x∗) (10)

for some scalar λ∗. The scalar λ∗ is called a Lagrange
multiplier. The constraint equation c(x) = 0 and (10)
together constitute four equations in four unknowns,
x1, x2, x3, and λ. We have therefore reduced the orig-
inal constrained minimization problem to a nonlinear
system of equations. The latter system can be solved
by any means at our disposal, though being nonlinear
it is not necessarily an easy problem.

Another way to express our findings is in terms of
the Lagrangian function L(x, λ) = f(x)− λc(x). Since
∇xL(x, λ) = ∇f(x)−λ∇c(x), the Lagrange multiplier
condition (10) says that the solution x∗ is a stationary
point of L with respect to x when λ = λ∗. Moreover,
∇λL(x, λ) = −c(x), so stationarity of L with respect to
λ expresses the constraint c(x) = 0.

The development above was presented for a problem
with three variables and one constraint, but it gener-
alizes in a straightforward way to n variables and m
constraints, with λ becoming an m-vector of Lagrange
multipliers.

Let us see how Lagrange multipliers help us to solve
the problem

maximize 8xyz subject to
x2

a2
+ y

2

b2
+ z

2

c2
= 1,

which defines the maximum rectangular block that fits
inside the specified ellipsoid. Although our original
problem (7) is a minimization problem, there is nothing
in the development of (10) that is specific to minimiza-
tion, and in fact the latter equation must be satisfied
at any stationary point, so we can use it here. Setting
x̃ = x/a, ỹ = y/b, z̃ = z/c, the problem simplifies to

maximize 8abcx̃ỹz̃ subject to x̃2 + ỹ2 + z̃2 = 1.

The Lagrange multiplier condition is

8abc

⎡⎢⎢⎣
ỹz̃
x̃z̃
x̃ỹ

⎤⎥⎥⎦ = λ

⎡⎢⎢⎣
2x̃
2ỹ
2z̃

⎤⎥⎥⎦ .

It is easily seen that these equations yield x̃ = ỹ = z̃ =
1/

√
3 (and λ∗ = 4abc/

√
3) and that the correspond-

ing volume is 8abc/(3
√

3). It is intuitively clear that

this is a maximum, though in general checking for opti-

mality requires further analysis involving inspection of

second derivatives.

Lagrange multipliers and the Lagrangian function are

widely used in applied mathematics in a variety of set-

tings, including the calculus of variations [IV.6] and

linear and nonlinear optimization [IV.11]. One of

the reasons for the importance of Lagrange multipli-

ers is that they quantify the sensitivity of the optimal

value to perturbations in the constraints. We can check

this for our problem. If we perturb the constraint to

x2/a2+y2/b2+z2/c2 = 1+ε, then it is easy to see that

the solution is V(ε) = 8abc((1 + ε)/3)1/2, and hence

V ′(0) = 4abc/
√

3 = λ∗.

11 Tricks and Techniques

As well as the general ideas and principles described in

this article, applied mathematicians have at their dis-

posal their own bags of tricks and techniques, which

they bring into play when experience suggests they

might be useful. Some will work only on very specific

problems. Others might be nonrigorous but able to give

useful insight. George Pólya is quoted as saying, “A

trick used three times becomes a standard technique.”

Here are a few examples of tricks and techniques that

prove useful on many different occasions, along with a

very simple example in each case.

Use symmetry. When a problem has certain symme-

tries one can often argue that these must carry over into

the solution. For example, the maximization problem at

the end of the previous section is symmetric in x̃, ỹ ,

and z̃, so one can argue that we must have x̃ = ỹ = z̃
at the solution.

Add and subtract a term, or multiply and divide by a

term. As a very simple example, if A and B are n×n
matrices with A nonsingular, then AB = AB · AA−1 =
A(BA)A−1, which shows thatAB and BA are similar and

that they therefore have the same eigenvalues. A com-

mon scenario is that x̂ is an approximation to x whose

error cannot be directly estimated, but one can find

another approximation x̃ whose relation to x and x̂ is

understood. One then writes x− x̂ = (x− x̃)+ (x̃− x̂)
and thereby obtains, using the triangle inequality, the

bound ‖x − x̂‖ � ‖x − x̃‖ + ‖x̃ − x̂‖. For example, x
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might be the solution to a PDE, x̃ the solution to a dis-
cretization of the PDE, and x̂ an approximate solution
to the discretized problem.

Consider special cases. Insight is often obtained by
looking at special cases, such as a polynomial in place
of a general function, or a diagonal matrix instead of a
full matrix, or n = 2 or 3 in a problem in n dimensions.

Transform the problem. It is always worth consider-
ing whether the problem is stated in the best way. As
a simple example, suppose we are asked to find solu-
tions of an equation of the form 1/f(x) = a. If f is a
nearly linear function the problem is better written as
f(x) = 1/a, and for computing a numerical solution
Newton’s method should work very well.

Proof by contradiction. A classic technique is to
prove a result by assuming that the result is false
and then obtaining a contradiction. Sometimes this
approach can be used to show that an equation has
no solution. For example, if the particular sylvester

equation [III.28] in n×n matrices AX −XA = I has a
solution, then 0 = trace(AX)−trace(XA) = trace(AX−
XA) = trace(I) = n, which is a contradiction; we
conclude that the equation has no solution.

Going into the complex plane. It is sometimes possi-
ble to solve a problem posed on the real line by mak-
ing an excursion into the complex plane. This tactic
is often used to evaluate real integrals by using the
cauchy integral formula or the residue theorem

[IV.1 §15]. For another example, let f be an analytic
function that is real for real arguments. Then, for real
x,

f ′(x) ≈ Imf(x + ih)
h

,

where i is the imaginary unit and h is a small real
parameter. This complex step approximation has error
O(h2). Here is an example with f(x) = cosx in
MATLAB:

>> x = pi/6; h = 1e-8;
>> fdash_cs = imag( cos(x + i*h) )/h;
>> error = fdash_cs - (-sin(x))
error =

-5.5511e-17

Finally, there are various basic techniques that are
learned in elementary courses and are always use-
ful, such as integration by parts, use of the Cauchy–
Schwarz inequality, and interchange of the order of

integration in a double integral or of summation in a
double sum.

I.4 Algorithms
Nicholas J. Higham

An algorithm is a procedure for accomplishing a certain
task in a finite number of steps.

The terms “algorithm” and “method” are often used
interchangeably, and there is no clear consensus on the
distinction between them. However, many authors use
“method” very generally and reserve “algorithm” for a
procedure in which every step is precisely defined. For
example, Newton’s method solves a system of n non-
linear equations inn variables, F(x) = 0, using the iter-
ation xk+1 = xk − J(xk)−1F(xk), where J is the n × n
Jacobian matrix of F . An algorithm implementing New-
ton’s method has to define how to compute the correc-
tion terms J(xk)−1F(xk) (e.g., by Gaussian elimination
with partial pivoting), what to do if J(xk) is singular,
and when to terminate the iteration (e.g., when ‖F(xk‖
is less than some convergence tolerance).

Developing algorithms has always been an important
activity in applied mathematics. George Forsythe put it
well when he said:

A useful algorithm is a substantial contribution to
knowledge. Its publication constitutes an important
piece of scholarship.

This statement was made in the 1960s, when the
emergence of standards for programming languages

[VII.11] had started to make it feasible to publish and
share computer implementations of algorithms.

1 Summation

Let us begin with the problem of forming the sum of n
numbers, x1 +x2 +· · ·+xn, on a computer. This prob-
lem is deceptively simple, partly because the problem
statement is so suggestive of an algorithm. But note
that the numbers can be added in any order and that
parentheses can be inserted in many ways to break up
the overall sum into smaller sums. So there are many
ways in which the sum can be computed, and if we
simply choose one of them without thinking, we may
miss a better alternative. Thinking about the summa-
tion process leads to the notion of repeatedly adding
two numbers from the set then putting the sum back
into the set. This process can be expressed formally in
the following algorithm.
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Algorithm 1. Given numbers x1, . . . , xn this algorithm
computes Sn =∑n

i=1 xi.

1 Let X = {x1, . . . , xn}.
2 while X contains more than one element
3 Remove two numbers y and z from X

and put their sum y + z back in X.
4 end
5 Assign the remaining element of X to Sn.

This algorithm is written in pseudocode, which refers
to any informal syntax that resembles a programming
language. The purpose of pseudocode is to specify an
algorithm in a concise, readable way without having to
worry about the details of any particular programming
language.

It is clear that after execution of line 3, the number
of elements of X has decreased by one. The algorithm
therefore terminates after exactly n − 1 iterations of
the while loop, at which point it has carried out n − 1
additions.

Clearly, different ways of choosing x and y on line 3
lead to different summation algorithms. The most obvi-
ous choice is to take y as the sum computed at the
previous step and z as the element with smallest index
(and y = x1 and z = x2 at the first step). The resulting
algorithm is known as recursive summation and can be
expressed as

1 s = x1

2 for i = 2 :n % i goes from 2 to n in steps of 1
3 s = s + xi
4 end
5 Sn = s

In this pseudocode everything from a % sign to the end
of a line is a comment.

An alternative is to add the elements pairwise, then
add their sums pairwise, and so on, repeatedly. For n =
8 this corresponds to the formula

S8 = [(x1 +x2)+ (x3 +x4)]+ [(x5 +x6)+ (x7 +x8)].

This summation algorithm is forming a binary tree

[II.16], as illustrated in figure 1. An attractive feature
of pairwise summation is that on a parallel computer
the summations on each level of the tree can be done
in parallel, so the computation time is proportional to
log2n instead of n.

A third summation algorithm, called the insertion
algorithm, takes the summands y and z as those with
the smallest absolute value at each stage.

S8

P6

P4P3

P5

P2P1

x1 + x2 x3 + x4 x5 + x6 x7 + x8

Figure 1 A binary tree for pairwise summation,
with partial sums Pi.

One reason for considering these different summa-
tion algorithms as special cases of algorithm 1 is that a
common analysis can be done of the effects of rounding
errors in floating-point arithmetic. Express the ith exe-
cution of the while loop in algorithm 1 as Pi = yi + zi.
The standard model of floating-point arithmetic (equa-
tion (2) in floating-point arithmetic [II.13]) says
that the computed P̂i satisfies

P̂i =
yi + zi
1 + δi

, |δi| � u, i = 1 :n− 1,

where u is the unit roundoff. (The model actually says
we should multiply by 1+δi, but it can be shown to be
equally valid to divide by 1 + δi, which is more conve-
nient here.) The error introduced in forming P̂i, namely
yi+zi− P̂i, is therefore δiP̂i. By summing each of these
individual errors we obtain the overall error,

En := Sn − Ŝn =
n−1∑
i=1

δiP̂i,

which is bounded by

|En| � u
n−1∑
i=1

|P̂i|.

This bound provides the insight that to maximize the
accuracy of the sum it should be helpful to minimize
the size of the intermediate partial sums. The insertion
algorithm can be seen as a heuristic way of doing that.

When the xi are all nonnegative and we use recur-
sive summation, Pi =

∑i+1
j=1 xj , so the bound for |En| is

minimized if the xi are arranged in increasing order.
Moreover, since Pi � Sn, the bound implies |En| �
(n−1)uSn+O(u2) for any ordering, which guarantees
a relative error of order nu.

This summation example shows that taking a bird’s
eye view of a computational problem can be benefi-
cial, in that it can reveal algorithmic possibilities that
might have been missed and can help a single analy-
sis to be developed that applies to a wide range of
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problems. Of course, algorithm 1 does not cover all
the possibilities. Another way to compute the sum is
as Sn = log

∏n
i=1 exi . This formula has little to recom-

mend it, but it is not so different from the expression
exp(n−1 log

∑n
i=1 xi), which is a log-Euclidean mean of

the xi that has applications when the xi are structured
matrices or operators.

2 Bisection

The summation problem is unusual in that there is no
difficulty in seeing the correctness of algorithm 1 or
its computational cost. A slightly trickier algorithm is
the bisection algorithm for finding a zero of a contin-
uous function f(x). The bisection algorithm takes as
input an interval [a, b] such that f(a)f(b) < 0; the
intermediate-value theorem tells us that there must be
a zero of f on this interval. The bisection algorithm
repeatedly halves the interval and retains the half on
which f has different signs at the endpoints, that is,
the interval on which we can be sure there is a zero. To
make the algorithm finite we need a stopping criterion.
The following algorithm terminates once the interval is
of length at most tol, a given tolerance.

Algorithm 2 (bisection algorithm). This algorithm
finds a zero of a continuous function f(x) given an
interval [a, b] such that f(a)f(b) < 0 and an error
tolerance tol.

1 while b − a > tol
2 c = (a+ b)/2
3 if f(c) = 0, quit, end
4 if f(c)f (b) < 0
5 a = c
6 else
7 b = c
8 end
9 end

10 x = (a+ b)/2

To show the correctness of this algorithm note first
that at the end of the while loop f(a)f(b) < 0 still
holds; in other words, this inequality is an invariant
of the loop. Therefore we have a sequence of intervals
each of length half the previous interval and all con-
taining a zero. This means that after k steps we have an
interval of length (b−a)/2k containing a zero. The algo-
rithm therefore terminates after �log2((|b − a|/tol))�
steps. Here, we are using the ceiling function �x�, which
is the smallest integer greater than or equal to x. In the

next section we will also need the floor function �x�,
which is the largest integer less than or equal to x.

The algorithm returns as the approximate zero the
midpoint of the final interval, which has length at most
tol; since a zero lies in this interval, the absolute error
is at most tol/2.

Algorithm 2 needs a number of refinements to make
it more reliable and efficient for practical use. First,
testing whether f(c) and f(b) have opposite signs
should not be done by multiplying them, as the prod-
uct could overflow or underflow in floating-point arith-
metic. Instead, the signs should be directly compared.
Second, f(c) should not be computed twice, on lines 3
and 4, but rather computed once and its value reused.
Finally, the convergence test is an absolute one, so
is scale dependent. A better alternative is |b − a| >
tol(|a| + |b|), which is unaffected by scalings a ← θa,
b ← θb.

Bisection is a widely applicable technique. For exam-
ple, it can be used to search an ordered list to see if a
given element is contained in the list; here it is known as
binary search. It is also used for debugging. If the LATEX
source for this article fails to compile and I cannot spot
the error, I will move the \end{document} command
to the middle of the file and try again; I can thereby
determine in which half of the file the error lies and
can repeat the process to narrow the error down.

3 Divide and Conquer

The divide and conquer principle breaks a problem
down into two (or more) equally sized subproblems and
solves each subproblem recursively.

An example of how divide and conquer can be
exploited is in the computation of a large integer power
of a number. Computing xn in the obvious way takes
n − 1 multiplications. But x13, for example, can be
written x8x4x, which can be evaluated in just five
multiplications instead of twelve by first forming x2,
x4 = (x2)2, and x8 = (x4)2. Notice that 13 = (1101)2
in base 2, and in general the base 2 representation of
n tells us exactly how to break down the computation
of xn into products of terms x2k . However, by express-
ing the computation using divide and conquer we can
avoid the need to compute the binary representation
of n. The idea is to write xn = (xn/2)2 if n is even and
xn = x(x�n/2�)2 if n is odd. In either case the problem
is reduced to one of half the size. The resulting algo-
rithm is most elegantly expressed in recursive form, as
an algorithm that calls itself.
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Algorithm 3. This algorithm computes xn for a posi-
tive integer n.

1 function y = power(x,n)
2 if n = 1, y = x, return
3 if n is odd
4 y = x power(x, (n− 1)/2)2 % Recursive call
5 else
6 y = power(x,n/2)2 % Recursive call
7 end

The number of multiplications required by algo-
rithm 3 is bounded above by 2�log2n�.

Another example of how divide and conquer can
be used is for computing the inverse of a nonsingu-
lar upper triangular matrix, T ∈ Cn×n. Write T in
partitioned form as

T =
[
T11 T12

0 T22

]
, (1)

where T11 has dimension �n/2�. It is easy to check that

T−1 =
[
T−1

11 −T−1
11 T12T−1

22

0 T−1
22

]
.

This formula reduces the problem to the computation
of the inverses of two smaller matrices, namely, the
diagonal blocks T11 and T22, and their inverses can be
expressed in the same way. The process can be repeated
until scalars are reached and the inversion is trivial.

Algorithm 4. This algorithm computes the inverse of
a nonsingular upper triangular matrix T by divide and
conquer.

1 function U = inv(T)
2 n = dimension of T
3 if n = 1, u11 = t−1

11 , return
4 Partition T according to (1), where T11 has

dimension �n/2�.
5 U11 = inv(T11) % Recursive call
6 U22 = inv(T22) % Recursive call
7 U12 = −U11T12U22.

Let us now work out the computational cost of this
algorithm, in flops, where a flop is a multiplication,
addition, subtraction, or division. Denote the cost of
calling inv for ann×nmatrix by cn and assume for sim-
plicity that n = 2k. We then have cn = 2cn/2 +2(n/2)3,
where the second term is the cost of forming the
triangular–full–triangular product U11T12U22 of matri-
ces of dimension n/2. Solving this recurrence gives
cn = n3/3 + O(n2), which is the same as the cost of

inverting a triangular matrix by standard techniques

such as solving TX = I by substitution.

As these examples show, recursion is a powerful way

to express algorithms. But it is not always the right tool.

To illustrate, consider the Fibonacci numbers, 1, 1, 2, 3,

5, . . . , which satisfy the recurrence fn = fn−1+fn−2 for

n � 2, with f0 = f1 = 1. The obvious way to express

the computation of the fi is as a loop:

1 f0 = 1, f1 = 1

2 for i = 2 :n
3 fi = fi−1 + fi−2

4 end

If just fn is required then an alternative is the recursive

function

1 function f = fib(n)
2 if n � 1

3 f = 1

4 else

5 f = fib(n− 1)+ fib(n− 2)
6 end

The problem with this recursion is that it computes

fib(n − 1) and fib(n − 2) independently instead of

obtaining fib(n− 1) from fib(n− 2) with one addition

as in the previous algorithm. In fact, the evaluation of

fib(n) requires fn ≈ 1.6n operations, so the recursive

algorithm is exponential in cost versus the linear cost

of the first algorithm. It is possible to compute fn with

only logarithmic cost. The idea is to write[
fn
fn−1

]
=
[

1 1

1 0

][
fn−1

fn−2

]
=
[

1 1

1 0

]2 [
fn−2

fn−3

]

= · · · =
[

1 1

1 0

]n−1 [
f1

f0

]
.

The matrix
[

1 1
1 0

]n−1
can be computed in O(log2n)

operations using the analogue for matrices of algo-

rithm 3.

A divide and conquer algorithm can break the prob-

lem into more than two subproblems. An example is the

Karatsuba algorithm for multiplying two n-digit inte-

gers x and y . Suppose n is a power of 2 and write

x = x110n/2 + x2, y = y110n/2 + y2, where x1, x2,

y1, and y2 are n/2-digit integers. Then

xy = x1y110n + (x1y2 + x2y1)10n/2 + x2y2.
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Computing xy has been reduced to computing three
half-sized products because x1y2 + x2y1 = (x1 +
x2)(y1 + y2) − x1y1 − x2y2. This procedure can be
applied recursively. Denoting by Cn the number of
arithmetic operations (on single-digit numbers) to form
the product of two n-digit integers by this algorithm,
we have Cn = 3Cn/2 + kn and C1 = 1, where kn is the
cost of the additions. Then

Cn = 3(3Cn/4 + kn/2)+ kn
= 3(3(3Cn/8 + kn/4)+ kn/2)+ kn
= kn(1 + 3/2 + (3/2)2 + · · · + (3/2)log2 n)

≈ 3knlog2 3 ≈ 3kn1.58,

where the approximation is obtained by assuming that
n is a power of 2. The cost is asymptotically less
than the O(n2) cost of forming xy by the usual long
multiplication method taught in school.

4 Computational Complexity

The computational cost of an algorithm is usually
defined as the total number of arithmetic operations
it requires, though it can also be defined as the execu-
tion time, under some assumption on the time required
for each arithmetic operation. The cost is usually a
function of the problem size, n say, and since the
growth with n is of particular interest, the cost is
usually approximated by the highest-order term, with
lower-order terms ignored.

The algorithms considered so far all have the prop-
erty that their computational cost is straightforward
to evaluate and essentially independent of the data.
For many algorithms the cost can vary greatly with the
data. For example, an algorithm to sort a list of num-
bers might run more quickly when the list is nearly
sorted. In this case it is desirable to find a bound that
applies in all cases (a worst-case bound)—preferably
one that is attainable for some set of data. It is also use-
ful to have estimates of cost under certain assumptions
on the distribution of the data. In average-case analy-
sis, a probability distribution is assumed for the data
and the expected cost is determined. Smoothed analy-
sis, developed since 2000, interpolates between worst-
case analysis and average-case analysis by measuring
the expected performance of algorithms under small
random perturbations of worst-case inputs. A number
of algorithms are known for which the worst-case cost
is exponential in the problem dimension n whereas the
smoothed cost is polynomial in n, a prominent exam-

ple being the simplex method [IV.11 §3.1] for linear
programming.

A good example of a problem for which different
algorithms can have widely varying cost is the solution
of a linear system Ax = b, where A is an n×n matrix.
Cramer’s rule states that xi = det(Ai(b))/det(A),
where Ai(b) denotes A with its ith column replaced by
b. If the determinant is evaluated from the usual text-
book formula involving expansion by minors [I.2 §18],
the cost of computing x is about (n + 1)! operations,
making this method impractical unless n is very small.
By contrast, Gaussian elimination solves the system
in 2n3/3 + O(n2) operations, with mere polynomial
growth of the operation count with n. However, Gauss-
ian elimination is by no means of optimal complexity,
as we now explain.

The complexity of matrix inversion can be shown
to be the same as that of matrix multiplication, so it
suffices to consider the matrix multiplication problem
C = AB for n×n matrices A and B. The usual formula
for matrix multiplication yields C in 2n3 operations. In
a 1969 paper Volker Strassen showed that when n = 2
the product can be computed from the formulas

p1 = (a11 + a22)(b11 + b22),

p2 = (a21 + a22)b11, p3 = a11(b12 − b22),

p4 = a22(b21 − b11), p5 = (a11 + a12)b22,

p6 = (a21 − a11)(b11 + b12),

p7 = (a12 − a22)(b21 + b22),

C =
[
p1 + p4 − p5 + p7 p3 + p5

p2 + p4 p1 + p3 − p2 + p6

]
.

The evaluation requires seven multiplications and eigh-
teen additions instead of eight multiplications and
eight additions for the usual formulas. At first sight,
this does not appear to be an improvement. However,
these formulas do not rely on commutativity so are
valid when the aij and bij are matrices, in which case
for large dimensions the saving of one multiplication
greatly outweighs the extra ten additions. Assuming
n is a power of 2, we can partition A and B into
four blocks of size n/2, apply Strassen’s formulas
for the multiplication, and then apply the same for-
mulas recursively on the half-sized matrix products.
The resulting algorithm requires O(nlog2 7) = O(n2.81)
operations. Strassen’s work sparked interest in finding
matrix multiplication algorithms of even lower com-
plexity. Since there are O(n2) elements of data, which
must each participate in at least one operation, the
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Table 1 The cost of solving an n×n linear system obtained
by discretizing the two-dimensional Poisson equation.

Year Method Cost Type

1948 Banded Cholesky n2 Direct
1948 Jacobi, Gauss–Seidel n2 Iterative
1950 SOR (optimal parameter) n3/2 Iterative
1952 Conjugate gradients n3/2 Iterative
1965 Fast Fourier transform n logn Direct
1965 Block cyclic reduction n logn Direct
1977 Multigrid n Iterative

exponent of n must be at least 2. The current world
record upper bound on the exponent is 2.3728639,
proved by François Le Gall in 2014. However, all
existing algorithms with exponent less than that of
Strassen’s algorithm are extremely complicated and not
of practical interest.

An area that has undergone many important algo-
rithmic developments over the years is the solution of
linear systems arising from the discretization of par-
tial differential equations (PDEs). Consider the poisson

equation [III.18] on a square with the unknown func-
tion specified on the boundary. When discretized on
an N × N grid by centered differences, a system of
n = N2 equations in n unknowns is obtained with a
banded, symmetric positive-definite coefficient matrix
containing O(n) nonzeros. Table 1 gives the domi-
nant term in the operation count (ignoring the mul-
tiplicative constant) for different methods, some of
which are described in numerical linear algebra

and matrix analysis [IV.10]. For the iterative algo-
rithms it is assumed that the iteration is terminated
when the error is of order 10−6. The year is the year
of first publication, or, for the first two methods, the
year that the first stored-program computer was opera-
tional. Since there are n elements in the solution vector
and at least one operation is required to compute each
element, a lower bound on the cost is O(n), and this
is achieved by the multigrid method. The algorithmic
speedups shown in the table are of a similar magni-
tude to the speedups in computer hardware over the
same period.

4.1 Complexity Classes

The algorithms we have described so far all have a cost
that is bounded by a polynomial in the problem dimen-
sion, n. For some problems the existence of algorithms
with polynomial complexity is unclear. In analyzing this

P

NP

NP-complete

NP-hard

Figure 2 Complexity classes. It is not known
whether the classes P and NP are equal.

question mathematicians and computer scientists use
a classification of problems that makes a distinction
finer than whether there is or is not an algorithm of
polynomial run time. This classification is phrased in
terms of decision problems: ones that have a yes or no
answer. The problem class P comprises those problems
that can be solved in polynomial time in the problem
dimension. The class NP comprises those problems for
which a yes answer can be verified in polynomial time.
An example of a problem in NP is a jigsaw puzzle: it
is easy to check that a claimed solution is a correctly
assembled puzzle, but solving the puzzle in the first
place appears to be much harder.

A problem is NP-complete if it is in NP and it is pos-
sible to reduce any other NP problem to it in polyno-
mial time. Hence if a polynomial-time algorithm exists
for an NP-complete problem then all NP problems can
be solved in polynomial time. Many NP-complete prob-
lems are known, including Boolean satisfiability, graph
coloring, choosing optimal page breaks in a document,
and the Battleship game or puzzle.

A problem (not necessarily a decision problem) is NP-
hard if it is at least as hard as any NP problem, in
the sense that there is an NP-complete problem that
is reducible to it in polynomial time. Thus the NP-hard
problems are even harder than the NP-complete prob-
lems. Examples of NP-hard problems are the travel-

ing salesman problem [VI.18], sparse approxima-

tion [VII.10], and nonconvex quadratic program-

ming [IV.11 §1.3]. Figure 2 shows the relation among
the classes.

An excellent example of the subtleties of computa-
tional complexity is provided by the determinant and
the permanent of a matrix. The permanent of an n×n
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matrix A is

perm(A) =
∑
σ

n∏
i=1

ai,σi ,

where the vector σ ranges over all permutations of
the set of integers {1,2, . . . , n}. The determinant has
a similar expression differing only in that the product
term is multiplied by the sign (±1) of the permutation.
Yet while the determinant can be computed in O(n3)
operations, by Gaussian elimination, no polynomial-
time algorithm has ever been discovered for comput-
ing the permanent. Leslie Valiant gave insight into this
disparity when he showed in 1979 that the problem of
computing the permanent is complete for a complexity
class of counting problems called #P that extends NP.

The most famous open problem in computer science
is “is P equal to NP?” It was posed by Stephen Cook
in 1971 and is one of the seven Clay Institute Millen-
nium Problems, for each of which a $1 million prize
is available for a solution. Informally, the question is
whether the “easy to solve” problems are equal to the
“easy to check” problems. It is known that P ⊆ NP, so
the question is whether or not the inclusion is strict.

5 Trade-off between Speed and Accuracy

In designing algorithms that run in floating-point arith-
metic it frequently happens that an increase in speed
is accompanied by a decrease in accuracy. A classic
example is the computation of the sample variance of
n numbers x1, . . . , xn, which is defined as

s2
n = 1

n− 1

n∑
i=1

(xi − x̄)2, (2)

where the sample mean

x̄ = 1
n

n∑
i=1

xi.

Computing s2
n from this formula requires two passes

through the data, one to compute x̄ and the other
to accumulate the sum of squares. A two-pass com-
putation is undesirable for large data sets or when
the sample variance is to be computed as the data is
generated. An alternative formula, found in statistics
textbooks (and implemented on many pocket calcula-
tors and spreadsheets over the years), uses about the
same number of operations but requires only one pass
through the data:

s2
n = 1

n− 1

( n∑
i=1

x2
i −

1
n

( n∑
i=1

xi
)2)

. (3)

However, this formula behaves badly in floating-point
arithmetic. For example, if n = 3 and x1 = 10 000,
x2 = 10 001, and x3 = 10 002, then, in IEEE single-
precision arithmetic (with unit roundoff u ≈ 6× 10−8),
the sample variance is computed as 1.0 by the two-pass
formula (relative error 0) but 0.0 by the one-pass for-
mula (relative error 1). The reason for the poor accu-
racy of the one-pass formula is that there is massive
subtractive cancelation [II.13] in (3). The original
formula (2) always yields a computed result with error
O(nu). Is there a way of combining the speed of the
one-pass formula with the accuracy of the two-pass
one? Yes: the recurrence

M1 = x1, Q1 = 0,

Mk = Mk−1 + xk −Mk−1

k

Qk = Qk−1 + (k− 1)(xk −Mk−1)2

k

⎫⎪⎪⎪⎬⎪⎪⎪⎭ k = 2 :n

calculates Qn, which yields s2
n = Qn/(n − 1) and pro-

duces an accurate result in floating-point arithmetic.

6 Choice of Algorithm

Much research in numerical analysis and scientific com-
puting is about finding the best algorithm for solving a
given problem, and for classic problems such as solv-
ing a PDE or finding the eigenvalues of a matrix there
are many possibilities, with improvements continually
being developed. However, even for some quite elemen-
tary problems there are several possible algorithms,
some of which are far from obvious.

A first example is the evaluation of a polynomial
p(x) = a0 +a1x + · · · +anxn. The most obvious way
to evaluate the polynomial is by directly forming the
powers of x.

1 p = a0 + a1x, w = x
2 for i = 2 :n
3 w = wx
4 p = p + aiw
5 end

This algorithm requires 2nmultiplications and n addi-
tions (ignoring the constant term in the operation
count).

An alternative method is Horner’s method (nested
multiplication). It is derived by writing the polynomial
in nested form:

p(x) = (· · · ((anx+an−1)x+an−2)x+· · ·+a1)x+a0.
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Horner’s method is

1 p = an
2 for i = n− 1 :−1 : 0 % i goes down in steps of −1
3 p = px + ai
4 end

Horner’s method requires n multiplications and n
additions, so is significantly less expensive than the
first method.

However, even Horner’s method is not optimal. For
example, it requires eight multiplications for p(x) =
x8, but this polynomial can be evaluated in just three
multiplications using algorithm 3 in section 3. More-
over, for general polynomials of degree n > 4 there
exist evaluation schemes that require strictly less than
the 2n total additions and multiplications required by
Horner’s rule; the catch is that the operation count
excludes some precomputation of coefficients that,
once computed, can be reused for every subsequent
polynomial evaluation. This latter example emphasizes
that if one wishes to investigate optimality of schemes
for polynomial evaluation it is important to be precise
about what is included in the operation count.

A second example concerns the continued fraction

rn(x) = b0 + a1x

b1 + a2x

b2 + a3x

b3 + · · · + an−1x

bn−1 + anx
bn

. (4)

This continued fraction represents a rational func-
tion rn(x) = pn(x)/qn(x), where pn and qn are
polynomials of degrees �n/2� and �n/2�, respectively.
Such continued fractions arise in the approximation
of transcendental functions by padé approximants

[IV.9 §2.4].

Probably the most obvious way to evaluate the con-
tinued fraction is by the following bottom-up proce-
dure.

Algorithm 5 (continued fraction, bottom-up). This al-
gorithm evaluates the continued fraction (4) in bottom-
up fashion.

1 yn = (an/bn)x
2 for j = n− 1 :−1 : 1
3 yj = ajx/(bj +yj+1)
4 end
5 rn = b0 +y1

Cost. The total number of operations is n(D+M+A),
where A, D, and M denote an addition, a division, and

a multiplication, respectively.

The bottom-up evaluation requires us to know the

value of n in advance and is not well suited to evalu-

ating the sequence r1(x), r2(x), . . . , since it needs to

start afresh each time. Top-down evaluation is better in

this case. The following recurrence dates back to John

Wallis in 1655.

Algorithm 6 (continued fraction, top-down). This

algorithm evaluates the continued fraction (4) in top-

down fashion.

1 p−1 = 1, q−1 = 0, p0 = b0, q0 = 1

2 for j = 1 :n
3 pj = bjpj−1 + ajxpj−2

4 qj = bjqj−1 + ajxqj−2

5 end

6 rn = pnq−1
n

Cost. 5nM + 2nA+D.

It is not obvious that algorithm 6 does actually evalu-

ate rm(x), but this can be proved inductively. Note that

top-down evaluation is substantially more expensive

than bottom-up evaluation.

These are not the only possibilities. For example,

when n = 2m one can write rn in partial fraction form

rn(x) = ∑m
j=1αjx/(x − βj), where the βj (assumed

to be distinct) are the roots of qn, which permits

evaluation at a cost of m(2M +A+D).
In practice, one needs to consider the effect of round-

ing errors on the evaluation, and this is in general

dependent on the particular coefficients ai and bi and

on the range of x of interest.

When there are several algorithms for solving a prob-

lem one may need a polyalgorithm, which is a set of

algorithms with rules for choosing between them. A

good example of a polyalgorithm is the MATLAB back-

slash operator, which enables a solution to a linear sys-

tem Ax = b to be computed using the syntax A\b.

The matrix A may be square or rectangular; diago-

nal, triangular, full, or sparse; and symmetric, symmet-

ric positive-definite, or completely general. Underlying

the backslash operator is an algorithm for identify-

ing which of these properties hold and choosing the

appropriate matrix factorization and solution process

to apply.
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7 Randomized Algorithms

All the algorithms described so far in this article are
deterministic: if they are run repeatedly on the same
data, they produce the same result every time. Some
algorithms make random choices and so generally pro-
duce a different result every time they are run. For
example, we might approximate∫ 1

0
f(x)dx ≈ 1

n

n∑
i=1

f(xi),

where the xi are independent random numbers uni-
formly distributed in [0,1]. The standard deviation of
the error in this approximation is of order n−1/2. This
is an example of a Monte Carlo algorithm; such algo-
rithms have a deterministic run time and produce an
output that is correct (or has a given accuracy) with
a certain probability. Of course, there are much more
efficient ways to estimate a one-dimensional integral,
but Monte Carlo algorithms come into their own for
multidimensional integrals over complicated domains.

A Las Vegas algorithm always produces a correct
result, but its run time is nondeterministic. A classic
example is the quicksort algorithm for sorting a list of
numbers, for which a randomized choice of the parti-
tion element makes the algorithm much faster on aver-
age than in the worst case (O(n logn) running time
versus O(n2), for n numbers).

Randomized algorithms can be much simpler than
deterministic alternatives, they may be more able to
exploit modern computing architectures, and they may
be better suited to large data sets. There is a wide vari-
ety of randomized algorithms, and they are studied in
mathematics, computer science, statistics, and other
areas.

One active area of research is randomized algorithms
for numerical linear algebra problems, based on ran-
dom sampling and random projections. For example,
fast algorithms exist for computing low-rank approx-
imations to a given matrix. The general framework is
that random sampling is used to identify a subspace
that captures most of the action of the matrix, the
matrix is then compressed to this subspace, and a
low-rank factorization is computed from the reduced
matrix.

Examples of randomized algorithms mentioned in
this book are the Google PageRank algorithm [VI.9],
with its use of a random surfer, the k-means algo-

rithm [IV.17 §5.3] for clustering, and markov chain

monte carlo algorithms [V.11 §3].

8 Some Key Algorithms
in Applied Mathematics

Table 2 lists a selection of algorithms mentioned in
this book. Very general methods such as precondition-
ing and the finite-element method, which require much
more information to produce a particular algorithm,
are omitted. The table illustrates the wide variety of
important algorithms in applied mathematics, ranging
from the old to the relatively new.

A notable feature of some of the algorithms is that
they are iterative algorithms, which in principle take an
infinite number of steps, for solving problems that can
be solved directly, that is, in a finite number of opera-
tions. The conjugate gradient and multigrid methods
are iterative methods for solving a linear system of
equations, and for suitably structured systems they
can provide a given level of accuracy much faster than
Gaussian elimination, which is a direct method. Sim-
ilarly, interior point methods are iterative methods
for linear programming, competing with the simplex
method, which is a direct method.

Further Reading

A classic reference for algorithms and their analy-
sis is Donald Knuth’s The Art of Computer Program-
ming. The first volume appeared in 1968 and the devel-
opment is ongoing. Current volumes are Fundamen-
tal Algorithms (volume 1), Seminumerical Algorithms
(volume 2), Sorting and Searching (volume 3), and
Combinatorial Algorithms (volume 4), all published by
Addison-Wesley (Reading, MA).

Bentley, J. L. 1986. Programming Pearls. Reading, MA:
Addison-Wesley.

Brassard, G., and P. Bratley. 1996. Fundamentals of Algorith-
mics. Englewood Cliffs, NJ: Prentice-Hall.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein. 2009.
Introduction to Algorithms, 3rd edn. Cambridge, MA: MIT
Press.

Higham, N. J. 2002. Accuracy and Stability of Numerical
Algorithms, 2nd edn. Philadelphia, PA: SIAM.

I.5 Goals of Applied Mathematical
Research
Nicholas J. Higham

A large body of existing mathematical knowledge is
encapsulated in theorems, methods, and algorithms,
some of which have been known for centuries. But
applied mathematics is not simply the application of
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Table 2 Some algorithms mentioned in this book.

Algorithm Reference Key early figures

Gaussian elimination IV.10 §2 Ancient Chinese (ca. 1 c.e.), Gauss (1809); formulated
as LU factorization by various authors from 1940s

Newton’s method II.28 Newton (1669), Raphson (1690)

Fast Fourier transform II.10 Gauss (1805), Cooley and Tukey (1965)

Cholesky factorization IV.10 §2 Cholesky (1910)

Remez algorithm IV.9 §3.5, VI.11 §2 Remez (1934)

Simplex method IV.11 §3.1 Dantzig (1947)
(linear programming)

Conjugate gradient and IV.10 §9 Hestenes and Stiefel (1952), Lanczos (1952)
Lanczos methods

Ford–Fulkerson algorithm IV.37 §7 Ford and Fulkerson (1956)

k-means algorithm IV.17 §5.3 Lloyd (1957), Steinhaus (1957)

QR factorization IV.10 §2 Givens (1958), Householder (1958)

Dijkstra’s algorithm VI.10 Dijkstra (1959)

Quasi-Newton methods IV.11 §4.2 Davidon (1959), Broyden, Fletcher, Goldfarb, Powell,
Shanno (early 1960s)

QR algorithm IV.10 §5.5 Francis (1961), Kublanovskaya (1962)

QZ algorithm IV.10 §5.8 Moler and Stewart (1973)

Singular value II.32 Golub and Kahan (1965), Golub and Reinsch (1970)
decomposition

Strassen’s method I.4 §4 Strassen (1968)

Multigrid IV.10 §9, IV.13 §3, IV.16 Fedorenko (1964), Brandt (1973), Hackbusch (1977)

Interior point methods IV.11 §3.2 Karmarkar (1984)

Generalized minimal IV.10 §9 Saad and Schulz (1986)
residual method

Fast multipole method VI.17 Greengard and Rokhlin (1987)

JPEG VII.7 §5, VII.8 Members of the Joint Photographic Experts Group (1992)

PageRank VI.9 Brin and Page (1998)

HITS I.1 Kleinberg (1999)

existing mathematical ideas to practical problems: new
results are continually being developed, usually build-
ing on old ones. Applied mathematicians are always
innovating, and the constant arrival of new or modified
problems provides direction and motivation for their
research.

In this article we describe some goals of research
in applied mathematics from the perspectives of the
ancient problem of solving equations, the more con-
temporary theme of exploiting structure, and the prac-
tically important tasks of modeling and prediction. We
also discuss the strategy behind research.

1 Solving Equations

A large proportion of applied mathematics research
papers are about analyzing or solving equations. The

equations may be algebraic, such as linear or nonlin-
ear equations in one or more variables. They may be
ordinary differential equations (ODEs), partial differen-
tial equations (PDEs), integral equations, or differential-
algebraic equations.

The wide variety of equations reflects the many dif-
ferent ways in which one can attempt to capture the
behavior of the system being modeled. Whatever the
equation, an applied mathematician is interested in
answering a number of questions.

1.1 Does the Equation Have a Solution?

We are interested in whether there is a unique solu-
tion and, if there is more than one solution, how many
there are and how they are characterized. Existence of
solutions may not be obvious, and one occasionally
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hears tales of mathematicians who have solved equa-
tions for which a proof is later given that no solution
exists. Such a circumstance may sound puzzling: is it
not easy to check that a putative solution actually is
a solution? Unfortunately, checking satisfaction of the
equation may not be easy, especially if one is working
in a function space. Moreover, the problem specifica-
tion may require the solution to have certain proper-
ties, such as existence of a certain number of deriva-
tives, and the claimed solution might satisfy the equa-
tion but fail to have some of the required properties.
Instead of analyzing the problem in the precise form in
which it is given, it may be better to investigate what
additional properties must be imposed for an equation
to have a unique solution.

1.2 Is the Equation Well-Posed?

A problem is well-posed if it has a unique solution
and the solution changes continuously with the data
that define the problem. A problem that is not well-
posed is ill-posed . For an ill-posed problem an arbitrar-
ily small perturbation of the data can produce an arbi-
trarily large change in the solution, which is clearly an
unsatisfactory situation.

An example of a well-posed problem is to determine
the weight supported by each leg of a three-legged
table. Assuming that the table and its legs are perfectly
symmetric and the ground is flat, the answer is that
each leg carries one-third of the total weight. For a table
with four legs each leg supports one-quarter of the total
weight, but if one leg is shortened by a tiny amount then
it leaves the ground and the other three legs support
the weight of the table (a phenomenon many of us have
experienced in restaurants). For four-legged tables the
problem is therefore ill-posed.

For finite-dimensional problems, uniqueness of the
solution implies well-posedness. For example, a linear
system Ax = b of n equations in n unknowns with
a nonsingular coefficient matrix A is well-posed. Even
so, if A is nearly singular then a small perturbation of
A can produce a large change in the solution, albeit
not arbitrarily large: the condition number [I.2 §22]
κ(A) = ‖A‖‖A−1‖ bounds the relative change. But
for infinite-dimensional problems the existence of a
unique solution does not imply that the problem is well-
posed; examples are given in the article on integral

equations [IV.4 §6].

The notion of well-posedness was introduced by
Jacques Hadamard at the beginning of the twentieth

century. He believed that physically meaningful prob-

lems should be well-posed. Today it is recognized that

many problems are ill-posed, and they are routinely

solved by reformulating them so that they are well-

posed, typically by a process called regularization

[IV.15 §2.6] (see also integral equations [IV.4 §7]).

An important source of ill-posed problems is inverse

problems [IV.15]. Consider a mathematical model in

which the inputs are physical variables that can be

adjusted and the output variables are the result of an

experiment. The forward problem is to predict the out-

puts from a given set of inputs. The inverse problem is

to make deductions about the inputs that could have

produced a given set of outputs. In practice, the mea-

surements of the outputs may be subject to noise and

the model may be imperfect, so uncertainty quan-

tification [II.34] needs to be carried out in order

to estimate the uncertainty in the predictions and

deductions.

1.3 What Qualitative Properties Does a Solution

Have?

It may be of more interest to know the behavior of a

solution than to know the solution itself. One may be

interested in whether the solution, f(t) say, decays as

t → ∞, whether it is monotonic in t, or whether it oscil-

lates and, if so, with what fixed or time-varying fre-

quency. If the problem depends on parameters, it may

be possible to answer these questions for a range of

values of the parameters.

1.4 Does an Iteration Converge?

As we saw in methods of solution [I.3], solutions

are often computed from iterative processes, and we

therefore need to understand these processes. Various

facets of convergence may be of interest.

• Is the iteration always defined, or can it break

down (e.g., because of division by zero)?

• For what starting values, and for what class of

problems, does the iteration converge?

• To what does the iteration converge, and how does

this depend on the starting value (if it does at all)?

• How fast does the iteration converge?

• How are errors (in the initial data, or round-

ing errors introduced during the iteration) prop-

agated? In particular, are they bounded?
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To illustrate some of these points we consider the
iteration

xk+1 = 1
p
[(p − 1)xk + x1−p

k a], (1)

with p a positive integer and a ∈ C, which is Newton’s
method for computing apth root ofa. We ask for which
a and which starting values x0 the iteration converges
and to what root it converges. The analysis is simplified
by defining yk = θ−1xk, where θ is a pth root of a, as
the iteration can then be rewritten

yk+1 = 1
p
[(p − 1)yk +y1−p

k ], y0 = θ−1x0, (2)

which is Newton’s method for computing a pth root
of unity. The original parameters a and x0 have been
combined into the starting value y0.

Figure 1 illustrates the convergence of the iteration
for p = 2,3,5. Fory0 ranging over a 400×400 grid with
Rey0, Imy0 ∈ [−2.5,2.5], it plots the root to which yk
from (2) converges, with each root denoted by a dif-
ferent grayscale from white (the principal root, 1) to
black. Convergence is declared if after fifty iterations
the iterate is within relative distance 10−13 of a root;
the relatively small number of points for which conver-
gence was not observed are plotted white. For p = 2
the figure suggests that the iteration converges to 1 if
started in the open right half-plane and −1 if started in
the open left half-plane, and this can be proved to be
true. But for p = 3,5 the regions of convergence have
a much more complicated structure, involving sectors
with petal-like boundaries.

The complexity of the convergence for p � 3 was
first noticed by Arthur Cayley in 1879, and an analy-
sis of convergence for all starting values requires the
theory of Julia sets of rational maps. However, for prac-
tical purposes it is usually principal roots that need to
be computed, so from a practical viewpoint the main
implication to be drawn from the figure is that for
p = 3,5 Newton’s method converges to 1 for y0 suf-
ficiently close to the positive real axis—and it can be
proved that this is true.

We see from this example that the convergence analy-
sis depends very much on the precise question that
is being asked. The iteration (1) generalizes in a nat-
ural way to matrices and operators, for which the
convergence results for the scalar case can be exploited.

2 Preserving Structure

Many mathematical problems have some kind of struc-
ture. An example with explicit structure is a linear sys-
tem Ax = b in which the n×n matrix A is a toeplitz

matrix [I.2 §18]. This system has n2 +n numbers in A
and b but only 3n−1 independent parameters. On the
other hand, if for the vector ODE y′ = f(t,y) there is
a vector v such that vTf(t,y) = 0 for all t and y , then
(d/dt)vTy(t) = vTf(t,y) = 0, so vTy(t) is constant
for all t. This conservation or invariance property is a
form of structure, though one more implicit than for
the Toeplitz system.

An example of a nonlinear conservation property is
provided by the system of ODEs

u′(t) = v(t),
v′(t) = −u(t).

For this system,

d
dt
(u2 + v2) = 2(u′u+ v′v) = 2(vu−uv) = 0,

so there is a quadratic invariant. In particular, for the
initial values u(0) = 1 and v(0) = 0 the solution is
u(t) = cos t and v(t) = − sin t, which lies on the unit
circle centered at the origin in the uv-plane. If we solve
the system using a numerical method, we would like the
numerical solution also to lie on the circle. In fact, one
potential use of this differential equation is to provide
a method for plotting circles that avoids the relatively
expensive evaluation of sines and cosines. Consider the
following four standard numerical methods applied to
our ODE system. Here, uk ≈ u(kh) and vk ≈ v(kh),
where h is a given step size, and u0 = 1 and v0 = 0:

Forward Euler

{
uk+1 = uk + hvk,
vk+1 = vk − huk,

Backward Euler

{
uk+1 = uk + hvk+1,
vk+1 = vk − huk+1,

Trapezium method

{
uk+1 = uk + h(vk + vk+1)/2,
vk+1 = vk − h(uk +uk+1)/2,

Leapfrog method

{
uk+1 = uk + hvk,
vk+1 = vk − huk+1.

Figure 2 plots the numerical solutions computed with
32 steps of length h = 2π/32. We see that the for-
ward Euler solution spirals outward while the backward
Euler solution spirals inward. The trapezium method
solution stays nicely on the unit circle. The leapfrog
method solution traces an ellipse. This behavior is easy
to explain if we write each method in the form

zk+1 = Gzk, zk =
[
uk
vk

]
,

where G = [ 1 h
−h 1

]
for the Euler method, for example.

Then the behavior of the sequence zk depends on the
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Figure 1 Newton iteration for a pth root of unity. Each point y0 in the region is shaded according
to the root to which the iteration converges, with white denoting the principal root, 1.

eigenvalues of the matrix G. It turns out that the spec-
tral radius of G is greater than 1 for forward Euler
and less than 1 for backward Euler, which explains
the spiraling. For the trapezium rule G is orthogonal,
so ‖zk+1‖2 = ‖zk‖2 and the trapezium solutions stay
exactly on the unit circle. For the leapfrog method the
determinant of G is 1, which means that areas are pre-
served, butG is not orthogonal so the leapfrog solution
drifts slightly off the circle.

The subject of geometric integration [IV.12 §5] is
concerned more generally with methods for integrat-
ing nonlinear initial-value ODEs and PDEs in a way that
preserves the invariants of the system, while also pro-
viding good accuracy in the usual sense. This includes,
in particular, symplectic integrators [IV.12 §1.3] for
Hamiltonian systems.

3 Modeling and Prediction

As what is applied mathematics? [I.1 §1] explains,
modeling is the first step in solving a physical prob-
lem. Models are necessarily simplifications because it is
impractical to incorporate every detail. But simple mod-
els can still be useful as tools to explore the broad con-
sequences of physical laws. Moreover, the more com-
plex a model is the more parameters it has (all of which
need estimating) and the harder it is to analyze.

In their 1987 book Empirical Model-Building and
Response Surfaces, Box and Draper ask us to

Remember that all models are wrong; the practical
question is how wrong do they have to be to not be
useful.

Road maps illustrate this statement. They are always a
simplified representation of reality due to representing
a three-dimensional world in two dimensions and dis-
playing wiggly roads as straight lines. But road maps

are very useful. Moreover, there is no single “correct”

map but rather many possibilities depending on reso-

lution and purpose. Another example is the approxima-

tion of π . The approximation π ≈ 3.14 is a model for

π that is wrong in that it is not exact, but it is good

enough for many purposes.

It is difficult to give examples of the modeling process

because knowledge of the problem domain is usually

required and derivations can be lengthy. We will use for

illustration a very simple model of population growth,

based on the logistic equation

dN
dt

= rN
(

1 − N
K

)
.

Here, N(t) is a representation in a continuous variable

of the number of individuals in a population at time t,
r > 0 is the growth rate of the population, and K > 0

is the carrying capacity. For K = ∞, the model says

that the rate of change of the population, dN/dt, is

rN ; that is, it is proportional to the size of the popu-

lation through the constant r , so the population grows

exponentially. For finite K, the model attenuates this

rate of growth by a subtractive term rN2/K, which can

be interpreted as representing the increasing effects

of competition for food as the population grows. The

logistic equation can be solved exactly for N(t) (see

ordinary differential equations [IV.2 §2]). Labora-

tory experiments have shown that the model can pre-

dict reasonably well the growth of protozoa feeding on

bacteria. However, for some organisms the basic logis-

tic equation is not a good model because it assumes

instant responses to changes in population size and so

does not account for gestation periods, the time taken

for young to reach maturity, and other delays. A more

realistic model may therefore be

dN(t)
dt

= rN(t)
(

1 − N(t − τ)
K

)
,
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Forward Euler Backward Euler Trapezium method Leapfrog method

Figure 2 Approximations to the unit circle computed by four different numerical integrators with
step size h = 2π/32. The dotted line is the unit circle; asterisks denote numerical approximations.

where τ > 0 is a delay parameter. At time t, part of
the quadratic term is now evaluated at an earlier time,
t − τ . This delay differential equation has oscillatory
solutions and has been found to model well the popu-
lation of lemmings in the Arctic. Note that in contrast to
the predator–prey model [I.2 §10], the delayed logis-
tic model can produce oscillations in a population with-
out the need for a second species acting as predator.
There is no suggestion that either of these logistic mod-
els is perfect, but with appropriate fitting of parame-
ters they can provide useful approximations to actual
populations and can be used to predict future behavior.

3.1 Errors

A lot of research is devoted to understanding the
errors that arise at the different stages of the modeling
process. These can broadly be categorized as follows.

Errors in the mathematical model. Setting up the
model introduces errors, since the model is never exact.
These are the hardest errors to estimate.

Approximation errors. These are the errors incurred
when infinite-dimensional equations are replaced by a
finite-dimensional system (that is, a continuous prob-
lem is replaced by a discrete one: the process of dis-
cretization), or when simpler approximations to the
equations are developed (e.g., by model reduction

[II.26]). These errors include errors in replacing one
approximating space by another (e.g., replacing con-
tinuous functions by polynomials), errors in finite-

difference [II.11] approximations, and errors in trun-
cating power series and other expansions.

Rounding errors. Once the problem has been put in a
form that can be solved by an algorithm implemented
in a computer program, the effects of the rounding
errors introduced by working in finite-precision arith-
metic need to be determined.

Analysis of errors may include looking at the effects

of uncertainties in the model data, including in any

parameters in the model that must be estimated. This

might be tackled in a statistical sense using techniques

from uncertainty quantification [II.34]—indeed, if

the model has incompletely known data then proba-

bilistic techniques may already be in use to estimate

the missing data. Sensitivity of the solution of the

model may also be analyzed by obtaining worst-case

error bounds with the aid of condition numbers

[I.2 §22].

3.2 Multiphysics and Multiscale Modeling

Scientists are increasingly tackling problems with one

or both of the following characteristics: (a) the sys-

tem has multiple components, each governed by its

own physical principles; and (b) the relevant processes

develop over widely different time and space scales.

These are called multiphysics and multiscale problems,

respectively. An example of both is the problem of mod-

eling how space weather affects the Earth, and in partic-

ular modeling the interaction of the solar wind (the flow

of charged particles emitted by the sun) with the Earth’s

magnetic field. Different physical models describe the

statistical distribution of the plasma, which consists

of charged particles, and the evolution of the electric

and magnetic fields, and these form a coupled non-

linear system of PDEs. The length scales range from

millions of kilometers (the Earth–sun distance) to hun-

dreds of meters, and the timescales range from hours

down to 10−5 seconds. Problems such as this pose chal-

lenges both for modeling and for computational solu-

tion of the models. The computations require high-

performance computers [VII.12], and a particular

task is to present the vast quantities of data generated

in such a way that users, such as forecasters of space
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weather, can explore and interpret them. More on the

issues of this section can be found in the articles on

computational science [IV.16] and visualization

[VII.13].

3.3 Computational Experiments

The step in the problem solution when computational

experiments are carried out might seem to be the eas-

iest, but it can in fact be one of the hardest and most

time-consuming, for several reasons. It can be hard to

decide what experiments to carry out, and it may be

necessary to refine the experiments many times until

useful or satisfactory results are obtained. The compu-

tations may have a long run time, even if executed on

a high-performance computer.

Many pitfalls can be avoided by working to modern

standards of reproducible research [VIII.5], which

require that programs, data, and results be recorded,

documented, and made available in such a way that

the results can be reproduced by an independent

researcher and, just as importantly, by the original

author.

3.4 Validation

The process of validation involves asking the ques-

tion, “Have we solved the right equations?” This is not

to be confused with verification, which asks whether

the equations in the model have been solved correctly.

Whereas verification is a purely mathematical question,

validation intimately involves the underlying physical

problem. A classic way to validate results from a model

is to compare them with experimental results. However,

this is not always feasible, as we may be modeling a

device or structure that is still in the design phase or

on which experiments are not possible (e.g., the Earth’s

climate).

Validation may not produce a yes or no answer but

may instead indicate a range of parameters for which

the model is a good predictor of actual behavior.

Validation may be the first step of an iterative refine-

ment procedure in which the steps in figure 1 are

repeated, with the second and subsequent invocations

of the first step now comprising adjustments to the cur-

rent model. Assuming it is feasible to carry out refine-

ment, there is much to be said for starting with the sim-

plest possible model and building gradually toward an

effective model of minimal complexity.

4 Strategies for Research and Publishing

Analysis of the research literature in applied mathe-

matics reveals some common features that can be built

into a list of strategies for doing research.

(i) Solve an open problem or prove the truth or falsity

of a conjecture that has previously been stated in

the literature.

(ii) Derive a method for solving a problem that occurs

in practice and has not been effectively solved

previously. Problems of very large dimension, for

which existing techniques might be impractical,

are good hunting grounds.

(iii) Prove convergence of a method for which the

existing convergence theory is incomplete.

(iv) Spot some previously unnoticed phenomenon and

explain it.

(v) Generalize a result or algorithm to a wider class of

problems, obtaining new insight in doing so.

(vi) Provide a new derivation of an existing result or

algorithm that yields new insight.

(vii) Develop a new measure of cost or error for a prob-

lem and then derive a new algorithm that is better

than existing algorithms with respect to that met-

ric. For example, instead of measuring computa-

tional cost in the traditional way by the number

of elementary arithmetic operations, also include

the cost of data movement when the algorithm is

implemented on a parallel computer.

(viii) Find hidden assumptions in an existing method

and remove them. For example, it may seem obvi-

ous that multiplying two 2 × 2 matrices requires

eight multiplications, but Strassen showed that

only seven multiplications are needed (see [I.4 §4]

for the relevant formulas), thereby deriving an

asymptotically fast method for matrix multiplica-

tion.

(ix) Rehabilitate an out-of-favor method by showing

that it can be made competitive again by exploit-

ing new research results, problem requirements,

or hardware developments.

(x) Use mathematical models to gain new insight into

complex physical processes.

(xi) Use mathematical models to make quantitative

predictions about physical phenomena that can

lead to new procedures, standards, etc., in the tar-

get field. Here it will probably be necessary to work

with researchers from other disciplines.
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Nowadays, publishing the results of one’s research is
more important than ever. Funding bodies expect to see
publications, as they provide evidence that the research
has been successful and they help to disseminate the
work. Assessment of researchers and their institutions
increasingly makes use of metrics, some of which relate
to publications, such as the number of citations a paper
receives and the ranking of the journal in which it is
published. There is therefore a tension between pub-
lishing prolifically (which, taken to the extreme, leads
to breaking research up into “least publishable units”)
and publishing fewer, longer, more-considered papers.

In addition to the traditional journals and confer-
ence proceedings that publish (usually) refereed arti-
cles, nowadays there are many outlets for unrefer-
eed manuscripts, including institutional eprint servers,
the global arXiv eprint service, and personal Web
pages. Blogs provide yet another venue for publish-
ing research, usually in the form of shorter articles
presented in a more accessible form than in a regu-
lar paper. The nonjournal outlets provide for instant
publication but have varying degrees of visibility and
permanence.

The balance between publication of journals and
books in print only, in both print and electronic form,
and purely in electronic form has been changing for
the past decade or more, and the advent of handheld
devices such as smartphones and tablets has accel-
erated developments. Equally disruptive is the move-
ment toward open-access publishing. Traditionally, the
publishers of mathematics journals did not charge an
author to publish an article but did charge institutions
to subscribe to the journal. In recent years a new model
has been introduced in which the author pays to pub-
lish an article in a journal and the article is freely
available to all.

While we can be sure that there will always be outlets
for publishing research, it is difficult to predict how the
forms that these outlets take will evolve in the future.

I.6 The History of Applied
Mathematics
June Barrow-Green and Reinhard
Siegmund-Schultze

And as for the Mixt Mathematikes I may only make this
prediction, that there cannot faile to bee more kinds of
them, as Nature growes furder disclosed.

Francis Bacon: Of the Proficience and
Advancement of Learning (1605)

 

Figure 1 Detail from a pictorial representation of J. le R.
d’Alembert’s “Système des Connoissances Humaines” in
the supplement to volume 2 of l’Encyclopédie (1769), men-
tioning “mixed mathematics,” for which Francis Bacon had
predicted a great future.

1 Introduction

What is applied mathematics? This is a difficult ques-
tion—one to which there is no simple answer. The mas-
sive growth in applications of mathematics within and
outside the sciences, especially since World War II, has
made this question even more problematic, the increas-
ing overlap with other disciplines and their methods
adding further to the difficulties, creating problems
that border on the philosophical.

Given the fact that almost every part of mathematics
is potentially applicable, there are mathematicians and
historians who consider the term “applied mathemat-
ics” primarily as a term of social distinction or a matter
of attitude. One such was William Bonnor, the mathe-
matician and gravitational physicist, who in 1962 in a
lecture on “The future of applied mathematics” said the
following:

Applied mathematics, as I should like it to be under-
stood, means the application of mathematics to any
subject, physical or otherwise; with the proviso that
the mathematics shall be interesting and the results
nontrivial. An applied mathematician, on this view, is
somebody who has been trained to make such applica-
tions, and who is always prepared to look for situations
where fruitful application is possible. As such, he is not
a physicist manqué. I therefore see applied mathemat-
ics as an activity, or attitude of mind, rather than as a
body of knowledge.
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Not everyone will agree with Bonnor. Some take
a more methodological approach and almost equate
applied mathematics with “mathematical modeling.”
Others are of a more concrete, mathematical mind and
insist that there are parts of mathematics that are
per se more or less applicable than others. We find
Bonnor’s definition appealing because it stresses the
social dimension of the mathematical working process
and allows a historical understanding of the notion of
applied mathematics.

The importance of “attitudes” notwithstanding, by
any definition applied mathematics has to be “gen-
uine” mathematics in the sense that it aims at and/or
uses general statements (theorems) even if the piece of
mathematics in question has not yet been fully logically
established. In fact, the applicability of mathematics is
mainly based on its “generality,” which in relation to
fields of application often appears as “abstractness.”
This applies even to relatively elementary applications
such as the use of positional number systems.

Applications of mathematics, even on a nonelemen-
tary level, have been possible because certain prac-
tices and properties, such as algorithms for approxima-
tions or geometrical constructions, have always existed
within mathematics itself and have led to spontaneous
or deliberate applications. While, as the universal math-
ematician John von Neumann observed in 1947, in pure
mathematics many problems and methods are selected
for aesthetic reasons, in applied mathematics, prob-
lems considered at the time as urgent have priority, and
the choice of methods often has to be subordinated to
the goals in question. However, attitudes and values,
which often had and continue to have strong politi-
cal and economic overtones, have always been instru-
mental in deciding exactly which parts of mathematics
should be emphasized and developed. Since attitudes
have to be promoted through education, this puts a
great responsibility on teaching and training and makes
developments in that area an important topic for a
history of applied mathematics.

Of course, many modern and recent applications rely
on older mathematical ideas in differential equations,
topology, and discrete mathematics and on estab-
lished notation and symbolism (matrices, quaternions,
Laplace transforms, etc.), while important new develop-
ments in integral equations [IV.4], measure theory,
vector and tensor analysis, etc., at the turn of the
twentieth century have added to these ideas.

However, in the twentieth century, three major sci-
entific and technical innovations both changed and

enlarged the notion of applied mathematics. In rough
chronological order, these are mathematical modeling
in a broad, modern sense, stochastics (modern proba-
bility and statistics), and the digital computer. These
three innovations have, through their interactions,
restructured applied mathematics. They were princi-
pally established after World War II, and it was also
only then that the term “mathematical modeling” came
to be more frequently used for activities that had hith-
erto usually been expressed by less concise words such
as “problem formulation and evaluation.” In addition
to these innovations, which are essentially concerned
with methodology, several totally new fields of applica-
tion, such as electrical engineering, economics, biology,
meteorology, etc., emerged in the twentieth century.

While in 1914 one of the pioneers of modern applied
mathematics, Carl Runge, still doubted whether “the
name of ‘applied mathematics’ was chosen appropri-
ately, because when applied to empirical sciences it
still remains pure mathematics,” the three major inno-
vations listed above would radically alter and extend
the notion of mathematics and, in particular, that of
applied mathematics. Due to these innovations, the
modern disciplines at the interface of mathematics and
engineering, such as cybernetics, control theory, com-
puter science, and optimization, were all able to emerge
in the 1940s and 1950s in the United States (Wiener,
Shannon, Dantzig) and the Soviet Union (Andronov,
Kolmogorov, Pontryagin, Kantorovich) independently,
and to a somewhat lesser degree in England (Tur-
ing, Southwell, Wilkinson), France (Couffignal), and
elsewhere. These innovations also gradually changed
“hybrid disciplines,” such as electrical engineering and
aerodynamics, that had originated at the turn of the
century. In the case of aerodynamics, not only were
statistical explanations of turbulence [V.21] increas-
ingly proposed after World War II, but also conformal

mappings [II.5] gradually lost importance in favor of
computational fluid dynamics [IV.28]. Within opera-
tions research, with its various approaches and tech-
niques (linear programming, optimization methods,
statistical quality control, inventory control, queuing
analysis, network flow analysis), mathematical con-
cepts, especially mathematical models, acquired an
even stronger foothold than in the more traditional
industrial engineering.

One typical modern mathematical discipline that inti-
mately combines pure and applied aspects of the sub-
ject and that is intertwined with various other scientific
(physical and biological) and engineering disciplines
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is the theory of dynamical systems [IV.20]. After
initial work in the field by Poincaré, Lyapunov, and
Birkhoff, the theory fell into oblivion until the 1960s.
This falling away can be explained by fashion (such
as the trend toward the mathematics of Bourbaki), by
new demands in applications connected to dissipative
systems, and by the partial invisibility of the Russian
school in the West. With the advent of modern com-
puting devices, the shape of the discipline changed
dramatically. Mathematicians were empowered com-
putationally and graphically, the visualization of new
objects such as fractals was made possible, and appli-
cations in fields such as control theory [IV.34] and
meteorology—quantitative applications as well as qual-
itative ones—began to proliferate. The philosophical
discussion about mathematics and applications has
also been enriched by this discipline, with the public
being confronted by catchwords such as chaos [II.3],
catastrophe, and self-organization. However, the pro-
cess whereby the various streams of problems con-
verged and led to the subject’s modern incarnation is
complex:

In the 1930s, for example, what could the socio-
professional worlds of the mathematician Birkhoff
(professor at Harvard), the “grand old man of radio”
van der Pol (at the Philips Research Lab), and the
Soviet “physico [engineer] mathematician” Andronov
at Gorki have had in common? What, in the 1950s,
had Kolmogorov’s school in common with Lefschetz’s?
It is precisely this manifold character of social and
epistemic landscapes that poses problem[s] in this
history.

Aubin and Dahan (2002)

The role played by the three major innovations
continues largely unabated today, as is evident, for
instance, from a 2012 report from the Society for Indus-
trial and Applied Mathematics (SIAM) on industrial
mathematics:

Roughly half of all mathematical scientists hired into
business and industry are statisticians. The second-
largest group by academic specialty is applied mathe-
matics. Compared to the 1996 survey, fewer graduates
reported “modeling and simulation” as an important
academic specialty for their jobs, and more reported
“statistics.” Programming and computer skills con-
tinue to be the most important technical skill that new
hires bring to their jobs.

By separating statistics from applied mathematics,
the SIAM report follows a certain tradition, caused in

part by institutional boundaries, such as the existence
of separate statistics departments in universities. This
distinction is also partly followed in the present volume
and in this article, although there is no doubt about the
crucial role of probability and statistics in applications.
For example, one need only consider the Monte Carlo
method—notably developed at Los Alamos in the 1940s
by Stanislaw Ulam and von Neumann, and continued by
Nicholas Metropolis—which is now used in a wide vari-
ety of different contexts including numerical integra-
tion, optimization, and inverse problems. In addition,
the combination of stochastics and modeling in biolog-
ical and physical applications has had a philosophical
dimension, contributing to the abandonment of rigid
causality in science, e.g., through Karl Pearson’s corre-
lation coefficient and Werner Heisenberg’s uncertainty
principle. However, by the end of the 1960s the limi-
tations of stochastics in helping us to understand the
nature of disorder had become apparent, particularly
in connection with the study of complex (“chaotic”)
dynamical systems. Nevertheless, stochastics contin-
ues to play an important role in the development of
big theories with relevance for applications, including
statistical models for weather forecasting.

1.1 Further Themes and Some Limitations

Putting stochastics on the sidelines is but one of sev-
eral limitations of this article—limitations that are
the result of a lack of space, a lack of distance, and
more general methodological considerations. A fur-
ther thematic restriction concerns industrial mathe-
matics, which figures separately from applied mathe-
matics in the very name of SIAM, although there are
obvious connections between the two, in particular
with respect to training and in developing attitudes
toward applications. Knowing that industrial mathe-
matics has changed, and above all expanded, from its
origins in the early twentieth century to move beyond
its purely industrial context, these connections become
even clearer. Industrial mathematics is, today, an estab-
lished subdiscipline, loosely described as the modeling
of problems of direct and immediate interest to indus-
try, performed partly in industrial surroundings and
partly in academic ones.

The history of mathematical instruments, includ-
ing both numerical and geometrical devices, and their
underlying mathematical principles is another topic we
have had to leave out almost completely. Some dis-
cussion of the history of mathematical table projects
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is the farthest we reach in this respect. This limita-
tion also applies to the technological basis of mod-
ern computing and the development of software tech-
nology (covered by Cortada’s excellent bibliography),
which has provided, and continues to provide, an
important stimulus for the development (and fund-
ing) of applied mathematics. In 2000, in the Journal
of Computational and Applied Mathematics, it was esti-
mated that of the increase in computational power, half
should be attributed to improved algorithms and half
should be attributed to the increase in computational
hardware speeds. Computing technology has contin-
ued to advance rapidly, and companies are making
more and more aggressive use of high-performance

computing [VII.12]
A detailed discussion of the fields of application

of mathematics themselves—be it in (pure) mathemat-
ics, the sciences, engineering, economics and finance,
industry, or the military—is absent from this article for
a number of reasons, both practical and methodologi-
cal, above all the huge variation of specific conditions
in these fields.

This particularly affects the role of mathematics in
the military, to which we will devote only scattered
remarks and no systematic discussion. While there are
still considerable lacunae in the literature on mathe-
matics during World War I (although some of these have
been filled by publications prepared for the centenary),
there is more to be found in print about mathematics
in World War II, not least because of the increased role
of that discipline in it. (We recommend Booß-Bavnbek
and Høyrup (2003) as a good place to start to find out
more than is covered in our article.)

Another topic that deserves broader coverage than
is possible here is the history of philosophical reflec-
tion about mathematical applications. This is particu-
larly true for the notion of “mathematical modeling”
taken in the sense of problem formulation. Accord-
ing to the Oxford Encyclopedic Dictionary (1996), the
new notion of a mathematical model was used first
in a statistical context in 1901. At about the same
time, the French physicist and philosopher Pierre
Duhem accused British physicists of still using the term
“model” only in the older and narrower sense of mate-
rial, mechanical, or visualizable models. Duhem there-
fore preferred the word “analogy” for expressing the
relationship between a theory and some other set of
statements. Particularly with the upswing of “math-
ematical modeling” since the 1980s, a broad litera-
ture, often with a philosophical bent, has discussed

the specificity of mathematics as a language, as an
abstract unifier and a source of concepts and prin-
ciples for various scientific and societal domains of
application. Another (though not unrelated) develop-
ment in the philosophy of applied mathematics con-
cerns the growing importance of algorithmic aspects
within mathematics as a whole. It was no coincidence
that in the 1980s, with the rise of scientific comput-
ing, several “maverick” philosophers of mathematics,
such as Philip Kitcher and Thomas Tymosczko, entered
the scene. They introduced the notion of “mathematical
practice,” by which they meant more than simply appli-
cations. One of the features of the maverick tradition
was the polemic against the ambitions of mathematical
logic to be a canon for the philosophy of mathematics,
ambitions that have dominated much of the philosophy
of mathematics in the twentieth century. The change
was inspired by the work of both those mathemati-
cians (such as Philip Davis and Reuben Hersh) and those
philosophers (including Imre Lakatos and David Cor-
field) who were primarily interested in the actual work-
ing process of mathematicians, or what they sometimes
called “real mathematics.” Meanwhile, the philosophi-
cal discussion of mathematical practice has been pro-
fessionalized and reconnected to the foundationalist
tradition. It usually avoids premature discussion of “big
questions” such as “Why is mathematics applicable?”
or “Is the growth of mathematics rational?” restrict-
ing its efforts to themes of mathematical practice in
a broader sense, like visualization, explanation, purity
of methods, philosophical aspects of the uses of com-
puter science in mathematics, and so on. An overview
of the more recent developments in the philosophy of
mathematical practice is given in the introduction to
Mancosu (2008).

Unfortunately, there is also little space for biograph-
ical detail in this article, and thus no bow can be
given to the great historical heroes of applied math-
ematics, such as Archimedes, Ptolemy, Newton, Euler,
Laplace, and Gauss. Nor is there room to report on
the conversions of pure mathematicians into applied
mathematicians, such as those undergone by Alexan-
der Ostrowski, John von Neumann, Solomon Lefschetz,
Ralph Fowler, Garrett Birkhoff, and David Mumford, all
personal trajectories that paralleled the global devel-
opment of mathematics. In any case, any systematic
inclusion of biographies could not be restricted to
mathematicians, considering the term in its narrow-
est sense. In an influential report on industrial math-
ematics in the American Mathematical Monthly of
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1941, Thornton Fry spoke about a “contrast between
the ubiquity of mathematics and the fewness of the
mathematicians.” Indeed, historically, engineers such
as Theodore von Kármán, Richard von Mises, Lud-
wig Prandtl, and Oliver Heaviside; physicists such as
Walter Ritz, Aleksandr Andronov, Cornelius Lanczos,
and Werner Romberg; and industrial mathematicians
such as Balthasar van der Pol have, by any measure,
made significant contributions to applied mathemat-
ics. In addition, several pioneers of applied mathemat-
ics, such as Gaspard Monge, Felix Klein, Mauro Picone,
Vladimir Steklov, Vannevar Bush, and John von Neu-
mann, actively used political connections. The actions
of nonscientists, and particularly politicians, have also
therefore played a part in the development of the sub-
ject. For a full history of applied mathematics the
concrete interplay of the interests of mathematicians,
physicists, engineers, the military, industrialists, politi-
cians, and other appliers of mathematics would have to
be analyzed, but this is a task that goes well beyond the
scope of this article.

In general, the historical origin of individual notions
or methods of applied mathematics, which often have
a history spanning several centuries, will not be traced
here; pertinent historical information is often included
in the specialized articles elsewhere in this volume. By
and large, then, this article will focus on the broader
methodological trends and the institutional advances
that have occurred in applied mathematics since the
early nineteenth century.

1.2 Periodization

From the point of view of applications, the history
of mathematics can be roughly divided into five main
periods that reveal five qualitatively different levels
of applied mathematics, the first two of which can
be considered as belonging to the prehistory of the
subject.

(1) ca. 4000 b.c.e.–1400 c.e. Emergence of mathemat-
ical thinking, and establishment of theoretical math-
ematics with spontaneous applications.

(2) ca. 1400–1800. Period of “mixed mathematics” cen-
tered on the Scientific Revolution of the seventeenth
century and including “rational mechanics” of the
eighteenth century (dominated by Euler).

(3) 1800–1890. Applied mathematics between the In-
dustrial Revolution and the start of what is often
called the second industrial (or scientific–technical)
revolution. Gradual establishment of both the term

and the notion of “applied mathematics.” France
and Britain dominate applied mathematics, while
Germany focuses more on pure.

(4) 1890–1945. The so-called resurgence of applica-
tions and increasing internationalization of mathe-
matics. The rise of new fields of application (elec-
trical communication, aviation, economics, biology,
psychology), and the development of new methods,
particularly those related to mathematical modeling
and statistics.

(5) 1945–2000.Modern internationalizedappliedmath-
ematics after World War II, inextricably linked with
industrial mathematics and high-speed digital com-
puting, led largely by the United States and the Soviet
Union, the new mathematical superpowers.

Arguably, one could single out at least two additional
subperiods of applied mathematics: the eighteenth cen-
tury, with Euler’s “rational mechanics,” and the tech-
nological revolution of the present age accompanied
by the rise of computer science since the 1980s. How-
ever, in the first of these subperiods, which will be
described in some detail below, mathematics as a dis-
cipline was still not yet fully established, either institu-
tionally or with respect to its goals and values, so dis-
tinguishing between her pure and applied aspects is not
straightforward. As to the second of the two subperi-
ods, we believe that these events are so recent that they
escape an adequate historical description. Moreover,
World War II had such strong repercussions on math-
ematics as a whole—particularly on institutionaliza-
tion (journals, institutes, professionalization), on mate-
rial underpinning (state funding, computers, industry),
and not least on the massive migration of mathemati-
cians to the United States—that it can be considered
a watershed in the worldwide development of both
pure and applied mathematics. However, the dramatic
prediction by James C. Frauenthal—in an editorial of
SIAM News in 1980 on what he considered the “rev-
olutionary” change in applied mathematics brought
about by the invention of the computer—that by 2025
“in only a few places will there remain centers for
research in pure mathematics as we know it today”
seems premature.

2 Mathematics before
the Industrial Revolution

Since the emergence of mathematical thinking around
4000 b.c.e., through antiquity and up to the start of the
Renaissance (ca. 1400 c.e.), and embracing the cultures
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of Mesopotamia, Egypt, and ancient Greece, as well as
those of China, India, the Americas, and the Islamic–
Arabic world, applications arose as a result of various
societal, technical, philosophical, and religious needs.
Well before the emergence of the Greek notion of a
mathematical proof around 500 b.c.e., areas of appli-
cation of mathematics in various cultures included
accountancy, agricultural surveying, teaching at scribal
schools, religious ceremonies, and (somewhat later)
astronomy. Among the methods used were practical
arithmetic, basic geometry, elementary combinatorics,
approximations (e.g., π ), and solving quadratic equa-
tions. Instruments included simple measuring and cal-
culation devices: measuring rods, compasses, scales,
knotted ropes, counting rods, abaci, etc.

The six classical sciences—geometry, arithmetic, as-
tronomy, music, statics, and optics—existed from the
time of Greek antiquity and were based on math-
ematical theory, with the Greek word “mathemata”
broadly referring to anything teachable and learnable.
The first four of the classical sciences constituted the
quadrivium within the Pythagorean–Platonic tradition.
The theories of musical harmony (as applied arith-
metic) and astronomy (as applied geometry) can thus
be considered the two historically earliest branches
of applied mathematics. The two outstanding applied
mathematicians of Greek antiquity were Archimedes
(statics, hydrostatics, mechanics) and Ptolemy (astron-
omy, optics, geography). Since the early Middle Ages,
the Computus (Latin for computation)—the calculation
of the date of Easter in terms of first the Julian calendar
and later the Gregorian calendar—was considered to be
the most important computation in Europe. In medieval
times, particularly from the seventh century, the devel-
opment of algebraic and calculative techniques and
of trigonometry in the hands of Islamic and Indian
mathematicians constituted considerable theoretical
progress and a basis for further applications, with sig-
nificant consequences for European mathematics. Par-
ticularly notable was the Liber Abaci (1202) of Leonardo
of Pisa (Fibonacci), which heralded the gradual intro-
duction of the decimal positional system into Europe,
one of the broadest and most important applications
of mathematics during the period. Chinese mathemat-
ics remained more isolated from other cultures at the
time and is in need of further historical investigation,
as are some developments within Christian scholastics.
In spite of their relative fewness and their thematic
restrictions, we consider the early applications to be a
deep and historically important root for the emergence

of theoretical mathematics and not as a mere follow-up
of the latter.

From the beginning of the fifteenth century to the
end of the eighteenth century, applications of mathe-
matics were successively based on the dissemination
of the decimal system, the rise of symbolic algebra,
the theory of perspective, functional thinking (Des-
cartes’s coordinates), the calculus, and natural philos-
ophy (physics). The teaching of practical arithmetic,
including the decimal system, by professional “reck-
oning masters,” such as the German Adam Ries in the
sixteenth century, remained on the agenda for several
centuries. Meanwhile, the first systematic discussion
of decimal fractions appeared in a book by the Dutch
engineer Simon Stevin in 1585.

During this period, and connected to the new de-
mands of society, there emerged various hybrid disci-
plines combining elements of mathematics and engi-
neering: architecture, ballistics, navigation, dynamics,
hydraulics, and so on. Their origins can be traced back,
at least in part, to medieval times. For example, partly
as a result of fourteenth-century scholastic analysis,
the subject of local motion was separated from the tra-
ditional philosophical problem of general qualitative
change, thus becoming a subject of study in its own
right.

The term “mixed mathematics” as a catch-all for the
various hybrid disciplines seems to have been intro-
duced by the Italian Marsilio Ficino during the fifteenth
century in his commentary on Plato’s Republic. It was
first used in English by Francis Bacon in 1605. In his
Mathematicall Præface to the first English translation
of Euclid’s Elements (1570), John Dee set out a “ground-
plat” or plan of the “sciences and artes mathematicall,”
which included astronomy and astrology. Due to the
broad meaning of the original Greek word, the Latin
name “mathematicus” was used for almost every Euro-
pean practitioner or artisan within one of these hybrid
disciplines. As late as 1716, the loose use of “math-
ematicus” was deplored by the philosopher Christian
Wolff (a follower of Leibniz) in his Mathematisches Lex-
icon, an influential dictionary of mathematics, because
in his opinion it diminished the role of mathematics.

The emergence of the new Baconian sciences (magne-
tism, electricity, chemistry, etc.)—which went beyond
mixed mathematics and were even partially opposed
to the mathematical spirit of the classical sciences
(Bacon’s acknowledgment of the future of mixed math-
ematics, as expressed in the epigraph, was coupled
with a certain distrust of pure mathematics)—signaled
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Figure 2 J. H. Zedler, Universallexicon (1731–1754).

the rise of systematic experimental methods. The lat-

ter reached a symbiosis with mixed mathematics in

the hands of Galileo, Descartes, Huygens, Newton, and

other pioneers of the Scientific Revolution. In their

work, the guiding thought was of a fundamental con-

nection between mathematical and mechanical exact-

ness. However, a certain division between the tradition

of mathematics and of the Baconian sciences remained

palpable until the nineteenth century.

While talk about “applications of mathematics” was

common in the English language from at least the sev-

enteenth century (in, for example, the work of Isaac

Barrow and others), the term “applied mathematics”

(with “applied” as an adjective), as the successor to

“mixed mathematics,” was apparently not introduced

prior to the eighteenth century. The name seems to

have appeared first in German as “angebrachte Mathe-

matik” (“angebracht” having roughly the meaning of

“applied,” if a bit more in the sense of “attached”)

in Wolff’s dictionary of 1716. In Latin it appeared

two years later, in Johann Friedrich Weidler’s textbook

Institutiones mathematicae (1718), as “Mathesis appli-

cata quam nonnulli mixta appellant.” In his Univer-

sallexicon (1731–54), Johann Heinrich Zedler followed

Figure 3 A. G. Kästner, Anfangsgründe der
Angewandten Mathematik (1759).

Wolff and gave a detailed classification of the parts of
“angebrachte Mathematik” (figure 2).

Finally, “applied mathematics” figures for the first
time on the title page of a book as “Angewandte Mathe-
matik” in the second volume of Abraham Gotthelf Käst-
ner’s mathematical textbook Mathematische Anfangs-
gründe (“mathematical elements”) of 1759 (figure 3).
The German philosopher Kant used the term “applied
mathematics” in his Berlin Preisschrift of 1763/64.
The latter was translated into English in 1798 and,
according to the Oxford English Dictionary, it is in this
translation that the term makes its first appearance in
English. Meanwhile, “mixed mathematics” (“mathéma-
tiques mixtes”) was still in use in French, appearing
in the famous Encyclopédie of Diderot and d’Alembert
(1750) (figure 1), and even in the second edition of J.-E.
Montucla’s Histoire des Mathématiques (1798–1802).

There is no doubt that the period of the Enlight-
enment of the eighteenth century deserves a special
place in a history of applied mathematics, particu-
larly as a bridge—via so-called rational mechanics,
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which uses the invention of the calculus (Newton/
Leibniz)—between the natural philosophy of the sev-
enteenth century and the mathematical engineering
and physics of the nineteenth and twentieth centuries.
There are six principal actors here: three from the
famous Swiss Bernoulli family (the brothers Jakob
(James) and Johann (John), and Daniel, the son of the
latter), Alexis-Claude Clairaut, Jean d’Alembert, and, by
far the most prolific of all, Leonhard Euler. The domi-
nating role of applied mathematics at the time is per-
haps most convincingly illustrated in the themes of the
prize competitions run by the prominent academies of
science, especially the Paris Academy. The topics set in
Paris included the optimum arrangement of ship masts
(1727), the motion of the moon (1764/68), the motion
of the satellites of Jupiter (1766), the three-body prob-
lem (1770/72), the secular perturbations of the moon
(1774), the perturbations of comet orbits (1776/78/80),
the perturbation of the orbit of Pallas (in the begin-
ning of the nineteenth century), the question of heat
conduction (1810/12), and the propagation of sound
waves in liquids (1816). Only occasionally, and mostly
in a later period, would questions of pure mathematics
be posed in these competitions, examples being ques-
tions on the theory of polyhedra (1810) and the Fer-
mat problem (1816). Euler himself, who won the Paris
prize twelve times, subscribed to the utilitarian mood
of Enlightenment when in 1741 he wrote his essay
“On the utility of higher mathematics,” first published
only in 1847. According to Goldstine (a pioneer and
historian of numerical analysis):

Euler did at least the ground work on virtually ev-
ery topic in modern numerical analysis. This work
included the basic notions for the numerical integra-
tion of differential equations. Moreover, his develop-
ment of lunar theory made possible the accurate cal-
culation of the moon’s position and the founding of
the Nautical Almanac in Great Britain.

Goldstine (1977)

A typical example of Euler’s influence can be found
in Carl Runge’s first two articles on the numerical solu-
tion of differential equations, which appeared in the
Mathematische Annalen in 1894 and 1895. The sec-
ond article connects explicitly to Euler’s Introductio in
Analysin Infinitorum (1748), in which one finds the first
example of an approximation by a polygonal chain. Of
Euler’s more than 800 publications, two-thirds belong
to mechanics of a varying degree of abstractness. The
noted and controversially discussed continuum mech-
anist and historian Clifford Truesdell has traced and

described the innovations that Euler, d’Alembert, and
the Bernoullis brought into Newtonian mechanics, in
terms of both modeling and mathematical methods,
relying on experience but not undertaking systematic
experiments. In an apparent allusion to the philosoph-
ical age of reason, he called these innovations “rational
mechanics,” a term that was occasionally used at the
time in a broader sense but by which Truesdell meant
more specifically mathematical mechanics (Truesdell
1960). Rational mechanics, as Newton had used the
term in the preface to his Principia (1687), was one of
two traditions of mechanics already known in Greek
antiquity, namely the one that “proceeds accurately by
demonstration” (the other being practical mechanics).
For Newton, rational mechanics in this sense was the
core of natural philosophy. Truesdell opposed the view
(propounded, for instance, by the positivist philoso-
pher Ernst Mach) that Euler and like-minded mathe-
maticians simply systematically applied the new calcu-
lus of Newton and Leibniz to mechanic and thus did not
contribute anything substantial to theoretical mechan-
ics itself. Today, historians usually stress the concep-
tual progress both in mathematics (e.g., by removing
certain geometric elements from the Leibnizian calcu-
lus) and physics (e.g., exploring in detail the relation
between force and motion) accomplished in the work of
Euler. It is probably this role of Euler as a “mathematical
physicist,” combined with the lack of immediate useful-
ness of Euler’s rational mechanics, that caused Trues-
dell in 1960 to declare that the latter was not applied
mathematics.

Among the new fields of mathematics was, for
instance, partial differential equations (of which the
first example appears in a work by Euler of 1734), which
were successfully applied by Euler and d’Alembert in
the second half of the 1740s in the analysis of the
vibrating string. In his Methodus inveniendi of 1744,
Euler picked up on the tradition of solving the prob-

lem of the brachistochrone [IV.6 §1] in the work of
the Bernoulli brothers. He set standards in the calculus
of variations developed later by Joseph Louis Lagrange
and others. As an extension of Daniel Bernoulli’s Hydro-
dynamica of 1738, and partly influenced by d’Alembert,
Euler’s equations of fluid dynamics (1755), which did
not yet have a term for viscosity, remained a challenge
for generations of mathematicians to come, not least
due to their nonlinearity. Euler, like d’Alembert before
him, was unable to produce from his equations of fluid
dynamics a single new result fit for comparison with
experiment.
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In our opinion (deviating slightly from Truesdell),
rational mechanics, in hindsight, bears almost all the
characteristics of applied mathematics in the mod-
ern sense. At the time, however, in a predominantly
utilitarian environment, it was the pinnacle of math-
ematics. It was then rarely counted as mixed mathe-
matics, notwithstanding some occasional remarks by
d’Alembert. The term mixed mathematics was more
frequently used for the mathematically less advanced
engineering mechanics (Bernard Forest de Bélidor and
Charles-Augustin de Coulomb, etc.) of the time and for
other fields of application.

Toward the end of the eighteenth century rational
mechanics was somewhat narrowed down, both the-
matically and with respect to possible applications
(although still including continuum mechanics), by fur-
ther mathematical formalization, particularly at the
hands of Lagrange, Euler’s successor in Berlin, whose
Méchanique Analitique first appeared in 1788. The tow-
ering figure of Pierre Simon Laplace in Paris—with
his pioneering work since the late 1770s in celestial
and terrestrial mechanics and in probability theory—
foreshadowed much of the important French work
in applied mathematics, such as that done by Pois-
son, Fourier, Cauchy, and others in the century that
followed. To Laplace (generating functions, difference
equations) and to his great younger contemporary Carl
Friedrich Gauss in Göttingen (numerical integration,
elimination, least-squares method) we owe much of
the foundations of future numerical analysis. Parts
of their work overlapped (interpolation), while parts
were supplemented by Adrien-Marie Legendre (least-
squares method), details of which can be traced from
Goldstine’s A History of Numerical Analysis.

3 Applied Mathematics in the
Nineteenth Century

Around 1800, in the age of the Industrial Revolution
and of continued nation building, state funding and
political and ideological support (revolution in France,
Neo-Humanism in Germany) led (mainly through teach-
ing and journals) to a new level of recognition for
mathematics as a discipline. The older bifurcation of
pure/mixed mathematics was replaced in France and
Germany (although not yet in England) by that of
pure/applied. The difference was mainly that before
1800 only mixed mathematics together with rational
mechanics had the support of patrons, while now,
around 1800, the whole of mathematics was beginning

to be supported and recognized. Somewhat paradox-
ically, then, in spite of the general importance of the
Industrial Revolution as a historical background, it is
pure mathematics that increasingly gets systematic
public support for the first time. Indeed, for most
of the nineteenth century, mathematics would not be
strongly represented in either engineering or industrial
environments.

The foundation of the École Polytechnique (EP) in
Paris in 1794 is a good point of reference for the begin-
ning of our third period. The EP, where military and civil
engineers were trained, became the leading and “most
mathematical” institution within a system of techni-
cal education. This included several “schools of appli-
cations,” such as the École des Mines and the École
Nationale des Ponts et Chaussées, to which the stu-
dents of the EP proceeded. The EP became an exam-
ple to be emulated by many technical colleges, par-
ticularly in German-speaking regions, throughout the
nineteenth century. The most influential mathemati-
cian in the early history of the EP was Gaspard Monge,
and it was in accordance with his ideas that mathemat-
ics became one of the bases of the EP curriculum. In
1795, in the introduction to his lectures on descriptive
geometry, the theory that became the “language of the
engineer” for more than a century, Monge wrote:

In order to reduce the dependence of the French nation
on foreign industry one has to direct public education
to those subjects which require precision.

Monge’s aspirations for a use of higher mathematics
in industrial production remained largely unfulfilled at
the time, except for the use of descriptive geometry.
However, developments in industry and in educational
systems led to a stronger focus on the criteria for pre-
cision and exactitude in the sciences (most notably in
academic physics) and in engineering, preparing the
ground for an increased use of mathematics in these
fields of application at the beginning of the twenti-
eth century. In fact, it could be argued that it required
a logical consolidation and a more theoretical phase
of the development of mathematical analysis before a
new phase of more sophisticated applied mathematics
could set in.

The first concrete institutional confirmation of the
notion of “applied mathematics” was the appearance
of the term in the names of journals. Again, the Ger-
mans were quicker than the French here. Two short-
lived journals cofounded by the influential combina-
torialist Carl Friedrich Hindenburg were the Leipziger
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Figure 4 Gergonne’s Annales de Mathématiques
Pures et Appliquées (1810–11).

Magazin für reine und angewandte Mathematik (1786–

89) and the Archiv für reine und angewandte Mathe-

matik (1795–99). A somewhat longer career was had

by Annales de Mathématiques Pures et Appliquées,

founded by Joseph Diaz Gergonne in 1810 (figure 4).

While this journal survived only until 1832, the Ger-

man Journal für die reine und angewandte Mathe-

matik (which, according to the preface by its founder

August Leopold Crelle in 1826, was largely modeled

after Gergonne’s journal) is still extant today. This is

true too of the French Journal de Mathématiques Pures

et Appliquées, founded by Joseph Liouville in 1836,

and of the Italian Annali di Matematica Pura ed Appli-

cata, launched by Francesco Brioschi and Barnaba Tor-

tolini in Italy in 1858 as an immediate successor to the

Annali di Scienze Matematiche e Fisiche. On the other

hand, James Joseph Sylvester’s Quarterly Journal of

Pure and Applied Mathematics, which was founded in

1855, survived only until 1927.

The inclusion of “applied mathematics” in the names

of these nineteenth-century journals did not necessar-

ily guarantee a strong representation of applied topics,

however, either in the journals themselves or in the
mathematical culture at large. But neither were these
journals the only outlets for articles on applied topics.
Journals associated with national academies, such as
the Philosophical Transactions of the Royal Society, car-
ried articles on applied topics, while the Philosophical
Magazine (launched in 1798) was the journal of choice
for several leading nineteenth-century British applied
mathematicians.

This was also the period in which positions explic-
itly devoted to applications were created at universities.
In Norway, which had just introduced a constitution
and was emancipating itself from Danish rule, Christo-
pher Hansteen’s position as “lecturer for applied math-
ematics” (“Lector i den anvendte Mathematik”) at the
newly founded university in Christiania was expressly
justified in May 1814 by “the broad scope of applied
mathematics and its importance for Norway.” In 1815
Hansteen was promoted to “Professor Matheseos appli-
catae.”

Throughout the nineteenth century, the mathema-
tization of mechanics continued largely in the tradi-
tion of Lagrange’s analytical mechanics, with a division
of labor between physicists and mathematicians such
as William Rowan Hamilton and Carl Jacobi, arguably
neglecting some of the topics and insights of Euler’s
rational mechanics, particularly in continuum mechan-
ics. However, from the 1820s, although the EP still gave
preference to analytical mechanics in its courses, there
were efforts among the professors there, and at the
more practically oriented French engineering schools
(“écoles d’application”), to develop a mechanics for
the special needs of engineers, a discipline that would
today be called technical mechanics. The latter drew
strongly on traditions in mixed mathematics, such as
the work of de Bélidor in hydraulics from the 1730s to
the 1750s and that of de Coulomb in mechanics and
electromagnetism from the 1780s onward. It found its
first energetic proponents in Claude Navier, Jean Victor
Poncelet, and Gaspard Gustave de Coriolis.

Around 1820, Poncelet separately developed his pro-
jective geometry, which became part of the mathemati-
cally rather sophisticated engineering education at sev-
eral continental technical colleges. It led to methods
such as graphical statics, founded by the German–Swiss
Carl Culmann in the middle of the century, with appli-
cations in crystallography and civil engineering, the lat-
ter exemplified by the construction of the Eiffel Tower
in 1889. Also in the 1820s, influenced by Euler’s hydro-
dynamics and possibly by Navier’s work in engineering,
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Augustin-Louis Cauchy was the first to base the theory
of elasticity on a general definition of internal stresses.
The work of Cauchy, who was at the same time known
for his efforts to introduce rigor into analysis, under-
scores the dominance of the French in both pure and
applied mathematics during the early nineteenth cen-
tury, with the singular work of Gauss in Göttingen being
the only notable exception.

In England the development of both pure and applied
mathematics during the nineteenth century showed
marked differences from that in Continental Europe.
One of the goals of the short-lived Analytical Society
(1812–19), founded in Cambridge by Charles Babbage
and others, was to promote Leibnizian calculus over
Newtonian calculus, or, in Babbage’s words, to promote
“The Principles of pure D-ism in opposition to the Dot-
age of the University.” The members of the Analytical
Society were impressed by the new rigor in analysis
achieved in France, especially in the work of Lagrange,
and lobbied for a change in teaching and research in
Cambridge mathematics, and in particular in the exam-
inations of the Mathematical Tripos, which were very
much based on traditional mixed and physical math-
ematics, as well as on Euclid’s Elements. If anything,
though, this aspect of the French influence led away
from applications and toward a gradual purification of
British mathematics.

Babbage was impressed by the French mathematical
tables project directed by Gaspard de Prony at the end
of the eighteenth century. In a similar vein to Monge
before him, Babbage pointed to increased competition
between nations in the age of industrialization, and
he stressed the need for the development of calculat-
ing techniques. In On the Economy of Machinery and
Manufactures (1832) he wrote:

It is the science of calculation,—which becomes con-
tinually more necessary at each step of our progress,
and which must ultimately govern the whole of the
applications of science to the arts of life.

Another (at least indirect) impact of the Industrial
Revolution on mathematics was the Russian Pafnuty
Lvovich Chebyshev’s study of James Watt’s steam
engine, in particular of the “governor,” the theory of
which proved to be a stimulus for the notion of feed-
back in control theory, and the modern theory of ser-
vomechanisms. Chebyshev’s interest in the technical
mechanics of links was also one of the stimuli for
his studies concerning mathematical approximation
theory in the 1850s. In addition, he was impressed with

Poncelet’s technical mechanics. As a result, and due
to Chebyshev’s great influence within Russian mathe-
matics, applied mathematics remained much more part
of mainstream mathematics in Russia during the latter
half of the nineteenth century than it was in other parts
of Europe, especially in Germany.

In the middle of the nineteenth century, the French
engineering schools, in particular the EP, lost their
predominant position in mathematics, due to slow
industrial development in France and problems with
the overcentralized and elitist educational system. The
lead was taken by the German-speaking technical col-
leges (“Technische Hochschulen”) in Prague, Vienna,
Karlsruhe, and Zurich, in particular with respect to
the mathematization of the engineering sciences. This
was true for their emulation of the general axiomatic
spirit of mathematics even more than for their con-
cern for the actual mathematical details. Ferdinand
Redtenbacher (in his analytical machine theory (1852))
and Franz Reuleaux (in his kinematics (1875)) aimed at
“designing invention and construction deductively.” So
convinced of the important future role of mathematics
were leading engineers at the Technische Hochschulen
that they supported the appointment of academi-
cally trained mathematicians from the classical uni-
versities. In this way pure mathematicians, such as
Richard Dedekind, Alfred Clebsch, and later Felix Klein,
assumed positions at Technische Hochschulen in which
they were responsible for the education of engineers.

In parallel, and also from the middle of the nine-
teenth century, mathematics at the leading German uni-
versities that did not have engineering departments
increasingly developed into a pure science, detached
from practical applications. Supported by the ideol-
ogy of “Neo-Humanism” within a politically unmod-
ernized environment, the discipline’s educational goal
(and its legitimation in society) was the training of
high school teachers, who during their studies were
often introduced to the frontiers of recent (pure) math-
ematical research. The result of this was that profes-
sors at the Technische Hochschulen who were hired
from the traditional universities were not really pre-
pared for training engineers. In the long run, the strat-
egy of appointing university mathematicians backfired
and this, together with general controversies about the
social status of technical schools, led to the so-called
anti-mathematical movement of engineers in Germany
in the 1890s.

British and Irish applied mathematics, in the sense
of mathematical physics, remained strong through the
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nineteenth century, with work by George Green, George
Stokes, William Rowan Hamilton, James Clerk Maxwell,
William Thomson (Lord Kelvin), Lord Rayleigh, William
Rankine, Oliver Heaviside, Karl Pearson, and others,
while in the works of James Joseph Sylvester and
Arthur Cayley in the 1850s, the foundations of mod-
ern matrix theory were laid. That being said, there was
no systematic, state-supported technical or engineer-
ing education in the British system until late in the
nineteenth century. What was taught in this respect
at schools and traditional universities was increasingly
questioned by engineers such as John Perry (see below),
particularly with respect to the mathematics involved.
In England the term “mixed mathematics” was occa-
sionally used interchangeably with “applied mathemat-
ics” up until the end of the century, a prominent exam-
ple of this being the tribute by Richard Walker (then
president of the London Mathematical Society) to Lord
Rayleigh on winning the society’s De Morgan Medal in
1890.

Applications of mathematics also featured among
the activities of the British Association for the Advance-
ment of Science, which, in 1871, formed a Mathematical
Tables Committee for both cataloguing and producing
numerical tables; the committee lasted, with varying
levels of intensity, until 1948, when the Royal Society
took over. A prime example of joint enterprise between
pure and applied mathematicians—the original com-
mittee consisted of Cayley, Henry Smith, Stokes, and
Thomson—the project catered for all tastes, its prod-
ucts including both factor tables and Bessel function
tables, among others. As J. W. L. Glaisher, the project
secretary, wrote in 1873: “one of the most valuable uses
of numerical tables is that they connect mathematics
and physics, and enable the extension of the former
to bear fruit practically in aiding the advance of the
latter.” The project was finally dissolved in 1965, with
some of the greatest British mathematicians, both pure
and applied, having been active in its work.

With the upswing of electrical engineering, more
sophisticated mathematics (operational calculus, com-
plex numbers, vectors) finally entered industry in
around 1890, e.g., through the work of Heaviside in
England and of the German immigrant Charles P. Stein-
metz in the United States. Mechanical engineering, on
the other hand, e.g., in the construction of turbines,
remained free of advanced mathematics until well into
the twentieth century.

It was also not until the end of the nineteenth cen-
tury that applied mathematics finally began to lose its

almost exclusive bond to mathematical physics and
mechanics; new fields of application, new methods
such as statistics, and new professions such as actuar-
ial and industrial mathematicians were largely matters
for the twentieth century.

This change is nicely captured through the exam-
ple of the English applied mathematician Karl Pearson.
In his philosophical book Grammar of Science (1892),
Pearson, who at the time was mainly known for his work
on elasticity, defined as the “topic of Applied Mathe-
matics . . . the process of analyzing inorganic phenom-
ena by aid of ideal elementary motions.” At the time
Pearson was already working on biometrics, the sub-
ject that would lead him to found, together with Fran-
cis Galton, the journal Biometrika in 1901. Therefore,
although Pearson was effectively extending the realm
of applications of mathematics to the statistical analy-
sis of biological (i.e., organic) phenomena, he appar-
ently did not consider what he was doing to be applied
mathematics.

4 The “Resurgence of Applications” and
New Developments up to World War II

From the 1890s, the University of Göttingen (pure)
mathematician Felix Klein saw the importance of tak-
ing the diverging interests of the engineering profes-
sors at technical colleges and those of German univer-
sity mathematicians into account. Not only did differ-
ent professions (teaching and engineering) require dif-
ferent education, but the gradual emergence of indus-
trial mathematics had to be considered as well. Klein
recognized the need for reform, including in teach-
ing at high school level, and he developed Göttingen
into a center of mathematics and the exact sciences
(figure 5). Chairs for applied mathematics and applied
mechanics were created there in 1904, with Carl Runge
and Ludwig Prandtl being the first appointees. Mean-
while, from 1901, and under the editorship of Runge,
the transformation of Zeitschrift für Mathematik und
Physik into a journal exclusively for applied mathe-
matics had begun. These events in Germany, contrast-
ing with those of the period before, led to talk about
a “resurgence of applications” (“Wiederhervorkommen
der Anwendungen”).

From 1898 and for several decades afterward, the
famous German multivolume Encyclopedia of the Math-
ematical Sciences including Their Applications was
edited by Klein together with Walther von Dyck and
Arnold Sommerfeld, both from Munich, and others.
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Figure 5 F. Klein, Präzisions- und Approximationsmathe-
matik (1928). Posthumous publication of Klein’s 1901 lec-
tures in Göttingen where he tried to differentiate between
a mathematics of precision and one of approximation.

The articles in it, all written in German but includ-

ing authors from France and Britain, such as Paul

Painlevé and Edmund Taylor Whittaker, contain valu-

able historical references that are still worth consult-

ing today. “Applications” as emphasized in the title

and in the program of the Encyclopedia meant areas

of application, such as mechanics, electricity, optics,

and geodesy. The articles were assigned to volumes IV–

VI, which were in themselves divided into several

voluminous books each. There were also articles on

mechanical engineering, such as those by von Mises and

von Kármán. However, topics that would today be clas-

sified as core subjects of applied mathematics—such

as numerical calculation (Rudolph Mehmke), differ-

ence equations (Dmitri Seliwanoff), and interpolation

and error compensation (both by Julius Bauschinger)—

appeared as appendices within volume I, which was

devoted to pure mathematics (arithmetic, algebra, and
probability). Runge’s contribution on “separation and
approximation of roots” (1899) was subsumed under
“algebra.”

Klein also succeeded in introducing a state examina-
tion in applied mathematics for mathematics teachers,
which focused on numerical methods, geodesy, statis-
tics, and astronomy. In addition, he inspired educa-
tional reform of mathematics in high schools that he
designed around the notions of “functional thinking”
and “intuition,” thereby trying to counteract the overly
logical and arithmetical tendencies that had until then
permeated mathematics education. Klein and his allies
insisted on taking into account international develop-
ments in teaching and research, for instance by ini-
tiating a series of comparative international reports
on mathematical education; these reports in turn led
to the creation of what has now become the Interna-
tional Commission on Mathematical Instruction (ICMI).
The Encyclopedia also provided evidence of the increas-
ing significance of the international dimension. In his
“introductory report” in 1904, von Dyck stressed the
importance for the project of securing foreign authors
in applied mathematics. Later, a French translation
of the Encyclopedia began to appear in a consider-
ably enlarged version, although the project was never
completed due to the outbreak of World War I.

Around 1900, reform movements reacting to prob-
lems in mathematics education similar to those in
Germany existed in almost all industrialized nations.
In England, the engineer John Perry had initiated a
reform of engineering education in the 1890s, and this
reform played into the ongoing critical discussions of
the antiquated Cambridge Mathematical Tripos exam-
inations and their traditional reliance on Euclid. The
“Perry Movement” was noticed in Germany and in the
United States. On the pages of Science in 1903, the
founding father of modern American mathematics, Eli-
akim Hastings Moore, himself very much a pure math-
ematician, declared himself to be in “agreement with
Perry” and proposed a “laboratory method of instruc-
tion in mathematics and physics.” At about the same
time (1905), similar ideas “de créer de vrais labora-
toires de Mathématiques” were proposed by Émile Borel
in France. In Edinburgh, Whittaker instituted a “Math-
ematical Laboratory” in 1913 and later, together with
George Robinson, published the influential The Calcu-
lus of Observations: A Treatise on Numerical Mathe-
matics (1924), which derived from Whittaker’s lectures
given in the Mathematical Laboratory. In Germany, the
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term “Mathematisches Praktikum” was most often used
to describe laboratory work in mathematics. Common
to these efforts was the aim to foster among students
practical abilities in calculation and drawing, extending
beyond mere theoretical mathematical knowledge.

Along with the German Encyclopedia and Whittaker
and Robinson’s Calculus of Observations, several influ-
ential textbooks on applied mathematics, on both
numerical and geometrical methods, appeared in var-
ious countries at the end of the nineteenth century
and into the first decades of the new century, prepar-
ing the ground for future advances. Horace Lamb’s
Hydrodynamics (1895), an expanded version of his
1879 text deriving from his Cambridge course, and
Augustus Love’s Elasticity (1892) became staple fare
for mathematicians in Britain, each running into sev-
eral editions. In France Maurice d’Ocagne published
his Traité de Nomographie (1899), which was initially
developed for civil engineering (particularly railway
and bridge construction) but was also used in the
study of ballistics during Word War I and thereafter.
Carl Runge’s lectures at Columbia University in New
York (1909/10) were published as Graphical Methods
in the United States in 1912, and appeared in a Ger-
man translation in 1914. Runge’s joint book with Her-
mann König Vorlesungen über numerisches Rechnen
(1924), part of Springer’s Grundlehren der mathema-
tischen Wissenschaften series, became a classic. Pub-
lished that same year, and in the same series, Differen-
zenrechnung by the Dane Niels Erik Nörlund became
“the standard treatise on new aspects of difference
equations.” This was stated in a report to the Amer-
ican National Research Council on Numerical Integra-
tion of Differential Equations (1933), authored by Albert
Bennett, William Milne, and Harry Bateman, which con-
tains many valuable references. Cyrus Colton MacDuf-
fee’s The Theory of Matrices (1933), also published by
Springer in Germany, aimed, according to its preface,
“to unify certain parts of the theory” because “many
of the fundamental properties of matrices were first
discovered in the notation of a particular application.”
Some influential Russian textbooks such as L. V. Kan-
torovich’s and V. I. Krylov’s Approximate Methods of
Higher Analysis (1941) became known in the West only
much later through translations.

While it was certainly more a chemists’ and physi-
cists’ war than one of mathematicians, World War I
involved mathematicians on all sides. But politicians
were slow to recognize the specific contribution that
mathematics could offer to the war effort. France did

little to protect her most promising young mathemati-
cians from the front, and about half of the science
cohort studying at the École Normale Supérieure at
the outbreak of the war was killed. Leading mathe-
maticians such as Borel, however, gradually became
involved as scientific advisors in warfare, while ballis-
tics at the Gâvre proving ground was developed under
Prosper Charbonnier, using graphical and numerical
methods. In England Ralph Fowler, Edward Milne, and
Herbert Richmond worked on the mathematics of anti-
aircraft gunnery, while J. E. Littlewood applied his tal-
ents to more general ballistics and Karl Pearson inter-
rupted his statistical research in biomathematics to
oversee the production of the corresponding range
tables. In Italy the experiences of Mauro Picone as
an artillery officer working on ballistics research were
influential with respect to the formation of the insti-
tute that was later set up under his lead (see below).
Meanwhile, a key event in Germany was the founda-
tion of the Aerodynamische Versuchsanstalt (“Aerody-
namic Proving Ground”) in Göttingen in 1917, mainly
financed by the military. This Proving Ground, together
with the more theoretical Institute for Fluid Mechan-
ics established in 1925 under the leadership of Lud-
wig Prandtl, would become the most advanced aerody-
namic research installation in the world. In the United
States systematic ballistics research was done in Wash-
ington under celestial mechanist Forest Ray Moulton
and at the newly founded Aberdeen Proving Ground
in Maryland under the geometer Oswald Veblen. In this
context, finite-difference methods were introduced into
ballistic computation by Moulton, as were higher meth-
ods of the calculus of variations by Gilbert Bliss in
Aberdeen, which even in 1927 were described by Bliss
as being “on the farther boundary of the explored math-
ematical domain of today.” From 1917 the new National
Advisory Committee for Aeronautics, the predecessor
of NASA, had its Langley Laboratory in Virginia, where
Prandtl’s former student Max Munk was particularly
influential in the 1920s when he explained the math-
ematics of aerodynamics to the laboratory’s engineers
and built a variable-density wind tunnel.

More important for applied mathematics than the
war itself, though, were its consequences.

The war led to the gradual recognition of the impor-
tance of the fundamental sciences (including mathe-
matics), beyond mere technical inventions, for indus-
trial and military applications. Science systems that
were under close political control and received their
main funding from government, such as those in



I.6. The History of Applied Mathematics 69

Germany, Italy, and Russia, had the potential to quickly
recognize and respond to the importance of applied
mathematics. There is of course nothing guaranteed
about this relationship, as the example of the rather
slow development in France shows. In the United States,
new modes of industrial mass production during the
war included scientific management (Taylorism). The
superior strength of material resources, particularly in
the electrical industry and in the development of cal-
culating devices—IBM was founded in 1925—pointed
to the future role of the United States in applied math-
ematics. Nevertheless, the predominantly private, but
nonindustrial, sponsorship of the American university
system before World War II slowed down the arrival of
academic applied mathematics in the United States.

The foundation of the institute for applied math-
ematics at the University of Berlin (in 1920, under
von Mises) can be partly explained against this back-
drop of war and international competition. From 1921
von Mises edited the Zeitschrift für angewandte Mathe-
matik und Mechanik (ZAMM), which had a clear engi-
neering context, unlike the older Zeitschrift für Mathe-
matik und Physik. In his programmatic article “On the
tasks and goals of applied mathematics,” with which
he started his new journal, von Mises gave his own
definition of applied mathematics and added:

As a matter of course we put ourselves on the basis
of the present, particularly on the standpoint of the
scientifically minded engineer.

The foundation of the ZAMM was significantly ahead
of the first Russian journal that expressly (and exclu-
sively) referred to applications in its title, Prikladnaya
Matematika i Mekhanika, which began in 1933; it is
today regularly translated into English as the Journal
of Applied Mathematics and Mechanics. The first Amer-
ican journal with “applied mathematics” in its title was
the Quarterly of Applied Mathematics, edited at Brown
University from 1943, which was partly modeled on
von Mises’s ZAMM. However, the editors made a point
in dropping “mechanics” from the title both in order
to stress autonomy from the German example and to
express the new level of independence of the field.

In spite of, or rather because of, increased eco-
nomic competition after the war, internationalization
remained the order of the day even in the applied
sciences, as promoted by Felix Klein before the war.
Indeed, the applied mathematician and fluid dynam-
ics engineer von Kármán, who was closely connected
to Göttingen, initiated the international congresses for

applied mechanics in 1924 (after organizing a success-

ful conference on hydrodynamics and aerodynamics in

Innsbruck in 1922) because he felt that the critical mass

for discussion was not big enough on a national level

and because postwar policies on each side threatened

communication. Being Hungarian by origin, he was less

skeptical about restoring international collaboration

than von Mises and others who had stronger national-

ist feelings. As von Kármán had hoped, the congresses

attracted participants from across Europe, and by 1930,

when the congress was held in Stockholm, there was

also a strong delegation from the United States. How-

ever, the story of Russian participation is not so good.

Politics did get in the way, and Russian mathematicians

barely made an appearance.

Applied mathematics exhibited particular challenges

for internationalization, not least because of its engi-

neering context, which often bore traits of national

idiosyncrasies, as is clear from the international efforts

to unify terminology in vector calculus in around 1900.

As late as 1935, at the Volta congress “High Veloc-

ities in Aviation” in Rome, terminology in ballistics

and fluid mechanics was considered to be far from

internationally standardized.

On the French side, the foundation of the Institut

Henri Poincaré (1926), on the initiative of Borel and

funded with American Rockefeller money, was a clear

token of internationalization. Although the institute

was less instrumental in the development of applied

mathematics than its founder, with his broad view of

“Borelian mathematics” (which stressed links between

pure mathematics and applications, mainly based on

mathematical physics and the theory of probability),

had anticipated and wished for, it did provide the seeds

for the development of French applied mathematics

after the war.

In other European countries, such as Italy and Soviet

Russia, new efforts to further work on applications

were launched in the 1920s, partly motivated by expe-

riences during the war and by political revolutions.

The foundation in 1921 of the Institute of Physics

and Mathematics of the Soviet Academy of Sciences by

Vladimir Steklov (a former student of Aleksandr Lya-

punov), which was supported by Lenin, was crucial for

the further development of applied mathematics in the

Soviet Union; the history of the institute has yet to be

written. In Italy, under Mussolini, the central event con-

cerning applications of mathematics in industry and

the military was the creation in 1927–31 of the Italian
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Research Council’s National Institute for the Applica-
tion of the Calculus under Mauro Picone in Naples and
later in Rome.

In contrast, Britain created no new institutes for
mathematics. Even G. H. Hardy, who had left Cambridge
for Oxford shortly after the war, was unable to per-
suade his new university to build one. Nevertheless,
the war left a tangible legacy for applied mathematics.
Imperial College received a substantial grant to finance
its Department of Aeronautics, while Cambridge estab-
lished a new chair in aeronautical engineering. As a
result of increased funding after the war, establish-
ments such as the Royal Aircraft Establishment and the
National Physical Laboratory were able to retain a num-
ber of their wartime staff, several of whom were math-
ematicians. Notable inclusions were Hermann Glauert,
who made a career in aerodynamics at the Royal Air-
craft Establishment, and Robert Frazer, who worked on
wing flutter at the National Physical Laboratory. In the
1930s Frazer and his colleagues W. J. Duncan and A. R.
Collar were “the first to use matrices in applied math-
ematics.” In addition, theoreticians and practitioners
who were brought together because of the war worked
together afterward. Sometimes, as in the case of the
Cambridge mathematician Arthur Berry and the aero-
nautical engineer Leonard Bairstow, the end of hostili-
ties meant only the end of working in the same location,
it did not mean the end of collaboration.

In the interwar period the degree of industrialization
in a particular country was without doubt one of the
defining factors in that country’s support of applied
mathematics. This is well exemplified by the solid
development of applied mathematics in industrialized
Czechoslovakia compared with the strong tradition in
pure mathematics in less industrialized Poland.

Indeed, it became increasingly obvious after the war
that engineering mathematics and insurance mathe-
matics, both of which corresponded to the develop-
ing needs of the new professions and industries, had
become legitimate parts of applied mathematics. Not
only were they the most promising areas of the sub-
ject, but they were economically the most rewarding.
Students trained at von Mises’s institute in Berlin and
at Prandtl’s institute in Göttingen found jobs in vari-
ous aerodynamic laboratories and proving grounds, as
well as in industry. Von Mises himself both undertook
governmental assignments and acted as an advisor for
industry. At Siemens, AEG, and Zeiss (all in Germany),
the General Electric Company (in Britain), Philips (in the
Netherlands), and General Electric and Bell Laboratories

(in the United States) (Millman 1984), industrial labo-
ratories (mainly in electrical engineering but also, for
instance, in the optical and aviation industries) devel-
oped a demand for trained mathematicians. It was the
study of the propagation of radio waves and of the elec-
trical devices required to generate them that led in 1920
to the Dutchman van der Pol working out the equation
that is to this day considered as the prototype of the
nonlinear feedback oscillator. van der pol’s equation

[IV.2 §10]) and his modeling approach have repeatedly
been cited as exemplars for modern applied mathemat-
ics. Van der Pol’s contribution, together with theoret-
ical work by Henri Poincaré on limit cycles, strongly
influenced Russian work on nonlinear mechanics. Its
mathematical depth gained the approval (albeit some-
what reluctant approval) even of André Weil, a foremost
member of the Bourbaki group of French mathemati-
cians, who in 1950 called it “one of the few interesting
problems which contemporary physics has suggested
to mathematics.” Van der Pol, who worked at the Philips
Laboratories in Eindhoven from 1922, also contributed
to the justification of the Heaviside operational cal-
culus in electrical engineering. Around 1929 he used
integral transformation methods similar to those devel-
oped before him by the English mathematician Thomas
Bromwich and the American engineer John Carson at
Bell Laboratories, who in 1926 wrote the influential
book Electric Circuit Theory and the Operational Cal-
culus. Somewhat later, the German Gustav Doetsch pro-
vided a more systematic justification of Heaviside’s cal-
culus based on the theory of the Laplace transform
in his well-received book Theorie und Anwendung der
Laplace-Transformation (1937). In another influential
book, Economic Control of Quality of Manufactured
Product (1931), the physicist Walter Shewart, a col-
league of Carson’s at Bell Laboratories, was one of the
first to promote statistics for industrial quality control
using so-called control charts.

However, many of these developments in applied
and industrial mathematics, both in Europe and Amer-
ica, occurred outside their national academic institu-
tions, notwithstanding the beginnings of systematic
academic training in applied mathematics in new insti-
tutes such as the one led by von Mises. A number of aca-
demically trained mathematicians and physicists were
impressed by the spectacular and revolutionary ideas
of relativity theory and quantum theory, but they were
slow to recognize the importance of those new appli-
cations, often in engineering, that relied on classical
mechanics.
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This aloofness of academic scientists prevailed in
the United States. The undisputed leader of American
mathematicians, George Birkhoff, was aware of that
when he addressed the American Mathematical Society
at its semicentennial in 1938 with the following words:

The field of applied mathematics always will remain of
the first order of importance inasmuch as it indicates
those directions of mathematical effort to which nature
herself has given approval.

Unfortunately, American mathematicians have shown
in the last fifty years a disregard for this most authen-
tically justified field of all.

There were exceptions, such as Norbert Wiener at the
Massachusetts Institute of Technology, who was based
in the mathematics department but interacted with
the electrical engineering department run by Vannevar
Bush (the inventor of the “differential analyzer,” an ana-
logue computer) and through it with Bell Laboratories,
and there were also the individual efforts of a number
of mathematicians with a European background. One of
the most successful of the latter was Harry Bateman,
Professor of Aeronautical Research and Mathematical
Physics at Caltech in Pasadena, who became a champion
of special functions during the 1930s and 1940s, and
who had earlier (immediately prior to his emigration
from England in 1910) discussed the Laplace transform
and applications to differential equations. However,
American academia was late in recognizing applied
mathematics, as exemplified by the abovementioned
report on Numerical Integration of Differential Equa-
tions (1933), in which the authors write that the report
was produced “without special grant for relief from
teaching from any of the institutions represented.”
Mathematical physicist Warren Weaver (who later, in
World War II, would lead the Applied Mathematics Panel
within the American war effort) was surprised, as late
as 1930, “at the emphasis given, in the discussion [on
a planned journal for applied mathematics], to the
field between mathematics and engineering.” During
the 1920s and 1930s, Rockefeller money had primarily
been geared toward supporting pure academic mathe-
matical and physical research, leaving applied research
in the hands of industry. It was left to the clever nego-
tiations of Richard Courant (Göttingen’s adherent to
applied mathematics) to win Rockefeller fellowships
for the applied candidates under his tutelage, such as
Wilhelm Cauer and Alwin Walther.

The 1920s and 1930s were also a time in which math-
ematical modeling came to the fore, although the term

“mathematical modeling” was rarely used before World
War II. In a 1993 article on the emergence of biomath-
ematics in Science in Context, the author Giorgio Israel
emphasizes the increasing role of mathematical mod-
eling in the nonphysical sciences:

Another important characteristic of the new trends of
mathematical modeling and applied mathematics is
interest in the mathematization of the nonphysical sci-
ences. The 1920s offer in fact an extraordinary concen-
tration of new research in these fields, which is devel-
oped from points of view more or less reflecting the
modeling approach. So the systematic use of math-
ematics in economics (both in the context of micro-
economics and game theory) is found in the work of K.
Menger, J. Von Neumann, O. Morgenstern, and A. Wald,
starting from 1928. The basic mathematical model of
the spread of an epidemic (following the research of
R. Ross on malaria) was published in 1927 [by W. O.
Kermack and A. G. McKendrick]; the first papers by S.
Wright, R. A. Fisher and J. B. S. Haldane on mathemati-
cal theory of population genetics appeared in the early
twenties; the first contributions of Volterra and Lotka
to population dynamics and the mathematical theory
of the struggle for existence were published in 1925
and 1926; and many isolated contributions (such as
van der Pol’s model) also appeared in these years.

Moreover, during the twentieth century there was a
certain tendency for mathematicians to be less inspired
by physics and to resort instead to less rigorous or less
complete models from other sciences, including engi-
neering. In 1977 Garrett Birkhoff, George Birkhoff’s son,
wrote:

Engineers and physicists create and adopt mathemat-
ical models for very different purposes. Physicists are
looking for universal laws (of “natural philosophy”),
and want their models to be exact, universally valid,
and philosophically consistent. Engineers, whose com-
plex artifacts are usually designed for a limited range
of operating conditions, are satisfied if their models
are reasonably realistic under those conditions. On the
other hand, since their artifacts do not operate in ster-
ilized laboratories, they must be “robust” with respect
to changes in many variables. This tends to make engi-
neering models somewhat fuzzy yet kaleidoscopic. In
fluid mechanics, Prandtl’s “mixing length” theory and
von Kármán’s theory of “vortex streets” are good exam-
ples; the “jet streams” and “fronts” of meteorologists
are others.

The same author, himself a convert from abstract
algebra to hydrodynamics, explains resistance to math-
ematical models in economics, pointing to the fact
that they did not fit well into Bourbaki’s “conventional
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framework of pure mathematics.” The latter has often

been described as in some respects being inimical to

applications and (since the “New Math” of the 1960s)

as being pedagogically disastrous. However, as detailed

by Israel in the paper quoted above, the relationship

between Bourbaki and the new practices in modeling

has not necessarily been negative. Some mathemati-

cians considered Bourbaki’s notion of mathematics as

an “abstract scheme of possible realities” to be the right

way to liberate mathematics from the classical reduc-

tionist mechanistic approach that had often relied on

linearization methods. There have even been efforts,

for instance by logicians, to introduce “planned arti-

ficial language” into the sciences, as exemplified in

J. H. Woodger’s The Axiomatic Method in Biology (1937).

However, these efforts seem to have had limited suc-

cess. It took another step in the development of com-

puters in the 1980s before necessarily simplified mod-

els of biological processes could be abandoned, and

investigations of cellular automata, membrane com-

puting, simulation of ecological systems, and simi-

lar tasks from modern mathematical biology could be

undertaken.

During the 1920s and 1930s, many further results

in different fields of application were obtained. Well-

known examples include Alan Turing’s work during

the 1930s on the theory of algorithms and computabil-

ity, and the Russian Leonid Kantorovich’s work on lin-

ear programming within an economic context (1939),

which escaped the attention of Western scholars for

several decades.

This was also a period in which some of the foun-

dations were laid for what would, from the late 1940s

on, be called numerical analysis. In 1928 Courant and

his students Kurt Friedrichs and Hans Lewy, all three of

whom eventually emigrated to the United States, pub-

lished “On the partial difference equations of mathe-

matical physics” in Mathematische Annalen. The paper

was translated in the IBM Journal of Research and

Development as late as 1967 on the grounds that it was

“one of the most prophetically stimulating develop-

ments in numerical analysis . . . before the appearance

of electronic digital computers.. . . The ideas exposed

still prevail.” In the history of numerical analysis,

the paper gained special importance because it con-

tains the germ of the notion of numerical stability

and involves the problem of well-posedness of par-

tial differential equations (as proposed by Hadamard

in 1902).

5 Applied Mathematics during and
after World War II

World War II, like World War I, was not a mathemati-

cians’ war. Indeed, in early 1942 the chemist, and Har-

vard president, James Conant said: “The last was a war

of chemistry but this one is a war of physics.” This of

course partially reflected the increasing role of math-

ematics in World War II, revealed by the use of ballis-

tics, operations research, statistics, and cryptography

throughout the conflict. In fact, the president of the

American National Academy of Sciences, the physicist

Frank B. Jewett, responded to Conant with the words:

“It may be a war of physics but the physicists say it

is a war of mathematics.” However, at the time, due

to lingering tradition, mathematics was not given the

same high priority as the other sciences either in the

preparation for warfare nor in war-related research. In

the early 1940s within the leading research organiza-

tions in the United States, in Germany, and in other

countries, mathematics was still subordinate to other

fields, such as engineering and physics. In addition,

the mathematicians themselves were not prepared for

a new and broader social role, e.g., as professionals in

industry, such as might be demanded by the war. When

considering the future of their field during and after

the war, many pure mathematicians were worried that

mathematics would suffer from a too utilitarian point

of view. This is exemplified by the well-known essay A

Mathematician’s Apology written by the leading English

mathematician G. H. Hardy in 1940.

But not long after Hardy’s essay was written, another

Cambridge mathematician, Alan Turing, demonstrated

the potential of sophisticated mathematics—a mix of

logic, number theory, and Bayesian statistics—for war-

fare, when he and his collaborators at Bletchley Park

broke the code of the German Enigma machine.

In Germany, the Diplommathematiker (mathematics

degree with diploma), which was designed for careers in

industry and the civil service, was officially introduced

in 1942, and teaching as a career for mathematicians

began to lose its monopoly.

The entry of the United States into World War II in

December 1941 brought with it deep changes in the

way mathematicians worked together with industry,

the military, and government. In the American Math-

ematical Monthly, rich memoirs on the state of indus-

trial mathematics and (academic) applied mathematics

in the United States by Thornton Fry (1941) and Roland
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Richardson (1943), respectively, were published. Prob-
ably the most spectacular development in communica-
tions mathematics took place in the 1940s at Bell Labo-
ratories with the formulation of information theory by
Claude Shannon.

Based on their European experiences, immigrants
to the United States such as von Kármán, Jerzy Ney-
man, von Neumann, and Courant contributed substan-
tially to a new kind of collaboration between math-
ematicians and users of mathematics. In the math-
ematical war work organized by the Applied Mathe-
matics Panel, where the leading positions were occu-
pied by Americans, with Warren Weaver at the head,
the applied mathematicians cooperated with mathe-
maticians of an originally purer persuasion, natives of
the United States (Oswald Veblen, Marston Morse) and
immigrants (von Neumann) alike.

As well as their political and administrative expe-
rience, the immigrants brought to their new environ-
ment European research traditions from engineering
mathematics, classical analysis, and discrete mathe-
matics. Ideas, such as those of von Neumann in theoret-
ical computing, could gradually mature and material-
ize within the industrial infrastructure of the United
States (Bell Laboratories, etc.), aided during the war by
seemingly unlimited public money (Los Alamos, etc.).
In March 1945, while the war was still on, von Neu-
mann sent a famous memo on the “Use of variational
methods in hydrodynamics” to Veblen. Von Neumann
recommended the “great virtue of Ritz’s method” and
deplored that before, and even during, the war mathe-
matical work had not been sufficiently centralized for a
systematic attack on the nonlinear equations occurring
in fluid mechanics and related fields. In the same memo
von Neumann pointed to the “increasing availability
of high-power computing devices,” a development to
which he had of course contributed substantially. As
mentioned in the introduction to the SIAM “History
of numerical analysis and scientific computing” Web
pages:

Modern numerical analysis can be credibly said to
begin with the 1947 paper by John von Neumann and
Herman Goldstine, “Numerical inverting of matrices of
high order” (Bulletin of the AMS, Nov. 1947). It is one
of the first papers to study rounding error and include
discussion of what today is called scientific computing.

Von Neumann and Goldstine’s results were soon fol-
lowed up and critically discussed by English mathe-
maticians (Leslie Fox and James Wilkinson, as well as

Alan Turing) at the National Physical Laboratory at

Teddington.

After the war, the increased level of U.S. federal fund-

ing for mathematics was maintained. Although partly

fueled by the beginning of the Cold War, it was nev-

ertheless no longer restricted to applications. Much of

it was channeled through the department of defense

(e.g., by the Office of Naval Research) and the new

National Science Foundation (NSF), which was founded

in 1950. The NSF was initiated by the electrical engineer

Vannevar Bush, who had led the Office for Scientific

Research and Development, the American war-research

organization. The concerns about exaggerated utilitar-

ianism that were harbored by pure mathematicians

before the war therefore turned out to be groundless.

As George Dantzig, the creator of the simplex meth-

od [IV.11 §3.1], observed, the outpouring of papers

in linear programming between 1947 and 1950 coin-

cided with the building of the first digital computers,

which made applications in the field possible. Mathe-

matical approaches to logistics, warehousing, and facil-

ity location were practiced from at least the 1950s,

with early results in optimization by Dantzig, William

Karush, Harold Kuhn, and Albert Tucker being enthu-

siastically received by (and utilized in the logistics pro-

grams of) the United States Air Force and the Office of

Naval Research. These optimization techniques are still

highly relevant to industry today.

The papers of the 1950 Symposium on Electromag-

netic Waves, sponsored by the United States Air Force

and published in the new journal Communications on

Pure and Applied Mathematics, summarized the war

effort in the field. Richard Courant, by then at New

York University, pointed to the importance of a new

approach to classical electromagnetism, where “a great

number of new problems were suggested by engineers.”

This strengthened the feeling, already evident before

the war, that the predominance of academic mathe-

matical physics as the main source of inspiration for

mathematical applications had begun to wane. Ironi-

cally, Courant’s paper of 1943 on variational methods

for the solution of problems of equilibrium and vibra-

tions, which would later be widely considered to be one

of the starting points for the finite-element method

[II.12] (the name being coined by R. W. Clough in 1960),

lay in obscurity for many years because Courant, not

being an engineer, did not link the idea to networks of

discrete elements. Another reason for the later break-

through was a development of variational methods of
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approximation in the theory of partial differential equa-
tions, which would ultimately prove to be vital to the
development of finite-element methods in the 1960s
(see J. T. Oden’s chapter in Nash (1990)). A thought-
ful historical look at the different ways mathematicians
and engineers use finite-element methods is given in
Babuška (1994).

New institutions for mathematical research, both
pure and applied, were created after the war. Among
them the institute under Richard Courant at New York
University developed the most strongly. In a 1954 gov-
ernment report it was stated that Courant’s institute
had an

enrollment of over 400 graduate students in mathe-
matics of which about half have a physics or engineer-
ing background.. . . The next largest figure, reported
from Brown University, is a whole order of magni-
tude smaller! In the way of a rough estimate this
means that New York University alone provides about
one third of this country’s annual output of applied
mathematicians with graduate training.

The figures are based on a questionnaire prepared
in connection with a conference organized in 1953 at
Columbia University in New York by F. Joachim Weyl,
the son of Hermann Weyl, as part of a Survey of Train-
ing and Research in Applied Mathematics sponsored by
the American Mathematical Society and by the National
Research Council under contract with the NSF. The con-
ference proceedings and the report both included dis-
cussions on not only the training of applied mathemati-
cians (particularly for industry, and including inter-
national comparisons) but also the increasing use of
electronic computing; a summary was published in the
Bulletin of the American Mathematical Society in 1954.

Between 1947 and 1954 the Institute for Numerical
Analysis at the University of California, Los Angeles,
sponsored by the National Bureau of Standards, played
a special role in training university staff in numerical
analysis and computer operations. The institute was
closed in 1954, a victim of McCarthyism.

Brown University’s summer school of applied me-
chanics, which were organized by Richardson from
1941 onward, had relied heavily on the contributions
of immigrants. This is also partly true of the first
American journal of applied mathematics, the Quar-
terly of Applied Mathematics, which began in 1943, and
of Mathematical Tables and Other Aids to Computation,
another Brown journal, which started the same year
under Raymond Archibald.

Figure 6 M. Abramowitz and I. A. Stegun, eds,
Handbook of Mathematical Functions (1964).

Various projects on mathematical tables and special

functions that had their origins early in the twentieth

century in various countries (the United Kingdom, Ger-

many, and the United States) received a boost from

the war. At Caltech, Arthur Erdélyi, with financial sup-

port from the Office of Naval Research, oversaw the

Bateman Manuscript Project—the collation and publi-

cation of material collected by Harry Bateman, who had

died in 1946—which led to the three-volume Higher

Transcendental Functions (1953–55).

The Mathematical Tables Project, which had been ini-

tiated by the Works Progress Administration in New

York in 1938, with Gertrude Blanch as its technical

director, was disbanded after the war but many of its

members moved to Washington in 1947 to become part

of the new National Applied Mathematics Laboratories

of the National Bureau of Standards. The latter’s confer-

ence of 1952 resulted in one of the best-selling applied

mathematics books of all time, Handbook of Mathe-

matical Functions with Formulas, Graphs and Mathe-

matical Tables (1964) by Milton Abramowitz and Irene
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Stegun, both of whom had worked under Blanch (fig-
ure 6). Meanwhile, Blanch herself, rather than go to
Washington, took a position at the Institute for Numer-
ical Analysis at University of California, Los Angeles
until its closure in 1954, where she worked with John
Todd and Olga Taussky. Taussky, a rare example of a
female pure mathematician who made contributions
to applied mathematics, had worked during the war
in Frazer’s group at the National Physical Laboratory
on flutter problems in supersonic aircraft and was an
important figure in the development of matrix theory.
Aware of certain resentments against applied math-
ematics from some mathematical quarters, in 1988
Taussky said:

When people look down on matrices, remind them of
great mathematicians such as Frobenius, Schur, C. L.
Siegel, Ostrowski, Motzkin, Kac, etc., who made impor-
tant contributions to the subject. I am proud to have
been a torchbearer for matrix theory, and I am happy
to see that there are many others to whom the torch
can be passed.

Computer developments rapidly changed the char-
acter of the table-making aspect of applied mathemat-
ics. As a result, Archibald’s journal had a rather short
life in its original form, being renamed Mathematics
of Computation in 1960 in order “to reflect the broad-
ened scope of the journal,” which, as the editor Harry
Polachek described, had “expanded to meet the need in
[the United States] for a publication devoted to numeri-
cal analysis and computation.” Private and government
institutes such as the Research and Development Cor-
poration (RAND), founded within the Douglas Aircraft
Company in October 1945, and professional organiza-
tions such as the Association for Computing Machin-
ery (1947), the Operations Research Society of Amer-
ica (1952), the Society for Industrial and Applied Math-
ematics (1952), and the Institute of Management Sci-
ences (1953) all testified to the broadening social base
for applied mathematics.

The technological development of computers and
software had ramifications for the development of
mathematical algorithms, particularly with respect to
their speed and reliability. In his treatment of ordi-
nary differential equations around 1910, Carl Runge
had no need of systematic error estimation—it was not
until after World War II that John Couch Adams’s mul-
tistep methods for the numerical solution of ordinary
differential equations from the mid-nineteenth century
were analyzed with respect to error estimation, after

they had been brought into a more practical form by
W. E. Milne in the United States (“Milne device”) in 1926.
However, postwar increases in computing speed led to
greater concern about numerical stability and to the
abandonment of methods like those of Milne. Euro-
peans were also strongly involved in these theoretical
developments. For example, in the 1930s the English-
man Richard Southwell had developed the so-called
relaxation method, an iterative method connected to
the numerical solution of partial differential equations
in elasticity theory. The story goes that Garrett Birkhoff
gave his doctoral student David M. Young the task of
“automating relaxation,” and Young introduced suc-
cessive overrelaxation in his 1950 thesis (see Young’s
chapter in Nash (1990)). Young’s deep analysis showed
how to choose the relaxation parameters automati-
cally in some important cases and thus provided a
method suitable for programming on digital comput-
ers. This was an important advance on Southwell’s
method, which had been designed for computation by
hand. The Norwegian–German Werner Romberg’s elim-
ination approach (1955) for improving the accuracy
of the trapezoidal rule relied on Richardson extrapo-
lation, a technique developed by the Englishman Lewis
Fry Richardson early in the century. Richardson intro-
duced finite-difference methods for the numerical solu-
tion of partial differential equations in 1910, of which
extrapolation is just one part. And he was the first to
apply mathematics, in particular the method of finite
differences, to weather prediction [V.18]. His book
Weather Prediction by Numerical Process (1922) was
republished by Cambridge University Press in 2007
with a new foreword. The Richardson–Romberg proce-
dure became widely known after it had been subjected
to a rigorous error analysis by the German Friedrich L.
Bauer and the Swiss Eduard L. Stiefel in the 1960s.
In 1956 the Swede Germund Dahlquist introduced,
within his theory of numerical instability, what Nick
Trefethen (in The Princeton Companion to Mathematics)
called “the fundamental theorem of numerical analysis:
consistency + stability = convergence.”

A major step in understanding the effects of round-
ing errors in linear algebra algorithms such as Gauss-
ian elimination was the development, principally by
the Englishman James Wilkinson, of backward error

analysis [I.2 §23], as described in Wilkinson’s influ-
ential 1963 and 1965 research monographs. The all-
important role of computer developments for the prac-
tical realization of previously existing theory is also
evident in the history of the fast fourier transform
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[II.10] (FFT), made famous by Cooley and Tukey in 1965:
the FFT was originally discovered by Gauss but it could
not be effectively applied before the advent of digital
computers.

Many of the European mathematicians mentioned
above worked in the United States for some of their
careers. The “Brain Drain” gradually replaced the flight
from Europe for political reasons, as observed in 1953
by the Dutch mathematician A. van Wijngaarden when
attending a Columbia University symposium:

The one thing that continues to worry us is that we lose
many of our best people to that big sink of European
scientific talent, the U.S.A.

However, there were many European mathematicians
who did not (or could not) follow the Brain Drain and
who worked on an equal level with the Americans,
among them many Russians. Nevertheless, there is no
doubt about the superior technological and industrial
infrastructure, particularly with respect to computing
facilities and software development, that existed in
the United States. Although this superiority was some-
times met with resentment, including by Alan Tur-
ing, it was admitted by Russians such as A. P. Ershov
and M. R. Shura-Bura (Metropolis et al. 1980) and by
Western European applied mathematicians such as the
Frenchmen Louis Couffignal, the cybernetics pioneer,
and Jacques-Louis Lions, the numerical analyst. For
this reason, the latter cooperated strongly with Russian
applied mathematicians, and he sometimes felt that the
lack of access to cutting-edge technology increased the
theoretical depth of their collaborative work.

From the 1930s Russian mathematicians had begun
publishing exclusively in Russian and no longer also
published in French and German. This practice, which
continued after the war, prompted the American Math-
ematical Society, with funding from the Office of Naval
Research, to begin a Russian translation project in
1947. SIAM followed suit in 1956, with support from
the NSF. The “Sputnik crisis” in 1957 caused American
mathematicians to look even more closely at the work
being done in the Soviet Union. The Russian-born Amer-
ican topologist Solomon Lefschetz, who was prompted
out of retirement by the event, persuaded the Martin
Aircraft Company to set up a mathematics research
center, at which he directed a large group working on
nonlinear differential equations.

And yet during the two decades following the war,
despite the relatively favorable material conditions of
the United States, applied mathematics lost some of

its reputation in comparison with pure mathematics.
In retrospect, of course, this period can be seen as one
of consolidation of methods and of waiting for more
powerful computational technology and for deeper
theoretical foundations to arrive.

For example, one could argue that parts of the reform
movement in teaching (“New Math”) in the early 1960s,
which was meant to correct obvious and perceived
shortcomings in American secondary education, coun-
teracted efforts to develop applied mathematics. This
movement was strongly influenced by the “purist” ide-
ology of Bourbaki and had worldwide ramifications,
threatening to undermine the development of pupils’
attitudes toward applications. In 1961, at a symposium
organized by SIAM in Washington, DC, on research
and education in applied mathematics, the chairman
deemed that

applied mathematics is something of a stepchild; I
might even say an out-of-step child, whose creations
are looked upon with equal disinterest by mathemati-
cians, physicists and engineers.

SIAM Review (1961)

On January 24 of the same year, the New York
Times ran a column entitled, “Russia may be losing
its traditional leadership in mathematics because of
overemphasis on applied research,” which prompted
the applied mathematician Harvey Greenspan from MIT
to make a critical response in American Mathematical
Monthly saying that, to the contrary,

the increased Russian emphasis in this area is really
cause for some serious concern on our part. . . . The
present system does not produce adequate numbers
of applied mathematicians and remedial steps must
soon be taken. The great majority of the senior fac-
ulty in applied mathematics are products of a European
education.

The real breakthrough for applied mathematics in
the United States came, however, with the rise of com-
puter technology and computer science in the 1970s
and 1980s, when, at the same time, the ideology of
Bourbaki was in retreat. The so-called Davis Report of
1984 on “Renewing U.S. Mathematics” was an impor-
tant event, leading to a near doubling of federal invest-
ment in mathematical research and including a spe-
cial mathematics of computing initiative. In 1989 the
Hungarian-born Peter Lax—who emigrated with his par-
ents to the United States in 1941 and studied at New
York University, and who in 2005 was a recipient of
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the Abel Prize in Mathematics “for his groundbreak-
ing contributions to the theory and application of par-
tial differential equations and to the computation of
their solutions”—signaled a new level of acceptance for
applied mathematics in his widely distributed paper in
SIAM Review on “The flowering of applied mathematics
in America”:

Whereas in the not so distant past a mathematician
asserting “applied mathematics is bad mathematics”
or “the best applied mathematics is pure mathemat-
ics” could count on a measure of assent and applause,
today a person making such statements would be
regarded as ignorant.

The publication of articles by working applied math-
ematicians in Metropolis et al. (1980) and Nash (1990),
and the extensive seven-volume historical project un-
dertaken by the Journal of Computational and Applied
Mathematics (2000), which was republished in Brezin-
ski and Wuytack (2001), seem to testify to a growing
self-confidence of applied mathematics within math-
ematics more widely. Some efforts, such as the pub-
lication of the “Top ten algorithms” in Computing in
Science and Engineering in 2000 (six of which are con-
tained in [I.5, table 2]), provoked controversial discus-
sions. Many practitioners of applied mathematics in
these and other publications reveal awareness of prob-
lems regarding the rigor and reliability of their meth-
ods, showing that the links between pure and applied
mathematics exist and continue to stimulate the field.
However, the standard philosophical approaches to
mathematics—circling repetitively around formalism,
logicism, and intuitionism, with no consideration of
applications and doing no justice to the ever-increasing
range of mathematical practice—are no longer satisfy-
ing either to mathematicians or to the public.

The unabated loyalty to pure mathematics as the
mother discipline sometimes leads to overcautious
reflection on the part of the applied mathematician.
A nice example is provided by Trefethen (again in
The Princeton Companion to Mathematics) in the con-
text of rounding errors and the problem of numerical
stability:

These men, including von Neumann, Wilkinson, For-
sythe, and Henrici, took great pains to publicize the
risks of careless reliance on machine arithmetic. These
risks are very real, but the message was communicated
all too successfully, leading to the current widespread
impression that the main business of numerical analy-
sis is coping with rounding errors. In fact, the main
business of numerical analysis is designing algorithms

that converge quickly; rounding-error analysis, while
often a part of the discussion, is rarely the central
issue. If rounding errors vanished, 90% of numerical
analysis would remain.

But it is not only these methodological concerns

that hold back applied mathematics. For example, Lax

(1989) mentions persisting problems in education and

the need to maintain training in classical analysis:

The applied point of view is essential for the much-
needed reform of the undergraduate curriculum, espe-
cially its sorest spot, calculus. The teaching of calculus
has been in the doldrums ever since research math-
ematicians gave up responsibility for undergraduate
courses.

The education and training of applied mathematicians

remains a central concern, and it is not even clear

whether the situation has changed significantly since

the Columbia University Conference of 1953. At that

time the applied mathematician and statistician John

Wilder Tukey, best known for the development of the

FFT algorithm and the box plot, declared with reference

to what is now called modeling:

Formulation is the most important part of applied
mathematics, yet no one has started to work on the
theory of formulation—if we had one, perhaps we
could teach applied mathematics.

A 1998 report by the NSF states that:

Careers in mathematics have become less attractive
to U.S. students. [Several] . . . factors contribute to this
change: (i) students mistakenly believe that the only
jobs available are collegiate teaching jobs, a job mar-
ket which is saturated (more than 1,100 new Ph.D.s
compete for approximately 600 academic tenure-track
openings each year); (ii) academic training in the
mathematical sciences tends to be narrow and to
leave students poorly prepared for careers outside
academia; (iii) neither students nor faculty understand
the kinds of positions available outside academia to
those trained in the mathematical sciences.

The same report underscores the undiminished depen-

dence of American pure and applied mathematics on

immigration from Europe and (now) from Asia, South

America, and elsewhere:

Although the United States is the strongest national
community in the mathematical sciences, this strength
is somewhat fragile. If one took into account only



78 I. Introduction to Applied Mathematics

home-grown experts, the United States would be weak-
er than Western Europe. Interest by native-born Amer-
icans in the mathematical sciences has been steadily
declining. Many of the strongest U.S. mathematicians
were trained outside the United States and even more
are not native born. A very large number of them
emigrated from the former Soviet Union following its
collapse. (Russia’s strength in mathematics has been
greatly weakened with the disappearance of research
funding and the exodus of most of its leading mathe-
maticians.) Western Europe is nearly as strong in math-
ematics as the United States, and leads in important
areas. It has also benefited by the presence of émigré
Soviet mathematical scientists.

The Fields Medals for Pierre-Louis Lions (son of

Jacques-Louis Lions) (1994), Jean-Christophe Yoccoz

(1994), Stanislav Smirnov (2010), and Cédric Villani

(2010) testify to the growing strength of European

applied mathematics and to the changed status of the

field within mathematics. Likewise, the awarding of the

Abel Prize of the Norwegian Academy of Science and

Letters to Peter Lax (2005), Srinivasa Varadhan (2007),

and Endre Szemerédi (2012) for predominantly applied

topics is a further indication of this shift. In addi-

tion, prestigious prizes devoted specifically to applica-

tions, with particular emphasis on connections to tech-

nological developments, have been founded in recent

decades. The fact that several of these prizes have been

named for mathematicians of outstanding theoretical

ability—the ACM A. M. Turing Award (starting in 1966),

the IMU Rolf Nevanlinna Prize (1981), the DMV and

IMU Carl Friedrich Gauss Prize (2006)—underscores the

unity of mathematics in its pure and applied aspects.

Meanwhile, problems remain in the academic–indus-

trial relationship and, connected to it, in the profession-

al image of the applied mathematician, as described in

the two most recent reports on “Mathematics in Indus-

try” (1996 and 2012) published by SIAM. The report for

2012 summarizes the situation:

Industrial mathematics is a specialty with a curious
case of double invisibility. In the academic world,
it is invisible because so few academic mathemati-
cians actively engage in work on industrial problems.
Research in industrial mathematics may not find its
way into standard research journals, often because the
companies where it is conducted do not want it to.
(Some companies encourage publication and others do
not; policies vary widely.) And advisors of graduates
who go into industry may not keep track of them as
closely as they keep track of their students who stay in
academia.

However, most of the problems mentioned in this

article with respect to academic applied mathematics

(research funding, the lack of applications in math-

ematics education, the need for migration between

national cultures) concern pure and applied math-

ematics alike. On the purely cognitive and theoret-

ical level, the difference between the two aspects of

mathematics—for all its interesting and important his-

torical and sociological dimensions—hardly exists, as

the above-quoted NSF report of 1998 underscores:

Nowadays all mathematics is being applied, so the term
applied mathematics should be viewed as a different
cross cut of the discipline.
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Part II

Concepts

II.1 Asymptotics
P. A. Martin

When sketching the graph of a function, y = f(x),
we may notice (or look for) lines that the graph
approaches, often as x → ±∞. For example, the graph
of y = x2/(x2 + 1) approaches the straight line y = 1
as x → ∞ (and as x → −∞). This line is called an asymp-
tote. Asymptotes need not be horizontal or straight,
and they may be approached as x → x0 for some
finite x0. For example, y = x4/(x2 +1) approaches the
parabola y = x2 as x → ±∞, and y = logx approaches
the vertical line x = 0 as x → 0 through positive val-
ues. Another example is that sinhx = 1

2 (e
x + e−x)

approaches 1
2 ex as x → ∞: we say that sinhx grows

exponentially with x.

The qualitative notions exemplified above can be
made much more quantitative. One feature that we
want to retain when we say something like “y = f(x)
approaches y = g(x) as x → ∞” is that, to be use-
ful, g(x) should be simpler than f(x), where “simpler”
will depend on the context. This is a familiar idea; for
example, we can approximate a smooth curve near a
chosen point on the curve by the tangent line through
that point.

When limx→x0[f (x)/g(x)] = 1, we write f(x) ∼
g(x) as x → x0, and we say that g(x) is an asymp-
totic approximation to f(x) as x → x0. For example,
sinhx ∼ x as x → 0 and tanhx ∼ 1 as x → ∞. A
famous asymptotic approximation of this kind is Stir-
ling’s formula from 1730: n! ∼ (2πn)1/2(n/e)n as
n→ ∞.

According to our definition, we have ex ∼ 1, ex ∼ 1+
x, and ex ∼ 1+2x, all as x → 0. On the other hand, we
have the Maclaurin expansion, ex = 1+x+ 1

2x
2 + · · · ,

which converges for all x; truncating this infinite series
gives good approximations to ex near x = 0, and these
approximations improve if we take more terms in the
series. This suggests that we should select 1+x and not

1 + 2x, so our definition of “∼” is too crude. We want
asymptotic approximations to be approximations, and
we want to be able to improve them by taking more
terms, if possible. With this in mind, suppose we have
a sequence of functions, φn(x), n = 0,1,2, . . . , with
the property that φn+1(x)/φn(x) → 0 as x → x0.
Standard examples are φn(x) = xn as x → 0 and
φn(x) = x−n as x → ∞. Let RN(x) = ∑N

n=0 anφn(x)
for some coefficients an. We write

f(x) ∼
∞∑
n=0

anφn(x) as x → x0,

and say that the series is an asymptotic expansion of
f(x) as x → x0 when, for each N = 0,1,2, . . . ,

[f (x)− RN(x)]/φN(x)→ 0 as x → x0. (1)

In words, the “error” f − RN is comparable to the first
term omitted, the one with n = N + 1. Note that the
definition does not require the infinite series to be con-
vergent (so that RN(x) may not have a limit as N → ∞
for fixed x). Instead, for each fixed N , we impose a
requirement on the error as x → x0, namely (1).

Asymptotic approximations may be convergent. For
example, we have ex ∼ 1+x+ 1

2x
2+· · · as x → 0. How-

ever, many interesting and useful asymptotic expan-
sions are divergent. As an example, the complementary
error function

erfc(x) = 2√
π

∫∞

x
e−t

2
dt

∼ e−x
2

x
√
π

[
1 +

∞∑
n=1

(−1)n
1 · 3 · · · (2n− 1)

(2x2)n

]
as x → ∞, where the series is obtained by repeated inte-
gration by parts of the defining integral. The series is
divergent, but taking a few terms gives a good approxi-
mation to erfcx, an approximation that improves as x
becomes larger.

Many techniques have been devised for obtaining
asymptotic expansions. Some are designed for func-
tions defined by integrals (such as erfcx), others for
functions that solve differential equations. Asymptotic
methods can also be used to estimate the complexity
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of an algorithm or to predict properties of large com-
binatorial structures and complex networks.

In many cases of interest, the function to be esti-
mated depends on parameters. Their presence may be
benign, but complications can arise. Suppose we are
interested in f(x, λ) when both x and the parameter
λ are large. Using standard methods, we may be able
to show that f(x, λ) ∼ g(x,λ) as x → ∞ for fixed
λ, and that f(x, λ) ∼ h(x,λ) as λ → ∞ for fixed x.
Then, the natural question to ask is: if we estimate
g(x,λ) for large λ and h(x,λ) for large x, do we get the
same answer? Simpler questions of this kind arise when
investigating the commutativity of limits: given that

L1 = lim
x→∞ lim

y→∞F(x,y), L2 = lim
y→∞ lim

x→∞F(x,y),

when does L1 = L2? In our context, with, for example,
f(x, λ) = (x + λ)/(x + 2λ), f ∼ 1 as x → ∞ but f ∼ 1

2
as λ → ∞, so standard asymptotic approximations
may fail when there are two or more variables. In
these situations, uniform asymptotic expansions are
needed. Inevitably, these are more complicated, but
they are often needed to gain a full understanding of
certain physical phenomena. For example, consider the
shadow of an illuminated sphere on a flat screen. It is
a dark circular disk. However, close inspection shows
that the shadow boundary is not sharp: the image
changes rapidly but smoothly as we cross the circular
boundary. Standard asymptotic techniques explain
what is happening in the illuminated and shadow
regions (the wavelength of light is much smaller than
the radius of the sphere, so their small ratio can be
exploited in building asymptotic approximations), but
uniform asymptotic approximations are needed to
explain the transition between the two.

For more on asymptotic methods, see the articles on
perturbation theory and asymptotics [IV.5], spe-

cial functions [IV.7], and divergent series: taming

the tails [V.8]. Another good source is chapter 2 of
NIST Handbook of Mathematical Functions (Cambridge
University Press, Cambridge, 2010), edited by F. W. J.
Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. (An
electronic version of the book is available at http://
dlmf.nist.gov.)

II.2 Boundary Layer

The mathematical idea of a boundary layer emerged
from an analysis of a physical problem arising in fluid

dynamics [IV.28]; the flow of a viscous fluid past a rigid
body. Suppose that the body has diameter L and U is

the speed of the flow far from the body. The Reynolds
number for the flow is Re = UL/ν , where ν is the
dynamic viscosity coefficient. Assume that the fluid is
not very viscous (meaning that Re � 1) so that the
flow can be well approximated by solving the governing
equations for a nonviscous fluid, the euler equations

[III.11]. This approximation is not good near the surface
of the body. There, viscous effects are important, so the
navier–stokes equations [III.23] must be used. Nev-
ertheless, good approximations can be constructed by
exploiting the fact that Re � 1. This is done within
a thin viscous boundary layer. The two solutions, one
in the boundary layer and one in the outer region, are
matched in a region where both are assumed to be
valid, and we therefore obtain a good approximation
everywhere in the fluid. This whole scheme was first
described and implemented by Ludwig Prandtl in 1904.

The idea of joining two solutions together is part of
an extensive suite of asymptotic techniques in which
large (or small) dimensionless parameters are identi-
fied and exploited. There can be more than two regions
and more than one large parameter. Sophisticated
matching procedures have been developed and applied
to many complicated problems, not just those arising
in fluid dynamics. See the article on perturbation

theory and asymptotics [IV.5].

II.3 Chaos and Ergodicity
Paul Glendinning

The term chaos is used with greater or lesser degrees
of precision to describe deterministic dynamics that
is nonperiodic and unpredictable. The word was first
used in this context by Li and Yorke in the title of
their article “Period three implies chaos” in 1975. Li and
Yorke were careful not to define the term too narrowly
and described their mathematical results using clearly
defined properties of solutions. In one of the early
textbooks on the subject (published in 1989), Devaney
defined chaos for discrete maps T on a metric space
X with xn+1 = T(xn), xn ∈ X. Devaney’s definition is
that T : X → X is chaotic on X if

(i) periodic orbits are dense in X,
(ii) the dynamics is transitive (so for any points x,y ∈

X it is possible to find a point in X that is arbitrar-
ily close to x whose orbit passes arbitrarily close
to y), and

(iii) the system has sensitive dependence on initial
conditions (SDIC) on X.

http://dlmf.nist.gov
http://dlmf.nist.gov
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SDIC means that there exists a precision ε > 0 such
that for every x ∈ X and δ > 0 there exists a point
y ∈ X within a distance δ of x and a time n such that
solutions started at x and y are at least a distance ε
apart after time n. SDIC is often described as imply-
ing a loss of predictability, or a loss of memory of ini-
tial conditions, although it is a little more complicated
than this suggests. Devaney’s definition was intended
to make it possible to ask sensible examination ques-
tions about chaos at undergraduate level, and by 1992
two groups had shown that (for appropriate systems)
the first two conditions imply the third, suggesting it is
not an ideal definition!

Another commonly used definition of chaos uses the
idea of Lyapunov exponents. These measure the asymp-
totic local expansion properties of solutions, so if (xn)
is an orbit of the one-dimensional map xn+1 = T(xn)
and T is differentiable, then the Lyapunov exponent of
x0 is

λ(x0) = lim
n→∞

1
n

n−1∑
k=0

log |T ′(xk)|

provided the limit exists. The dynamics is regarded as
chaotic if it is not “simple” (a union of periodic points,
for example) and typical points have positive Lyapunov
exponents.

Issues around definition notwithstanding, the idea of
chaos has radically changed the choices that applied
mathematicians make when modeling systems with
complicated temporal behavior. In particular, chaos
theory shows that apparently random behavior may
have a deterministic origin (see also dynamical sys-

tems [IV.20] and the lorenz equations [III.20]).

The analogy with probability theory is made mathe-
matically precise using ergodic theory, which connects
time averages of a quantity along an orbit with an
expected value. This expected value is a spatial integral,
and hence it is independent of the initial conditions.

The definition of ergodicity uses two ideas: invari-
ant sets and invariant measures. An invariant set X of
a map T satisfies X = T−1(X), and a map T with an
invariant set X has an invariant probability measure if
there is a measure μ such that μ(S) = μ(T−1(S)) for all
measurable sets S in X and μ(X) = 1.

The map T is ergodic with respect to an invariant
measure μ if μ(S) is either zero or one for all invari-
ant sets S. In other words, every invariant set is either
very small (measure zero) or it is essentially (up to
sets of measure zero) the whole set X. This means that
the dynamics is not decomposable into smaller sets,

a role played by the transitive property in Devaney’s

definition of chaos.

Ergodic maps have nice averaging properties. For all

integrable functions f on X the time average of f along

typical orbits equals the spatial average obtained by

integrating X with respect to the invariant measure:

lim
n→∞

1
n

n−1∑
k=0

f(Tk(x)) =
∫
X
f dμ

for almost all x ∈ X (with respect to the invariant mea-

sure μ). Thus μ can be interpreted as a probability mea-

sure of the dynamics, and if dμ = h(x)dx, then h can

be interpreted as a sort of probability density function

for the iterates of points under T . The “typical” Lya-

punov exponent of a one-dimensional map can then be

interpreted as the integral of f = log |T ′| with respect

to the invariant measure.
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II.4 Complex Systems
Paul Glendinning

Complex systems are dynamical models that involve

the interaction of many components. The study of

these systems is called complexity theory. Complex

systems are characterized by having large dimension

and complicated interactions.

There are many examples of complex systems across

the sciences. The reactions between chemicals in a liv-

ing cell can be considered as a complex system, where

the variables are the concentrations of chemicals and

the dynamics is defined by the chemical reactions that

can take place. A chemical can react with only a small

set of the chemicals present, so the connectivity is

generally low.

Other examples include the Internet, where individ-

ual computers are linked together in complex ways, and

electronic systems whose components are connected

on a circuit board. Agent-based models of human

behavior such as opinion formation within groups or

the movement of crowds are also complex systems.
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It is often hard to do much more than numerical sim-
ulations to determine the behavior of systems, lead-
ing to a somewhat limited phenomenological descrip-
tion of their behavior. There are two central meth-
ods in the study of complex systems that go further
than this, though again with limited concrete predic-
tive power. These are graph theory to characterize
how components influence each other, and dimension
reduction methods to capture (where applicable) any
lower-dimensional approximations that determine the
evolution of the system.

If the system has real variables xi, i = 1, . . . , N , then
each variable can be identified with the node of a graph
labeled by i, with an edge from i to j if the dynamics
of xj is directly influenced by xi (see graph theory

[II.16]). For example, if the evolution is determined by a
differential equation then ẋi = fi(x1, x2, . . . , xN), but
not every variable need appear explicitly in the argu-
ment of fi, so there is an edge from xj to xi only if
∂fi/∂xj is not identically zero. This graph can be rep-
resented by an adjacency matrix (aij) with aij = 1 if
there is an edge from i to j and aij = 0 otherwise. The
degree of a node is the number of edges at the node
(this can be split into the in-degree (respectively, out-
degree) if only edges ending (respectively, starting) at
the node are counted). The proportion of nodes with
degree k is the degree distribution of the network. Prop-
erties of the degree distribution are often used to char-
acterize the network. For example, if the degree dis-
tribution obeys a power law, the network is said to be
scale free (the Internet is supposedly of this type; see
network analysis [IV.18]).

By analyzing subgraphs of biological models it was
found that some subgraphs appear in examples much
more often than would be expected on the basis of a
statistical analysis. This has led to the conjecture that
these motifs may have associated functional properties.

In many complex systems the individual components
of the system behave according to very simple, though
often nonlinear, rules. For example, a bird in a flock may
change its direction of flight as a function of the aver-
age direction of flight of nearby birds. Although this is
a local rule, the effect across the entire flock of birds is
to produce coherent movement of the flock as a whole.
This effect, whereby simple local rules lead to inter-
esting global results, is called emergent behavior. The
emergent behavior resulting from given local rules is
often unclear until the system is simulated numerically.

In some cases the dimension of the problem can be
reduced, so fewer variables need to be considered, mak-

ing the system easier to simulate and more amenable
to analysis. The methods of dimension reduction often
rely on singular value decomposition [II.32] tech-
niques to identify the more dynamically active direc-
tions in phase space, and then an attempt is made to
project the system onto these directions and analyze
the resulting system.

In some systems the mean-field theory of theoretical
physics can be used to understand collective behavior.

Since complexity theory encompasses so many dif-
ferent models, the range of possible dynamic phenom-
ena is vast, even before further complications such as
stochastic effects or network evolution are included.
Complex systems describing neuron interactions in
the brain can model pattern recognition and memory
(see mathematical neuroscience [VII.21]). Numeri-
cal models of partial differential equations are com-
plex systems, and the dynamical behavior can include
synchronization, in which all components lock on to
a similar pattern of behavior, and pattern forma-

tion [IV.27]. Different parts of the system may behave
in dynamically different ways, with regions of frus-
tration (or fronts) separating them. Interactions may
have different strengths, leading to different timescales
in the problem. This is particularly true of many bio-
logical models and adds to the difficulty of modeling
phenomena accurately.
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II.5 Conformal Mapping
Darren Crowdy

1 What Is a Conformal Mapping?

Conformal mapping is the name given to the idea of
interpreting an analytic function of a complex variable
in a geometric fashion. Let z = x+ iy and suppose that
another complex variable w is defined by

w = f(z) = φ(x,y)+ iψ(x,y),

where φ and ψ are, respectively, the real and imagi-
nary parts of some function f(z), an analytic function
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of z. One can think of this relation as assigning a cor-
respondence between points in the complex z-plane
and points in the complex w-plane. Under this func-
tion a designated region of the z-plane is transplanted,
or “mapped,” to some region in the w-plane, as illus-
trated in figure 1. The shape of the image will depend
on f . The fact that f is an analytic function implies
certain special properties of this mapping of regions. If
the mapping is to be one-to-one, then a necessary, but
not sufficient, condition is that the derivative f ′(z) =
df/dz does not vanish in the z-region of interest.

A simple example is the Cayley mapping

w = f(z) = 1 + z
1 − z .

This maps the interior of the unit disk |z| < 1 in the
z-plane to the right half w-plane Rew > 0. The point
z = 1 maps to w = ∞, and z = −1 maps to w = 0.
The unit circle |z| = 1 maps to the imaginary w-axis.
Conformal mappings clearly preserve neither area nor
perimeters; their principal geometrical feature is that
they locally preserve angles. To see this, note that since
f(z) is analytic at a point z0, it has a local Taylor
expansion there:

w = f(z0)+ f ′(z0)(z − z0)+ · · · .
If δz = z−z0 is an infinitesimal line element through z0

in the z-plane, its image δw under the mapping defined
as δw = w−w0, wherew0 = f(z0), is, to leading order,

δw ≈ f ′(z0)δz.

But f ′(z0) is just a nonzero complex number so, under
a conformal mapping, all infinitesimal line elements
through z0 are transplanted to line elements through
w0 in thew-plane that are simply rescaled by the mod-
ulus of f ′(z0) and rotated by its argument. In particu-
lar, the angle between two given line elements through
z0 is preserved by the mapping.

2 The Riemann Mapping Theorem

The Riemann mapping theorem is considered by many
to be the pinnacle of achievement of nineteenth-cen-
tury mathematics. It is an existence theorem: it states
that there exists a conformal mapping from the unit z-
disk to any given simply connected region (no holes) in
the w-plane, so long as it is not the entire plane.

3 Conformal Invariance

One reason why conformal mappings are an impor-
tant tool in applied mathematics is the property of con-
formal invariance of certain boundary-value problems

z-plane w-plane

w = f (z)

Figure 1 A conformal mapping from a region in a
complex z-plane to a region in a complex w-plane.

arising in applications. An example is the boundary-
value problem determining Green’s function G(z;z0)
for the Laplace equation in a region D in R2 with
boundary ∂D, which can be written as

∇2G = δ(2)(z − z0) in D with G = 0 on ∂D,

where z0 is some point inside D and δ(2) is the two-
dimensional dirac delta function [III.7]. The Green
function for the unit disk |z| < 1 is known to be

G(z;z0) = Im
[

i
2π

log
(

z − z0

|z0|(z − 1/z0)

)]
,

where z0 is the complex conjugate of z0. Now ifD is any
other simply connected region of a complex w-plane,
the corresponding Green function inD is nothing other
thanG(f−1(w);f−1(w0)), where f−1(w) is the inverse
function of the conformal mapping taking the unit z-
disk to D. Geometrically, f−1(w) is just the inverse
conformal mapping transplanting D to the unit disk
|z| < 1. The Green function in any simply connected
region D is therefore known immediately provided the
conformal mapping between D and the unit disk can
be found.

4 Schwarz–Christoffel Mappings

The Riemann mapping theorem is nonconstructive and,
while the existence of a conformal mapping between
given simply connected regions is guaranteed, the prac-
tical matter of actually constructing it is another story.
One of the few general constructions often used in
applications is the Schwarz–Christoffel mapping. This
is a conformal mapping from a standard region such as
the unit z-disk |z| < 1 to the region interior or exterior
to an N-sided polygon. At the preimage of any vertex
of the polygon (a prevertex), the local argument out-
lined earlier demonstrating the preservation of angles
between infinitesimal line elements must fail. Indeed, at
any such prevertex it can be argued that the derivative
f ′(z) of the conformal mapping must have a simple
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Figure 2 A Schwarz–Christoffel mapping from the unit
z-disk to the interior of a square in a w-plane. A function
of the form (1) with N = 4 identifies a point w with a point
z. Here, β1 = β2 = β3 = β4 = π/2.

zero, a simple pole, or a branch point singularity. The
general formula for a mapping from |z| < 1 to the
interior of a bounded polygon in a w-plane is

w = f(z) = A+ B
∫ z N∏

k=1

(
1 − z′

zk

)(βk/π−1)
dz′, (1)

while the formula for a mapping from |z| < 1 to the
exterior of a bounded polygon in aw-plane, with z = 0
mapping to w = ∞, is

w = f(z) = A+ B
∫ z N∏

k=1

(
1 − z′

zk

)(βk/π−1) dz′

z′2
. (2)

The parameters {βk | k = 1,2, . . . , N} are the turn-
ing angles shown in figure 2; the points {zk | k =
1,2, . . . , N} are the prevertices. A and B are complex
constants. These so-called accessory parameters are
usually computed numerically by fixing geometrical
features such as ensuring that the sides of the poly-
gon have the required length. A famous mapping of
Schwarz–Christoffel type known for its use in aerody-
namics is the Joukowski mapping,

w = f(z) = 1
2

(
z + 1

z

)
,

which maps the unit disk |z| < 1 to the infinite region
exterior to a flat plate, or airfoil, lying on the real w-
axis between w = −1 and w = 1. It is a simple mat-
ter to derive it from (2) with the prevertices z1 = 1,
z2 = −1 and turning angles β1 = β2 = 2π . Since it is
natural, given any two-dimensional shape, to approxi-
mate it by taking a set of points on the boundary and
joining them with straight line segments to form a poly-
gon, the Schwarz–Christoffel formula has found many
uses in applied mathematics. Versatile numerical soft-
ware to compute the accessory parameters has also
been developed.
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II.6 Conservation Laws
Barbara Lee Keyfitz

1 Quasilinear Hyperbolic Partial
Differential Equations

A system of first-order partial differential equations
(PDEs) in the form

ut +
d∑
i=1

Ai(x, t,u)uxi + b(x, t,u) = 0, (1)

where u ∈ Rn, b ∈ Rn, the Ai are n× n matrices, and
ut ≡ ∂u/∂t and uxi ≡ ∂u/∂xi, is said to be quasilinear ;
the system is nonlinear as defined in the article partial

differential equations [IV.3], but the terms contain-
ing derivatives of u appear only in linear combination.
Identifying t as a time variable andx = (x1, . . . , xd) as a
space variable, the Cauchy problem asks for a solution
to (1) for t > 0 with the initial condition

u(x,0) = u0(x). (2)

By analogy with the theory of linear PDEs, one expects
this problem to be well-posed only if the system is
hyperbolic, which means that all the roots τ(ξ) (known
as characteristics) of the polynomial equation

det
(
τI +

d∑
i=1

Aiξi
)
= 0 (3)

are real for all ξ ∈ Rd and, as eigenvalues of the matrix∑d
i=1Aiξi, each has equal algebraic and geometric

multiplicities [II.22].
In 1974 Fritz John showed that if d = 1, and the sys-

tem is genuinely nonlinear (meaning that ∇ξτi · ri ≠ 0
for each root τi of (3) and corresponding eigenvector
ri), then for smooth Cauchy data at least one com-
ponent of ∇u tends to infinity in finite time, exactly
as in the burgers equation [III.4] (see also partial

differential equations [IV.3 §3.6]).
Characteristics in hyperbolic systems define the

speed of propagation of signals in specific directions
(normal to ξ), so genuine nonlinearity says that this
speed is a nontrivial function of the state u. This has
physical significance as a description of the phenomena
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modeled by conservation laws, and it has mathemati-
cal implications for the existence of smooth solutions.
Specifically, the behavior seen in solutions of the Burg-
ers equation typifies solutions of genuinely nonlinear
hyperbolic systems.

Furthermore, despite the fact that distribution

solutions [IV.3 §5.2] are well defined for linear hyper-
bolic equations, the concept fails for quasilinear sys-
tems since, in the first place, Ai and Aiuxi are not
defined ifu lacks sufficient smoothness, and, in the sec-
ond, the standard procedure of creating the weak form
of an equation (multiply by a smooth test function and
integrate by parts) does not usually succeed in eliminat-
ing ∇u from the system when A = A(u) depends in a
nontrivial way on u. The exception is when each Aiuxi
is itself a derivative: Aiuxi = ∂xifi(u). This happens
if each row of each Ai is a gradient, and that happens
only if the requisite mixed partial derivatives are equal.
In this case, we have a system of balance laws:

ut +
d∑
i=1

(fi(x, t,u))xi + b(x, t,u) = 0. (4)

In the important case in which b ≡ 0, we have a system
of conservation laws. The weak form of (4) is∫∫ [

uϕt +
d∑
i=1

(fi(x, t,u))ϕxi −b(x, t,u)ϕ
]

dx dt = 0.

(5)
Since this is the only case in which solutions to (1) can
be unambiguously defined, the subject of quasilinear
hyperbolic systems is often referred to as “conserva-
tion laws.”

A mathematical challenge in conservation laws is to
find spaces of functions that are inclusive enough to
admit weak solutions for general classes of conserva-
tion laws but regular enough that solutions and their
approximations can be analyzed. At this time, there is
a satisfactory well-posedness theory only in a single
space dimension.

2 How Conservation Laws Arise

Problems of importance in physics, engineering, and
technology lead to systems of conservation laws; a
sample selection of these problems follows.

2.1 Compressible Flow

The basic equations of compressible fluid flow, derived
from the principles of conservation of mass, momen-
tum, and energy, along with constitutive equations

relating thermodynamic quantities, take the form

ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u)+∇p = 0,

(ρE)t + div(ρuH) = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6)

where ρ represents density, u velocity, p pressure, E
energy, and H enthalpy, with

E = 1
2 |u|2 + 1

γ − 1
p
ρ
, H = γE,

and γ a constant that depends on the fluid (γ = 1.4
for air). To obtain the first equation in (6), one notes

that the total amount of mass in an arbitrary control

volume D is the integral over D of the density, and this

changes in time if there is flux through the boundary Γ
of D. Furthermore, the flux is precisely the product of

the density and the velocity normal to that boundary,

from which we obtain

d
dt

∫∫
D
ρ dV = −

∫
Γ
ρu · ν dA. (7)

(The negative sign will remind the reader of the conven-

tion that ν is the outward normal, and flow out ofD will

decrease the mass contained in D.) Interchanging dif-

ferentiation and integration on the left in (7), along with

an application of the divergence theorem [I.2 §24] on

the right, immediately yields∫∫
D
(ρt + div(ρu))dV = 0. (8)

Finally, the observation that D is an arbitrary domain

in the region allows one to pass to the infinitesimal

version in (6). The integral version (8) also justifies the

weak form (5), since if (8) holds on arbitrary domains

then it is possible to form weighted averages with arbi-

trary differentiable functions ϕ and to integrate by

parts, which produces (5).

In compressible flow, the speed of sound is finite; in

(6) it is one of the characteristics. Steady flow at speeds

that exceed the speed of sound also gives a hyperbolic

system of conservation laws (6) with the time deriva-

tives absent. In this case, the hyperbolic direction (the

time-like variable) is given by the flow direction.

Conservation principles also lead to equations for

elasticity [IV.26 §3.3] and magnetohydrodynamics

[IV.29]. Industrial applications include continuum mod-

els for multiphase flow (e.g., water mixed with steam

in nuclear reactor cooling systems, or multicomponent

flows in oil reservoirs).

The necessity of solving, or at least approximating,

conservation laws for many of these applications has
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resulted in extensive techniques for numerical simu-
lation of solutions, even when existence of solutions
remains an open question.

2.2 Chromatography

Chromatography is a widely used industrial process for
separating chemical components of a mixture by differ-
ential adsorption on a substrate. Modeling a chromato-
graphic column leads to a system of conservation laws
in a single space variable that takes the form

cx + (f (c))t = 0,

where c = (c1, . . . , cn) is a vector of component con-
centrations and f is the equilibrium column isotherm.
A common model for f uses the Langmuir isotherm
and gives, with positive parameters αi measuring the
relative adsorption rates,

fi = ci +
αici

1 +∑ cj , 1 � i � n.

2.3 Other Models

Many other physical phenomena lead naturally to con-
servation laws. For example, a continuum model for
vehicular traffic on a one-way road is the scalar equa-
tion

ut + q(u)x = 0,

where u represents the linear density of traffic and
q(u) = uv(u) the flux, where v is velocity. As in (7),
this equation is a conservation law, the “law of con-
servation of cars.” This model assumes that the veloc-
ity at which traffic moves depends only on the traffic
density. Although this model is too simple to be of
much practical use, it is appealing as a pedagogical tool.
Adaptations of it are of interest in current research.
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II.7 Control

A system is a collection of objects that interact and pro-
duce various outputs in response to different inputs.
Systems arise in a wide variety of situations and include
chemical plants, cars, the human body, and a coun-
try’s economy. Control problems associated with these
systems include the production of a chemical, control
of self-driving cars, the regulation of bodily functions
such as temperature and heartbeat, and the control of
debt. In each case one wants to have a way of con-
trolling these processes automatically without direct
human intervention.

A general control system is depicted in figure 1. The
state of the system is described by n state variables xi,
and these span the state space. In general, the xi cannot
be observed or measured directly, but p output vari-
ables yi, which depend on the xi, are known. The sys-
tem is controlled by manipulating m control variables
ui.

The system might be expressed as a system of dif-
ference equations (discrete time) or differential equa-
tions (continuous time). In the latter case a linear,
time-invariant control problem takes the form

dx
dt

= Ax(t)+ Bu(t),

y(t) = Cx(t)+Du(t),
where A, B, C , and D are n × n, n ×m, p × n, and
p ×m matrices, respectively. This is known as a state-
space system. In some cases an additional n×nmatrix
E, which is usually singular, premultiplies the dx/dt
term; these so-called descriptor systems or generalized
state-space systems lead to differential-algebraic

equations [I.2 §12].

A natural question is whether, given a starting value
x(0), the input u can be chosen so that x takes a given
value at time t. Questions of this form are fundamental
in classical control theory.

If feedback occurs from the outputs or state variables
to the controller, then the system is called a closed-loop
system. In output feedback, illustrated in figure 1, u
depends on y , while in state feedback u depends on x.
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Controller System

Feedback

u y

Figure 1 Control system.

For example, in state feedback we may haveu = Fx, for
somem×nmatrix F . Then dx/dt = (A+BF)x, which
leads to questions about what properties the matrix
A+ BF can be given by suitable choice of F .

For more details, see control theory [IV.34].

II.8 Convexity
Didier Henrion

The notion of convexity is central in applied mathemat-
ics. It is also used in everyday life in connection with
the curvature properties of a surface. For example, an
optical lens is said to be convex if it is bulging outward.

Convexity appears in ancient Greek geometry, e.g., in
the description of the five regular convex space poly-
hedra (the platonic solids). Archimedes (ca. 250 b.c.e.)
seems to have been the first to give a rigorous defini-
tion of convexity, similar to the geometric definition we
use today: a set is convex if it contains all line segments
between each of its points.

In his study of singularities of real algebraic curves,
Newton (ca. 1720) introduced a convex polygon in the
plane built from the exponents of the monomials of
the polynomial defining the curve; this is known as
the Newton polygon. Cauchy (ca. 1840) studied convex
curves and remarked, for example, that, if a closed con-
vex curve is contained in a circle, then its perimeter
is smaller than that of the circle. Convex polyhedra
were studied by Fourier (ca. 1825) in connection with
the problem of the solvability of linear inequalities.

A central figure in the modern development of con-
vexity is Minkowski, who was motivated by problems
from number theory. In 1891 Minkowski proved that,
in Euclidean space Rn, every compact convex set with
center at the origin and volume greater than 2n con-
tains at least one point with integer coordinates dif-
ferent from the origin. From Minkowski’s work follows
the classical isoperimetric inequality, which states that
among all convex sets with given volume, the ball is
the one with minimal surface area. In 1896 Minkowski
considered systems of the form Ax � 0, where A
is a real m×n matrix and x ∈ Rn. Together with

x

y

y

x

(a)

(b)

Figure 1 (a) A convex set. (b) A nonconvex set.

the above-mentioned contribution by Fourier, this laid

the groundwork for linear programming [IV.11 §3],

which emerged in the late 1940s, with key contribu-

tions by Kantorovich (1912–86) and Dantzig (1914–

2005). In the second half of the twentieth century,

convexity was developed further by Fenchel (1905–88),

Moreau (1923–), and Rockafellar (1935–), among many

others. Convexity is now a key notion in many branches

of applied mathematics: it is essential in mathemati-

cal programming (to ensure convergence of optimiza-

tion algorithms), functional analysis (to ensure exis-

tence and uniqueness of solutions of problems of cal-

culus of variations and optimal control), geometry (to

classify sets and their invariants, or to relate geometri-

cal quantities), and probability and statistics (to derive

inequalities).

Convex objects can be thought of as the opposite,

geometrically speaking, to fractal objects. Indeed, frac-

tal objects arise in maximization problems (sponges,

lungs, batteries) and they have a rough boundary. In

contrast, convex objects arise in minimization prob-

lems (isoperimetric problems, smallest energy) and

they have a smoother boundary.

Mathematically, a set X is convex if, for all x,y ∈ X
and for all λ ∈ [0,1], λx + (1 − λ)y ∈ X (see fig-

ure 1). Geometrically, this means that the line seg-

ment between any two points of the set belongs to
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Figure 2 (a) A convex function. (b) A nonconvex function.

the set. A real-valued function f : X → R is convex if,
for all x,y ∈ X and for all λ ∈ [0,1], it holds that
f(λx + (1 − λ)y) � λf(x) + (1 − λ)f(y). Geometri-
cally, this means that the line segment between any two
points on the graph of the function lies above the graph
(see figure 2). This is the same as saying that the epi-
graph {(x,y) : x ∈ X, y � f(x)} is a convex set. If
a function is twice continuously differentiable, convex-
ity of the function is equivalent to nonnegativity of the
quadratic form of the matrix of second-order partial
derivatives (the Hessian).

If the function f is convex, then f(λ1x1 + · · · +
λmxm) � λ1f(x1)+ · · · + λmf(xm) for all x1, . . . , xm
in X and λ in the m-dimensional unit simplex {λ ∈
Rm : λ1 + · · · + λm = 1, λ1 � 0, . . . , λm � 0}. This
is called Jensen’s inequality, and more generally it
can be expressed as f(

∫
xμ(dx)) �

∫
f(x)μ(dx) for

every probability measure μ supported on X, or equiv-
alently as f(E[x]) � E[f(x)], where E denotes the
expectation of a random variable.

A function f is concave whenever the function −f
is convex. If a function f is both convex and concave,
it is affine. For this reason, convexity can sometimes
be interpreted as a one-sided linearity, and in some
instances (e.g., in problems of calculus of variations

and partial differential equations), nonlinear convex
functions behave similarly to linear functions.

A set X is a cone if x ∈ X implies λx ∈ X for
all λ � 0. A convex cone is therefore a set that is
closed under addition and under multiplication by pos-
itive scalars. Convex cones are central in optimization,
and conic programming is the minimization of a lin-
ear function over an affine section of a convex cone.
Important examples of convex cones include the linear
cone (also called the positive orthant), the quadratic
cone (also called the Lorentz cone), and the semidef-
inite cone (which is the set of nonnegative quadratic
forms, or, equivalently, the set of positive-semidefinite
matrices).

The convex hull of a set X is the smallest closed con-
vex set containing X, which is sometimes denoted by
convX. If X is the union of a finite number of points,
then convX is the polytope with vertices among these
points. A theorem by Carathéodory states that given a
set X ⊂ Rn−1, every point of convX can be expressed
as λ1x1 + · · · + λnxn for some choice of x1, . . . , xn in
X and λ in the n-dimensional unit simplex.

A theorem of Minkowski (generalized to infinite-
dimensional spaces in 1940 by Krein and Milman)
states that every compact convex set is the closure of
the convex hull of its extreme points (a point x ∈ X is
extreme if x = (x1 +x2)/2 for some x1, x2 ∈ X implies
x1 = x2). Finally, we mention the Brunn–Minkowski
theorem, which relates the volume of the sum of two
compact convex sets (all points that can be obtained by
adding a point of the first set to a point of the second
set) to the respective volumes of the sets.
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II.9 Dimensional Analysis and Scaling
Daniela Calvetti and Erkki Somersalo

Dimensional analysis makes it possible to analyze in
a systematic way dimensional relationships between



II.9. Dimensional Analysis and Scaling 91

physical quantities defining a model. In order to explain
how this works, we need to introduce some definitions
and establish the notation that will be used below.
Consider a system that contains n physical quanti-
ties, q1, q2, . . . , qn, that we believe to be relevant for
describing the system’s behavior, the quantities being
expressed using r fundamental units, or dimensions,
denoted by d1, d2, . . . , dr . The generally accepted SI
unit system consists of r = 7 basic dimensions and
numerous derived dimensions. More precisely,d1 is the
meter (m), d2 the second (s), d3 the kilogram (kg), d4

the ampere (A), d5 the mole (mol), d6 the kelvin (K), and
d7 the candela (cd). The number r can be smaller, since
not all units are always needed. The physical dimension
of a quantity q is denoted by [q].

A meaningful mathematical relation between the
quantities qj should obey the principle of dimensional
homogeneity, which can be summarized as follows:
summing up quantities is meaningful only if all the
terms have the same dimension. Furthermore, any func-
tional relation of the type

f(q1, q2, . . . , qn) = 0 (1)

should remain valid if expressed in different units.
In other words, since dimensional scaling must not
change the equation, it is natural to seek to express
the relations in terms of dimensionless quantities. It
is therefore not a surprise that dimensionless quanti-
ties, known asΠ-numbers, have a central role in dimen-
sional analysis. A canonical example of a Π-number
is π , the invariant ratio of the circumference and the
diameter of circles of all sizes.

Given a system described by the physical quanti-
ties q1, q2, . . . , qn, we will define a Π-number, or a
dimensionless group, to be any combination of those
quantities of the form

R = qμ1
1 q

μ2
2 · · ·qμnn , (2)

where the μj are rational numbers, not all equal to zero,
and R is dimensionless. If, in such a system, we are able
to identify k Π-numbers, R1, . . . , Rk, that characterize
it, we can describe it with a dimensionless version of
(1) of the form

ϕ(R1, R2, . . . , Rk) = 0.

The advantage of the latter formulation is that it auto-
matically satisfies the dimensional homogeneity; more-
over, it does not change with any scaling of the model
that leaves the values of the Π-numbers invariant.
These points are best clarified by a classical example
of dimensional analysis.

Consider steady fluid flow in a pipe of constant diam-
eter D. The fluid is assumed to be incompressible, hav-
ing density ρ and viscosity μ. By denoting the pres-
sure drop across a distance L by Δp and the (average)
velocity by v , we may assume that there is an algebraic
relation between the quantities:

f(L,D,ρ, μ, v,Δp) = 0. (3)

In SI units, the dimensions of the variables involved are

[L] = [D] = m, [ρ] = kg
m3
, [μ] = kg

m · s
,

[v] = m
s
, [Δp] = kg

m · s2
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4)

In his classic paper of 1883, Osborne Reynolds sug-
gested a scaling law of the form

Δp = ρv2 L
D
F
(
ρvD
μ

)
, (5)

where F is some function; Reynolds himself considered
the power law F(R) = cR−n with different values of
n and experimentally validated it. Equation (5) can be
seen as a dimensionless version of (3),

ϕ(R1, R2, R3) = 0,

where

R1 = ρvD
μ
, R2 = Δp

ρv2
, R3 = L

D
.

The quantities R1 and R2 are known as the Reynolds
number and the Euler number, respectively, and it is
a straightforward matter to check that R1, R2, and R3

are dimensionless. The scaling law (5) has been experi-
mentally validated in a range of geometric settings. An
example of its use is the design of miniature models.
If the dimensions are scaled by a factor α, L → αL,
D → αD, we may assume that the flow in the minia-
ture model gives a good prediction for the actual sys-
tem if we scale the velocity and pressure as v → v/α
and Δp → Δp/α2, leaving the dimensionless quantities
intact.

In view of the above example it is natural to ask how
many Π-numbers characterize a given system and if
there is a systematic way of finding them. To address
these questions it is important to identify possible
redundancy among the physical quantities, on the one
hand, and the dimensions, on the other. With this in
mind we introduce the concepts of independency and
relevance of the dimensions.

The dimensions d1, . . . , dr are independent if none
can be expressed as a rational product of the others,
that is,

dα1
1 d

α2
2 · · ·dαrr = 1 (6)
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if and only if α1 = α2 = · · · = αr = 0. The dimensions
dj may be the fundamental dimensions of the SI unit
system or derived dimensions, such as the newton (N =
kg/m · s2).

It is not a coincidence that this definition strongly
resembles that of linear independency in linear algebra,
as will become evident later.

Let a system be described by n quantities, q1, . . . , qn,
and r dimensions, d1, . . . , dr , with the dimensional
dependency

[qj] = dμj11 dμj22 · · ·dμjrr , 1 � j � n. (7)

We say that the dimensions dk, 1 � k � r , are relevant
if for each dk there are rational coefficients αkj such
that

dk = [q1]αk1[q2]αk2 · · · [qn]αkn . (8)

In other words, the dimensions dk are relevant if they
can be expressed in terms of the dimensions of the vari-
ables qk. It follows immediately that, if the quantities qj
can be measured, then there must exist an operational
description of all units in terms of the measurements.
Identifying relevant quantities may be more subtle than
it seems.

For the sake of definiteness, assume that we adhere
to the SI system, and denote the seven basic SI units by
e1, e2, . . . , e7, the ordering being unimportant. We now
proceed to define an associated dimension space: to
each ei we associate a vector ei ∈ R7, where ei is the
ith unit coordinate vector. Further, we define a group
homomorphism between the Q-moduli of dimensions
and vectors; since any dimension d can be represented
in the SI system in terms of the seven basic units ei as

d = eν1
1 · · · eν7

7 ,

we associate d with a vector d, where

d = ν1e1 + · · · + ν7e7.

Along these lines, we associate with a quantity q with
dimensions

[q] = dμ1
1 · · ·dμrr

the vector

q = μ1d1 + · · · + μrdr .
It is straightforward to verify that the representation of
q in terms of the basis vectors ej is unambiguous.

We are now ready to revisit independency of units in
the light of the associated vectors. In linear algebraic
terms, condition (6) is equivalent to saying that

α1d1 + · · · +αrdr = 0,

and therefore the independency of dimensions is equiv-
alent to the linear independency of the corresponding
dimension vectors.

Next we look for a connection with linear algebra
to help us reinterpret the concept of relevance. In the
dimension space, condition (7) can be expressed as

qj = μj1d1 + · · · + μjrdr =
r∑
k=1

μjkdk,

which implies that every qj is in the subspace spanned
by the vectorsdk, while the linear algebraic formulation
of condition (8),

dk = αk1q1 + · · · +αknqn =
n∑
-=1

αk-q-,

states that the vectors dk are in the subspace spanned
by the vectors q-. We therefore conclude that the rel-
evance of dimensions is equivalent to the condition
that

span{q1, . . . ,qn} = span{d1, . . . ,dr }.
It is obvious that when n > r , there must be redun-
dancy among the quantities because the subspace can
be spanned by fewer than n vectors. This redundancy
is indeed the key to the theory of Π-numbers.

Let us take a second look at the definition of Π-num-
ber, (2). In order for a quantity to be dimensionless, the
coefficients of the dimension vectors must all vanish,
which, in the new formalism, is equivalent to the cor-
responding dimension vector being the zero vector. In
other words, equation (2) is equivalent to

μ1q1 + μ2q2 + · · · + μnqn = R = 0.

If we now define the dimension matrix of the quantities
q1, . . . , qn to be

Q =
(
q1 q2 · · · qn

)
∈ Rr×n,

we can immediately verify that the vector μ ∈ Rn with
entries μj must satisfy Qμ = 0, so μ must be in the null
space of Q, N (Q).

We can now restate the definition of Π-number in
the language of linear algebra: R = qμ1

1 · · ·qμnn is a Π-
number if and only if μ ∈ N (Q).

It is a central question in dimensional analysis how
many essentially different Π-numbers can be found
that correspond to a given system. If R1 and R2 are
two Π-numbers, their product and ratio are also Π-
numbers, yet they are not independent. To find out
how to determine which Π-numbers are independent,
assume that R1 and R2 correspond to vectors μ and ν
in the null space of Q. From the observation that

R1 ×R2 = qμ1
1 · · ·qμnn ×qν1

1 · · ·qνnn = qμ1+ν1
1 · · ·qμn+νnn ,
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it follows that multiplication of two Π-numbers cor-

responds to addition of the corresponding vectors in

the null space of the dimension vector. This naturally

leads to the definition that the Π-numbers {R1, . . . , Rk}
are essentially different if the corresponding coefficient

vectors in N (Q) are linearly independent. In particu-

lar, the number of essentially different Π-numbers is

equal to the dimension of N (Q), and a maximal set of

essentially differentΠ-numbers corresponds to a basis

for N (Q).
It is now easy to state the following central theorem

of dimensional analysis, which is a corollary of the the-

orem about the dimensions of the four fundamental

subspaces [I.2 §21] of a dimension matrix.

Buckingham’s Π theorem. If a physical problem is

described by n variables, with every variable expressed

in terms of r independent and relevant dimensions,

the number of essentially differentΠ-numbers (dimen-

sionless groups whose numerical values depend on the

properties of the system) is at most n− r .

It is important to stress that the number of essen-

tially different Π-numbers is “at most” n − r because

the system may actually admit fewer. It is a nice corol-

lary that the Π-numbers of a system can be found by

computing a basis for the null space of the dimen-

sion matrix by Gaussian elimination, which results in

rational coefficients.

Returning to our example from fluid dynamics, let a

system be described by the five quantities length (L),

a characteristic scalar velocity (v0), density (ρ), viscos-

ity (μ), and pressure (p), the dimensions of which were

given in (4). We characterize the system with three SI

units, m, s, and kg. The dimension matrix in this case

is

Q =

⎛⎜⎜⎝
1 1 −3 −1 −1

0 −1 0 −1 −2

0 0 1 1 1

⎞⎟⎟⎠ .
To find a basis of the null space we reduce the matrix

to its row echelon form by Gauss–Jordan elimination,

which shows that its rank is three. This implies that the

null space is two dimensional, with a basis consisting

of the two vectors

u1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

−1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , u2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

−2

−1

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

corresponding to the Reynolds number and the Euler

number, respectively:

R1 = L1v1
0ρ

1μ−1p0, R2 = L0v2
0ρ

−1μ0p1.

To appreciate the usefulness of finding these Π-

numbers, consider the nondimensionalization of the

navier–stokes equation [III.23],

ρ
(
∂v
∂t

+ v · ∇v
)
= −∇p + μΔv,

where Δ = ∇ · ∇. Assuming that a characteristic

speed v0 (e.g., an asymptotic value) and a characteris-

tic length scale L are given, first we nondimensionalize

the velocity and the spatial variable, writing

v = v0ϑ, x = Lξ,
and then we define a dimensionless pressure field

based on the nondimensionality of the Euler number

R2,

π(ξ) = 1

ρv2
0

p(Lξ),

arriving at the scaled version of the equation:

ρv2
0

L

(
L
v0

∂ϑ
∂t

+ϑ · ∇′ϑ
)
= −ρv

2
0

L
∇′π + μv0

L2
Δ′ϑ,

where ∇′ = ∇ξ and Δ′ = ∇′ · ∇′. By going further

and defining the time in terms of the characteristic

timescale L/v0,

t = L
v0
τ,

the nondimensional version of the Navier–Stokes equa-

tion ensues:

∂ϑ
∂τ

+ϑ · ∇′ϑ = −∇′π + 1
R1
Δ′ϑ.

This form provides a natural justification for the dif-

ferent approximations corresponding to, for example,

nonviscous fluid flow (R1 large) or nonturbulent flow

(R1 small).
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Boonkkamp. 2005. Partial Differential Equations: Model-
ing, Analysis and Computation. Philadelphia, PA: SIAM.
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II.10 The Fast Fourier Transform
Daniel N. Rockmore

In 1965 James Cooley and John Tukey wrote a brief
article (a note, really) that laid out an efficient method
for computing the various trigonometric sums neces-
sary for computing or approximating the Fourier trans-
form of a function on the real line. While theirs was
not the first such article (it was later discovered that
the algorithm’s fundamental step was first sketched in
papers of Gauss), what was very different was the con-
text. Newly invented analog-to-digital converters had
now enabled the accumulation of (for the time) extraor-
dinarily large data sets of sampled time series, whose
analysis required the computation of the underlying
signal’s Fourier transform. In this new world of 1960s
“big data,” a clever reduction in computational com-
plexity (a term not yet widely in use) could make a
tremendous difference.1

While the Cooley–Tukey approach is what is usually
associated with the phrase “fast Fourier transform” (or
“FFT”), this term more correctly refers to a family of
algorithms designed to accomplish the efficient calcu-
lation of the fourier transform [II.19] (or an approx-
imation thereof) of a real-valued function f sampled at
points xj (on either the real line, the unit interval, or
the unit circle): samples go in and Fourier coefficients
are returned. The discrete sums of interest

f̂ (k) =
n−1∑
j=0

f(j)ωjkn (1)

computed for each k = 0, . . . , n−1, whereωn = e2π i/n

is a primitive nth root of unity and f(j) = f(xj),
make up what is usually called the “discrete Fourier
transform” (DFT). This can be written succinctly as the
outcome of the matrix–vector multiplication

f̂ = Ωf, (2)

where the (j, k) element of Ω is ωjkn .

1 The Cooley–Tukey FFT

If computed directly, the DFT requires n2 multiplica-
tions andn(n−1) additions, or 2n2−n arithmetic oper-
ations (assuming the f(j) values and the powers of the

1. Many years later Cooley told me that he believed that the fast
Fourier transform could be thought of as one of the inspirations for
asymptotic algorithmic analysis and the study of computational com-
plexity, as previous to the publication of his paper with Tukey very few
people had considered data sets large enough to suggest the utility of
an asymptotic analysis.

root of unity have been precomputed and stored). Note

that this is approximately 2n2 (and, asymptotically,

O(n2)) operations. The “classical” FFT (i.e., the Cooley–

Tukey FFT) can be employed in the case in which n can

be factored, n = pq, whereupon we can take advan-

tage of a concomitant factorization of the calculation

(which, in turn, is a factorization of the matrix Ω) that

can be cast as a divide and conquer algorithm

[I.4 §3], writing the DFT of order n as p DFTs of order

q (or q DFTs of order p). More explicitly, in this case we

can write

j = j(a, b) = aq + b, 0 � a < p, 0 � b < q,
k = k(c,d) = cp + d, 0 � c < q, 0 � d < p,

so that (1) can be rewritten as

f̂ (c, d) =
q−1∑
b=0

ωb(cp+d)n

p−1∑
a=0

f(a, b)ωadp (3)

using the fact that ωadqn =ωadp .

Computation of f̂ is now performed in two steps.

First, compute for each b the inner sums (for all d)

f̃ (b, d) =
p−1∑
a=0

f(a, b)ωadp , (4)

which have the form of DFTs of length p equispaced

among multiples of q. In engineering language, (4)

would be called “a subsampled DFT of length p.”

Direct calculation of all the f̃ (b, d) requires pq[p +
(p − 1)] arithmetic operations. Step two is to then

compute an additional pq transforms of length q,

f̂ (c, d) =
q−1∑
b=0

ωb(cp+d)n f̃ (b,d),

requiring at most an additional pq[q + (q − 1)] opera-

tions to complete the calculation. Thus, instead of the

approximately 2n2 = 2(pq)2 operations required by

direct computation, the above algorithm uses approx-

imately 2(pq)(p + q) operations. If n can be factored

further, this approach works even better. When n is a

power of two, the successive splittings of the calcula-

tion give the well-known O(n log2n) complexity result

(in comparison to O(n2)).
Since Ω∗Ω = nI, from (2) we have f = n−1Ω∗f̂ ,

so the discretized function f = (f (0), . . . , f (n − 1))
(sample values) can be recovered from its Fourier coef-

ficients via

f(m) = 1
n

∑
k
f̂ (k)ω−mk

n ,
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a so-called inverse transform. The inverse transform

expresses f as a superposition of (sampled) exponen-

tials or, equivalently, sines and cosines of frequencies

that are multiples of 2π/n, so that if we think of f as a

function of time, the DFT is a change of basis from the

“time domain” to the “frequency domain.”

In the case in which n = 2N − 1 and the f(xj) rep-

resent equispaced samples of a bandlimited function

on the circle (or, equivalently, on the unit interval),

so that xj = j/n, and of bandlimit N (i.e., f̂ (k) = 0

for all k > N), then (up to a normalization) the sums

exactly compute the Fourier coefficients of the func-

tion f (suitably indexed). The form of the inverse trans-

form can itself be restated as a DFT, so that an FFT

enables the efficient change of basis between the time

and frequency domains.

The utility of an efficient algorithm for computing

these sums cannot be overstated—occupying as it does

a central position in the world of signal processing

[IV.35], image processing [VII.8], and information

processing [IV.36]—not only for the intrinsic inter-

est in the Fourier coefficients (say, in various forms of

spectral analysis, especially for time series) but also

for their use in effecting an efficient convolution of

data sequences via the relation (for two functions on

n points)

(f̂ 0 g)(k) = f̂ (k)ĝ(k),

where

(f 0 g)(k) =
n−1∑
m=0

f(k−m)g(m). (5)

If computed directly for all k, (5) requires n[n + (n −
1)] = O(n2) operations. An efficient FFT-based convo-

lution is effected by first computing f̂ and ĝ, then using

n operations for pointwise multiplication of the trans-

formed sequences, and then using another FFT for the

efficient inverse transform back to the time domain.

This relationship is the key to FFTs that work for

data streams of prime length p. The best-known ideas

make use of rewriting the DFT at nonzero frequencies

in terms of a convolution of length p−1 and then com-

puting the DFT at the zero frequency directly. One well-

known example is Rader’s prime FFT, which uses the

fact that we can find a generator g of Z/pZ×, a cyclic

group (under multiplication) of order p − 1, to write

f̂ (g−b) as

f̂ (g−b) = f(0)+
p−2∑
a=0

f(ga)e2π iga−b/p. (6)

The summation in (6) has the form of a convolution of
length p − 1 of the sequence f ′(a) = f(ga) with the
function z(a) = e2π iga/p .

Through the use of these kinds of reductions—con-
tributions by various members of the “FFT family”—we
achieve a general O(n log2n) algorithm.
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II.11 Finite Differences

In the definition of the derivative of a real function f
of a real variable, f ′(x) = limε→0(f (x + ε) − f(x))/ε,
we can take a small positive ε = h > 0 and form the
approximation

f ′(x) ≈ f(x + h)− f(x)
h

.

This process is called discretization and the approxima-
tion is called a forward difference because we evaluate
f at a point to the right of x. We could instead take a
small negative ε, so that with h = −ε we have

f ′(x) = f(x − h)− f(x)
−h = f(x)− f(x − h)

h
.

The latter approximation is a backward difference.
Higher derivatives can be approximated in a similar
fashion. An example is the centered second difference
approximation

f ′′(x) ≈ f(x + h)− 2f(x)+ f(x − h)
h2

.

The term finite differences is used to describe such
approximations to derivatives by linear combinations
of function values. One way to derive finite-difference
approximations, and also to analyze their accuracy, is
by manipulating taylor series [I.2 §9] expansions. A
more systematic approach is through the calculus of
finite differences, which is based on operators such as
the forward difference operator Δf(x) = f(x + h) −
f(x) and its powers: Δ2f(x) = Δ(Δf(x)) = f(x +
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2h) − 2f(x + h) + f(x) and so on. The term “calcu-
lus” is used because there are many analogies between
these operators and the differentiation operator. Finite-
difference calculus is thoroughly developed in classical
numerical analysis texts of the last century, but it is
less commonly encountered nowadays.

Finite differences can be used to approximate partial
derivatives in an analogous way. For example, if f(x,y)
is a function of two variables, then

∂f
∂x
(x,y) ≈ f(x + ε,y)− f(x,y)

ε
.

Finite differences are widely used in numerical meth-
ods for solving ordinary differential equations

[IV.12] and partial differential equations [IV.13].

II.12 The Finite-Element Method

The finite-element method is a method for approximat-
ing the solution of a partial differential equation (PDE)
with boundary conditions over a given domain using
piecewise polynomial approximations to the unknown
function. The domain is partitioned into elements, typ-
ically triangles for a two-dimensional region or tetra-
hedrons in three dimensions, and on each element
the solution is approximated by a low-degree polyno-
mial. The approximations are obtained by solving a
variational form of the PDE within the corresponding
finite-dimensional subspace, which reduces to solving
a sparse linear system of equations for the coefficients.

For more on the finite-element method, see numer-

ical solution of partial differential equations

[IV.13 §4] and mechanics of solids [IV.32 §4.2].

II.13 Floating-Point Arithmetic
Nicholas J. Higham

The real line, R, contains infinitely many numbers, but
in many practical situations we must work with a finite
subset of the real line. For example, computers have
a finite number of storage locations in their random
access memory, so they can represent only a finite set of
numbers, whereas in a bank savings account amounts
of money are recorded to two decimal places (dollars
and cents, for example) and may be limited to some
maximum value. In the latter situation, assuming a rep-
resentation with n base-10 digits, all possible num-
bers can be expressed as ±d1d2 . . . dn−2.dn−1dn, where
the di are integers between 0 and 9. This is called a
fixed-point number system because the decimal point

0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Figure 1 The ticks denote the nonnegative numbers
in the simple floating-point number system (1).

is in a fixed position, here just before the (n − 1)st
digit. A floating-point number system differs in that an
extra multiplicative term that is a variable power of the
base allows the decimal point (or its analogue for other
bases) to move around.

A simple example of a floating-point number system
is the set of numbers, with base 2,

x = ±2e
(
d1

2
+ d2

4
+ d3

8

)
= ±2ef , (1)

where the exponent e ∈ {−1,0,1,2,3}, and each binary
digit di is either 0 or 1. The number f = (0.d1d2d3)2 is
called the significand (or mantissa). If we assume that
d1 �= 0 (hence d1 = 1) then each x in the system has
a unique representation (1) and the system is called
normalized. The nonnegative numbers in this system
are

0, 0.25, 0.3125, 0.3750, 0.4375, 0.5, 0.625, 0.750,
0.875, 1.0, 1.25, 1.50, 1.75, 2.0, 2.5, 3.0, 3.5, 4.0,
5.0, 6.0, 7.0,

and they are represented pictorially in figure 1.
Notice that the spacing of the numbers in this exam-

ple increases by a factor 2 at every power of 2. It is
a very important feature of all floating-point number
systems that the spacing of the numbers is not con-
stant (whereas for fixed-point systems the spacing is
constant).

Other floating-point number systems are obtained by
varying the range of values that the exponent e can
take, by varying the number of digits di in the signifi-
cand, and by varying the base. Historically, computers
have mainly used base 16 or base 2. Pocket calculators
instead use base 10, in order to avoid users being con-
fused by the effects of the errors in converting from
one base to another.

To use a floating-point number system, F , for practi-
cal computations, we need to put our data into it. Some
real numbers can be exactly represented in F , while oth-
ers can only be approximated. How should the conver-
sion from R to F be done, and how large an error is
committed? The mapping from R to F is called round-
ing and is denoted by “fl.” The usual definition of fl(x),
for x ∈ R, is that it is the nearest number in F to x. A
rule is needed to break ties whenx lies midway between
two members of F ; the most common rule is to take
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whichever number has an even last digit in the signifi-

cand. Following this rule in our toy system (1), we have

fl(1.1) = 1.0 and fl(5.5) = 6.0 = 23(0.110)2. If x has

magnitude greater than the magnitude of every number

in F then we say fl(x) overflows, while if x �= 0 rounds

to zero we say that fl(x) underflows.

Let F be a floating-point system with base β and t
digits di. It is possible to prove that, if |x| lies between

the smallest nonzero number in F and the largest num-

ber in F , then fl(x) = x(1 + δ) with |δ| � u, where

u = 1
2β

1−t is called the unit roundoff. This means that

the relative error in representing x in F is at most u.

For example, in our toy system we can representπ with

relative error at most 1
2 21−3 = 1

8 .

When we multiply two t-digit numbers x1, x2 ∈ F
the product has 2t − 1 or 2t significant digits, and thus

in general is not itself in F . The best we can do is to

round the result and take that as our approximation to

the product: y = fl(x1x2). Similarly, addition, subtrac-

tion, and division of numbers in F also generally incur

errors. If again we take the rounded version of the exact

result then we can say that

fl(x opy) = (x opy)(1 + δ), |δ| � u, (2)

for op = +,−,∗, /.
Virtually all today’s computers implement floating-

point arithmetic in conformance with a 1985 IEEE

standard. This standard defines two forms of base-2

floating-point arithmetic: one called single precision,

with t = 24, and one called double precision, with

t = 53. In IEEE arithmetic the elementary operations +,

−, ∗, and / are defined to be the rounded exact opera-

tions, and so (2) is satisfied. This makes (2) a very use-

ful tool for analyzing the effects of rounding errors on

numerical algorithms.

Historically, (2) has been just a model for floating-

point arithmetic—an assumption on which analysis

was based. Prior to the widespread adoption of the

IEEE standard, different computer manufacturers used

different forms of arithmetic, some of which did not

satisfy (2) or lacked certain other desirable properties.

This led to bizarre situations such as the expression

x/
√
x2 +y2 occasionally evaluating to a floating-point

number greater than 1. Fortunately, the IEEE standard

ensures that elementary floating-point computations

retain many of the properties of arithmetic. However,

special-purpose processors, such as graphics process-

ing units (GPUs), do not necessarily (fully) comply with

the IEEE standard.

It is often thought that subtraction of nearly equal
floating-point numbers is dangerous because of cancel-
lation. In fact, the subtraction is done exactly. Indeed, if
x andy are floating-point numbers withy/2 � x � 2y
then fl(x − y) = x − y (as long as x −y does not
underflow). The danger of cancellation is that it causes
a loss of significant digits and can thereby bring into
prominence errors committed in earlier computations.
A classic example is the usual formula for solving a
quadratic equation such asx2−56x+1 = 0, which gives
x1 = 28 +√

783 and x2 = 28 −√
783. Working to four

significant decimal digits,
√

783 = 27.98, and therefore
the computed results are x̂1 = 55.98 = 5.598 × 101

and x̂2 = 0.02 = 2.000 × 10−2. However, the correct
results to four significant digits are x1 = 5.598 × 101

and x2 = 1.786 × 10−2. So while the larger computed
root has all four digits correct, the smaller one is
very inaccurate due to cancellation. Fortunately, since
x2 − 56x + 1 = (x − x1)(x − x2), the product of the
roots is 1, and so we can obtain an accurate value for
the smaller root x2 from x2 = 1/x1.

Further Reading

Higham, N. J. 2002. Accuracy and Stability of Numerical
Algorithms, 2nd edn. Philadelphia, PA: SIAM.

Muller, J.-M., N. Brisebarre, F. de Dinechin, C.-P. Jeannerod,
V. Lefèvre, G. Melquiond, N. Revol, D. Stehlé, and S. Torres.
2010. Handbook of Floating-Point Arithmetic. Boston, MA:
Birkhäuser.

II.14 Functions of Matrices
Nicholas J. Higham

Given the scalar function f(x) = (x−1)/(1+x2)we can
define f(A) for an n×nmatrix A by f(A) = (A−I)(I+
A2)−1, as long as A does not have ±i as an eigenvalue,
so that I +A2 is nonsingular. This notion of “replacing
x by A” is very natural and produces useful results. For
example, we can define the exponential of A by

eA = I +A+ A
2

2!
+ A

3

3!
+ · · · .

The resulting function satisfies analogues of the prop-
erties of the scalar exponential, such as eAe−A = I,
eA = lims→∞(I + A/s)s , and (d/dt)eAt = AeAt = eAtA.
Thanks to the latter relation, the matrix exponential
plays a fundamental role in linear differential equa-
tions. In particular, the general solution to dy/dt = Ay
is y(t) = eAtc, for a constant vector c. However, not
every scalar relation generalizes. In particular, eA+B =
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eAeB holds if A and B commute, but it does not hold in
general.

More generally, for any function with a Taylor series
expansion the scalar argument can be replaced by a
square matrix as long as the eigenvalues of the matrix
are within the radius of convergence of the Taylor
series. Thus we have

cos(A) = I − A
2

2!
+ A

4

4!
− A

6

6!
+ · · · ,

sin(A) = A− A
3

3!
+ A

5

5!
− A

7

7!
+ · · · ,

log(I +A) = A− A
2

2
+ A

3

3
− A

4

4
+ · · · , ρ(A) < 1,

where ρ denotes the spectral radius [I.2 §20]. The
series for log raises two questions: does X = log(I+A)
satisfy eX = I +A and, if so, which of the many matrix
logarithms is produced (note that if eX = I + A then
eX+2kπ iI = eXe2kπ iI = I + A for any integer k)? The
answer to the first question is yes. The answer to the
second question is that the logarithm produced is the
principal logarithm, which for a matrix with no eigen-
values lying on the nonpositive real axis is the unique
logarithm all of whose eigenvalues have imaginary
parts lying in the interval (−π,π).

Defining f(A) via a power series may specify the
function only for a certain range of A, as for the log-
arithm, and moreover, some functions do not have a
(convenient) power series. For more general functions
a different approach is needed.

If f is analytic on and inside a closed contour Γ that
encloses the spectrum of A, then we can define

f(A) := 1
2π i

∫
Γ
f (z)(zI −A)−1 dz,

which is a generalization to matrices of the cauchy

integral formula [IV.1 §7]. Another definition can be
given in terms of the jordan canonical form [II.22]
Z−1AZ = J = diag(J1, J2, . . . , Jp), where Jk is an mk ×
mk Jordan block with eigenvalue λk. The definition is

f(A) := Zf(J)Z−1 = Z diag(f (Jk))Z−1,

where

f(Jk) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(λk) f ′(λk) · · · f (mk−1)(λk)
(mk − 1)!

f(λk)
. . .

...
. . . f ′(λk)

f (λk)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This definition does not require f to be analytic
but merely requires the existence of the derivatives
f (j)(λk) for j up to one less than the size of the largest

block in which λk appears. Note that when A is diag-

onalizable, that is, A = ZDZ−1 for D = diag(λi), the

definition is simply f(A) = Zf(D)Z−1, where f(D) =
diag(f (λi)).

The Cauchy integral and Jordan canonical form defi-

nitions are equivalent when f is analytic.

Some key properties that follow from the defini-

tions are that f(A) commutes with A, f(X−1AX) =
X−1f(A)X for any nonsingular X, and f(A) is upper

(lower) triangular if A is. It can also be shown that

certain forms of identity carry over from the scalar

case to the matrix case, under assumptions that ensure

that all the relevant matrices are defined. Examples are

exp(iA) = cos(A) + i sin(A) and cos2(A) + sin2(A) =
I. However, care is needed when dealing with multi-

valued functions; for example, for the principal loga-

rithm, log(eA) cannot be guaranteed to equalAwithout

restrictions on the spectrum of A.

Another important class of functions is thepth roots:

the solutions of Xp = A, where p is a positive integer.

For nonsingular A there are many pth roots. The one

usually required in practice is the principal pth root ,

defined for A with no eigenvalues lying on the nonpos-

itive real axis as the unique pth root whose eigenvalues

lie strictly within the wedge making an angle π/p with

the positive real axis, and denoted by A1/p . Thus A1/2

is the square root whose eigenvalues all lie in the open

right half-plane.

The function sign(A) = A(A2)−1/2, defined for any

A having no pure imaginary eigenvalues, is the matrix

sign function. It has applications in control theory, in

particular for solving algebraic riccati equations

[III.25], and corresponds to the scalar function mapping

complex numbers in the open left and right half-planes

to −1 and 1, respectively.

Matrix functions provide one-line solutions to many

problems. For example, the second-order ordinary dif-

ferential equation initial-value problem

d2y
dt2

+Ay = 0, y(0) = y0, y′(0) = y′
0,

with y an n-vector and A an n×nmatrix, has solution

y(t) = cos(
√
At)y0 + (

√
A)−1 sin(

√
At)y′

0,

where
√
A denotes any square root of A. Alternatively,

by writing z = [y ′
y
]

we can convert the problem into

two first-order differential equations:

z′ =
[
y′′

y′

]
=
[

0 −A
I 0

][
y′

y

]
=
[

0 −A
I 0

]
z,
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from which follows the formula[
y′(t)
y(t)

]
= exp

([
0 −tA
tI 0

])[
y′

0

y0

]
.

There is an explicit formula for a function of a 2 × 2
triangular matrix:

f
([
λ1 α
0 λ2

])
=
[
f(λ1) αf[λ1, λ2]

0 f(λ2)

]
,

where

f[λ1, λ2] =

⎧⎪⎪⎨⎪⎪⎩
f(λ2)− f(λ1)
λ2 − λ1

, λ1 �= λ2,

f ′(λ2), λ1 = λ2,

is a first-order divided difference. This formula extends
to n × n triangular matrices T , although the formula
for the (i, j) element contains up to 2n terms and so is
not computationally useful unless n is very small. It is
nevertheless possible to compute F = f(T) for ann×n
triangular matrix in n3/3 operations using the Parlett
recurrence, which is obtained by equating elements in
the equation TF = FT .

Further Reading

Higham, N. J. 2008. Functions of Matrices: Theory and
Computation. Philadelphia, PA: SIAM.

Higham, N. J., and A. H. Al-Mohy. 2010. Computing matrix
functions. Acta Numerica 19:159–208.

II.15 Function Spaces
Hans G. Feichtinger

While in the early days of mathematics each function
was treated individually, it became appreciated that it
was more appropriate to make collective statements
for all continuous functions, all integrable functions, or
all continuously differentiable ones. Fortunately, most
of these collections of functions (fk) are closed under
addition and allow the formation of linear combina-
tions

∑K
k=1 ckfk for real or complex coefficients ck,

1 � k � K. They are, therefore, vector spaces. In addi-
tion, most of these spaces are endowed with a suit-
able norm [I.2 §19.3] f  → ‖f‖, allowing one to mea-
sure the size of their members and hence to intro-
duce concepts of closeness by looking at the distance
d(f1, f2) := ‖f1−f2‖. One can therefore say that a func-
tion space is a normed space consisting of (generalized)
functions on some domain.

For the vector space Cb(D) of bounded and continu-
ous functions on some domain D ⊂ Rd, the sup-norm

‖f‖∞ := supz∈D |f(z)| is the appropriate norm. With

this norm, Cb(D) is a Banach space (that is, a complete

normed space), i.e., every cauchy sequence [I.2 §19.4]

with respect to this norm is convergent to a unique

limit element in the space. Hence, such Banach spaces

of functions share many properties with the Euclidean

spaces of vectors in Rd, with the important distinction

that they are not finite dimensional.

1 Lebesgue Spaces Lp(Rd)

The completeness of the Lebesgue space L1(Rd), con-

sisting of all (measurable) functions with ‖f‖1 :=∫
Rd |f(z)|dz <∞, is the reason why the Lebesgue inte-

gral is preferred over the Riemann integral. Note that

in order to ensure the property that ‖f‖1 = 0 implies

f = 0 (the null function), one has to regard two func-

tions f1 and f2 as equal if they are equal up to a set

of measure zero, i.e., if the set {z | f1(z) ≠ f2(z)} has

Lebesgue measure zero.

Another norm that is important for many appli-

cations is the L2-norm, ‖f‖2 := (
∫
Rd |f(z)|2)1/2. It

is related to an inner product defined as 〈f ,g〉 :=∫
Rd f (z)g(z)dz via the formula ‖f‖2 := 〈f , f 〉1/2.

(L2(Rd),‖·‖2) is a Hilbert space, and one can talk about

orthogonality and unitary linear mappings, comparable

with the situation of the Euclidean space Rd with its

standard inner product.

Having these three norms, namely ‖ · ‖1, ‖ · ‖2, and

‖ · ‖∞, it is natural to look for norms “in between.”

This leads to the Lp-spaces, defined by the finiteness

of ‖f‖pp :=
∫
Rd |f(z)|p dz for 1 � p < ∞. The limit-

ing case for p → ∞ is the space L∞(Rd) of essentially

bounded functions.

Since these spaces are not finite dimensional, it is

necessary to work with the set of all bounded linear

functionals, the so-called dual space, which is often, but

not always, a function space. For 1 � p < ∞ the dual

space to Lp is Lq, with 1/p+1/q = 1, meaning that any

continuous linear functional on Lp(Rd) has the form

f  →
∫
Rd f (z)g(z)dz for a unique function g ∈ Lq(Rd).

L1(Rd) also appears as the natural domain for the

Fourier transform, given for s ∈ Rd by

F : f  → f̂ (s) =
∫

Rd
f (t) exp

{
− 2π i

d∑
j=1

sjtj
}

dt,

while (L2(Rd),‖ · ‖2) allows us to describe F as a

unitary (and hence isometric) automorphism.
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2 Related Function Spaces

The Lebesgue spaces are prototypical for a much larger
class of Banach function spaces or Banach lattices, a
class that also includes Lorentz spaces L(p, q) or Orlicz
spaces LΦ , which are all rearrangement invariant. This
means that for any transformationα : Rd → Rd that has
the property that it preserves the (Lebesgue) measure
|M| of a set, i.e., with |α(M)| = |M|, one has ‖f‖ =
‖α∗(f )‖, where α∗(f )(z) := f(α(z)).

In contrast, weighted spaces such as Lpw(Rd), charac-
terized by ‖f‖p,w = ‖fw‖p < ∞, allow us to capture
the decay of f at infinity using some strictly positive
weight functionw. For applications in the theory of par-
tial differential equations (PDEs), polynomial weights
such as ws(x) = (1 + |x|2)s/2 are important. For s �
0, Sobolev spaces Hs(Rd) can be defined as inverse
images of L2

ws (R
d) under the Fourier transform. For

s ∈ N they consist of those functions that have (in a dis-
tributional sense) s derivatives in L2(Rd). Mixed norm
Lp spaces (using different p-norms in different direc-
tions) are also not invariant in this sense, but they are
still very useful.

A large variety of function spaces arose out of
the attempt to characterize smoothness, including
fractional differentiability. Examples are Besov spaces
Bsp,q(Rd) and Triebel–Lizorkin spaces Fsp,q(Rd); the clas-
sical Sobolev spaces are the only function spaces that
belong to both families. The origin of this theory is
in the theory of Lipschitz spaces Lip(α), where the
range α ∈ (0,1) allows us to express the degree of
smoothness (differentiability corresponds intuitively to
the case α = 1).

3 Wavelets and Modulation Spaces

Many of the spaces mentioned above are highly rel-
evant for PDEs, e.g., the description of elliptic PDEs.
Their characterization using Paley–Littlewood (dyadic
Fourier) decompositions has ignited wavelet theory. For
1 < p < ∞ they can be characterized via (weighted)
summability conditions of their wavelet coefficients
with respect to (sufficiently “good”) mother wavelets.
In the limiting case, one obtains the real Hardy space
H1(Rd) and its dual, the BMO-space, which consists
of functions of bounded mean oscillation. Both spaces
are important for the study of Calderon–Zygmund
operators or the Hardy–Littlewood maximal operator.
Wavelets provide unconditional bases for these spaces,
including Besov and potential spaces.

For the affine “ax + b”-group acting on the space
L2(Rd), function spaces are defined using the contin-
uous wavelet transform, and atomic characterizations
(involving Banach frames) of the above smoothness
spaces are obtained. Alternatively, the Schrödinger rep-
resentation of the Heisenberg group, again on L2(Rd)
via time–frequency shifts, gives rise to the family
of modulation spaces Msp,q. They were introduced as
Wiener amalgam spaces on the Fourier transform side,
using uniform partitions of unity (instead of dyadic
ones).

Using engineering terminology, the now-classical
spaces Msp,q(Rd) are characterized by the behavior
of the short-time Fourier transform of their members
(replacing the continuous wavelet transform). They
play an important role in time–frequency analysis, and
their atomic characterizations use Gabor expansions.

A variety of Banach spaces of analytic or polyana-
lytic functions play an important role in complex analy-
sis. Again, integrability conditions over their domain
are typically used to define these spaces. The corre-
sponding L2-spaces are typically reproducing kernel
Hilbert spaces, with good localization of these kernels
allowing one to view them as continuous mappings on
(weighted, mixed-norm) Lp-spaces as well. We mention
some of the spaces that are important in the context of
complex analysis or Toeplitz operators: Fock spaces,
Bergman spaces, and Segal–Bargmann spaces.

4 Variations of the Theme

One of the first important examples of a Banach space
of functions was the space BV of functions of bounded
variation. One simple characterization of functions of
this type (the so-called Jordan decomposition) is that
they are the difference of two bounded and nonde-
creasing functions (the ascending part of the function
minus the descending part of it). Via Fourier–Stieltjes
integrals, F. Riesz showed that there is a one-to-one cor-
respondence between the dual space of (C[0,1],‖·‖∞)
and BV[0,1] endowed with the variation norm. More
recently, total variation in a two-dimensional setting
has been fundamental to image restoration algo-

rithms [VII.8]. Another family of function spaces that
captures variation at different scales are the Morrey–
Campanato spaces.

In addition to Banach spaces of functions there are
also topological vector spaces and Fréchet spaces of
functions, among them the spaces of test functions that
are used in distribution theory. Generalized functions
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consist of the continuous linear functionals on such
spaces. The “theory of function spaces” as developed
by Hans Triebel includes a large variety of Banach
spaces of such generalized functions (or distributions).

Further Reading

Ambrosio, L., N. Fusco, and D. Pallara. 2000. Functions
of Bounded Variation and Free Discontinuity Problems.
Oxford: Clarendon.

Gröchenig, K. 2001. Foundations of Time–Frequency Analy-
sis. Boston, MA: Birkhäuser.

Leoni, G. 2009. A First Course in Sobolev Spaces. Providence,
RI: American Mathematical Society.

Meyer, Y. 1992. Wavelets and Operators, translated by D. H.
Salinger. Cambridge: Cambridge University Press.

Stein, E. M. 1970. Singular Integrals and Differentiability
Properties of Functions. Princeton, NJ: Princeton Univer-
sity Press.

Triebel, H. 1983. Theory of Function Spaces. Basel: Birk-
häuser.

II.16 Graph Theory
Timothy A. Davis and Yifan Hu

At the back of most airline magazines you will find
a map of airports and the airline routes that connect
them. This is just one example of a graph, a widely
used mathematical entity that represents relationships
between discrete objects. More precisely, a graph G =
(V , E) consists of a set of nodes V and a set of edges
E ⊆ {(i, j) | i, j ∈ V} that connect them. A graph is not
a diagram but it can be drawn, as illustrated in figure 1.

Graphs arise in a vast array of applications, includ-
ing social networks (a node is a person and an edge is a
relationship between two people), computational fluid
dynamics (a node is an unknown such as the pressure
at a certain point and an edge is the physical connec-
tion between two unknowns), finding things on the web
(a node is a web page and an edge is a link), circuit sim-
ulation (the wires are the edges), economics (a node is a
financial entity and the edges represent trade between
two entities), and many others.

In some problems, an edge connects in both direc-
tions, and in this case the graph is undirected. For exam-
ple, friendship is mutual, so if Alice and Bob are friends,
the edges (Alice, Bob) and (Bob, Alice) are the same. In
other cases, the direction of the edge is important. If
Alice follows Bob on Twitter, this does not mean that
Bob follows Alice. In this directed graph, the edge (Alice,
Bob) is not the same as the edge (Bob, Alice).
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Figure 1 Two example graphs:
(a) undirected and (b) directed.

In a simple graph, an edge (i, j) can appear just once,
but in a multigraph it can appear multiple times (E
becomes a multiset). Simple graphs do not have self-
edges (i, i), but a pseudograph can have multiple edges
and self-edges. The airline route map in the back of
the magazine is an example of a simple undirected
graph. Representing each flight for a whole airline
would require a directed multigraph: the flight from
Philadelphia to New York is not the same as the flight
in the opposite direction, and there are many flights
each day between the two airports. If sightseeing tours
are added (self-edges), then a pseudograph would be
needed.

The adjacency set of a node i, also called its neigh-
bors, is the set of nodes j where edge (i, j) is in the
graph. For a directed graph, this is the out-adjacency;
the in-adjacency of node i is the set {j | (j, i) ∈ E}. A
graph can be represented as a binary adjacency matrix,
with entries aij = 1 if (i, j) ∈ E, and aij = 0 otherwise.
The degree of a node is the size of its adjacency set.

Graphs can contain infinite sets of nodes and edges.
Consider the directed graph on the natural numbers
N with the edges (i, j), where j is an integer multi-
ple of i. A prime number j > 1 in this graph has in-
adjacency {1, j} and an in-degree of 2 (including the
self-edge (j, j)); a composite number j > 1 has a larger
in-degree.

Nodes i and j are incident on the edge (i, j) and,
likewise, the edge (i, j) is incident on its two nodes.
A subgraph of G consists of a subset of its nodes and
edges, Ḡ = (V̄ , Ē), where V̄ ⊆ V and Ē ⊆ E. If an edge
(i, j) appears in Ē, then its two incident nodes must
also appear in V̄ , but the opposite need not hold. Two
special kinds of subgraphs are node-induced and edge-
induced subgraphs. A node-induced subgraph starts
with a subset of nodes V̄ ; the edges Ē are all those
edges whose two incident nodes are both in V̄ . An edge-
induced subgraph starts with a subset of edges Ē and
then V̄ consists of all nodes incident on those edges. A
graph is completely connected if it has an edge between
every pair of nodes. A clique is a completely connected
subgraph.
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A path from i to j is a list of nodes (i, . . . , j) with
edges between adjacent pairs of nodes. The path can-
not traverse a directed edge backward. The length of
the path is the number of nodes in the list minus one.
In a simple path, a node can appear only once. If there is
a path from i to j, then node j is reachable from node
i. The set of all nodes reachable from i is the reach of
i. Among all paths from i to j, one with the shortest
length is a shortest path, its length the (geodesic) dis-
tance from i to j. The diameter of a graph is the length
of the longest possible shortest path. In a small-world
graph, each node is a small distance (logarithmic in the
number of nodes) away from any other node.

An undirected graph is connected if there is a path
between each pair of nodes, but there are two kinds
of connectivity in a directed graph. If a path exists
between every pair of nodes, then a directed graph
is strongly connected. A directed graph is weakly con-
nected if its underlying undirected graph is connected;
to obtain such a graph, all edge directions are dropped.

A cycle is a path that starts and ends at the same node
i; the cycle is simple if no node is repeated (except for
node i itself). There are no cycles in an acyclic graph.
The acronym DAG is often used for a directed acyclic
graph.

The undirected graph in figure 1(a) is connected.
Nodes {2,3,4} form a clique, as do {2,4,6}. The path
(1,2,4,3,2,6) has length 5 and is not simple. A sim-
ple path from 1 to 6 is (1,2,4,6) of length 3, but the
shortest path is (1,2,6) of length 2, which traverses
the edges (1,2) and (2,6). The path (2,3,4,2) is a
cycle of length 3. Node 2 has degree 4, with neighbors
{1,3,4,6}. The diameter of the graph is 3. Since the
graph is connected, the reach of node 2 is the whole
graph. This graph is the underlying undirected graph
of the directed graph in part (b) of the figure.

The largest clique in this directed graph has only two
nodes: {2,4}. The out-adjacency of node 2 is the set
{3,4} and its in-adjacency is {1,4,6}. The reach of node
2 is {2,3,4,6}. The graph is not strongly connected
since there is no path from 1 to 5, but it is weakly
connected since its underlying undirected graph is
connected.

Figure 2 illustrates a bipartite graph. The nodes of
a bipartite graph are partitioned into two sets, and
no edge in the graph is incident on a pair of nodes
in the same partition. Bipartite graphs arise naturally
when modeling a relationship between two very dif-
ferent sets. For example, in term/document analysis,
a bipartite graph of m terms and n documents has an
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Figure 2 An undirected bipartite graph.
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Figure 3 A tree of height 4, with node 1 as the root.

edge (i, j) if term i appears in document j. No edge
connects two terms, nor two documents. An undirected
bipartite graph is often represented as a rectangular
m×n adjacency matrix, where aij = 1 if the edge (i, j)
appears in the graph and aij = 0 otherwise.

An undirected acyclic graph is a forest. An important
special case is a tree, which is a connected forest. In a
tree, there is a unique simple path between each pair
of nodes. In a rooted tree, one node is designated as
the root. The ancestors of node i are all the nodes on
the path from i to the root (excluding i itself). The first
node after i in this path is the parent of i, and node
i is its child. The length of this path is the level of the
node (the root has level zero). The height of a tree is
the maximum level of its nodes.

In a tree, all nodes except the root have a single par-
ent. Nodes can have any number of children, and a node
with no children is a leaf. Internal nodes have at least
one child. In a binary tree, nodes have at most two chil-
dren, and in a full binary tree, all internal nodes have
exactly two children. Node i is a descendant of all nodes
in the path from i to the root (excluding i itself). The
subtree rooted at node i is the subgraph induced by
node i and its descendants.

In the example in figure 3, the parent of node 5 is
2, its descendants are {8,9,10,11}, its ancestors are
{1,2}, and its children are {8,9}. Since node 2 has three
children, the tree is not binary.

Sometimes a graph with its nodes and edges is not
enough to fully represent a problem. Edges in a graph
do not have a length, but this is useful for the airline
route map, and thus nodes and edges are often aug-
mented with additional data. Attaching a single numer-
ical value to each node and/or edge is common; this
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results in a weighted graph. In this graph, the length of
a path is the sum of the weights of its edges.

Drawing a graph requires node positions, so they
must be computed for graphs without natural node
positions. In the force-directed method that created
the graphs in plates 1–4, nodes are given an electrical
charge and edges become springs. A low-energy state
is found, which often leads to a visually pleasing layout
that reveals the graph’s large-scale structure.

Be aware that there are many minor variations in the
terminology of graph theory. For example, nodes can be
called vertices, edges are also called arcs, and self-edges
are sometimes called loops. Directed graphs are also
called digraphs. Sometimes the term arc is restricted to
directed edges. In a common alternative terminology, a
path becomes a walk, a simple path becomes a path
(conflicting with the definition here), a trail is a walk
with no repeated edges, and a cycle becomes a closed
walk.

Further Reading

Davis, T. A. 2006. Direct Methods for Sparse Linear Systems.
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Gross, J. L., and J. Yellen. 2005. Graph Theory and Its
Applications, 2nd edn. Boca Raton, FL: CRC.

Rosen, K. H. 2012. Discrete Mathematics and Its Applica-
tions, 7th edn. Columbus, OH: McGraw-Hill.

II.17 Homogenization

Homogenization is a method for obtaining an equation
whose solution approximates the solution of a partial
differential equation (PDE) with rapidly varying coef-
ficients. In many cases the approximate equation is
a PDE, but in some it may be an integro-differential
equation. PDEs with rapidly varying coefficients arise
in the study of the response of composite materials.
The method is best illustrated by an example in heat
conduction. Let u(x1, x2) represent temperature in a
composite medium occupying a domain Ω. The com-
posite is modeled by a conductivity a > 0 that is
rapidly oscillating in both x1 and x2. To represent this
mathematically, the conductivity is written as

a(x1/ε,x2/ε),

where the function a(y1, y2) is unit periodic, i.e.,
a(y1 + 1, y2) = a(y1, y2) and a(y1, y2 + 1) =
a(y1, y2). Therefore, one can see that ε represents
the periodicity of the medium and is small when the

medium is rapidly oscillating. The governing equation

is

∇ · a∇u = f ,
where f represents the heat source.

Homogenization, which is based on multiscale as-

ymptotics, allows one to obtain an approximate equa-

tion for the heat conduction problem when ε� 1. The

resulting equation,

∇ ·A∇u = f ,
is referred to as the homogenized equation and has a

constant, albeit anisotropic (A may be a matrix), con-

ductivity. The conductivity in the homogenized equa-

tion in this particular case is easily identified as A and

is referred to as the effective property of the medium.

Periodicity is essential in deriving the homogenized

equation. When the medium is not periodic, e.g., when

it is random, the method of homogenization may

still be applied, although its interpretation is differ-

ent and more difficult. In this case there is no sim-

ple way to obtain the effective property of the ran-

dom medium, but a connection to effective medium

theories [IV.31] can be made.

For periodic media, homogenization can be applied

to PDEs that model other phenomena such as fluid

flow in porous media, elasticity, wave propagation,

vibration, electrostatics, and electromagnetics. Recent

research in homogenization has explored its use in sit-

uations where the medium is almost periodic, that is, in

PDEs where the coefficients are oscillatory with almost

constant period or where the coefficients are periodic

with the exception of a few “defect” regions.

II.18 Hybrid Systems
Paul Glendinning

A hybrid system is a system that combines both contin-

uous and discrete variables. A simple motivating exam-

ple is the thermostat. A thermostat switches a heater

to one of two discrete states, on or off, depending

on the ambient temperature (a continuous variable),

which evolves differently if the heater is in the on or

off states. The specification of the thermostat includes

transition rules. If the thermostat is in the off state

and the temperature falls below a critical value, then

the thermostat is switched to on, possibly with some

(deterministic or random) delay in time. If the thermo-

stat is in the on state and the temperature rises above
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a critical value, then the thermostat is switched to off,
possibly with some (deterministic or random) delay in
time.

This type of system—for which the value of a discrete
variable determines the rules of evolution of continu-
ous variables, and with jumps in the discrete variables
according to another rule—provides a formal descrip-
tion of many systems in computer science, control
theory, and dynamics. The bouncing ball is another sim-
ple example and the reader may like to think about how
this fits into the formalism described below.

There are many different ways a hybrid system could
be defined, and the choice of definition will depend on
the application area or the level of generality that is
required. However, the basic structure is as follows. A
hybrid system’s state is determined by two variables,
a continuous variable x on some manifold M (often
Rn) and a discrete variable d ∈ {1,2, . . . ,D}. For each
d there is a domain Md in M and an evolution equa-
tion that determines the time evolution of x. This may
be a differential equation or a stochastic differential
equation, for example. Therefore, given d there is a
well-defined rule for the evolution of x in a subset ofM .

The next part of the specification determines how the
discrete variable can change. For each pair e = (d0, d1)
there is a set Ge ⊆ Md0 , possibly empty, such that
if x ∈ Ge then there is a finite probability that the
dynamics will be instantaneously reset so that the dis-
crete variable becomes d1 and the continuous variable
becomes R(x, e) for some reset map R : M×D×D → M .
After this, the dynamics continues in the new domain
Md1 according to the evolution rule for d1 until the next
transition is made.

Of course, for this specification to make sense a num-
ber of consistency conditions must be satisfied, e.g.,
R(x, e) ∈ Md1 , and it is possible that the continuous
variable may leave the region Md on which its dynam-
ics is defined before a transition is made, in which
case the dynamics becomes undefined. There are there-
fore many checks that need to be made to ensure that,
given an initial condition in some set Init ⊆ M × D,
the solution is well defined. In the deterministic case
uniqueness may also be an issue.

A solution with an infinite sequence of transitions in
finite time is called a Zeno solution. In computer sci-
ence, where the transitions are executions in some pro-
gram, this is not useful. In other contexts, however, the
infinite sequence may have physical significance. Chat-
tering in mechanical impacts can be modeled as a Zeno
phenomenon.

Hybrid systems are used to examine reachability and

verification problems in computer science. The reach-

ability problem is that of determining all the possible

states that can be reached from a given set of initial

conditions. This is also relevant to control theory

[IV.34], where it might be important to know that a

given control system keeps a car on the road or avoids

collisions. The existence of transitions or jumps makes

hybrid systems useful in models of mechanical impacts

as well (see slipping, sliding, rattling, and impact

[VI.15]). Control systems with thresholds can also be

modeled as hybrid systems.

The existence of transitions means that many classic

results for smooth dynamical systems, such as stability

theorems, are made considerably harder to prove, but

it could be argued that the piecewise-smooth nature of

these models is a much more generally applicable fea-

ture for modern applications in electronics and biology

than the smooth dynamical systems approach that has

dominated so much of dynamical systems theory.

Further Reading

Hristu-Varsakelis, D., and W. S. Levine, eds. 2005. Handbook
of Networked and Embedded Control Systems. Boston, MA:
Birkhäuser.

Lygeros, J. 2004. Lecture Notes on Hybrid Systems. (Digital
resource.)

II.19 Integral Transforms and
Convolution

An integral transform is an operator J mapping a

function f of a real variable to another function Jf
according to

(Jf)(s) =
∫ b
a
K(s, t)f (t)dt,

where K is called the kernel of the transformation.

There are many different integral transforms, depend-

ing on the choice of a, b, and K. They are used to trans-

form one problem into another, the intent being that

the new problem is simpler than the original one. Hav-

ing solved the new problem, the solution f is obtained

by applying the appropriate inverse operator, J−1; this

is often another integral transform.

Important special cases include the Fourier trans-

form

(Ff)(s) =
∫∞

−∞
f(t)eist dt
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and the Laplace transform

(Lf)(s) =
∫∞

0
f(t)e−st dt.

This definition of L is standard, but the definition of
F is one of many; for example, some authors insert an
extra factor (2π)−1/2, and some use e−ist . Always check
the author’s definition when reading a book or article
in which Fourier transforms are used!

Many integral transforms have an associated convo-
lution; given two functions of a real variable, f and
g, their convolution is another function of a real vari-
able, denoted by f ∗ g. It is defined so that J(f ∗
g) = (Jf)(Jg); the transform of the convolution is the
product of the transforms. For the Fourier transform

(f ∗ g)(t) =
∫∞

−∞
f(t − s)g(s)ds,

while for the Laplace transform

(f ∗ g)(t) =
∫ t

0
f(t − s)g(s)ds.

It is easy to see that, in both cases, f ∗g = g∗ f . Con-
volution is an important operation in signal process-

ing [IV.35] and in many applications involving Fourier
analysis and integral equations [IV.4].

There are also discrete versions of integral trans-
forms in which the integral is replaced by a finite sum
of terms. The discrete Fourier transform is especially
important because it can be computed rapidly using
the fast fourier transform [II.10] (FFT).

II.20 Interval Analysis
Warwick Tucker

Interval analysis is a calculus based on set-valued math-
ematics. In its simplest (and by far most popular) form,
it builds upon interval arithmetic, which is a natural
extension of real-valued arithmetic. Despite its sim-
plicity, this kind of set-valued mathematics has a very
wide range of applications in computer-aided proofs
for continuous problems. In a nutshell, interval arith-
metic enables us to bound the range of a continuous
function, i.e., it produces a set enclosing the range of
a given function over a given domain. This, in turn,
enables us to prove mathematical statements that use
open conditions, such as strict inequalities, fixed-point
theorems, etc.

1 Interval Arithmetic

In this section we will briefly describe the fundamentals
of interval arithmetic. Let IR denote the set of closed

intervals of the real line. For any element a ∈ IR, we
use the notation a = [a,a]. If 0 is one of the operators
+, −, ×, /, we define arithmetic on elements of a,b ∈ IR
by

a0 b = {a0 b : a ∈ a, b ∈ b}, (1)

except that a/b is undefined if 0 ∈ b. Working exclu-
sively with closed intervals, the resulting interval can be
expressed in terms of the endpoints of the arguments.
This makes the arithmetic very easy to implement in
software.

Note that a generic element in IR has no addi-
tive or multiplicative inverse. For example, we have
[1,2] − [1,2] = [−1,1] ≠ [0,0], and [1,2]/[1,2] =
[ 1

2 ,2] ≠ [1,1]. This is known as the dependency prob-
lem, and it can cause large overestimations. In prac-
tice, however, the use of high-order (e.g., Taylor series)
representations greatly mitigates this problem.

A key feature of interval arithmetic is that it is inclu-
sion monotonic ; i.e., if a ⊆ a′ and b ⊆ b′, then by (1) we
have

a0 b ⊆ a′ 0 b′.

This is of fundamental importance: it says that, if we
can enclose the arguments, we can enclose the result.

More generally, when we extend a real-valued func-
tion f to an interval-valued one F , we demand that it
satisfies the inclusion principle

range(f ;x) = {f(x) : x ∈ x} ⊆ F(x). (2)

If this can be arranged for a finite set of standard func-
tions, then the inclusion principle will also hold for
any elementary function constructed by arithmetic and
composition applied to the set of standard functions.

Multivariate functions can be handled by work-
ing componentwise on interval vectors (boxes) x =
(x1, . . . ,xn).

When implementing interval arithmetic on a com-
puter, the endpoints must be floating-point num-

bers [II.13]. This introduces rounding errors, which
must be properly dealt with. As an example, interval
addition becomes

a+ b = [!(a+ b),"(a+ b)].
Here, !(x) is the largest floating-point number no
greater than x, and "(x) = −!(−x). The IEEE stan-
dard for floating-point computations guarantees that
this type of outward rounding preserves the inclusion
principle for +, −, ×, and /. For other operations (such
as trigonometric functions) there are no such assur-
ances; interval extensions of these functions must be
built from scratch.
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Figure 1 Successively tighter enclosures of a graph.

2 Interval Analysis

The inclusion principle (2) enables us to capture contin-
uous properties of a function, using only a finite num-
ber of operations. Its most important use is to explic-
itly bound discretization errors that naturally arise in
numerical algorithms.

As an example, consider the function f(x) = cos3 x+
sinx on the domain x = [−5,5]. For any decompo-
sition of the domain x into a finite set of subinter-
vals x = ⋃n

i=1 xi, we can form the set-valued graph
consisting of the pairs (x1, F(x1)), . . . , (xn, F(xn)). As
the partition is made finer (that is, as maxi diam(xi) is
made smaller), the set-valued graph tends to the graph
of f (see figure 1). And, most importantly, every such
set-valued graph contains the graph of f .

This way of incorporating the discretization errors
is extremely useful for quadrature, optimization, and
equation solving. As one example, suppose we wish to
compute the definite integral I =

∫ 8
0 sin(x + ex)dx.

A MATLAB function simpson that implements a sim-
ple textbook adaptive Simpson quadrature algorithm
produces the following result.

% Compute integral I with tolerance 1e-6.
>> I = simpson(@(x) sin(x + exp(x)), 0, 8)
I =

0.251102722027180

A (very naive) set-valued approach to quadrature is to
enclose the integral I via

I ∈
n∑
i=1

F(xi)diam(xi),

which, for a sufficiently fine partition, produces the
integral enclosure

I ∈ 0.347400172666
49.

Thus, it turns out that the result from simpson was
completely wrong! This is one example of the impor-
tance of rigorous computations.

3 Recent Developments

There is currently an ongoing effort within the IEEE
community to standardize the implementation of inter-
val arithmetic. The hope is that we will enable com-
puter manufacturers to incorporate these types of com-
putations at the hardware level. This would remove
the large computational penalty incurred by repeat-
edly having to switch rounding modes—a task that
central processing units were not designed to perform
efficiently.
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II.21 Invariants and Conservation
Laws
Mark R. Dennis

As important as the study of change in the mathemati-
cal representation of physical phenomena is the study
of invariants. Physical laws often depend only on the
relative positions and times between phenomena, so
certain physical quantities do not change; i.e., they are
invariant, under continuous translation or rotation of
the spatial axes. Furthermore, as the spatial configura-
tion of a system evolves with time, quantities such as
total energy may remain unchanged; that is, they are
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conserved. The study of invariants has been a remark-
ably successful approach to the mathematical formu-
lation of physical laws, and the study of continuous
symmetries and conservation laws—which are related
by the result known as Noether’s theorem—has become
a systematic part of our description of physics over the
last century, from the atomic scale to the cosmic scale.

As an example of so-called Galilean invariance, New-
ton’s force law keeps the same form when the velocity
of the frame of reference (i.e., the coordinate system
specified by x-, y-, and z-axes) is changed by adding
a constant; this is equivalent to adding the same con-
stant velocity to all the particles in a mechanical sys-
tem. Other quantities do change under such a veloc-
ity transformation, such as the kinetic energy 1

2m|v|2
(for a particle of mass m and velocity v); however, for
an evolving, nondissipative system such as a bouncing,
perfectly elastic rubber ball, the total energy is constant
in time—that is, energy is conserved.

The development of our understanding of fundamen-
tal laws of dynamics can be interpreted by progres-
sively more sophisticated and general representations
of space and time themselves: ancient Greek physi-
cal science assumed absolute space with a privileged
spatial point (the center of the Earth), through static
Euclidean space where all spatial points are equiv-
alent, through classical mechanics [IV.19] where
all inertial frames, moving at uniform velocity with
respect to each other, are equivalent according to
Newton’s first law, to the modern theories of spe-
cial and general relativity. The theory of relativity
(both general and special) is motivated by Einstein’s
principle of covariance, which is described below.
In this theory, space and time in different frames
of reference are treated as coordinate systems on a
four-dimensional pseudo-Riemannian manifold (whose
mathematical background is described in tensors and

manifolds [II.33]), which manifestly combines conser-
vation laws and continuous geometric symmetries of
space and time. In special relativity (described in some
detail in this article), this manifold is flat Minkowski
space-time, generalizing Euclidean space to include
time in a physically natural way. In general relativity,
described in detail in general relativity and cos-

mology [IV.40], this manifold may be curved, depend-
ing in part on the distribution of matter and energy
according to einstein’s field equations [III.10].

In quantum physics, the description of a system in
terms of a complex vector in Hilbert space gives rise
to new symmetries. An important example is the fact

that physical phenomena do not depend on the overall
phase (argument) of this vector. Extension of Noether’s
theorem here leads to the conservation of electric
charge, and extension to Yang–Mills theories provides
other conserved quantities associated with the nuclear
forces studied in contemporary fundamental particle
physics. Other phenomena, such as the Higgs mecha-
nism (leading to the Higgs boson recently discovered
in high-energy experiments), are a consequence of the
breaking of certain quantum symmetries in certain low-
energy regimes. Symmetry and symmetry breaking in
quantum theory are discussed briefly at the end of this
article.

Spatial vectors, such as r = (x,y, z), represent the
spatial distance between a chosen point and the ori-
gin, and of course the vector between two such points
r2 − r1 is independent of translations of this origin.
Similarly, the scalar product r2 ·r1 is unchanged under
rotation of the coordinate system by an orthogonal
matrix R, under which r → Rr.

Continuous groups of transformations such as trans-
lation and rotation, and their matrix representations,
are an important tool used in calculations of invari-
ants. For example, the set of two-dimensional matrices( cosθ − sinθ

sinθ cosθ
)
, representing rotations through angles θ,

may be considered as a continuous one-parameter Abe-
lian group of matrices generated by the matrix expo-

nential [II.14] eθA, where A is the generator
(

0 −1
1 0

)
.

The generator itself is found as the derivative of the
original matrix with respect to θ, evaluated at θ = 0.
Translations are less obviously represented by matri-
ces; one approach is to append an extra dimension to
the position vector with unit entry, such as (1, x) spec-
ifying one-dimensional position x; a translation by X is
thus represented by(

1 0

X 1

)
= exp

(
X
(

0 0

1 0

))
. (1)

When a physical system is invariant under a one-
parameter group of transformations, the correspond-
ing generator plays a role in determining the associated
conservation law.

1 Mechanics in Euclidean Space

It is conventional in classical mechanics to define the
positions of a set of interacting particles in a vector
space. However, we do not observe any unique origin
to the three-dimensional space we inhabit, which we
therefore take to be the Euclidean space E3; only rela-
tive positions between different interacting subsystems
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(i.e., positions relative to the common center of mass)

enter the equations of motion. The entire system may

be translated in space without any effect on the phe-

nomena.

Of course, external forces acting on the system may

prevent this, such as a rubber ball in a linear gravity

field. (In such situations the source of the force, such

as the Earth as the source of gravity, is not considered

part of the system.) The gravitational force may be rep-

resented by a potential V = gz for height z and gravita-

tional acceleration g; the ball’s massm times the nega-

tive gradient, −m∇V , gives the downward force acting

on the ball. The contours of V , given by z = const.,
nevertheless have a symmetry: they are invariant to

translations of the horizontal coordinates x and y .

Since the gradient of the potential is proportional to

the gravitational force—which, by virtue of Newton’s

law equals the rate of change of the particle’s linear

momentum—the horizontal component of momentum

does not change and is therefore conserved even when

the particle bounces due to an impulsive, upward force

from the floor. The continuous, horizontal translational

symmetry of the system therefore leads to conserva-

tion of linear momentum in the horizontal plane. In a

similar argument employing Newton’s laws in cylindri-

cal polar coordinates, the invariance of the potential to

rotations about the z-axis leads to the conservation of

the vertical component a body’s angular momentum,

as observed for tops spinning frictionlessly.

2 Noether’s Theorem

The Lagrangian framework for mechanics (classical

mechanics [IV.19 §2]), which describes systems acting

under forces defined by gradients of potentials (as in

the previous section), is a natural mathematical setting

in which to explore the connection between a system’s

symmetries and its conservation laws. Here, a mechan-

ical system evolving in time t is described by n gener-

alized coordinates qj(t) and their time derivatives q̇j ,
for j = 1, . . . , n, where the initial values qj(t0) at time

t0 and final values qj(t1) at t1 are fixed. The action of

the system is the functional

S[{qj}] =
∫ t1
t0
L({qj}, {q̇j}, t)dt,

where L({qj}, {q̇j}, t) is the Lagrangian; this is a func-

tion of the coordinates, their corresponding velocities,

and maybe time, specified here by the total kinetic

energy minus the total potential energy of the system

(thereby capturing the forces as gradients of the poten-
tial energy). Using the calculus of variations [IV.6],
the functions qj(t) that satisfy the laws of mechanics
are those that make the action stationary, and these
satisfy Lagrange’s equations of motion

∂L
∂qj

− d
dt
∂L
∂q̇j

= 0, j = 1, . . . , n. (2)

The argument of the time derivative in this expression,
∂L/∂q̇j , is called the canonical momentum pj for each
j. The set of equations (2) involves the combination
of partial derivatives of the Lagrangian with respect to
the coordinates and velocities, together with the total
derivative with respect to time. By the chain rule, this
total derivative affects explicit time dependence in L
and the implicit time dependence in each qj and q̇j .
Many of the conservation laws involving Lagrangians
involve such an interplay of explicit and implicit time
dependence.

Any transformation of the coordinates qj that does
not change the Lagrangian is a symmetry of the system.
If L does not have explicit dependence on a coordinate
qj , then the first term in (2) vanishes: dpj/dt = 0, i.e.,
the corresponding canonical momentum is conserved
in time. In the example from the last section of a par-
ticle in a linear gravitational field, the coordinates can
be chosen to be Cartesian x,y, z, or cylindrical polars
r ,φ, z; L is independent of x and y , leading to con-
servation of horizontal momentum, and also φ, lead-
ing to conservation of angular momentum about the
z-axis. The theorem is proved for symmetries of this
type in classical mechanics [IV.19 §2.3]: if a system
is homogeneous in space (translation invariant), then
linear momentum is conserved, and if it is isotropic
(independent of rotations, such as the Newtonian gravi-
tational potential around a massive point particle exert-
ing a central force), then angular momentum is con-
served (equivalent to Kepler’s second law of planetary
motion for gravity).

Since it is the equations (2) that represent the phys-
ical laws rather than the form of L or S, the system
may admit a more general kind of symmetry whose
transformation adds a time-dependent function to the
Lagrangian L. If, under the transformation, the Lagran-
gian transforms L→ L+dΛ/dt involving the total time
derivative of some function Λ, the action transforms
S → S + Λ(t1) − Λ(t0). Thus the transformed action
is still made stationary by functions satisfying (2), so
transformations of this kind are symmetries of the sys-
tem, which are also continuous if Λ also depends on a
continuous parameter s so that its time derivative is
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zero when s = 0. It is not then difficult to see that the
quantity

n∑
j=1

pj
∂qj
∂s

∣∣∣∣
s=0

− ∂Λ
∂s

∣∣∣∣
s=0
, (3)

defined in terms of the generators of the transforma-
tion on each coordinate and the Lagrangian, is con-
stant in time. This is Noether’s theorem for classical
mechanics.

An important example is when the Lagrangian has
no explicit dependence on time, ∂L/∂t = 0. In this
case, under an infinitesimal time translation t → t+δt,
L→ L+δtdL/dt, so hereΛ is Lδt, with L evaluated at t,
and δt plays the role of s. Under the same infinitesimal
transformation, qj → qj + δtq̇j , so the relevant con-
served quantity (3) is

∑
j pjq̇j − L, which is the Hamil-

tonian of the system, which is equal to the total energy
in many systems of interest. It is apparently a funda-
mental law of physics that the total energy in physical
processes is conserved in time; energy can be in other
forms such as electromagnetic, gravitational, or heat,
as well as mechanical. Noether’s theorem states that
the law of conservation of energy is equivalent to the
fact that the physical laws of the system, characterized
by their Lagrangian, do not change with time.

The vanishing of the action functional’s integrand
(i.e., the Lagrangian L) is equivalent to the existence
of a first integral for the system of Lagrange equa-
tions, which is interpreted in the mechanical setting
as a constant of the motion of the system. In this
sense, Noether’s theorem may be applied more gener-
ally in other physical situations described by function-
als whose physical laws are given by the corresponding
Euler–Lagrange equations. In the case of the Lagran-
gian approach applied to fields (i.e., functions of space
and time), Noether’s theorem generalizes to give a con-
tinuous density ρ (such as mass or charge density)
and a flux vector J satisfying the continuity equation
ρ̇ +∇ · J = 0 at every point in space and time.

3 Galilean Relativity

Newton’s first law of motion can be paraphrased as “all
inertial frames, traveling at uniform linear velocity with
respect to each other, are equivalent for the formula-
tion of mechanics”—that is, without action of external
forces, a system will behave in the same way regardless
of the motion of its center of mass. The behavior of a
mechanical system is therefore independent of its over-
all velocity; this is a consequence of Newton’s second

law, that force is proportional to acceleration. Accord-
ing to pre-Newtonian physics, forces were thought to be
proportional to velocity (as the effect of friction was not
fully appreciated), and it was not until Galileo’s thought
experiments in friction-free environments that the pro-
portionality of force to acceleration was appreciated. In
spite of Galilean invariance, problems involving circu-
lar motion do in fact seem to require a privileged frame
of reference, called absolute space. One example due to
Newton himself is the problem of explaining, without
absolute space, the meniscus formed by the surface of
water in a spinning bucket; such problems are properly
overcome only in general relativity.

With Galilean relativity, absolute position is no longer
defined: events occurring at the same position but at
different times in one frame (such as a moving train car-
riage) occur at different positions in other frames (such
as the frame of the train track). However, changes to the
state of motion, i.e., accelerations, have physical conse-
quences and are related to forces. This is an example of
a covariance principle, whose importance for physical
theories was emphasized by Einstein. According to this
principle, from the statement of physical laws in one
frame of reference (such as the laws of motion), one
can derive their statement in a different frame of refer-
ence from the application of the appropriate transfor-
mation rule between reference frames. The statement
in the new frame should have the same mathematical
form as in the previous frame, although quantities may
not take the same values in different frames.

Transformations between different inertial frames
are represented mathematically in a similar way to the
translations of (1); events are labeled by their positions
in space and time, such as (t, x) in one frame and
(t, x′) in another moving at velocity v with respect to
the first. Since x′ = x − vt, the transformation from
(t, x) to (t, x′) is represented by the matrix

( 1 0
−v 1

)
.

This Galilean transformation (or Galilean boost ) differs
from (1) in that time t is here appended to the posi-
tion vector, since the translation from the boost is time-
dependent. Galilean boosts in three spatial dimensions,
together with regular translations and rotations, define
the Galilean group. It can be shown that the Lagrangian
of a free particle follows directly from the covariance
of the corresponding action under the Galilean group.

Infinitesimal velocity boosts generate a Noetherian
symmetry on systems of particles interacting via forces
that depend only on the positions of the others. Con-
siderN point particles of massmk and position rk such
that V depends only on rk−r- for k, - = 1, . . . , N . Under
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an infinitesimal boost by δv for each k, rk → rk + tδv,
ṙk → ṙk + δv, and

L→ L+ 1
2 |δv|2

∑
k
mk + δv ·

∑
k
mkṙk.

The resulting Noetherian conserved quantity (3) is

C = t
∑
k
mkṙk −

∑
k
mkrk. (4)

This quantity is constant in time; its value is minus the
product of the system’s total mass with the position of
its center of mass when t = 0. Thus, Ċ = t

∑
kmkr̈,

that is, t times the sum of the forces on each of the N
particles, which is zero by assumption.

4 Special Relativity

Historically, the physics of fields, such as electromag-
netic radiation described by maxwell’s equations

[III.22], was developed much later than the mechanics
of Galileo and Newton. The simplest wave equations, in
fact, suggest a different invariant space-time from the
Galilean framework above, which was first investigated
by Hendrik Lorentz and Albert Einstein at the turn of
the twentieth century.

Consider the time-dependent wave equation ∇2ϕ −
c−2ϕ̈ = 0 for some scalar function ϕ(t,r) and ∇2 the
laplace operator [III.18]. If all observers agree on the
same value of the wave speed c (as proposed by Ein-
stein for c the speed of light, and verified by experi-
ments), this suggests that the transformation between
moving inertial frames should be in terms of Lorentz
transformations (or Lorentz boosts) in the x-direction,(

ct′

x′

)
= γ(v)

(
1 −v/c

−v/c 1

)(
ct
x

)
, (5)

where (ct′, x′) denotes position in space and time (mul-
tiplied by the invariant speed c) in a frame moving
along the x-axis at velocity v with respect to the frame
with space-time coordinates (ct, x), and

γ(v) = (1 − v2/c2)−1/2.

Requiring γ(v) to be finite, positive, and real-valued
implies |v| < c. According to the Lorentz transforma-
tion with x = 0, t′ = γ(v)t, suggesting that γ(v) may
be interpreted as the rate of flow of time in the trans-
formed frame moving at speed v with respect to time
in the reference frame.

According to Einstein’s theory of special relativity,
all physical laws should be invariant to translations,
rotations, and Lorentz boosts, and Galilean transforma-
tions and Newton’s laws arise in the low-velocity limit.

Rotations and Lorentz boosts, together with time reflec-
tion and spatial inversion, define the Lorentz group;
the Poincaré group is the semidirect product group of
the Lorentz group with space-time translations. Spe-
cial relativity is therefore also based on the principle of
covariance, but with a different set of transformations
between frames of reference. All of the familiar results
of classical mechanics [IV.19] are recovered when
the boost transformations are restricted to v � c.

In special relativity different observers measure dif-
ferent time intervals between events, as well as differ-
ent spatial separations. For a relativistic particle, differ-
ent observers will disagree on the particle’s relativistic
energy E and momentum p. Nevertheless, according to
the principle of special relativity, all observers agree on
the quantity

E2 − |p|2c2 =m2c4,

som is an invariant on which all observers agree, called
the rest mass of the particle. In the frame in which the
particle is at rest, E = mc2 arises as a special case.
Otherwise, E = mγ(v)c2, so in special relativity the
moving particle’s energy is explicitly related to the flow
of time in the particle’s rest frame with respect to that
in the reference frame.

The Lagrangian formalism can be generalized to spe-
cial relativity, with all observers agreeing on the form
of the Euler–Lagrange equations; instead of being equal
to its kinetic energy, the Lagrangian of a free particle is
−mc2/γ(v).

The set of space-time events (ct,r) described by
special relativity is known as Minkowski space or
Minkowski space-time (discussed in tensors and man-

ifolds [II.33]). It is a flat four-dimensional manifold
with one time coordinate and three space coordinates
(i.e., a manifold with a 3 + 1 pseudo-Euclidean metric),
and the inertial frames with perpendicular spatial axes
are analogous to Cartesian coordinates in Euclidean
space. Time intervals and (simultaneous) spatial dis-
tances between events are no longer separately invari-
ant; only the space-time interval

s2 = |Δr|2 − c2Δt2

between two events with spatial separationΔr and time
separation Δt is invariant to Lorentz transformations
and hence takes the same value in all inertial frames.
s2 may be positive, zero, or negative: if positive, there
is a frame in which the pair of events are simultaneous;
if zero, the events lie on the trajectory of a light ray; if
negative, there is a frame in which the events occur at
the same position. Since nothing can travel faster than
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c, only events with s2 � 0 can be causally connected;
the events that may be affected by a given space-time
point are those within its future light cone.

Being a manifold, the symmetries of Minkowski space
are easily characterized, and its continuous symme-
tries are generated by vector fields, called Killing vec-
tor fields: dynamics in the space-time manifold is
not changed under infinitesimal pointwise translation
along these fields. The symmetries are translations in
four linearly independent space-time directions, rota-
tion about three linearly independent spatial axes, and
Lorentz boosts in three linearly independent spatial
directions (which are equivalent to rotations in space-
time that mix the t-direction with a spatial direc-
tion). There are therefore ten independent symmetry
transformations in Minkowski space-time (generating
the Poincaré group), such that, for special relativis-
tic systems not experiencing external forces, relativis-
tic energy, momentum, angular momentum, and the
analogue of C in (4) are conserved.

Both electromagnetic fields described by maxwell’s

equations [III.22] and relativistic quantum matter
waves (strictly for a single particle) described by the
dirac equation [III.9] can be expressed as Lagran-
gian field theories; the combination of these is called
classical field theory. As described above, Noether’s
theorem relates continuous symmetries of these the-
ories to continuity equations of relativistic 4-currents.
For instance, space-time translation symmetry ensures
that the relativistic rank-2 stress–energy–momentum
tensor, which describes the space-time flux of energy
(including matter), is divergence free.

5 Other Theories

Einstein’s theory of general relativity is a yet more gen-
eral approach, which admits transformations between
any coordinate systems on space-time (not simply
inertial frames). This general formulation now applies
to an arbitrary coordinate system, such as rotating
coordinates (resolving the paradoxes implicit in New-
ton’s bucket problem). This is formulated on a possi-
bly curved, pseudo-Riemannian manifold where local
neighborhoods of space-time events are equivalent to
Minkowski space and free particles follow geodesics
on the manifold. The geometry of the manifold—
expressed by the Einstein curvature tensor—is pro-
portional, by einstein’s field equations [III.10], to
the stress–energy–momentum tensor, and gravitational
forces are fictitious forces as freely falling particles

follow curved space-time geodesics. The symmetries

of general relativistic space-time manifolds are much

more complicated than those for Minkowski space but

are still formulated in terms of Killing vector fields that

generate transformations that keep equations invari-

ant.

In quantum physics (in a Galilean or special rela-

tivistic setting), the ideas described in this article are

very important in quantum field theory, required to

describe the quantum nature of electromagnetic and

other fields, and systems involving many quantum par-

ticles. In quantum field theory, all energies in the sys-

tem are quantized, often around a minimum-energy

configuration. However, many field theories involve

potentials whose minimum energy is not the most sym-

metric choice of origin; for instance, a “Mexican hat

potential” of the form |v|4 − 2a|v|2 for some field

vector v and constant a > 0 is rotationally symmet-

ric around v = 0 but has a minimum for any v with

|v| = √
a. A minimum-energy excitation of the sys-

tem breaks this symmetry by choosing an appropriate

minimum energy v. Many phenomena in the quantum

theory of condensed matter (such as the Meissner effect

in superconductors) and fundamental particles (such

as the Higgs boson) arise from this type of symmetry

breaking.

In classical mechanics, the time direction is privi-

leged (it is common to all observers), so its space-

time structure cannot be phrased simply in terms of

manifolds. Nevertheless, the Galilean group of trans-

formations naturally has a fiber bundle structure, with

the base space given by the one-dimensional Euclidean

line E1 describing time and the fiber being the spatial

coordinates given by E3.

Galilean transformations can naturally be built into

this fiber bundle structure, known as Newton–Cartan

space-time, by defining the paths of free inertial parti-

cles (i.e., straight lines) in the connections of the bun-

dle. This provides a useful mathematical framework

to compare the physical laws and symmetries of New-

tonian and relativity theories, and interesting connec-

tions exist between general relativity and Newtonian

gravity in the Newton–Cartan formalism.
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II.22 The Jordan Canonical Form
Nicholas J. Higham

A canonical form for a class of matrices is a form of
matrix—usually chosen to be as simple as possible—
to which all members of the class can be reduced by
transformations of a specified kind. The Jordan canon-
ical form (JCF) is associated with similarity transforma-
tions on n×nmatrices. A similarity transformation of
a matrixA is a transformation fromA to X−1AX, where
X is nonsingular. The JCF is the simplest form that can
be achieved by similarity transformations, in the sense
that it is the closest to a diagonal matrix.

The JCF of a complex n×n matrix A can be writ-
ten A = ZJZ−1, where Z is nonsingular and the Jordan
matrix J is a block-diagonal matrix⎡⎢⎢⎢⎢⎢⎣

J1

J2

. . .

Jp

⎤⎥⎥⎥⎥⎥⎦
with diagonal blocks of the form

Jk = Jk(λk) =

⎡⎢⎢⎢⎢⎢⎢⎣
λk 1

λk
. . .
. . . 1

λk

⎤⎥⎥⎥⎥⎥⎥⎦ .

Here, blanks denote zero blocks or zero entries. The
matrix J is unique up to permutation of the diago-
nal blocks, but Z is not. Each λk is an eigenvalue of
A and may appear in more than one Jordan block. All
the eigenvalues [I.2 §20] of the Jordan block Jk are
equal to λk. By definition, an eigenvector of Jk is a
nonzero vector x satisfying Jkx = λkx, and all such x
are nonzero multiples of the vector x = [1 0 · · · 0]T.
Therefore Jk has only one linearly independent eigen-
vector. Expand x to a vector x̃ with n components by
padding it with zeros in positions corresponding to
each of the other Jordan blocks Ji, i �= k. The vec-
tor x̃ has a single 1, in the r th component, say. A
corresponding eigenvector of A is Zx̃, since A(Zx̃) =
ZJZ−1(Zx̃) = ZJx̃ = λkZx̃; this eigenvector is the r th
column of Z .

If every block Jk is 1 × 1 then J is diagonal and A is
similar to a diagonal matrix; such matrices A are called
diagonalizable. For example, real symmetric matrices
are diagonalizable—and moreover the eigenvalues are
real and the matrix Z in the JCF can be taken to be
orthogonal. A matrix that is not diagonalizable is defec-
tive; such matrices do not have a complete set of lin-
early independent eigenvectors or, equivalently, their
Jordan form has at least one block of dimension 2 or
greater.

To give a specific example, the matrix

A = 1
2

⎡⎢⎢⎣
3 1 1

−1 1 0

0 0 1

⎤⎥⎥⎦ (1)

has a JCF with

Z =

⎡⎢⎢⎣
0 1

2 1

−1 − 1
2 0

1 0 0

⎤⎥⎥⎦ , J =

⎡⎢⎢⎣
1
2 0 0

0 1 1

0 0 1

⎤⎥⎥⎦ .
As the partitioning of J indicates, there are two Jor-
dan blocks: a 1 × 1 block with eigenvalue 1

2 and a 2 × 2
block with eigenvalue 1. The eigenvalue 1

2 of A has an
associated eigenvector equal to the first column of Z .
For the double eigenvalue 1 there is only one linearly
independent eigenvector, namely the second column,
z2, of Z . The third column, z3, of Z is a generalized
eigenvector: it satisfies Az3 = z2 + z3.

The JCF provides complete information about the
eigensystem. The geometric multiplicity of an eigen-
value, defined as the number of associated linearly
independent eigenvectors, is the number of Jordan
blocks in which that eigenvalue appears. The algebraic
multiplicity of an eigenvalue, defined as its multiplic-
ity as a zero of the characteristic polynomial q(t) =
det(tI − A), is the number of copies of the eigenvalue
among all the Jordan blocks. For the matrix (1) above,
the geometric multiplicity of the eigenvalue 1 is 1 and
the algebraic multiplicity is 2, while the eigenvalue 1

2
has geometric and algebraic multiplicities both equal
to 1.

The minimal polynomial of a matrix is the unique
monic polynomialψ of lowest degree such thatψ(A) =
0. The degree of ψ is certainly no larger than n
because the cayley–hamilton theorem [IV.10 §5.3]
states that q(A) = 0. The minimal polynomial of an
m×m Jordan block Jk(λk) is (t − λk)m. The minimal
polynomial of A is therefore given by

ψ(t) =
s∏
i=1

(t − λi)mi ,
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where λ1, . . . , λs are the distinct eigenvalues of A and

mi is the dimension of the largest Jordan block in

which λi appears. An n×n matrix is derogatory if

the minimal polynomial has degree less than n. This is

equivalent to some eigenvalue appearing in more than

one Jordan block. The matrix A in (1) is defective but

not derogatory. Then×n identity matrix is derogatory

for n > 1: it has characteristic polynomial (t − 1)n and

minimal polynomial t − 1.

Two questions that arise in many situations are, “Do

the powers of the matrix A converge to zero?” and “Are

the powers of A bounded?” The answers to both ques-

tions are easily obtained using the JCF. If A = ZJZ−1

then A2 = ZJZ−1 · ZJZ−1 = ZJ2Z−1 and, in general,

Ak = ZJkZ−1. Therefore the powers of A converge to

zero precisely when the powers of J converge to zero,

and this in turn holds when the powers of each indi-

vidual Jordan block converge to zero. The powers of

a 1 × 1 Jordan block Ji = (λi) obviously converge to

zero when |λi| < 1. In general, since Ji(λi)k has diago-

nal elements λki , for the powers of Jk(λk) to converge

to zero it is necessary that |λk| < 1, and this condition

turns out to be sufficient. Therefore Ak → 0 as k → ∞
precisely when ρ(A) < 1, where ρ is the spectral radius,

defined as the largest absolute value of any eigenvalue

of A.

Turning to the question of whether the powers of

A are bounded, by the argument in the previous para-

graph it suffices to consider an individual Jordan block.

The powers of Jk(λk) are clearly bounded when |λk| <
1, as we have just seen, and unbounded when |λk| > 1.

When |λk| = 1 the powers are bounded if the block

is 1 × 1, but they are unbounded for larger blocks. For

example,
[

1 1
0 1

]k = [
1 k
0 1

]
, which is unbounded as k→ ∞.

The conclusion is that the powers of A are bounded as

long as ρ(A) � 1 and any eigenvalues of modulus 1 are

in Jordan blocks of size 1. Thus the powers of A in (1)

are not bounded.

In one sense, defective matrices—those with nontriv-

ial Jordan structure—are very rare because the diago-

nalizable matrices are dense in the set of all matrices.

Therefore if you generate matrices randomly you will

be very unlikely to generate one that is not diagonal-

izable (this is true even if you generate matrices with

random integer entries). But in another sense, defective

matrices are quite common. Certain types of bifurca-

tions [IV.21] in dynamical systems are characterized

by the presence of nontrivial Jordan blocks in the Jaco-

bian matrix, while in problems where some function of

the eigenvalues of a matrix is optimized the optimum
often occurs at a defective matrix.

While the JCF provides understanding of a variety of
matrix problems, it is not suitable as a computational
tool. The JCF is not a continuous function of the entries
of the matrix and can be very sensitive to perturbations.
For example, for ε �= 0,

[ 1 ε
0 1

]
(one Jordan block) and[

1 0
0 1

]
(two Jordan blocks) have different Jordan struc-

tures, even though the matrices can be made arbitrar-
ily close by taking ε sufficiently small. In practice, it
is very difficult to compute the JCF in floating-point
arithmetic due to the unavoidable perturbations caused
by rounding errors. As a general principle, the schur

decomposition [IV.10 §5.5] is preferred for practical
computations.

II.23 Krylov Subspaces
Valeria Simoncini

1 Definition and Properties

The mth Krylov subspace of the matrix A ∈ Cn×n and
the vector v ∈ Cn is

Km(A,v) = span{v,Av, . . . , Am−1v}.
The dimension of Km(A,v) is at most m, and it is
less if an invariant subspace of A with respect to v is
obtained for some m∗ < m. In general, Km(A,v) ⊆
Km+1(A,v) (the spaces are nested); if m∗ = n, then
Kn(A,v) spans the whole of Cn.

Let v1 = v/‖v‖2, with ‖v‖2 = (v∗v)1/2 the 2-
norm, and let {v1, v2, . . . , vm} be an orthonormal basis
of Km(A,v). Setting Vm = [v1, v2, . . . , vm], from the
nesting property it follows that the next basis vec-
tor vm+1 can be computed by the following Arnoldi
relation:

AVm = [Vm,vm+1]Hm+1,m,

where Hm+1,m ∈ C(m+1)×m is an upper Hessenberg
matrix (upper triangular plus nonzero entries imme-
diately below the diagonal) whose columns contain the
coefficients that make vm+1 orthogonal to the already
available basis vectors v1, . . . , vm.

Suppose we wish to approximate a vector y by a vec-
tor x ∈ Km(A,v), measuring error in the 2-norm. Any
such x can be written as a polynomial in A of degree
at most m− 1 times v : x = ∑m−1

i=0 αiAiv . If A is Her-
mitian, then by using a spectral decomposition we can
reduce A to diagonal form by unitary transformations,
which do not change the 2-norm, and it is then clear
that the eigenvalues of A and the decomposition of v
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in terms of the eigenvectors of A drive the approxima-
tion properties of the space. For non-Hermitian A the
approximation error is harder to analyze, especially for
highly nonnormal or nondiagonalizable matrices.

By replacing v by an n× s matrix V , with s � 1,
spaces of dimension at most ms can be obtained. An
immediate matrix counterpart is

Km(A,V) =
{m−1∑
i=0

γiAiV : γi ∈ C for all i
}
.

A richer version is obtained by working with linear
combinations of all the available vectors:

K�
m(A,V) = range([V ,AV, . . . , Am−1V]).

Methods based on this latter space are called “block”
methods, since all matrix structure properties are gen-
eralized to blocks (e.g., Hm+1,m will be block upper
Hessenberg, with s × s blocks). Block spaces are appro-
priate, for instance, in the presence of multiple eigen-
values or if the original application requires using the
same A and different vectors v .

2 Applications and Generalizations

Krylov subspaces are used in projection methods for
solving large algebraic linear systems, eigenvalue prob-
lems, and matrix equations; for approximating a wide
range of matrix functions (analytic functions, trace,
determinant, transfer functions, etc.); and in model
order reduction.

The general idea is to project the original problem of
size n onto the Krylov subspace of dimension m� n
and then solve the smaller m×m reduced problem
with a more direct method (one that would be too
computationally expensive if applied to the original
n×n problem). If the Krylov subspace is good enough,
then the projected problem retains sufficient informa-
tion from the original problem that the sought after
quantities are well approximated.

When equations are involved, Krylov subspaces usu-
ally play a role as approximation spaces, as well as
test spaces. The actual test space used determines
the resulting method and influences the convergence
properties.

Generalized spaces have emerged as second-gener-
ation Krylov subspaces. In the eigenvalue context, the
“shift-and-invert” Krylov subspace Km((A− σI)−1, v)
is able to efficiently approximate eigenvalues in a neigh-
borhood of a fixed scalar σ ∈ C; here I is the iden-
tity matrix of size n. In matrix function evaluations
and matrix equations, the extended space Km(A,v)+

Km(A−1, A−1v) has shown some advantages over the

classical space, while for σ1, . . . , σm ∈ C, the use of the

more general rational space

span{(A− σ1I)−1v, . . . , (A− σmI)−1v}
has recently received a lot of attention for its potential

in a variety of advanced applications beyond eigenvalue

problems, where it was first introduced in the 1980s. All

these generalized spaces require solving systems with

some shifted forms of A, so that they are in general

more expensive to build than the classical one, depend-

ing on the computational cost involved in solving these

systems. However, the computed space is usually richer

in spectral information, so that a much smaller space

dimension is required to satisfactorily approximate the

requested quantities. The choice among these variants

thus depends on the spectral and sparsity properties

of the matrix A.
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II.24 The Level Set Method
Fadil Santosa

1 The Basic Idea

The level set method is a numerical method for repre-

senting a closed curve or surface. It uses an implicit rep-

resentation of the geometrical object in question. It has

found widespread use in problems where the closed

curve evolves or needs to be recomputed often. A main

advantage of the method is that such a representation

is very flexible and calculation can be done on a regular

grid. In computations where surfaces evolve, changes in

the topology of the surface are easily handled.

Consider an example in two dimensions in the (x,y)-
plane. Suppose one is interested in the motion of a

curve under external forcing terms. Let C(t) denote the

curve as a function of time t. One method for solv-

ing this problem is to track the curve, which can be

done by choosing marker points, (xi(t),yi(t)) ∈ C(t),
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Figure 1 The graphs of a level set function z = ϕ(x,y, t)
for three values of t are shown at the bottom of the figure.
The plane z = 0 intersects these functions. The domains
D(t) = {(x,y) : ϕ(x,y, t) > 0} are shown above. Note that,
in this example,D(t) has gone through a topological change
as t varies.

i = 1, . . . , n, whose motions are determined by the forc-
ing. The curve itself may be recovered at any time t by
a prescribed spline interpolation.

The level set method takes a different approach; it
represents the curve as the zero level set of a function
ϕ(x,y, t). That is, the curve is given by

C(t) = {(x,y) : ϕ(x,y, t) = 0}.
One can set up the function so that the interior of the
curve C(t) is the set

D(t) = {(x,y) : ϕ(x,y, t) > 0}.
In figure 1 the level set function z = ϕ(x,y, t) can be
seen to intersect the plane z = 0 at various times t. The
sets ofD(t) (not up to the same scale) are shown above
each three-dimensional figure.

An advantage of the level set method is demon-
strated in the figure. One can see that a topological
change in D(t) has occurred as t is varied. The level
set method allows for such a change without the need
to redefine the representation, as would be the case for
the front-tracking method described previously.

2 Discretization

One of the attractive features of the level set method
is that calculations are done on a regular Cartesian
grid. Suppose we have discretized the computational
domain and the nodes are at coordinates (xi,yj) for
i = 1, . . . ,m and j = 1, . . . , n. The values of the level set
functionϕ(x,y, t) are then stored at coordinate points
x = xi and y = yj . At any time, if one is interested in
the curve C(t), the zero level set, the set

C(t) = {(x,y) : ϕ(x,y, t) = 0}

needs to be approximated from the data ϕ(xi,yj, t).
One is typically interested in such quantities as the
normal to the curve and the curvature at a point on
the curve. These quantities are easily calculated by
evaluating finite-difference approximations of

ν = ∇ϕ
|∇ϕ|

and

κ = ∇ · ν,
where the gradient operator ∇ = [∂/∂x ∂/∂y]T.

In practice, it is not necessary to keep all values of the
level set function on the nodes. Since one is often inter-
ested only in the motion of the curveC(t), the zero level
set, one needs only the values of the level set function in
the neighborhood of the curve. Such approaches have
been dubbed “narrow-band methods” and can poten-
tially reduce the amount of computation in a problem
involving complex evolution of surfaces.

It must be noted that, in the two-dimensional exam-
ple here, C(t) is a one-dimensional object, whereas
the level set function ϕ(x,y, t) is a two-dimensional
function. Thus, one might say that the ability to track
topological changes is made at the cost of increased
computational complexity.

3 Applications

A simple problem one may pose is that of tracking the
motion of a curve for which every point on the curve
is moving in the direction normal to the curve with a
given velocity. If the velocity is v , then the equation for
the level sets is given by

∂ϕ
∂t

= v|∇ϕ|.

If one is interested in tracking the motion of the zero
level setC(t), then one must specify an initial condition

ϕ(x,y,0) =ϕ0(x,y),

where the initial zero level set is given by

C(0) = {(x,y) : ϕ0(x,y) = 0}.
This evolution of such a curve may be very compli-
cated and go through topological changes. The power
of the level set method is demonstrated here because
all one needs to do is solve the initial-value problem for
ϕ(x,y, t).

Another simple problem is the classical motion by
mean curvature. In this “flow,” one is interested in
tracking the motion of a curve for which every point on
the curve is moving normal to the curve at a velocity
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proportional to the curvature. The evolution equation
is given by

∂ϕ
∂t

= ∇ · ∇ϕ
|∇ϕ| .

A numerical solution of this evolution equation can
be used to demonstrate the classical Grayson theo-
rem, which asserts that, if the closed curve starts
out without self-intersections, then it will never form
self-intersections and it will become convex in finite
time.

Significant problems arising from applications from
diverse fields have benefited from the level set treat-
ment. The following is an incomplete list meant to give
a sense of the range of applications.

Image processing. The level set method can be used
for segmentation of objects in a two-dimensional
scene. It has also been demonstrated to be effective
in modeling surfaces from point clouds.

Fluid dynamics. Two-phase flows, which involve inter-
faces separating the two phases, can be approached
by the level set method. It is particularly effective for
problems in which one of the phases is dispersed in
bubbles.

Inverse problems. Inverse problems exist in which the
unknown that one wishes to reconstruct from data is
the boundary of an object. Examples include inverse
scattering.

Optimal shape design. When the object is to design
a shape that maximizes certain attributes (design
objectives), it is often very convenient to represent
the shape by a level set function.

Computer animation. The need for physically based
simulations in the animation industry has been par-
tially met by solving equations of physics using
the level set method to represent surfaces that are
involved in the simulation.

Current research areas include improved accuracy in
the numerical schemes employed and in applying the
method to ever more complex physics.

Further Reading

Osher, S., and R. Fedkiw. 2003. Level Set Methods and
Dynamic Implicit Surfaces. New York: Springer.

Osher, S., and J. A. Sethian. 1988. Fronts propagating
with curvature-dependent speed: algorithms based on
Hamilton–Jacobi formulations. Journal of Computational
Physics 79:12–49.

Sethian, J. A. 1999. Level Set Methods and Fast Marching
Methods: Evolving Interfaces in Computational Geometry,
Fluid Mechanics, Computer Vision, and Materials Science.
Cambridge: Cambridge University Press.

II.25 Markov Chains
Beatrice Meini

A Markov chain is a type of random process whose
behavior in the future is influenced only by its current
state and not by what happened in the past. A simple
example is a random walk on Z, where a particle moves
among the integers of the real line and is allowed to
move one step forward with probability 0 < p < 1 and
one step backward with probability q = 1 − p (see fig-
ure 1). The position of the particle at time n+ 1 (in the
future) depends on the position of the particle at timen
(at the present time), and what happened before time n
(in the past) is irrelevant.

To give a precise definition of a Markov chain we will
need some notation. Let E be a countable set represent-
ing the states, and let Ω be a set that represents the
sample space. Let X,Y : Ω → E be two random vari-
ables. We denote by P[X = j] the probability that X
takes the value j, and we denote by P[X = j | Y = i]
the probability that X takes the value j given that the
random variable Y takes the value i. A discrete stochas-
tic process is a family (Xn)n∈N of random variables
Xn : Ω → E.

A stochastic process (Xn)n∈N is called a Markov
chain if

P[Xn+1 = in+1 | X0 = i0, . . . , Xn = in]
= P[Xn+1 = in+1 | Xn = in]

at any time n � 0 and for any states i0, . . . , in+1 ∈ E.
This means that the state Xn at time n is sufficient to
determine which state Xn+1 might be occupied at time
n+ 1, and we may forget the past history X0, . . . , Xn−1.

It is often required that the laws that govern the
evolution of the system be time invariant. The Markov
chain is said to be homogeneous if the transitions from
one state to another state are independent of the time
n, i.e., if

P[Xn+1 = j | Xn = i] = pij
at any time n � 0 and for any states i, j ∈ E. The num-
ber pij represents the probability of passing from state
i to state j in one time step. The matrix P = (pij)i,j∈E
is called the transition matrix of the Markov chain. The
matrix P is a stochastic matrix: that is, it has nonneg-
ative entries and unit row sums (

∑
j∈E pij = 1 for all

i ∈ E). The dynamic behavior of the Markov chain
is governed by the transition matrix P . In particular,
the problem of computing the probability that, after n
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Figure 1 A random walk on Z.

steps, the Markov chain is in a given state reduces to
calculating the entries of the nth power of P , since

P[Xn = j | X0 = i] = (Pn)ij ,
where (Pn)ij denotes the (i, j) entry of Pn.

In the random walk on Z, the set of states is E =
Z, and the random variable Xn is the position of the
particle at time n. The stochastic process (Xn)n∈N is a
homogeneous Markov chain. The transition matrix P is
tridiagonal, with pi,i+1 = p, pi,i−1 = q, and pij = 0 for
j �= i− 1, i+ 1.

In many applications, the interest is in the asymp-
totic behavior of the Markov chain. In particular, the
question is to understand if limn→∞ P[Xn = j | X0 = i]
exists and if that limit is independent of the initial state
i. If such a limit exists and is equal to πj > 0 for any
initial state i, then the vector π = (πj)j∈E is such that∑
j∈E πj = 1 and πTP = πT. This vector π is called

the steady state vector, or the probability invariant vec-
tor. If E is a finite set, then the steady state vector is a
left eigenvector of P corresponding to the eigenvalue 1;
moreover, if in addition the matrix P is irreducible, then
there exists a unique steady state vector.

The matrix

P =

⎡⎢⎢⎢⎣
1
4

1
2

1
4

0 2
3

1
3

1
2 0 1

2

⎤⎥⎥⎥⎦ (1)

is the transition matrix of a Markov chain with space
state E = {1,2,3}. The transitions among the states can
be represented by the graph of figure 2. The powers of
P converge:

lim
n→∞P

n =

⎡⎢⎢⎢⎣
1
4

3
8

3
8

1
4

3
8

3
8

1
4

3
8

3
8

⎤⎥⎥⎥⎦ .
Hence the steady state vector is πT = [ 1

4
3
8

3
8 ]. A simple

computation shows that πT = πTP .
Markov chains have applications across a wide range

of topics in different areas, including mathematical
biology, chemistry, queueing theory, information sci-
ences, economics and finance, Internet applications,
and more. According to the model, the transition matrix
P can be finite or infinite dimensional and can have
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2

Figure 2 Transitions of the Markov chain having the
matrix P of equation (1) as transition matrix.

specific structures, like sparsity or pattern structure. In

most of the applications of Markov chains, the interest

is in the computation of the steady state vector, assum-

ing that it exists. In this regard, specific algorithms can

be designed according to the properties of the matrix P .

Further Reading

Stewart (1994) is an introduction to numerical meth-

ods for general Markov chains, while Bini et al. (2005)

presents specific algorithms for Markov chains aris-

ing in queueing models. Norris (1999) gives a complete

treatise on Markov chains.

Bini, D. A., G. Latouche, and B. Meini. 2005. Numerical
Methods for Structured Markov Chains. New York: Oxford
University Press.

Norris, J. R. 1999. Markov Chains, 3rd edn. Cambridge:
Cambridge University Press.

Stewart, W. J. 1994. Introduction to the Numerical Solution of
Markov Chains. Princeton, NJ: Princeton University Press.

II.26 Model Reduction
Peter Benner

“Model reduction” is an ambiguous term; in this arti-

cle it is understood to mean the reduction of the com-

plexity of a mathematical model by (semi-) automatic

mathematical algorithms. Often such techniques are

also called “dimension reduction,” “order reduction,”

or, inspired by system-theoretic terminology, “model

order reduction.” The concept is used in various appli-

cation areas and in different contexts. Model order

reduction has emerged in many disciplines, primarily in

structural dynamics, systems and control theory, com-

putational fluid mechanics, chemical process engineer-

ing, and, more recently, circuit simulation, microelec-

tromechanical systems, and computational electromag-

netics. It now also finds its way into numerous other
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application areas such as image processing, compu-

tational neuroscience, and computational/computer-

aided engineering in general.

Here, we will focus on the reduction of the dimension

of the state space of a dynamical system, for which we

use the following model equation:

E(t, p)ẋ(t) = f(t, x(t),u(t), p), (1a)

x(t0) = x0, (1b)

y(t) = g(t, x(t),u(t), p). (1c)

In this set of equations, x(t) ∈ Rn is the state of

the system at time t ∈ [t0, T ] (t0 < T � ∞), u(t) ∈
Rm denotes inputs (control, time-varying parameters),

p ∈ Ω ⊂ Rd is a vector of stationary (material, geom-

etry, design, etc.) parameters, Ω is usually a bounded

domain, and x0 ∈ Rn is the initial state of the sys-

tem. The matrix E(t, p) ∈ Rn×n determines the nature

of the system. When it is uniformly nonsingular, (1a)

represents a system of ordinary differential equations;

otherwise (1) is a descriptor system. If d > 0, i.e., when

parameters are present, one may also consider the case

E(t, p) ≡ 0. Then (1a) becomes a system of (nonlin-

ear) algebraic equations. Model reduction preserving

the parameters as symbolic quantities will then acceler-

ate the approximate solution of (1a) in the case of vary-

ing parameters (the “many-query context”). The equa-

tion (1c) describes an output vector y(t) ∈ Rq. It may

correspond to a practical setting where only a few mea-

surements of the system or observables are available.

This equation may also be used to identify quantities

of interest when full state information is not required

in the application. If full state information is needed,

one simply sets y(t) = x(t). The functions f and g
are assumed to have sufficient smoothness properties,

where for f , Lipschitz continuity is usually a minimum

requirement for ensuring existence and uniqueness of

local solutions of (1a).

The goal of model reduction is to replace (1) by a

system of reduced state-space dimension r � n of the

same form,

Ê(t, p) ˙̂x(t) = f̂ (t, x̂(t),u(t), p), (2a)

x̂(t0) = x̂0, (2b)

ŷ(t) = g(t, x̂(t),u(t), p), (2c)

with the inputs u(t) and the parameter vector p
unchanged from (1), such that ŷ matches y as closely

as possible for all admissible control inputs and param-

eters. Additionally, one may require the preservation

of structural properties like stability, passivity, dissi-
pativity, etc. It should be clear that it is difficult to ful-
fill all these demands at once, and various model order
reduction methods for specific applications have there-
fore been developed. A common principle can be found
in many of these, and the mathematical core of the
methods is often very similar.

1 The Basic Concept

The basic principle behind most model order reduc-
tion methods is the projection of the state equation (1a)
onto a low-dimensional subset V ⊂ Rn, possibly along
a complementary subspace W of the same dimension.
The projection onto nonlinear subsets like central or
(approximate) inertial manifolds is the topic of the
theory of dynamical systems and has been applied so
far mainly in reaction kinetics, process engineering,
and systems biology. Most other successful families
of methods—such as modal truncation, balanced trun-
cation, Padé approximation/Krylov subspace methods/
moment matching (which are all instances of rational
interpolation), and proper orthogonal decomposition
and reduced basis methods—use linear projection sub-
spaces, and they can mostly be categorized as (Petrov–)
Galerkin projection methods. Suppose we are given
an orthogonal basis of V , represented by the column
space of V ∈ Rn×r , and a basis of W forming the col-
umn space of W ∈ Rn×r (where W = V and W = V in
the Galerkin case) such that WTV = Ir (the r × r iden-
tity matrix). The reduced-order model is then obtained
by setting x̂ = WTx, x̂0 = WTx0, and making the
residual of (1a) for x̃ orthogonal to W :

W ⊥ E(t, p) ˙̂x − f(t, x̂,u,p) ∀ admissible t,u,p

� 0 = WT(E(t, p) ˙̂x − f(t, x̂,u,p)).
The different methods now mainly differ in the way
V (and W ) are computed. The full state x of (1) is
approximated by x̃ = Vx̂(t) = VWTx(t).

As an example, consider a linear time-invariant sys-
tem without parameters:

E(t, p) ≡ E, (3a)

f(t, x,u,p) = Ax + Bu, (3b)

g(t, x,u,p) = Cx, (3c)

with A,E ∈ Rn×n, B ∈ Rn×m, C ∈ Rq×n. For instance,
interpolation methods (and also balanced truncation)
utilize the transfer function

G(s) = C(sE −A)−1B, s ∈ C,
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of (1), which in the linear time-invariant case is obtained

by taking Laplace transforms and inserting the trans-

formed equation (1a) into the transformed (1c). The

transfer function represents the mapping of inputs u
to outputs y . As a rational matrix-valued function of

a complex variable, it can be approximated in differ-

ent ways. In rational interpolation methods, V , W are

computed so that

dj

dsj
G(sk) =

dj

dsj
Ĝ(sk), k = 1, . . . , K, j = 0, . . . , Jk,

forK interpolation points sk and derivatives up to order

Jk at each point. Here, Ĝ denotes the transfer function

of (2) and (3), defined by Â = WTAV , B̂ = WTB, and

Ĉ = CV .

In the nonlinear case, a further question is how to

obtain functions f̂ and ĝ allowing for fast evaluation.

Simply setting f̂ (t, x,u,p) = WTf(t, Vx̂,u,p) obvi-

ously does not lead to faster simulation in general.

Therefore, dedicated methods, such as (discrete) empir-

ical interpolation, are needed to obtain a “reduced” f̂
and ĝ.

2 An Example

As an example consider the mathematical model of a

microgyroscope: a device used in stability control of

vehicles. Finite-element discretization of this particu-

lar model leads to a linear time-invariant system of

n = 34 722 linear ordinary differential equations with

d = 4 parameters, m = 1 input, and q = 12 outputs.

Using a reduced-order model of size r = 289, a param-

eter study involving two parameters (defining x- and

y-axes in figure 1) and the excitation frequencyω (i.e.,

the parametric transfer function G(s,p) is evaluated

for s = iω with varying ω) could be accelerated by a

factor of approximately 90 without significant loss of

accuracy. The output y was computed with an error

of less than 0.01% in the whole frequency and param-

eter domain. Figure 1 shows the response surfaces of

the full and reduced-order models at one frequency for

variations of two parameters.

Further Reading

Antoulas, A. 2005. Approximation of Large-Scale Dynamical
Systems. Philadelphia, PA: SIAM.

Benner, P., M. Hinze, and E. J. W. ter Maten, eds. 2011.
Model Reduction for Circuit Simulation. Lecture Notes in
Electrical Engineering, volume 74. Dordrecht: Springer.
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Figure 1 The parametric transfer function of a microde-
vice (at ω = 0.025): results from (a) the full model with
dimension 34 722 and (b) the reduced-order model with
dimension 289. (Computations and graphics by L. Feng and
T. Breiten.)
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II.27 Multiscale Modeling
Fadil Santosa

To accurately model physical, biological, and other
phenomena, one is often confronted with the need
to capture complex interactions occurring at distinct
temporal and spatial scales. In the language of multi-
scale modeling, temporal scales are usually differenti-
ated by slow, medium, and fast timescales. Spatially,
the phenomena are separated into micro-, meso-, and



120 II. Concepts

macroscales. In modeling the deformation of solids, for
instance, the microscale phenomena could be atomistic
interactions occurring on a femtosecond (10−15 sec-
ond) timescale. At the mesoscopic scale, one could be
interested in the behavior of the constituent macro-
molecules, e.g., a tangled bundle of polymers. Finally,
at the macroscopic scale, one might be interested in
how a body, whose size could be in meters, deforms
under an applied force. The challenge in multiscale
modeling is that the interactions at one scale com-
municate with interactions at other scales. Thus, in
the example given, the question we wish to answer is
how the applied forces affect the atomistic interactions,
and how those interactions impact the behavior of the
macromolecules, which in turn affects how the overall
shape of the body deforms.

Multiscale modeling is a rapidly developing field
because of its enormous importance in applications.
The range of applications is staggering. It has been
applied in geophysics, biology, chemistry, meteorology,
materials science, and physics.

We give another concrete example that arises in solid
mechanics. Suppose we have a block of pure aluminum
whose crystalline structure is known. How can we cal-
culate its elastic properties, i.e., its Lamé modulus and
Poisson ratio, ab initio from knowledge of its atomistic
structure? Such a calculation would start by consid-
ering Schrödinger’s equation for the multiparticle sys-
tem. By solving for the ground states of the system, one
can then extract the desired macroscopic properties of
the bulk aluminum.

A classical example of multiscale modeling in applied
mathematics is the homogenization method [II.17],
which allows for extraction of effective properties of
composite materials. Consider the steady-state distri-
bution of temperature in a rod of length -made up of a
material with rapidly oscillating conductivity. The con-
ductivity is described by a periodic function a(y) > 0,
such that a(y + 1) = a(y). A small-scale ε is intro-
duced to denote the actual period in the medium. The
governing equation for temperature u(x) is(

a
(
x
ε

)
u′
)′

= f , 0 < x < -,

where a prime denotes differentiation with respect
to x. Here, f is the heat source distribution, with x
measuring distance along the rod. To solve the prob-
lem, the solution u is developed in powers of ε. The
macroscopic behavior of u is identified with the zeroth
order. This solution will be smooth as the small rapid
oscillations are ignored.

Current research in multiscale modeling focuses
on bridging the phenomena at the different scales
and developing efficient numerical methods. There are
efforts to develop rigorous multiscale models that
agree with their continuum counterparts. continuum

models [IV.26] are macroscale models derived from
first principles and where the material properties are
usually measured. Other efforts concentrate more on
developing accurate simulations, such as modeling the
properties of Kevlar starting from the polymers in the
resin and the carbon fibers used. All research in this
area involves some numerical analysis and scientific
computing.

II.28 Nonlinear Equations and
Newton’s Method
Marcos Raydan

Nonlinear equations appear frequently in the mathe-
matical modeling of real-world processes. They are usu-
ally written as a zero-finding problem: find xj ∈ R, for
j = 1,2, . . . , n, such that

fi(x1, . . . , xn) = 0 for i = 1,2, . . . , n,

where the fi are given functions of n variables. This
system of equations is nonlinear if at least one of the
functions fi depends nonlinearly on at least one of the
variables. Using vector notation, the problem can also
be written as find x = [x1, . . . , xn]T ∈ Rn such that

F(x) = [f1(x), . . . , fn(x)]T = 0.

If every function fi depends linearly on all the vari-
ables, then it is usually written as a linear system of
equations Ax = b, where b ∈ Rn and A is an n×n
matrix.

The existence and uniqueness of solutions for non-
linear systems of equations is more complicated than
for linear systems of equations. For solving Ax = b,
the number of solutions must be either zero, infinity, or
one (whenA is nonsingular), whereas F(x) = 0 can have
zero, infinitely many, or any finite number of solutions.
Fortunately, in practice, it is usually sufficient to find a
solution of the nonlinear system for which a reasonable
initial approximation is known.

Even in the simple one-dimensional case (n = 1),
most nonlinear equations cannot be solved by a closed
formula, i.e., using a finite number of operations. A
well-known exception is the problem of finding the
roots of polynomials of degree less than or equal to
four, for which closed formulas have been known for
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Figure 1 One iteration of Newton’s method
in one dimension for f(x) = 0.

centuries. As a consequence, in general iterative meth-

ods must be used to produce increasingly accurate

approximations to the solution. One of the oldest iter-

ative schemes, which has played an important role in

the numerical methods literature for solving F(x) = 0,

is Newton’s method.

1 Newton’s Method

Newton’s method for solving nonlinear equations was

born in one dimension. In that case, the problem is find

x ∈ R such that f(x) = 0, where f : R → R is differ-

entiable in the neighborhood of a solution x∗. Starting

from a given x0, on the kth iteration Newton’s method

constructs the tangent line passing through the point

(xk, f (xk)),

Mk(x) = f(xk)+ f ′(xk)(x − xk),
and defines the next iterate, xk+1, as the root of the

equation Mk(x) = 0 (see figure 1). Hence, from a given

x0 ∈ R, Newton’s method generates the sequence {xk}
of approximations to x∗ given by

xk+1 = xk − f(xk)/f ′(xk).

Notice that the tangent line or linear model Mk(x) is

equal to the first two terms of the Taylor series of f
around xk.

Newton’s idea in one dimension can be extended to

n-dimensional problems. In Rn the method approxi-

mates the solution of a square nonlinear system of

equations by solving a sequence of square linear sys-

tems. As in the one-dimensional case, on the kth iter-

ation the idea is to define xk+1 as a zero of the linear

model given by

Mk(x) = F(xk)+ J(xk)(x − xk),

where the map F : Rn → Rn is assumed to be dif-
ferentiable in a neighborhood of a solution x∗ and
where J(xk) is the n×n Jacobian matrix with entries
Jij(xk) = ∂fi/∂xj(xk) for 1 � i, j � n. Therefore,
starting at a given x0 ∈ Rn, Newton’s method carries
out for k = 1,2, . . . the following two steps.

• Solve J(xk)sk = −F(xk) for sk.
• Set xk+1 = xk + sk.

Notice that Newton’s method is scale invariant: if the
method is applied to the nonlinear system AF(x) =
0, for any nonsingular n×n matrix A, the sequence
of iterates is identical to the ones obtained when it
is applied to F(x) = 0. Another interesting theoret-
ical feature is its impressively fast local convergence.
Under some standard assumptions—namely that J(x∗)
is nonsingular, J(x) is Lipschitz continuous in a neigh-
borhood of x∗, and the initial guess x0 is sufficiently
close to x∗—the sequence {xk} generated by Newton’s
method converges q-quadratically to x∗; i.e., there
exist c > 0 and k̂ � 0 such that for all k � k̂,

‖xk+1 − x∗‖ � c‖xk − x∗‖2.

Hence Newton’s method is theoretically attractive, but
it may be difficult to use in practice for various rea-
sons, including the need to calculate the derivatives,
the need to have a good initial guess to guarantee con-
vergence, and the cost of solving ann×n linear system
per iteration.

2 Practical Variants

If the derivatives are not available, or are too expen-
sive to compute, they can be approximated by finite
differences. A standard option is to approximate the
jth column of J(xk) by a forward difference quotient:
(F(xk + hkej) − F(xk))/hk, where ej denotes the jth
unit vector and hk > 0 is a suitable small number.
Notice that, when using this finite-difference variant,
the map F needs to be evaluated n+ 1 times per itera-
tion, once for each column of the Jacobian and one for
the vector xk. Therefore, this variant is attractive when
the evaluation of F is not expensive.

Another option is to extend the well-known one-
dimensional secant method to the n-dimensional prob-
lem F(x) = 0. The main idea, in these so-called secant
or quasi-newton methods [IV.11 §4.2], is to generate
not only a sequence of iterates {xk} but also a sequence
of matrices {Bk} that approximate J(xk) and satisfy the
secant equation Bksk−1 = yk−1, where sk−1 = xk−xk−1
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and yk−1 = F(xk) − F(xk−1). In this case, an initial
matrix B0 ≈ J(x0) must be supplied. Clearly, infinitely
many n×n matrices satisfy the secant equation. As a
consequence, a wide variety of quasi-Newton methods
(e.g., Broyden’s method) with different properties have
been developed.

When using Newton’s method, or any of its deriva-
tive-free variants, a linear system needs to be solved
at each iteration. This linear system can be solved by
direct methods (e.g., LU or QR factorization), but if n
is large and the Jacobian matrix has a sparse struc-
ture, it may be preferable to use an iterative method
(e.g., a krylov subspace method [IV.10 §9]). For that,
note that xk can be used as the initial guess for the
solution at iteration k+ 1. One of the important fea-
tures of these so-called inexact variants of Newton’s
method is that modern iterative linear solvers do not
require explicit knowledge of the Jacobian; instead,
they require only the matrix–vector product J(xk)z for
any given vector z. This product can be approximated
using a forward finite difference:

J(xk)z ≈ (F(xk + hkz)− F(xk))/hk.
Hence, inexact variants of Newton’s method are also
suitable when derivatives are not available. In all the
discussed variants, the local q-quadratic convergence is
in general lost, but q-superlinear convergence can nev-
ertheless be obtained, i.e., ‖xk+1 − x∗‖/‖xk − x∗‖ → 0.

Finally, in general Newton’s method converges only
locally, so it requires globalization strategies to be prac-
tically effective. The two most popular and best-studied
options are line searches and trust regions. In any case,
a merit function f̂ : Rn → R+ must be used to eval-
uate the quality of all possible iterates. When solving
F(x) = 0, the natural choice is f̂ (x) = F(x)TF(x).

Further Reading

Dennis, J. E., and R. Schnabel. 1983. Numerical Methods
for Unconstrained Optimization and Nonlinear Equations.
Englewood Cliffs, NJ: Prentice Hall. (Republished by SIAM
(Philadelphia, PA) in 1996.)
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II.29 Orthogonal Polynomials

Polynomials p0(x), p1(x), . . . , where pi has degree i,
are orthogonal polynomials on an interval [a, b] with

Table 1 Parameters in the three-term recurrence (1) for
some classical orthogonal polynomials.

Polynomial [a, b] w(x) aj bj cj

Chebyshev [−1,1] (1 − x2)−1/2 2 0 1

Legendre [−1,1] 1
2j + 1
j + 1

0
j

j + 1

Hermite (−∞,∞) e−x
2

2 0 2j

Laguerre [0,∞) e−x − 1
j + 1

2j + 1
j + 1

j
j + 1

respect to a nonnegative weight function w(x) if∫ b
a
w(x)pi(x)pj(x)dx = 0, i �= j,

that is, if all distinct pairs of polynomials are orthogo-
nal on [a, b]with respect tow. For a given weight func-
tion and interval, the orthogonality conditions deter-
mine the polynomials pi uniquely up to a constant
factor.

An important property of orthogonal polynomials is
that they satisfy a three-term recurrence relation

pj+1(x) = (ajx + bj)pj(x)− cjpj−1(x), j � 1. (1)

The weight functions, interval, and recurrence coeffi-
cients for some classical orthogonal polynomials are
summarized in table 1, in which is assumed the normal-
ization p0(x) = 1, with p1(x) = x for the Chebyshev
and Legendre polynomials, p1(x) = 2x for the Her-
mite polynomials, and p1(x) = 1 − x for the Laguerre
polynomials.

Orthogonal polynomials have many interesting prop-
erties and find use in many different settings, e.g., in
numerical integration, Krylov subspace methods, and
the theory of continued fractions. In this volume they
arise in least-squares approximation [IV.9 §3.3],
numerical solution of partial differential equa-

tions [IV.13 §6], random-matrix theory [IV.24], and
as special functions [IV.7 §7]. See special functions

[IV.7 §7] for more information.

II.30 Shocks
Barbara Lee Keyfitz

1 What Are Shocks?

“Shocks” (or “shock waves”) is another name for the
field of quasilinear hyperbolic PDEs, or conservation

laws [II.6]. When the mathematical theory of super-
sonic flow was in its infancy, the first text on the subject
named it this way; and the first modern monograph to
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focus on the mathematical theory of quasilinear hyper-
bolic PDEs also used this terminology. Shocks are a
dominant feature of the subject, for, as noted with ref-
erence to the burgers equation [III.4] (see also par-

tial differential equations [IV.3 §3.6]), solutions to
initial-value problems, even with smooth data, are not
likely to remain smooth for all time. We return to the
derivation to see what happens when solutions are not
differentiable.

In the derivation of a system in one space dimension,

ut + f (u)x = 0, (1)

one typically invokes the conservation of each compo-
nent ui of u. The rate of change of ui over a control
length [x,x + h] is the net flux across the endpoints:

∂t
∫ x+h
x

ui(y, t)dy = fi(u(x, t))−fi(u(x+h, t)). (2)

Under the assumption that u is differentiable, the
mean value theorem of calculus yields (1) in the limit
h → 0. However, (2) is also useful in a different case.
If u approaches two different limits, uL(X(t), t) and
uR(X(t), t), on the left and right sides of a curve of
discontinuity, x = X(t), then taking the limit h → 0 in
(2) with x and x + h straddling the curve X(t) yields
a relationship among uL, uR, and the derivative of the
curve:

X′(t)(uR(X(t), t)− uL(X(t), t))

= f (uR(X(t), t))− f (uL(X(t), t)). (3)

This is known as the (generalized) Rankine–Hugoniot
relation. The quantity X′(t) measures the speed of
propagation of the discontinuity at X(t).

Because solutions of conservation laws are not ex-
pected to be continuous for all time, even when the ini-
tial data are smooth, it is necessary to allow shocks in
any formulation of what is meant by a “solution” of
(1). Conservation law theory states that a solution of
(1) may contain countably many shocks, the functions
X(t) may be no smoother than Lipschitz continuous,
and there may be countably many points in physical
(x, t)-space at which shock curves intersect. In the case
of conservation laws in more than one space dimen-
sion, the notion of a “shock curve” can be generalized to
that of a “shock surface” by supposing that the solution
is piecewise differentiable on each side of such a sur-
face. One obtains an equation similar to (3) that relates
the states on either side of the surface to the normal
to the surface at each point. However, as distinct from
the case in a single space dimension, it is not known

whether all solutions have this structure, or whether
more singular behavior is possible.

2 Entropy, Admissibility, and Uniqueness

Although allowing for weak solutions, in the form of
solutions containing shocks, is forced upon us by both
mathematical considerations (they arise from almost
all data) and physical considerations (they are seen in
all the fluid systems modeled by conservation laws), a
new difficulty arises: if shocks are admitted as solu-
tions to a conservation law system, there may be too
many solutions (this is also known, somewhat illogi-
cally, as “lack of uniqueness”). Here is a simple exam-
ple, involving the Burgers equation. If at t = 0 we are
given

u(x,0) =
⎧⎨⎩0, x � 0,

1, x > 0,

then

u(x, t) =
⎧⎨⎩0, x � 1

2 t,

1, x > 1
2 t,

is a shock solution in the sense of (3). But

u(x, t) =

⎧⎪⎪⎨⎪⎪⎩
0, x � 0,
x/t, 0 < x � t,
1, x > t,

is also a solution, and in fact it is the latter, which
is described as a “rarefaction wave,” that is correct,
while the former, known as a “rarefaction shock

[V.20 §2.2],” can be ruled out on both mathematical and
physical grounds. A fluid that is rarefying (that is, one
in which the force of pressure is decreasing), be it a gas
or traffic, spreads out gradually and erases the initial
discontinuity, while a fluid that is being compressed
forms a shock.

Another mode of reasoning, which has both a math-
ematical and a physical basis, goes as follows. Suppose
η is a convex function of u for which another function
q(u) exists such that

η(u)t + q(u)x = 0 (4)

whenever u is a smooth solution of (1). When this is the
case, we say that (1) “admits a convex entropy.” A cal-
culation (easy for the Burgers equation and true in gen-
eral) shows that we should not expect (4) to be satisfied
(in the weak sense, as an additional Rankine–Hugoniot
relation like (3)) in regions containing shocks. But since
η is convex, imposing the requirement that η decrease
in time when shocks are present forces a bound on
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solutions. For systems of conservation laws in a sin-
gle space dimension, this condition, which admits some
shocks and not others as weak solutions, is sufficient
to guarantee uniqueness.

There are a number of other ways to formulate
admissibility conditions for shocks, including modify-
ing the system with so-called viscosity terms to make
it parabolic,

ut + f (u)x = εuxx, (5)

and then admitting only shocks that are limits, as ε →
0, of classical solutions of this semilinear parabolic
system.

3 Shock Profiles

To a fluid dynamicist, the viscous equation (5) is more
than an artifice to obtain uniqueness of solutions by
winnowing out shocks that fail some test. The hyper-
bolic system (1) may be regarded as an approxima-
tion to a more realistic physical situation that takes
into account viscosity, heat transfer effects, and even
the mean free path of particles (for a gas). If, for
example, viscous effects are included, the right-hand
side of (5) takes the form Buxx , where B = B(u) is
a matrix that is typically diagonal, typically positive-
semidefinite, and typically small when the system is
measured on the length scale of interest. In particular,
the hyperbolic system (1) gives a good description of
a flow on that length scale. However, across a shock
there is a rapid change in u, or at least in some of
its components, and the hyperbolic approximation is
not adequate. One approach here is to use the hyper-
bolic system to uncover the macroscopic features of the
shock—the speed c = X′ and the states on either side,
using (3)—and then to formulate a traveling wave prob-
lem for the solution inside the shock. That is, one uses
techniques from dynamical systems to study solutions
u(ξ) = u(x − ct) of

−cu′ +A(u)u′ = B(u)u′′,

u(−∞) = uL, u(∞) = uR,

where A is the Jacobian matrix of the flux function f .
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II.31 Singularities
P. A. Martin

The word “singularity” has a variety of meanings in
mathematics but it usually means a place or point
where something bad happens. For example, the func-
tion f(x) = 1/x is not defined at x = 0; it has a sin-
gularity at x = 0: it is “singular” there. In this simple
example, f(x) is unbounded (infinite) at x = 0, but this
need not be a defining property of a singularity. Thus,
in complex analysis [IV.1], f(z) is said to have a sin-
gularity at a point z0 when f is not differentiable at z0.
For example, f1(z) = 1/(z − 1)2 has a singularity at
z = 1, and f2(z) = z1/2 has a singularity at z = 0. Note
that f1(z) is unbounded at z = 1, whereas f2(0) = 0.
In complex analysis, singularities of f(z) are exploited
to good effect, especially in the calculus of residues.

Before describing more benefits of singularities, let
us consider some of the trouble that they may cause.
Elementary examples occur in the evaluation of defi-
nite integrals when the integrand is unbounded at some
point in the range of integration. For example, con-
sider I =

∫ 1
0 xα dx, where α is a parameter. Integrating,

I = 1/(α + 1) provided α > −1; the integral diverges
for α � −1. (When α = −1, use

∫
x−1 dx = log |x|.)

When α < 0, the integrand f(x) = xα is unbounded
as x → 0 through positive values. Nevertheless, even
though f(x) has a singularity at x = 0, the singularity
is integrable when −1 < α < 0, meaning that the area
under the graph, y = f(x), 0 < x < 1, is finite; the area
is infinite when α � −1.

In the example just described we were able to evalu-
ate the integral I exactly, and this enabled us to exam-
ine the effect of the parameter α. In practice, we may
have to compute the value of an integral numerically
using a quadrature rule (such as the trapezium rule or
Simpson’s rule). When the integrand has a singularity,
we are often obliged to use a specialized rule tailored
to that specific kind of singularity or to use a substi-
tution designed to remove the singularity. Generally, a
blend of analytical and numerical techniques is needed
so as to mollify the effects of the singularity.

Similar difficulties can occur in many other problems,
such as when solving boundary-value problems for a
partial differential equation [IV.3] (PDE). For a
specific example, consider laplace’s equation [III.18],
∇2u = 0, in the region r > 0, 0 < θ < β, where r
and θ are plane polar coordinates and the angle β sat-
isfies 0 < β < 2π . We shall refer to this region as a
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wedge. If we have boundary conditions u = 0 on both

sides of the wedge, θ = 0 and θ = β, one solution is

u(r , θ) = rν sin(νθ), where ν = π/β. This solution is

zero at the tip of the wedge (where r = 0), but deriva-

tives of u may be unbounded there; for example, if we

take β = 4
3π , then ν = 3

4 and the gradient of u is

unbounded at r = 0. This singular behavior is typical at

corners and often degrades the performance of numer-

ical methods for solving PDEs. In fact, it is not even

necessary to have a corner, as a change in boundary

condition can have the same effect. For example, take

β = π , so that the wedge becomes the half-plane y > 0,

and then require that u = 0 at θ = 0 and ∂u/∂θ = 0 at

θ = π . Then one solution is u = r1/2 sin(θ/2), and this

has an unbounded gradient at r = 0, which is the point

on the straight edge y = 0 where the boundary condi-

tion changes. This phenomenon was built into the Motz

problem, devised in the 1940s for testing numerical

methods; it is still in use today.

Returning to the wedge, take β = 2π so that the

wedge becomes the whole plane with a slit along the

positive x-axis. The two sides of the slit are defined by

θ = 0 and θ = 2π . Suppose that the boundary condi-

tions are ∂u/∂θ = 0 at θ = 0 and θ = 2π . One solution

of ∇2u = 0 is then u = r1/2 cos(θ/2), and this has an

unbounded gradient at r = 0. This solution is of inter-

est in the mechanics of solids [IV.32], where the slit

represents a crack, u is a displacement, and the gra-

dient of u is related to the elastic stresses. The linear

theory of elasticity predicts that the stresses are given

approximately by r−1/2K(θ) when r (the distance from

the crack tip) is small, where K can be calculated. The

form of the singular behavior, namely r−1/2, is given by

a local analysis near the crack tip, but the multiplier K,

known as the stress intensity factor, requires knowledge

of the geometry of the cracked body and the applied

loads. Physically, the stresses cannot be infinite: the

linear theory of elasticity breaks down at crack tips.

A more accurate theory might involve plastic effects

or consideration of atomic structures. However, useful

predictions about when a cracked object will break as

the applied loads are increased can be made by exam-

ining K. This is at the heart of engineering theories

of fracture mechanics. It is another example where the

singular behavior can be exploited.

Returning to mathematics, consider Laplace’s equa-

tion in three dimensions, ∇2u = 0. One solution

is

G(x,y, z;x0, y0, z0) = G(P,P0) = R−1,

where

R = {(x − x0)2 + (y −y0)2 + (z − z0)2}1/2.

Here we can regard (x,y, z) and (x0, y0, z0) as being

the coordinates of points P and P0, respectively, and we

have ∇2G = 0 for fixed P0, provided P ≠ P0. As R is the

distance between P and P0, we see that G is singular as

P → P0. The function G is an example of a Green func-

tion, named after George Green. (It is conventional to

abandon the rules of English grammar and to speak of

“a Green’s function”; opposing this widespread misuse

appears futile.) One use of G comes when we want to

solve Poisson’s equation, ∇2u = f , where f is a given

function. Thus

u(P0) = − 1
4π

∫
G(P,P0) f (P)dP,

where the integration is over all P. Notice that G could

be replaced by A/R + H(P,P0), where A is a constant

andH is any solution of ∇2H = 0. In principle,H can be

chosen so thatG satisfies additional conditions, such as

boundary conditions; indeed, this was how Green con-

ceived of his function, as the electrostatic field inside a

conductor due to a point charge. However, in practice,

it is usual to use a simple G and then to impose bound-

ary conditions on u by solving an integral equa-

tion [IV.4]. We note that the alternative terminology

fundamental solution is often used, meaning a simple

singular solution of a governing PDE.

Singularities can occur in many other contexts. We

mention two. Suppose we want to solve an initial-value

problem for a nonlinear PDE, where the initial state

at time t = 0 is specified and the goal is to calculate

the solution as t increases. It is then possible that the

solution becomes unbounded as t → tc, where tc is

some finite critical time. This is known as “blow-up”:

there is a finite-time singularity at t = tc (see partial

differential equations [IV.3 §3.6]). There is much

interest within fluid dynamics [IV.28] in the existence

or otherwise of finite-time singularities because it is

thought that they may be relevant in understanding the

nature of turbulence [V.21].

Finally, we cannot end an article on singularities

without mentioning cosmology. It is generally accepted

that the Big Bang theory gives a model for how the

universe evolves, starting from an initial singularity.

Some cosmologists believe that the universe will end

with a singularity; the trouble caused by this singu-

larity (if it exists) is unlikely to bother readers of this

article.
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II.32 The Singular Value
Decomposition
Nicholas J. Higham

One of the most useful matrix factorizations is the sin-
gular value decomposition (SVD), which is defined for
an arbitrary rectangular matrix A ∈ Cm×n. It takes the
form

A = UΣV∗, Σ = diag(σ1, σ2, . . . , σp) ∈ Rm×n, (1)

where p = min(m,n), Σ is a diagonal matrix with diag-
onal elements σ1 � σ2 � · · · � σp � 0, and U ∈ Cm×m

and V ∈ Cn×n are unitary. The σi are the singular val-
ues of A, and they are the nonnegative square roots
of the p largest eigenvalues of A∗A. The columns of
U and V are the left and right singular vectors of A,
respectively.

Postmultiplying (1) by V gives AV = UΣ since V∗V =
I, which shows that the ith columns of U and V are
related by Avi = σiui for i = 1 :p. Similarly, A∗ui =
σivi for i = 1 :p. A geometrical interpretation of
the former equation is that the singular values of A
are the lengths of the semiaxes of the hyperellipsoid
{Ax : ‖x‖2 = 1}.

Assuming thatm � n for notational simplicity, from
(1) we have

A∗A = V(Σ∗Σ)V∗, (2)

with Σ∗Σ = diag(σ2
1 , σ

2
2 , . . . , σ2

n), which shows that the
columns of V are eigenvectors of the matrix A∗A with
corresponding eigenvalues the squares of the singular
values ofA. Likewise, the columns ofU are eigenvectors
of the matrix AA∗.

The SVD reveals a great deal about the matrix A and
the key subspaces associated with it. The rank, r , of A
is equal to the number of nonzero singular values, and
the range and the null space of A are spanned by the
first r columns of U and the last n − r columns of V ,
respectively.

The SVD reveals not only the rank but also how close
A is to a matrix of a given rank, as shown by a classic
1936 theorem of Eckart and Young.

Theorem 1 (Eckart–Young). Let A ∈ Cm×n have the
SVD (1). If k < r = rank(A), then for the 2-norm and
the Frobenius norm,

min
rank(B)=k

‖A−B‖ = ‖A−Ak‖ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σk+1, 2-norm,√√√√ r∑
i=k+1

σ2
i , F -norm,

(a)

(b)

Figure 1 Photo of a blackboard, inverted so that white
and black are interchanged in order to show more clearly
the texture of the board: (a) original 1067 × 1600 image;
(b) image compressed using rank-40 approximation A40

computed from SVD.

where

Ak = UDkV∗, Dk = diag(σ1, . . . , σk,0, . . . ,0).

In many situations the matrices that arise are nec-
essarily of low rank but errors in the underlying data
make the matrices actually obtained of full rank. The
Eckart–Young result tells us that in order to obtain a
lower-rank matrix we are justified in discarding (i.e.,
setting to zero) singular values that are of the same
order of magnitude as the errors in the data.

The SVD (1) can be written as an outer product
expansion

A =
p∑
i=1

σiuiv∗
i ,

and Ak in the Eckart–Young theorem is given by the
same expression with p replaced by k. If k � p then
Ak requires much less storage than A and so the SVD
can provide data compression (or data reduction). As
an example, consider the monochrome image in fig-
ure 1(a) represented by a 1067 × 1600 array of RGB
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values (R = G = B since the image is monochrome).
Let A ∈ R1067×1600 contain the values from any one of
the three channels. The singular values ofA range from
8.4×104 down to 1.3×101. If we retain only the singular
values down to the 40th, σ40 = 2.1 × 103 (a somewhat
arbitrary cutoff since there is no pronounced gap in
the singular values), we obtain the image in figure 1(b).
The reduced SVD requires only 6% of the storage of
the original matrix. Some degradation is visible in the
compressed image (and more can be seen when it is
viewed at 100% size on screen), but it retains all the
key features of the original image. While this example
illustrates the power of the SVD, image compression
is in general done much more effectively by the jpeg

scheme [VII.7 §5].
A pleasing feature of the SVD is that the singular val-

ues are not unduly affected by perturbations. Indeed,
if A is perturbed to A + E then no singular value of A
changes by more than ‖E‖2.

The SVD is a valuable tool in applications where
two-sided orthogonal transformations can be carried
out without “changing the problem,” as it allows the
matrix of interest to be diagonalized. Foremost among
such problems is the linear least-squares problem

[IV.10 §7.1] minx∈Cn ‖b −Ax‖2.
The SVD was first derived by Beltrami in 1873. The

first reliable method for computing it was published
by Golub and Kahan in 1965; this method applies two-
sided unitary transformations to A and does not form
and solve the equation (2), or its analogue for AA∗.
Once software for computing the SVD became readily
available, in the 1970s, the use of the SVD proliferated.
Among the wide variety of uses of the SVD are for text

mining [VII.24], deciphering encrypted messages, and
image deblurring.
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II.33 Tensors and Manifolds
Mark R. Dennis

We know that the surface of the Earth is curved, despite
the fact that it appears flat. This is easily understood

from the fact that the Earth’s radius of curvature
is over 6000 km, vast on a human scale. This pic-
ture motivates the mathematical definition of a man-
ifold (properly a Riemannian manifold): a space that
appears to be Euclidean locally in a neighborhood of
each point (or pseudo-Euclidean, as defined below) but
globally may have curvature, such as the surface of a
sphere.

Manifolds are most simply defined in terms of the
coordinate systems on them, and of course there are
uncountably many such systems. Tensors are mathe-
matical objects defined on manifolds, such as vector
fields, which are in a natural sense independent of the
coordinate system used to define them and their com-
ponents. The importance of tensors in physics stems
from the fact that the description of physical phenom-
ena ought to be independent of any coordinate system
we choose to impose on space and hence should be
tensorial.

Our description of manifolds and tensors will be
rather informal. For instance, we will picture vector
or tensor fields as defining a vector or tensor at
each point of the manifold itself rather than more
abstractly as a section of the appropriate tangent
bundle. In applications, tensors are frequently used
in the study of general relativity and cosmol-

ogy [IV.40], which involves describing the dynam-
ics of matter and fields using any reference frame
(coordinate system), assuming space-time is a four-
dimensional pseudo-Riemannian curved manifold, as
described below.

An n-dimensional manifold is a topological space
such that a neighborhood around each point is equiva-
lent (i.e., homeomorphic) to a neighborhood of a point
in n-dimensional euclidean space [I.2 §19.1]. More
formally, it can be defined as the set of smooth coordi-
nate systems that can be defined on the space, together
with transformation rules between them. In a neigh-
borhood around each point, a coordinate system can
always be found that looks locally Cartesian, regardless
of any global curvature (which can cause the system to
fail to be Cartesian at other points).

In practice, each coordinate system on a Rieman-
nian manifold has a metric, defined below, which is
possibly position dependent. This enables inner prod-
ucts between pairs of vectors at each point in the
space to be defined. The situation is complicated by the
fact that, at each point, most coordinate systems are
oblique, as in figure 1. The following description uses
“index notation,” which suggests the explicit choice of



128 II. Concepts
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Figure 1 The components of a vector v in an oblique basis
of unit vectors {e1,e2}: contravariant components v1, v2

follow from the parallelogram rule, and covariant compo-
nents v1, v2 are found by dropping perpendiculars onto the
basis vectors. For basis vectors with arbitrary lengths, each
covariant component is the length shown on the diagram
multiplied by the norm of the corresponding basis vector.

a coordinate system. However, such expressions are

always valid since all tensorial expressions should be

the same in every coordinate system; that is, they are

covariant. Explicitly coordinate-free formulations exist,

although they require a greater familiarity with differ-

ential geometry than is assumed here and require the

definition of much new notation.

Consider a vector v inn-dimensional Euclidean space

with oblique coordinate axes locally defined by linearly

independent but not necessarily orthonormal basis vec-

tors ej , j = 1, . . . , n. The contravariant components of

v, represented with upper indices vj for j = 1, . . . , n,

are defined by the parallelogram law; that is,

v =
n∑
j=1

vjej (vj contravariant).

Throughout this article, we will assume that the symbol

vj represents the vector itself, and not simply the com-

ponents. This will also apply to objects with multiple

indices.

The covariant components vj , represented with

lower indices, are those defined by the scalar product

with the basis vectors (i.e., formally, covariant compo-

nents are the components of the vectors in the dual

space to the tangent vector space, with “covariant” here

not to be confused with the sense previously), i.e.,

vj = v · ej , j = 1, . . . , n (vj covariant).

If the ej are orthonormal, then the covariant compo-

nents vj are the same as the contravariant vj . The

components of the metric tensor gij for the coordinate

system at this point are then given by gij = ei · ej ,
with gij ≡ (gij)−1, the inverse of gij considered as a

matrix.

All of the geometry of the local basis is encoded in

gij ; for instance, covariant and contravariant compo-

nents are found from each other using the metric ten-

sor to “raise” and “lower” indices, such as vi = gijvj
and vi = gijvj . In these expressions, and for the

remainder of the article, we adopt the Einstein sum-

mation convention; that is, when an index symbol is

repeated, once each in an upper (contravariant) and a

lower (covariant) position, we assume that the indices

are summed from 1 to n. The summed index symbol

i, j, . . . is itself arbitrary, i.e., a “dummy index.”

This procedure generalizes the inner product to

oblique axes, defining inner multiplication, or index con-

traction. As usual in linear algebra, objects with multi-

ple indices can be defined, e.g., Tij = uivj + piqj for

vectors uj , vj , pj , qj . Forming a product of objects

such asuivj without contracting the indices is referred

to as outer multiplication, and in coordinate-free from,

uivj is written as u⊗ v.

The components of the position vector, in terms of

the chosen coordinate system, are denoted xi, i.e., in

Cartesian coordinates x1 = x, x2 = y , . . . . Differentia-

tion with respect to a set of contravariant indices is in

fact covariant, as can easily be verified from a Taylor

expansion by a small displacement δxi of a scalar field

f(xi) around a chosen point xi:

f(xi + δxi) = f(xi)+ δxi∂if +O((δx)2).

The term δxi∂if is first order in δxi, so it must

be the same in all coordinate systems; since δxi is

contravariant, ∂i ≡ ∂/∂xi must be covariant.

As coordinate systems on curved manifolds are not

typically orthonormal everywhere, we must assume in

general that the components of a vector are different

from those of its dual (which is used to take inner prod-

ucts). Any vector object may be represented with upper

or lower indices, which are related by the metric tensor.

Objects with multiple indices, such as the metric ten-

sor itself, can also have both indices upper, both lower,

or a mixture. In fact, since gij is the matrix inverse of

gij , the matrix representation of the mixed metric ten-

sor g ki = gijgjk is the identity matrix and so is often

written δki , to be understood as a generalization of the

usual Kronecker symbol with mixed upper and lower

indices.

With this formalism an alternative coordinate system

has components xj′ , the different system being repre-

sented by the prime on the coordinate symbol; at each

point, the linear transformation between the systems is
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given by the Jacobian ∂xi/∂xj′ ≡ Λij′ ; therefore, a vec-
tor’s contravariant components are transformed to the
new system by vi′ = Λi′j vj . The inverse transformation
Λji′ not only transforms contravariant coordinates back
from the primed to the unprimed system but also trans-
forms unprimed covariant components to the primed
system, i.e., vi′ = Λji′vj . This equivalence guarantees
that the squared length of the vector is independent
of the coordinate system, i.e.,

vi′vi
′ = vjΛji′Λi

′
k v

k = vjδjkvk = vjvj,

where δjk is the Kronecker symbol with one upper index
and one lower index (both unprimed), which may be
thought of as representing the identity transformation
from the unprimed coordinate system to itself.

A general tensor is therefore a (possibly) multicom-
ponent object, all of whose components transform
between coordinate systems according to the local
Jacobian transformation, namely,

Ti
′j′···

k′-′··· = Λi
′
i Λ

j′
j · · ·Λkk′Λ--′ · · ·T

ij···
k-···.

A scalar is a tensorial object with no indices, a vec-
tor has one index, and in general a tensor with m dis-
tinct indices is said to have rank m. The ordering of
the indices of a tensor is of course important, and
this is maintained regardless of whether they appear
in upper or lower positions. The principle of covariance
(either special covariance or general covariance), due to
Einstein, states that physical laws should be express-
ible in tensorial form, that is, they should be covariant
under the class of coordinate transformations being
considered.

Although it is tempting to identify tensors such
as gij as arrays of numbers in particular coordinate
systems, a tensor on a manifold is in fact properly
defined independently of any particular coordinate sys-
tem, and instead its tensorality follows from its indices
transforming in the appropriate way under coordinate
transformations.

Coordinate derivatives ∂ivj (also written vj,i) should
not be expected to be tensorial, as they follow the pos-
sibly curved coordinate lines of the arbitrarily chosen
coordinate system. The covariant derivative

∇ivj = vi;j ≡ ∂ivj − Γ kijvk (1)

is tensorial, where the connection coefficients or Chris-
toffel symbols Γ kij denote a nontensorial object defined
in terms of coordinate derivatives of the metric ten-
sor (Γ kij ≡ 2−1gk-∂jgi-+∂ig-j−∂-gij ), whose combina-
tion with the coordinate derivative in (1) does indeed

yield a tensor. Covariant derivatives of general ten-
sors pick up a Γ term for each index (e.g., Ti-;j =
Ti-,j − Γ kijTk- − Γm-j Tim). The derivative of a scalar is
therefore automatically tensorial.

No part of the discussion up to this point explic-
itly involves the manifold’s curvature. Indeed, a com-
plicated coordinate system may have nonzero connec-
tion coefficients and yet describe Euclidean space. The
tensorality of the covariant derivative is an expression
of the parallel transport of a vector along a curve. A
geodesic on a manifold is a curve that is as straight as
possible, given that the manifold may be curved. Such
a curve can be constructed by parallel transporting a
vector as a tangent vector along a curve; a geodesic
curve zi(s), parametrized by s, therefore satisfies the
geodesic equation

d2zk

ds2
+ Γ kij

dzi

ds
dzj

ds
= 0,

which generalizes the equation for a Euclidean straight
line in Cartesian coordinates (for which the connection
is zero), and is in general nonlinear.

Curvature exists around a point on a manifold when
there exists a vector that, upon being parallel trans-
ported from the point around some infinitesimal closed
path back to the point, does not return to its original
direction. This is equivalent to the failure of covariant
derivatives to commute. For any vector field vi,

∇j∇kvi −∇k∇jvi = R-ijkv-, (2)

defining the Riemann curvature tensor R-ijk. This ten-
sor has rank 4: the indices j and k are related to the
plane defined by the derivatives (i.e., the closed path),
and i is related to the original direction of the vector,
whose change in direction is related to -. The Riemann
curvature tensor has many symmetries, such as R-ijk =
−Ri-jk = Rjk-i, with the result that, although a general
rank-4 tensor has n4 components, only n2(n2 − 1)/12
of the Riemann tensor’s components are independent:
one for n = 2, six for n = 3, twenty for n = 4,
etc. A manifold where the curvature tensor vanishes
everywhere is said to be flat.

The symmetric, rank-2 “trace” of the Riemann tensor,
Rik ≡ Rjijk, is known as the Ricci tensor. It plays a cru-
cial role in the theory of general relativity, as the part
of the curvature of the space-time manifold affected by
energy-momentum and the cosmological constant. Its
trace R ≡ gikRik is called the curvature scalar.

In many applications it is mathematically easier to
restrict the class of coordinate systems being con-
sidered in order to gain mathematical tractability at
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the cost of generality. For example, in problems of
classical mechanics [IV.19] in three-dimensional flat
Euclidean space described by a position vector r, it
is conventional to work with Cartesian tensors; all
coordinate systems are Cartesian, and the transforma-
tions between them are simply rotations and transla-
tions. In this case, covariant and contravariant indices
transform in the same way, so the metric becomes the
Kronecker symbol in all systems gij = δij (the indices
are both lower here, appropriate for a metric tensor).

Examples of Cartesian tensors include the inertia
tensor of a solid body with density ρ(r),

Iij =
∫

body
ρ(r)(rkrkδij − rirj)d3r,

which relates the rotating body’s angular momentum
Li = Iijωj to its angular velocityωj . Another example
that is important for continuum mechanics is a body’s
Cauchy stress tensor σij ; at each point, fj = σijni is
the force acting on a surface perpendicular to the unit
vector ni.

The tensorial framework for space-time was intro-
duced into physics by Einstein, who applied it to the
four-dimensional manifold of space-time events, in
which all vectors become four-dimensional 4-vectors.
In this formalism, time becomes a spatial coordi-
nate ct = x0 (or, in older literature, x4), where c
is the speed of light (approximately 3 × 108 meters
per second), so that physical laws satisfy the princi-
ple of special relativity (or special covariance); they
take the same form in all inertial frames, which are
regarded effectively as orthonormal coordinate sys-
tems on flat space-time. This generalization of New-
ton’s first law of mechanics was necessary to accommo-
date Maxwell’s equations of electrodynamics, famously
requiring all inertial observers to agree on the value
of c. In Einstein’s theory, all inertial observers agree
on the value of x2 + y2 + z2 − c2t2, written more
compactly via the summation convention as ηabxaxb ,
or xaxa; this is the “space-time separation” of the
event xa = (ct, x,y, z) from the space-time origin,
where ηab is the Minkowski tensor with the form
diag(−1,+1,+1,+1). Conventionally, indices a,b, . . .
are used to denote four-dimensional space-time indices
0, . . . ,3, whereas indices i, j, . . . are used to denote spa-
tial indices 1,2,3. The different continuous symme-
tries of Euclidean, Newtonian, and Minkowski space-
time are discussed in invariants and conservation

laws [II.21].
The four-dimensional flat manifold that admits the

Minkowski tensor ηab at each point is called Minkowski

space. Notably, ηab has some negative as well as posi-
tive entries (as such it is pseudo-Euclidean); Minkowski
space has many similarities geometrically to Euclid-
ean space. However, the crucial difference is that the
squared length xaxa of a space-time 4-vector may be
positive, negative, or zero.

In special relativity, therefore, space-time is repre-
sented by Minkowski space, a flat pseudo-Riemannian
manifold. Space-time coordinate transformations on
Minkowski space are called Lorentz transformations.
The choice of the overall sign of the tensor ηab (i.e.,
diag(−1,+1,+1,+1) or diag(+1,−1,−1,−1)) is a con-
vention, and it is common, particularly in the litera-
ture on relativistic quantum theory, to use the oppo-
site sign to that chosen here (it is also common to rep-
resent the four space-time indices by Greek characters
α,μ, . . . , reserving Roman characters for the space-like
indices). The signature of a metric is the sum of signs
of its entries in a coordinate system when it is diag-
onal: in a Euclidean space it is n, but in Minkowski
space it is 2 (or −2, depending on the sign convention).
The neighborhood of each point in a Riemannian man-
ifold admits a coordinate system that is locally Euclid-
ean. Manifolds in which the neighborhood of each point
admits a coordinate system with metric signature not
equal to n, such as Minkowski space, are said to be
pseudo-Riemannian.

In general relativity, Einstein proposed the principle
of general covariance, i.e., that physical laws be ten-
sorial with respect to all observers (i.e., all frames on
space-time), not just the inertial ones (for which tensors
in special relativity become analogous to the restric-
tion in Euclidean space to Cartesian tensors). In general
relativity, therefore, space-time is no longer required
to be flat (i.e., the neighborhood of each point locally
looks like Minkowski space), allowing for the possibil-
ity that at larger length scales, space-time itself may be
curved. The einstein field equations [III.10] relate
the Ricci curvature of a manifold to the distribution of
matter, energy, and momentum in space-time, thereby
fundamentally tying the nature of space and time to the
phenomena that occupy it.
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II.34 Uncertainty Quantification
Youssef Marzouk and Karen Willcox

Uncertainty quantification (UQ) involves the quantita-
tive characterization and management of uncertainty
in a broad range of applications. It employs both com-
putational models and observational data, together
with theoretical analysis. UQ encompasses many dif-
ferent tasks, including uncertainty propagation, sensi-
tivity analysis, statistical inference and model calibra-
tion, decision making under uncertainty, experimental
design, and model validation. UQ therefore draws upon
many foundational ideas and techniques in applied
mathematics and statistics (e.g., approximation theory,
error estimation, stochastic modeling, and Monte Carlo
methods) but focuses these techniques on complex
models (e.g., of physical or sociotechnical systems) that
are primarily accessible through computational simula-
tion. UQ has become an essential aspect of the develop-
ment and use of predictive computational simulation
tools.

Modeling endeavors may contain multiple sources
of uncertainty. A widely used classification contrasts
aleatory or irreducible uncertainty, resulting from
some inherent variability, with epistemic or reducible
uncertainty that reflects a lack of knowledge. The more
detailed classification of uncertainties below was pro-
posed in the seminal work of Kennedy and O’Hagan,
and it provides a useful foundation on which to estab-
lish mathematical approaches.

Parameter uncertainty refers to uncertain inputs to
or parameters of a model. For example, parameters rep-
resenting physical properties (permeability, porosity)
of the Earth may be unknown in a computational model
of the subsurface. Parametric variability captures the
uncertainty due to uncontrolled or unspecified condi-
tions in inputs or parameters. For example, aircraft
design must account for uncertain operating condi-
tions that arise from varying atmospheric conditions
and gust encounters. Residual variability describes the
uncertainty due to intrinsic random variation in the
underlying physics being modeled or induced by behav-
ior at physical scales that are not resolved by the model.
Examples of residual variability include the uncertainty
due to using models of turbulence that approximate
the effects of the small scales that are not resolved.
Code uncertainty refers to the uncertainty associated
with not knowing the output of a computer model given
any particular configuration until the code is run. For

example, a Gaussian process emulator used as a surro-

gate for a higher-fidelity model has code uncertainty at

parameter values away from those at which the emu-

lator was calibrated. Observation error is the uncer-

tainty associated with actual observations and mea-

surements; it plays an important role in model cali-

bration and inverse problems. Model discrepancy cap-

tures the uncertainty due to limitations of and assump-

tions in the model. This uncertainty is present in almost

every model used in science and engineering.

This article takes a probabilistic view of all these

sources of uncertainty. While other approaches, e.g.,

interval analysis, fuzzy set theory, and Dempster–

Shafer theory, have also been employed to analyze par-

ticular UQ problems, the probabilistic approach to UQ

offers a particularly rich and flexible structure, and has

seen extensive development over the past two decades.

The challenge of model validation is closely related

to UQ. A recent National Academy of Sciences report

defines validation as “the process of determining the

degree to which a model is an accurate representation

of the real world from the perspective of the intended

uses of the model.” This process therefore involves

assessing how the sources of uncertainty described

above contribute to any prediction of interest. Quan-

tifying model discrepancy is a particularly challeng-

ing aspect of the validation process; posterior predic-

tive checks, cross validation, and other ways of assess-

ing model error are important in this regard. In situa-

tions where data are few in number or where the model

is intended for use in an extrapolatory setting, how-

ever, traditional techniques for model checking may

not apply. This is important and somewhat uncharted

territory, for which new mathematical and statistical

approaches are being developed.

1 Characterizing Uncertainty

Probabilistic approaches characterize uncertain quan-

tities using probability density or mass functions.

These approaches require the specification of suffi-

cient information to endow model inputs with prob-

ability distributions. This information can be drawn

from various types of prior knowledge, including his-

torical databases, physical constraints, previous com-

putations, and the elicitation of expert opinion. The

principle of maximum entropy is sometimes used to

map from a few specified characteristics of the uncer-

tainty (e.g., minimum and maximum values, or mean,
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variance, and other moments) to a probability distri-
bution by determining the maximum entropy distribu-
tion that is compatible with the specified constraints.
Inferential approaches, described below, can update
probabilistic characterizations of uncertain quantities
by conditioning these quantities on new observational
data.

2 Forward Propagation of Uncertainty

Forward propagation of uncertainty addresses how
uncertainty in model inputs translates into uncertainty
in model outputs. The goal is often to provide distribu-
tional information (output means and variances, event
probabilities) in support of uncertainty assessment or
decision making. The most flexible method for estimat-
ing distributional information is Monte Carlo simula-
tion, which draws random samples from the joint dis-
tribution of inputs and evaluates the output value cor-
responding to each input sample. Expectations over the
output distribution are then estimated from these sam-
ples. Monte Carlo estimates converge slowly, typically
requiring many samples to achieve acceptable levels
of accuracy; the error in a simple Monte Carlo estima-
tor converges as O(N−1/2), where N is the number of
Monte Carlo samples. Variance-reduction techniques,
such as importance sampling and the use of control
variates, are therefore of great interest in UQ. Also,
quasi-Monte Carlo approaches can offer faster conver-
gence rates than random (or pseudorandom) sampling,
while maintaining good scalability with respect to the
number of uncertain parameters.

Approaches that rely on polynomial chaos and other
spectral representations of random quantities, such as
stochastic Galerkin and stochastic collocation meth-
ods, are important and widely used alternatives to
Monte Carlo simulation. By exploiting the regularity
of the input–output relationship induced by a model,
these approaches can provide greater accuracy and effi-
ciency than Monte Carlo simulation for moderate num-
bers of parameters. They can also provide more infor-
mation about this input–output relationship, including
sensitivity indices and approximations that are use-
ful in inverse problems (see below). Stochastic spectral
techniques have been developed for many classes of
partial differential equations with random parameters
or input data, as well as for more general black-box
models. Methods for identifying and exploiting spar-
sity in polynomial representations, for evaluating the
model on sparse grids in high-dimensional parameter

spaces, and for performing dimension reduction have
proven quite successful in expanding the range and
size of problems to which spectral techniques can be
successfully applied.

3 Sensitivity Analysis

Sensitivity analysis aims to elucidate how the uncertain
inputs of a system contribute to system output uncer-
tainty. Variance-based sensitivity analysis apportions
the variance of an output quantity of interest among
contributions from each of the system inputs and their
interactions. This apportionment is based on the law
of total variance, which for a given output quantity of
interest Q and a given factor Xi is written as

Var(Q) = E[Var(Q|Xi)]+ Var(E[Q|Xi]).
From this, a main effect sensitivity index is defined as
the expected fraction of the variance of Q that would
be removed if the variance of Xi were reduced to zero:

Si =
Var(E[Q|Xi])

Var(Q)
.

The results of a global sensitivity analysis can be
used for factor prioritization (identifying those inputs
where future research is expected to bring the largest
reduction in variance) and factor fixing (identifying
those inputs that may be fixed to a deterministic
value without substantially affecting probabilistic mod-
el outputs). Algorithms for computing main and total
effect sensitivity indices may rely on Monte Carlo or
quasi-Monte Carlo sampling, sparse quadrature, or
post-processing of the stochastic spectral expansions
described above.

4 Inverse Problems and Data Assimilation

inverse problems [IV.15] arise from indirect observa-
tion of a quantity of interest. For example, one may
wish to estimate certain parameters of a system given
limited and noisy observations of the system’s out-
puts. From the UQ perspective, one seeks not only a
point estimate of the parameters but also a quantitative
assessment of their uncertainty. UQ in inverse prob-
lems can therefore be addressed through the perspec-
tive of statistical inference. The statistical inference
problems that arise in this context typically involve
a likelihood function that contains a complex physi-
cal model (described by ordinary or partial differential
equations) and inversion “parameters” that are in fact
functions, and hence are infinite dimensional.
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The Bayesian statistical approach provides a natu-
ral route to quantifying uncertainty in inverse prob-
lems by characterizing the posterior probability dis-
tribution. And yet the application of Bayesian infer-
ence to inverse problems raises a number of impor-
tant computational challenges and foundational issues.
From the computational perspective, important tasks
include the design of Markov chain Monte Carlo sam-
pling schemes for complicated and high-dimensional
posterior distributions; the construction of controlled
approximations to the likelihood function or forward
model, whether through statistical emulation, model
reduction, or function approximation; and the devel-
opment of more efficient alternative algorithms, includ-
ing variational approaches, for characterizing the pos-
terior distribution. From the foundational perspective,
important efforts center on incorporating model error
or model discrepancy into the solution of the inverse
problem and subsequent predictions, and on design-
ing classes of prior distributions that are sufficiently
rich or expressive to capture available information
about the inversion parameters, while ensuring that the
Bayesian formulation is well-posed and discretization
invariant. We also note that not all methods for char-
acterizing uncertainty in the inversion parameters and
subsequent predictions are Bayesian; many frequentist
methods for uncertainty assessment (using, for exam-
ple, Tikhonov regularized estimators) have also been
developed.

Data assimilation encompasses a related set of prob-
lems for which the goal is to estimate the time-
evolving state of a dynamical system, given a sequence
of observations. Applications include ocean modeling
and numerical weather prediction [V.18]. Observa-
tions are typically available sequentially, and one there-
fore seeks algorithms that can be applied recursively—
updating the state estimates as new data become avail-
able. When one’s goal is to condition the state at time
t on observations received up to time t, the infer-
ence problem is known as filtering; when the state
at time t is conditioned on observations up to some
time T > t, the problem becomes one of smoothing.
For linear models and Gaussian error distributions, the
recursive Kalman formulas for filtering and smoothing
apply. For nonlinear models and non-Gaussian distribu-
tions, a host of other algorithms can be used to approx-
imate the posterior distribution. Chief among these
are ensemble methods, including ensemble Kalman fil-
ters and smoothers, and weighted particle methods,
including many types of particle filters and smoothers.

Practical applications of data assimilation involve high-
dimensional states and chaotic dynamics, and the
development of efficient and accurate probabilistic
approaches for such problems is an active area of
research.

5 Decision Making under Uncertainty

The results of uncertainty analysis and inference are
often a prelude to designing a system, executing some
control action, or otherwise making a decision, per-
haps in an iterative fashion. Optimization techniques
that account for uncertainty are therefore an important
component of an end-to-end UQ approach. For exam-
ple, robust optimization methods define an objective
function that can incorporate both the mean of some
performance metric and its variance, thus making a
trade between absolute performance and variability.
Multiobjective formulations allow this trade-off to be
controlled and explored completely. One can also intro-
duce chance constraints that specify an acceptable level
of reliability for a system (e.g., by requiring the proba-
bility of failure to be less than a specified value); in the
engineering literature, these are known as reliability-
based design-optimization approaches. More general
approaches to decision making under uncertainty use
the framework of decision theory to incorporate the
probabilistic background of any choice, e.g., choosing
the action that maximizes some expected utility. Even
questions of optimal experimental design can be cast
in this framework: choosing where to place a sensor
or how to interrogate a system, before the outcome of
the experiment is known and while other uncertainties
remain in the model, is yet another instance of decision
making under uncertainty.
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II.35 Variational Principle

A variational principle is a method in the calculus of

variations [IV.6] for determining a function by iden-
tifying it as a minimum or maximum of a functional,
which is a function that maps functions into scalars. An
example of a functional on a hilbert space [I.2 §19.4]
H is the mapping from f ∈ H to the inner product
〈f ,g〉, where g is any fixed element in H. In particular,∫ 1
0 f(x)dx is a functional on C[0,1].

Many partial differential equations (PDEs) have the
property that their solution is a minimum of a cer-
tain Lagrangian functional. The PDE is known as the
euler–lagrange equation [III.12] (see also partial

differential equations [IV.3 §4.3]) of the functional.
In matrix analysis an example of a variational prin-

ciple is the expression λ1 = maxx �=0 x∗Ax/(x∗x) for
the largest eigenvalue of a Hermitian matrix A, which
is a particular case of the courant–fischer theo-

rem [IV.10 §5.4]. The expression x∗Ax/(x∗x) is called
a Rayleigh quotient, and generalizations of it arise
in the Rayleigh–Ritz approximation problem of find-
ing optimal approximate eigenvectors of A given an
approximate invariant subspace.

II.36 Wave Phenomena

Waves are everywhere. We immediately think of waves
on the ocean, sound waves, electromagnetic waves such
as light and radio, and seismic waves caused by earth-
quakes. Less obviously, there are waves of traffic on
busy roads, ultrasonic waves used to image the insides
of our bodies, and the Mexican wave around a football
stadium.

From these examples, we all have a good idea of what
a wave is, but it is not so easy to define a wave. Perhaps
the key property is propagation: disturbances are prop-
agated. Think of the Mexican wave; people in the crowd
stand and sit in an organized manner so as to gener-
ate a disturbance that propagates around the stadium.
Notice that the people do not propagate! Similarly, in
a sound wave air particles move about their equilib-
rium positions. Electromagnetic waves do not require a
medium in order to exist; they can propagate through
empty space whereas sound waves cannot.

In addition to propagating disturbances, waves are
often associated with the transfer of energy, and this is
one reason they are useful. Waves can also interact with
objects (giving rise to reflection, refraction, diffraction,
or scattering), or even with other waves.

For a simple formula, suppose that the x-axis points
to the right. A disturbance u(x, t) at position x and
time t will be a wave propagating to the right if it has
the form

u(x, t) = f(x − ct),
where f is a function of one variable and c is a constant
(the speed of propagation, or the phase speed). For
an explanation, see the article on the wave equation

[III.31]. In this very simple one-dimensional example,
the disturbance propagates without change of shape. In
reality, the shape may change as the wave propagates
(think of ocean waves approaching and then breaking
on a beach).

Wave phenomena continue to fascinate and provoke
the creation of new mathematics.
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Part III

Equations, Laws, and Functions
of Applied Mathematics

III.1 Benford’s Law
Theodore P. Hill

Benford’s law, also known as the first-digit law or the

significant-digit law, is the empirical observation from

statistical folklore that in many naturally occurring

tables of numerical data the leading significant digits

are not equally likely. In particular, more than 30% of

the leading significant (nonzero) digits are 1 and less

than 5% are 9.

1 The First-Digit Law

Benford’s law asserts that, instead of being uniformly

distributed, as might be expected, the first significant

decimal digit often tends to follow the logarithmic

distribution

Prob(D1 = d) = log10

(
d+ 1
d

)
, d = 1,2, . . . ,9,

so

Prob(D1 = 1) = log10(2) = 0.3010 . . . ,

Prob(D1 = 2) = log10(3/2) = 0.1760 . . . ,

...

Prob(D1 = 9) = log10(10/9) = 0.04575 . . . ,

where D1 represents the first significant decimal digit

(e.g., D1(0.0203) = D1(203) = 2).

2 History

The earliest known reference to this logarithmic dis-

tribution is a short article in 1881 by polymath Simon

Newcomb in the American Journal of Mathematics, and

the article contained not only the first-digit law above

but also the second-digit law. This paper was forgot-
ten, and in 1938 Frank A. Benford published an arti-
cle containing the same first- and second-digit laws, as
well as extensive empirical evidence of the law in tables
ranging from baseball statistics to square-root tables
and atomic weights. This article attracted much atten-
tion but Newcomb’s note continued to be overlooked
for decades and the name “Benford” came to be asso-
ciated with the significant-digit law. Since then, over
700 articles have appeared on applications, statistical
tests, and mathematical proofs of Benford’s law.

3 Empirical Evidence

Many common tables of numerical data do not follow
Benford’s law. For example, the proportion of positive
integers that begin with 1, i.e., {1,10,11, . . . ,19,100,
101, . . . ,199,1000,1001, . . . }, oscillates between 1

9 and
5
9 as the sample size increases. The prime numbers also
do not follow Benford’s law. Similarly, many tables of
real-world data, such as telephone numbers and lottery
numbers, do not follow Benford’s law.

On the other hand, in addition to Benford’s original
empirical data, an abundance of subsequent empirical
evidence of Benford’s law has appeared in a wide range
of fields. This includes numbers gleaned from newspa-
per articles and almanacs, tables of physical constants
and half-lives of radioactive substances, stock markets
and financial data, demographic and geographical data,
scientific calculations, eBay prices, and the collection of
all numbers on the Internet, as reflected by magnitudes
of Google hits on numbers.

4 Applications

One of the main applications of Benford’s law has been
for fraud detection. Since certain types of true tax
data have been found to be a close fit to Benford’s
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law (e.g., about 30% of the numbers begin with 1), chi-
squared goodness-of-fit tests have been used success-
fully to detect fraud or error by checking conformance
of the first digits of the data to Benford’s law. Benford’s
law goodness-of-fit tests have also been used to identify
anomalous signals in data. This has been employed, for
example, to detect mild earthquakes, and to evaluate
the detection efficiency of lightning location networks.

The output of numerical algorithms and other digi-
tal computer calculations often follows Benford’s law,
and based on a hypothesis of the output following
Benford’s law it is possible to obtain improved esti-
mates of expected roundoff errors, and of likelihoods
of overflow and underflow errors.

Benford’s law has also been used as an effective
teaching tool, to introduce students to basic concepts
in statistics such as goodness-of-fit tests and basic
data-collection methods, and to demonstrate tools in
Mathematica.

5 The General-Digit Law

The general form of Benford’s law is a statement about
the joint distribution of all decimal digits, namely:

Prob(D1 = d1,D2 = d2, . . . ,Dm = dm)

= log10

(
1 +

( m∑
j=1

10m−jdj
)−1)

holds for all m-tuples (d1, d2, . . . , dm), where d1 is an
integer in {1,2, . . . ,9} and, for j � 2, dj is an integer
in {0,1, . . . ,9}. Here D2, D3, D4, etc., represent the sec-
ond, third, fourth, etc., significant decimal digits, e.g.,
D2(0.0203) = 0, D3(0.0203) = 3.

Thus, for example, this general form of Benford’s law
implies that

Prob(D1 = 3,D2 = 1,D3 = 4) = log10(315/314)

= 0.001380 . . . .

A corollary of the general form of Benford’s law is that
the significant digits are dependent and not indepen-
dent, as one might expect.

Letting S(x) denote the (floating-point) significand
(see floating-point arithmetic [II.13]) of the posi-
tive number x, e.g., S(0.0203) = S(2.03×10−2) = 2.03,
a more compact form of the general Benford’s law is

Prob(S < t) = log10 t for all 1 � t < 10.

Analogs of Benford’s law for nondecimal bases b are
obtained by simply replacing the decimal base by the
new base, both in the significant digits or significand
and in the logarithm.

6 The Mathematical Framework

One of the main tools used to study Benford’s law is the
fact that a data set X (e.g., a sequence, function, or ran-
dom variable) is Benford if and only if logX is uniformly
distributed modulo 1, that is, if and only if the frac-
tional part of logX is uniformly distributed between 0
and 1.

Two key characterizations of Benford’s law are scale
invariance and base invariance. The Benford distribu-
tion is the only distribution of significant digits that
does not change under multiplicative changes of scale.
For example, if a data set originally in euros or meters
follows Benford’s law, conversion of the data into dol-
lars or feet will also follow Benford’s law. Similarly,
the Benford distribution is the only distribution of sig-
nificant digits that is continuous and invariant under
changes of base.

7 Sequences and Functions

Many common sequences follow Benford’s law exactly.
That is, the proportion of times that particular signif-
icant digits appear in the elements of the sequence
converges to the exact Benford’s law probabilities. For
example, the sequence of powers of 2 (and of 3 or 5),
the Fibonacci and Lucas numbers, and the sequence
of factorials 1!,2!,3!,4!, · · · = 1,2,6,24, . . . all follow
Benford’s law exactly.

Sequences exhibiting exponential growth (or decay)
generally obey Benford’s law for almost all starting
points and almost all bases. Similarly, many general
classes of algorithms, including Newton’s method, and
multidimensional systems such as Markov chains can
also be shown to obey Benford’s law. Continuous func-
tions with exponential or super-exponential growth or
decay also typically exhibit Benford’s law behavior,
and thus wide classes of initial-value problems obey
Benford’s law exactly.

8 Random Variables and
Probability Distributions

None of the classical probability distributions—uni-
form, exponential, normal, Pareto, etc.—is arbitrarily
close to Benford’s law for any values of the parameters,
although the standard Cauchy distribution comes quite
close. On the other hand, it is easy to construct distri-
butions that satisfy Benford’s law exactly, such as the
continuous distribution on [1,10)with density propor-
tional to 1/x. Some of the basic probabilistic Benford’s
law results are given below.
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• X is Benford if and only if 1/X is Benford.
• If a random variableX has a density, then the pow-

ers Xn of X converge in distribution to Benford’s
law (i.e., P(S(Xn) < t)→ log t).

• If X is Benford and Y is positive and independent
of X, then XY is Benford.

• The product of independent and identically dis-
tributed continuous random variables converges
in distribution to Benford’s law.

• If random samples are taken from probability dis-
tributions chosen at random (in an unbiased way),
the combined sample will converge to Benford’s
law.

Further Reading

Benford Online Bibliography. 2012. An open-access data-
base on Benford’s law, which is available at www.benford
online.net.

Berger, A., and T. P. Hill. 2015. An Introduction to Benford’s
Law. Princeton, NJ: Princeton University Press.

Nigrini, M. 2012. Benford’s Law: Applications for Forensic
Accounting, Auditing, and Fraud Detection. New York:
John Wiley.

Raimi, R. A. 1976. The first digit problem. American Math-
ematical Monthly 83(7):521–38.

III.2 Bessel Functions
P. A. Martin

F. W. Bessel (1784–1846) was a German astronomer. In
an analysis of planetary motions, published in 1826, he
investigated properties of the integral

Jn(z) = 1
2π

∫ 2π

0
cos(nθ − z sinθ)dθ.

(He denoted the integral by Inz .) Schlömilch (1856)
regarded Jn(z) as coefficients in the expansion

exp{(z/2)(t − 1/t)} =
∞∑

n=−∞
tnJn(z); (1)

the left-hand side is called a generating function.
Both approaches are convenient when n is an integer.
Another approach, which generalizes more easily, is via
an ordinary differential equation,

z2w′′(z)+ zw′(z)+ (z2 − ν2)w(z) = 0, (2)

in which the independent variable, z, and the parame-
ter ν can be complex. Solutions of Bessel’s equation (2)
can be constructed by the method of Frobenius. One of
these is

Jν(z) =
∞∑
m=0

(−1)m(z/2)ν+2m

m!Γ (ν +m+ 1)
,

which is known as the Bessel function of the first kind.
Here, Γ denotes the gamma function [III.13]. If ν is not
an integer, J−ν(z) gives a second, linearly independent,
solution of (2). However, when ν = n, an integer, we
have Jn(z) = (−1)nJ−n(z) (to see this, replace t by
−1/t in (1)), so a new solution is required. It is

Yν(z) = Jν(z) cosνπ − J−ν(z)
sinνπ

,

with Yn = limν→n Yν . This defines the Bessel function of
the second kind.

The functions Jν(z) and Yν(z) are examples of spe-

cial functions [IV.7 §9] of two variables, ν and z.
In elementary applications, ν is an integer, z is real,
and both are nonnegative. For example, the vibrational
modes of a circular membrane of radius a (such as a
drumhead) have the form

Jn(kr) cos(nθ) cos(ωt),

where r and θ are plane polar coordinates, t is time,
ω is frequency, k = ω/c, c is the speed of sound
in the membrane (it is a constant depending on what
the membrane is made from), and ka is chosen as any
one of the positive zeros of Jn(x) (there are infinitely
many).

Much is known about the properties of Bessel func-
tions. The standard reference is G. N. Watson’s 800-
page book A Treatise on the Theory of Bessel Func-
tions (Cambridge University Press, Cambridge, 2nd edn,
1944). However, a good place to start is chapter 10 of
NIST Handbook of Mathematical Functions (Cambridge
University Press, Cambridge, 2010), edited by F. W. J.
Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. (An
electronic version of the book is available at http://
dlmf.nist.gov.)

III.3 The Black–Scholes Equation

The Black–Scholes equation is a linear parabolic partial
differential equation of the form

∂V
∂t

+ 1
2σ

2S2 ∂2V
∂S2

+ rS ∂V
∂S

− rV = 0.

It is associated with the problem of pricing a financial
option whose value is V = V(S, t). The underlying asset
has price S � 0 at time t ∈ [0, T ], where T is the expiry
time of the option. The equation also involves the
volatility σ and the interest rate r . Appropriate bound-
ary conditions must be added in order to determine
V uniquely. Under appropriate changes of variable the
Black–Scholes equation transforms into the diffusion

http://www.benford.online.net
http://dlmf.nist.gov
http://dlmf.nist.gov
http://www.benford.online.net
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(heat) equation [III.8]. The Black–Scholes equation is
used in the derivation of the black–scholes option

pricing formula [IV.14 §2.2].

III.4 The Burgers Equation

The one-dimensional Burgers equation is a nonlin-
ear partial differential equation [IV.3] (PDE) for
u(x, t),

∂u
∂t

+u∂u
∂x

= ν ∂
2u
∂x2

, (1)

where ν is a positive constant. It is named after J. M.
Burgers (1895–1981), although the importance of (1)
had been first recognized (1915) by Bateman in his
study of the navier–stokes equations [III.23] as the
viscosity ν → 0.

When ν = 0, (1) simplifies to

∂u
∂t

+u∂u
∂x

= 0. (2)

This is known as the inviscid Burgers equation, although
the word “inviscid” is sometimes omitted.

There is a connection between (1) and the diffusion

equation [III.8] known as the Cole–Hopf transforma-
tion. Thus, if w(x, t) solves

∂2w
∂x2

= 1
ν
∂w
∂t
,

then

u = −2ν
w
∂w
∂x

solves (1). This is an example of solving a nonlinear PDE
using solutions of a related linear PDE.

The Cole–Hopf transformation can be used to show
that, if (1) is solved with specified initial conditions at
t = 0, then the solution is smooth for all x and for all
t > 0. On the other hand, the inviscid Burgers equa-
tion (2) can have discontinuous solutions (“shocks”).
We can say that the presence of the diffusive term on
the right-hand side of (1) “regularizes” the problem and
prevents shocks from appearing. Energy is removed
because ν > 0.

If we change the sign of the diffusive term, energy
is added. To compensate for this, another term can
be appended. One PDE of this kind is the Kuramoto–
Sivashinsky equation,

∂u
∂t

+u∂u
∂x

= −∂
2u
∂x2

− ∂
4u
∂x4

.

It is encountered in the modeling of several physical
phenomena, it has been studied extensively, and it has
many interesting kinds of solutions.

III.5 The Cahn–Hilliard Equation
Amy Novick-Cohen

1 The Equation

The partial differential equation for u = u(x, t) ∈ R,

ut = MΔ(−u+u3 + ε2Δu), (x, t) ∈ QT ,
is known as the Cahn–Hilliard equation. Here, Δ :=∑N
i=1 ∂2

xi and QT = Ω × (0, T ), where Ω ⊂ RN , T > 0.
It was proposed in 1958 by John W. Cahn and John E.
Hilliard to describe phase separation in binary alloys.
In that context, u represents the locally defined mass
fraction of one of the two components of the binary
alloy, M is the “mobility,” and ε measures the effective
length scale of the interatomic forces.

2 Structure

Equation (1) may by written in the coupled form

ut = ∇ · (M∇μ), (x, t) ∈ QT ,
μ = f ′(u)− ε2Δu, (x, t) ∈ QT ,

⎫⎬⎭ (1)

where μ = μ(x, t) is the “chemical potential,” and
f(u) := 1

4 (1 − u2)2 has minima at u = ±1 and is
referred to as a “double-well potential.”

Typically, Ω ⊂ RN is a bounded domain, N = 3, and
periodic or Neumann and no flux boundary conditions
(n̂·∇u = n̂·∇μ = 0 along ∂Ω for n̂ ⊥ ∂Ω) are imposed.
In both these cases, integrating (1) over Ω, and then
integrating by parts, yields that

d
dt

∫
Ω
u(x, t)dx = 0,

which may be interpreted as stating that mass is con-
served in the system.

Multiplying the first equation in (1) by μ and then
integrating over Ω, we get

d
dt

∫
Ω
(f(u)+ 1

2ε
2|∇u|2)dx = −

∫
Ω
M|∇μ|2 dx,

which describes energy dissipation in the system.

3 Dynamics

It is often reasonable to assume that

u(x,0) = ū+ ũ(x,0),
where ū ∈ R and ũ(x,0) is a small disturbance
or “perturbation” of ū that satisfies

∫
Ω ũ(x,0)dx =

0. The subsequent dynamics can be described by an
early “spinodal” regime followed by a late “coarsen-
ing” regime. During the spinodal or “linear” regime, the
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Cahn–Hilliard dynamics is dominated by its lineariza-
tion about ū. Spatial perturbations of sufficiently long
wavelength grow, while shorter-wavelength perturba-
tions decay exponentially. Locally spatially uniform
domains begin to form. The larger domains start to
grow at the expense of the smaller domains; this behav-
ior is known as “coarsening.” The coarsening dynam-
ics can be described via a free boundary problem for
the motion of the interfaces, Γ (t), which partition Ω
into locally uniform subdomains. In this free bound-
ary problem, known as the “Mullins–Sekerka” problem,
the normal velocity of Γ (t) is proportional to the jump
in the normal derivative across Γ (t) of μ, the chemical
potential. Moreover, μ = κ along Γ (t), where κ denotes
the mean curvature of Γ (t), and Δμ = 0 away from the
interfaces, in Ω \ Γ (t). The late-time dynamics predict
that the average size of the uniform subdomains grows
at a rate proportional to t1/3.

4 Applications

Although the mass-conservative Cahn–Hilliard equa-
tion was conceived as a model for phase separation in
binary alloys, the features of its dynamics, with an early
linear regime followed by a late coarsening regime,
make it an appropriate model in a wide range of set-
tings. It has been used to describe pattern formation
in populations, structure formation in biofilms, galaxy
formation, as well as in image processing.

5 Generalizations

Many generalizations of the Cahn–Hilliard equation
have been suggested. These include conserved phase
field models (models that couple the Cahn–Hilliard
equation with thermal effects), models for simultane-
ous phase separation and ordering (models coupling
Cahn–Hilliard and Allen–Cahn equations), models cou-
pling the Cahn–Hilliard equation with hydrodynamics
effects, phase field crystal models (generalization that
include crystalline anisotropy effects), and more.

Further Reading

Cahn, J. W. 1961. On spinodal decomposition. Acta Metal-
lurgica 9:795–801.

Cahn, J. W., and J. E. Hilliard. 1958. Free energy of a
nonuniform system. I. Interfacial free energy. Journal of
Chemical Physics 28:258–67.

Novick-Cohen, A. Forthcoming. The Cahn–Hilliard Equa-
tion: From Backwards Diffusion to Surface Diffusion. Cam-
bridge: Cambridge University Press.

III.6 The Cauchy–Riemann Equations

Let u(x,y) and v(x,y) be two real functions of two
real variables,x andy . The Cauchy–Riemann equations
are

∂u
∂x

= ∂v
∂y

and
∂u
∂y

= −∂v
∂x
. (1)

These equations arise in complex analysis [IV.1]: if
f(z) = u(x,y) + iv(x,y) is an analytic function of
z = x+iy , where u and v are real, then u and v satisfy
the Cauchy–Riemann equations.

Eliminating v from (1) shows that laplace’s equa-

tion [III.18] is satisfied by u:

∂2u
∂x2

+ ∂
2u
∂y2

= 0;

v satisfies the same equation.

In plane potential flow of a fluid, u is identified as
a velocity potential and v as a stream function. If we
define vectors n = (n1, n2) and t = (−n2, n1), so that
n · t = 0, from (1) we have

n · gradu = t · gradv.

If we take n as being a unit normal vector to a curve C ,
then t is a unit tangent vector. In fluid flow, a typical
boundary condition is zero normal velocity on C , n ·
gradu = 0. This derivative condition on u can then be
replaced by v = const. on C , a condition that is often
easier to enforce.

III.7 The Delta Function and
Generalized Functions
P. J. Upton

The Dirac δ function, denoted by δ(x) and named after
its inventor, the twentieth-century theoretical physi-
cist P. A. M. Dirac, may be thought of as a function
that is so tightly peaked about the value x = 0 that
it is zero everywhere except at x = 0 and yet its inte-
gral

∫∞
−∞ δ(x)dx = 1. This means that, strictly speak-

ing, δ(x) is not a function at all, since its value at
x = 0 is ill defined. However, as will become clear later
on, the “function” δ(x) can be used as a convenient
shorthand notation for the limit of a sequence of well-
defined functions, gn(x), as n → ∞. The δ function
is used widely across physical applied mathematics, to
model, for example, impulses in mechanics and elec-
tric circuit theory, and point-like charge distributions
in electromagnetism or gravity.
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So why define such a strange object as δ(x)? One
answer is that many physical situations can be de-
scribed well using the δ function. For example, in one-
dimensional mechanics a particle with massm may be
subject to a force f(t) present for only a very short
time interval −t0 < t < t0. Consider the total impulse
defined by the integral∫ t0

−t0
f(t)dt =

∫ t0
−t0
m

dv
dt

dt =mv(t0)−mv(−t0),

where the first equality follows from Newton’s second
law, and v(t) is the velocity of the particle at time
t. Suppose that the force acts in such a way that it
causes the particle, initially at rest, to move off with
constant velocity and its momentum set to unity, so
that v(−t0) = 0 and mv(t0) = 1. Furthermore, we
require that the force acts over such a tiny time inter-
val that t0 is practically zero. In other words, the force
acts instantaneously, as might be expected if f(t) were
the result of a sudden hammer blow or kick, and the
precise form of f(t) when −t0 < t < t0 does not signif-
icantly affect the outcome. In order to model this kick,
f(t) must be zero everywhere except at t = 0 but with
unit total integral, corresponding to a unit impulse. We
are therefore led to a δ function as a model for an
impulsive force. The subsequent motion (or response)
of a particle due to an impulsive force is an important
function of t. It is an initial-value Green function, G(t),
named after the early nineteenth-century mathematical
physicist George Green. Green functions are, more gen-
erally, the solutions of nonhomogeneous differential
equations with a δ function as the source term.

1 Basic Properties

As discussed above, the δ function has the property
that ∫ b

a
δ(x)dx =

⎧⎨⎩1 if a < 0 < b,

0 if 0 ∉ [a, b];

cases wherea = 0 or b = 0 will not be considered. The δ
function is not strictly a function at all, asx = 0 is in the
domain of the “function” yet δ(0) cannot be assigned
a value in the codomain. Strictly speaking, δ(x) has a
meaning only when it appears under an integral sign,
in which case the following important basic property is
satisfied: ∫∞

−∞
f(x)δ(x)dx = f(0) (1)

for a sufficiently well-behaved function f(x). The iden-
tity

∫∞
−∞ δ(x)dx = 1 is a special case of (1).

2 Green Functions

Linear initial-value problems, such as those in which we
seek the position of a particle, x(t), at time t, involve
solving a differential equation Lx = f(t), where L is
a linear differential operator and f(t) some arbitrary
force. The general solution is given byx = xc+xp. Here,
xc is the complementary function and it solves Lxc = 0,
while xp, the particular integral, can be expressed in
terms of a Green function, G(t), that is, the response
to the impulsive force δ(t). Thus, with LG = δ(t), we
have xp(t) =

∫∞
0 G(t − t′)f (t′)dt′.

The δ function defined on R3, where

δ(r) = δ(x)δ(y)δ(z) for r = (x,y, z) ∈ R3,

can be used to model a point-like charge distribution.
This then enables the determination of the potential,
φ(r), r ∈ R3, for general charge distributions, ρ(r),
which requires solving poisson’s equation [III.18]
−Δφ = ρ(r) (Δ denotes the Laplace operator). Again,
this can be done using a Green function, G(r), which
solves −ΔG = δ(r), so that G(r) is the potential for
a point-like charge, from which we find that G(r) =
1/(4π|r|), i.e., the Coulomb potential, and thatφ(r) =∫
R3 G(r − r′)ρ(r′)dr′.

When treating problems involving both time evolu-
tion and spatial variation, such as in quantum theory
and the theory of Brownian motion, the Green func-
tion depends on time as well as position. In these cases,
G(t,r) is often referred to as a propagator.

3 Delta-Convergent Sequences

The δ function can be constructed by taking a limit of
a sequence of well-defined functions gn(x) as n → ∞.
If gn is smooth (that is, differentiable at all orders)
for all n, then the sequence is said to define a gen-
eralized function. In addition, for all n, we insist on
the condition

∫∞
−∞ gn(x)dx = 1. An example of such

a δ-convergent sequence is given by the sequence of
Gaussian functions

gn(x) = n√
2π

e−(nx)
2/2, n � 1. (2)

Examples of this gn(x) are plotted in figure 1(a). As
n increases, the functions gn(x) get more strongly
peaked (both narrower and taller) about x = 0. Indeed,
from the expression in (2) it follows that as n → ∞,
gn(x) → 0 for x ≠ 0 but gn(0) → ∞, as expected if
the limit is δ(x). Also,

∫∞
−∞ gn(x)dx = 1, n � 1, must

hold, in view of the expression
∫∞
−∞ e−x

2
dx = √

π for
the integral of a Gaussian function. Thus, taking into
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Figure 1 (a) The functions gn(x) as defined in (2). (b) Their
derivatives g′

n(x) for n = 1, 2, 5, and 10. These sequences
converge to δ(x) and δ′(x), respectively.

account these properties of gn(x) in (2), it begins to
look plausible that gn(x) → δ(x) (in some sense) as
n→ ∞. Indeed, one can prove that for sufficiently well-
behaved functions f(x) (such as Lipschitz-continuous
functions), the limit

lim
n→∞

∫∞

−∞
gn(x)f(x)dx = f(0) (3)

holds. Hence, the limit of gn(x) as n→ ∞ satisfies the
basic property of the δ function given by (1), at least
for Lipschitz-continuous functions. But with a different
δ-convergent sequence, gn(x), n � 1, one can prove
that (3) holds for all continuous functions f(x). In this
case, the functions gn(x) are smooth but compactly
supported, that is, nonzero only on bounded intervals
of R.

4 Derivatives of the Delta Function

One can define a generalized function corresponding
to the derivative of the delta function, δ′(x), through a

(δ′-convergent) sequence of functions, g′
n(x), n � 1.

An example of such a sequence is illustrated in fig-
ure 1(b), where g′

n(x) is the derivative of gn(x) given
by (2). Such a process has an appealing physical inter-
pretation. Just as we can think of δ(x) as a model for
a one-dimensional charge distribution of a point-like
electric charge, we can regard δ′(x) as that of an elec-
tric dipole consisting of two oppositely signed point-
like charges that are infinitesimally close together.
From the limiting properties of g′

n(x), one can show
that the dipole moment of this charge distribution is
given by

∫∞
−∞ xδ′(x)dx = −1. Indeed, this is a spe-

cial case of the more general result for derivatives of
general order k,∫∞

−∞
δ(k)(x)f(x)dx = (−1)kf (k)(0),

for sufficiently well-behaved functions f(x).

5 Toward a Rigorous Theory

A rigorous theory of generalized functions, also called
distributions, can be constructed by defining them as
continuous linear functionals, T(ϕ), on the space of all
smooth, compactly supported test functions ϕ(x) on
R. The derivative of T(ϕ) is defined by dT(ϕ)/dx =
−T(ϕ′). If T(ϕ) can be expressed in the form T(ϕ) =∫∞
−∞ g(x)ϕ(x)dx, where g(x) is a well-defined locally

integrable function, then T(ϕ) is said to be a regu-
lar generalized function; otherwise, it is called singu-
lar. The δ function is the singular generalized func-
tion defined by T(ϕ) = ϕ(0). So, regular generalized
functions assign a functional T(ϕ) to each well-defined
function g(x). But, by extending the range of allowed
T(ϕ) to include singular generalized functions, one
can think of g(x) as being part of a much larger set,
hence the term “generalized” function.

Another approach to the rigorous treatment of the
δ function, and one that is particularly useful in prob-
ability theory, is to regard it as a measure. The Dirac
δ measure centered at a point a ∈ R, denoted by δa,
acts on sets A ⊂ R and is defined by the property
that δa(A) = 1 if a ∈ A and δa(A) = 0 otherwise.
A measure-theoretic version of the basic property (1)
then follows from

∫
R
f(x)δa(dx) = f(a).

Further Reading

Kolmogorov, A. N., and S. V. Fomin. 1975. Introductory Real
Analysis. New York: Dover.

Lighthill, M. J. 1958. An Introduction to Fourier Analysis and
Generalised Functions. Cambridge: Cambridge University
Press.
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III.8 The Diffusion Equation

The one-dimensional diffusion (or heat ) equation is
a partial differential equation [IV.3] (PDE) for
u(x, t),

∂2u
∂x2

= 1
k
∂u
∂t
, (1)

where k is a constant. It is classified as a linear second-
order homogeneous parabolic equation.

The diffusion equation has solutions that are sepa-
rated, u(x, t) = eγxeγ

2kt , where γ is an arbitrary con-
stant. There are also nonseparable solutions such as
u(x, t) = t−1/2e−φ, where φ(x, t) = x2/(4kt).

Equation (1) describes the conduction of heat along
a bar of metal and many other diffusion processes. In
financial mathematics, there is a famous PDE known as
the black–scholes equation [III.3]

∂V
∂t

+ 1
2σ

2S2 ∂2V
∂S2

+ rS ∂V
∂S

− rV = 0, (2)

where σ and r are constants and the independent
variables are S and t. Solutions of this PDE can be
constructed from solutions of the diffusion equation.
Thus, the substitutions u(x, t) = eαx+βtV and ex = S
in (1) show that V solves (2) if we take k = − 1

2σ
2,

α = − 1
2 (1 + r/k), and β = 1

4k(1 − r/k)2.

the burgers equation [III.4] is another PDE that can
be solved using solutions of (1).

III.9 The Dirac Equation
Mark R. Dennis

In quantum theory, the Dirac equation is the relativis-
tic counterpart to schrödinger’s equation [III.26],
representing the space-time dependence of an electron
wave packet. It is one of the most fundamental equa-
tions in physics, combining the formalism of quan-
tum physics with special relativity, and its solutions
naturally lead to the concept of antimatter.

In quantum mechanics [IV.23], when considering
the wave function Ψ(r, t) of a quantum particle, quan-
tities such as position in 3-space r, time t, momentum
p, and energy E > 0 are related to multiplication opera-
tors or the product of differential operators multiplied
by the imaginary unit i times the quantum of action,
Planck’s constant �. These include the energy opera-
tor i�∂t and the momentum operator with components
−i�∂j , with ∂j for j = 1,2,3 denoting derivatives on
the spatial coordinates of r. The Schrödinger equation

i�∂tΨ = ĤΨ thus expresses equality of the energy oper-
ator and a Hamiltonian operator Ĥ when each acts on
the quantum wave function Ψ(r, t). However, in special
relativity, the energy–momentum relationship is

E2 = |p|2c2 +m2c4 (1)

for a particle of rest massm, with constant c the speed
of light. We will refer to the quantum particle of interest
as an “electron” and denote its electric charge by e.

The Klein–Gordon equation is one possible quantum
equation corresponding to (1),

c−2∂2
t ϕ −∇2ϕ + m

2c2

�2
ϕ = 0, (2)

for a generally complex-valued wave function ϕ(r, t).
However, there are physical problems in interpret-
ing a solution of (2) as the relativistic counterpart of
a Schrödinger wave function: unlike the Schrödinger
equation, (2) involves the second derivative of time, so
two initial conditions at t = 0 are required to spec-
ify a solution (whereas only one is required for the
Schrödinger equation), and there are problems with
defining a continuity equation for |ϕ|2 as a probability
density. Furthermore, (2) does not include the two com-
ponents of electron spin. Therefore, to write down a
quantum mechanical partial differential equation (PDE)
corresponding to (1) that is first order in time, one must
find an appropriate square root of the overall operator
acting on the left-hand side of (2).

Paul Dirac famously resolved this problem alge-
braically, proposing the Dirac equation

i�∂tψ =
3∑
j=1

αjcp̂jψ+ βmc2ψ. (3)

Unlike the Schrödinger and Klein–Gordon equations, (3)
is a vector–matrix equation, where ψ ≡ ψ(r, t) is a
wave function with four complex components, called
a Dirac spinor (the components are not related to four-
dimensional space-time), and αj , β are the 4 × 4 Dirac
matrices, most commonly written in block form:

β =
(

1 0

0 −1

)
, αj =

(
0 σj
σj 0

)
, j = 1,2,3.

Here, 0 and 1 denote the 2 × 2 zero and identity
matrices, and the σj denote the three Pauli matrices:

σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
.

The square of each Dirac matrix so defined is the iden-
tity matrix, and otherwise the matrices anticommute;
that is, if i ≠ j thenαjαk+αkαj = αjβ+βαj = 0. These
properties imply that the square of the operators on
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the left- and right-hand sides of (3) gives the operator
equivalent of (1). Thus, the αj , β matrices themselves
form a Clifford algebra, known as the Dirac algebra.

When considering solutions in the nonrelativistic,
low-velocity limit |p|/m � c, the Dirac equation
asymptotically approaches the Schrödinger equation
for a two-component spin (in the first two components
of the Dirac spinor; the second two are vanishingly
small), recovering the familiar nonrelativistic quan-
tum behavior of the electron. Dirac therefore found a
relativistic, quantum PDE that is first order in space
and time, albeit requiring the quantum electron to be
described by the four-component Dirac spinor ψ, each
component of which, in fact, satisfies the Klein–Gordon
equation (2). The fact that the Pauli spin matrices—
previously included ad hoc in the Schrödinger equa-
tion to explain the behavior of the electron’s quantum
mechanical spin—appear naturally in the Dirac algebra
has been seen as one of the great successes of the Dirac
equation as the fundamental quantum equation for the
electron.

Although a matrix–vector equation, the form (3) of
the Dirac equation is similar to the Schrödinger equa-
tion, and indeed the operator

∑3
j=1αjcp̂j + βmc2 is

referred to as the Dirac Hamiltonian. The Dirac equa-
tion may also be written in a relativistically covari-
ant form, by defining the set of four gamma matrices
γ0 = β, γj = γ0αj , enabling (3) to be rewritten as

i�
3∑
a=0

γa∂aψ =mcψ, (4)

with ∂0 = c−1∂t . Usually, this form of the Dirac equa-
tion is written in the Einstein summation convention
(omitting explicit summation symbols for repeated
4-vector components, as in the article on tensors and

manifolds [II.33]).
It is natural to define a current 4-vector ja ≡

ψ†γ0γaψ, where a = 0, . . . ,3, and ψ† is the adjoint
(conjugate transpose) of ψ. The 0-component ψ†ψ
is the nonnegative-definite probability associated with
the Dirac particle described byψ, and the other compo-
nentsψ†αjψ give a 3-velocity field, and hence the elec-
tric current on multiplication by e. The 4-divergence
of this current vanishes:

∑
a ∂aja = 0. This is inter-

preted as both the local conservation of probability
and, after multiplication by e, the local conservation of
the electric charge distribution determined byψ. The 3-
velocity so defined is different from the 3-momentum,
ψ†p̂jψ, j = 1,2,3. This distinction between velocity
and momentum gives rise to some surprising aspects

of Dirac particles, such as the difference between quan-
tum numbers associated with the electron’s magnetic
moment (related to velocity) and its angular momen-
tum (related to momentum). For the remainder of this
article we will adopt the convention in relativistic quan-
tum theory of working in units where the constants c
and � are unity.

The Dirac equation, being a PDE for a multicompo-
nent wave field dependent on space and time compat-
ible with special relativity, is comparable to the set of
maxwell’s equations [III.22], which has similar prop-
erties (particularly in the case when m = 0, which is
sometimes referred to as Weyl’s equation). In particu-
lar, it has four linearly independent plane-wave solu-
tions, of the form exp(i(−Et+p·r)) times the constant
unnormalized Dirac spinors

ψ1
pw = (E +m,0, p3, p1 + ip2),

ψ2
pw = (0, E +m,p1 − ip2,−p3),

ψ3
pw = (−p3,−(p1 + ip2),−E +m,0),

ψ4
pw = (−(p1 − ip2), p3,0,−E +m).

The solutions involvingψ1
pw andψ2

pw are interpreted as
electron plane waves in spin up and spin down states,
respectively, especially in the nonrelativistic regime
p � m. However, ψ3

pw, ψ4
pw appear to be negative

energy solutions, reflecting the fact that the relativis-
tic energy relation (1), involving only E2, should math-
ematically admit negative energies as well as positive
energies.

The existence of negative energy solutions is one of
the most striking aspects of the Dirac equation (similar
solutions also exist for the Klein–Gordon equation (2)),
not least because physically they appear to preclude
energetic ground states; it suggests that relativistic
electrons may constantly decay to successively lower
energies without bound, at odds with our physical expe-
rience. Dirac himself proposed the following resolution
to this problem: the negative energies are already filled
with a Dirac sea of electrons. Free electrons cannot then
occupy these filled negative energy states and must
have nonnegative energy. The existence of this pos-
tulated Dirac sea has the further consequences that a
negative energy electron might, through some process,
become excited into a positive energy state, leaving a
positively charged “hole” in the sea whose plane-wave
components act according to the negative energy solu-
tions ψ3

pw and ψ4
pw (in a similar way to “holes” appear-

ing in filled valence bands in semiconductors). Dirac
originally identified these “positive charge electrons” as
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protons, despite the fact that a proton has a mass that

is very different from the electron mass m. However,

positrons, which appeared to have the same mass as

electrons but opposite charge, were discovered exper-

imentally by Anderson in 1932, just four years after

Dirac’s theory. This prediction of a new kind of par-

ticle earned Dirac the Nobel Prize in Physics in 1933,

shared with Schrödinger.

To incorporate the interaction between an electron

and the electromagnetic field, the momentum opera-

tor p̂j must be replaced with the appropriate canon-

ical momentum for a charged particle moving in a

field from the Lorentz force equation (as in classical

mechanics [IV.19]). In a scalar potential V and vector

potentialA, giving a 4-potentialAa, this replacement in

(3), (4) requires replacing the usual partial derivatives

with the gauge-covariant derivative

∂a → Da ≡ ∂a + ieAa, a = 0,1,2,3.

Finding self-consistent solutions of Maxwell’s equa-

tions and the Dirac equation with interactions is analyt-

ically difficult. Nevertheless, very good approximations

are possible that agree well with experiment, particu-

larly in quantum electrodynamics, which is a system-

atic quantum approach to solving systems with many

electrons interacting quantum mechanically with the

electromagnetic field. Quantum electrodynamics, like

other quantum field theories, requires a more sophis-

ticated mathematical approach based on the Dirac and

Maxwell equations and relates the negative energy solu-

tions of the Dirac and Klein–Gordon equations to pos-

itive energy states of antimatter (i.e., positrons are

“anti-electrons”). Despite many mathematical compli-

cations, this theory successfully describes the evolu-

tion of many interacting quantum particles, including

the possibility of their creation and annihilation in a

fluctuating vacuum.
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III.10 Einstein’s Field Equations
Malcolm A. H. MacCallum

Einstein’s general theory of relativity generalizes New-

ton’s gravity theory to one compatible with special rel-

ativity. It models space and time points as a (pseudo-)

Riemannian four-dimensional manifold (see tensors

and manifolds [II.33]) with a metric gab of signature

±2 (the sign choice is conventional). Test particles move

on space-time’s geodesics. This formulation ensures

the “weak equivalence principle” or “universality of free

fall,” which states that free fall under gravity depends

only on a body’s initial position and momentum. The

other fundamental part of the theory is Einstein’s field

equations (EFEs), which relate the metric to the matter

present. For more on the theory and its applications see

general relativity and cosmology [IV.40].

By considering a “gedanken” experiment in which

bodies released at relative rest in a laboratory freely

falling toward the Earth will appear to move toward one

another, Einstein recognized that geodesics that are ini-

tially parallel meet due to gravity. This is described by

the metric’s curvature. To generalize Newton’s theory,

the curvature must be related to the space-time distri-

bution of the energy–momentum tensor of the matter

content, Tab .

Tab is assumed to obey Tab ;b = 0, the generalization

to curved space of the Noetherian conservation laws

obtained when the matter obeys a variational principle.

Here, “;b” denotes a covariant derivative with respect

to the b index, while “, b” will denote a partial derivative

below.

The formulas relating the metric, the connection

Γ abc , and the Riemannian curvature, in coordinate

components, are

Γ abc = 1
2g

ad(gbd,c + gdc,b − gbc,d),
Rabcd = Γ abd,c − Γ abc,d + Γ ebdΓ aec − Γ ebcΓ aed,

where gad is the inverse of gbc .
Taking a weak-field, slow-motion limit, comparison

of the geodesic equation with Newtonian free fall iden-

tifies corrections to an approximating flat (special-

relativistic) metric with the Newtonian gravitational

potential Φ. One therefore wants to find equations

relating the second derivative of the metric to Tab .

Defining the Ricci tensor Rab and the Ricci scalar R by

Rbd := Rabad, R := gabRab,
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the EFEs

Gab := Rab − 1
2Rgab = κTab +Λgab (1)

achieve this relation. Here, Λ is a constant and Gab is
called the Einstein tensor.

To agree with the Newtonian limit, the constant κ
has to be 8πG/c4, where G is the Newtonian constant
of gravitation and c the speed of light.

The full curvature can be expressed, in four dimen-
sions, as

Rabcd = Cabcd − 1
3Rδ

a
[cδ

b
d] + 2δ[a[c R

b]
d],

where square brackets denote antisymmetrization, so
that, for any tensor, T[ab] := 1

2 (Tab − Tba). The Weyl
tensor Cabcd thus defined is conformally invariant and
describes tidal gravitational forces and gravitational
waves. Its value depends on distant matter and the
boundary conditions: it is nonlocally determined by
certain first-order differential equations, the Bianchi
identities, with a source given by derivatives of Rab .

There are a number of other ways to write (1). A
first-order system arises by taking the metric and its
connection as variables. Tetrad bases are widely used
in place of coordinate bases. The EFEs themselves are
given by a variational principle (assuming that Tab is),
with the Gab part coming from an action

∫
R√−g d4x,

where g = det(gab).
Calculating in coordinates, the ten components of (1)

each have on the order of 104 terms in components of
gab , they are quasilinear in second derivatives of gab ,
and they are nonlinear of degree 8 in gab itself (after
clearing denominators). The tensorial EFEs are there-
fore a set of coupled nonlinear inhomogeneous par-
tial differential equations. Lovelock proved that in four
dimensions, Gab is the only symmetric divergence-free
tensorial concomitant of gab that is linear in second
derivatives, so the EFEs are the unique field equations
of this character.

No general solution is known, except in the sense of
the integral form given by Sciama, Waylen, and Gilman,
but many specific solutions have been found. Their
local geometry can be completely characterized by
components of the curvature tensor and its covariant
derivatives.

General relativity shares with other physical theo-
ries the property that the evolution is unique given ini-
tial values of the field and its first derivative. In this
case these are the induced metric on an initial space-
like surface, and its derivative off the surface (the first
and second “fundamental forms”). Four of the EFEs

constrain these initial values, the remaining equations
giving six second-order evolution equations. The con-
straint equations are elliptic and the evolution equa-
tions hyperbolic; the characteristic speed is that of
light.

Existence and uniqueness theorems have been ob-
tained for the evolution equations in this form. Typ-
ically, the functions that appear lie in appropriate
Sobolev spaces.

As well as such Cauchy problems, the EFEs can be
studied in a “2 + 2” formalism, where data is given
on a pair of intersecting two-dimensional characteristic
surfaces.

It was recently recognized that the EFEs in standard
form are only weakly hyperbolic, which explained prob-
lems that had arisen in numerical integrations, and
strongly hyperbolic reformulations are now available
that allow fully four-dimensional numerical computa-
tions (see numerical relativity [V.15]).

In both numerical and analytic studies, important
problems such as the generation of gravitational waves
require characterization of isolated bodies. This is
achieved by defining asymptotic flatness, when at spa-
tial or light-like (null) infinity the geometry approaches
that of special relativity’s empty Minkowski space. A
conformal transformation by a factor Ω is used in the
precise definition; this transformation preserves null
directions and gives a single point, denoted by i0, at
spatial infinity. The definition, which is abbreviated as
AEFANSI (for “asymptotically empty and flat at null and
spatial infinity”), specifies the behavior of Ω and the
Ricci tensor near i0.

Space-times may have more than one asymptotic
infinity (see, for example, the Kruskal diagram in gen-

eral relativity and cosmology [IV.40]). Weakly
asymptotically simple (WAS) space-times are those for
which only one asymptotic region need be considered.
There is a large class of WAS space-times for which
null infinity is smooth, for which fields such as the
Weyl tensor can be expanded in inverse powers of a
radial distance r , and for which there is an asymp-
totic symmetry, the Bondi–Metzner–Sachs group. These
results have been generalized to cases where log r
terms appear in expansions; it is conjectured that only
a rather restricted set of cases avoids such terms.

There is no locally defined energy of the gravita-
tional field in general relativity; such an energy could
not be compatible with the local special relativistic
limit required by the principle of equivalence. How-
ever, asymptotically flat spaces do possess globally
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defined energies, using integrals at infinity—the ADM
energy for a spatial infinity (named after the formal-
ism introduced by Arnowitt, Deser, and Misner) and the
Trautman–Bondi energy for a future null infinity—thus
enabling definition of the total gravitational energy of
an isolated system.

The ADM energy has been proved to be nonnega-
tive—assuming both that the matter that is present
obeys the dominant energy condition that Tabvavb � 0
and that Tab is space-like for all time-like vectors va—
and it is zero only in Minkowski space. The Trautman–
Bondi energy is monotone decreasing with time, as radi-
ation carries energy away, and agrees with ADM energy
in its past limit and hence must also be nonnegative
(as can also be proved directly). These results show in
particular that gravitational waves carry energy. How-
ever, the waves cannot carry away more energy than an
isolated system has initially, as total energy would then
become negative. The positive energy results also imply
that there is no analogue of the possibility, present in
Newtonian gravity theory, that negative gravitational
potential energy could be greater than the positive
energy of the field’s source.
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III.11 The Euler Equations
P. A. Martin

The motion of a fluid is well modeled by the navier–

stokes equations [III.23]. An underlying assumption
is that the fluid is viscous (meaning that it is sticky,
in the sense that there is some resistance to shearing
motions). Assume further that the fluid is incompress-
ible (meaning that the density is constant). Then, if
the viscous effects are removed from the Navier–Stokes
equations (even though real fluids are always viscous to
some extent), the result is known as the Euler equations.

To state them, letx = (x1, x2, x3) be the position vec-
tor of a point in the fluid and let u(x, t) = (u1, u2, u3)
be the fluid velocity at x at time t. Then

∂u
∂t

+ (u · ∇)u+ 1
ρ
∇p = 0, (1)

where p(x, t) is the pressure and ρ is the density. The
vector equation (1) is to be solved together with the
incompressibility constraint, which is

∇ · u = 0. (2)

There are thus four partial differential equations (PDEs)
for the four unknowns, u1, u2, u3, and p. These form
the incompressible Euler equations for inviscid (zero-
viscosity) flows; there are also compressible Euler equa-
tions for flows in which the fluid density is not constant
but has to be calculated. If body forces are acting (the
most important of these is gravity), there would be an
extra term on the right-hand side of (1).

To clarify the notation used in (1) and (2), we can
write them in component form:

∂ui
∂t

+
3∑
j=1

uj
∂ui
∂xj

+ 1
ρ
∂p
∂xi

= 0,
3∑
j=1

∂uj
∂xj

= 0,

where i = 1,2,3. Alternatively, if we use x = (x,y, z)
and u = (u,v,w), we can write out Euler’s equations
explicitly:

∂u
∂t

+u∂u
∂x

+ v ∂u
∂y

+w ∂u
∂z

+ 1
ρ
∂p
∂x

= 0,

∂v
∂t

+u∂v
∂x

+ v ∂v
∂y

+w ∂v
∂z

+ 1
ρ
∂p
∂y

= 0,

∂w
∂t

+u∂w
∂x

+ v ∂w
∂y

+w ∂w
∂z

+ 1
ρ
∂p
∂z

= 0,

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0.

An important special case arises when the motion is
irrotational, which means that the vorticity ∇×u = 0. In
this case, u = ∇φ for some scalar (potential) function
φ. From (2), ∇2φ = 0; that is,φ solves laplace’s equa-

tion [III.18]. Moreover, the nonlinear PDEs (1) reduce to
a formula for p that is known as Bernoulli’s equation.

Irrotational flows of inviscid incompressible fluids
have been studied extensively since the nineteenth cen-
tury. However, it is also known that the underlying
assumptions are too restrictive in some circumstances
because they lead to some results that do not agree
with our experience. Perhaps the most glaring exam-
ple is the d’Alembert paradox, a mathematical theorem
asserting that irrotational flow of an inviscid incom-
pressible fluid about a rigid body generates no drag

http://relativity.livingreviews.org/
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force on the body. The conventional way to overcome
the paradox is to bring back viscosity but only inside a
thin boundary layer [II.2] attached to the body (see
also fluid mechanics [IV.28 §7.2]).

III.12 The Euler–Lagrange Equations
Paul Glendinning

The function y(x) with derivative y′ = dy/dx that
maximizes or minimizes the integral∫

F(y,y′, x)dx

with given endpoints satisfies the Euler–Lagrange equa-
tion

d
dx

(
∂F
∂y′

)
− ∂F
∂y

= 0. (1)

There are many variants of this equation to deal with
further complications, e.g., ify orx or both are vectors,
and more details are given in calculus of variations

[IV.6], but this simple version is sufficient to demon-
strate the power and ubiquity of variational problems
of this form.

If F = F(y,y′) has no explicit x-dependence (x is
said to be absent ), then the Euler–Lagrange equations
can be simplified by finding a first integral. Using (1) it
is straightforward to show that

d
dx

(
y′ ∂F
∂y′ − F

)
= 0,

and hence that

y′ ∂F
∂y′ − F = A (2)

for some constant A.

Application 1: Potential Forces

Classical mechanics can be formulated as a problem of
minimizing the integral of a function called the Lagran-
gian, L, which is the kinetic energy minus the potential
energy. For a particle moving in one dimension with
position q (so the dependent variable q plays the role
of y above and time t plays the role of the indepen-
dent variable x) in a potential V(q), the Lagrangian
is L = 1

2mq̇
2 − V(q) and the Euler–Lagrange equa-

tion (1) is simply Newton’s law for the acceleration,
mq̈ = −V ′(q) (where the prime denotes differenti-
ation with respect to q), while the autonomous ver-
sion (2) shows that 1

2mq̇
2 + V(q) is constant, which is

the conservation of energy (see classical mechanics

[IV.19]).

The power of this approach (and a related version

due to Hamilton) is such that much of modern theoret-

ical physics revolves round a generalization called an

action.

Application 2: The Catenary

The problem of determining the curve describing the

rest state of a heavy chain or cable with fixed end-

points can also be solved using the Euler–Lagrange

formulation, although the original seventeenth-century

solution uses simple mechanics. In the rest state the

chain will assume a shape y = y(x) that minimizes

the potential energy g
∫
y ds, where g is the accelera-

tion due to gravity and s is the arc length along the

chain. The length of the chain is
∫

ds, and since this

length is assumed to be constant, L say,
∫

ds = L. This

acts as a constraint on the solutions of the energy-

minimization problem and so the full problem can be

approached by introducing a lagrange multiplier

[I.3 §10], λ. Scaling out the constant g and noting that

ds =
√

1 +y′2 dx, the shape of the curve minimizes∫
y
√

1 +y′2 dx − λ
(∫ √

1 +y′2 dx − L
)
. (3)

(The second term represents the constraint and is zero

when the constraint is satisfied.) The Euler–Lagrange

equation with

F(y,y′, λ) =
√

1 +y′2 − λ
√

1 +y′2

can now be used since the λL term of (3) is constant

with respect to variations in y . The Euler–Lagrange

equation is supplemented by an additional equation

obtained by extremizing with respect to the Lagrange

multiplier, i.e., setting the derivative of (3) with respect

to λ to zero, but this is just the length constraint again.

Since x is absent, (2) implies that

(y − λ)
(

y′2√
1 +y′2

−
√

1 +y′2
)
= A.

Tidying up the left-hand side and rearranging gives

A2(1+y′2) = (y−λ)2. Rewriting this as an expression

for y′ gives a differential equation that can be solved

by separation of variables to give

y − λ = A cosh
(
x − B
A

)
,

where B is a further constant of integration. This is the

catenary curve, and the constants are determined by

the endpoints of the chain and the constraint that the

total length is L.
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III.13 The Gamma Function

Euler’s gamma function, Γ , is defined by

Γ (x) =
∫∞

0
tx−1e−t dt, x > 0.

One integration by parts shows that

Γ (x + 1) = xΓ (x), x > 0.

A direct calculation gives Γ (1) = 1, and then an induc-
tive argument gives Γ (n) = (n−1)! when n is any pos-
itive integer. For this reason, the alternative notation
x! = Γ (x + 1) is also used.

Much is known about Γ and its properties. It is clas-
sified as a special function [IV.7] of one variable.
According to Davis (1959), of all special functions, Γ
“is undoubtedly the most fundamental.” It is also ubiq-
uitous, appearing in countless applications. In com-

plex analysis [IV.1], Γ (z) is defined as a function of a
complex variable, z, for all z ≠ 0,−1,−2, . . . .

An alternative but equivalent definition of Γ is

Γ (x) = e−γx

x

∞∏
n=1

n
n+ x ex/n,

where γ = 0.5772 . . . is Euler’s constant, defined by

γ = lim
n→∞

(
1 + 1

2
+ 1

3
+ · · · + 1

n
− logn

)
.

The definition of Γ as an infinite product shows clearly
that Γ (x) is not defined when x = 0,−1,−2, . . . , and it
reveals the singular nature at these points.

Further Reading

Davis, P. J. 1959. Leonhard Euler’s integral: a historical
profile of the gamma function. American Mathematical
Monthly 66:849–69.

III.14 The Ginzburg–Landau Equation
S. Jonathan Chapman

The Ginzburg–Landau equations were written down in
1950 to describe the change of phase of a supercon-
ducting material in the presence of a magnetic field.
They are partial differential equations for the complex-
valued superconducting order parameter Ψ and the
(real-valued) magnetic vector potential A. The parame-
ter Ψ can be thought of as a kind of macroscopic wave
function and is such that |Ψ |2 is the number density
of superconducting electrons, while A is such that the
magnetic field is curlA.

In their normalized form the equations are(
1
κ
∇− iA

)2

Ψ = (|Ψ |2 − 1)Ψ ,

curl2A = i
2κ
(Ψ∗∇Ψ − Ψ∇Ψ∗)− |Ψ |2A,

where i = √−1, κ is a material constant known as the
Ginzburg–Landau parameter, and the asterisk denotes
complex conjugation.

1 The Ginzburg–Landau Free Energy

The Ginzburg–Landau equations arise from minimiz-
ing the Ginzburg–Landau free energy. For small applied
magnetic fields the superconducting solution (|Ψ | = 1)
has a lower energy than the nonsuperconducting (nor-
mal) solution (Ψ = 0), while for high applied magnetic
fields the normal solution has the lower energy. At
the critical magnetic field Hc, the two states have the
same energy, and a normal-superconducting transition
region is possible.

The main aim in developing the Ginzburg–Landau
equations was to determine the energy of such a tran-
sition region (the so-called surface energy), since this
determines the scale of the pattern of normal and
superconducting domains when both are present. In
particular, it was desirable to demonstrate that the sur-
face energy was positive. In fact, it turns out that the
surface energy is positive only if κ < 1/

√
2. Values of

the Ginzburg–Landau parameter above this threshold
were dismissed at the time as being unphysical.

2 Type-II Superconductors

A few years later, in 1957, Abrikosov published solu-
tions of the equations for values of κ > 1/

√
2 that had

a quite different structure. When surface energy is neg-
ative, a normal region shrinks until it is just a point.
However, the scale of the solution is prevented from
being infinitely fine by the complex nature of the order
parameter; each zero of Ψ has a winding number that
is a topological invariant. Abrikosov’s solutions are of
the form Ψ = f(r)einθ , A = A(r)eθ , where r and θ are
polar coordinates, the integer n is the winding number,
and eθ is the unit vector in the azimuthal direction. The
electric current associated with such a solution is

j = −f 2
(
A− n

κr

)
eθ,

which is why these solutions are known as super-
conducting vortices. Such solutions demonstrate the
quantum nature of superconductivity on a macroscopic
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scale. Superconductors with κ > 1/
√

2 are now known

as type-II superconductors, while those with κ < 1/
√

2

are known as type-I superconductors.

For type-II superconductors, the critical magnetic

field Hc splits into two critical fields, Hc1 and Hc2.

Below Hc1 the superconducting state is energetically

preferred, above Hc2 the normal state is preferred, but

in between Hc1 and Hc2 a mixed state comprising a

periodic array of superconducting vortices exists.

Following Abrikosov’s work this lattice of vortices

was demonstrated experimentally. It is an amazing tri-

umph of the Ginzburg–Landau theory that it predicted

the existence of such structures, not only before they

had been observed experimentally but when the very

idea of them was disturbing. Almost all technolog-

ical applications of superconductivity involve type-II

superconductors in the vortex state.

Further Reading

Tinkham, M. 1996. Introduction to Superconductivity. New
York: McGraw-Hill.

III.15 Hooke’s Law
P. A. Martin

Strictly, Hooke’s law is not a law, as it is readily and

frequently violated. Nevertheless, it can be a useful

approximation, it can be generalized, and it leads to

ideas of elasticity and constitutive equations.

In 1678, Robert Hooke (1635–1703) described his

experiments in which he fixed one end of a long verti-

cal wire to the ceiling and hung various weights to the

other end. When there are no hanging weights, the wire

has length L, say. When a weight of mass m is added,

the wire extends by an amount -, so that the new length

is L + -. If the weight is removed, the wire’s length

returns to L: this is the signature of elastic behavior.

Hooke also showed that doubling the mass (from m
to 2m) gives double the extension. He inferred that the

restoring force exerted by the wire on the mass, F , is

proportional to the displacement of the mass from its

equilibrium position,

F = k-,
where k is the constant of proportionality, the spring

constant. This is Hooke’s law. Hooke also did experi-

ments on the stretching and compression of springs

and on the lateral deflections of wooden beams. He

asserted that his law was applicable to “every spring-
ing body” and that it could be used to understand
vibrations of such bodies.

To see this, return to the mass m hanging on the
wire. In equilibrium, its weight is balanced by the
restoring force, mg = k-, where g is the accelera-
tion due to gravity. If the mass is pulled down fur-
ther and then released, it will oscillate about its equi-
librium position. In detail, if the mass is displaced
by an amount x, the downward force on the mass is
mg − k(- + x) = −kx, so, by Newton’s second law,
force = mass × acceleration, the equation of motion
is −kx = m(d2x/dt2). As k = mg/-, we obtain
d2x/dt2 = −ω2x, where ω = (g/-)1/2. This differ-
ential equation for x(t) has the general solution x =
x0 cos(ωt+δ), where x0 and δ are arbitrary constants.
The oscillating mass exhibits simple harmonic motion
with frequency ω.

Hooke’s law is an approximation. It models the
mechanical behavior of his wire and many other elas-
tic bodies: doubling the load doubles the extension. It
is a linear approximation, where the constant of pro-
portionality can be found by experiment; recall that
k = mg/-. However, there will be limits to the valid-
ity of Hooke’s law: if a very large load is applied, the
wire will extend plastically (which means that the wire’s
length will not return to L if the load is removed) and
then it might break.

Returning to Hooke’s experiments, suppose we hang
a mass m on a wire of length 2L; the extension dou-
bles to 2-. This implies that k must be proportional
to L−1 (the left-hand side of mg = k × extension has
not changed). Similarly, if we suspend the mass by two
wires in parallel, each of length L, we see half the exten-
sion; we can say that k must be proportional to A,
the cross-sectional area of the wire. Thus, we rewrite
Hooke’s law as

F
A

= kL
A
-
L
.

The dimensionless quantity -/L is the extension per
unit length of wire; it is a measure of strain in the wire.
The quantity F/A is the force per unit area; it is a mea-
sure of stress in the wire. The quantity kL/A does not
depend on L or A; it depends on what the wire is made
from, so it is a material constant. Therefore, we write

σ = Eε, (1)

stating that the stress, σ , is proportional to the strain,
ε. The material constant E is known as Young’s modu-
lus. The formula (1) is a basic assumption in the one-
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dimensional theory of the strength of materials. Suit-
ably generalized, it is fundamental to the linear theory
of elasticity.

Hooke’s law is a constitutive relation: it is a model of
how certain materials behave when they are subjected
to forces. Constitutive relations are part of all contin-
uum theories. Hooke’s law is useful for elastic materi-
als, but, as we saw for the oscillating mass, there is no
damping; the oscillations do not decay with time. Incor-
porating damping leads to viscoelastic models. For flu-
ids, it is common to replace Hooke’s law with a rela-
tion between stresses and velocities; this leads to the
Navier–Stokes equations.

Developing and selecting constitutive relations re-
quires an interplay between good modeling of exper-
imental observations, essential mathematical proper-
ties (such as causality and frame indifference), and
simplicity.

III.16 The Korteweg–de Vries Equation
Willy A. Hereman

1 Historical Perspective

In 1895 Diederik Korteweg (1848–1941) and Gustav
de Vries (1866–1934) derived a partial differential equa-
tion (PDE) that models the “great wave of translation”
that naval engineer John Scott Russell had observed in
the Union Canal in 1834.

Assuming that the wave propagates in the X-direc-
tion, the evolution of the surface elevation η(X, T)
above the undisturbed water depth h at time T can be
modeled by the Korteweg–de Vries (KdV) equation:

∂η
∂T

+
√
gh
∂η
∂X

+ 3
2

√
gh
h
η
∂η
∂X

+ 1
2h

2
√
gh
(

1
3
− T
ρgh2

)
∂3η
∂X3

= 0, (1)

where g is the gravitational acceleration, ρ is the den-
sity, and T is the surface tension. The dimensionless
parameter T /ρgh2, called the Bond number, measures
the relative strengths of surface tension and the grav-
itational force. Equation (1) is valid for long waves of
relatively small amplitude, |η|/h� 1.

In dimensionless variables, (1) can be written as

ut +αuux +uxxx = 0, (2)

where subscripts denote partial derivatives. The term√
ghηX in (1) has been removed by an elementary

transformation. Conversely, a linear term in ux can be
added to (2). The parameter α can be scaled to any

real number. Commonly used values are α = ±1 and

α = ±6.

The termut describes the time evolution of the wave.

Therefore, (2) is called an evolution equation. The non-

linear term αuux accounts for steepening of the wave.

The linear dispersive term uxxx describes spreading of

the wave.

It is worth noting that the KdV equation had already

appeared in seminal work on water waves published by

Joseph Boussinesq about twenty years earlier.

2 Solitary Waves and Periodic Solutions

The balance of the steepening and spreading effects

gives rises to a stable solitary wave,

u(x, t) = ω− 4k3

αk
+ 12k2

α
sech2(kx −ωt + δ), (3)

where the wave number k, the angular frequency ω,

and the phase δ are arbitrary constants. Requiring that

limx→±∞u(x, t) = 0 for all t leads toω = 4k3, in which

case (3) reduces to

u(x, t) = 12(k2/α) sech2(kx − 4k3t + δ). (4)

This hump-shaped solitary wave of finite amplitude

12k2/α travels to the right at constant phase speed

v = ω/k = 4k2, and it models Scott Russell’s “great

wave of translation” that traveled without change of

shape over a fairly long distance.

As shown by Korteweg and de Vries, (2) also has a

periodic solution:

u(x, t) = ω− 4k3(2m− 1)
αk

+ 12(k2/α)m cn2(kx −ωt + δ;m). (5)

They called this the cnoidal wave solution because it

involves Jacobi’s elliptic cosine function, cn, with mod-

ulus m, 0 < m < 1. In the limit m → 1, cn(ξ;m) →
sechξ and (5) reduces to (3).

3 Modern Developments

The solitary wave was, for many years, considered an

unimportant curiosity in the field of nonlinear waves.

That changed in 1965, when Zabusky and Kruskal real-

ized that the KdV equation arises as the continuum

limit of a one-dimensional anharmonic lattice used by

Fermi, Pasta, and Ulam in 1955 to investigate how

energy is distributed among the many possible oscil-

lations in the lattice. Since taller solitary waves travel
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faster than shorter ones, Zabusky and Kruskal simu-
lated the collision of two waves in a nonlinear crys-
tal lattice and observed that each retains its shape and
speed after collision. Interacting solitary waves merely
experience a phase shift, advancing the faster wave and
retarding the slower one. In analogy with colliding par-
ticles, they coined the word “solitons” to describe these
elastically colliding waves.

To model water waves that are weakly nonlinear,
weakly dispersive, and weakly two-dimensional, with
all three effects being comparable, Kadomtsev and
Petviashvili (KP) derived a two-dimensional version of
(2) in 1970:

(ut + 6uux +uxxx)x + 3σ2uyy = 0, (6)

where σ2 = ±1 and the y-axis is perpendicular to the
direction of propagation of the wave (along the x-axis).

The KdV and KP equations, and the nonlinear

schrödinger equation [III.26]

iut +uxx + κ|u|2u = 0 (7)

(where κ is a constant and u(x, t) is a complex-valued
function), are famous examples of so-called completely
integrable nonlinear PDEs. This means that they can
be solved with the inverse scattering transform, a
nonlinear analogue of the Fourier transform.

The inverse scattering transform is not applied to (2)
directly but to an auxiliary system of linear PDEs,

ψxx + (λ+ 1
6αu)ψ = 0, (8)

ψt + 1
2αuxψ+αuψx + 4ψxxx = 0, (9)

which is called the Lax pair for the KdV equation. Equa-
tion (8) is a linear Schrödinger equation for an eigen-
function ψ, a constant eigenvalue λ, and a potential
(−αu)/6. Equation (9) governs the time evolution ofψ.
The two equations are compatible, i.e., ψxxt = ψtxx ,
if and only if u(x, t) satisfies (2). For given u(x,0)
decaying sufficiently fast as |x| → ∞, the inverse scat-
tering transform solves (8) and (9) and finally deter-
mines u(x, t).

4 Properties and Applications

Scientists remain intrigued by the rich mathemati-
cal structure of completely integrable nonlinear PDEs.
These PDEs can be written as infinite-dimensional bi-
Hamiltonian systems and have additional, remarkable
features. For example, they have an associated Lax pair,
they can be written in Hirota’s bilinear form, they admit
Bäcklund transformations, and they have the Painlevé
property. They have an infinite number of conserved

quantities, infinitely many higher-order symmetries,
and an infinite number of soliton solutions.

As well as being applicable to shallow-water waves,
the KdV equation is ubiquitous in applied science. It
describes, for example, ion-acoustic waves in a plasma,
elastic waves in a rod, and internal waves in the atmo-
sphere or ocean. The KP equation models, for exam-
ple, water waves, acoustic waves, and magnetoelastic
waves in anti-ferromagnetic materials. The nonlinear
Schrödinger equation describes weakly nonlinear and
dispersive wave packets in physical systems, e.g., light
pulses in optical fibers, surface waves in deep water,
Langmuir waves in a plasma, and high-frequency vibra-
tions in a crystal lattice. Equation (7) with an extra lin-
ear term V(x)u to account for the external potential
V(x) also arises in the study of Bose–Einstein conden-
sates, where it is referred to as the time-dependent
Gross–Pitaevskii equation.

Further Reading

Ablowitz, M. J. 2011. Nonlinear Dispersive Waves: Asymp-
totic Analysis and Solitons. Cambridge: Cambridge Univer-
sity Press.

Ablowitz, M. J., and P. A. Clarkson. 1991. Solitons, Nonlinear
Evolution Equations and Inverse Scattering. Cambridge:
Cambridge University Press.

Kasman, A. 2010. Glimpses of Soliton Theory. Providence,
RI: American Mathematical Society.

Osborne, A. R. 2010. Nonlinear Ocean Waves and the Inverse
Scattering Transform. Burlington, MA: Academic Press.

III.17 The Lambert W Function
Robert M. Corless and David J. Jeffrey

1 Definition and Basic Properties

For a given complex number z, the equation

wew = z
has a countably infinite number of solutions, which are
denoted byWk(z) for integers k. Each choice of k speci-
fies a branch of the LambertW function. By convention,
only the branches k = 0 (called the principal branch)
and k = −1 are real-valued for any z; the range of every
other branch excludes the real axis, although the range
ofW1(z) includes (−∞,−1/e] in its closure. OnlyW0(z)
contains positive values in its range (see figure 1). When
z = −1/e (the only nonzero branch point), there is a
double root w = −1 of the basic equation wew = z.
The conventional choice of branches assigns

W0(−1/e) = W−1(−1/e) = −1
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Figure 1 Real branches of the Lambert W function. The
solid line is the principal branchW0; the dashed line isW−1,
which is the only other branch that takes real values. The
small filled circle at the branch point corresponds to the
one in figure 2.

and implies thatW1(−1/e−iε2) = −1+O(ε) is arbitrar-
ily close to −1 because the conventional branch choice
means that the point −1 is on the border between these
three branches. Each branch is a single-valued com-
plex function, analytic away from the branch point and
branch cuts.

The set of all branches is often referred to, loosely, as
the Lambert W “function”; but of course W is multival-
ued. Depending on context, the symbol W(z) can refer
to the principal branch (k = 0) or to some unspecified
branch. Numerical computation of any branch of W is
typically carried out by Newton’s method or a variant
thereof. Images of Wk(reiθ) for various k, r , and θ are
shown in figure 2.

In contrast to more commonly encountered multi-
branched functions, such as the inverse sine or cosine,
the branches ofW are not linearly related. However, by
rephrasing things slightly, in terms of the unwinding
number

K(z) := z − ln(ez)
2π i

and the related single-valued function

ω(z) := WK(z)(ez),

which is called the Wright ω function, we do have the
somewhat simple relationship between branches that
Wk(z) =ω(lnk z), where lnk z denotes lnz+ 2π ik and

3

2

1

0

–3

–2

–1

3210–3 –2 –1

Im
 (W

k (z
 ) )

Re (Wk (z ) )

Figure 2 Images of circles and rays in the z-plane under the
maps z → Wk(z). The circle with radius e−1 maps to a curve
that goes through the branch point, as does the ray along
the negative real axis. This graph was produced in Maple
by numerical evaluation ofω(x+ iy) = WK(iy)(ex+iy) first
for a selection of fixed x and varying y , and then for a
selection of fixed y and varying x. These two sets produce
orthogonal curves as images of horizontal and vertical lines
in x and y underω or, equivalently, images of circles with
constant r = ex and rays with constant θ = y under W .

lnz is the principal branch of the logarithm, having

−π < Im(lnz) � π .

The Wright ω function helps to solve the equation

y + lny = z. We have that, if z �= t ± iπ for t < −1,

then y = ω(z). If z = t − iπ for t < −1, then there is

no solution to the equation; if z = t + iπ for t < −1,

then there are two solutions: ω(z) and ω(z − 2π i).

1.1 Derivatives

Implicit differentiation yields

W ′(z) = e−W(z)/(1 +W(z))

as long as W(z) �= −1. The derivative can be simplified

to the rational differential equation

dW
dz

= W
z(1 +W)

if, in addition, z �= 0. Higher derivatives follow natu-

rally.
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1.2 Integrals

Integrals containingW(x) can often be performed ana-
lytically by the change of variable w = W(x), used in
an inverse fashion: x = wew . Thus,∫

sinW(x)dx =
∫
(1 +w)ew sinw dw,

and integration using usual methods gives
1
2 (1 +w)ew sinw − 1

2wew cosw,

which eventually gives∫
2 sinW(x)dx =

(
x + x

W(x)

)
sinW(x)

− x cosW(x)+ C.
More interestingly, there are many definite integrals for
W(z), including one for the principal branch that is due
to Poisson and is listed in the famous table of integrals
by D. Bierens de Haan. The following integral, which
is of relatively recent construction and which is valid
for z not in (−∞,−1/e], can be computed with spectral
accuracy by the trapezoidal rule:

W(z)
z

= 1
2π

∫ π
−π
(1 − v cotv)2 + v2

z + v cscve−v cotv dv.

1.3 Series and Generating Functions

Euler was the first to notice, using a series due to Lam-
bert, that what we now call the LambertW function has
a convergent series expansion around z = 0:

W(z) =
∑
n�1

(−n)n−1

n!
zn.

Euler knew that this series converges for −1/e � z �
1/e. The nearest singularity is the branch point z =
−1/e.
W can also be expanded in series about the branch

point. The series at the branch point can be expressed
most cleanly using the tree function T(z) = −W(−z)
rather than W or ω, but keeping with W we have

W0(−e−1−z2/2) = −
∑
n�0

(−1)nanzn,

W−1(−e−1−z2/2) = −
∑
n�0

anzn,

where the an are given by a0 = a1 = 1 and

an = 1
(n+ 1)a1

(
an−1 −

n−1∑
k=2

kakan+1−k
)
.

These give an interesting variation on stirling’s for-

mula [IV.7 §3] for the asymptotics ofn!. Euler’s integral

n! =
∫∞

0
tne−t dt

is split at the maximum of the integrand (t = n),
and each integral is transformed using the substitu-
tions t = −nWk(−e−1−z2/2), where k = 0 is used for
t � n and k = −1 otherwise. The integrands then
simplify to tne−t = nne−ne−nz

2/2 and the differentials
dt are obtained as series from the above expansions.
Term-by-term integration leads to

n! ∼ n
n+1

en
∑
k�0

(2k+ 1)a2k+1

(
2
n

)k+1/2
Γ (k+ 1

2 ),

where Γ is the gamma function.
Asymptotic series for z → ∞ have been known since

de Bruijn’s work in the 1960s. He also proved that
the asymptotic series are actually convergent for large
enough z. The series begin as follows:Wk(z) ∼ lnk(z)−
ln(lnk(z)) + o(ln lnk z). Somewhat surprisingly, these
series can be reversed to give a simple (though appar-
ently useless) expansion for the logarithm in terms of
compositions of W :

lnz = W(z)+W(W(z))+W(W(W(z)))+ · · ·
+W(N)(z)+ lnW(N)(z)

for a suitably restricted domain in z. The series
obtained by omitting the term lnW(N)(z) is not con-
vergent as N → ∞, but for fixed N if we let z → ∞
the approximation improves, although only tediously
slowly.

2 Applications

Because W is a so-called implicitly elementary func-
tion, meaning it is defined as an implicit solution of
an equation containing only elementary functions, it
can be considered an “answer” rather than a question.
That it solves a simple rational differential equation
means that it occurs in a wide range of mathematical
models. Out of many applications, we mention just two
favorites.

First, a serious application. W occurs in a chemi-
cal kinetics model of how the human eye adapts to
darkness after exposure to bright light: a phenomenon
known as bleaching. The model differential equation is

d
dt
Op(t) =

KmOp(t)
τ(Km +Op(t))

,

and its solution in terms of W is

Op(t) = KmW
(
B
Km

eB/Km−t/τ
)
,

where the constant B is the initial value of Op(0),
that is, the amount of initial bleaching. The constants
Km and τ are determined by experiment. The solution
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in terms of W enables more convenient analysis by
allowing the use of known properties.

The second application we mention is nearly frivo-
lous.W can be used to explore solutions of the so-called
astrologer’s equation, ẏ(t) = ay(t + 1). In this equa-
tion, the rate of change of y is supposed to be propor-
tional to the value of y one time unit into the future.
Dependence on past times instead leads to delay dif-

ferential equations [I.2 §12], which of course are of
serious interest in applications, and again W is use-
ful there in much the same way as for this frivolous
problem.

Frivolity can be educational, however. Notice first
that, if eλt satisfies the equation, then λ = aeλ, and
therefore λ = −Wk(−a). For the astrologer’s equation,
any function y(t) that can be expressed as a finite lin-
ear combination y(t) = ∑

k∈M cke−Wk(−a)t for 0 � t �
1 and some finite set M of integers then solves the
astrologer’s equation for all time. Thus, perfect know-
ledge of y(t) on the time interval 0 � t � 1 is sufficient
to predict y(t) for all time. However, if the knowledge
of y(t) is imperfect, even by an infinitesimal amount
(omitting a single term εe−WK(−a)t , say, whereK is some
large integer), then since the real parts of −WK(−a) go
to infinity as K → ∞ by the first two terms of the log-
arithmic series for Wk given above, the “true” value of
y(t) can depart arbitrarily rapidly from the prediction.
This seems completely in accord with our intuitions
about horoscopes.

Returning to serious applications, we note that the
tree function T(z) has huge combinatorial significance
for all kinds of enumeration. Many instances can be
found in Knuth’s selected papers, for example. Addi-
tionally, a key reference to the tree function is a note
by Borel in Comptes Rendus de l’Académie des Sciences
(volume 214, 1942; reprinted in his Œuvres). The gen-
erating function for probabilities of the time between
periods when a queue is empty, given Poisson arrivals
and service time σ , is T(σe−σz)/σ .

3 Solution of Equations

Several equations containing algebraic quantities to-
gether with logarithms or exponentials can be manip-
ulated into either the form y + lny = z or wew = z,
and hence solved in terms of the Lambert W function.
However, it appears that not every exponential polyno-
mial equation—or even most of them—can be solved in
this way. We point out one equation, here, that starts
with a nested exponential and can be solved in terms

of branch differences of W : a solution of

z + v cscve−v cotv = 0

is v = (Wk(z) −W-(z))/(2i) for some pair of integers
k and -; moreover, every such pair generates a solu-
tion. This bi-infinite family of solutions has accumu-
lation points of zeros near odd multiples of π , which
in turn implies that the denominator in the above def-
inite integral for W(z)/z has essential singularities at
v = ±π . This example underlines the importance of
the fact that the branches ofW are not trivially related.

Another equation of popular interest occurs in the
analysis of the limit of the recurrence relation

an+1 = zan

starting with, say, a0 = 1. This sequence has a1 =
z, a2 = zz , a3 = zzz , and so on. If this limit
converges, it does so to a solution of the equation
a = za. By inspection, the limit that is of interest
is a = −W(− lnz)/ lnz. Somewhat surprisingly, this
recurrence relation—which defines the so-called tower
of exponentials—diverges for small enough z, even
if z is real. Specifically, the recurrence converges for
e−e � z � e1/e if z is real and diverges if z <
e−e = 0.0659880 . . . . This fact was known to Euler. The
detailed convergence properties for complex z were
settled only relatively recently. Describing the regions
in the complex plane where the recurrence relation con-
verges to an n-cycle is made possible by a transforma-
tion that is itself related to W : if ζ = −W(− lnz), then
the iteration converges if |ζ| < 1, and also if ζ = eiθ

for θ equal to some rational multiple of π , say mπ/k.
Regions where the iteration converges to a k-cycle may
touch the unit circle at those points.

4 Retrospective

The LambertW function crept into the mathematics lit-
erature unobtrusively, and it now seems natural there.
There is even a matrix version of it, although the solu-
tion of the matrix equation SeS = A is not alwaysW(A).

Hindsight can, as it so often does, identify the pres-
ence of W in writings by Euler, Poisson, and Wright
and in many applications. Its implementation in Maple
in the early 1980s was a key step in its eventual
popularity.

Indeed, its recognition and naming supports Alfred
North Whitehead’s opinion that:

By relieving the brain of all unnecessary work, a good
notation sets it free to concentrate on more advanced
problems.
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III.18 Laplace’s Equation
P. A. Martin

In 1789, Pierre-Simon Laplace (1749–1827) wrote down
an equation,

∂2V
∂x2

+ ∂
2V
∂y2

+ ∂
2V
∂z2

= 0, (1)

that now bears his name. Today, it is arguably the
most important partial differential equation (PDE) in
mathematics.

The left-hand side of (1) defines the Laplacian of V ,
denoted by ∇2V or ΔV :

∇2V = ΔV = ∇ ·∇V = div gradV.

Laplace’s equation, ∇2V = 0, is classified as a linear
homogeneous second-order elliptic PDE for V(x,y, z).
The inhomogeneous version, ∇2V = f , where f is
a given function, is known as Poisson’s equation. The
fact that there are three independent variables (x, y ,
and z) in (1) can be indicated by calling it the three-
dimensional Laplace equation. The two-dimensional
version,

∇2V ≡ ∂
2V
∂x2

+ ∂
2V
∂y2

= 0, (2)

also has important applications; it is a PDE for V(x,y).
There is a natural generalization to n independent
variables. Usually, the number of terms in ∇2V is
determined by the context.

1 Harmonic Functions

Solutions of Laplace’s equation are known as har-
monic functions. It is easy to see (one of Laplace’s
favorite phrases) that there are infinitely many different
harmonic functions.

A short list of solutions, V(x,y), for (2) follows:

• there are polynomial solutions, such as 1, x, y ,
xy , and x2 −y2;

• there are solutions such as eαx cosαy and eαx ×
sinαy , where α is an arbitrary parameter; and

• log r , θ, rα cosαθ, and rα sinαθ are solutions,
where x = r cosθ and y = r sinθ define plane
polar coordinates, r and θ.

Further solutions can be found by differentiating or
integrating any solution with respect to x or y ; for
example, (∂/∂x) log r = x/r2 is harmonic. One can also
differentiate or integrate with respect to any parameter;
for example, ∫ α2

α1

g(α) eαx sinαy dα

is harmonic, where g(α) is an arbitrary (integrable)
function of the parameter α and the integration could
be over the real intervalα1 < α < α2 or along a contour
in the complex α-plane.

A list of solutions, V(x,y, z), for (1) follows:

• any solution of (2) also solves (1);
• there are polynomial solutions, such as xyz and
x2 +y2 − 2z2;

• there are solutions such as eγz cosαx cosβy ,
where γ2 = α2 + β2 and α and β are arbitrary
parameters;

• eαzJn(αr) cosnθ is a solution, where x = r cosθ,
y = r sinθ, and Jn is a Bessel function; and

• R−1 is a solution, where R = (x2 +y2 + z2)−1/2 is
a spherical polar coordinate.

Again, further solutions can be obtained by differenti-
ating or integrating any solution with respect to x, y ,
z, or any parameter. For example, if i, j, and k are any
nonnegative integers,

V(x,y, z) = ∂i+j+k

∂xi∂yj∂zk
1
R

is harmonic; it is known as a Maxwell multipole.
As Laplace’s equation is linear and homogeneous,

more solutions can be constructed by superposition;
if V1 and V2 satisfy ∇2V = 0, then so does AV1 + BV2,
where A and B are arbitrary constants.

2 Boundary-Value Problems

Although Laplace’s equation has many solutions, it is
usual to seek solutions that also satisfy boundary con-
ditions. A basic problem is to solve ∇2V = 0 inside a

http://dlmf.nist.gov
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bounded region D subject to V = g (a given function)
on the boundary of D, ∂D. This boundary-value prob-
lem (BVP) is known as the interior Dirichlet problem.
Under certain mild conditions, this problem has exactly
one solution. This solution can be constructed explic-
itly (by the method of separation of variables) when D
has a simple shape, such as a circular disk or a rectangle
in two dimensions, and a ball or a cube in three dimen-
sions. For more complicated geometries, progress can
be made by reducing the BVP to a boundary integral
equation around ∂D, or by solving the BVP numerically,
using finite elements, for example.

Other BVPs can be formulated. For example, instead
of specifying V on ∂D, the normal derivative of V ,
∂V/∂n, could be given (this is the interior Neumann
problem). One could specify a linear combination of V
and ∂V/∂n at each point on ∂D, or one could specify V
on part of ∂D and ∂V/∂n on the rest of ∂D (this is the
mixed problem). One could specify both V and ∂V/∂n
on part of ∂D but give no information on the rest of ∂D;
this is called the Cauchy problem. There are also exte-
rior versions of all these problems, where the goal is to
solve ∇2V = 0 in the unbounded region outside ∂D; for
such problems, one also has to specify the behavior of
V “at infinity,” far from ∂D.

3 Applications

Laplace’s 1789 application of (1) was to gravitational
attraction and the rings of Saturn. Gravitational forces
can be written as F = gradV , where ∇2V = 0 outside
regions containing matter. In general, vector fields that
can be written as the gradient of a scalar are called
conservative; the scalar, V , is called a potential. Equiva-
lently, conservative fields F satisfy curlF = 0: they are
irrotational.

The velocity v for the motion of an incompressible
(constant-density) fluid satisfies the continuity equa-
tion, divv = 0. If the motion is irrotational, then there
exists a velocity potential φ such that v = gradφ. The
continuity equation then shows that ∇2φ = 0.

Similar equations are encountered in electrostatics
and magnetostatics. For example, in empty space, the
electric field, E, satisfies divE = 0 and curlE = 0. Thus,
we can write E = gradϕ, where the potential ϕ solves
∇2ϕ = 0.

4 Analytic Function Theory

In this section we use z = x + iy to denote a complex
variable. Let f(z) = u(x,y) + iv(x,y) be a function

of z. If f is analytic (that is, a differentiable function
of z), u and v satisfy the Cauchy–Riemann equations:

∂u
∂x

= ∂v
∂y

and
∂u
∂y

= −∂v
∂x
.

Eliminating v between these equations shows that
u(x,y) satisfies the two-dimensional Laplace equa-
tion, (2); v(x,y) solves the same PDE. The real and
imaginary parts of an analytic function are said to be
harmonic.

This connection between functions of a complex vari-
able and two-dimensional harmonic functions leads to
powerful methods for solving BVPs for (2), especially
when conformal mappings [II.5] are employed.

5 Generalizations

The Laplacian occurs in PDEs other than Laplace’s
equation. Here are a few examples:

∇2u = c−2(∂2u/∂t2), the wave equation,

∇2u = k−1(∂u/∂t), the heat/diffusion equation,

∇2u+ k2u = 0, the Helmholtz equation,

∇2u+ i-(∂u/∂t) = Wu, the Schrödinger equation.

In these equations, c, k, -, and W are given (the first
three are often constants) and t is time. One reason that
∇2 occurs frequently is that space is often assumed to
be isotropic, meaning that there is no preferred direc-
tion. Thus, in (1), x, y , and z are Cartesian coordinates,
but the value of ∇2V does not change if the coordinates
are rotated or translated. The Laplacian is the simplest
linear second-order operator with this property.

There is an anisotropic version of ∇2u, namely,
div(Agradu), where A is an n×n matrix with entries
that could be constants or functions of the n indepen-
dent variables. If A depends on u, a nonlinear opera-
tor is obtained. Another well-studied nonlinear variant
is the p-Laplacian, defined by div(|gradu|p−2 gradu)
with 1 < p <∞.

A useful fourth-order operator is ∇2∇2 = ∇4. The
biharmonic equation, ∇4u = 0, arises in the theory of
thin elastic plates, for example.

III.19 The Logistic Equation
Paul Glendinning

The logistic equation is a simple differential equation
or difference equation with quadratic nonlinearity. It
arises naturally in population models [I.5 §3] (for



III.19. The Logistic Equation 157

example) as a model of a process with population-
limited growth, i.e., models that include the inhibitory
effects of overcrowding.

The continuous-time version is a differential equa-
tion for a real variable x that represents the size of a
population. It is

dx
dt

= rx
(

1 − x
K

)
, r , K > 0,

although there are higher-dimensional analogues and
extensions to partial differential equations. The appli-
cation to population dynamics means that it is usual
to assume that x(0) = x0 > 0. The two parameters are
the reproduction rate r > 0 (the difference between the
birth rate and the death rate), and the carrying capacity
K, which, as shown below, is the equilibrium population
level.

The logistic equation is separable and solutions
may be calculated explicitly using partial fractions
(see ordinary differential equations [IV.2 §2]). The
solution is

x(t) = x0K
x0 + (K − x0)e−rt

,

so all solutions with x0 > 0 tend to the carrying
capacity, K, as t tends to ∞.

The right-hand side of the logistic equation can be
interpreted as the first two terms of the Taylor series
expansion of a function f with f(0) = 0, so the
equation is a natural model in many other contexts.

The discrete-time version of the logistic equation is
often called the logistic map. It is

xn+1 = μxn(1 − xn), μ > 0.

This difference equation is one of the paradigmatic
examples of systems with chaotic attractors. One early
interpretation is again from population biology: the
equation may describe the successive population lev-
els of an organism that has discrete generations, so xn
is the normalized number of insects (for example) in
thenth generation, and this depends on the population
size of the previous generation.

The logistic map illustrates the different dynamics
that can exist in general unimodal, or one-hump, maps.
If 0 < μ � 4 then all solutions that start in [0,1] stay in
that interval, so there is (at least) one bounded attractor
of the system. The way this attractor varies with μ can
be very complicated.

If μ ∈ (0,1) then the origin is a stable fixed point (if
x0 = 0 then xn = 0 for all n ∈ N), and for all initial
conditions x0 ∈ [0,1], xn → 0 as n → ∞. If μ ∈ (1,3)
then there is a stable nontrivial fixed point (μ − 1)/μ

that attracts all initial conditions in (0,1). At μ = 3

this fixed point undergoes a period-doubling bifur-

cation [IV.21]. The effect of this bifurcation is to cre-

ate a stable period-two orbit as μ increases through 3

and the fixed point becomes unstable. As μ increases

further there is a sequence of period-doubling bifurca-

tions at parameter values μn at which orbits of period

2n lose stability, and a stable periodic orbit of period

2n+1 is created.

These bifurcation values accumulate geometrically

at a special value μ∞, above which there are infinitely

many periodic orbits in the system and the system

is chaotic [II.3], although the chaotic set may not

be attracting. In this chaotic region of parameters

there are “windows” (i.e., intervals of the parameter)

for which the attracting behavior is again periodic.

These orbits then lose stability, undergoing their own

period-doubling sequences and having a similar bifur-

cation structure to the original map, but over a smaller

parameter interval.

There are many interesting results about the dynam-

ics in the chaotic region. For example, the set of param-

eters for which the map has a chaotic attractor has

positive measure; and between any two parameters

with chaotic attractors there are parameters with stable

periodic behavior.

The order in which periodic orbits are created sat-

isfies Sharkovskii’s theorem (valid for any continuous

map of the interval). Sharkovskii’s theorem defines an

order on the natural numbers that reflects the order in

which different periods appear in families of maps. The

Sharkovskii order, ≺, is a complete order on the posi-

tive integers, so for any positive integers p and q with

p �= q, either p ≺ q or q ≺ p. The order is defined by

the list below. To interpret this list, imagine you have

two positive integers and think about where each one

appears in the list (they must both appear somewhere!).

If p appears before q, then p ≺ q. The list is

1 ≺ 2 ≺ 22 ≺ 23 ≺ · · ·
· · ·
· · · ≺ 2n+1 × 9 ≺ 2n+1 × 7 ≺ 2n+1 × 5 ≺ 2n+1 × 3

· · · ≺ 2n × 9 ≺ 2n × 7 ≺ 2n × 5 ≺ 2n × 3

· · ·
· · · ≺ 9 ≺ 7 ≺ 5 ≺ 3,

i.e., powers of two ascending, then for each n, 2n

times the odds descending, with n descending to zero.

Sharkovskii’s theorem states that, if a continuous map
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of the interval has an orbit of period p, then it also has

orbits of period q for all q ≺ p in this order.

The logistic equation has different orbits of the same

period that can be described by labeling the periodic

points x1 < x2 < · · · < xp with f(xi) = xπ(i) for

some permutation π of {1, . . . , p}. Sharkovskii’s theo-

rem does not distinguish between orbits with the same

period and different permutation type. It turns out that

the period and associated permutation type define a

complete order on the periodic orbits arising in the

logistic equation.
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III.20 The Lorenz Equations
Paul Glendinning

The Lorenz equations provided one of the earliest

examples of a nonlinear differential equation with

chaotic behavior. They were derived in the early 1960s

when the growing use and power of computers raised

the exciting prospect of greatly improved weather fore-

casts, and particularly more reliable long-range fore-

casts. This generated work on improving the numeri-

cal techniques applied to meteorological models, and

it also led to the study of simplified models and their

properties. Saltzman used a crude truncation of the

Fourier expansion of solutions to convert the par-

tial differential equations describing convection in a

horizontal layer into a finite set of coupled ordinary

differential equations that are significantly easier to

solve numerically. Saltzman concentrated on a fifty-

two-mode truncation, but in an article published the

next year (1963), Ed Lorenz took the model to its over-

simplified extreme, retaining just three of the Galerkin

modes.

Lorenz’s model is normally written as a set of cou-

pled differential equations in three variables, now

known as the Lorenz equations:

ẋ = σ(y − x),
ẏ = rx −y − xz,
ż = −bz + xy,
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Figure 1 The Lorenz attractor projected
onto the (x, z) coordinates.

where the dot denotes differentiation with respect to
the independent variable t, and where σ is a normal-
ized Prandtl number, r a normalized Rayleigh num-
ber, and b the aspect ratio of the convecting cell. The
parameters used by Lorenz were

σ = 10, r = 28, b = 8
3 .

The insight derived through the investigation of these
equations has motivated a greater understanding of
the mathematics of chaos [II.3] and has had a major
impact on the way weather forecasts are created and
reported. A sample trajectory of the Lorenz equations
at the parameter values given above is shown in fig-
ure 1. The solution clearly settles down to a bounded
attracting set (the Lorenz attractor ), but it appears
not to be periodic. Moreover, solutions that start close
together eventually diverge and behave completely dif-
ferently, a property now called sensitive dependence
on initial conditions, which is one of the hallmarks of
chaos. (A little care is needed here. Sensitive depend-
ence on initial conditions as usually defined in the
twentieth century is not a good definition of chaos;
some exponential divergence in time is necessary in
more modern definitions (see chaos and ergodic-

ity [II.3]).) The story goes that Lorenz discovered this
phenomenon by a fortuitous mistyping of an initial
condition when checking a modification of his com-
puter code. Lorenz’s genius was to recognize this as
a significant property of the solutions.

The Lorenz attractor motivated several develop-
ments in bifurcation theory and chaos. In the late 1970s
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mathematicians developed a simple geometric model
of the flow that could be reduced to the analysis of a
one-dimensional map with a discontinuity that could
be proved to be chaotic. At the same time, researchers
started to describe the development of the attractor as
a function of the parameter r , showing that the solu-
tions in the strange attractor are created as an initially
unstable set by a global bifurcation [IV.21]. Spar-
row brought all these results together, giving a descrip-
tion of the bifurcations of the Lorenz attractor as r
is changed, using a mixture of numerical simulations,
mathematical proofs, and conjectured links between
the two.

Sparrow’s work provides strong evidence for the fol-
lowing description of the changes in the attractors of
the Lorenz equations as r increases. The origin, which
is a globally attracting stationary point if 0 < r < 1,
loses stability as r increases through 1 via a pitchfork
bifurcation that creates a stable symmetric pair of sta-
tionary points corresponding to convective rolls (see
bifurcation theory [IV.21 §2] for a description of dif-
ferent types of bifurcation). At r = rH ≈ 24.74 there
is a pair of subcritical Hopf bifurcations. The effect of
this bifurcation is that the stationary points lose stabil-
ity as r increases through rH, and a pair of unstable
periodic orbits are created in r < rH. Where did these
orbits come from? Yorke and coworkers had shown
in 1979 that the answer lies in a homoclinic bifurca-
tion at r ≈ 13.926. This creates an unstable chaotic
set containing infinitely many unstable periodic orbits,
many of which are destroyed in bifurcations before the
chaotic set becomes attracting by a mechanism involv-
ing the two simple periodic orbits that are the orbits
involved in the Hopf bifurcation at r ≈ 24.06. There
is therefore a brief interval of r values for which a
complicated attractor coexists with the stable station-
ary points, and if r is a little greater than rH, the only
attractor is the chaotic set. This is initially similar to the
geometric model, but it develops contracting regions
(“hooks”) as r increases further, which allows for the
possibility of the creation of stable periodic orbits. At
very large r the only attractor is a simple symmetric
periodic orbit, so a sequence of bifurcations destroying
the orbits of the chaotic set needs to occur.

Despite a host of theoretical results on the geomet-
ric models and on the bifurcations in systems such as
the Lorenz equations, a proof that the Lorenz equa-
tions at the standard parameter values really do have
a strange attractor remained open until 2002, when
Tucker used a combination of rigorous numerically

computed bounds and mathematical analysis to show
that the attractor has the chaotic properties required
(see dynamical systems [IV.20 §4.5] for more details).

While the mathematical issues were being resolved,
questions about the physical relevance of the Lorenz
equations continued to cause controversy. As more and
more of the ignored modes of Saltzman’s truncated
model are added back into the equations, the chaotic
region exists for larger and larger values of r and is no
longer present in the full partial differential equations.
More imaginative physical situations, such as convec-
tion in a rotating hoop, have been devised, and for these
the Lorenz equations are a good model.

Even though it is not an accurate model of convection
in a fluid layer, the physical insight Lorenz brought to
the problem of weather forecasting was hugely influ-
ential. As a result of the recognition that sensitive
dependence on initial conditions can be a problem,
forecasters now routinely run computer simulations
of their models with a variety of initial conditions so
that when it is appropriate they can comment on the
probability of rain rather than issue a simple state-
ment that it will or will not rain. The understanding of
how chaos can be accommodated in nonlinear predic-
tion has also influenced the way in which sophisticated
models of the climate and other nonlinear phenomena
are interpreted.
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III.21 Mathieu Functions
Julio C. Gutiérrez-Vega

Mathieu functions are solutions of the ordinary Ma-
thieu equation

d2y
dθ2

+ (a− 2q cos 2θ)y = 0, (1)

where q is a free parameter and a is the eigenvalue of
the equation. Mathieu’s equation was first studied by
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Émile Mathieu in 1868 in the context of the vibrational
modes of an elliptic membrane.

For arbitrary parameters (a, q), (1) is a linear second-
order differential equation with two independent solu-
tions. In general, these solutions are not periodic func-
tions and their behavior depends on the initial condi-
tionsy(0) andy′(0). Of particular interest are the peri-
odic solutions with periodπ or 2π . In this case, accord-
ing to Sturm–Liouville theory, there exists a countably
infinite set of characteristic eigenvalues am(q) that
yield even periodic solutions of (1), and another set of
characteristic eigenvalues bm(q) that yield odd peri-
odic solutions of (1). The eigenfunctions associated
with these sets of eigenvalues are known as the even
and odd Mathieu functions:

ym =
⎧⎨⎩cem(θ;q), m = 0,1,2, . . . ,

sem(θ;q), m = 1,2,3, . . . ,

where m is the order. The notation ce and se comes
from cosine-elliptic and sine-elliptic, and it is now a
widely accepted notation for the periodic Mathieu func-
tions.

Mathieu functions occur in two main categories of
physical problems. First, they appear in applications
involving the separation of the wave equation in elliptic
coordinates, e.g., the vibrating modes in elliptic mem-
branes, the propagating modes in elliptic pipes, or the
oscillations of water in a lake of elliptic shape. Second,
they occur in phenomena that involve periodic motion,
e.g., the trajectory of an electron in a periodic array of
atoms, the mechanics of the quantum pendulum, or the
oscillations of floating vessels.

The behavior of Mathieu functions is rather com-
plicated, and their analysis is difficult using standard
methods, mainly due to their nontrivial dependence on
the parameters (a, q). In figure 1 we plot the functions
cem(θ;q) and sem(θ;q) for several values of m over
the plane (θ, q). Note that Mathieu’s equation becomes
the harmonic equation when q → 0. Evidently, cem and
sem converge to the trigonometric functions cos(mθ)
and sin(mθ) as q tends to zero.

The parity, periodicity, and normalization of the peri-
odic Mathieu functions are exactly the same as for their
trigonometric counterparts. That is, cem is even and
sem is odd, and they have period π when m is even or
period 2π whenm is odd. The Mathieu functions have
m real zeros in the open interval θ ∈ (0, π), and the
zeros cluster around π/2 as q increases. Because the
Mathieu equation is of Sturm–Liouville type, the Math-
ieu functions form a complete family of orthogonal
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Figure 1 The behavior of Mathieu functions over the plane
(θ, q). The range of the plots has been limited to [0, π],
since their behavior over the entire range can be deduced
from the parity and symmetry relations. (a) ce0(θ;q).
(b) ce1(θ;q). (c) ce2(θ;q). (d) se1(θ;q). (e) se2(θ;q). (f)
se3(θ;q).

functions whose normalization conditions are∫ 2π

0
cemcen dθ =

∫ 2π

0
semsen dθ = πδm,n. (2)

If a function f(θ) is periodic with period π or 2π , then

it can be expanded as a series of orthogonal Mathieu

functions.

Further Reading

Mathieu, T. 1868. Le mouvement vibratoire d’une mem-
brane de forme elliptique. Journal de Mathématiques:
Pures et Appliquées 13:137–203.

McLachlan, N. W. 1951. Theory and Application of Mathieu
Functions. Oxford: Oxford University Press.

III.22 Maxwell’s Equations
Mark R. Dennis

In the early 1860s James Clerk Maxwell wrote down

a set of equations summarizing the spatial and tem-

poral behavior of electric and magnetic fields; these

equations are the foundation of the physical theory

of electromagnetism. In modern notation they are usu-

ally written as first-order vector differential equations

depending on time t and three-dimensional position

r. With ∇ denoting the gradient operator and a dot

above a quantity denoting its time derivative, Maxwell’s
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equations are usually written

∇ · B = 0, (1)

∇× E + Ḃ = 0, (2)

∇ ·D = ρ, (3)

∇×H − Ḋ = J. (4)

The various electromagnetic fields are called the elec-
tric field E, the electric displacement D, the magnetic
induction B, and the magnetic field H. E and B are usu-
ally viewed as more fundamental, and D and H can
often be expressed as functions of them. Equations (3)
and (4) are inhomogeneous and depend on sources
determined by the scalar electric charge density ρ and
vector current density J. Equations (1)–(4) may also be
expressed in integral form, in terms of surface and vol-
ume integrals. Conventionally, they are referred to as
Gauss’s law (3), Gauss’s law for magnetism (1) (also
sometimes referred to as “no magnetic monopoles”),
Faraday’s law (2), and the Maxwell–Ampère law (4).

All electromagnetic phenomena are described by
Maxwell’s equations, including the behavior of elec-
tricity and electronic circuits, motors and dynamos,
light and optics, wireless communication, microwaves,
etc. The phenomena they describe are ubiquitous in
the modern world, and much of the machinery of
applied mathematics, such as partial differential equa-
tions, Green functions, delta functions [III.7], and
vector calculus were introduced in part to describe
electromagnetic situations. Maxwell’s equations take
on various special forms depending on the system
being considered. For instance, when the fields are
static (i.e., when time derivatives are zero), the electric
field around charges resembles the gravitational field
around masses determined by Newton’s law.

In free space, all sources are zero, and D = ε0E,
H = μ−1

0 B, with constants the permittivity of free space
ε0 = 8.85 × 10−12 F m−1 and the permeability of free
space μ0 = 4π × 10−7 N A−2, given in conventional SI
units, originally determined experimentally using elec-
trical currents, charges, and magnets. Written like this,
Maxwell’s equations are symmetric in form between E
and B (with the exception of a minus sign), and can be
combined to give the d’Alembert equation for E and
B, propagating at speed c = (ε0μ0)−1/2 = 2.998 ×
108 m s−1. Maxwell himself originally noticed this fact,
realizing that c was close to the experimentally mea-
sured speed of light and therefore that light itself
is an electromagnetic wave. Plane-wave solutions of
Maxwell’s equations in free space are E0 cos(k·r−ωt)

B0 = cos(k·r−ωt), where E0, B0 are constant polariza-

tion vectors that form a right-handed orthogonal triple

(E0,B0,k) with the wave vector k, and c = ω/|k|,
with ω the angular frequency. Free-space solutions of

Maxwell’s equations are studied systematically in the

field of optics and photonics [V.14].

Many naturally occurring materials without free

charges (dielectric materials) are linear : D and H are

linear functions of E and B, but with different per-

mittivities and permeabilities (possibly in different

directions). The relative speed of electromagnetic wave

propagation with respect to c in these materials is

called the refractive index. Laws of refraction, reflec-

tion, and transmission can all in principle be derived

by applying Maxwell’s equations to the interface region

between materials. Other materials can have more com-

plicated dependence between the various field quanti-

ties and sources. Some of the simplest nonlinear phe-

nomena occur in materials where D depends quadrati-

cally on E.

The homogeneity of (1) and (2) suggests that E and

B may themselves be expressed as derivatives of the

scalar potential V and the vector potential A, via

B = ∇×A, E = −∇V − Ȧ. (5)

In terms of these potentials, (1) and (2) are automati-

cally satisfied, and (3) and (4) become second-order dif-

ferential equations in V andA. As only their derivatives

are defined by the electromagnetic fields, the absolute

values of V and A are somewhat arbitrary, and choices

of potential field may be changed by a gauge transfor-

mation that preserves the derivative relations in (5),

A → A′ = A + ∇χ, V → V ′ = V − χ̇, for some suf-

ficiently differentiable scalar field χ. It is often conve-

nient to simplify (1) and (2) by reexpressing them in

terms of the potentials and then choosing a restriction

on the gauge transformations to be considered (known

as fixing the gauge), by requiring the potential fields to

satisfy some extra equation compatible with (5), such

as ∇ ·A = 0 (the Coulomb gauge) or ∇ ·A+ c−2V̇ = 0

(the Lorenz gauge).

Maxwell’s equations describe how electric and mag-

netic fields depend spatially and temporally on elec-

tric charges and their motion. They do not, however,

describe directly how the motion of charges depends

on fields; the force F on a particle of electric charge q
at position r due to electromagnetic fields is given by

the Lorentz force law

F = q(E + ṙ × B). (6)
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The combined theory of electromagnetic fields, charged

matter, and their mutual dependence is called electro-

dynamics.

A particularly interesting aspect of Maxwell’s equa-

tions from the physical point of view is that they appear

to apply equally well at many different length scales,

from the astronomical (used to understand electromag-

netic radiation in the cosmos) down to the microscopic

(and even interactions at the scale of subatomic par-

ticles). Inside materials, at the atomic level, electrons

and nuclei are separated by free space, and only the

fundamental fields E and B play a role. In situations

where length scales are longer, the electric displace-

ment D and magnetic field H arise through homoge-

nization [IV.6 §13.3] of length scales. Maxwell’s equa-

tions can also be made compatible with the laws of

quantum mechanics [IV.23], both in treatments with

the field as classical and in treatments in which the

electromagnetic fields themselves are quantized, with

their energy quanta �ω referred to as photons, where

� is Planck’s constant. The combined quantum theory

of charged matter and electromagnetic fields is quan-

tum electrodynamics. Gauge transformations take on

an important role and a new physical interpretation in

quantum theory.

Unlike Newton’s equations in classical mechan-

ics [IV.19], Maxwell’s equations are not invariant with

respect to Galilean coordinate transformations. His-

torically, this provided Einstein with the main moti-

vation for the theory of special relativity, as provid-

ing the appropriate set of transformations keeping

Maxwell’s equations covariant. Maxwell’s equations in

free space can thus be expressed in 4-vector notation

(which is explained in tensors and manifolds [II.33]),

in which the electromagnetic field is specified by an

antisymmetric rank-2 tensor, the Faraday tensor :

Fab =

⎛⎜⎜⎜⎜⎝
0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0

⎞⎟⎟⎟⎟⎠ .
Reexpressed in tensor form, Maxwell’s equations are

∂aFbc + ∂bFca + ∂cFab = 0,

∂aFab = μ0Jb,

with the first equation corresponding to (1) and (2),

and the second to (3) and (4), with the current 4-vector

Jb = (cρ, Jx, Jy , Jz). These equations transform covari-

antly under Lorentz transformations. The Lorentz law

(6) can also be relativistically generalized to the equa-
tion for a force 4-vector fa = qFabub , acting on a
particle with velocity 4-vector ub . These equations can
be further generalized to fields in curved space-time,
in which they play a role in general relativity and

cosmology [IV.40].

Further Reading
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Maxwell. Cambridge: Cambridge University Press.
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York: John Wiley.

III.23 The Navier–Stokes Equations
H. K. Moffatt

The Navier–Stokes equations are the partial differential
equations that govern the flow of a fluid (a liquid or a
gas) that is regarded as a continuum; that is to say, a
medium whose density field ρ(x, t) and (vector) veloc-
ity field u(x, t) may be considered to be smooth func-
tions of position x = (x,y, z) and time t. These equa-
tions express in mathematical form the physical princi-
ples of conservation of mass and balance of momentum
for each small element (or parcel) of fluid in the course
of its motion.

1 The Mass-Conservation Equation

This equation relates ρ(x, t) and u(x, t) in a very
simple way:

Dρ
Dt

≡ ∂ρ
∂t

+ u · ∇ρ = −ρ∇ · u.

Here, the symbol ∇ represents the vector differen-
tial operator (∂/∂x, ∂/∂y, ∂/∂z). The operator D/Dt ≡
∂/∂t + u · ∇ is the Lagrangian derivative (or “deriva-
tive following the fluid”); this consists of two parts, the
local time derivative ∂/∂t and the convective deriva-
tive u · ∇. The equation indicates that the density
of a fluid element decreases or increases according
to whether the local divergence ∇ · u is positive or
negative, respectively.

An important subclass of flows is described as incom-
pressible. For these, the density of any element of fluid
is constant: Dρ/Dt = 0, and so, from the above, ∇·u =
0. Attention is focused on incompressible flows in the
following section.
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2 The Momentum Equation

This equation represents the fundamental Newtonian

balance

mass × acceleration = force

for each fluid element. Of course, density is just mass

per unit volume, and the (Lagrangian) acceleration of

a fluid element is Du/Dt ≡ (∂/∂t + u · ∇)u. The left-

hand side of the following momentum equation should

therefore come as no surprise:

ρ
(
∂u
∂t

+ (u · ∇)u
)
= −∇p + μ∇2u+ f .

The right-hand side contains three terms that repre-

sent the forces that may act on a fluid element. The

term −∇p represents (minus) the gradient of the local

fluid pressure p(x, t); the second term, μ∇2u, repre-

sents the net force associated with viscosity μ (>0)
(i.e., internal friction); and the third term, f (x, t), rep-

resents any external force per unit mass acting on the

fluid. The most common force of this kind is that asso-

ciated with gravity, g, i.e., f = ρg. This is by no means

the only possibility; for example, in an electrically con-

ducting fluid in which a current density j flows across a

magnetic field B, the force per unit mass is the Lorentz

force given by the vector product f = j × B.

It might appear from the above that a further equa-

tion is needed to determine the pressure distribution

p(x, t). However, this equation is already implied by

the above; it may be obtained by taking the divergence

of the momentum equation to give a Poisson equation

for p. In the simplest case of incompressible flow of

constant density ρ0, this Poisson equation takes the

form

∇2p = −ρ0∇ · (u · ∇)u = −ρ0
∂ui
∂xj

∂uj
∂xi

,

using suffix notation and the summation convention

(and, from incompressibility, ∂ui/∂xi = 0).

In the inviscid limit (μ = 0), the above equations

were derived in 1758 by Euler, and they are known as

the (incompressible) euler equations [III.11]. The vis-

cous equations (with μ > 0) are named after Claude-

Louis Navier, who obtained them in 1822 assuming

a particular “atomic” model to take account of inter-

nal friction, and George Gabriel Stokes, who in 1845

developed the more general continuum treatment that

is still normally used today. A full derivation of these

Navier–Stokes equations may be found in Batchelor’s

An Introduction to Fluid Dynamics.

Further Reading

Batchelor, G. K. 1967. An Introduction to Fluid Dynamics.
Cambridge: Cambridge University Press.

III.24 The Painlevé Equations
Peter A. Clarkson

The six nonlinear second-order ordinary differential
equations that follow are called the Painlevé equations:

w′′ = 6w2 + z,
w′′ = 2w3 + zw +α,

w′′ = (w
′)2

w
− w

′

z
+ αw

2 + β
z

+ γw3 + δ
w
,

w′′ = (w
′)2

2w
+ 3

2w
3 + 4zw2 + 2(z2 −α)w + β

w
,

w′′ =
(

1
2w

+ 1
w − 1

)
(w′)2 − w

′

z

+ (w − 1)2

z2

(
αw + β

w

)
+ γw
z

+ δw(w + 1)
w − 1

,

w′′ = 1
2

(
1
w

+ 1
w − 1

+ 1
w − z

)
(w′)2

−
(

1
z

+ 1
z − 1

+ 1
w − z

)
w′

+ w(w − 1)(w − z)
z2(z − 1)2

×
{
α+ βz

w2
+ γ(z − 1)
(w − 1)2

+ δz(z − 1)
(w − z)2

}
,

where w = w(z); a prime denotes differentiation with
respect to z; and α, β, γ, and δ are arbitrary constants.
The equations are commonly referred to as PI–PVI in the
literature, a convention that we will adhere to here.

These equations were discovered about a hundred
years ago by Painlevé, Gambier, and their colleagues
while studying second-order ordinary differential equa-
tions of the form

w′′ = F(z;w,w′), (1)

where F is rational in w′ and w and locally analytic
in z. In general, the singularities of the solutions are
movable in the sense that their location depends on
the constants of integration associated with the initial
or boundary conditions. An equation is said to have the
Painlevé property if all its solutions are free from mov-
able branch points, i.e., the locations of multivalued sin-
gularities of any of its solutions are independent of the
particular solution chosen and so are dependent only
on the equation; the solutions may have movable poles
or movable isolated essential singularities.
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Painlevé et al. showed that there are 50 canonical
equations of the form (1) that have this property, up
to a Möbius (bilinear rational) transformation. Of these
50 equations, 44 can be reduced to linear equations,
solved in terms of elliptic functions, or are reducible to
one of six new nonlinear ordinary differential equations
that define new transcendental functions.

Although first discovered as a result of mathemat-
ical study, the Painlevé equations have arisen in a
variety of applications including statistical mechanics
(correlation functions of the XY model and the Ising
model), random-matrix theory, topological field theory,
plasma physics, nonlinear waves (resonant oscillations
in shallow water, convective flows with viscous dissipa-
tion, Görtler vortices in boundary layers, and Hele-Shaw
problems), quantum gravity, quantum field theory, gen-
eral relativity, nonlinear and fiber optics, polyelec-
trolytes, Bose–Einstein condensation, and stimulated
Raman scattering. The Painlevé equations also arise
as symmetry reductions of the soliton equations, such
as the Korteweg–de Vries and nonlinear Schrödinger
equations, which are solvable by inverse scattering.

The Painlevé equations may be thought of as nonlin-
ear analogs of the classical special functions. They have
a large number of interesting properties, some of which
we summarize below.

(1) For arbitrary values of the parameters α, β, γ, and
δ, the general solutions of PI–PVI are transcendental,
i.e., they cannot be expressed in terms of closed-form
elementary functions.

(2) All Painlevé equations can be expressed as the com-
patibility condition of a linear system: the isomon-
odromy problem or Lax pair. Suppose that

∂Ψ
∂λ

= A(z;λ)Ψ ,
∂Ψ
∂z

= B(z;λ)Ψ

is a linear system in which Ψ is a vector, A and B are
matrices, and λ is independent of z. Then the equation

∂2Ψ
∂z∂λ

= ∂2Ψ
∂λ∂z

is satisfied provided that

∂A
∂z

− ∂B
∂λ

+AB − BA = 0,

which is the compatibility condition.

(3) Each of the Painlevé equations can be written as a
Hamiltonian system,

q′ = ∂HJ

∂p
, p′ = −∂HJ

∂q
,

for suitable (nonautonomous) Hamiltonian functions
HJ(q,p, z), J = I, II, . . . ,VI. Furthermore, the func-
tion σ = HJ(q,p, z) satisfies a second-order, second-
degree equation. For example, the Hamiltonian for PI

is
HI(q,p, z) = 1

2p
2 − 2q3 − zq,

and so
q′ = p, p′ = 6q2 + z,

and the function σ = HI(q,p, z) satisfies

(σ ′′)2 + 4(σ ′)3 + 2zσ ′ − 2σ = 0.

(4) Equations PII–PVI possess Bäcklund transformations,
which relate one solution to another solution of the
same equation, with different values of the parameters,
or to another equation. For example, if w = w(z;α) is
a solution of PII, then so are

w(z;α± 1) = −w − 2α± 1
2w2 ± 2w′ + z ,

provided that α �= ∓ 1
2 .

(5) For certain values of the parameters, PII–PVI pos-
sess rational solutions, algebraic solutions, and solu-
tions expressible in terms of classical special func-
tions (Airy functions for PII, Bessel functions for PIII,
parabolic cylinder functions for PIV, confluent hyper-
geometric functions for PV, and hypergeometric func-
tions for PVI). These solutions, which are known as
“classical solutions,” can often be expressed in the form
of determinants. For example, PII has rational solutions
if α = n ∈ Z and solutions in terms of Airy functions
if α = n+ 1

2 , with n ∈ Z.

(6) The asymptotic behavior of their solutions—to-
gether with the associated connection formulas that
relate the asymptotic behaviors of the solutions as
|z| → ∞ in different regions of the complex plane—
play an important role in the application of the Painlevé
equations.

(7) The Painlevé equations possess a coalescence cas-
cade, in that PI–PV can be obtained from PVI by the
cascade

PVI
�� PV

��

��

PIV

��
PIII

�� PII
�� PI

For example, if we make the transformation

w(z;α) = εu(ζ)+ ε−5,

z = ε2ζ − 6ε−10, α = 4ε−15
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in PII, then

d2u
dζ2

= 6u2 + ζ + ε6(2u3 + ζu).

So in the limit as ε → 0, u(ζ) satisfies PI.
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III.25 The Riccati Equation
Alan J. Laub

1 History

The name Riccati equation is given to a wide vari-
ety of algebraic and differential (or difference) equa-
tions characterized by the quadratic appearance of the
unknown X. Such equations are named after the Italian
mathematician Count Jacopo Francesco Riccati (1676–
1754). The variable X was a scalar in the original writ-
ings of Riccati, but in modern applications X is often a
matrix, and that is the focus here.

2 The Algebraic Riccati Equation

The simplest form of the algebraic Riccati equation
(ARE) arises in the so-called continuous-time linear–
quadratic theory of control. Suppose we have a linear
differential equation (with initial conditions)

d
dt
x(t) = Ax(t)+ Bu(t),

where A ∈ Rn×n and B ∈ Rn×m (n �m) and the pair of
matrices (A, B) is controllable, that is, rank(A−λI, B) =
n for all λ ∈ Λ(A), whereΛ(A) denotes the spectrum of
A. Suppose, further, that only a subset of the state vari-
ables x can be measured, namely the outputs y = Cx,

where C ∈ Rq×n (q � n), and that the pair of matrices
(C,A) is observable, that is, rank(A−λI, C) = n for all
λ ∈ Λ(A). The control u(t) is to be chosen to minimize
the quadratic functional∫∞

0
(yTQy +uTRu)dt,

where Q and R are given weighting matrices that
are symmetric positive-semidefinite and symmetric
positive-definite, respectively. It turns out that the opti-
mal u(t) is given by u(t) = −R−1BTXx(t), where the
symmetric positive-definite matrix X solves the ARE

ATX +XA−XBR−1BTX + CTQC = 0. (1)

The closed-loop matrix A − BR−1BTX (formed by sub-
stituting the feedback control u(t) above into the dif-
ferential equation) is asymptotically stable; that is, its
eigenvalues lie in the open left half-plane.

The assumptions made in the linear–quadratic prob-
lem are sufficient to guarantee that the 2n× 2n system
matrix associated with the problem, namely

H =
[

A −BR−1BT

−CTQC −AT

]
,

has no pure imaginary eigenvalues. There is a long his-
tory of the association between the system matrix H,
its invariant subspaces, and solutions X of the ARE.

It is easily shown that the matrix H is Hamiltonian,
that is, JA is symmetric where J = [ 0 In

−In 0

]
. The Hamil-

tonian structure has the consequence that if λ is an
eigenvalue of H then so is −λ with the same multiplic-
ity. Thus, by our linear–quadratic assumptions, H has
precisely n eigenvalues in the open left half-plane and
n eigenvalues in the open right half-plane. Hence we
can find an orthogonal matrix U ∈ R2n×2n with n×n
blocks Uij (with U11 nonsingular) that transforms H to
upper quasi-triangular real schur form [IV.10 §5.5]

UTHU =
[
S11 S12

0 S22

]
,

where Λ(S11) is contained in the open left half-plane.
Setting X = U21U−1

11 , it can then be verified (after a
modest amount of matrix algebra) that X solves (1)
and is symmetric positive-definite and that the closed-
loop eigenvalues are asymptotically stable, since Λ(A−
BR−1BTX) = Λ(S11). Note that the n columns of

[U11
U21

]
are the Schur vectors of H that form a basis for the
stable invariant subspace (corresponding to the stable
left half-plane eigenvalues of S11). Other orderings of
the eigenvalues give rise to other solutions (even non-
symmetric ones) of the ARE. The ARE can have infinitely
many solutions (think of the Riccati equation X2 = I).
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There are also results in terms of the singular value

decomposition [II.32] of U11 that explicitly exhibit the

symmetry of the solution X.

The foregoing describes the case for the simplest

linear–quadratic problem. Many of the assumptions can

be weakened considerably. For example, controllabil-

ity can be weakened to stabilizability, while observ-

ability can be weakened to detectability. In this case,

X is still symmetric and stabilizing but may only be

positive-semidefinite.

The connection between the 2n× 2n Hamiltonian

matrix H and the ARE has been known for well over a

hundred years. The use of Schur vectors, as opposed

to eigenvectors, as a basis for the stable invariant

subspace is crucial for reliable numerical solution.

This (and related topics) has been a fertile subject of

research. Perhaps surprisingly, the Schur method was

not published until the late 1970s, but since then meth-

ods based on Schur vectors have found numerous other

applications in systems theory, control, and beyond.

In the discrete-time problem, the differential equa-

tion is replaced by the difference equation (with initial

conditions)

xk+1 = Axk + Buk,

where A ∈ Rn×n and B ∈ Rn×m. As before, yk =
Cxk, but we will work with C = I for convenience.

The integral performance constraint is replaced by an

appropriate summation, and (one form of) the resulting

discrete-time ARE is given by

ATXA−X −ATXB(R + BTXB)−1BTXA+Q = 0,

where the closed-loop matrix A−B(R+BTXB)−1BTXA
is asymptotically stable (which now means that its

eigenvalues lie inside the unit circle in the complex

plane). Provided A is nonsingular, the role of the

2n× 2n Hamiltonian matrix H is taken here by the

2n× 2n matrix

S =
[
A+ BR−1BTA−TQ −BR−1BTA−T

−A−TQ A−T

]
,

which is symplectic; that is, STJS = J. The symplectic

matrix S has a λ ↔ 1/λ symmetry to its eigenvalues,

and appropriate assumptions guarantee that there are

no eigenvalues on the unit circle. If A is singular, it

turns out to be much better to work with the 2n× 2n
symplectic pencil[

A 0

−Q I

]
− λ

[
I BR−1BT

0 AT

]
,

and this gives rise to a large number of new methods
based on the Schur vectors of the corresponding gener-
alized eigenproblem. This time the role of the invariant
subspace is taken by a generalization for matrix pen-
cils called the deflating subspace, but the essence of
the method remains the same.

3 Extensions of the ARE

There are many generalizations of the linear–quadratic
problem and the Riccati equation, such as

• extended (i.e., (2n +m) × (2n +m)) pencils, in
which even the R matrix may be singular;

• versions with a cross-performance term in the
integral (or a sum in the discrete-time case);

• versions for which the system constraint (the dif-
ferential equation or the difference equation) is
given in so-called descriptor form with a matrix
E (which may or may not be singular) multiplying
the left-hand side;

• versions associated with the so-calledH∞ problem
that are Riccati equations but with different sets of
assumptions on the coefficient matrices; and

• AREs with specific structure on the matrices that
then gives rise to other features of the solution
(such as componentwise nonnegativity).

Many other solution techniques have been developed,
including

• structured methods that try to preserve the under-
lying Hamiltonian or symplectic nature of the
matrices;

• methods based on the matrix sign function

[II.14] that exploit the connection with an appro-
priate invariant subspace;

• methods that are iterative in nature, such as
newton’s method [II.28], which involves solv-
ing a sequence of much-easier-to-solve lyapunov

[III.28] (or Sylvester) equations at each step; and
• doubling methods, which constitute another large

class of iterative methods.

4 The Riccati Differential Equation

The ARE can be thought of as a stationary point of the
associated Riccati differential equation. For the alge-
braic equation above, its differential equation takes the
form (with initial conditions)

d
dt
X(t) = F(X(t)),
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where F(X(t)) has the form of the left-hand side of
the ARE (1) and where each of the coefficient matrices
may also vary with time. Symmetry is not necessary in
the sense that so-called nonsymmetric equations of the
form

d
dt
X(t) = A1 +A2X(t)+X(t)A3 −X(t)A4X(t)

can be studied, where X(t) ∈ Rm×n and the coefficient
matrices Ai are general. In all cases, the defining prop-
erty of equations of Riccati type is the characteristic
appearance of the unknown matrix in quadratic form.
Of course, there are also algebraic versions of these
nonsymmetric equations.

Further Reading

Bini, D. A., B. Iannazzo, and B. Meini. 2012. Numerical
Solution of Algebraic Riccati Equations. Philadelphia, PA:
SIAM.

Bittanti, S., A. J. Laub, and J. C. Willems, eds. 1991. The
Riccati Equation. Berlin: Springer.

Lancaster, P., and L. Rodman. 1995. Algebraic Riccati Equa-
tions. Oxford: Oxford University Press.

Laub, A. J. 1979. A Schur method for solving algebraic Ric-
cati equations. IEEE Transactions on Automatic Control
24(6):913–21.

III.26 Schrödinger’s Equation

In its full generality, Schrödinger’s equation describes
the quantum mechanical evolution under time t of
a vector (often called a ket ) |Ψ 〉 in a hilbert space

[I.2 §19.4], according to a self-adjoint operator Ĥ called
the Hamiltonian operator,

i�
∂
∂t

|Ψ 〉 = Ĥ|Ψ 〉, (1)

where i is the imaginary unit and � is a constant, known
as Planck’s constant or the quantum of action. In SI
units, � ≈ 1.05 × 10−34 J s.

|Ψ 〉 represents the time-dependent total state of the
quantum system, and Ĥ determines the energy of the
system. If Ĥ is independent of t and |Ψ 〉 = e−iEt/�|E〉
for |E〉 an eigenvector of Ĥ with energy eigenvalue
E, then (1) can be written in time-independent form,
Ĥ|E〉 = E|E〉.

When the quantum system consists of a single parti-
cle of mass m (disregarding effects of quantum spin
and electromagnetic interactions), the Hilbert space
may be chosen to be the space of square-integrable
complex-valued functions of t and position r in Euclid-
ean configuration space, and the quantum state is

described by a wave function Ψ(r, t). If the particle is
subject to a potential V(r, t), then Schrödinger’s equa-
tion takes the form of the partial differential equation

i�
∂
∂t
Ψ(r, t) = − 1

2m
∇2Ψ(r, t)+ V(r, t)Ψ(r, t),

where ∇2 denotes the laplace operator [III.18]. In the
nonlinear Schrödinger equation, the potential is pro-
portional to the modulus squared of the wave function:
V = κ|Ψ |2 for some positive or negative constant κ.

Study of the evolution of Schrödinger’s equation is
the subject of quantum mechanics [IV.23], and it
emerges naturally from Hamilton’s approach to clas-

sical mechanics [IV.19].

III.27 The Shallow-Water Equations
P. A. Martin

As one might expect, the shallow-water equations are
appropriate when considering the motion of a liquid
occupying a layer. Major applications concern ocean
waves, so we use appropriate terminology. We there-
fore identify the bottom of the layer with the sea floor
at z = −b(x,y), where b(x,y) is given and positive,
and x, y , z are Cartesian coordinates with z pointing
upward. The top of the layer is the moving free surface,
z = η(x,y, t), where t is time. The total depth of the
water is h(x,y, t) = b(x,y) + η(x,y, t). The water is
assumed to be incompressible (with constant density
ρ) and inviscid (viscous effects are ignored). Thus, the
governing partial differential equations (PDEs) in the
water are the euler equations [III.11],

∂u
∂t

+ (u · ∇)u+ 1
ρ
∇p = −gẑ, (1)

and the continuity equation, ∇ · u = 0, where u =
(u,v,w) is the fluid velocity, p is the pressure, g is the
acceleration due to gravity, and ẑ is a unit vector in the
z-direction. In addition, there are boundary conditions
at the free surface and at the bottom. They are

p = 0 and
∂η
∂t

+u∂η
∂x

+ v ∂η
∂y

= w at z = η

and

u
∂b
∂x

+ v ∂b
∂y

+w = 0 at z = −b.

Integrating ∇ · u = 0 with respect to z gives

∂η
∂t

+ ∂
∂x

∫ η
−b
udz + ∂

∂y

∫ η
−b
v dz = 0, (2)

where the boundary conditions at z = η and z = −b
have been used.
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So far, we have not made any approximations. Next,
we assume that the waves generated are much longer
than the water depth: this is what is implied by the
“shallow-water” terminology. One consequence is that
we can neglect the vertical acceleration terms (involv-
ing u) in the z-component of (1), giving p(x,y, z, t) =
ρg{η(x,y, t)− z} after integration with respect to z.

Finally, we assume further that the fluid velocity
is horizontal and that it does not vary with depth:
u = (u(x,y, t), v(x,y, t),0). Then, using the horizon-
tal components of (1) together with (2), we obtain the
shallow-water equations:

∂u
∂t

+u∂u
∂x

+ v ∂u
∂y

+ g ∂η
∂x

= 0,

∂v
∂t

+u∂v
∂x

+ v ∂v
∂y

+ g ∂η
∂y

= 0,

∂η
∂t

+ ∂
∂x
(hu)+ ∂

∂y
(hv) = 0.

This is a nonlinear hyperbolic system of PDEs. It can
be rewritten in other ways; see, for example, how
it is presented in the article on tsunami modeling

[V.19 §2].
If the motions are small, a linearized version of the

shallow-water equations can be derived. The result is a
two-dimensional wave equation [III.31] for η(x,y, t):

∂2η
∂t2

= ∂
∂x

(
gb
∂η
∂x

)
+ ∂
∂y

(
gb
∂η
∂y

)
.

The basic nonlinear shallow-water equations can be
augmented to include other effects. For example, if
we want to model global phenomena, we should take
account of the rotation of the Earth.

Further Reading

Vallis, G. K. 2006. Atmospheric and Oceanic Fluid Dynamics.
Cambridge: Cambridge University Press.

III.28 The Sylvester and Lyapunov
Equations
Nicholas J. Higham

The Sylvester equation (named after James Joseph
Sylvester, who introduced it in 1884) is the linear matrix
equation

AX +XB = C,
where A ∈ Cm×m, B ∈ Cn×n, and C ∈ Cm×n are given
and X ∈ Cm×n is to be determined. It has a unique
solution provided thatA and −B have no eigenvalues in
common. One interesting property is that if the integral

∫∞
0 eAtCeBt dt exists, then minus that integral is a solu-

tion of the Sylvester equation. Another is that the block

upper triangular matrix
[A C

0 −B
]

can be reduced by a sim-

ilarity transformation to block-diagonal form
[A 0

0 −B
]

if

and only if the Sylvester equation has a solution.

The Sylvester equation can be generalized by includ-

ing coefficient matrices on both sides of X and increas-

ing the number of terms:

k∑
i=1

AiXBi = C, Ai ∈ Cm×m, Bi ∈ Cn×n.

When m = n, numerical methods are available that

solve the system with k = 2 terms inO(n3) operations,

but for k > 2 the best available methods require O(n6)
operations. In applications in which the coefficient

matrices are large, sparse, and possibly highly struc-

tured, much recent research has focused on comput-

ing inexpensive approximations to the solution using

iterative methods, with good low-rank approximations

being possible in some cases.

The Lyapunov equation is the special case of the

Sylvester equation with B = A∗ ∈ Cn×n:

AX +XA∗ = C.

It is common in control and systems theory. Usually, C
is Hermitian, in which case the solution X is Hermitian

when the equation has a unique solution, which is the

case when λi+λ̄j �= 0 for all eigenvalues λi and λj of A.

A classic theorem says that for any given Hermitian

positive-definite C the Lyapunov equation has a unique

Hermitian negative-definite solution if and only if all

the eigenvalues of A lie in the open left half-plane. The

latter condition is equivalent to the asymptotic stability

of the linear system of differential equations ẋ(t) =
Ax(t), and the Lyapunov equation is correspondingly

also known as the continuous-time Lyapunov equation.

The discrete-time Lyapunov equation (also known as

the Stein equation) is

X −A∗XA = C.

Given any Hermitian positive-definite matrix C , there is

a unique Hermitian positive-definite solution X if and

only if all the eigenvalues of A lie within the unit circle,

and the latter condition is equivalent to the asymptotic

stability of the discrete system xk+1 = Axk.
The Sylvester and Lyapunov equations both arise

when Newton’s method is used to solve algebraic

riccati equations [III.25].
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III.29 The Thin-Film Equation
Andrew J. Bernoff

The thin-film equation (TFE),

∂h
∂t

= − ∂
∂x

(
Q(h)

∂3h
∂x3

)
,

is a nonlinear fourth-order partial differential equation
describing the flow of thin viscous films with strong
surface tension. It has received a great deal of atten-
tion over the last two decades, both as a tractable model
of thin fluid films and as a paradigm of challenges in
the study of partial differential equations. Here, h(x, t)
represents the nonnegative height of the film’s free sur-
face (as a function of position x and time t (see fig-
ure 1)), and Q(h) is a mobility function that is degen-
erate (Q(0) = 0) and increasing (Q′(h) > 0 for h > 0).
The degeneracy allows compactly supported solutions
(with h = 0 except on some compact subset of the real
line), and the increasing mobility, which is necessary for
the problem to be well-posed, leads to solutions that
are infinitely smooth within their support. The most
common choice for the mobility isQ(h) = hn for some
n > 0.

1 Physical Origins

The TFE is an example of a lubrication theory, whereby
a problem is considered in the asymptotic limit where
horizontal variation occurs on a scale much longer than
the film thickness. Lubrication theory applied to a thin
viscous film on a no-slip substrate yields the TFE with
Q(h) = h3; the introduction of slip on the boundary
yields Q(h) = βh2 + h3 for some β > 0.

2 Mathematical Structure

A mathematical theory for the existence of compactly
supported weak solutions emerged in the 1990s. The
TFE conserves mass,

M ≡
∫
hdx ⇒ dM

dt
= 0,

x

h (x ,t )

Figure 1 A typical compactly supported configuration for
a thin film of height h(x, t). Variations in surface tension
forces (proportional to hxx and indicated by the vertical
gray arrow) create a pressure gradient that drives fluid
motion (horizontal black arrows).

and dissipates surface energy (a lubrication approxima-
tion of the free surface’s arc length),

E ≡ 1
2

∫
(hx)2 dx ⇒ dE

dt
= −

∫
Q(h)(hxxx)2 dx � 0,

where integrals are over the support of h(x, t).
It is believed that for n � 3 the support of the solu-

tion cannot increase; this means that the contact line
(where the solution vanishes) cannot move for a no-slip
boundary, which reflects the well-known contact line
paradox in fluid mechanics (where we observe contact
lines physically moving whenever a fluid wets a solid
surface, but mathematically it is known that a contact
line cannot move for the Navier–Stokes equation with
a no-slip boundary condition). However, for 0 < n < 3
one can find moving contact line solutions, which allow
one to model spreading drops. Physically, this reflects
the fact that the addition of slip to the boundary con-
dition allows contact line motion, a modeling strategy
that also resolves the contact line paradox for the full
fluid equations.

The question of whether a film can rupture, leaving
a dry spot (where h = 0), is only partially resolved;
numerical results suggest that films may rupture for
n < 3

2 and will not rupture for greater n, but rigorous
analytical results for this problem are lacking.

For 0 < n < 3 one can find self-similar spreading
drop solutions that are analogous to the Barenblatt
solution of the porous media equation.

3 Higher Dimensions and Generalizations

The TFE generalizes naturally toN dimensions; the film
height h(x, t), x ∈ RN , satisfies

∂h
∂t

= −∇ · [Q(h)∇(Δh)],

and the existence theory for weak solutions, energy dis-
sipation, contact line motion, axisymmetric spreading
droplets, and film rupture remains largely unchanged
from the one-dimensional TFE.
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Variants of the TFE incorporating gravity, inertia,
substrate topography, variable surface tension due to
heat or surfactants (known as Marangoni effects), van
der Waals forces, evaporation, and many other physi-
cal effects have been highly successful in modeling thin
films; the common theme in these models is that the
additional terms are lower order, and the fourth-order
thin-film term ensures well-posedness.

Further Reading

Bertozzi, A. L. 1998. The mathematics of moving con-
tact lines in thin liquid films. Notices of the American
Mathematical Society 45(6):689–97.

Oron, A., S. H. Davis, and S. G. Bankoff. 1997. Long-scale
evolution of thin liquid films. Reviews of Modern Physics
69:931–80.

III.30 The Tricomi Equation
Gui-Qiang G. Chen

The Tricomi equation is a second-order partial differen-
tial equation of mixed elliptic–hyperbolic type. It takes
the following form for an unknown function u(x,y):

uxx + xuyy = 0.

The Tricomi equation was first analyzed in 1923 by
Francesco Giacomo Tricomi when he was studying the
well-posedness of a boundary-value problem. The equa-
tion is hyperbolic in the half-plane x < 0, elliptic in the
half-plane x > 0, and degenerates on the line x = 0. Its
characteristic equation is

dy2 + xdx2 = 0,

whose solutions are

y ± 2
3 (−x)3/2 = C

for any constant C ; the solutions are real for x < 0.
The characteristics constitute two families of semicubi-
cal parabolas lying in the half-plane x < 0, with cusps
on the line x = 0. This shows that the Tricomi equa-
tion is of hyperbolic degeneracy in the domain x �
0, for which the two characteristic families coincide,
perpendicularly to the line x = 0.

For ±x > 0, set τ = 2
3 (±x)3/2. The Tricomi equation

then becomes the classical elliptic or hyperbolic Euler–
Poisson–Darboux equation:

uττ ±uyy + β
τ
uτ = 0.

The index β = 1
3 determines the singularity of solutions

near τ = 0 (or, equivalently, near x = 0).

Many important problems in fluid mechanics and dif-
ferential geometry can be reduced to corresponding
problems for the Tricomi equation, particularly tran-
sonic flow problems and isometric embedding problems.
The Tricomi equation is a prototype of the generalized
Tricomi equation:

uxx +K(x)uyy = 0,

where K(x) is a given function with xK(x) > 0 for
x �= 0. For a steady-state transonic flow in R2, u(x,y)
is the stream function of the flow, x is a function of the
velocity (which is positive at subsonic speeds and neg-
ative at supersonic speeds), and y is the angle of incli-
nation of the velocity. The solutions u(x,y) also serve
as entropy generators for entropy pairs of the potential
flow system for the velocity. For the isometric embed-
ding problem of two-dimensional Riemannian mani-
folds into R3, the function K(x) has the same sign as
the Gaussian curvature.

A closely related partial differential equation is the
Keldysh equation:

xuxx +uyy = 0.

It is hyperbolic when x < 0, elliptic when x > 0, and
degenerates on the line x = 0. Its characteristics are
given by

y ± 1
2 (−x)1/2 = C

for any constant C ; the characteristics are real for
x < 0. The two characteristic families are (quadratic)
parabolas lying in the half-plane x < 0; they coin-
cide tangentially to the degenerate line x = 0. This
shows that the Keldysh equation is of parabolic degen-
eracy. For ±x > 0, the Keldysh equation becomes
the elliptic or hyperbolic Euler–Poisson–Darboux equa-
tion with index β = − 1

4 , by setting τ = 1
2 (±x)1/2.

Many important problems in continuum mechanics
can also be reduced to corresponding problems for
the Keldysh equation, particularly shock reflection–
diffraction problems in gas dynamics.

Further Reading
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Chen, G.-Q., and M. Feldman. 2015. Shock Reflection–
Diffraction and von Neumann’s Conjectures. Annals of
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cosity method for transonic flow. Archive for Rational
Mechanics and Analysis 189:159–88.
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III.31 The Wave Equation

The one-dimensional wave equation is a partial dif-

ferential equation [IV.3] for u(x, t),

∂2u
∂x2

= 1
c2

∂2u
∂t2

, (1)

where c is a constant. It is classified as a linear second-
order homogeneous hyperbolic equation. Unusually, its

general solution (d’Alembert’s solution) is known:

u(x, t) = f(x − ct)+ g(x + ct). (2)

Here, f and g are arbitrary twice-differentiable func-
tions of one variable.

Small motions of a stretched string are governed by
(1). Suppose that, in equilibrium, the string is along the
x-axis. Then u(x, t) gives the lateral displacement at
position x and time t. The solution u(x, t) = f(x−ct)
represents a wave traveling to the right (x increasing)
as t increases: a photograph at t = 0 would show the
string to have displacement u(x,0) = f(x); a second
photograph at time 1/c would show the same displace-
ment but moved to the right by one unit, u(x,1/c) =
f(x − 1). Equation (2) shows that the general solution
consists of two waves, one moving to the right and one
to the left, both moving at speed c.





Part IV

Areas of Applied Mathematics

IV.1 Complex Analysis
P. A. Martin

1 Introduction

All calculus textbooks start with f(x): f is a func-
tion of one (real) variable x. Topics covered include
limits, continuity, differentiation, and integration, with
the associated notation, such as df/dx = f ′(x) and∫ b
a f(x)dx. It is also usual to include a discussion of

infinite sequences and series. The rigorous treatment
of all these topics constitutes real analysis.

Complex analysis starts with the following question.
What happens if we replace x by z = x + iy , where
x and y are two independent real variables and i =√−1? Answering this question leads to rich new fields
of mathematics; we shall be concerned with those parts
that are used in applied mathematics.

Let us begin with basic terminology and concepts. We
call z = x + iy a complex variable. The imaginary unit
i should be treated as a symbol that obeys all the usual
laws of algebra together with i2 = −1. We call x = Rez
the real part of z and y = Imz the imaginary part of z.
We can identify z = x+ iy with a point in the xy-plane
(known as the z-plane or the complex plane).

The complex conjugate of z is z̄ = x − iy ; com-
plex conjugation is reflection in the x-axis. The abso-
lute value (or modulus or magnitude) of z is |z| =
+
√
x2 +y2, the distance from z to the origin. Given

w = u + iv , we define z + w = (x + u) + i(y + v).
Addition of complex quantities is therefore equivalent
to addition of two-dimensional vectors. For multiplica-
tion, zw = xu−yv+ i(xv+yu). Putting z = w shows
that Rez2 = x2 −y2 ≠ x2 unless z is real (y = 0). Also,
zz̄ = |z|2 and z/w = zw̄/|w|2 when w ≠ 0.

Introducing plane polar coordinates, r and θ, we
have z = r cosθ + ir sinθ = reiθ by Euler’s formula.
Thus, r = |z|. The angle θ is called an argument of z,
denoted by argz or phz (for phase). Notice that argz

is not unique, as we can always add any integer multi-
ple of 2π ; this nonuniqueness is sometimes useful and
sometimes a nuisance.

If we let r → ∞, the point z recedes to infinity. It is
usual to state that there is a single “point at infinity,”
denoted by z = ∞, that is reached by letting r → ∞
in any direction, θ. Alternatively, we can state that the
formula z = 1/w takes the point w = 0 to the point
z = ∞.

2 Functions

A function of a complex variable, f(z), is a rule; given
z = x + iy in some set (the domain of f ), the rule pro-
vides a unique complex number denoted by f(z) =
u + iv , say, where u = Ref and v = Imf are real.
We write f(z) = u(x,y) + iv(x,y) to emphasize the
dependence on x and y .

Simple examples of functions are f(z) = z2 and
f(z) = z̄. Elementary functions are defined “natu-
rally”; for example, ez = ex+iy = exeiy and cosz =
1
2 (e

iz + e−iz). For powers and logarithms, we have the
formulas zα = rαeiαθ (α is real) and logz = log(reiθ) =
log r+iθ. Strictly, these do not define functions because
of the nonuniqueness of θ; changing θ by 2π does not
change z but it does change the values of zα (unless
α is an integer) and logz. One response to this phe-
nomenon is to say that logz, for example, is a mul-
tivalued “function”; increasing θ by 2π takes us onto
another branch or Riemann sheet of logz. However, in
practice, it is usually better to introduce a branch cut,
which, for logz, is any line from z = 0 to z = ∞. This cut
is regarded as an artificial barrier; we must not cross it.
Its presence prevents us from increasing θ by 2π . For
example, we could restrict θ to satisfy −π < θ < π
and put the cut on the negative x-axis. Once we have
restricted θ to lie in some interval of length 2π , logz
and zα become single-valued; they are now functions.
We shall have more to say about branches in section 4.

There are many other ways to define functions. For
example, f(z) = ∑∞

n=0 cnzn is a function provided the
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power series converges at z; characteristically, power
series converge in disks, |z| < R, for some R > 0 (R is
the radius of convergence). The prototype power series
is the geometric series; it converges inside the unit disk
where its sum is known:

∞∑
n=0

zn = 1
1 − z , |z| < 1. (1)

For another example, take

f(z) =
∫∞

0
g(t)e−zt dt. (2)

This defines the Laplace transform of g. Typically, such
integrals converge for Rez > A, where A is a constant
that depends on g. Another function defined by an
integral is Euler’s gamma function:

Γ (z) =
∫∞

0
tz−1e−t dt, Rez > 0. (3)

Much is known about the properties of Γ . For example,
Γ (n) = (n − 1)! when n is any positive integer. There
is more on this in section 13 below.

3 Analytic Functions

The notions of limit, continuity, and derivative are
defined exactly as in real-variable calculus. In partic-
ular, the derivative of f at z is defined by

f ′(z) = df
dz

= lim
h→0

f(z + h)− f(z)
h

, (4)

provided the limit exists. Here, h is allowed to be com-
plex; the point z + h must be able to approach the
point z in any direction, and the limit must be the
same. As a consequence, if f(z) = u(x,y) + iv(x,y)
has a derivative, f ′(z), at z, then u and v satisfy the
Cauchy–Riemann equations:

∂u
∂x

= ∂v
∂y

and
∂u
∂y

= −∂v
∂x
. (5)

If these are not both satisfied, then f ′(z) does not
exist. Two examples: f(z) = z̄ is not differentiable for
any z; and any real-valued function f(z) = u(x,y)
is not differentiable unless u is a constant. If both
Cauchy–Riemann equations (5) are satisfied and the
partial derivatives in (5) are continuous functions, then
f ′ exists.

Using (5), if f ′ exists, then

f ′(z) = ∂u
∂x

+ i
∂v
∂x

= ∂v
∂y

− i
∂u
∂y

= ∂u
∂x

− i
∂u
∂y

= ∂v
∂y

+ i
∂v
∂x
.

The first equality follows by takingh to be real in (4) and
the second by taking h to be purely imaginary. The four

formulas for f ′ show that we can calculate f ′ from Ref
or Imf , or by differentiating with respect to x or y .

Differentiability is a local property, defined at a point
z. Usually, we are interested in functions that are differ-
entiable at all points in their domains. Such functions
are called analytic or holomorphic. Points at which a
function is not differentiable are called singularities.

Derivatives of higher order (such as f ′′(z)) are
defined in the natural way. One surprising fact is that a
differentiable function can be differentiated any num-
ber of times; once differentiable implies infinitely dif-
ferentiable (see (13) below for an indication of a proof).
This result is certainly not true for real functions.

If we eliminate v from (5), we obtain

∂2u
∂x2

+ ∂
2u
∂y2

= 0. (6)

Thus, the real part of an analytic function, u(x,y),
satisfies laplace’s equation [III.18] (6). The imagi-
nary part, v(x,y), satisfies the same partial differ-
ential equation (PDE). This reveals a close connection
between analytic functions and solutions of one partic-
ular PDE. As Laplace’s equation arises in the modeling
of many physical phenomena, this connection has been
exploited extensively.

4 More on Branches

Let us return to log, which we can define as a (single-
valued) function by

logz = log r + iθ, r > 0, −π < θ < π, (7)

with z = reiθ . There is a branch cut along the nega-
tive x-axis, with a branch point at z = 0 and a branch
point at z = ∞. Thus, our domain of definition for
logz is the cut plane, i.e., the whole complex plane with
the cut removed. Then, logz is analytic; it is differen-
tiable at all points in its domain of definition. Moreover,
(d/dz) logz = z−1.

According to (7), logz is not defined on the negative
x-axis. Some authors regard this as unacceptable, and
so they replace the (open) interval −π < θ < π in
(7) by −π < θ � π or −π � θ < π . The first choice
gives, for example, log (−1) = iπ and the second gives
log (−1) = −iπ . Either choice enlarges the domain of
definition to the whole plane with z = 0 removed. How-
ever, we lose analyticity; logz is not differentiable on
the line θ = π (first choice) because points on that
line are not accessible in all directions (as they must
be if one wants to compute limits, as in the definition
of derivative) without leaving the domain of definition.



IV.1. Complex Analysis 175

For some applications this may be acceptable, but, in
practice, it is usual to simply move the cut. We can
therefore replace −π < θ < π in (7) by another open
interval, θ0 < θ < 2π + θ0, implying a cut along the
straight half-line θ = θ0, r � 0. (In fact, the cut need
not be straight; any line connecting the branch point at
z = 0 to z = ∞ may be used.) Then logz is analytic in
a new cut plane.

Once we define a function such as logz or z1/2 with
a specified range for θ, we can say that we have defined
a principal value of that function. Certain choices (such
as −π < θ < π or −π < θ � π ) are common, but the
reader should not overlook the option of moving cuts
when it is convenient to do so.

There is another consequence of insisting on hav-
ing (single-valued) functions: some standard identities,
such as log (z2) = 2 logz, may no longer hold. For
example, with z = −1+ i and the definition (7), we find
log (z2) = log 2 − 1

2 iπ but 2 logz = log 2 + 3
2 iπ .

Summarizing, functions with branches are very com-
mon (for another example, see the article on the lam-

bert W -function [III.17]) but their presence often
leads to complications, subtle difficulties, and calcula-
tional errors; care is always required.

5 Infinite Series

A power series about the point z0 has the form
∞∑
n=0

cn(z − z0)n, (8)

where the coefficients cn are complex numbers. The
series (8) converges for |z − z0| < R and diverges for
|z − z0| > R, where the radius of convergence, R, may
be finite or infinite. (It may happen that (8) converges
at z = z0 only, with sum c0.) When the series does con-
verge, we denote its sum by S(z). For an example, see
the geometric series (1).

The sum S(z) is analytic for |z−z0| < R; power series
define analytic functions.

Now we turn this around. We take an analytic func-
tion, f(z), and we try to write it as a power series. Doing
this is familiar from calculus, and the result is Taylor’s
theorem:

f(z) =
∞∑
n=0

f (n)(z0)
n!

(z − z0)n,

where f (n) is the nth derivative of f . The series is
known as the Taylor expansion of f(z) about z0. It con-
verges for |z − z0| < R, where R is the distance from

z0 to the nearest singularity of f(z). A Taylor expan-
sion about the origin (z0 = 0) is known as a Maclaurin
expansion. All these expansions are the same as those
occurring in the calculus of functions of one real vari-
able. For example, (1) gives the Maclaurin expansion
of 1/(1 − z). Another familiar Maclaurin expansion is
ez =∑∞

n=0 zn/n!, which is convergent for all z.
A generalization of Taylor’s theorem, Laurent’s the-

orem, will be given in section 8.
Not all infinite series are power series. A famous

series is the riemann zeta function [IV.7 §4], which
is defined by

ζ(z) =
∞∑
n=1

1
nz

for Rez > 1, (9)

which is intimately connected with the distribution of
the prime numbers.

It is possible to develop the theory of analytic func-
tions by starting with power series; this approach,
which goes back to Weierstrass, has a constructive fla-
vor. We started with the notion of differentiability; this
approach, which goes back to Riemann and Cauchy, is
closer to real-variable calculus. The two approaches are
equivalent; power series define analytic functions and
analytic functions have power-series expansions.

6 Contour Integrals

In the calculus of functions of two real variables x and
y , double integrals over regions of the xy-plane and
line integrals along curves in the xy-plane are defined.
In complex analysis, we are mainly concerned with inte-
grals along curves in the z-plane. They are defined sim-
ilarly to line integrals. Thus, suppose that points on a
curve C are located by a parametrization,

C : z(t) = x(t)+ iy(t), a � t � b,
where a and b are constants and x(t) and y(t) are real
functions of the real variable t. As t increases from a to
b, z(t) moves from z(a) to z(b); the parametrization
induces a direction or orientation on C . The curve C
is smooth if x′(t) and y′(t) exist and are continuous.
Then, if f(z) is defined for all points z on a smooth
curve C , ∫

C
f(z)dz =

∫ b
a
f(z(t))z′(t)dt, (10)

where z′(t) = x′(t) + iy′(t). In (10), the right-hand
side defines the expression on the left-hand side as an
integration with respect to the parameter t. More gen-
erally, suppose that C is a contour, defined as a continu-
ous curve made from smooth pieces joined at corners.
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Then, to define
∫
C f dz, we parametrize each smooth

piece separately, and then sum the contributions from
each piece, ensuring that the parametrizations are such
that z moves continuously along C .

If Co is the same curve as C but traversed in the oppo-
site direction (from z(b) to z(a)), then

∫
Co
f(z)dz =

−
∫
C f(z)dz; changing the direction changes the sign.

7 Cauchy’s Theorem

A contour C is closed if z(a) = z(b), and it is simple
if it has no self-intersections. Cauchy’s theorem can be
stated as follows. Suppose that f(z) is analytic inside
a simple closed contour C and continuous on C . Then∫

C
f(z)dz = 0. (11)

It is worth emphasizing the hypotheses. First, we do
not need to know anything about f(z) outside C ;
Cauchy assumed stronger conditions, but these were
later weakened by Goursat. Second, C is a contour, so
corners are allowed. Third, by requiring that “f is ana-
lytic inside C ,” we mean that f(z) must be differen-
tiable at all points z inside C ; singularities (including
branch points) are not allowed (although they may be
present outside C).

There are many consequences of Cauchy’s theorem.
One is known as deforming the contour. Suppose that
C1 and C2 are simple closed contours, both traversed
in the same direction, with C1 enclosed by C2. Suppose
that f(z) is analytic in the region between C1 and C2

and that it is continuous on C1 and C2. (Note that f
may have singularities inside the smaller contour C1

or outside the larger contour C2.) Then,
∫
C1
f(z)dz =∫

C2
f(z)dz; one contour can be deformed into another

without changing the value of the integral, provided the
integrand is analytic between the contours. The same
result is true when C1 and C2 are two contours with the
same endpoints, provided f is analytic between C1 and
C2. These results are useful because they may allow us
to deform a complicated contour into a simpler contour
(such as a circle or a straight line).

Another consequence of Cauchy’s theorem is the
Cauchy integral formula. Under the same conditions,
we have

f(z0) = 1
2π i

∫
C

f(z)
z − z0

dz, (12)

where z0 is an arbitrary point inside C , and C is
traversed counterclockwise. This shows that we can
recover the values of an analytic function inside C from
its values on C .

More generally, and again under the same conditions,
we have

f (n)(z0) = n!
2π i

∫
C

f(z)
(z − z0)n+1

dz. (13)

Formally, this can be seen as the nth derivative of the
Cauchy integral formula (12), but it is deeper; it can
be used to prove the existence of f (n), for n = 2,3, . . . ,
assuming that f ′ exists. This is done using an inductive
argument. We have (compare with (4))

f (n+1)(z0) = lim
h→0

f (n)(z0 + h)− f (n)(z0)
h

,

provided the limit exists. Now, on the right-hand side,
use (13) twice; the limit can then be taken.

Formula (13) with n = 1 can be used to prove Liou-
ville’s theorem. Suppose that f(z) is analytic every-
where in the z-plane (that is, there are no singulari-
ties); such a function is called entire. Suppose further
that |f(z)| < M for some constant M and for all z; we
say that f is bounded. Liouville’s theorem states that
a bounded entire function is necessarily constant. In
other words, (nonconstant) entire functions must be
large somewhere in the complex plane. For example,

|cosz|2 = cosz cosz = 1
4 (e

iz + e−iz)(eiz̄ + e−iz̄)

= 1
4 (e

2ix + e−2ix + e2y + e−2y)

= 1
2 (cos 2x + cosh 2y) = cos2 x + cosh2y − 1

using z + z̄ = 2x and z − z̄ = 2iy . Thus, |cosz| grows
rapidly as we move away from the real axis (where y =
0 and cosh 0 = 1).

8 Laurent’s Theorem

Suppose that f(z) is analytic inside an annulus, a <
|z−z0| < b, centered at z0. We say nothing about f(z)
when z is in the “hole” of radius a (|z − z0| < a) or
when z is outside the annulus (|z − z0| > b). We then
have the Laurent expansion

f(z) =
∞∑

n=−∞
cn(z − z0)n (14)

for all z in the annulus, where the coefficients are given
by contour integrals,

cn = 1
2π i

∫
C

f(z)
(z − z0)n+1

dz, (15)

in which C is a simple closed contour in the annulus
that encircles the hole (once) in the counterclockwise
direction. Note that the sum in (14) is over all n. It is
often convenient to split the sum, giving, for all z in the
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annulus,

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn
(z − z0)n

, (16)

where an = cn for n = 0,1,2, . . . and bn = c−n for
n = 1,2, . . . . In particular,

b1 = 1
2π i

∫
C
f(z)dz. (17)

Suppose that f(z) is also analytic in the hole, so
that f(z) is analytic in the disk |z − z0| < b. Then
bn = 0 (n = 1,2, . . . ) by Cauchy’s theorem and an =
f (n)(z0)/n! by (13); Taylor’s theorem is recovered. Note
that, in general, when f does have singularities in
the hole, we cannot use (13) to evaluate the contour
integrals defining an.

9 Singularities

A singularity is a point at which a function is not dif-
ferentiable. There are several kinds of singularities. A
point z0 is called an isolated singularity if there is an
annulus 0 < |z − z0| < b (a “punctured disk”) in which
there are no other singularities. In this annulus, we have
a Laurent expansion, (16). The first part (the sum over
an) is a power series, and so it defines an analytic func-
tion on the whole disk. The singular behavior resides
in the second sum (over bn); it is called the principal
part, P(z). In practice, P(z) often has a finite number
of terms,

P(z) = b1

z − z0
+ b2

(z − z0)2
+ · · · + bm

(z − z0)m
, (18)

with bn = 0 for all n >m and bm ≠ 0. In this situation,
we say that f has a pole of order m at z0. A pole of
order 1 is called a simple pole and a pole of order 2 is
called a double pole. For example, all the following have
simple poles at z = 0:

1
z
,

1 + z
z
,

ez

z
,

sinz
z2

,
π

sinπz
; (19)

the last in this list also has simple poles at z = ±1,±2,
. . . . All the following have double poles at z = 0:

1
z2
,

1 + z
z2

,
1

z sinz
,

cosz
z2

,
1

sin2πz
. (20)

If the principal part of the Laurent expansion con-
tains an infinite number of nonzero terms, z0 is called
an isolated essential singularity. For example, e1/z has
such a singularity at z = 0.

The coefficient b1 (given by (17)) will play a special
role later; it is called the residue of f at the isolated
singularity, z0, and it is denoted by Res[f ;z0].

There are also nonisolated singularities. The most
common of these occur at branch points. For example,
f(z) = z1/2 has a branch-point singularity at z = 0.
Note that any disk centered at z = 0 will include a piece
of the branch cut emanating from the branch point; f is
discontinuous across the cut, so it is certainly not dif-
ferentiable there, implying that z = 0 is not an isolated
singularity.

10 Cauchy’s Residue Theorem

If we want to evaluate I =
∫
C f(z)dz, the basic method

is to parametrize each smooth piece of C and then use
the definition (10). In principle, this works for any f
and for any C . However, in practice, C is often closed
and f is analytic apart from some singularities. In these
happy situations, we can calculate I efficiently by using
Cauchy’s residue theorem. Thus, suppose that f(z) is
analytic inside the simple closed contour C (and con-
tinuous on C) apart from isolated singularities at zj ,
j = 1,2, . . . , n. (Note that f may have other singulari-
ties, including branch points, outside C , but these are
of no interest here.) Then∫

C
f(z)dz = 2π i

n∑
j=1

Res[f ;zj], (21)

where C is traversed counterclockwise. This important
result is remembered as “2π i times the sum of the res-
idues at the isolated singularities inside the contour.”
If there are no singularities inside, we recover Cauchy’s
theorem (11).

To prove the theorem, we start with the case n = 1.
There is a Laurent expansion about the sole singularity
z1, convergent in a punctured disk 0 < |z−z1| < b. We
deform C into a smaller contour (enclosing z1) that is
inside the disk. Then we use (17). In the general case,
we deform C and “pinch off,” giving a sum of n contour
integrals, each one containing one singularity.

To understand the pinching-off process, suppose
that n = 2 and deform C into a dumbbell-shaped con-
tour, with two circles joined by two parallel straight
lines, L1 and L2, traversed in opposite directions. The
contributions from L1 and L2 cancel in the limit as
the lines go together, leaving the contributions from
disjoint closed contours around each singularity. This
process is readily extended to any (finite) number of
isolated singularities.

In order to exploit the residue theorem, we need
efficient methods for computing residues. Recall that
Res[f ;z0] is the coefficient b1 in the Laurent expansion
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about z0 (see (18)). For simple poles, b1 is the only non-
trivial coefficient in the principal part; thus, at a simple
pole z0,

Res[f ;z0] = lim
z→z0

{(z − z0)f (z)}. (22)

Often, simple poles are characterized by writing f(z) =
p(z)/q(z) with q(z0) = 0, p(z0) ≠ 0, and q′(z0) ≠ 0.
Then

Res[f ;z0] = p(z0)/q′(z0). (23)

For a pole of order m, we can use

Res[f ;z0] = 1
m!

lim
z→z0

dm−1

dzm−1
{(z − z0)mf(z)}.

However, it is sometimes quicker to construct the Lau-
rent expansion directly and then to pick off b1, the coef-
ficient of 1/(z−z0). Thus, almost by inspection, all the
simple-pole examples in (19) have Res[f ; 0] = 1. The
five double-pole examples in (20) have Res[f ; 0] = 0, 1,
0, 0, and 0, respectively.

11 Evaluation of Integrals

Cauchy’s residue theorem gives a powerful method for
evaluating integrals. We give a few examples.

Let C be a circle of radius a centered at the origin
and traversed counterclockwise. The function ez/z has
a simple pole at z = 0 with residue = 1. Hence∫

C

ez

z
dz = 2π i. (24)

This result could have been obtained from the Cauchy
integral formula (12) with f(z) = ez and z0 = 0. Note
also that the value of the integral does not depend
on a; this is not surprising because we know that we
can deform C into a concentric circular contour (for
example) without changing the value of the integral.

Now, starting from the result (24), suppose we para-
metrize C and then use (10); a suitable parametrization
is z(t) = aeit , −π � t � π . As z′(t) = iaeit = iz(t), we
obtain ∫ π

−π
exp(aeit)dt = 2π.

By Euler’s formula, eiθ = cosθ + i sinθ, the integrand
is ea cos t cos (a sin t) + iea cos t sin (a sin t). The second
term is an odd function of t and so it integrates to zero,
leaving ∫ π

0
ea cos t cos (a sin t)dt = π. (25)

Thus, from the known value of a fairly simple contour
integral, (24), we obtained the value of a complicated
real integral. Notice that the formula (25) was derived
by assuming that the parameter a is real and positive.

In fact, it is valid for arbitrary complex a; this is an
example of analytic continuation (see section 13).

We now consider doing the opposite: evaluating inte-
grals by converting them into contour integrals, fol-
lowed by use of the residue theorem.

For trigonometric integrals such as

I1 =
∫ 2π

0

dθ
5 + 4 cosθ

,

the substitution z = eiθ will convert I1 into a contour
integral around the unit circle, |z| = 1. Using dθ/dz =
1/(iz) and cosθ = 1

2 (z + z−1), we obtain

I1 = 1
2i

∫
|z|=1

dz
(z + 2)(z + 1

2 )
.

The integrand is analytic apart from simple poles at
z = −2 and z = − 1

2 . The latter is inside the contour; its
residue is 2

3 (use (22)). Cauchy’s residue theorem (21)
therefore gives I1 = 2

3π .

The method just described requires that the range of
integration for θ have length 2π and that the resulting
integrand have only isolated singularities (not branch
points) inside |z| = 1.

For a second example, consider

I2 =
∫∞

−∞
f(x)dx with f(x) = 1

x4 + 1
.

In order to use the residue theorem, we need a closed
contour C , so we try

∫
C f(z)dz with C consisting of

a piece of the real axis from z = −R to z = R and a
semicircle CR in the upper half-plane of radius R and
centered at z = 0. Then∫ R

−R
f(x)dx +

∫
CR
f (z)dz = 2π i ×

⎧⎪⎨⎪⎩
residues
at poles
inside C.

(26)

After calculation of the residues, we let R → ∞, so that
the first integral → I2. We will see in a moment that the
second integral → 0 as R → ∞.

Now, z4 + 1 = 0 at z = zn = exp(i(2n+ 1)π/4), n =
0,1,2,3. These are simple poles of f(z) with residue
1/(4z3

n) (use (23) with p = 1, q = z4 + 1). The poles z0

and z1 are in the upper half-plane. Hence the right-hand
side of (26) is π/

√
2, and this is I2.

For z ∈ CR we parametrize using z(t) = Reit , 0 � t �
π . We see that f(z) decays as R−4, whereas the length
of CR , πR, increases; overall,

∫
CR f dz decays as R−3.

This rough argument can be made precise.

If we replace f(z) by eikzf (z), we can evaluate
Fourier transforms such as

I3 =
∫∞

−∞
eikxf(x)dx with f(x) = 1

x2 + 1
,
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where k is a real parameter. However, some care is

needed; as eikz = eikxe−ky , we have exponential decay

as y → ∞ when k > 0 but exponential growth when

k < 0. Therefore, we use CR when k > 0, but we close

using a semicircle in the lower half-plane when k < 0.

We find that I3 = πe−|k|.

Laplace transforms (2) can be inverted using

g(t) = 1
2π i

∫ c+i∞

c−i∞
f(z) ezt dz.

The contour (called the Bromwich contour ) is parallel

to the y-axis in the z-plane. The constant c is chosen

so that all the singularities of f(z) are to the left of

the contour. If f(z) has poles only, the integral can be

evaluated by closing the contour using a large semi-

circle on the left.

There are many other applications of contour-inte-

gral methods to the evaluation of integrals. They can

also be used to find the sums of infinite series. Inte-

grands containing branch points can also be consid-

ered. In all cases, one may need some ingenuity in

selecting an appropriate closed contour and/or the

function f(z).

12 Conformal Mapping

Suppose that f(z) is analytic for z ∈ D. We can regard

f as a mapping, taking points z = x + iy to points

w = f(z) = u+ iv ; denote the set of such points in the

uv-plane for all points z ∈ D by R. Given f and D, we

can determine R. More interestingly, given the regions

D and R, can we find an analytic function f that maps

D onto R? The Riemann mapping theorem asserts that

any simply connected region D can be mapped to the

unit disk |w| < 1. (A region bounded by a simple closed

curve is simply connected if it does not contain any

holes.) The analytic function f effecting the mapping

is called a conformal mapping [II.5]; two small lines

meeting at a point z0 ∈ D will be mapped into two

small lines meeting at a point w0 = f(z0) ∈ R, and the

angles between the two pairs of lines will be equal. The

conformality property holds for all z0 ∈ D except for

critical points (where f ′(z0) = 0 or ∞). Many conformal

mappings are known (there are dictionaries of them),

but constructing them for regions D with complicated

shapes or holes remains a challenge. Once a conformal

mapping is available, it can be used to solve boundary-

value problems for Laplace’s equation (6), for example.

13 Analytic Continuation

Return to the geometric series (1). Denote the infinite
series on the left-hand side by f(z), with domain D
(|z| < 1). Denote the sum on the right-hand side by
g(z) = 1/(1 − z), with domain D′ (z ≠ 1). We observe
that f(z) is analytic inD whereas g(z) is analytic in the
larger region D′. As f(z) = g(z) for z ∈ D, we say that
g is the analytic continuation of f into D′. In practice,
we do not usually distinguish between f and g, we just
say that g(z) is analytic for z ∈ D′ and that it can be
defined for z ∈ D ⊂ D′ using f(z). This point of view
is surprisingly powerful.

There are several aspects to this, and it raises several
questions. To begin with, suppose we are given f and
D and we want to find g outside D. There are analyti-
cal and numerical methods available for doing so. For
example, we could use a chain of overlapping disks with
a Taylor expansion about each center. The result will
be locally unique (each step in the chain gives a unique
result) but, if g has a branch point, we could step onto
another branch and thus lose global uniqueness.

Often, we do not know D′; typical analytic continu-
ations will have singularities. For example, the gamma
function, Γ (z), is defined by the integral (3) for Rez > 0;
in this half-plane, Γ is analytic. If we continue Γ (z) into
Rez � 0, we find that there are simple poles at z = −N ,
N = 0,1,2, . . . (so that D′ is the whole complex plane
with the points z = −N removed). Explicitly, we can use
Hankel’s loop integral :

Γ (z) = 1
2i sin(πz)

∫
C
tz−1et dt.

This is a contour integral in the complex t-plane. There
is a cut along the negative real-t axis. The branch of tz is
chosen so that tz = ez log t when t is real and positive.
The contour starts at Re t = −∞, below the cut, goes
once around t = 0, and then returns to Re t = −∞ above
the cut.

There are also loop integrals for the Riemann zeta
function, ζ(z), defined initially for Rez > 1 by the
series (9). Thus, it turns out that ζ(z) can be analyt-
ically continued into the whole z-plane apart from a
simple pole at z = 1.

14 Differential Equations

We usually think of a differential equation as being
something to be solved for a real function of a real vari-
able. However, it can be advantageous to “complexify”
the problem. One good reason is that we may be able to
construct solutions using a power-series expansion (8),
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and we know that the convergence of such a series is
governed by singularity locations. (More generally, we
could use the “method of Frobenius.”) For example, one
solution of Airy’s equation, w′′(z) = zw(z), is

w(z) = 1 + 1
3!
z3 + 1 · 4

6!
z6 + 1 · 4 · 7

9!
z9 + · · · ,

which defines an entire function of z.
We may be able to write solutions as contour inte-

grals, which then offers possibilities for further analy-
sis. For example, solutions of Airy’s equation can be
written (or sought) in the form

w(z) =
∫
C

e−zt+t
3/3 dt,

where C is a carefully chosen contour in the complex
t-plane.

The study of linear differential equations is a well-
established branch of complex analysis, especially in
the context of the classical special functions [IV.7]
(e.g., Bessel functions and hypergeometric functions).
Nonlinear differential equations and their associated
special functions are also of interest. For example, there
are the six painlevé equations [III.24], the simplest
being w′′(z) = 6w2 + z; their solutions, known as
Painlevé transcendents, have a variety of physical appli-
cations, but their properties are not well understood.

15 Cauchy Integrals

Let C be a simple closed smooth contour. Denote the
interior of C by D+ and the exterior by D−. Define a
function F(z) by the Cauchy integral

F(z) = 1
2π i

∫
C

g(τ)
τ − z dτ, z �∈ C, (27)

where g(t) is defined for t ∈ C . For example, if g(t) =
1, t ∈ C , then

1
2π i

∫
C

dτ
τ − z =

⎧⎨⎩1, z ∈ D+,

0, z ∈ D−.
(28)

The integral in (27) is similar to that which appears
in Cauchy’s integral formula (12), except we are not
given any information about g(t) when t �∈ C . Never-
theless, under mild conditions on g, F(z) is analytic
for z ∈ D+ ∪ D−, and F(z) → 0 as z → ∞. What
are the values of F on C? The example (28) suggests
that we should expect F(z) to be discontinuous as z
crosses C . Therefore, we consider the limits of F(z) as
z approaches C (if they exist), and write

F±(t) = lim
z→t
F(z) with z ∈ D± and t ∈ C. (29)

For the example (28), F+(t) = 1 and F−(t) = 0.

Notice that we cannot simply put z = t ∈ C on the

right-hand side of (27); the resulting integral diverges.

However, if g is differentiable at t (in fact, Hölder

continuity is sufficient), we can define the Cauchy

principal-value integral

−
∫
C

g(τ)
τ − t dτ = lim

ε→0

∫
Cε

g(τ)
τ − t dτ, t ∈ C,

where Cε is obtained from C as follows: draw a little

circle of radius ε, centered at t ∈ C , and then remove

the piece of C inside the circle.

Using this definition, define

F(t) = 1
2π i

−
∫
C

g(τ)
τ − t dτ, t ∈ C.

This function is related to F±(t), defined by (29), by the

Sokhotski–Plemelj formula:

F±(t) = ± 1
2g(t)+ F(t), t ∈ C. (30)

This describes the “jump behavior” of the Cauchy

integral F(z) as z crosses C . In particular,

F+(t)− F−(t) = g(t), t ∈ C. (31)

One elegant consequence of (30) is that the solution,

w, of the singular integral equation

1
π i

−
∫
C

w(τ)
τ − t dτ = g(t), t ∈ C,

is given by the formula

w(t) = 1
π i

−
∫
C

g(τ)
τ − t dτ, t ∈ C.

16 The Riemann–Hilbert Problem

Let D± and C be as in section 15. Suppose that two

functions, G(t) and g(t), are given for t ∈ C . Then, the

basic Riemann–Hilbert problem is to find two functions

Φ+(z) and Φ−(z), with Φ± analytic in D±, that satisfy

Φ+(t) = G(t)Φ−(t)+ g(t), t ∈ C, (32)

where Φ+(t) and Φ−(t) are defined as in (29); condi-

tions on Φ−(z) as z → ∞ are usually imposed too.

(There is a variant whereC is not closed; in this case, the

behavior near the endpoints of C plays a major role.)

WhenG ≡ 1, we can solve (32) using a Cauchy integral

and (31). WhenG �≡ 1, we start with the following homo-

geneous problem (g ≡ 0).

Find functions K+ and K−, with K± analytic in D±,

that satisfy

K+(t) = G(t)K−(t), t ∈ C. (33)
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Suppose we can find such functions and that they do
not vanish. Then, eliminating G from (32) gives

Φ+(t)
K+(t)

− Φ−(t)
K−(t)

= g(t)
K+(t)

, t ∈ C,

which, again, we can solve using a Cauchy integral
and (31).

The problem of finding K± is more delicate. At
first sight, we could take the logarithm of (33), giving
logK+− logK− = logG. This looks similar to (31), but it
usually happens that logG(t) is not continuous for all
t ∈ C , which means that we cannot use (30). However,
this difficulty can be overcome.

The problem of finding K± such that (33) is satisfied
is also the key step in the Wiener–Hopf technique (a
method for solving linear PDEs with mixed boundary
conditions and semi-infinite geometries). In that con-
text, a typical problem would be: factor a given func-
tion L(z) as L(z) = L+(z)L−(z), where L+(z) is ana-
lytic in an upper half-plane, Imz > a, L−(z) is analytic
in a lower half-plane, Imz < b, and a < b so that the
two half-planes overlap. There are also related prob-
lems where L is a 2 × 2 or 3 × 3 matrix; it is not cur-
rently known how to solve such matrix Wiener–Hopf
problems except in some special cases.

17 Closing Remarks

Complex analysis is a rich, deep, and broad subject
with a history going back to Cauchy in the 1820s.
Inevitably, we have omitted some important topics,
such as approximation theory in the complex plane and
analytic number theory. There are numerous fine text-
books, a few of which are listed below. However, do not
get the impression that complex analysis is a dead sub-
ject; it is not. In this article we have tried to cover the
basics, with some indications of where problems and
opportunities remain.
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IV.2 Ordinary Differential Equations
James D. Meiss

1 Introduction

Differential equations are near-universal models in ap-
plied mathematics. They encapsulate the idea that
change occurs incrementally but at rates that may
depend upon the state of the system. A system of ordi-
nary differential equations (ODEs) prescribes the rate
of change of a set of functions, y(t) = (y1(t),y2(t),
. . . , yk(t)), that depend upon a single variable t, which
may be real or complex. The functionsyj are the depen-
dent variables of the system, and t is the independent
variable. (If there is more than one independent vari-
able, then the system becomes a partial differential

equation [IV.3] (PDE).) Perhaps the most famous ODE
is Newton’s second law of motion,

mÿ = F(y, ẏ, t),
which relates the acceleration of the center of mass
y ∈ R3 of a body of mass m to an externally applied
force F. This force commonly depends upon the posi-
tion of the body, y; its velocity, ẏ (e.g., electromag-
netic or damping forces); and perhaps upon time, t
(e.g., time-varying external control). The force may also
depend upon positions of other bodies; a prominent
example is the n-body problem [VI.16] of gravitation.
We will follow the convention of denoting the first
derivative by ẏ or y′, the second by ÿ or y′′, and, in
general, the kth by y(k).

Newton’s law is a system of second-order ODEs. More
generally, an ODE system is of nth order if it involves
the first n derivatives of a k-dimensional vector y;
formally, therefore, it is a relation of the form

G(y,y(1),y(2), . . . ,y(n); t) = 0. (1)

An example is Clairaut’s differential equation for a
scalar function y(t):

−y + tẏ + g(ẏ) = 0. (2)

This is a first-order ODE since it involves only the
first derivative of y . Equations like this are implicit,
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since they can be viewed as implicitly defining the

highest derivative as a function of y and its lower

derivatives. Clairaut’s equation depends explicitly on

the independent variable; such ODEs are said to be

nonautonomous.

Clairaut showed in 1734 that (2) has a particularly

simple family of solutions: y(t) = ct + g(c) for any

c ∈ R. While it might not be completely obvious how to

find this solution, it is easy to verify that it does solve

(2) by simple substitution since, on the proposed solu-

tion ẏ = c, we have −y+tẏ+g(ẏ) = −(ct+g(c))+tc+
g(c) ≡ 0. More generally, a solution of the ODE (1) on an

interval (a, b) is a function y(t) that makes (1) identi-

cally zero for all t ∈ (a, b). More specifically, a solution

may be required to solve an initial-value problem (IVP)

or a boundary-value problem (see section 5). For the

first-order case, the former means finding a function

with a given value, y(t0) = y0, at a given “initial” time

t0. For example, the family of solutions to (2) satisfies

the initial condition y(0) = y0 so long as there is a c
such that y0 = g(c), i.e., y0 is in the range of g. A fam-

ily y(t;c) that satisfies an IVP for a domain of initial

values is known as a general solution.

Apart from these families of solutions, implicit

ODEs can also have singular solutions. For example,

(2) also has the solution defined parametrically by

(t(s),y(s)) = (−g′(s), g(s)− sg′(s)). Again, it is easy

to verify that this is a solution to (2) by substitution

(and implicit differentiation), but it is perhaps not obvi-

ous how to find it. Lagrange showed that some singu-

lar solutions of an implicit ODE can be found as envel-

opes of the general solutions, but the general theory

was developed later by Cayley and Darboux.

The classical theory of ODEs, originating with New-

ton in his Method of Fluxions in 1671, has as its goal

the construction of the general and singular solutions

of an ODE in terms of elementary functions. However,

in most cases, ODEs do not have such explicit solu-

tions. Indeed most of the well-known special func-

tions [IV.7] of mathematics are defined as solutions

of differential equations. For example, the bessel func-

tion [III.2] Jn(x) is defined to be the unique solution of

the second-order, explicit, nonautonomous, scalar IVP

x2y′′ + xy′ + (x2 −n2)y = 0,

y(0) = δn,0, y′(0) = 1
2δn,1,

⎫⎬⎭ (3)

where δi,j , the Kronecker delta, is nonzero only when

i = j and δi,i = 1. This equation arises from a num-

ber of PDEs through separation of variables. Many

of the properties of Jn (e.g., its power-series expan-
sion, asymptotic behavior, etc.) are obtained by direct
manipulation of this ODE.

In most applications, the ODE (1) can be written in
the explicit form

dn

dtn
y = H(y, ẏ, ÿ, . . . ,y(n−1); t). (4)

Such systems can always be converted into a sys-
tem of first-order ODEs. For example, if we let x =
(y, ẏ, . . . ,y(n−1), t) denote a list of d = nk + 1 vari-
ables, it is then easy to see that (4) can be rewritten as
the autonomous first-order system

ẋ = f(x) (5)

for a suitable f . Every coupled set of k, nth-order,
explicit ODEs can be written in the form (5).1 The ODE
(5) is a common form in applications, e.g., in popula-
tion models of ecology or in Hamiltonian dynamics. In
general, x ∈ M , where M is a d-dimensional manifold
called the phase space. For example, the phase space
of the planar pendulum is a cylinder with x = (θ,pθ),
where θ and pθ are the angle and angular momentum,
respectively.

In general, the function f in (5) gives a velocity vector
(an element of the tangent space TM) for each point in
the manifold M ; thus f : M → TM . Such a function is a
vector field. A solution ϕ : (a, b) → M of (5) is a differ-
entiable curve x(t) =ϕ(t) in M with velocity f(ϕ(t));
it is everywhere tangent to f . Given such a curve it is
trivial to check to see if it solves (5); by contrast, the
construction of solutions is a highly nontrivial task. A
general solution of (5) has the form x(t) = ϕ(t; c).
Here, c ∈ Rd is a set of parameters such that, for
each t0 ∈ (a, b) and each initial condition x0 ∈ M , the
equation ϕ(t0; c) = x0 can be solved for c.

A general solution of (5) is a solution x(t) = ϕ(t; c)
that depends upon d parameters, c, such that for any
IVP, x(t0) = x0 ∈ M with t0 ∈ (a, b), there is a c ∈ Rd

such thatϕ(t0; c) = x0. The search for explicit, general
solutions of (5) is, in most cases, quixotic.

2 First-Order Differential Equations

Many techniques were developed through the first
half of the eighteenth century for obtaining analyti-
cal solutions of first-order ODEs. The equations were
often motivated by mechanical problems such as the

1. Though (5) is autonomous, the study of nonautonomous equa-
tions per se is not without merit. For example, stability of periodic
orbits is most fruitfully studied as a nonautonomous linear problem.
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Figure 1 Solutions of the logistic ODE (7). The equilibria
N = 0 and N = K are the horizontal lines.

isochrone (find a pendulum whose period is inde-
pendent of amplitude), which was solved by James
Bernoulli in 1690, and da Vinci’s catenary (find the
shape of a suspended cable), which was solved by John
Bernoulli in 1691.

During this period a number of methods were de-
vised that can be applied to general categories of sys-
tems. In 1691 Leibniz formulated the method of sep-
aration of variables: the formal solution of the ODE
dy/dx = g(x)h(y) has the implicit form∫

dy
h(y)

=
∫
g(x)dx. (6)

Any autonomous first-order ODE is separable. For
example, for the logistic population model [III.19]

Ṅ = rN(1 −N/K), (7)

the integrals can be performed and the result solved
for N to obtain

N(t) = N0K
N0 + (K −N0)e−rt

. (8)

Representative solutions are sketched in figure 1. Note
that, whenever N0 > 0, this solution tends, as t → ∞,
to K, the “carrying capacity” of the environment. This
value and N = 0 are the two equilibria of (7), since the
vector field vanishes at these points.

The differential equation N(x,y)y′ + M(x,y) = 0
can be formally rewritten as the vanishing of a dif-
ferential one-form, M(x,y)dx + N(x,y)dy = 0. In
1739 Clairaut solved such equations when this one-
form is exact, that is (for R2), when ∂M/∂y = ∂N/∂x.
In 1734 Euler had already developed the more general
method of integrating factors: if one can devise a func-
tion F(x,y) such that the form F(M dx+N dy) equals

the total differential

dH ≡ ∂H
∂x

dx + ∂H
∂y

dy

of a function H(x,y), then the solutions to dH = 0
lie on contours of H(x,y). As an example, the inte-
gral curves of a Hamiltonian system with one degree of
freedom,

ẋ = −∂H
∂y
(x,y), ẏ = ∂H

∂x
(x,y), (9)

are those curves that are everywhere tangent to the
velocity; equivalently, they are orthogonal to the gra-
dient vector ∇H ≡ (∂H/∂x, ∂H/∂y). Denoting the
infinitesimal tangent vector by (dx,dy), this require-
ment becomes the exact one-form (dx,dy) · ∇H = 0.
Its solutions lie on contours H(x,y) = E with con-
stant “energy.” This method gives the phase curves
or trajectories of the planar system but does not pro-
vide the time-dependent functions x(t) andy(t). How-
ever, using the constancy of H, the ODE for x, say,
becomes ẋ = ∂yH(x,y(x;E)), a separable first-order
equation whose solution can be obtained up to the
quadrature (6).

The technique of substitution was also used to solve
many special cases (just as for integrating factors,
there is no general prescription for finding an appro-
priate substitution). For example, James Bernoulli’s
nonautonomous, first-order ODE

y′ = P(x)y +Q(x)yn

is linearized by the change of variables z = y1−n. Sim-
ilarly, Leibniz showed that the degree-zero, homoge-
neous equation y′ = G(y/x) becomes separable with
the substitution y(x) = xv(x).

Discussion of these and other methods can be found
in various classic texts, such as Ince (1956).

3 Linear ODEs

In 1743 Euler showed how to solve the nth-order linear
constant-coefficient equation

n∑
j=0

aj
djy
dtj

= 0 (10)

by using the exponential ansatz, y = ert , to reduce the
ODE to the nth-degree characteristic equation p(r) =∑n
j=0 ajrj = 0. Each root, rk, of p provides a solution

y(t) = erkt . Linearity implies that a superposition of
these solutions, y(t) = ∑n

k=0 ckerkt , is also a solution
for any constant coefficients ck. When p(r) has a root
r∗ of multiplicity m > 1, Euler’s reduction-of-order
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method suggests the further ansatz y(t) = er
∗tu(t).

This provides new solutions when u satisfies u(m) = 0,
which has as its general solution a degree-(m− 1) poly-
nomial in t. The general solution therefore becomes a
superposition of n linearly independent functions of
the form t-erkt . Even when the ODE is real, the roots
rk = αk + iβk may be complex. In this case, the con-
jugate root can be used to construct real solutions of
the form t-eαkt cos(βkt) and t-eαkt sin(βkt) for - =
0, . . . ,m−1. A superposition of these real solutions has
n arbitrary real constants ck, and since the functions
are independent, there is a choice of these constants
that solves the IVP y(k)(t0) = bk, k = 0, . . . , n − 1, for
arbitrarily specified values bk.

More generally, when (5) is linear, it reduces to

ẋ = Ax (11)

for a constant, n × n matrix A. Formally, the general
solution of this system can be written as the matrix
exponential:x(t) = etAx(0). As for more general func-

tions of matrices [II.14], we can view this as defining
the symbol etA as the solution of the ODE. More explic-
itly, this exponential is defined by the same convergent
MacLaurin series as eat for scalar a. If A is semisimple
(i.e., if it has a complete eigenvector basis), then A is
diagonalized by the matrix P whose columns are eigen-
vectors: A = PΛP−1, where Λ = diag(λ1, . . . , λn) is the
diagonal matrix of eigenvalues. In this case,

etA = P diag(eλ1t , . . . , eλnt)P−1.

More generally, etA also contains powers of t, general-
izing the simpler, scalar situation.

The nonhomogeneous linear system

ẋ = Ax + g(t)
with forcing function g ∈ Rn can be solved by
Lagrange’s method of variation of parameters. The idea
is to replace the parameters x(0) in the homogeneous
solution by functions u(t). Substitution of x(t) =
etAu(t) into the ODE permits the unknown functions
to be isolated and yields the integral form

x(t) = etAx(0)+
∫ t

0
e(t−s)Ag(s)ds.

Solution of linear, nonautonomous ODEs, ẋ = A(t)x,
is much more difficult. The source of the difficulty
is that A(t) does not generally commute with A(s)
when t ≠ s. Indeed, eAeB ≠ eA+B unless the matrices
do commute (the Baker–Campbell–Hausdorff theorem
from Lie theory gives a series expansion for the prod-
uct). The special case of a time-periodic family of matri-
ces A(t) = A(t + T) can be solved. Floquet showed

that the general solution for this case takes the form
x(t) = P(t)etBx(0), where B is a real, constant matrix
and P(t) is a periodic matrix with period 2T . One much-
studied example of this form is mathieu’s equation

[III.21].

More generally, finding a transformation to a set of
coordinates in which the effective matrix is constant is
called the reducibility problem; even for a quasiperiodic
dependence on time, this is nontrivial.

4 Singular Points

Consider the linear ODE (10), now allowing the coef-
ficients aj(t) to be analytic functions of t ∈ C so
that it is nonautonomous. Cauchy showed that, if the
coefficients are analytic in a neighborhood of t0 and
if an(t0) ≠ 0, this ODE has n independent analytic
solutions. The coefficients of the power series of y
can be determined from a recursion relation upon
substitution of a series for y into the ODE.

A point at which some of the ratios aj(t)/an(t) are
singular is a (fixed) singular point of the ODE, and the
solution need not be analytic at t0. There are two dis-
tinct cases. A singular point is regular if an−j(t)/an(t)
has at most a jth-order pole for each j = 1, . . . , n. In
this case, there is an r ∈ C such that there is at least
one solution of the form y(t) = (t − t0)rφ(t) with φ
analytic at t0. Additional solutions may also have log-
arithmic singularities. An ODE for which all singular
points are regular is called Fuchsian.

Most of the special functions [IV.7] of mathemati-
cal physics are defined as solutions of second-order lin-
ear ODEs with regular singular points. Many are special
cases of the hypergeometric equation

z(1 − z)w′′ + (γ − (α+ β+ 1)z)w′ −αβw = 0 (12)

for a complex-valued functionw(z). This ODE has reg-
ular singular points at z = 0, 1, and ∞ (the latter
obtained upon transforming the independent variable
tou = 1/z). For the singular point at 0, following Frobe-
nius, we make the ansatz that the solution has the form
of a series:

w(z) = zr
∞∑
j=0

cjzj.

Substitution into (12) yields c0p(r)zr−1 + O(zr ) = 0,
and if this is to vanish with c0 ≠ 0, then r must satisfy
the indicial equation p(r) = r2 + (γ − 1)r = 0, with
roots r1 = 0 and r2 = 1−γ. A recursion relation for the
cj , j > 0, is obtained from the terms of order zr+j−1.
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For r1 = 0, this yields the gauss hypergeometric

function [IV.7 §5]

F(α,β, γ;z) = Γ (γ)
Γ (α)Γ (β)

∞∑
j=0

Γ (α+ j)Γ (β+ j)
j!Γ (γ + j) zj,

where the gamma function Γ generalizes the facto-

rial. When γ ∉ Z, the second solution turns out to be

x1−γF(α−γ+1, β−γ+1,2−γ;x), which is not analytic

at z = 0.

When the indicial equation has roots that differ by an

integer, a second solution can be found by the method

of reduction of order. For example, for the second-

order case, suppose r1 − r2 ∈ N and let w1(z) =
er1tφ1(t) be the solution for r1. Substitution of the

ansatzw(z) = w1(z)
∫
v(z)dz shows that v satisfies a

first-order ODE with a regular singular point at 0 whose

indicial equation has the negative integer root r2−r1−1.

If the power series for v has O(z−1) terms, then w(z)
has logarithmic singularities; ultimately, the second

solution has the form w(z) = zr2φ2(z) + cw1(z) lnz,

whereφ2 is analytic at 0 and c might be zero. Thus, for

example, the second hypergeometric solution for inte-

gral γ, where the roots of the indicial equation differ

by an integer, has logarithmic singularities.

Near an irregular singular point, the solution may

have essential singularities. For example, the first-order

ODE z2w′ = w has an irregular singular point at 0; its

solution, w(z) = ce−1/z , has an essential singularity

there. Similarly, Bessel’s equation (3) has an irregular

singular point at ∞.

Singular points of nonlinear ODEs can be fixed (i.e.,

determined by singularities of the vector field) or move-

able. In the latter case, the position of the singularity

depends upon initial conditions. The study of equa-

tions whose only movable singularities are poles leads

to the theory of painlevé transcendents [III.24].

5 Boundary-Value Problems

So far we have considered IVPs for systems of the

form (5), that is, when the imposed values occur at one

point, t = t0. Another common formulation is that of a

boundary-value problem (BVP), where properties of the

solution are specified at two distinct points. Such prob-

lems commonly occur for ODEs that arise by separa-

tion of variables from PDEs. They also occur in control

theory, where constraints may be applied at different

times.

A classical BVP is the Sturm–Liouville equation:

−(p(x)y′)′ + q(x)y = λr(x)y,
α1y(a)+α2y′(a) = 0,

β1y(b)+ β2y′(b) = 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (13)

Here, λ is a parameter, e.g., the separation constant
for the PDE case, p ∈ C1[a, b], q, r ∈ C0[a, b], p
and the weight function r are assumed to be posi-
tive, and α1α2, β1β2 ≠ 0. For example, Bessel’s equa-
tion (3) takes this form, with p(x) = −q(x) = x and
r(x) = 1/x, if appropriate boundary conditions are
imposed.

The Sturm–Liouville problem has (unique) solutions
yn(x) ∈ C2[a, b] only for a discrete set λn, n ∈
N, of values of the separation constant. Moreover,
these “eigenfunctions” and their corresponding “eigen-
values” have a number of remarkable properties.

Ordering: λ1 < λ2 < · · · < λn < · · · .
Oscillation: yn(x) has n− 1 simple zeros in (a, b).
Growth: λn → ∞ as n→ ∞.
Orthogonality:

∫ b
a r(x)yn(x)ym(x)dx = δm,n.

Completeness: the set yn is a basis for the space
L2(a, b).

Perhaps the simplest such problem is y′′ = −λy
with y(0) = y(1) = 0. Here, the eigenvalues are λn =
(nπ)2 and the eigenfunctions are yn = sin(nπx).
The completeness of these functions in L2(0,1) is
the expression of the convergence of the Fourier sine
series. A more interesting problem is the quantum har-
monic oscillator, which, when nondimensionalized, is
governed by the Schrödinger equation

−ψ′′ + x2ψ = λψ. (14)

Here, λ is related to the energy E = 1
2λ�ω for classical

frequencyω. This is a Sturm–Liouville problem forψ ∈
L2(−∞,∞). The solutions are most easily obtained by
the substitution ψ(x) = e−x

2/2y(x) that transforms
(14) to the Hermite equation y′′ − 2xy′ + (λ − 1)y =
0. This ODE has degree-(n − 1) polynomial solutions
when λn = 2n−1, n ∈ N; otherwise, the wave function
ψ is not square integrable. The first five orthonormal
eigenstates of (14) are shown in figure 2.

6 Equilibria and Stability

Apart from the solution of linear PDEs, linear systems
of ODEs find their primary application in the study of
the stability of equilibria of the nonlinear system (5). A
point x∗ is an equilibrium if f(x∗) = 0. If f ∈ C1, then
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x 4–4

ψ

Figure 2 The first five eigenstates of
the Sturm–Liouville problem (14).

x*x

x0xx
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Figure 3 A Lyapunov-stable equilibrium x∗.

the dynamics of a nearby point x(t) = x∗ +δx(t)may
be approximated by δẋ = Df(x∗)δx, where (Df)ij =
∂fi/∂xj is the Jacobian matrix of the vector field.

An equilibrium is Lyapunov stable if, for every neigh-
borhood U , there is a neighborhood V ⊂ U such that if
x(0) ∈ V then x(t) ∈ U for all t > 0 (see figure 3). For
the case in which A = Df(x∗) is a hyperbolic matrix
(its spectrum does not intersect the imaginary axis),
the stability of x∗ can be decided by the eigenvalues
of A. Indeed, the Hartman–Grobman theorem states
that in this case there is a neighborhood U of x∗ such
that there is a coordinate change (a homeomorphism)
that takes the dynamics of (5) in U to that of (11). In
this case we say that the two dynamical systems are
topologically conjugate on U .

An equilibrium is stable if all of the eigenvalues of
A are in the left half of the complex plane, Re(λ) < 0.
Indeed, in this case it is asymptotically stable: there is a
neighborhood U such that every solution that starts in

U remains in U and converges to x∗ as t → ∞. In this
case, x∗ is a stable node. When there are eigenvalues
with both positive and negative real parts, then x∗ is a
saddle. The case of complex eigenvalues deserves spe-
cial mention, since the solution of the linear system
then involves trigonometric functions and there are
solutions in Rd that are infinite spirals. This is not nec-
essarily the case when nonlinear terms are added, how-
ever: the homeomorphism that conjugates the system
in U may unwrap the spirals.

As an example consider the damped Duffing oscilla-
tor2

ẋ = y, ẏ = −μy + x(1 − x2), (15)

with the phase portrait shown in figure 4 when μ =
1
2 . There are three equilibria: (0,0) and (±1,0). The
Jacobian at the origin is

Df(0,0) =
(

0 1

1 − 1
2

)
,

with eigenvalues λ1,2 = − 1
4 (1 ± √

17). Since these are
real and of opposite signs, the origin is a saddle. By
contrast, the Jacobian of the other fixed points is

Df(±1,0) =
(

0 1

−2 − 1
2

)
,

with the complex eigenvalues λ1,2 = − 1
4 (1 ± i

√
31).

Since the real parts are negative, these points are both
attracting foci. They are still foci in the nonlinear sys-
tem, as illustrated in figure 4, since trajectories that
approach them cross the line y = 0 infinitely many
times. Apart from the saddle and its stable manifold
(the dotted curve in the figure), every other trajectory
is asymptotic to one of the foci; these are attractors
whose basins of attraction are separated by the stable
manifold of the saddle.

The stability of a nonhyperbolic equilibrium (when
A has eigenvalues on the imaginary axis) is delicate
and depends in detail on the nonlinear terms, i.e., the
O(δx2) terms in the expansion of f about x∗. For
example, the system

ẋ = −y+ax(x2 +y2), ẏ = x+ay(x2 +y2) (16)

has only one equilibrium, (0,0). The Jacobian at the
origin has eigenvalues λ = ±i; its dynamics are that of
a center. Nevertheless, the dynamics of (16) near (0,0)
depend upon the value of a. This can be easily seen
by transforming to polar coordinates using (x,y) =

2. George Duffing studied the periodically forced version of (15) in
1918.
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x
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Figure 4 The phase portrait of (15) for μ = 1
2 . Arrows

depict the vector field, and dots depict the three equilib-
ria. The unstable (dashed) and stable (dotted) manifolds of
the saddle are shown.

(r cosθ, r sinθ):

ṙ = 1
r
(xẋ +yẏ) = ar3,

θ̇ = 1
r2
(xẏ −yẋ) = 1.

Thus if a < 0, the origin is a global attractor: every tra-

jectory limits to the origin as t → ∞. If a > 0, the origin

is a repellor. The study of nonhyperbolic equilibria is

the first step in bifurcation theory [IV.21].

7 Existence and Uniqueness

Before one attempts to find solutions to an ODE, it is

important to know whether solutions exist, and if they

exist whether there is more than one solution to a given

IVP. There are two types of problems that can occur.

The first is that the velocity f may be unbounded on

M ; in this case, a solution might exist but only over a

finite interval of time. For example, the system ẋ = x2

for x ∈ R has the general solution x(t) = x0/(1−tx0).
Note that |x| → ∞ as t → 1/x0, even though f is a

“nice” function: it is smooth, and moreover, it is ana-

lytic. The problem is, however, that as |x| increases, the

velocity increases even more rapidly, leading to infinite

speed in finite time. The existence theorem deals with

this problem by being local; it guarantees existence only

on a compact interval.

The second problem is that f may not be smooth

enough to guarantee a unique solution. One might

expect that it is sufficient that f be continuous. How-

ever, the simple system ẋ =
√
|x| for x ∈ R has

infinitely many solutions that satisfy the initial con-
dition x(0) = 0. The obvious solution is x(t) ≡ 0,
but x(t) = 1

4 sgn(t)t2 is also a solution. Moreover, any
function x(t) that is zero up to an arbitrary time t0 > 0
and then connects to the parabola 1

4 (t−t0)2 also solves
the IVP. Elimination of this problem requires assuming
that f is more than continuous; it must be at least Lip-
schitz. A function f : M → Rd is Lipschitz on M ⊂ Rm

if there is a constant K such that for all x,y ∈ M ,
‖f(x)− f(y)‖ � K‖x −y‖.

With this concept, we can state a theorem of exis-
tence and uniqueness. Let Br (x) denote the closed ball
of radius r about x.

Theorem 1 (Picard–Lindelöf). Suppose that for x0 ∈
Rd there exists b > 0 such that f : Bb(x0) → Rd is Lip-
schitz. Then the IVP (5) with x(t0) = x0 has a unique
solution x : [t0 − a, t0 + a] → Bb(x0) with a = b/V ,
where V = maxx∈Bb(x0) ‖f(x)‖.

This theorem can be proved iteratively (e.g., by Picard
iteration), but the most elegant proof uses the contrac-
tion mapping theorem.

8 Flows

When the vector field of (5) satisfies the conditions of
the Picard–Lindelöf theorem, the solution is necessarily
a C1 function of time. It is also a Lipschitz function of
the initial condition. Suppose now that f ∈ C1(Rd,Rd)
and is locally Lipschitz. Though the theorem guaran-
tees the existence only on a (perhaps small) interval t ∈
[t0−a, t0+a], this solution can be uniquely extended to
a maximal open interval J = (α,β) such that the solu-
tion is unbounded as t approaches α or β when they
are finite. As noted in section 7, unbounded solutions
may arise even for “nice” vector fields; however, if f is
bounded or globally Lipschitz, then J = R.

If ϕt(x0) denotes the maximally extended solution,
then ϕ : J × Rd → Rd satisfies a number of conditions:

• ϕ ∈ C1,
• ϕ0(x) = x, and
• ϕt ◦ϕs =ϕt+s whenever t, s, and t + s ∈ J.

The last condition encapsulates the idea of autonomy:
flowing from the point ϕs(x) for a time t is the same
as flowing for time t + s from x; the origin of time is a
matter of convention.

For example, (8), the solution of the logistic ODE,
gives such a function if it is rewritten asϕt(N0) = N(t).
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In this case (for r and K positive), J = R if 0 � N0 � K,
and J = (α,∞) with

α = 1
r

ln
(

1 − K
N0

)
< 0

ifN0 > K. Indeed, it is apparent from figure 1 that solu-
tions with initial conditions above the carrying capacity
K grow rapidly for decreasing t; the theory implies that
ϕt(N0)→ ∞ as t ↓ α.

More generally, any function satisfying these condi-
tions is called a flow. The flow is complete if J = R, and
it is a semiflow if α is finite but β is still ∞. It is not hard
to see that every flow is the solution of a differential
equation (5) for some C0 vector field. Flows form one
fundamental part of the theory of dynamical systems

[IV.20].

9 Phase-Plane Analysis

A system of two differential equations

ẋ = P(x,y),
ẏ = Q(x,y)

⎫⎬⎭ (17)

can be qualitatively analyzed by considering a few sim-
ple properties of P and Q. The goals of such an analy-
sis include determining the asymptotic behavior for
t → ±∞ and the stability of any equilibria or periodic
orbits.

The nullclines are the sets

Nh = {x,y : Q(x,y) = 0},
Nv = {x,y : P(x,y) = 0}.

Typically these are curves on which the instantaneous
motion is horizontal or vertical, respectively. The set of
equilibria is precisely the intersection of the nullclines,
E = Nh ∩ Nv. The web of nullclines divides the phase
plane into sectors in which the velocity vector lies in
one of the four quadrants.

For example, the Lotka–Volterra system

ẋ = bx(1 − x − 2y),

ẏ = cy(1 − 2x −y)

⎫⎬⎭ (18)

can be thought of as a model of competition between
two species with normalized populations x � 0 and
y � 0. The species have per capita birth rates b and
c, respectively, when their populations are small, but
these decrease if either or both of x and y grows
because of competition for the same resource. In the
absence of competition, the environment has a carry-
ing capacity of one population unit. The nullclines are
pairs of lines Nh = {y = 0} ∪ {y = 1 − 2x} and

0 0.5 1.0
0

0.5

1.0

x

y

Nv

Nh

Figure 5 The phase portrait for (18) for 2c = 3b > 0. Repre-
sentative velocity vectors are shown in each sector defined
by the nullclines, as are several numerically generated
trajectories.

Nv = {x = 0} ∪ {y = 1
2 (1 − x)}. Consequently, there

are four equilibria: (0,0), (1,0), (0,1), and ( 1
3 ,

1
3 ). The

nullclines divide the biologically relevant domain into

four regions within which the velocity lies in one of

the four quadrants, as shown in figure 5. In particular,

when both x and y are large (e.g., bigger than the car-

rying capacity), the velocity must be in the third quad-

rant since both ẋ < 0 and ẏ < 0. Since a component

of the velocity can reverse only upon crossing a null-

cline (and in this case does reverse), the remainder of

the qualitative behavior is then determined.

From this simple observation one can conclude that

the origin is a source, i.e., every nearby trajectory

approaches the origin as t → −∞. By contrast, the two

equilibria on the axes are sinks since all nearby tra-

jectories approach them as t → +∞. The remaining

equilibrium is a saddle since there are approaching and

diverging solutions nearby. Moreover, every trajectory

in the positive quadrant is bounded, and almost all tra-

jectories asymptotically approach one of the two sinks.

The only exceptions are a pair of trajectories that are

on the stable manifold of the saddle. Details that are

not determined by this analysis include the timescale

over which this behavior occurs and the curvature of

the solution curves, which depends upon the ratio b/c.
This model demonstrates the ecological phenomenon

of competitive exclusion; typically, only one species

survives.
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10 Limit Cycles

If the simplest solutions of ODE systems are equilib-

ria, periodic orbits form the second class. A solution

Γ = {x(t) : 0 � t < T} of an autonomous ODE is peri-

odic with (minimal) period T if Γ is a simple closed

loop in the phase space. Indeed, uniqueness of solu-

tions implies that, if x(T) = x(0), then x(nT) = x(0)
for all n ∈ Z.

A one-dimensional autonomous ODE (5) cannot have

any periodic solutions. Indeed, every solution of such

a system is a monotone function of t. Periodic trajecto-

ries are common in two dimensions. For example, each

planar Hamiltonian system (9) has periodic trajecto-

ries on every closed nondegenerate (∇H ≠ 0) contour

H(x,y) = E. These periodic trajectories are not iso-

lated. An isolated periodic orbit is called a limit cycle.

More generally, a limit cycle is a periodic orbit that is the

forward (ω) or backward (α) limit of another trajectory.

The van der Pol oscillator,

ẋ = y, ẏ = −x + 2μy − x2y, (19)

was introduced in 1922 as a model of a nonlinear cir-

cuit with a triode tube. Here, x represents the current

through the circuit, and y represents the voltage drop

across an inductor. The parameter μ corresponds to the

“negative” resistance of the triode passing a small cur-

rent. This system has a unique periodic solution when

μ > 0 (see figure 6). The creation of this limit cycle at

μ = 0 follows from the hopf bifurcation [IV.21 §2]

theorem. Its uniqueness is a consequence of a more

general theorem due to Liénard.

Planar vector fields can therefore have equilibria and

periodic orbits. Are there more complicated trajecto-

ries, e.g., quasiperiodic or chaotic orbits? The negation

of this speculation is contained in the theorem pro-

posed by Poincaré and proved later by Bendixson: the

set of limit points of any bounded trajectory in the

plane can contain only equilibria and periodic orbits.

There is therefore no chaos [II.3] in two dimensions!

From the point of view of finding periodic trajectories,

this theorem implies the following.

Theorem 2 (Poincaré–Bendixson). Suppose that A ⊂
R2 is bounded and positively invariant and that ϕ
is a complete semiflow in A. Then, if A contains no

equilibria, it must contain a periodic orbit.

For example, consider the system

ẋ = y, ẏ = −x +yh(r),

–2 –1 0 1 2

–1.6

–0.8

0.8

1.6

x

y

Figure 6 The phase portrait of the van der Pol
oscillator (19) for μ = 0.2.

where r =
√
x2 +y2, and let A be the annulus {(x,y) :

a < r < b}. Thus A contains no equilibria for any 0 <
a < b. Converting to polar coordinates gives, for the

radial equation,

ṙ = y
2

r
h(r).

Now suppose that there exist 0 < a < b such that

h(b) < 0 < h(a). On the circle r = a we then

have ṙ � 0, implying that trajectories cannot leave A
through its inner boundary. Similarly, trajectories can-

not leave through r = b because ṙ � 0 on this circle.

By the Poincaré–Bendixson theorem, therefore, there is

a periodic orbit in A.

11 Heteroclinic Orbits

Suppose thatϕ is a complete Cr+1 flow that has a sad-

dle equilibrium at x∗. The k-generalized eigenvectors

of Df(x∗) corresponding to the stable eigenvalues,

Re(λi) < 0, define a k-dimensional tangent plane Es

at x∗. This linear plane can be extended to form a

set of trajectories of the nonlinear flow whose forward

evolution converges to x∗:

W s(x∗) =
{
x ∈ M \ {x∗} : lim

t→∞
ϕt(x) = x∗

}
.

The stable manifold theorem [IV.20] implies that

this set is a k-dimensional, Cr , immersed manifold

that is tangent to Es at x∗. Similarly, a saddle has an



190 IV. Areas of Applied Mathematics

unstable manifold

Wu(x∗) =
{
x ∈ M \ {x∗} : lim

t→−∞
ϕt(x) = x∗

}
that is tangent to the (n − k)-dimensional plane

spanned by the unstable eigenvectors ofx∗. It is impor-

tant to note that this set is defined by its backward

asymptotic behavior and not by the idea that it escapes

from x∗. These concepts can also be generalized to

hyperbolic invariant sets.

Poincaré realized that intersections of stable and

unstable manifolds can give rise to complicated orbits.

He called an orbit Γ homoclinic if Γ ∈ Wu(x∗) ∩
W s(x∗). Similarly, an orbit is heteroclinic if Γ ∈
Wu(a)∩W s(b) for distinct saddles a and b.

Planar Hamiltonian systems often have homoclinic

or heteroclinic orbits. For example, the conservative

Duffing oscillator, (15) with μ = 0, has Hamiltonian

H(x,y) = 1
2 (y

2 − x2 + 1
2x

4). This function has a crit-

ical level set H = 0 that is a figure-eight intersecting

the saddle equilibrium at (0,0). Since energy is con-

served, trajectories remain on each level set; in partic-

ular, every trajectory on the figure-eight is biasymptotic

to the origin (these are homoclinic trajectories). For this

case, the stable and unstable manifolds coincide, and

we say that there is a homoclinic connection. This set is

also called a separatrix since it separates motion that

encircles each center from that enclosing both centers.

Such a homoclinic connection is fragile; for example,

it is destroyed whenever μ ≠ 0 in (15). More gener-

ally, a homoclinic bifurcation [IV.21] corresponds to

the creation/destruction of a homoclinic orbit from a

periodic one.

If, however, the intersection of Wu(a) with W s(b) is

transverse, it cannot be destroyed by a small perturba-

tion. A transversal intersection of two submanifolds is

one for which the union of their tangent spaces at an

intersection point spans TM :

TxWu(a)⊕ TxWu(b) = TxM.

Note that for this to be the case, we must have

dim(Wu) + dim(W s) � dim(M). Every such intersec-

tion point lies on a heteroclinic orbit that is structurally

stable. Poincaré realized that in certain cases the exis-

tence of such a transversal heteroclinic orbit implies

infinite complexity. This idea was formalized by Steve

Smale in his construction of the Smale horseshoe. The

existence of a transversal heteroclinic orbit implies a

chaotic invariant set.

12 Other Techniques and Concepts

Differential equations often have discrete or continu-
ous symmetries [IV.22], and these are useful in con-
structing new solutions and reducing the order of the
system. Given sufficiently many symmetries and invari-
ants, a system of ODEs can be effectively solved, that
is, it is integrable.

One often finds that no analytical method leads to
explicit solutions of an ODE. In this case, numerical

solution [IV.12] techniques are invaluable.
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IV.3 Partial Differential Equations
Lawrence C. Evans

1 Overview

This article is an extremely rapid survey of the modern
theory of partial differential equations (PDEs). Sources
of PDEs are legion: mathematical physics, geometry,
probability theory, continuum mechanics, optimization
theory, etc. Indeed, most of the fundamental laws of the
physical sciences are partial differential equations and
most papers published in applied mathematics concern
PDEs.

The following discussion is consequently very broad
but also very shallow, and it will certainly be inadequate
for any given PDE the reader may care about. The goal
is rather to highlight some of the many key insights and
unifying principles across the entire subject.

1.1 Confronting PDEs

Among the greatest accomplishments of the physi-
cal and other sciences are the discoveries of funda-
mental laws, which are usually PDEs. The great prob-
lems for mathematicians, both pure and applied, are
then to understand the solutions of these equations,
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using theoretical analysis, numerical simulations, per-
turbation theory, and whatever other tools they can
find.

But this very success in physics—that some fairly
simple-looking PDEs, for example the Euler equations
for fluid mechanics (see (11) below), model complicated
and diverse physical phenomena—causes all sorts of
mathematical difficulties. Whatever general assertion
we try to show mathematically must apply to all sorts
of solutions with extremely disparate behavior.

It is therefore a really major undertaking to un-
derstand solutions of partial differential equations,
and there are at least three primary mathematical
approaches for doing so:

• discovering analytical formulas for solutions, ei-
ther exact or approximate,

• devising accurate and fast numerical methods,
and

• developing rigorous theory.

In other words, we can aspire to actually solve the PDE
more or less explicitly, to compute solutions, or to indi-
rectly deduce properties of the solutions (without rely-
ing upon formulas or numerics). This article surveys
these viewpoints, with particular emphasis on the last.

Terminology

A partial differential equation is an equation involving
an unknown function u of more than one variable and
certain of its partial derivatives. The order of a PDE is
the order of the highest-order partial derivative of the
unknown appearing within it.

A system of PDEs comprises several equations involv-
ing an unknown vector-valued functionu and its partial
derivatives.

A PDE is linear if it corresponds to a linear opera-
tor acting on the unknown and its partial derivatives;
otherwise, the PDE is nonlinear.

Notation

Hereafter, u usually denotes the real-valued solution
of a given PDE and is usually a function of points
x = (x1, . . . , xn) ∈ Rn, typically denoting a position in
space, and sometimes also a function of t ∈ R, denot-
ing time. We write uxk = ∂u/∂xk to denote the par-
tial derivative of u with respect to xk, and ut = ∂u/∂t,
uxkxl = ∂2u/∂xk∂xl, etc., for higher partial derivatives.
The gradient of u in the variable x is

∇u = (ux1 , . . . , uxn).

(In this article, ∇u always denotes the gradient in the
variables x1, . . . , xn, even if u also depends on t.) We
write the divergence of a vector field F = (F1, . . . , Fn)
as divF =∑n

i=1 Fixi .
The Laplacian of u is the divergence of its gradient:

Δu = ∇2u =
n∑
k=1

uxkxk . (1)

Let us also write u = (u1, . . . , um) to display the
components of a vector-valued function. We always use
boldface for vector-valued mappings.

The solidn-dimensional ball with centerx and radius
r is denoted by B(x, r), and ∂B(x, r) is its boundary,
a sphere. More generally, ∂U means the boundary of a
set U ⊂ Rn; and we denote by∫

∂U
f dS

the integral of a function f over the boundary, with
respect to (n− 1)-dimensional surface area.

1.2 Some Important PDEs

A list of some of the most commonly studied PDEs fol-
lows. To streamline and clarify the presentation, we
have mostly set various physical parameters to unity
in these equations.

First-Order PDEs

First-order PDEs appear in many physical theories—
mostly in dynamics, continuum mechanics, and optics.
For example, in the scalar conservation law

ut + divF(u) = 0, (2)

the unknown u is the density of some physically inter-
esting quantity and the vector field F(u), its flux,
depends nonlinearly on u.

Another important first-order PDE, the Hamilton–
Jacobi equation

ut +H(∇u,x) = 0, (3)

appears in classical mechanics and in optimal control
theory. In these contexts, H is called the Hamiltonian.

Second-Order PDEs

Second-order PDEs model a significantly wider variety
of physical phenomena than do first-order equations.
For example, among its many other interpretations,
laplace’s equation [III.18]

Δu = 0 (4)
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records diffusion effects in equilibrium. Its time-depen-
dent analogue is the heat equation [III.8]

ut −Δu = 0, (5)

which is also known as the diffusion equation.

The wave equation [III.31]

utt − c2Δu = 0 (6)

superficially somewhat resembles the heat equation,
but as the name suggests, it supports solutions with
utterly different behavior.

schrödinger’s equation [III.26]

iut +Δu = 0, (7)

for which solutions u are complex-valued, is the quan-
tum mechanics analogue of the wave equation.

Systems of PDEs

In a system of conservation laws [II.6]

ut + divF(u) = 0, (8)

each component of u = (u1, . . . , um) typically repre-
sents a mass, momentum, or energy density.

A reaction–diffusion system of PDEs has the form

ut −Δu = f (u). (9)

Here, the components of u typically represent densi-
ties of, say, different chemicals, whose interactions are
modeled by the nonlinear term f .

The simplest form of maxwell’s equations [III.22]
reads

Et = curlB,

Bt = − curlE,

divE = divB = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (10)

in which E is the electric field and B the magnetic field.

Fluid mechanics provides some of the most compli-
cated and fascinating systems of PDEs in applied math-
ematics. The most important are euler’s equations

[III.11] for incompressible, inviscid fluid flow,

ut + u · ∇u = −∇p,
divu = 0,

⎫⎬⎭ (11)

and the navier–stokes equations [III.23] for incom-
pressible, viscous flow,

ut + u · ∇u−Δu = −∇p,
divu = 0.

⎫⎬⎭ (12)

In these systems u denotes the fluid velocity and p the
pressure.

Higher-Order PDEs

Equations of order greater than two are much less com-
mon. Generally speaking, such higher-order PDEs do
not represent fundamental physical laws but are rather
derived from such.

For instance, we can sometimes rewrite a system of
two second-order equations as a single fourth-order
PDE. In this way, the biharmonic equation

Δ2u = 0 (13)

comes up in linear elasticity theory.

The korteweg–de vries (KdV) equation [III.16]

ut + auux + buxxx = 0, (14)

a model of shallow-water waves, similarly appears
when we combine a complicated system of lower-
order equations appearing in appropriate asymptotic
expansions.

1.3 Boundary and Initial Conditions

Partial differential equations very rarely appear alone;
most problems require us to solve the PDEs subject to
appropriate boundary and/or initial conditions. If, for
instance, we are to study a solution u = u(x), defined
for points x lying in some region U ⊂ Rn, we usu-
ally also prescribe something about how u behaves on
the boundary ∂U . The most common prescriptions are
Dirichlet’s boundary condition

u = 0 on ∂U (15)

and Neumann’s boundary condition

∂u
∂ν

= 0 on ∂U, (16)

where ν denotes the outward-pointing unit normal to
the boundary and ∂u/∂ν := ∇u · ν is the outer normal
derivative. If, say,u represents a temperature, then (15)
specifies that the temperature is held constant on the
boundary and (16) specifies that the heat flux through
the boundary is zero.

Imposing initial conditions is usually appropriate
for time-dependent PDEs, for which we require of the
solution u = u(x, t) that

u(·,0) = g, (17)

where g = g(x) is a given function, comprising the
initial data. For PDEs that are second order in time, such
as the wave equation (6), it is usually appropriate to also
specify

ut(·,0) = h. (18)
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2 Understanding PDEs

In this section we explore several general procedures
for understanding PDEs and their solutions.

2.1 Exact Solutions

The most effective approach is, of course, just to solve
the PDE outright, if we can. For instance, the boundary-
value problem

Δu = 0 in B(0,1),

u = g on ∂B(0,1)

is solved by Poisson’s formula,

u(x) = 1 − |x|2
nα(n)

∫
∂B(0,1)

g(y)
|x −y|n dS,

where α(n) denotes the volume of the unit ball in Rn.
The solution of the initial-value problem for the wave

equation in one space dimension,

utt − c2uxx = 0 in R × (0,∞),
u = g, ut = h on R × {t = 0},

is provided by d’Alembert’s formula:

u(x, t) = g(x + ct)+ g(x − ct)
2

+ 1
2c

∫ x+ct
x−ct

h(y)dy.

(19)
The wave equation can also be solved in higher dimen-
sions, but the formulas become increasingly compli-
cated. For example, Kirchhoff’s formula,

u(x, t) = 1
4πc2t

∫
∂B(x,ct)

hdS

+ ∂
∂t

{
1

4πc2t

∫
∂B(x,ct)

g dS
}
, (20)

satisfies this initial-value problem for the wave equa-
tion in three space dimensions:

utt − c2Δu = 0 in R3 × (0,∞),
u = g, ut = h on R3 × {t = 0}.

⎫⎬⎭ (21)

The initial-value problem for the heat equation,

ut −Δu = 0 in Rn × (0,∞),
u = g on Rn × {t = 0},

⎫⎬⎭ (22)

has for all dimensions the explicit solution

u(x, t) = 1
(4πt)n/2

∫
Rn

e−|x−y|2/4tg(y)dy. (23)

Certain nonlinear PDEs, including the KdV equation
(14), are also exactly solvable; discovering these so-
called integrable partial differential equations is a very
important undertaking.

It is however a fundamental truth that we cannot solve
most PDEs, if by to “solve” we mean to come up with a
more or less explicit formula for the answer.

2.2 Approximate Solutions and Perturbation

Methods

It is consequently important to realize that we can often
deduce properties of solutions without actually solving
the PDE, either explicitly or numerically.

One such approach develops systematic perturba-
tion schemes to build small “corrections” to a known
solution. There is a vast repertoire of such techniques.
Given a PDE depending on a small parameter ε, the
idea is to posit some form for the corrections and
to plug this guess into the differential equation, try-
ing then to fine-tune the form of the perturbations to
make the error as small as possible. These procedures
do not usually amount to proofs but rather construct
self-consistent guesses.

Multiple Scales

homogenization [II.17] problems entail PDEs whose
solutions act quantitatively differently on different spa-
tial or temporal scales, say of respective orders 1 and
ε. Often, a goal is to derive simpler effective PDEs
that yield good approximations. We guess the form
of the effective equations by supposing an asymptotic
expansion of the form

uε(x) ∼
∞∑
k=0

εkuk(x,x/ε)

and showing that the leading term u0 is a function of
x alone, solving some kind of simpler equation.

This example illustrates the insight that simpler
behavior often appears in asymptotic limits.

Asymptotic Matching

Solutions of PDEs sometimes have quite different prop-
erties in different subregions. When this happens we
can try to fashion an approximate solution by (a) con-
structing simpler approximate solutions in each sub-
region and then (b) appropriately matching these solu-
tions across areas of overlap.

A common such application is to boundary layers.
The outer expansion for the solution within some region
often has a form like

uε(x) ∼
∞∑
k=0

εkuk(x). (24)

Suppose we expect different behavior near the bound-
ary, which we take for simplicity to be the plane {xn =
0}. We can then introduce the stretched variables yn =
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xn/εα, yi = xi (i = 1, . . . , n − 1) and define ūε(y) =
uε(x). We then look for an inner expansion:

ūε(y) ∼
∞∑
k=0

εkūk(y). (25)

The idea now is to match terms in the outer expan-
sion (24) in the limit xn → 0 with terms in the inner
expansion (25) in the limit yn → ∞. Working this out
determines, for instance, the value of α in the scaling.

2.3 Numerical Analysis of PDEs

Devising effective computer algorithms for PDEs is a
vast enterprise—far beyond the scope of this article—
and great ingenuity has gone into the design and
implementation of such methods.

Among the most popular are the finite-difference

[IV.13 §3] methods (which approximate functions by
values at grid points), the method of lines (which dis-
cretizes all but the time variable), the finite-element

method [II.12] and spectral methods (which repre-
sent functions using carefully designed basis func-
tions), multigrid methods [IV.13 §3] (which employ
discretizations across different spatial scales), and the
level set method [II.24] (which represents free bound-
aries as a level set of a function).

The design and analysis of such useful numerical
methods, especially for nonlinear equations, depends
on a good theoretical understanding of the underlying
PDE.

2.4 Theory and the Importance of Estimates

The fully rigorous theory of PDEs focuses largely on
the foundational issues of the existence, smoothness,
and, where appropriate, uniqueness of solutions. Once
these issues are resolved, at least provisionally, theo-
rists turn their attention to understanding the behavior
of solutions.

A key point is availability, or not, of strong analytic
estimates. Many physically relevant PDEs predict that
various quantities are conserved, but these identities
are usually not strong enough to be useful, especially
in three dimensions. For nonlinear PDEs the higher
derivatives solve increasingly complicated, and thus
intractable, equations. And so a major dynamic in
modern theory is the interplay between (a) deriving
“hard” analytic estimates for PDEs and (b) devising
“soft” mathematical tools to exploit these estimates.
In the remainder of this article we present for many
important PDEs the key estimates upon which rigorous
mathematical theory is built.

3 The Behavior of Solutions

Since PDEs model so vast a range of physical and other
phenomena, their solutions display an even vaster
range of behaviors. But some of these are more preva-
lent than others.

3.1 Waves

Many PDEs of interest in applied mathematics support
at least some solutions displaying “wavelike” behavior.

The Wave Equation

The wave equation is, of course, an example, as is most
easily seen in one space dimension from d’Alembert’s
formula (19). This dictates that the solution has the
general form u(x, t) = F(x + ct) + G(x − ct) and is
consequently the sum of right- and left-moving waves
with speed c. The wavelike behavior encoded within
Kirchhoff’s formula (20) in three space dimensions is
somewhat less obvious.

Traveling Waves

A solution u of a PDE involving time t and the single
space variable x ∈ R is a traveling wave if it has the
form

u(x, t) = v(x − σt) (26)

for some speed σ . More generally, a solution u of a PDE
in more space variables having the form

u(x, t) = v(y · x − σt)
is a plane wave. An extremely useful first step for study-
ing a PDE is to look for solutions with these special
structures.

Dispersion

It is often informative to look for plane-wave solutions
of the complex form

u(x, t) = ei(y·x−σt), (27)

where σ ∈ C and y ∈ Rn. We plug the guess (27) into
some given linear PDE in order to discover the so-called
dispersion relationship betweeny andσ = σ(y) forced
by the algebraic structure.

For example, inserting (27) into the Klein–Gordon
equation,

utt −Δu+m2u = 0, (28)

gives σ = ±(|y|2 +m2)1/2. Hence the speed σ/|y| of
propagation depends nonlinearly on the frequency of
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the initial data eiy·x . So waves of different frequencies
propagate at different speeds; this is dispersion.

Solitons

As a nonlinear example, putting (26) into the KdV equa-
tion (14) with a = 6 and b = 1 leads to the ordinary
differential equation

−σv′ + 6vv′ + v′′′ = 0,

a solution of which is the explicit profile

v(s) = 1
2σ sech2( 1

2

√
σs)

for each speed σ . The corresponding traveling wave,
u(x, t) = v(x − σt), is called a soliton.

3.2 Diffusion and Smoothing

We can read off a lot of interesting quantitative infor-
mation about the solutionu of the initial-value problem
(22) for the heat equation from the explicit formula (23).

In particular, notice from (23) that, if the initial
data function g is merely integrable, the solution u is
infinitely differentiable in both the variables x and t at
later times. So the heat equation instantly smooths its
initial data; this observation makes sense as the PDE
models diffusive effects.

3.3 Propagation Speeds

It is also easy to deduce from (23) that, if u solves the
heat equation, then values of the initial data g(y) at all
points y ∈ Rn contribute to determining the solution
at (x, t) for times t > 0. We can interpret this as an
“infinite propagation speed” phenomenon.

By contrast, for many time-dependent PDEs we have
instead “finite propagation speed.” This means that
some parts of the initial data do not affect the solu-
tion at a given point in space until enough time has
passed. This is so for first-order PDEs in general, for the
wave equation, and remarkably also for some nonlinear
diffusion PDEs, such as the porous medium equation

ut −Δ(uγ) = 0 (29)

with γ > 1. The particular explicit solution

u(x, t) = 1
tα

(
b − γ − 1

2γ
β
|x|2
t2β

)1/(γ−1)

+
(30)

for

α = n
n(γ − 1)+ 2

, β = 1
n(γ − 1)+ 2

,

and x+ = max{x,0} shows clearly that the region of
positivity moves outward at finite speed.

3.4 Pattern Formation

The interplay between diffusion and nonlinear terms
can create interesting effects. For example, let Φ(z) =
1
4 (z

2−1)2 denote a “two-well” potential, having minima
at z = ±1. Look now at this scalar reaction–diffusion
problem in which ε > 0 is a small parameter:

uεt −Δuε =
1
ε2
Φ′(uε) in R2 × (0,∞),

uε = gε on R2 × {t = 0}.
For suitably designed, initial data functions gε , it turns
out that

lim
ε→0
uε(x, t) = ±1;

so the solution asymptotically goes to one or the other
of the two minima of Φ. We can informally think of
these regions as being colored black and white.

For each time t � 0, denote by Γ (t) the curve between
the regions {uε(·, t)→ 1} and {uε(·, t)→ −1}. Asymp-
totic matching methods reveal that the normal velocity
of Γ (t) equals its curvature. This is a geometric law of
motion for the evolving black/white patterns emerging
in the asymptotic limit as ε → 0.

Much more complex pattern formation effects can be
modeled by systems of reaction–diffusion PDEs of the
general form (9): see the article on pattern formation

[IV.27] elsewhere in this volume.

3.5 Blow-up

Solutions of time-dependent PDEs may or may not exist
for all future times, even if their initial conditions at
time t = 0 are well behaved. Note, for example, that
among solutions of the nonlinear heat equation

ut −Δu = u2, (31)

subject to Neumann boundary conditions (16), are
those solutions u = u(t) that do not depend on x and
consequently that solve the ordinary differential equa-
tionut = u2. It is not hard to show that solutions of this
equation go to infinity (“blow up”) at a finite positive
time, if u(0) > 0.

For more general initial data, there is an interest-
ing competition between the diffusive, and therefore
stabilizing, term Δu and the destabilizing term u2.

3.6 Shocks

As we have just seen, a solution of a time-dependent
PDE can fail to exist for large times since its maximum
may explode to infinity in finite time. But there are other
mechanisms whereby a solution may cease to exist; it is
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possible, for example, that a solution remains bounded,
but its gradient becomes singular in finite time.

This effect occurs for conservation laws (2). Consider,
for example, the following initial-value problem for the
burgers equation [III.4]:

ut + 1
2 (u

2)x = 0 in R × (0,∞),
u = g on R × {t = 0}.

⎫⎬⎭ (32)

Assume we have a smooth solution u and define the
characteristic curve x(t) to solve the ordinary differen-
tial equation

ẋ(t) = u(x(t), t) (t � 0),

x(0) = x0.

Then
d
dt
u(x(t), t) = ux(x(t), t)ẋ(t)+ut(x(t), t)

= ux(x(t), t)u(x(t), t)+ut(x(t), t)
= 0,

according to the PDE (32). Consequently, u(x(t), t) ≡
g(x0), and also the characteristic “curve” x(t) is in fact
a straight line.

So far, so good; and yet the foregoing often implies
that the PDE does not in fact possess a smooth solution,
existing for all times. To see this, notice that we can
easily build initial data g for which the characteristic
lines emanating from two distinct initial points cross
at some later time, say at (x, t). If we then use these
two different characteristics to computeu(x, t), we will
get different answers. This seeming paradox is resolved
once we understand that the Burgers equation with the
initial data g simply does not have a smooth solution
existing until the time t.

A major task for the rigorous analysis of the Burgers
equation and related conservation laws is characteriz-
ing surfaces of discontinuity (called shocks [II.30]) for
appropriately defined generalized solutions.

3.7 Free Boundaries

Some very difficult problems require more than just
finding the solution of some PDE: one must also find
the region within which that PDE holds. Consider, for
example, the Stefan problem, which asks us to deter-
mine the temperature within some body of water sur-
rounded by ice. The temperature distribution solves the
heat equation inside a region whose shape changes in
time as the ice melts and/or the water freezes. The
unknowns are therefore both the temperature profile
and the so-called free boundary of the water.

There are in general two sorts of such free boundary
problems that occur in PDE theory: those for which the
free boundary is explicit, such as the Stefan problem,
and those for which it is implicit. An example of the
latter is the obstacle problem:

min{u,−Δu− f} = 0.

The free boundary is

Γ = ∂{u > 0},
along which the solution satisfies the overdetermined
boundary conditions u = 0, ∂u/∂ν = 0. Many important
physical and engineering free boundary problems can
be cast as obstacle problems.

Much more complicated free boundary problems
occur in fluid mechanics, in which the unknown veloc-
ityu satisfies differing sorts of PDE within the sonic and
subsonic regions. We say that the equations change type
across the free boundary.

4 Some Technical Methods

So vast is the field of PDEs that no small handful of
procedures can possibly handle them all. Rather, math-
ematicians have discovered over the years, and con-
tinue to discover, all sorts of useful technical devices
and tricks. This section provides a selection of some of
the most important.

4.1 Transform Methods

A panoply of integral transforms is available to convert
linear, constant-coefficient PDEs into algebraic equa-
tions. The most important is the fourier transform

[II.19]:

û(y) := 1
(2π)n/2

∫
Rn

e−ix·yu(x)dx.

Consider, as an example, the equation

−Δu+u = f in Rn. (33)

We apply the Fourier transform and learn that (1 +
|y|2)û = f̂ . This algebraic equation lets us easily find
û, after which a somewhat tricky inversion yields the
formula

u(x) = 1
(4π)n/2

∫∞

0

∫
Rn

e−s−(|x−y|2/4s)

sn/2
f(y)dy ds.

Strongly related are Fourier series methods, which
represent solutions of certain PDEs on bounded do-
mains as infinite sums entailing sines and cosines.
Another favorite is the laplace transform [II.19],
which for PDEs is mostly useful as a transform in the
time variable.
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4.2 Energy Methods and the Functional Analytic

Framework

For many PDEs, various sorts of “energy estimates” are

valid, where we use this term loosely to mean integral

expressions involving squared quantities.

Integration by Parts

Important for what follows is the integration by parts

formula:∫
U
uxiv dx = −

∫
U
uvxi dx +

∫
∂U
uvνi dS

for each i = 1, . . . , n. Here, ν denotes the outward-

pointing unit normal to the boundary. This is a form of

the divergence theorem [I.2 §24] from multivariable

calculus.

Energy Estimates

Assume that u solves Poisson’s equation:

−Δu = f in Rn. (34)

Then, assuming that u goes to zero as |x| → ∞ fast

enough to justify the integration by parts, we compute

that ∫
Rn
f 2 dx =

∫
Rn

n∑
i,j=1

uxixiuxjxj dx

= −
∫

Rn

n∑
i,j=1

uxixixjuxj dx

=
∫

Rn

n∑
i,j=1

(uxixj )
2 dx.

This identity implies something remarkable: if the

Laplacian Δu (which is the sum of the pure second

derivatives uxixi for i = 1, . . . , n) is square integrable,

then each individual second derivative uxixj for i, j =
1, . . . , n is square integrable, even those mixed second

derivatives that do not even appear in (34).

This is an example of regularity theory, which aims

to deduce the higher integrability and/or smoothness

properties of solutions.

Time-Dependent Energy Estimates

As a next example suppose that u = u(x, t) solves the

wave equation (6), and define the energy at time t:

e(t) := 1
2

∫
Rn
(u2
t + c2|∇u|2)dx.

Then, assuming that u goes to zero as |x| → ∞ fast
enough, we have

ė(t) =
∫

Rn
(ututt + c2∇u · ∇ut)dx

=
∫

Rn
ut(utt − c2Δu)dx = 0.

This demonstrates conservation of energy.
For a nonlinear wave equation of the form

utt −Δu+ f(u) = 0, (35)

a similar calculation works for the modified energy

e(t) =
∫

Rn
( 1

2u
2
t + 1

2 |∇u|2 + F(u))dx,

where f = F ′.

4.3 Variational Problems

By far the most successful of the nonlinear theories is
the calculus of variations [IV.6]; indeed, a funda-
mental question to ask of any given PDE is whether or
not it is variational, meaning that it appears as follows.

Given the Lagrangian density function L = L(v, z,x),
we introduce the functional

I[u] :=
∫
U
L(∇u,u,x)dx,

defined for functions u : U → R, subject to given
boundary conditions that are not specified here. Sup-
pose hereafter that u is a minimizer of I[·].

We will show that u automatically solves an appro-
priate PDE. To see this, put i(τ) := I[u+ τv], where v
vanishes near ∂U . Since i has a minimum at τ = 0, we
can use the chain rule to compute

0 = i′(0) =
∫
U
(∇vL · ∇v + Lzv)dx;

and so

0 =
∫
U
(−div(∇vL)+ Lz)v dx,

in which L is evaluated at (∇u,u,x). Here we write
∇vL = (Lv1 , . . . , Lvn).

This integral identity is valid for all functions v
vanishing on ∂U , and from this the euler–lagrange

equation [III.12] follows:

−div(∇vL(∇u,u,x))+ Lz(∇u,u,x) = 0. (36)

The Nonlinear Poisson Equation

For example, the Euler–Lagrange equation for

I[u] =
∫
U

1
2 |∇u|2 − F(u)dx

is the nonlinear Poisson equation

−Δu = f(u), (37)

where f = F ′.
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Minimal Surfaces

The surface area of the graph of a function u is

I[u] =
∫
U
(1 + |∇u|2)1/2 dx,

and the corresponding Euler–Lagrange equation is the
minimal surface equation

div
( ∇u
(1 + |∇u|2)1/2

)
= 0. (38)

The expression on the left-hand side is (n times) the
mean curvature of the surface; and consequently, a
minimal surface has zero mean curvature.

4.4 Maximum Principles

The integral energy methods just discussed can be aug-
mented for certain PDEs with pointwise maximum prin-
ciple techniques. These are predicated upon the ele-
mentary observation that, if the function u attains its
maximum at an interior point x0, then

uxk(x0) = 0, k = 1, . . . , n, (39)

and
n∑

k,l=1

uxkxl(x0)ξkξl � 0, ξ ∈ Rn. (40)

Linear Elliptic Equations

Such insights are essential for understanding the gen-
eral second-order linear elliptic equation

Lu = 0, (41)

where

Lu = −
n∑

i,j=1

aij(x)uxixj +
n∑
i=1

bi(x)uxi + c(x)u.

We say L is elliptic provided the symmetric matrix
((aij(x))) is positive-definite. In usual applications u
represents the density of some quantity. The second-
order term

∑n
i,j=1 aijuxixj records diffusion, the first-

order term
∑n
i=1 biuxi represents transport, and the

zeroth-order term cu describes the local increase or
depletion.

We use the maximum principle to show, for instance,
that if c > 0 then u cannot attain a positive maximum
at an interior point. Indeed, if u took on a positive max-
imum at some point x0, then the first term of Lu at x0

would be nonnegative (according to (40)), the next term
would be zero (according to (39)), and the last would be
positive. But this is a contradiction, since Lu(x0) = 0.

Nonlinear Elliptic Equations

Maximum principle techniques also apply to many
highly nonlinear equations, such as the Hamilton–
Jacobi–Bellman equation:

max
k=1,...,m

{Lku} = 0. (42)

This is an important equation in stochastic optimization
theory, in which each elliptic operator Lk is the infinites-
imal generator of a different stochastic process. We
leave it to the reader to use the maximum principle to
show that a solution of (42) cannot attain an interior
maximum or minimum.

Related, but much more sophisticated, maximum
principle arguments can reveal many of the subtle
properties of solutions to the linear elliptic equation
(41) and the nonlinear equation (42).

4.5 Differential Inequalities

Since solutions of PDEs depend on many variables,
another useful trick is to design appropriate integral
expressions over all but one of these variables, in the
hope that these expressions will satisfy interesting
differential inequalities in the remaining variable.

Dissipation Estimates and Gradient Flows

For example, let u = u(x, t) solve the nonlinear gradi-
ent flow equation

ut − div(∇L(∇u)) = 0 (43)

in Rn × (0,∞). Put

e(t) := 1
2

∫
Rn
L(∇u)dx.

Then, assuming that u goes to zero rapidly as |x| → ∞,
we have

ė(t) =
∫

Rn
∇L(∇u) · ∇ut dx

= −
∫

Rn
(div∇L(∇u))ut dx

= −
∫

Rn
(ut)2 dx � 0.

This is a dynamic dissipation inequality.

Entropy Estimates

Related to dissipation inequalities are entropy esti-
mates for conservation laws. To illustrate these, as-
sume thatuε = uε(x, t) solves the viscous conservation
law

uεt + F(uε)x = εuεxx (44)
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for ε > 0. Suppose Φ is a convex function and put

e(t) :=
∫

R

Φ(uε)dx.

Then

ė(t) =
∫

R

Φ′uεt dx =
∫

R

Φ′(−Fx + εuεxx)dx

= −
∫

R

(Ψ(uε)x + εΦ′′(uεx)2)dx

= −
∫

R

εΦ′′(uεx)2 dx � 0,

where Ψ satisfies Ψ ′ = Φ′F ′. What is important is that
we have found not just one but rather a large collection
of dissipation inequalities, corresponding to each pair
of entropy/entropy flux functions (Φ,Ψ).

Finding and utilizing entropy/entropy flux pairs for
systems of conservation laws of the form (8) is a major
challenge.

Monotonicity Formulas

For monotonicity formulas we try to find interesting
expressions to integrate over balls B(0, r ), with center
0, say, and radius r . The hope is that these integral
quantities will solve useful differential inequalities as
functions of r .

As an example, consider the system

−Δu = |Du|2u, |u|2 = 1 (45)

for the unknown u = (u1, . . . , um), where we write
|Du|2 = ∑n

i=1
∑m
j=1(u

j
xi)2. A solution u is called a har-

monic map into the unit sphere. It is a challenging
exercise to derive from (45) the differential inequality

d
dr

(
1
rn−2

∫
B(0,r )

|Du|2 dx
)

= 2
rn

∫
∂B(0,r )

∑
i,j,k

ukxixiu
k
xjxj dS � 0,

from which we deduce that
1
rn−2

∫
B(0,r )

|Du|2 dx � 1
Rn−2

∫
B(0,R)

|Du|2 dx

if 0 < r < R. This inequality is often useful, as it lets
us deduce fine information at small scales r from that
at larger scales R.

5 Theory and Application

The foregoing listing of mathematical viewpoints and
technical tricks provides at best a glimpse into the
immensity of modern PDE theory, both pure and
applied.

5.1 Well-Posed Problems

A common goal of most of these procedures is to
understand a given PDE (plus appropriate boundary
and/or initial conditions) as a well-posed problem,
meaning that (a) the solution exists, (b) it is unique,
and (c) it depends continuously on the given data for
the problem. This is usually the beginning of wisdom,
as well-posed problems provide the starting point for
further theoretical inquiry, for numerical analysis, and
for construction of approximate solutions.

5.2 Generalized Solutions

A central theoretical problem is therefore to fashion
for any given PDE problem an appropriate notion of
solution for which the problem is well-posed. For lin-
ear PDEs the concept of “distributional solutions” is
usually the best, but for nonlinear problems there are
many, including “viscosity solutions,” “entropy solu-
tions,” “renormalized solutions,” etc.

For example, the unique entropy solution of the
initial-value problem (2) for a scalar conservation law
exists for all positive times, but it may support lines
of discontinuities across so-called shock waves. Simi-
larly, the unique viscosity solution of the initial-value
problem for the Hamilton–Jacobi equation (3) gener-
ally supports surfaces of discontinuity for its gradient.
The explicit solution (30) for the porous medium equa-
tion is, likewise, not smooth everywhere and so needs
suitable interpretation as a valid generalized solution.

The research literature teems with many such no-
tions, and some of the deepest insights in the field
are uniqueness theorems for appropriate generalized
solutions.

5.3 Learning More

As promised, this article is a wide-ranging survey that
actually explains precious little in any detail.

To learn more, interested readers should definitely
consult other articles in this volume as well as the fol-
lowing suggested reading. Markowich (2007) is a nice
introduction to the subject, with lots of pictures, and
Strauss (2008) is a very good undergraduate text, con-
taining derivations of the various formulas cited here.
The survey article by Klainerman (2008) is extensive
and provides some different viewpoints. My graduate-
level textbook (Evans 2010) carefully builds up much
of the modern theory of PDEs, but it is aimed at
mathematically advanced students.
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IV.4 Integral Equations
Rainer Kress

1 Introduction

Some forty years ago when I was working on my thesis,
I fell in love with integral equations, one of the most
beautiful topics in both pure and applied analysis. This
article is intended to stimulate the reader to share this
love with me.

The term integral equation was first used by Paul
du Bois-Reymond in 1888 for equations in which an
unknown function occurs under an integral. Typical
examples of such integral equations are∫ 1

0
K(x,y)φ(y)dy = f(x) (1)

and

φ(x)+
∫ 1

0
K(x,y)φ(y)dy = f(x). (2)

In these equations the function φ is the unknown, and
the kernel K and the right-hand side f are given func-
tions. Solving one of these integral equations amounts
to determining a function φ such that the equation is
satisfied for all x with 0 � x � 1. Equations (1) and (2)
carry the name of Ivar Fredholm and are called Fred-
holm integral equations of the first and second kind,
respectively. In the first equation the unknown function

only occurs under the integral, whereas in the second
equation it also appears outside the integral. Later on
we will show that this is more than just a formal differ-
ence between the two types of equations. A first impres-
sion of the difference can be obtained by considering
the special case of a constant kernel K(x,y) = c ≠ 0
for all x,y ∈ [0,1]. On the one hand, it is easily seen
that the equation of the second kind (2) has a unique
solution given by

φ(x) = f(x)− c
1 + c

∫ 1

0
f(y)dy

provided c ≠ −1. If c = −1 then (2) is solvable if and
only if

∫ 1
0 f(y)dy = 0, and the general solution is given

byφ = f +γ with an arbitrary constant γ. On the other
hand, the equation of the first kind (1) is solvable if and
only if f is a constant: f(x) = γ for all x, say. In this
case every function φ with mean value γ is a solution.

The integration domains in (1) and (2) are not
restricted to the interval [0,1]. In particular, the inte-
gration domain can be multidimensional, and for the
integral equation of the first kind, the domain in which
the equation is required to be satisfied need not coin-
cide with the integration domain.

The first aim of this article is to guide the reader
through part of the historical development of the
theory and the applications of these equations. In par-
ticular, we discuss their close connection to partial dif-
ferential equations and emphasize their fundamental
role in the early years of the development of functional
analysis as the appropriate abstract framework for
studying integral (and differential) equations. Then, in
the second part of the article, we will illustrate how inte-
gral equations play an important role in current math-
ematical research on inverse and ill-posed problems
in areas such as medical imaging and nondestructive
evaluation.

Two mathematical problems are said to be inverse
to each other if the formulation of the first problem
contains the solution of the second problem, and vice
versa. According to this definition, at first glance it
seems arbitrary to distinguish one of the two problems
as an inverse problem. However, in general, one of the
two problems is easier and more intensively studied,
while the other is more difficult and less explored. The
first problem is then denoted as the direct problem, and
the second as the inverse problem.

A wealth of inverse problems arise in the mathe-
matical modeling of noninvasive evaluation and imag-
ing methods in science, medicine, and technology. For
imaging devices such as conventional X-rays or X-ray
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tomography, the direct problem consists of determin-
ing the images, i.e., two-dimensional projections of
the known density distribution on planar photographic
films in conventional X-ray devices and projections
along all lines through the object measured via inten-
sity losses in X-ray tomography (for the latter see also
section 8). Conversely, the inverse problem demands
that we reconstruct the density from the images. More
generally, inverse problems answer questions about the
cause of a given effect, whereas in the corresponding
direct problem the cause is known and the effect is
to be determined. A common feature of such inverse
problems is their ill-posedness, or instability, i.e., small
changes in the measured effect may result in large
changes in the estimated cause.

Equations (1) and (2) are linear equations since
the unknown function φ appears in a linear fashion.
Though nonlinear integral equations also constitute
an important part of the mathematical theory and the
applications of integral equations, we do not consider
them here.

2 Abel’s Integral Equation

As an appetizer we consider Abel’s integral equation. It
was one of the first integral equations in mathematical
history. A tautochrone is a planar curve for which the
time taken by an object sliding without friction in uni-
form gravity to reach its lowest point is independent of
its starting point. The problem of identifying this curve
was solved by Christiaan Huygens in 1659, who, using
geometrical tools, established that the tautochrone is a
cycloid.

In 1823 Niels Henrik Abel attacked the more gen-
eral problem of determining a planar curve such that
the time of descent for a given starting height y coin-
cides with the value f(y) of a given function f . The
tautochrone then reduces to the special case when f
is a constant. Following Abel we describe the curve by
x = ψ(y) (with ψ(0) = 0) and, using the principle of
conservation of energy, obtain

f(y) =
∫ y

0

φ(η)√y − η dη, y > 0, (3)

for the total time f(y) required for the object to fall
from P = (ψ(y),y) to P0 = (0,0), where

φ :=
√

1 + (ψ′)2

2g

and g denotes the acceleration due to gravity. Equa-
tion (3) is known as Abel’s integral equation. Given the

shape φ, the falling time f is obtained by simply eval-
uating the integral on the right-hand side of (3). How-
ever, the solution of the generalized tautochrone prob-
lem requires the solution of the inverse problem; that
is, given the function f , the solution φ of the integral
equation (3) has to be found, which is certainly a more
challenging task. This solution can be shown to be given
by

φ(y) = 1
π

d
dy

∫ y
0

f(η)√y − η dη, y > 0. (4)

For the special case of a constant f = π
√
a/2g with

a > 0 one obtains from (4), after some calculations,
that [ψ′(y)]2 = (a/y)− 1, and it can be seen that the
solution of this equation is given by the cycloid with
parametric representation

(x(t),y(t)) = 1
2a(t + sin t,1 − cos t), 0 � t � π.

3 The Early Years

We proceed by giving a brief account of the close
connections between the early development of inte-
gral equations and potential theory. For the sake of
simplicity we confine the presentation to the two-
dimensional case as a model for the practically relevant
three-dimensional case. In what follows, x = (x1, x2)
and y = (y1, y2) stand for points or vectors in the
Euclidean space R2. Twice continuously differentiable
solutions u of Laplace’s equation

∂2u
∂x2

1

+ ∂
2u
∂x2

2

= 0

are called harmonic functions [III.18 §1]. They mod-
el time-independent temperature distributions, poten-
tials of electrostatic and magnetostatic fields, and
velocity potentials of incompressible irrotational fluid
flows.

For a simply connected bounded domain D in R2

with smooth boundary Γ := ∂D the Dirichlet problem
of potential theory consists of finding a harmonic func-
tion u in D that is continuous up to the boundary and
assumes boundary values u = f on Γ for a given con-
tinuous function f on Γ . A first approach to this prob-
lem, developed in the early nineteenth century, was to
create a so-called single-layer potential by distributing
point sources with a density φ on the boundary curve
Γ , i.e., by looking for a solution in the form

u(x) =
∫
Γ
φ(y) ln |x −y|ds(y), x ∈ D. (5)

Here, | · | denotes the Euclidean norm, i.e., |x−y| rep-
resents the distance between the two points x inD and
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y on Γ . Since ln |x − y| satisfies Laplace’s equation if
x ≠ y , the function u given by (5) is harmonic and in
order to satisfy the boundary condition it suffices to
choose the unknown function φ as a solution of the
integral equation∫

Γ
φ(y) ln |x −y|ds(y) = f(x), x ∈ Γ , (6)

which is known as Symm’s integral equation. However,
the analysis available at that time did not allow a suc-
cessful treatment of this integral equation of the first
kind. Actually, only in the second half of the twenti-
eth century was a satisfying analysis of (6) achieved.
Therefore, it represented a major breakthrough when,
in 1856, August Beer proposed to place dipoles on the
boundary curve, i.e., to look for a solution in the form
of a double-layer potential:

u(x) =
∫
Γ
φ(y)

∂ ln |x −y|
∂ν(y)

ds(y), x ∈ D, (7)

where ν denotes the unit normal vector to the boundary
curve Γ directed into the exterior of D. Now the so-
called jump relations from potential theory require that

φ(x)+ 1
π

∫
Γ
φ(y)

∂ ln |x −y|
∂ν(y)

ds(y) = 1
π
f(x) (8)

is satisfied for x ∈ Γ in order to fulfill the bound-
ary condition. This is an integral equation of the sec-
ond kind and as such, in principle, was accessible to
the method of successive approximations. However,
in order to achieve convergence for the case of con-
vex domains, in 1877 Carl Neumann had to modify
the successive approximations into what he called the
method of arithmetic means and what we would call a
relaxation method in modern terms.

For the general case, establishing the existence of a
solution to (8) had to wait until the pioneering results
of Fredholm that were published in final form in 1903
in the journal Acta Mathematica with the title “Sur une
classe d’équations fonctionelles.” Fredholm considered
equations of the form (2) with a general kernel K and
assumed all the functions involved to be continuous
and real-valued. His approach was to consider the inte-
gral equation as the limiting case of a system of linear
algebraic equations by approximating the integral by
Riemannian sums. Using Cramer’s rule for this linear
system, Fredholm passes to the limit by using Koch’s
theory of infinite determinants from 1896 and Hada-
mard’s inequality for determinants from 1893. The idea
of viewing integral equations as the limiting case of
linear systems had already been proposed by Volterra
in 1896, but it was Fredholm who followed it through
successfully.

In addition to equation (2), Fredholm’s results also
contain the adjoint integral equation that is obtained by
interchanging the variables in the kernel function. They
can be summarized in the following theorem, which is
known as the Fredholm alternative. Note that all four
of equations (9)–(12) in Theorem 1 are required to be
satisfied for all 0 � x � 1.

Theorem 1. Either the homogeneous integral equa-
tions

φ(x)+
∫ 1

0
K(x,y)φ(y)dy = 0 (9)

and

ψ(x)+
∫ 1

0
K(y,x)ψ(y)dy = 0 (10)

only have the trivial solutions φ = 0 and ψ = 0, and
the inhomogeneous integral equations

φ(x)+
∫ 1

0
K(x,y)φ(y)dy = f(x) (11)

and

ψ(x)+
∫ 1

0
K(y,x)ψ(y)dy = g(x) (12)

have unique continuous solutions φ and ψ for each
continuous right-hand side f and g, respectively, or
the homogeneous equations (9) and (10) have the same
finite number of linearly independent solutions and the
inhomogeneous integral equations are solvable if and
only if the right-hand sides satisfy

∫ 1
0 f(x)ψ(x)dx = 0

for all solutions ψ to the homogeneous adjoint equa-
tion (10) and

∫ 1
0 φ(x)g(x)dx = 0 for all solutions φ to

the homogeneous equation (9).

We explicitly note that this theorem implies that
for the first of the two alternatives each one of the
four properties implies the three others. Hence, in
particular, uniqueness for the homogeneous equation
(9) implies existence of a solution to the inhomogen-
eous equation (11) for each right-hand side. This is
notable, since it is almost always much simpler to
prove uniqueness for a linear problem than to prove
existence.

Fredholm’s existence results also clarify the exis-
tence of a solution to the boundary integral equation
(8) for the Dirichlet problem for the Laplace equation.
By inserting a parametrization of the boundary curve
Γ we can transform (8) into the form (2) with a contin-
uous kernel for which the homogeneous equation only
allows the trivial solution.

Over the last century this boundary integral equa-
tion approach via potentials of the form (5) and (7)
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has been successfully extended to almost all bound-
ary and initial–boundary-value problems for second-
order partial differential equations with constant coef-
ficients, such as the time-dependent heat equation,
the time-dependent and the time-harmonic wave equa-
tions, and Maxwell’s equations, among many others.
In addition to settling existence of solutions, bound-
ary integral equations provide an excellent tool for
obtaining approximate solutions of the boundary and
initial–boundary-value problems by solving the integral
equations numerically (see section 5). These so-called
boundary element methods compete well with finite-
element methods. It is an important part of current
research on integral equations to develop, implement,
and theoretically justify new efficient algorithms for
boundary integral equations for very complex geome-
tries in three dimensions that arise in real applications.

4 Impact on Functional Analysis

Fredholm’s results on the integral equation (2) initiated
the development of modern functional analysis in the
1920s. The almost literal agreement of the Fredholm
alternative for linear integral equations as formulated
in Theorem 1 with the corresponding alternative for lin-
ear systems soon gave rise to research into a broader
and more abstract form of the Fredholm alternative.
This in turn also allowed extensions of the integral
equation theory under weaker regularity requirements
on the kernel and solution functions. In addition, many
years later it was found that more insight was achieved
into the structure of Fredholm integral equations by
abandoning the initially very fruitful analogy between
integral equations and linear systems altogether.

Frigyes Riesz was the first to find an answer to the
search for a general formulation of the Fredholm alter-
native. In his work from 1916 he interpreted the inte-
gral equation as a special case of an equation of the
second kind,

φ+Aφ = f ,
with a compact linear operator A : X → X mapping a
normed space X into itself. The notion of a normed
space that is common in today’s mathematics was not
yet available in 1916.

Riesz set his work up in the function space of contin-
uous real-valued functions on the interval [0,1]—what
we would call the space C[0,1] in today’s terminology.
He called the maximum of the absolute value of a func-
tion f on [0,1] the norm of f and confirmed its prop-
erties that we now know as the standard norm axioms.

Riesz used only these axioms, not the special meaning
as the maximum norm.

The concept of a compact operator was not yet
available in 1916 either. However, using the notion of
compact sets as introduced by Fréchet in 1906, Riesz
proved that the integral operator A defined by

(Aφ)(x) :=
∫ 1

0
K(x,y)φ(y)dy, x ∈ [0,1], (13)

on the space C[0,1] maps bounded sets into rela-
tively compact sets, i.e., in today’s terminology, A is
a compact operator.

What is fascinating about the work of Riesz is that his
proofs are still usable and can be transferred, almost
unchanged, from the case of an integral operator in the
space of continuous functions to the general case of a
compact operator in a normed space. Riesz knew about
the generality of his method, explicitly noting that the
restriction to continuous functions was not relevant.

Summarizing the results of Riesz gives us the follow-
ing theorem, in which I denotes the identity operator.

Theorem 2. For a compact linear operatorA : X → X in
a normed spaceX, either I+A is injective and surjective
and has a bounded inverse or the null spaceN(I+A) :=
{φ : φ+Aφ = 0} has nonzero finite dimension and the
image space (I +A)(X) is a proper subspace of X.

The central and most valuable part of Riesz’s theory
is again the equivalence of injectivity and surjectivity.
Theorem 2 does not yet completely contain the alterna-
tive of Theorem 1 for Fredholm integral equations since
a link with an adjoint equation and the characterization
of the image space in the second case of the alternative
are missing. This gap was closed by results of Schauder
from 1929 and by more recent developments from the
1960s.

The following theorem is simply a consequence of
the fact that the identity operator on a normed space
is compact if and only if X has finite dimension, which
we refrain from discussing here. It explains why the
difference between the two integral equations (1) and
(2) is more than just formal.

Theorem 3. Let X and Y be normed spaces and let
A : X → Y be a compact linear operator. Then A cannot
have a bounded inverse if X is infinite dimensional.

5 Numerical Solution

The idea for the numerical solution of integral equa-
tions of the second kind that is conceptually the most
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straightforward dates back to Nyström in 1930 and
consists of replacing the integral in (2) by numerical
integration. Using a quadrature formula∫ 1

0
g(x)dx ≈

n∑
k=1

akg(xk)

with quadrature points x1, . . . , xn ∈ [0,1] and quadra-
ture weights a1, . . . , an ∈ R, such as the composite
trapezoidal or composite Simpson rule, we approxi-
mate the integral operator (13) by the numerical inte-
gration operator

(Anφ)(x) :=
n∑
k=1

akK(x,xk)φ(xk) (14)

for x ∈ [0,1], i.e., we apply the quadrature formula for
g = K(x, ·)φ. The solution to the integral equation of
the second kind, φ + Aφ = f , is then approximated
by the solution of φn + Anφn = f , which reduces to
solving a finite-dimensional linear system as follows. If
φn is a solution of

φn(x)+
n∑
k=1

akK(x,xk)φn(xk) = f(x) (15)

for x ∈ [0,1], then clearly the values φn,j := φn(xj)
at the quadrature points satisfy the linear system

φn,j +
n∑
k=1

akK(xj, xk)φn,k = f(xj) (16)

for j = 1, . . . , n. Conversely, if φn,j is a solution of the
system (16), the function φn defined by

φn(x) := f(x)−
n∑
k=1

akK(x,xk)φn,k (17)

for x ∈ [0,1] can be seen to solve equation (15). Under
appropriate assumptions on the kernel K and the right-
hand side f for a convergent sequence of quadrature
rules, it can be shown that the corresponding sequence
(φn) of approximate solutions converges uniformly to
the solution φ of the integral equation as n → ∞. Fur-
thermore, it can be established that the error estimates
for the quadrature rules carry over to error estimates
for the Nyström approximations.

We conclude this short discussion of the numeri-
cal solution of integral equations by pointing out that
in addition to the Nyström method many other meth-
ods are available, such as collocation and Galerkin
methods.

6 Ill-Posed Problems

In 1923 Hadamard postulated three requirements for
problems in mathematical physics: a solution should

exist, the solution should be unique, and the solution
should depend continuously on the data. The third pos-
tulate is motivated by the fact that the data will be
measured quantities in applications and will therefore
always be contaminated by errors. A problem satisfying
all three requirements is called well-posed. Otherwise, it
is called ill-posed. If A : X → Y is a bounded linear oper-
ator mapping a normed spaceX into a normed space Y ,
then the equation Aφ = f is well-posed if A is bijective
and the inverse operator A−1 : Y → X is bounded, i.e.,
continuous. Otherwise it is ill-posed. The main concern
with ill-posed problems is instability, where the solu-
tionφ of Aφ = f does not depend continuously on the
data f .

As an example of an ill-posed problem we present
backward heat conduction. Consider the forward heat
equation

∂u
∂t

= ∂
2u
∂x2

for the time-dependent temperature u in a rectangle
[0,1] × [0, T ] subject to the homogeneous boundary
conditions

u(0, t) = u(1, t) = 0, 0 � t � T ,
and the initial condition

u(x,0) = φ(x), 0 � x � 1,

whereφ is a given initial temperature. By separation of
variables the solution can be obtained in the form

u(x, t) =
∞∑
n=1

ane−n
2π2t sinnπx, (18)

with the Fourier coefficients

an = 2
∫ 1

0
φ(y) sinnπy dy (19)

of the given initial values. This initial-value problem is
well-posed: the final temperature f := u(· , T ) clearly
depends continuously on the initial temperature φ
because of the exponentially decreasing factors in the
series

f(x) =
∞∑
n=1

ane−n
2π2T sinnπx. (20)

However, the corresponding inverse problem, i.e., de-
termination of the initial temperature φ from know-
ledge of the final temperature f , is ill-posed. From (20)
we deduce

φ(x) =
∞∑
n=1

bnen
2π2T sinnπx, (21)

with the Fourier coefficients bn of the final temperature
f . Changes in the final temperature will be drastically
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amplified by the exponentially increasing factors in the
series (21).

Inserting (19) into (18), we see that this example can
be put in the form of an integral equation of the first
kind (1) with the kernel given by

K(x,y) = 2
∞∑
n=1

e−n
2π2T sinnπx sinnπy.

In general, integral equations of the first kind that
have continuous kernels provide typical examples of
ill-posed problems as a consequence of Theorem 3.

Of course, the ill-posed nature of an equation has
consequences for its numerical solution. The fact that
an operator does not have a bounded inverse means
that the condition numbers of its finite-dimensional
approximations grow with the quality of the approx-
imation. Hence, a careless discretization of ill-posed
problems leads to a numerical behavior that at first
glance seems to be paradoxical: increasing the degree
of discretization (that is, increasing the accuracy of
the approximation for the operator) will cause the
approximate solution to the equation to become more
unreliable.

7 Regularization

Methods for obtaining a stable approximate solution of
an ill-posed problem are called regularization methods.
It is our aim to describe a few ideas about regulariza-
tion concepts for equations of the first kind with a com-
pact linear operator A : X → Y between two normed
spaces, X and Y . We wish to approximate the solution
φ to the equation Aφ = f from a perturbed right-hand
side fδ with a known error level ‖fδ − f‖ � δ. Using
the erroneous data fδ, we want to construct a reason-
able approximation φδ to the exact solution φ of the
unperturbed equation Aφ = f . Of course, we want this
approximation to be stable, i.e., we want φδ to depend
continuously on the actual data fδ. Therefore, assum-
ing without major loss of generality that A is injective,
our task is to find an approximation of the unbounded
inverse operator A−1 : A(X) → X by a bounded lin-
ear operator R : Y → X. With this in mind, a family of
bounded linear operators Rα : Y → X, α > 0, with the
property of pointwise convergence

lim
α→0

RαAφ = φ (22)

for all φ ∈ X, is called a regularization scheme for the
operator A. The parameter α is called the regulariza-
tion parameter.

The regularization scheme approximates the solu-
tion φ of Aφ = f by the regularized solution φδα :=
Rαfδ. For the total approximation error by the triangle
inequality we then have the estimate

‖φδα −φ‖ � δ‖Rα‖ + ‖RαAφ−φ‖.
This decomposition shows that the error consists of
two parts: the first term reflects the influence of the
incorrect data, and the second term is due to the
approximation error between Rα and A−1. Assuming
that X is infinite dimensional, Rα cannot be uniformly
bounded, since otherwise A would have a bounded
inverse. Consequently, the first term will be increasing
as α → 0, whereas the second term will be decreasing
as α→ 0 according to (22).

Every regularization scheme requires a strategy for
choosing the parameter α, depending on the error level
δ and the data fδ, so as to achieve an acceptable total
error for the regularized solution. On the one hand, the
accuracy of the approximation requires a small error
‖RαAφ−φ‖; this implies a small parameter α. On the
other hand, stability requires a small value of ‖Rα‖; this
implies a large parameterα. A popular strategy is given
by the discrepancy principle. Its motivation is based on
the consideration that, in general, for erroneous data
the residual ‖Aφδα − fδ‖ should not be smaller than
the accuracy of the measurements of f , i.e., the reg-
ularization parameter α should be chosen such that
‖ARαfδ − fδ‖ ≈ δ.

We now assume that X and Y are Hilbert spaces and
denote their inner products by (· , ·), with the space
L2[0,1] of Lebesgue square-integrable complex-valued
functions on [0,1] as a typical example. Each bounded
linear operatorA : X → Y has a unique adjoint operator
A∗ : Y → X with the property (Aφ,g) = (φ,A∗g) for
all φ ∈ X and g ∈ Y . If A is compact, then A∗ is also
compact. The adjoint of the compact integral operator
A : L2[0,1] → L2[0,1] defined by (13) is given by the
integral operator with the kernelK(y,x), where the bar
indicates the complex conjugate.

Extending the singular value decomposition (SVD)
for matrices from linear algebra, for each compact
linear operator A : X → Y there exists a singular
system consisting of a monotonically decreasing null
sequence (μn) of positive numbers and two orthonor-
mal sequences (φn) in X and (gn) in Y such that

Aφn = μngn, A∗gn = μnφn, n ∈ N.

For each φ ∈ X we have the SVD

φ =
∞∑
n=1

(φ,φn)φn + Pφ,
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where P : X → N(A) is the orthogonal projection
operator onto the null space of A and

Aφ =
∞∑
n=1

μn(φ,φn)gn.

From the SVD it can be readily deduced that the equa-
tion of the first kind, Aφ = f , is solvable if and only if
f is orthogonal to the null space of A∗ and satisfies

∞∑
n=1

1

μ2
n
|(f , gn)|2 <∞. (23)

If (23) is fulfilled, a solution is given by

φ =
∞∑
n=1

1
μn
(f , gn)φn. (24)

The solution (24) clearly demonstrates the ill-posed
nature of the equation Aφ = f . If we perturb the right-
hand side f to fδ = f + δgn, we obtain the solution
φδ = φ+ δμ−1

n φn. Hence, the ratio

‖φδ −φ‖
‖fδ − f‖ = 1

μn
can be made arbitrarily large due to the fact that the
singular values tend to zero. This observation suggests
that we regularize by damping the influence of the fac-
tor 1/μn in the solution formula (24). In the Tikhonov
regularization this is achieved by choosing

Rαf :=
∞∑
n=1

μn
α+ μ2

n
(f , gn)φn. (25)

Computing Rαf does not require the singular system
to be used since for injective A it can be shown that

Rα = (αI +A∗A)−1A∗.

Hence φα := Rαf can be obtained as the unique
solution of the well-posed equation of the second kind:

αφα +A∗Aφα = A∗f .

8 Computerized Tomography

In transmission computerized tomography [VII.19]
a cross section of an object is scanned by a thin X-ray
beam whose intensity loss is recorded by a detector
and processed to produce an image. Denote by f the
space-dependent attenuation coefficient within a two-
dimensional medium. The relative intensity loss of an
X-ray along a straight line L is given by dI = −If ds,
and by integration, it follows that

Idetector = Isource exp
(
−
∫
L
f ds

)
,

i.e., in principle, the scanning process provides the line
integrals over all lines traversing the scanned cross

section. The transform that maps a function in R2

onto its line integrals is called the Radon transform,
and the inverse problem of computerized tomogra-
phy requires its inversion. Radon had already given
an explicit inversion formula in 1917, but it is not
immediately applicable for practical computations.

For the formal description of the Radon transform
it is convenient to parametrize the line L by its unit
normal vector θ and its signed distance s from the ori-
gin in the form L = {sθ + tθ⊥ : t ∈ R}, where θ⊥ is
obtained by rotating θ counterclockwise by 90◦. Now,
the two-dimensional Radon transform R is defined by

(Rf)(θ, s) :=
∫∞

−∞
f(sθ + tθ⊥)dt, θ ∈ S1, s ∈ R,

and it maps L1(R2) into L1(S1 × R), where S1 is the
unit circle. Given the measured line integrals g, the
inverse problem of computerized tomography consists
of solving

Rf = g (26)

for f . Although it is not of the conventional form (1) or
(2), equation (26) can clearly be viewed as an integral
equation. Its solution can be obtained using Radon’s
inversion formula

f = 1
4π
R∗H

∂
∂s
Rf (27)

with the Hilbert transform

(Hg)(s) := 1
π

∫∞

−∞
g(t)
s − t dt, s ∈ R,

applied with respect to the second variable in Rf . The
operator R∗ is the adjoint of R with respect to the L2

inner products on R2 and S1 × R, which is given by

(R∗g)(x) =
∫
S1
g(θ,x · θ)dθ, x ∈ R2,

i.e., it can be considered as an integration over all lines
through x and is therefore called the back-projection
operator. Because of the occurrence of the Hilbert
transform in (27), inverting the Radon transform is not
local; i.e., the line integrals through a neighborhood
of the point x do not suffice for the reconstruction
of f(x). Due to the derivative appearing in (27), the
inverse problem of reconstructing the function f from
its line integrals is ill-posed.

In practice, the integrals can be measured only for
a finite number of lines and, correspondingly, a dis-
crete version of the Radon transform has to be inverted.
The most widely used inversion algorithm is the filtered
back-projection algorithm, which may be considered as
an implementation of Radon’s inversion formula with
the middle part H(∂/∂s) replaced by a convolution,
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i.e., a filter in the terminology of image processing.
However, so-called algebraic reconstruction techniques
are also used where the function f is decomposed
into pixels, i.e., where it is approximated by piece-
wise constants on a grid of little squares. The resulting
sparse linear system for the pixel values is then solved
iteratively, by Kaczmarz’s method, for example.

For the case of a radially symmetric function f (that
is, when f(x) = f0(|x|)), Rf clearly does not depend
on θ (that is, (Rf)(θ, s) = g0(s)), where

g0(s) = 2
∫∞

0
f0(

√
s2 + t2)dt, s � 0.

Substituting t =
√
r2 − s2, this transforms into

g0(s) = 2
∫∞

s
f0(r)

r√
r2 − s2

dr , s � 0,

which is an Abel-type integral equation again. Its solu-
tion is given by

f0(r) = − 1
π

∫∞

r
g′

0(s)
1√

s2 − r2
ds, r � 0.

This approach can be extended to a full inversion for-
mula by expanding both f and g = Rf as Fourier
series with respect to the polar angle. The Fourier coef-
ficients of f and g are then related by Abel-type integral
equations involving Chebyshev polynomials.

X-ray tomography was first suggested and studied by
the physicist Allan Cormack in 1963, and due to the
efforts of the electrical engineer Godfrey Hounsfield,
it was introduced into medical practice in the 1970s.
For their contributions to X-ray tomography Cormack
and Hounsfield were awarded the 1979 Nobel Prize for
Medicine.

9 Inverse Scattering

Scattering theory is concerned with the effects that
obstacles and inhomogeneities have on the propaga-
tion of waves and particularly time-harmonic waves.
Inverse scattering provides the mathematical tools for
fields such as radar, sonar, medical imaging, and non-
destructive testing.

For time-harmonic waves the time dependence is rep-
resented in the form U(x, t) = Re{u(x)e−iωt} with a
positive frequency ω; i.e, the complex-valued space-
dependent part u represents the real-valued amplitude
and phase of the wave and satisfies the Helmholtz equa-
tion Δu + k2u = 0 with a positive wave number k.
For a unit vector d ∈ R3, the function eikx·d satisfies
the Helmholtz equation for all x ∈ R3. It is called a
plane wave, since ei(kx·d−ωt) is constant on the planes

kx · d −ωt = const. Assume that an incident field is
given by uin(x) = eikx·d. Then the simplest obstacle
scattering problem is to find the scattered field usc as
a solution to the Helmholtz equation in the exterior of
a bounded scatterer D ⊂ R3 such that the total field
u = uin + usc satisfies the Dirichlet boundary condi-
tion u = 0 on ∂D modeling a sound-soft obstacle or a
perfect conductor. In addition, to ensure that the scat-
tered wave is outgoing, it has to satisfy the Sommerfeld
radiation condition

lim
r→∞ r

(
∂usc

∂r
− ikusc

)
= 0, (28)

where r = |x| and the limit holds uniformly in all direc-
tions x/|x|. This ensures uniqueness of the solution to
the exterior Dirichlet problem for the Helmholtz equa-
tion. Existence of the solution was established in the
1950s by Vekua, Weyl, and Müller via boundary integral
equations in the spirit of section 3.

The radiation condition (28) can be shown to be
equivalent to the asymptotic behavior

usc(x) = eik|x|

|x|
{
u∞(x̂)+O

(
1
|x|

)}
, |x| → ∞,

uniformly for all directions x̂ = x/|x|, where the func-
tion u∞ defined on the unit sphere S2 is known as
the far-field pattern of the scattered wave. We indi-
cate its dependence on the incident direction d and the
observation direction x̂ by writing u∞ = u∞(x̂, d). The
inverse scattering problem now consists of determin-
ing the scattering obstacle D from a knowledge of u∞.
As an example of an application, we could think of the
problem of determining from the shape of the water
waves arriving at the shore whether a ball or a cube
was thrown into the water in the middle of a lake. We
note that this inverse problem is nonlinear since the
scattered wave depends nonlinearly on the scatterer
D, and it is ill-posed since the far-field pattern u∞ is
an analytic function on S2 with respect to x̂.

Roughly speaking, one can distinguish between three
groups of methods for solving the inverse obstacle
scattering problem: iterative methods, decomposition
methods, and sampling methods. Iterative methods
interpret the inverse problem as a nonlinear ill-posed
operator equation that is solved by methods such as
regularized Newton-type iterations. The main idea of
decomposition methods is to break up the inverse
scattering problem into two parts: the first part deals
with the ill-posedness by constructing the scattered
wave usc from its far-field pattern u∞, and the sec-
ond part deals with the nonlinearity by determining the
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unknown boundary ∂D of the scatterer as the set of
points where the boundary condition for the total field
is satisfied. Since boundary integral equations play an
essential role in the existence analysis and numerical
solution of the direct scattering problem, it is not sur-
prising that they are also an efficient tool within these
two groups of methods for solving the inverse problem.

Sampling methods are based on choosing an appro-
priate indicator function f on R3 such that its value
f(z) indicates whether z lies inside or outside the
scatterer D. In contrast to iterative and decomposition
methods, sampling methods do not need any a priori
information on the geometry of the obstacle. However,
they do require knowledge of the far-field pattern for a
large number of incident waves, whereas the iterative
and decomposition methods, in principle, work with
just one incident field.

For two of the sampling methods—the so-called lin-
ear sampling method proposed by Colton and Kirsch
and the factorization method proposed by Kirsch—the
indicator functions are defined using ill-posed linear
integral equations of the first kind involving the inte-
gral operator F : L2(S2)→ L2(S2) with kernel u∞(x̂, d)
given by

(Fg) :=
∫
S2
u∞(x̂, d)g(d)ds(d), x̂ ∈ S2.

With the far-field pattern

Φ∞(x̂, z) = (4π)−1e−ikx̂·z

of the fundamental solution

Φ(x, z) := eik|x−z|

4π|x − z| , x ≠ z,

of the Helmholtz equation with source point at z ∈ R3,
the linear sampling method is based on the ill-posed
equation

Fgz = Φ∞(· , z), (29)

whereas the factorization method is based on

(F∗Fgz)1/4 = Φ∞(· , z). (30)

An essential tool in the linear sampling method is the
Herglotz wave function with kernel g, defined as the
superposition of plane waves given by

vg(x) :=
∫
S2

eikx·dg(d)ds(d), x ∈ R3.

It can be shown that, if z ∈ D, then the value of the Her-
glotz wave function vgz,α(z) with the kernel gz,α given
by the solution of (29) obtained by Tikhonov regular-
ization with parameter α remains bounded as α → 0,
whereas it is unbounded if z �∈ D. Evaluating vgz,α(z)
on a sufficiently fine grid of points z, the scattererD can

be visualized as the set of those points where vgz,α(z)
is small. The main feature of the factorization method
is the fact that equation (30) is solvable in L2(S2) if and
only if z ∈ D. With the aid of the solubility condition
(23) in terms of a singular system of F , this can be uti-
lized to visualize the scatterer D as the set of points z
from a grid where the series (23), applied to the equa-
tion (30), converges, that is, where its approximation by
a finite sum remains small.

Three of the items in the further reading list below
are evidence of my enduring love of integral equations.
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IV.5 Perturbation Theory and
Asymptotics
Peter D. Miller

1 Introduction

Perturbation theory is a tool for dealing with certain
kinds of physical or mathematical problems involv-
ing parameters. For example, the behavior of many
problems of turbulent fluid mechanics is influenced
by the value of the Reynolds number, a dimensionless
parameter that measures the relative strength of forces
applied to the fluid compared with viscous damping
forces. Likewise, in quantum theory the Planck con-
stant � is a parameter in the Schrödinger equation that
governs dynamics.

The key idea of perturbation theory is to try to take
advantage of special values of parameters for which the
problem of interest can be solved easily to get informa-
tion about the solution for nearby values of the param-
eters. As the parameters are perturbed from their orig-
inal simplifying values, one expects that the solution
will also be correspondingly perturbed. Perturbation
methods allow one to compute the way in which the
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solution changes under perturbation, and perturbation
theory explains how the resulting computation is to be
properly understood.

Clearly the potential for perturbation theory suc-
cess is tied to the possibility that a parameter can
be regarded as being tunable. Tunability is sometimes
rather obvious; for instance, the Reynolds number is
tuned in fluid experiments either by changing the
applied forces (this changes the numerator) or by using
different fluids with different viscosities (this changes
the denominator). In quantum mechanics, however, it
is not reasonable to tune Planck’s constant, as it takes
a fixed value: � ≈ 1.05 × 10−34 kg m2 s−1. Here, tun-
ability can be recovered by nondimensionalizing the
problem; one should introduce units M of mass, L of
length, and T of time that are characteristic of the
problem at hand and then consider the dimensionless
ratio H := T�/ML2 instead of �. The dimensionless
parameter H then becomes tunable via M , L, and T .

In this introduction we have followed the overwhelm-
ing majority of the literature and used the terms “per-
turbation theory” and “perturbation methods” almost
interchangeably. However, we will try to be more pre-
cise from now on, referring to perturbation meth-
ods when describing the mechanical construction of
approximate solutions of perturbed problems, while
describing the mathematical analysis of the approxi-
mations obtained and their convergence properties as
perturbation theory.

1.1 A Basic Example

As a first example of perturbation methods, suppose
we want to find real solutions x of the polynomial
equation

x5 + a4x4 + a3x3 + a2x2 + a1x + a0 = 0. (1)

Here, the real coefficients aj are the parameters of the
problem. There is no explicit formula for the roots x of
a quintic polynomial in general, but for certain values
of the parameters the situation is obviously much bet-
ter. For example, ifa4 = a3 = a2 = a1 = 0 anda0 = −1,
then (1) reduces to the problem x5 = 1, which clearly
has a unique real solution, x = 1. To perturb from
this exactly solvable situation, make the replacements
aj → εaj for j = 1,2,3,4 anda0 → −1+ε(a0+1). Then,
when ε = 0 we have the simple exactly solvable case,
and when ε = 1 we recover the general case. It is tradi-
tional for the Greek letter ε to denote a small quantity
in perturbation problems. Our problem can therefore

be written in the form

P0(x)+ εP1(x) = 0, (2)

where ε ∈ [0,1] is our tunable parameter, and

P0(x) := x5 − 1,

P1(x) := a4x4 + a3x3 + a2x2 + a1x + a0 + 1.

At this point, we have redefined the original prob-
lem somewhat, as the goal is now to understand how
the known roots of (2) for ε = 0 begin to change for
small nonzero ε. (It will be clear that while perturba-
tion methods suffice to solve this redefined problem,
they may not be sufficiently powerful to describe the
solutions of the original problem (1) as it may not be
possible to allow ε to be as large as ε = 1.) In this case,
perturbation theory amounts to the invocation of the
implicit function theorem, which guarantees that, since
P ′

0(1) = 5 ≠ 0, there is a unique solution x = x(ε) of
(2) that satisfies x(0) = 1 and that can be expanded
in a convergent (for |ε| sufficiently small) power series
in powers of ε. On the other hand, perturbation meth-
ods are concerned with the effective construction of the
series itself. We do not attempt to find a closed-form
expression for the general term in the series; rather,
we find the terms iteratively by the following simple
procedure amounting to an algorithm to compute the
first N + 1 terms. We write

x(ε) =
N∑
n=0

xnεn + RN(ε),

where the remainder term in the Taylor expansion sat-
isfies ε−NRN(ε) → 0 as ε → 0. By substituting this
expression into (2) and expanding out the multinomials
x(ε)p that occur there, one rewrites (2) in the form

N∑
n=0

pnεn +QN(ε) = 0, (3)

where the pn are certain well-defined expressions in
terms of {x0, . . . , xN} and QN(ε) is a remainder that,
like RN(ε), satisfies ε−NQN(ε) → 0 as ε → 0. Since (3)
should hold for all sufficiently small ε, it is easy to show
that we must have pn = 0 for all n = 0, . . . , N . This
is a system of equations for the unknown coefficients
{x0, . . . , xN}. The first few values of pn are

p0 := P0(x0),

p1 := P ′
0(x0)x1 + P1(x0),

p2 := 2P ′
0(x0)x2 + P ′′

0 (x0)x2
1 + 2P ′

1(x0)x1.

These display a useful triangular structure, in that pn
depends only on {x0, . . . , xn}, and we also note that
pn is linear in xn. These features actually hold for all
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n, and they allow the construction of the series coeffi-
cients in x(ε) in a completely systematic fashion once
the unperturbed solution x0 = 1 is specified. Indeed,
considering the equations p1 = 0, p2 = 0, and so on in
order, we see that

x1 = −P1(x0)
P ′

0(x0)
,

x2 = −P
′
1(x0)x1

P ′
0(x0)

− P
′′
0 (x0)x2

1

2P ′
0(x0)

= P1(x0)P ′
1(x0)

P ′
0(x0)2

− P1(x0)2P ′′
0 (x0)

2P ′
0(x0)3

,

and so on. Note that the denominators are nonzero
under exactly the same condition that the implicit func-
tion theorem applies. In this way, the perturbation
series coefficients xn are systematically determined
one after the other. Note also that if we were interested
in complex roots x of the quintic, we could equally well
have started developing the perturbation series from
any of the five complex roots of unity x0 = e2π ik/5 for
k = 0,1,2,3,4.

This example shows several of the most elementary
features of perturbation methods:

(i) The effect of perturbation of the parameter ε from
the special value ε = 0 is to introduce correc-
tions to the unperturbed solution x0 in the form
of an infinite perturbation series of corrections of
higher and higher order.

(ii) Once the leading term of the series has been
obtained by solving the reduced problem with
ε = 0, the subsequent terms of the perturba-
tion series are all obtained by solving inhomogen-
eous linear equations of the form P ′

0(x0)u = f ,
where f is given in terms of previously calculated
terms and P ′

0(x0) denotes the linearization of the
unperturbed problem about its exact solution x0.

The latter feature makes perturbation methods an
attractive way to attack nonlinear problems, as the
procedure for calculating corrections always involves
solving only linear problems.

2 Asymptotic Expansions

2.1 Motivation

Consider the second-order differential equation for
y(x):

−εx3y′′(x)+y(x) = x2. (4)

Let us try to solve (4) for x > 0. This equation gen-
erally has no elementary solutions, but we may notice

that when ε = 0 it is obvious that y(x) = x2. Tak-
ing a perturbative approach to include the effect of the
neglected term, we may seek a solution in the form of
a power series in ε:

y(x) ∼
∞∑
n=0

yn(x)εn, y0(x) := x2. (5)

The notation “∼” will be properly explained below in
section 2.2; for now the reader may think of it as “=”.
Substituting this series into (4) and equating the terms
with corresponding powers of ε gives the recurrence
relation

yn(x) = x3y′′
n−1(x), n > 0. (6)

This recurrence is easily solved, and one finds that
yn(x) = (n + 1)!n!xn+2 for all n � 0, and therefore
the series (5) becomes

y(x) ∼
∞∑
n=0

(n+ 1)!n!xn+2εn. (7)

Now let us consider carefully the meaning of the
power series in ε on the right-hand side of (7). The abso-
lute value of the ratio of successive terms in the series
is ∣∣∣∣yn+1(x)εn+1

yn(x)εn

∣∣∣∣ = (n+ 2)(n+ 1)x|ε|,

and this ratio blows up as n → ∞ regardless of the
value of x > 0, unless of course ε = 0. Therefore, by
the ratio test, the series on the right-hand side of (7)
diverges (has no finite sum) for every value of x > 0
unless ε = 0. Another way of saying the same thing is
that the error or remainder RN(x, ε) upon truncating
the series after the term proportional to εN ,

RN(x, ε) := y(x)−
N∑
n=0

(n+ 1)!n!xn+2εn,

does not tend to zero (or, for that matter, any finite
limit) as N → ∞, no matter what values we choose for
x and ε. It is simply not possible to use partial sums of
the series (7) to get better and better approximations to
y(x) by including more and more terms in the partial
sum.

On the other hand, there does indeed exist a partic-
ular solution y(x) of (4) for which the partial sums
are good approximations. The key idea is the follow-
ing: instead of trying to choose the parameter N (the
number of terms) to make the remainderRN(x, ε) small
for fixed ε > 0, try to choose the parameter ε small
enough that RN(x, ε) is less than some tolerance for
N fixed. It turns out that there is a positive constant
KN(x) independent of ε such that

|RN(x, ε)| � KN(x)εN+1. (8)
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This fact shows that for each given N , the error in
approximating y(x) by the Nth partial sum of the
series (7) tends to zero with ε, and it does so at a rate
depending on the number of retained terms in the sum.
This is the property that makes the series on the right-
hand side of (7) an asymptotic expansion of y(x). We
must understand that it makes no sense to add up all
of the terms in the series, but the partial sums are good
approximations of y(x) when ε is small, and the error
of approximation goes to zero faster with ε the more
terms are kept in the partial sum.

2.2 Definitions and Notation

We begin to formalize some of this notation by intro-
ducing some simple standard notation due to Edmund
Landau for estimates involving functions of ε. Let
f(ε,p) be a function of ε for ε sufficiently small,
depending on some auxiliary parameter p. We write

f(ε,p) = O(g(ε)), ε → 0,

and say that “f is big-oh of g” if there exists some
K(p) > 0 such that, for each p,

|f(ε,p)| � K(p)|g(ε)|, ∀p,
and for all ε small enough. If K(p) can be chosen to be
independent of p, then f is big-oh of g uniformly with
respect to p. We write

f(ε,p) = o(g(ε)), ε → 0,

and say that “f is little-oh of g” if for every K > 0 there
is some δ(p,K) > 0 such that

|ε| � δ(p,K) =⇒ |f(ε,p)| � K|g(ε)|, ∀p.
As with big-oh, if δ is independent of p, then f is little-
oh of g uniformly with respect to p. If g is a function
that is nonzero for all sufficiently small ε ≠ 0, then
f = o(g) is the same thing as asserting that f/g → 0
as ε → 0. (This is often used in the special case when
g(ε) ≡ 1.) Heuristically, f = O(g) means that f “is no
bigger than” g in a neighborhood of ε = 0, while f =
o(g)means that f “is much smaller than” g in the limit
ε → 0. The convenience of Landau’s notation is that it
avoids reference to various constants that always occur
in estimates. For example, (8) could easily be written
without reference to the constant KN(x) in the form
RN(x, ε) = O(εN+1) as ε → 0.

A sequence of functions {φn(ε)} = {φn(ε)}∞n=0 is
called an asymptotic sequence in the limit ε → 0 if, for
each n, φn+1(ε) = o(φn(ε)) as ε → 0. Given an asymp-
totic sequence {φn(ε)} and an arbitrary numerical

sequence {an} = {an}∞n=0, the purely formal series
∞∑
n=0

anφn(ε)

is called an asymptotic series. Such a series is said to be
an asymptotic expansion of a function f(ε), written in
the form

f(ε) ∼
∞∑
n=0

anφn(ε), ε → 0, (9)

if, for each N = 0,1,2, . . . ,

f(ε)−
N∑
n=0

anφn(ε) = o(φN(ε)), ε → 0. (10)

From this relation it follows that, if f(ε) has an asymp-
totic expansion with respect to {φn(ε)}, then the coef-
ficients {an} are uniquely determined by the recursive
sequence of limits

an := lim
ε→0

1
φn(ε)

[
f(ε)−

n−1∑
k=0

akφk(ε)
]
.

Indeed, the existence of each of these limits in turn is
equivalent to the assertion that f has an asymptotic
expansion with respect to the sequence {φn(ε)}. On
the other hand, the function f is most certainly not
determined uniquely given the asymptotic sequence
{φn(ε)} and the coefficients {an}; given f(ε) satisfying
(10), f(ε)+g(ε)will also satisfy (10) if g(ε) = o(φn(ε))
as ε → 0 for all n. This condition by no means forces
g(ε) = 0; such a function g that is too small in the limit
as ε → 0 to have any effect on the coefficients {an} is
said to be beyond all orders with respect to {φn(ε)}.

The simplest example of an asymptotic sequence,
and one that occurs frequently in applications, is the
sequence of integer powers φn(ε) := εn. In this con-
text, a function g that is beyond all orders is some-
times called transcendentally small or exponentially
small ; indeed, a particular example of such a function
is g(ε) = exp(−|ε|−1).

Now, the notation used in (9) should be strongly con-
trasted with the standard notation used for convergent
series:

f(ε) =
∞∑
n=0

anφn(ε). (11)

The use of “=” here implies in particular that the
expressions on both sides are the same kind of object:
functions of ε with well-defined values. Furthermore,
the only way to unambiguously assign a numerical
value to the infinite series on the right-hand side given
a value of ε is to sum the series, that is, to compute
the limit of the sequence of partial sums. By contrast,
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the meaning (10) given to the expression (9) in no way
implies that the series on the right-hand side can be
summed for any ε at all. Therefore, we view the rela-
tion (9) as defining an infinite hierarchy of approxima-
tions to the function f(ε) given by (well-defined) par-
tial sums of the formal series; each subsequent partial
sum is a better approximation than the preceding one
when the error is made small by letting ε tend to zero,
precisely because (10) holds and the functions {φn(ε)}
form an asymptotic sequence. However, it need not be
the case that the error in approximating f(ε) by the
Nth partial sum can be made small by fixing some ε
and letting N increase. Only in the latter case can we
use the convergent series notation (11).

The subject of perturbation theory is largely con-
cerned with determining the nature of a series obtained
via formal perturbation methods. Some perturbation
series are both convergent (for sufficiently small ε) and
asymptotic as ε → 0; this was the case in the example
of the perturbation of the unperturbed root x0 = 1 in
the root-finding problem in section 1.1. On the other
hand, most perturbation series are divergent, as in the
case of the expansion considered in section 2.1, and
in such cases proving the validity of the perturbation
series requires establishing the existence of a true, ε-
dependent solution of the problem at hand to which
the perturbation series is asymptotic in the sense of
the definition (9), (10). This in turn usually amounts to
formulating a mathematical problem (e.g., a differential
equation with side conditions) satisfied by the remain-
der and applying an appropriate fixed-point or iteration
argument.

Some related notation used in papers on the sub-
ject includes the following. The notation f � g is fre-
quently used in place of f = o(g). Also, one sometimes
sees the notation f � g for f = O(g). It should also
be remarked that the symbol “∼” often appears as a
relation between functions in the following two senses:

(i) f(ε) ∼ g(ε) may indicate that both f(ε) =
O(g(ε)) and also g(ε) = O(f(ε)) (that is, f is
bounded both above and below by multiples of g)
as ε → 0.

(ii) f(ε) ∼ g(ε) may indicate that f(ε)/g(ε) → 1 as
ε → 0, a special case of the above notation.

To avoid any confusion, we will use the symbol “∼” only
in the sense defined by (9), (10).

The theory of asymptotic expansions applies in a
number of contexts beyond its application to pertur-
bation problems. As just one very important example,

it is the basis for a collection of very well-developed
methods for approximating certain types of integrals.
Key methods include Laplace’s method for the asymp-
totic expansion of real integrals with exponential inte-
grands, Kelvin’s method of stationary phase for the
asymptotic expansion of oscillatory integrals, and the
method of steepest descent (or saddle-point method)
applying to integrals with analytic integrands. Readers
can find detailed information about these useful meth-
ods in the books of Bleistein and Handelsman (1986),
Wong (2001), and Miller (2006).

3 Types of Perturbation Problems

Perturbation problems are frequently categorized as
being either regular or singular. The distinction is not a
precise one, so there is not much point in giving careful
definitions. However, the two kinds of problems often
require different methods, so it is worth considering
which type a given problem most resembles.

3.1 Regular Perturbation Problems

A regular perturbation problem is one in which the per-
turbed problem (ε ≠ 0) is of the same general “type” as
the unperturbed problem (ε = 0) that can be solved eas-
ily. Regular perturbation problems often lead to series
that are both asymptotic as ε → 0 and convergent for
sufficiently small ε.

One example of a regular perturbation problem is
that of finding the energy levels of a perturbed quan-
tum mechanical system. Consider a particle moving in
one space dimension subject to a force F = −V ′(x),
where x is the position of the particle. The problem
is to find nontrivial square-integrable “bound states”
ψ(x) and corresponding energy levels E ∈ R such
that Schrödinger’s equation Hψ = Eψ holds, where
H = H0 + εH1 and

H0ψ(x) := −ψ′′(x)+ V0(x)ψ(x),

H1ψ(x) := V1(x)ψ(x).

Here we have artificially separated the potential energy
function V into two parts, V = V0 + εV1; the idea is
to choose V0 such that when ε = 0 it is easy to solve
the problem by finding a nonzero function ψ0 ∈ L2(R)
and a number E0 that satisfy H0ψ0 = E0ψ0. In this
one-dimensional setting it turns out that, given E0,
all solutions of this equation are proportional to ψ0

(which makes the energy level E0 “nondegenerate” in
the language of quantum mechanics). By choosing an
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appropriate scaling factor, we may assume that ψ0 is

“normalized” to satisfy∫
R

ψ0(x)2 dx = 1. (12)

Now, to calculate the effect of the perturbation, we

may suppose that both ψ and E are expandable in

asymptotic power series in ε:

ψ ∼
∞∑
n=0

εnψn, E ∼
∞∑
n=0

εnEn, ε → 0. (13)

The coefficients then necessarily satisfy the hierarchy

of equations:

H0ψn − E0ψn =
n∑
j=1

Ejψn−j −H1ψn−1. (14)

Denote the right-hand side of this equation by fn(x).
Then (14) has a solution ψn(x) if and only if fn(x)
satisfies a solvability condition (stemming from the

Fredholm alternative):∫
R

ψ0(x)fn(x)dx = 0.

This solvability condition is in fact a recursive formula

for En in disguise:

En =
∫

R

ψ0(x)H1ψn−1(x)dx

−
n−1∑
j=1

Ej
∫

R

ψ0(x)ψn−j(x)dx, (15)

where we have used (12). Once En is determined from

this relation, the equation (14) can be solved forψn, but

the latter is only determined modulo multiples of ψ0;

one typically chooses the correct multiple of ψ0 to

add in order that ψn be orthogonal to ψ0 in the sense

that ∫
R

ψ0(x)ψn(x)dx = 0, n > 0. (16)

Subject to (15), (14) has a unique solution determined

by the auxiliary condition (16). Note that this condition

actually ensures that the sum on the right-hand side of

(15) equals zero.

The perturbation expansions (13) of the pair (ψ,E)
are known as Rayleigh–Schrödinger series. Under suit-

able conditions on the operators H0 and H1 it can be

shown (by the method of Lyapunov–Schmidt reduction

to eliminate the eigenfunction) that the power series

(13) are actually convergent series, and hence “∼” and

“=” can be used interchangeably in this context.

3.2 Singular Perturbation Problems

In a singular perturbation problem, the perturbed and
unperturbed problems are different in some essen-
tial way. The most elementary examples involve root
finding. Consider the problem of finding the roots of
the polynomial P(x) := εx3 −x+1 = 0 when ε is small
and positive. The unperturbed problem (with ε = 0) is
to solve the linear equation −x+1 = 0, which of course
has the unique solution x = 1. However, the perturbed
problem for ε ≠ 0 is to find the roots of a cubic, and
by the fundamental theorem of algebra there are three
such roots. The perturbed and unperturbed problems
are of different types because setting ε = 0 changes the
degree of the equation.

Somehow, two of the roots disappear altogether from
the complex plane as ε → 0. Where can they go? Some
intuition is obtained in this case simply by looking at
a graph of P(x) when ε is very small; while one of the
roots looks to be close to x = 1 (the unique root of the
unperturbed problem), the other two are very large in
magnitude and of opposite signs. So the answer is that
the two “extra” roots go to infinity as ε → 0.

To completely solve this problem using perturbation
methods, we need to capture all three roots. The root
near x = 1 when ε is small can be expanded in a power
series in ε whose coefficients can be found recursively
using exactly the same methodology as in section 1.1.
Finding the remaining two roots requires another idea.

The key idea is to try to pull the two escaping roots
back to the finite complex plane by rescaling them by
an appropriate power of ε. Let p > 0 be given, and write
x = yε−p . This is a change of variables in our problem
that takes a large value of x, proportional to ε−p , and
produces a value of y that does not grow to infinity as
ε → 0. In terms of y , the root-finding problem at hand
takes the form

ε1−3py3 − ε−py + 1 = 0. (17)

Now, p > 0 is undetermined so far, but we will choose
it (and hence determine the rate at which the two roots
are escaping to infinity) using the principle of dominant
balance.

By a balance we simply mean a pair of terms on
the left-hand side of (17) having the same power of ε
(by choice of p > 0). A balance is called dominant if
all other terms on the left-hand side are big-oh of the
terms involved in the balance. The principle of domi-
nant balance asserts that only dominant balances lead
to possible perturbation expansions. There are three
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pairs of terms to choose from, and hence three possible
balances to consider:

(i) Balancing ε1−3py3 with 1 requires choosing p =
1
3 . The terms involved in the balance are then
both proportional to ε0, while the remaining term
is proportional to ε−1/3, so this balance is not
dominant.

(ii) Balancing ε−py with 1 requires choosing p = 0.
The terms involved in the balance are then pro-
portional to ε0, making the balance dominant over
the remaining term as ε → 0. Since p = 0 this
rescaling has had no effect (y = x), and in fact
setting the sum of the dominant balance terms to
zero recovers the original unperturbed problem.
No new information is gained.

(iii) Balancing ε1−3py3 with ε−py requires choosing
p = 1

2 . The terms involved in the balance are then
both proportional to ε−1/2, making the balance
dominant over the remaining term as ε → 0. This
is a new dominant balance.

The new dominant balance will lead to perturbation
expansions of the two large roots of the original prob-
lem. Indeed, with p = 1

2 , for ε ≠ 0 our problem takes
the form

y3 −y + ε1/2 = 0, (18)

which now appears as a perturbation of the equation
y3−y = 0. The latter has three roots:y = y0 withy0 =
0 or y0 = ±1. Obviously, if (18) has solutions y that
are close to y0 = ±1 when ε is small, then the original
problem will have two corresponding solutions that are
roughly proportional to ε−1/2. These will then be our
two missing roots. The expansion procedure for (18)
with y = y0 = ±1 for ε = 0 is similar to that described
in section 1.1, except that y(ε) will be a power series
in ε1/2. The implicit function theorem applies to (18),
showing that the perturbation series for y(ε) will be
convergent for ε sufficiently small, in addition to being
asymptotic in the limit ε → 0. Scaling y by ε−1/2 then
yields series representations for the two large roots x
of the original problem in the form

x ∼
∞∑
n=0

ynε(n−1)/2, ε → 0,

with y0 = ±1. As already mentioned, in this case “∼”
could be replaced by “=” if ε is small enough.

Another major category of singular perturbation
problems are those involving differential equations in
which the small parameter ε multiplies the highest-
order derivatives. In such a case, setting ε = 0 replaces

the differential equation by another one of strictly
lower order. This is clearly analogous to the algebraic
degeneracy described above in that the number of solu-
tions (this time counted in terms of the dimension of
some space of integration constants) is different for
the perturbed and unperturbed problems. We now dis-
cuss some common perturbation methods that are gen-
erally applicable to singular perturbation problems of
this latter sort.

3.2.1 WKB Methods and Generalizations

WKB methods (named after Wentzel, Kramers, and Bril-
louin) concern differential equations that are so singu-
larly perturbed that upon setting ε to zero there are
no derivatives left at all. A sufficiently rich example
equation with this property is the Sturm–Liouville, or
stationary Schrödinger, equation

ε2ψ′′(x)+ f(x)ψ(x) = 0, (19)

where f(x) is a given coefficient and solutions ψ =
ψ(x; ε) are desired for sufficiently small ε > 0. Obvi-
ously, for the two terms on the left-hand side to sum to
zero when f is independent of ε, derivatives ofψmust
be very large compared with ψ itself. The essence of
the WKB method is to take this into account by making
a substitution of the form

ψ(x; ε) = exp
(

1
ε

∫ x
x0

u(ξ; ε)dξ
)
, (20)

and in terms of the new unknown u, (19) becomes a
first-order nonlinear equation of Riccati type:

εu′(x; ε)+u(x; ε)2 + f(x) = 0. (21)

Unlike (19), this equation admits two nontrivial solu-
tions when ε = 0, namely u(x; 0) = ±(−f(x))1/2. One
can now develop a perturbation series for u in pow-
ers of ε in the usual way, starting from each of these
two solutions. These series can be shown to be asymp-
totic to certain true solutions of (21) in the sense of
(9), (10), but they are nearly always divergent. When par-
tial sums of these two distinct series are substituted
into (20), one obtains approximations to two linearly
independent solutions of (19).

The WKB method as described above always fails
near points x where the coefficient f vanishes. Such
x are called turning points. What we mean when we
say that the method fails is that the little-oh relation
(10) does not hold uniformly on any open interval of
x with a turning point as an endpoint and, moreover,
there is no solution that is accurately approximated by
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partial sums of the WKB expansion over a neighbor-
hood of x containing a turning point. An important
problem in the theory of equation (19) is the connec-
tion problem, in which a solution described accurately
by a WKB expansion on one side of a turning point is to
be approximated on the other side of the turning point
by an appropriate linear combination of WKB expan-
sions. This problem can sometimes be solved within
the context of the WKB method by analytically continu-
ing a solution ψ into the complex x-plane and around
a turning point. Such an approach always requires ana-
lyticity of the coefficient function f and in any case fails
to describe the solution ψ in any neighborhood of the
turning point.

A more satisfactory way of dealing with turning
points and solving connection problems is to general-
ize the WKB method (that is, generalize the ansatz (20)).
The following approach is due to Langer.

By a simultaneous change of independent and depen-
dent variables of the form y = g(x) and ψ(x; ε) =
a(x)φ(y ; ε), respectively, one tries to choose g and a
(as smooth functions independent of ε) such that (19)
becomes a perturbation of a model equation:

(i) ε2φ′′(y) ± φ(y) = ε2α±(y)φ in intervals of x
where f(x) ≷ 0;

(ii) ε2φ′′(y)−ynφ(y) = ε2βn(y)φ in intervals of x
where f has a turning point (zero) of order n.

Here, α±(y) and βn(y) are smooth functions of y
explicitly written in terms of f and its derivatives, and
avoiding terms proportional to φ′(y) requires relating
a and g by a(x) = |g′(x)|−1/2. In each case, the model
equation is obtained by neglecting the terms on the
right-hand side (which turn out to be “more” negligible
than the singular perturbation term ε2φ′′(y)).

To solve (19) on an interval without turning points,
one may arrive at case (i) via the (Liouville–Green)
transformation

y = g(x) =
∫ x
x0

√
±f(ξ)dξ.

This transformation is smooth and invertible in the
absence of turning points. It is easy to confirm that
the use of the elementary exponential solutions of the
model equation ε2φ′′(y) ± φ(y) = 0 alone immedi-
ately reproduces the first two terms of the standard
WKB expansion (the coefficienta(x) corresponds to the
term in u that is proportional to ε). Treating the error
term ε2α±(y)φ(y) perturbatively reproduces the rest
of the WKB series.

To solve (19) on an interval containing a simple

turning point x0, one should take n = 1 in case (ii).

Arriving at this target requires choosing the (Langer)

transformation

y = g(x) = − sgn(f (x))
∣∣∣∣3

2

∫ x
x0

√
|f(ξ)|dξ

∣∣∣∣2/3
.

This transformation is smooth and invertible near x0

precisely because x0 is a simple zero of f . In this case,

the model equation ε2φ′′(y)−yφ(y) = 0 is not solv-

able by elementary functions, but it is solvable in terms

of special functions known as Airy functions. Airy func-

tions can be expressed as certain contour integrals,

and this is enough information to allow the solution

of a number of connection problems for simple turn-

ing points without detouring into the complex x-plane.

For double turning points (n = 2) one needs a dif-

ferent transformation g(x) that is again smooth, and

instead of Airy functions one has Weber functions, but

again these can be written as integrals, allowing con-

nection problems to be solved. For n � 3 the solvabil-

ity of the model equation (in terms of useful special

functions) becomes a more serious issue. Nonetheless,

when Langer’s generalization applies it not only allows

an alternative approach to connection problems but

also provides accurate asymptotic formulas for solu-

tions of (19) in full neighborhoods of turning points

where standard WKB methodology fails.

One famous formula that can be obtained with the

use of the WKB method and connection formulas for

simple turning points is the Bohr–Sommerfeld quanti-

zation rule of quantum mechanics. Consider the case

in which f(x) takes the form f(x) = E − V(x), where

V is a potential energy function with V ′′(x) > 0, and

therefore its graph has the shape of a “potential well”

whose minimum value we take to be V = 0. Then (19)

with ε2 = �2/(2m) is the equation satisfied by station-

ary quantum states for a particle of mass m and total

energy E, and E should take on a discrete spectrum of

values such that there exists a solutionψ that is square

integrable on R. If E > 0 then f(x)will have exactly two

simple turning points, x−(E) < x+(E), and one can use

WKB methods and connection formulas to obtain two

nonzero solutions ψ±(x) that exhibit rapid exponen-

tial decay as x → ±∞. E is the energy of a stationary

state if and only if ψ− is proportional to ψ+. By com-

puting a Wronskian of these two solutions in the region

between the two turning points and equating the result

to zero, one obtains the Bohr–Sommerfeld quantization
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rule as a condition for E > 0 to be an energy eigenvalue:∫ x+(E)

x−(E)

√
E − V(x)dx = πε(n+ 1

2 )+O(ε2).

3.2.2 Multiple-Scale Methods

Another class of perturbation methods deals with sin-
gular perturbation problems of a different type in
which what makes the problem singular is that an accu-
rate solution of some differential equation is required
over a very large range of values of the independent
variables. Such problems often masquerade as regu-
lar perturbation problems until the need for accuracy
over long time intervals or large distances is revealed
and understood. A typical example is the weakly anhar-
monic oscillator, whose displacement u = u(t; ε) as
a function of time t is modeled by the initial-value
problem for

u′′ +ω2
0u = εu3, (22)

subject to the initial conditions

u(0; ε) = A and u′(0; ε) =ω0B.

When ε = 0,u undergoes simple harmonic motion with
frequency ω0: u(t; 0) = A cos(ω0t) + B sin(ω0t). The
presence of the cubic perturbation term on the right-
hand side does not modify the order of the differential
equation, so this appears to be a regular perturbation
problem (and indeed it is so for bounded t).

To begin to see the difficulty, we should first observe
that (22) conserves the energy:

E = 1
2u

′(t; ε)2 + 1
2ω

2
0u(t; ε)

2 − 1
4εu(t; ε)

4.

As the energy function has a local minimum in the
phase plane at (u,u′) = (0,0), and as this is the global
minimum when ε = 0, it follows that for each initial
condition pair (A, B), if |ε| is sufficiently small the cor-
responding solution is time-periodic, following a closed
orbit in the phase plane. Now consider solving (22)
using a perturbation (power) series in ε. If the assumed
series takes the form

u(t; ε) ∼
∞∑
n=0

εnun(t), ε → 0, (23)

with u0(t) = u(t; 0), then by substitution and collec-
tion of coefficients of like powers of ε it follows in
particular that the first correction u1(t) solves

u′′
1 +ω2

0u1 = u0(t)3, u1(0) = u′
1(0) = 0. (24)

The forcing function u3
0 = (A cos(ω0t)+ B sin(ω0t))3

is known, and it contains terms proportional to the first

and third harmonics. Solving for u1(t) gives

u1(t) = − A
32ω2

0

(A2 − 3B2) cos(3ω0t)

− B
32ω2

0

(3A2 − B2) sin(3ω0t)

+ 3
8ω0

(A2 + B2)[At sin(ω0t)− Bt cos(ω0t)]

+ A
32ω2

0

(A2 − 3B2) cos(ω0t)

+ 3B
32ω2

0

(7A2 + 3B2) sin(ω0t).

The terms on the first two lines here are the response to
the third harmonic forcing terms in u0(t)3, the terms
on the third line are the response to the first harmonic
forcing terms in u0(t)3, and the last two lines consti-
tute a homogeneous solution necessary to satisfy the
initial conditions. This procedure can be easily con-
tinued, and all of the functions un(t) are therefore
systematically determined. The trouble with this pro-
cedure is that, while we know that the true solution
u(t; ε) is a periodic function of t, we have already found
terms in u1(t) that are linearly growing in t, produced
as a resonant response to forcing at the fundamental
frequency.

Terms growing in t are not troublesome only because
they are nonperiodic; they also introduce nonunifor-
mity with respect to t into the asymptotic condi-
tion (10). Indeed, if t becomes as large as ε−1, then
the term εu1(t) becomes comparable to the leading
term u0(t), and condition (10) is violated. Such grow-
ing terms in an asymptotic expansion are called sec-
ular terms, from the French word siècle, meaning cen-
tury, because they were first recognized in perturbation
problems of celestial mechanics where they would lead
to difficulty over long time intervals of about 100 years.

It is not hard to understand what has gone wrong in
the particular problem at hand. The point is that, while
the exact solution is indeed periodic, its fundamental
frequency is not exactlyω0 but rather is slightly depen-
dent on ε. If we could know what the frequency is in
advance, then we might expect the perturbation series
to turn out to be a Fourier series in harmonics of the
fundamental ε-dependent frequency.

The method of multiple scales is a systematic method
of removing secular terms from asymptotic expan-
sions, and in the problem at hand it leads automat-
ically to a power-series expansion of the correct fre-
quency as a function of ε. The “scales” in the name of
the method are multiples of the independent variable
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of the problem; we introduce a number of variables of
the form Tk := εkt for k = 0,1,2, . . . . Given some finite
K, we seek u(t, ε) in the form u(t, ε) = U(T0, . . . , TK ; ε)
so that, by the chain rule, the ordinary differential
equation (22) becomes a partial differential equation:

K∑
j=0

K∑
k=0

εj+k
∂2U
∂Tj∂Tk

+ω2
0U = εU3.

Into this equation we now introduce an expansion anal-
ogous to (23):

U(T0, . . . , TK ; ε) ∼
∞∑
n=0

εnUn(T0, . . . , TK), ε → 0.

The terms proportional to ε0 are

∂2U0

∂T 2
0

+ω2
0U0 = 0,

the general solution of which is U0 = A cos(ω0T0) +
B sin(ω0T0), where A and B are undetermined func-
tions of the “slow times” T1, . . . , TK . The terms propor-
tional to ε1 are then

∂2U1

∂T 2
0

+ω2
0U1 = U3

0 − 2
∂2U0

∂T0∂T1
. (25)

Comparing with (24), the final term on the right-hand
side is the new contribution from the method of multi-
ple scales. It contains only first harmonics:

∂2U0

∂T0∂T1
= −ω0

∂A
∂T1

sin(ω0T0)+ω0
∂B
∂T1

cos(ω0T0).

Therefore, if the dependence on T1 of the coefficients
A and B is selected so that

2ω0
∂A
∂T1

+ 3B
4
(A2 + B2) = 0,

−2ω0
∂B
∂T1

+ 3A
4
(A2 + B2) = 0,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (26)

then the resonant forcing terms that are proportional
to cos(ω0T0) and sin(ω0T0) and that are responsible
for the secular response in U1 will be removed from the
right-hand side of (25), and consequently U1 will now
be a periodic function of T0. The dependence of A and
B on longer timescales T2, T3, . . . , TK is determined sim-
ilarly, order by order, so thatU2, U3, . . . , UK are periodic
functions of T0. Once this series has been constructed,
the dependence on t may be restored by the substitu-
tion Tk = εkt. This procedure produces an asymptotic
expansion that is uniformly consistent with the order-
ing relation (10) for times t that satisfy t = O(ε−K) as
ε → 0.

The interpretation of the system (26) is that, as
expected, the frequency of oscillation depends on the
amplitude in nonlinear systems. Indeed, from (26) it is

easy to check that the squared amplitude A2 + B2 is
independent of T1, and hence A and B undergo sim-
ple harmonic motion with respect to T1 of amplitude-
dependent frequency ω1 := −3(A2 + B2)/(8ω0). By
standard trigonometric identities it then follows that
U0 is a sinusoidal oscillation of frequency ω0 + εω1 +
O(ε2), where ω1 depends on the amplitude (deter-
mined from initial conditions).

3.2.3 Matching of Asymptotic Expansions

Another set of methods for dealing with singularly per-
turbed differential equations involves using the princi-
ple of dominant balance to isolate different domains
of the independent variables in which different asymp-
totic expansions apply and then “matching” the expan-
sions together to produce an approximate solution that
is uniformly accurate with respect to the independent
variable. A typical context is a singularly perturbed
boundary-value problem such as

εu′′ +u′ + fu = 0, u(0; ε) = u(1; ε) = 1. (27)

Here f = f(x) is given, and u(x; ε) is desired for ε
sufficiently small (in which case one can prove that
this problem has a unique solution). For the differential
equation itself, one dominant balance is that between
u′ and fu. The expansion based on this balance is just
the power-series expansion

u(x; ε) ∼
∞∑
n=0

εnun(x), ε → 0, (28)

and the leading term u0(x) satisfies the limiting equa-
tion u′

0(x) + f(x)u0(x) = 0, which has the general
solution

u0(x) = C0 exp
(∫ 1

x
f(ξ)dξ

)
. (29)

Given u0(x), the procedure can be continued in the
usual way to obtain successively the coefficientsun(x).
At each order, one additional arbitrary constant Cn is
generated.

The expansion (28) is insufficient to solve the bound-
ary-value problem (27) because at each order there
are two boundary conditions imposed on each of the
functions un(x) but there is only one constant avail-
able to satisfy them. To seek additional expansions, we
can introduce scalings of the independent variable to
suggest other dominant balances. For example, if we
set x = εpy and write v(y ; ε) = u(x; ε), then the
differential equation becomes

ε1−2pv′′(y ; ε)+ ε−pv(y ; ε)+ f(εpy)v(y ; ε) = 0.
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The first two terms balance if p = 1, and this is
a dominant balance if f is continuous on [0,1] and
hence bounded. Moreover, if f is smooth, f(εy) can be
expanded in Taylor series for small ε, and it becomes
clear that this dominant balance leads to an expansion
of v of the form

v(y ; ε) ∼
∞∑
n=0

εnvn(y), ε → 0. (30)

Here the leading term v0(y) will satisfy the limiting
equation v′′

0 (y) + v′
0(y) = 0, which has the general

solution
v0(y) = A0e−y + B0, (31)

and the standard perturbation procedure allows one to
calculate vn(y) order by order, introducing two new
integration constants each time.

The expansion (28) turns out to be a good approxi-
mation for u(x; ε) for x in intervals of the form [δ,1]
for δ > 0, as long as the constants are chosen to sat-
isfy the boundary condition at x = 1: u0(1) = 1 and
un(1) = 0 for n � 1. This expansion therefore holds
in “most” of the domain; in fluid dynamics problems
this corresponds to flow in regions away from a prob-
lematic boundary, the so-called outer flow. Hence (28)
is called an outer expansion.

On the other hand, the expansion (30) provides a
good approximation for u(x; ε) = v(x/ε; ε) in the
“boundary layer” near x = 0 of thickness proportional
to ε, provided that

(i) the integration constants are chosen to satisfy the
boundary condition at x = y = 0, which forces

v0(0) = 1 and vn(0) = 0 for n � 1;

and
(ii) the remaining constant at each order is deter-

mined so that the inner expansion (30) is compati-
ble with the outer expansion (28) in some common
“overlap domain” of x-values.

Choosing the constants to satisfy compatibility of the
expansions is called matching of asymptotic expan-
sions. In general, matching involves choosing some
intermediate scale on which y is large while x is small
as ε → 0; for example, fixing z > 0, we could set
x = ε1/2z and then y = x/ε = ε−1/2z. With this sub-
stitution one writes both inner and outer expansions
in terms of the common independent variable z and
re-expands both with respect to a suitable asymptotic
sequence of functions of ε. Equating these expansions
term-by-term then yields relations among the constants

in the two expansions. The common expansion with z
fixed is sometimes called an intermediate expansion.

In the problem at hand, to satisfy the boundary con-
dition at x = 1 we should choose C0 = 1 in (29),
while to satisfy v0(0) = 1 we require A0 + B0 = 1
in (31). The matching condition at this leading order
reads u0(x = 0) = v0(y = +∞), which implies that
B0 = exp

∫ 1
0 f(ξ)dξ. The constants A0, B0, and C0 have

clearly thus been determined by a combination of the
two imposed boundary conditions and an asymptotic
matching condition. The procedure can be continued
to arbitrarily high order in ε.

Successful matching of asymptotic expansions for
boundary-layer problems yields two different expan-
sions that are valid in different parts of the physical
domain. For some purposes it is useful to have a single
approximation that is uniformly valid over the whole
domain. Matching again plays a role here, as the cor-
rect formula for the uniformly valid approximation is
the sum of corresponding partial sums of the inner and
outer expansions, minus the corresponding terms of
the intermediate expansion (which would otherwise be
counted twice, it turns out).

Another application of matched asymptotic expan-
sions is to problems involving periodic behavior that
is alternately dominated by “fast” and “slow” dynam-
ics, so-called relaxation oscillations. The slow parts of
the cycle correspond to outer asymptotic expansions,
and the rapid parts of the cycle are analyzed by rescal-
ing and dominant balance arguments and resemble
the inner expansions from boundary-layer problems.
Matching is required to enforce the periodicity of the
solution.

Further Reading

Bleistein, N., and R. A. Handelsman. 1986. Asymptotic
Expansions of Integrals, 2nd edn. New York: Dover.

Miller, P. D. 2006. Applied Asymptotic Analysis. Providence,
RI: American Mathematical Society.

Wong, R. 2001. Asymptotic Approximations of Integrals.
Philadelphia, PA: SIAM.

IV.6 Calculus of Variations
Irene Fonseca and Giovanni Leoni

1 History

The calculus of variations is a branch of mathemati-
cal analysis that studies extrema and critical points of
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functionals (or energies). Here, by functional we mean

a mapping from a function space to the real numbers.

One of the first questions that may be framed within

this theory is Dido’s isoperimetric problem (see sec-

tion 2.3), finding the shape of a curve of prescribed

perimeter that maximizes the area enclosed. Dido was a

Phoenician princess who emigrated to North Africa and

upon arrival obtained from the native chief as much ter-

ritory as she could enclose with an ox hide. She cut the

hide into a long strip and used it to delineate the ter-

ritory later known as Carthage, bounded by a straight

coastal line and a semicircle.

It is commonly accepted that the systematic develop-

ment of the theory of the calculus of variations began

with the brachistochrone curve problem proposed by

Johann Bernoulli in 1696. Consider two points A and

B on the same vertical plane but on different vertical

lines. Assume that A is higher than B and that a parti-

cle M is moving from A to B along a curve and under the

action of gravity. The curve that minimizes the time it

takes M to travel between A and B is called the brachis-

tochrone. The solution to this problem required the

use of infinitesimal calculus and was later found by

Jacob Bernoulli, Newton, Leibniz, and de l’Hôpital. The

arguments thus developed led to the development of

the foundations of the calculus of variations by Euler.

Important contributions to the subject are attributed

to Dirichlet, Hilbert, Lebesgue, Riemann, Tonelli, and

Weierstrass, among many others.

The common feature underlying Dido’s isoperimetric

problem and the brachistochrone curve problem is that

one seeks to maximize or minimize a functional over

a class of competitors satisfying given constraints. In

both cases the functional is given by an integral of a

density that depends on an underlying field and some

of its derivatives, and this will be the prototype we will

adopt in what follows. To be precise, we consider a

functional

u ∈ X  → F(u) :=
∫
Ω
f(x,u(x),∇u(x))dx, (1)

where X is a function space (usually an Lp space or a

Sobolev-type space), u : Ω → Rd, with Ω ⊂ RN an open

set, N and d are positive integers, and the density is a

function f(x,u, ξ), with (x,u, ξ) ∈ Ω×Rd×Rd×N . Here

and in what follows, ∇u stands for the d×N matrix-

valued distributional derivative of u.

The calculus of variations is a vast theory, so here we

choose to highlight only some contemporary aspects of

the field. We conclude the article by mentioning a few

areas that are at the forefront of application and that
are driving current research.

2 Extrema

In this section we address fundamental minimization
problems and relevant techniques in the calculus of
variations. In geometry, the simplest example is the
problem of finding the curve of shortest length con-
necting two points: a geodesic. A (continuous) curve
joining two points A,B ∈ Rd is represented by a (con-
tinuous) function γ : [0,1] → Rd such that γ(0) = A,
γ(1) = B, and its length is given by

L(γ) := sup
{ n∑
i=1

|γ(ti)− γ(ti−1)|
}
,

where the supremum is taken over all partitions 0 =
t0 < t1 < · · · < tn = 1, n ∈ N, of the interval [0,1]. If γ
is smooth, then L(γ) =

∫ 1
0 |γ′(t)|dt. In the absence of

constraints, the geodesic is the straight segment with
endpoints A and B, and so L(γ) = |A−B|, where |A−B|
stands for the magnitude (or length) of the vector 0A–
0B with 0 being the origin. In applications the curves
are often restricted to lie on a given manifold, e.g., a
sphere (in this case, the geodesic is the shortest great
circle joining A and B).

2.1 Minimal Surfaces

A minimal surface is a surface of least area among all
those bounded by a given closed curve. The problem of
finding minimal surfaces, called the Plateau problem,
was first solved in three dimensions in the 1930s by
Douglas and, separately, by Rado, and then in the 1960s
several authors, including Almgren, De Giorgi, Fleming,
and Federer, addressed it using geometric measure-
theoretical tools. This approach gives existence of solu-
tions in a “weak sense,” and establishing their regu-
larity is significantly more involved. De Giorgi proved
that minimal surfaces are analytic except on a singular
set of dimension at most N − 1. Later, Federer, based
on earlier results by Almgren and Simons, improved
the dimension of the singular set to N − 8. The sharp-
ness of this estimate was confirmed with an example
by Bombieri, De Giorgi, and Giusti.

Important minimal surfaces are the nonparametric
minimal surfaces, which are given as graphs of real-
valued functions. To be precise, given an open set Ω ⊂
RN and a smooth function u : Ω → R, the area of the
graph of u, {(x,u(x)) : x ∈ Ω}, is given by

F(u) :=
∫
Ω

√
1 + |∇u|2 dx. (2)
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It can be shown that u minimizes the area of its graph

subject to prescribed values on the boundary of Ω if

div
( ∇u√

1 + |∇u|2
)
= 0 in Ω.

2.2 The Willmore Functional

Many smooth surfaces, including tori, have recently

been obtained as minima or critical points of certain

geometrical functionals in the calculus of variations. An

important example is the Willmore (or bending) energy

of a compact surface S embedded in R3, namely the sur-

face integral W(S) :=
∫
S H2 dσ , where H := 1

2 (k1 + k2)
and k1 and k2 are the principal curvatures of S. This

energy has a wide scope of applications, ranging from

materials science (e.g., elastic shells, bending energy) to

mathematical biology (e.g., cell membranes) to image

segmentation in computer vision (e.g., staircasing).

Critical points of W are called Willmore surfaces and

satisfy the Euler–Lagrange equation

ΔSH + 2H(H2 −K) = 0,

where K := k1k2 is the Gaussian curvature and ΔS is

the Laplace–Beltrami operator.

In the 1920s it was shown by Blaschke and, sepa-

rately, by Thomsen that the Willmore energy is invari-

ant under conformal transformations of R3. Also, the

Willmore energy is minimized by spheres, with result-

ing energy value 4π . Therefore, W(S) − 4π describes

how much S differs from a sphere in terms of its bend-

ing. The problem of minimizing the Willmore energy

among the class of embedded tori T was proposed by

Willmore, who conjectured in 1965 that W(T) � 2π2.

This conjecture was proved by Marques and Neves in

2012.

2.3 Isoperimetric Problems and the Wulff Shape

The understanding of the surface structure of crystals

plays a central role in many fields of physics, chem-

istry, and materials science. If the dimension of the

crystals is sufficiently small, then the leading morpho-

logical mechanism is driven by the minimization of sur-

face energy. Since the work of Herring in the 1950s, a

classical problem in this field is to determine the crys-

talline shape that has the smallest surface energy for a

given volume. To be precise, we seek to minimize the

surface integral ∫
∂E
ψ(ν(x))dσ (3)

over all smooth sets E ⊂ RN with prescribed volume

and where ν(x) is the outward unit normal to ∂E at

x. The right variational framework for this problem is

within the class of sets of finite perimeter. The solution,

which exists and is unique up to translations, is called

the Wulff shape. A key ingredient in the proof is the

Brunn–Minkowski inequality

(LN(A))1/N + (LN(B))1/N � (LN(A+ B))1/N , (4)

which holds for all Lebesgue measurable setsA,B ⊂ RN

such that A+ B is also Lebesgue measurable. Here, LN
stands for the N-dimensional Lebesgue measure.

3 The Euler–Lagrange Equation

Consider the functional (1), in the scalar case d =
1 and where f is of class C1 and X is the Sobolev

space X = W1,p(Ω), 1 � p � +∞, of all functions

u ∈ Lp(Ω) whose distributional gradient ∇u belongs

to Lp(Ω; RN). Let u ∈ X be a local minimizer of the

functional F ; that is,∫
U
f(x,u(x),∇u(x))dx �

∫
U
f(x,v(x),∇v(x))dx

for every open subset U compactly contained inΩ, and

for all v such that u− v ∈ W1,p
0 (U), where W1,p

0 (U) is

the space of all functions in W1,p(U) that “vanish” on

the boundary of ∂U . Note that v will then coincide with

u outside the set U . If ϕ ∈ C1
c (Ω), then u+ tϕ, t ∈ R,

are admissible, and thus

t ∈ R  → g(t) := F(u+ tϕ)

has a minimum at t = 0. Therefore, under appropriate

growth conditions on f , we have that g′(0) = 0, i.e.,∫
Ω

( N∑
i=1

∂f
∂ξi
(x,u,∇u) ∂ϕ

∂xi
+ ∂f
∂u
(x,u,∇u)ϕ

)
dx = 0.

(5)

A functionu ∈ X satisfying (5) is said to be a weak solu-

tion of the Euler–Lagrange equation associated to (1).

Under suitable regularity conditions on f and u, (5)

can be written in the strong form

div(∇ξf (x,u,∇u)) =
∂f
∂u
(x,u,∇u), (6)

where ∇ξf (x,u, ξ) is the gradient of the function

f(x,u, ·).
In the vectorial case d > 1, the same argument leads

to a system of partial differential equations (PDEs) in

place of (5).
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4 Variational Inequalities and Free-Boundary
and Free-Discontinuity Problems

We now add a constraint to the minimization problem

considered in the previous section. To be precise, let

d = 1 and let φ be a function in Ω. If u is a local min-

imizer of (1) among all functions v ∈ W1,p(Ω) subject

to the constraint v � φ in Ω, then the variation u+ tϕ
is admissible ifϕ � 0 and t � 0. Therefore, the function

g satisfies g′(0) � 0, and the Euler–Lagrange equation

(5) becomes the variational inequality∫
Ω

( N∑
i=1

∂f
∂ξi
(x,u,∇u) ∂ϕ

∂xi
+ ∂f
∂u
(x,u,∇u)ϕ

)
dx � 0

for all nonnegativeϕ ∈ C1
c (Ω). This is called the obsta-

cle problem, and the coincidence set {u = φ} is not

known a priori and is called the free boundary. This

is an example of a broad class of variational inequali-

ties and free boundary problems that have applications

in a variety of contexts, including the modeling of the

melting of ice (the Stefan problem), lubrication, and the

filtration of a liquid through a porous medium.

A related class of minimization problems in which

the unknowns are both an underlying fieldu and a sub-

set E of Ω is the class of free discontinuity problems

that are characterized by the competition between a

volume energy of the type (1) and a surface energy, e.g.,

as in (3). Important examples are in the study of liquid

crystals, the optimal design of composite materials in

continuum mechanics (see section 13.3), and image

segmentation in computer vision (see section 13.4).

5 Lagrange Multipliers

The method of Lagrange multipliers in Banach spaces

is used to find extrema of functionalsG : X → R subject

to a constraint

{x ∈ X : Ψ(x) = 0}, (7)

where Ψ : X → Y is another functional and X and Y are

Banach spaces. It can be shown that if G and Ψ are of

class C1 and u ∈ X is an extremum of G subject to (7),

and if the derivative DΨ(u) : X → Y is surjective, then

there exists a continuous, linear functional λ : Y → R
such that

DG(u)+ λ ◦ DΨ(u) = 0, (8)

where ◦ stands for the composition operator between

functions. The functional λ is called a Lagrange multi-

plier.

In the special case in which Y = R, λ may be identi-
fied with a scalar, still denoted by λ, and (8) takes the
familiar form

DG(u)+ λDΨ(u) = 0.

Therefore, candidates for extrema may be found among
all critical points of the family of functionals G + λΨ ,
λ ∈ R.

If G has the form (1) and X = W1,p(Ω; Rd), 1 � p �
+∞, then typical examples of Ψ are

Ψ(u) :=
∫
Ω
|u|s dx − c1 or Ψ(u) :=

∫
Ω
udx − c2

for some constants c1 ∈ R, c2 ∈ Rd, and 1 � s < +∞.

6 Minimax Methods

Minimax methods are used to establish the existence
of saddle points of the functional (1), i.e., critical points
that are not extrema. More generally, for C1 functionals
G : X → R, where X is an infinite-dimensional Banach
space, as introduced in section 5, the Palais–Smale com-
pactness condition (hereafter simply referred to as the
PS condition) plays the role of compactness in the finite-
dimensional case. To be precise, G satisfies the PS con-
dition if whenever {un} ⊂ X is such that {G(un)} is a
bounded sequence in R and DG(un)→ 0 in the dual of
X, X′, then {un} admits a convergent subsequence.

An important result for the existence of saddle points
that uses the PS condition is the mountain pass lemma
of Ambrosetti and Rabinowitz, which states that, if G
satisfies the PS condition, if G(0) = 0, and if there are
r > 0 and u0 ∈ X \ B(0, r ) such that

inf
∂B(0,r )

G > 0 and G(u0) � 0,

then
inf
γ∈C

sup
u∈γ

G(u)

is a critical value, where C is the set of all continuous
curves from [0,1] into X joining 0 to u0.

In addition, minimax methods can be used to prove
the existence of multiple critical points of functionals
G that satisfy certain symmetry properties, for exam-
ple, the generalization of the result by Ljusternik and
Schnirelmann for symmetric functions to the infinite-
dimensional case.

7 Lower Semicontinuity

7.1 The Direct Method

The direct method in the calculus of variations provides
conditions on the function space X and on a functional
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G, as introduced in section 5, that guarantee the exis-
tence of minimizers of G. The method consists of the
following steps.

Step 1. Consider a minimizing sequence {un} ⊂ X, i.e.,
limn→∞G(un) = infu∈X G(u).

Step 2. Prove that {un} admits a subsequence {unk}
converging to someu0 ∈ X with respect to some (weak)
topology τ in X. When G has an integral representation
of the form (1), this is usually a consequence of a priori
coercivity conditions on the integrand f .

Step 3. Establish the sequential lower semicontinuity of
Gwith respect to τ , i.e., lim infn→∞G(vn) � G(v)when-
ever the sequence {vn} ⊂ X converges weakly to v ∈ X
with respect to τ .

Step 4. Conclude that u0 minimizes G. Indeed,

inf
u∈X

G(u) = lim
n→∞G(un) = lim

k→∞
G(unk)

� G(u0) � inf
u∈X

G(u).

7.2 Integrands: Convex, Polyconvex, Quasiconvex,

and Rank-One Convex

In view of step 3 above, it is important to character-
ize the class of integrands f in (1) for which the cor-
responding functional F is sequentially lower semicon-
tinuous with respect to τ . In the case in which X is
the Sobolev space W1,p(Ω; Rd), 1 � p � +∞, and τ
is the weak topology (or weak-0 topology p = +∞),
this is related to convexity-type properties of f(x,u, ·).
If min{d,N} = 1, then under appropriate growth and
regularity conditions it can be shown that convexity of
f(x,u, ·) is necessary and sufficient. More generally,
if min{d,N} > 1, then the corresponding condition is
called quasiconvexity ; to be precise, f(x,u, ·) is said to
be quasiconvex if

f(x,u, ξ) �
∫
(0,1)N

f (x,u, ξ +∇ϕ(y))dy

for all ξ ∈ Rd×N and all ϕ ∈ W1,∞
0 ((0,1)N ; Rd),

whenever the right-hand side in this inequality is well
defined. Since this condition is nonlocal, in applica-
tions in mechanics one often studies related classes of
integrands, such as polyconvex and rank-one convex
functions, for which there are algebraic criteria.

8 Relaxation

In most applications, step 3 in section 7.1 fails, and this
leads to an important topic at the core of the calculus

of variations, namely, the introduction of a relaxed, or
effective, energy G that is related to G, as introduced in
section 5, as follows.

(a) G is sequentially lower semicontinuous with re-
spect to τ .

(b) G � G and G inherits coercivity properties from
G.

(c) minu∈X G = infu∈X G.

When G is of the type (1), a central problem is to under-
stand if G has an integral form of the type (1) for some
new integrand h and then, if it has, to understand what
the relation between h and the original integrand f is.

If X = W1,p(Ω), p � 1, and τ is the weak topology,
then under appropriate growth and regularity condi-
tions it can be shown that h(x,u, ·) is the convex envel-
ope of f(x,u, ·), i.e., the greatest convex function less
than f(x,u, ·). In the vectorial case d > 1, the convex
envelope is replaced by a similar notion of quasiconvex
envelope (see section 7.2).

9 Γ -Convergence

In physical problems the behavior of a system is often
described in terms of a sequence {Gn},n ∈ N, of energy
functionals Gn : X → [−∞,+∞], where X is a metric
space with a metric d. Is it possible to identify a limiting
energyG∞ that sheds light on the qualitative properties
of this family and that has the property that minimizers
of Gn converge to minimizers of G∞?

The notion of Γ -convergence, which was introduced
by De Giorgi, provides a tool for answering these ques-
tions. To motivate this concept with an example, con-
sider a fluid confined in a container Ω ⊂ RN . Assume
that the total mass of the fluid ism, so that admissible
density distributions u : Ω → R satisfy the constraint∫
Ω u(x)dx =m. The total energy is given by the func-

tional u  →
∫
Ω W(u(x))dx, where W : R → [0,∞) is the

energy per unit volume. Assume that W supports two
phases a < b, that is, W is a double-well potential, with
{u ∈ R : W(u) = 0} = {a,b}. Then any density distri-
bution u that renders the body stable in the sense of
Gibbs is a minimizer of the following problem:

min
{∫

Ω
W(u(x))dx :

∫
Ω
u(x)dx =m

}
. (P0)

If LN(Ω) = 1 and a < m < b, then given any mea-
surable set E ⊂ Ω with LN(E) = (b −m)/(b − a), the
function u = aχE+bχΩ\E is a solution of problem (P0).
This lack of uniqueness is due to the fact that inter-
faces between the two phases a and b can be formed
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without increasing the total energy. The physically pre-
ferred solutions should be the ones that arise as limit-
ing cases of a theory that penalizes interfacial energy,
so it is expected that these solutions should minimize
the surface area of ∂E ∩Ω.

In the van der Waals–Cahn–Hilliard theory of phase
transitions, the energy depends not only on the density
u but also on its gradient. To be precise,∫

Ω
W(u(x))dx + ε2

∫
Ω
|∇u(x)|2 dx.

Note that the gradient term penalizes rapid changes in
the density u, and thus it plays the role of an inter-
facial energy. Stable density distributions u are now
solutions of the minimization problem

min
{∫

Ω
W(u(x))dx + ε2

∫
Ω
|∇u(x)|2 dx

}
, (Pε)

where the minimum is taken over all smooth func-
tions u satisfying

∫
Ω u(x)dx = m. In 1983 Gurtin

conjectured that the limits, as ε → 0, of solutions of
(Pε) are solutions of (P0) with minimal surface area.
Using results of Modica and Mortola, this conjecture
was proved independently by Modica and by Sternberg
in the setting of Γ -convergence.

The Γ -limit G∞ : X → [−∞,+∞] of {Gn} with respect
to a metric d, when it exists, is defined uniquely by the
following properties.

(i) The lim inf inequality. For every sequence {un} ⊂
X converging to u ∈ X with respect to d,

G∞(u) � lim inf
n→∞ Gn(un).

(ii) The lim sup inequality. For every u ∈ X there
exists a sequence {un} ⊂ X converging to u ∈ X
with respect to d such that

G∞(u) � lim sup
n→∞

Gn(un).

This notion may be extended to the case in which the
convergence of the sequences is taken with respect to
some weak topology rather than the topology induced
by the metric d. In this context, we remark that, when
the sequence {Gn} reduces to a single energy func-
tional {G}, under appropriate growth and coercivity
assumptions, G∞ coincides with the relaxed energy G,
as discussed in section 8.

Other important applications of Γ -convergence in-
clude the Ginzburg–Landau theory for superconduc-
tivity (see section 13.5), homogenization of variational
problems (see section 13.3), dimension reduction prob-
lems in elasticity (see section 13.2), and free-discon-
tinuity problems in image segmentation in computer
vision (see section 13.4) and in fracture mechanics.

10 Regularity

Optimal regularity of minimizers and local minimiz-
ers of the energy (1) in the vectorial case d � 2, and
when X = W1,p(Ω; Rd), 1 � p � +∞, is mostly an open
question. In the scalar case d = 1 there is an extensive
body of literature on the regularity of weak solutions
of the Euler–Lagrange equation (5), stemming from a
fundamental result of De Giorgi in the late 1950s that
was independently obtained by Nash. For d � 2, (local)
minimizers of (1) are not generally everywhere smooth.
On the other hand, and under suitable hypotheses on
the integrand f , it can be shown that partial regularity
holds, i.e., if u is a local minimizer, then there exists
an open subset of Ω, Ω0, of full measure such that
u ∈ C1,α(Ω0; Rd) for some α ∈ (0,1). Sharp estimates
of α and of the Hausdorff dimension of the singular set
Σu := Ω \Ω0 are still unknown.

11 Symmetrization

Rearrangements of sets preserve their measure while
modifying their geometry to achieve specific symme-
tries. In turn, rearrangements of a function u yield
new functions that have desired symmetry properties
and that are obtained via suitable rearrangements of
the t-superlevel sets of u, Ωt := {x ∈ Ω : u(x) > t}.
These tools are used in a variety of contexts, from har-
monic analysis and PDEs to the spectral theory of dif-
ferential operators. In the calculus of variations, they
are often found in the study of extrema of function-
als of type (1). Among the most common rearrange-
ments we mention the directional monotone decreas-
ing rearrangement, the star-shaped rearrangement, the
directional Steiner symmetrization, the Schwarz sym-
metrization, the circular and spherical symmetrization,
and the radial symmetrization.

Of these, we highlight the Schwarz symmetrization,
which is the most frequently used in the calculus of
variations. If u is a nonnegative measurable function
with compact support in RN , then its Schwartz sym-
metric rearrangement is the (unique) spherically sym-
metric and decreasing function u0 such that for all
t > 0 the t-superlevel sets of u and u0 have the same
measure.

WhenΩ = RN , it can be shown that u0 preserves the
Lp-norm of u and the regularity of u up to first order;
that is, if u belongs to W1,p(RN), then so does u0,
1 � p � +∞. Moreover, by the Pólya–Szegö inequality,
‖∇u0‖p � ‖∇u‖p , and we remark that for p = ∞



224 IV. Areas of Applied Mathematics

this is obtained using the Brunn–Minkowski inequality
discussed in section 2.3.

Another important inequality relating u and u0 is
the Riesz inequality, and the Faber–Krahn inequality
compares eigenvalues of the Dirichlet problems in Ω
and in Ω0. Classical applications of rearrangements
include the derivation of the sharp constant in the
Sobolev–Gagliardo–Nirenberg inequality in W1,p(RN),
1 < p < N , as well as in the Young inequality and the
Hardy–Littlewood–Sobolev inequality.

Finally, we remark that the first and most important
application of Steiner symmetrization is the isoperi-
metric property of balls (see Dido’s problem in sec-
tion 1).

12 Duality Theory

Duality theory associates with a minimization problem
(P) a maximization problem (P∗), called the dual prob-
lem, and studies the relation between these two. It has
important applications in several disciplines, includ-
ing economics and mechanics, and different areas of
mathematics, such as the calculus of variations, convex
analysis, and numerical analysis.

The theory of dual problems is inspired by the notion
of duality in convex analysis and by the Fenchel trans-
form f0 of a function f : RN → [−∞,+∞], defined
as

f0(η) := sup{η · ξ − f(ξ) : ξ ∈ RN} for η ∈ RN.

As an example, consider the minimization problem

inf
{∫

Ω
f(∇u)dx : u ∈ W1,p

0 (Ω)
}
, (P)

with f : RN → R. If f satisfies appropriate growth and
convexity conditions, then the dual problem (P0) is
given by

sup
{
−
∫
Ω
f0(v(x))dx : v ∈ Lq(Ω; RN),

divv = 0 in Ω
}
,

where 1/p+1/q = 1. The latter problem may be simpler
to handle in specific situations, e.g., for nonparametric
minimal surfaces and with f given as in (2), where, due
to lack of coercivity, (P)may not admit a solution in X.

13 Some Contemporary Applications

There is a plethora of applications of the calculus
of variations. Classical ones include Hamiltonians and
Lagrangians, the Hamilton–Jacobi equation, conserva-
tion laws, Noether’s theorem, and optimal control.

Below we focus on a few contemporary applications
that are pushing the frontiers of the theory in novel
directions.

13.1 Elasticity

Consider an elastic body that occupies a domain Ω ⊂
R3 in a given reference configuration. The deformations
of the body can be described by maps u : Ω → R3. If
the body is homogeneous, then the total elastic energy
corresponding to u is given by the functional

F(u) :=
∫
Ω
f(∇u(x))dx, (9)

where f is the stored-energy density of the material. In
order to prevent interpenetration of matter, the defor-
mations should be invertible and it should require an
infinite amount of energy to violate this property, i.e.,

f(ξ)→ +∞ as detξ → 0+. (10)

Also, f needs to be frame indifferent, i.e.,

f(Rξ) = f(ξ) (11)

for all rotations R and all ξ ∈ R3×3.
Under appropriate coercivity and convex-type condi-

tions on f (see section 7.2), and under suitable bound-
ary conditions, it can be shown that F admits a global
minimizer u0. However, the regularity of u0 is still an
open problem, and the Euler–Lagrange equation can-
not therefore be derived (see section 3). In addition, the
existence of local minimizers remains unsolved.

13.2 Dimension Reduction

An important problem in elasticity is the derivation
of models for thin structures, such as membranes,
shells, plates, rods, and beams, from three-dimensional
elasticity theory. The mathematically rigorous analysis
was initiated by Acerbi, Buttazzo, and Percivale in the
1990s for rods, and this was followed by the work of
Le Dret and Raoult for membranes. Recent contribu-
tions by Friesecke, James, and Müller have allowed us
to handle the physical requirements (10) and (11). The
main tool underlying these works is Γ -convergence (see
section 9).

To illustrate the deduction in the case of membranes,
consider a thin cylindrical elastic body of thickness
2ε > 0 occupying the reference configuration Ωε :=
ω× (−ε, ε), with ω ⊂ R2. Using the typical rescaling

(x1, x2, x3)  → (y1, y2, y3) := (x1, x2, x3/ε),

the deformations u of Ωε now correspond to deforma-
tion v of the fixed domain Ω1, through the formula
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v(y1, y2, y3) = u(x1, x2, x3). Therefore,

1
ε

∫
Ωε
f (∇u)dx =

∫
Ω1

f
(
∂v
∂y1

,
∂v
∂y2

,
1
ε
∂v
∂y3

)
dy.

The right-hand side of the previous equality yields a
family of functionals to which the theory of Γ -conver-
gence is applied.

13.3 Homogenization

homogenization theory [II.17] is used to describe
the macroscopic behavior of heterogeneous compos-
ite materials, which are characterized by having two
or more finely mixed material components. Composite
materials have important technological and industrial
applications as their effective properties are often bet-
ter than the corresponding properties of the individual
constituents. The study of these materials falls within
the so-called multiscale problems, with the two relevant
scales here being the microscopic scale at the level of the
heterogeneities and the macroscopic scale describing
the resulting “homogeneous” material. Mathematically,
the properties of composite materials can be described
in terms of PDEs with fast oscillating coefficients or
in terms of energy functionals that depend on a small
parameter ε. As an example, consider a material matrix
A with corresponding stored-energy density fA, with
periodically distributed inclusions of another material
B with stored-energy density fB , whose periodicity cell
has side-length ε. The total energy of the composite is
then given by∫

Ω

[(
1 − χ

(
x
ε

))
fA(∇u)+ χ

(
x
ε

)
fB(∇u)

]
dx,

where χ is the characteristic function of the locus of
material B contained in the unit cube Q of material A,
extended periodically to R3 with period Q. The goal
here is to characterize the “homogenized” energy when
ε → 0+ using Γ -convergence (see section 9).

13.4 Computer Vision

Several problems in computer vision can be treated
variationally, including image segmentation (e.g., the
Mumford–Shah and Blake–Zisserman models), image
morphing, image denoising (e.g., the Perona–Malik
scheme and the Rudin–Osher–Fatemi total variation
model), and inpainting (e.g., recolorization).

The Mumford–Shah model provides a good example
of the use of the calculus of variations to treat free dis-
continuity problems. Let Ω be a rectangle in the plane,
representing the locus of the image, with gray levels
given by a function g : Ω → [0,1]. We want to find an

approximation of g that is smooth outside a set K of
sharp contours related to the set of discontinuities of
g. This leads to the minimization of the functional∫

Ω\K
(|∇u|2 +α(u− g)2)dx + β length(K ∩Ω)

over all contour curves K and functions u ∈ C1(Ω \K).
The first term in this energy functional is minimized
when u is constant outside K, and it therefore forces u
not to vary much outside K. The second term is mini-
mized when u = g outside K, and hence u is required
to stay close to the original gray level g. The last term is
minimized when K has length as short as possible. The
existence of a minimizing pair (u,K) was established
by De Giorgi, Carriero, and Leaci, with u in a class of
functions larger than C1(Ω\K), to be precise, the space
of functions of special bounded variation. The full regu-
larity of these solutionsu and the structure ofK remain
an open problem.

13.5 The Ginzburg–Landau Theory for

Superconductivity

In the 1950s Ginzburg and Landau proposed a mathe-
matical theory to study phase transition problems in
superconductivity; there are similar formulations to
address problems in superfluids, e.g., helium II, and
in XY magnetism. In its simplest form, the Ginzburg–
Landau functional reduces to

Fε(u) := 1
2

∫
Ω
|∇u|2 dx + 1

4ε2

∫
Ω
(|u|2 − 1)2 dx,

where Ω ⊂ R2 is a star-shaped domain, the condensate
wave function u ∈ W1,2(Ω; R2) is an order parameter
with two degrees of freedom, and the parameter ε is a
(small) characteristic length. Given g : ∂Ω → S1, with S1

the unit circle in R2 centered at the origin, we are inter-
ested in characterizing the limits of minimizers uε of
Fε subject to the boundary condition uε = g on ∂Ω.
Under suitable geometric conditions on g (related to
the winding number), Bethuel, Brezis, and Hélein have
shown that there are no limiting functionsu inC(Ω̄,S1)
that satisfy the boundary condition. Rather, the limiting
functions are smooth outside a finite set of singulari-
ties, called vortices. Γ -convergence techniques may be
used to study this family of functionals (see section 9).

13.6 Mass Transport

Mass transportation was introduced by Monge in 1781,
studied by the Nobel Prize winner Kantorovich in the
1940s, and revived by Brenier in 1987. Since then, it
has surfaced in a variety of areas, from economics to
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optimization. Given a pile of sand of mass 1 and a hole
of volume 1, we want to fill the hole with the sand while
minimizing the cost of transportation. This problem is
formulated using probability theory as follows. The pile
and the hole are represented by probability measures
μ and ν , with supports in measurable spaces X and
Y , respectively. If A ⊂ X and B ⊂ Y are measurable
sets, then μ(A) measures the amount of sand in A and
ν(B) measures the amount of sand that can fill B. The
cost of transportation is modeled by a measurable cost
function c : X × Y → R ∪ +∞. Kantorovich’s optimal
transportation problem consists of minimizing∫

X×Y
c(x,y)dπ(x,y)

over all probability measures on X×Y such that π(A×
Y) = μ(A) andπ(X×B) = ν(B), for all measurable sets
A ⊂ X and B ⊂ Y . The main problem is to establish the
existence of minimizers and to obtain their character-
ization. This depends strongly on the cost function c
and on the regularity of the measures μ and ν . There is
a multitude of applications of this theory, and here we
mention only that it can be used to give a simple proof
of the Brunn–Minkowski inequality (see (4)).

13.7 Gradient Flows

Given a function h : Rm → R of class C2, the gradient
flow of h is the family of maps St : Rm → Rm, t � 0,
satisfying the following property. For every w0 ∈ Rm,
S0(w0) := w0 and the curve wt := St(w0), t > 0, is the
unique C1 solution of the Cauchy problem

d
dt
wt = −∇h(wt) for t > 0, lim

t→0+
wt = w0, (12)

if it exists.
If D2h � αI for some α ∈ R, then it can be shown

that the gradient flow exists, that it is unique, and that
it satisfies a semigroup property, i.e.,

St+s(w0) = St(Ss(w0)), lim
t→0+

St(w0) = w0,

for every w0 ∈ Rm.
A common way of approximating discretely the solu-

tion of (12) is via the implicit Euler scheme, as follows.
Given a time step τ > 0, consider the partition of
[0,+∞)

{0 = t0τ < t1τ < · · · < tnτ < · · · },
where tnτ := nτ . Define recursively a discrete sequence
{Wn

τ } as follows: assuming thatWn−1
τ has already been

defined, letWn
τ be the unique minimizer of the function

w  → 1
2τ

|w −Wn−1
τ |2 + h(w). (13)

Introduce the piecewise-linear function Wτ : [0,+∞)→
Rm given by

Wτ(t) =
t − tn−1

τ
τ

Wn−1
τ + t

n
τ − t
τ

Wn
τ

for t ∈ [tn−1
τ , tnτ ]. If W0

τ → w0 as τ → 0+, then it can be
shown that {Wτ}τ>0 converges to the solution of (12)
as τ → 0+.

This approximation scheme, here described for the
finite-dimensional vector space Rd, may be extended
to the case in which Rd is replaced by an infinite-
dimensional metric space X, the function h is replaced
by a functional G : X → R, and the minimization pro-
cedure in (13) is now a variational minimization prob-
lem of the type addressed in section 7. This method
is known as De Giorgi’s minimizing movements. Impor-
tant applications include the study of a large class of
parabolic PDEs.
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IV.7 Special Functions
Nico M. Temme

1 Introduction

Usually we call a function “special” when, like the loga-
rithm, the exponential function, and the trigonometric
functions (the elementary transcendental functions), it
belongs to the toolbox of the applied mathematician,
the physicist, the engineer, or the statistician. Each
function has particular notation associated with it and
has a great number of known properties.

The study of special functions is a branch of math-
ematics with a distinguished history involving great
names such as Euler, Gauss, Fourier, Legendre, Bessel,
and Riemann. Much of their work was inspired by prob-
lems from physics and by the resulting differential
equations. This activity culminated in the publication
in 1927 of the standard, and greatly influential, work A
Course of Modern Analysis by Whittaker and Watson.

Many other monographs are now available, some that
contain the formulas without explanation and others
that explain how the special functions arise in problems
from physics and statistics. A major project called the
Digital Library of Mathematical Functions recently cul-
minated in the NIST Handbook of Mathematical Func-
tions (a successor to Abramowitz and Stegun’s famed
Handbook of Mathematical Functions), which is also
readily accessible online.

In physics, special functions arise as solutions of the
linear second-order differential equations that result
from separating the variables in a partial differential
equation in some special coordinate system (such as
spherical or cylindrical). In this way solutions of the
wave equation, the diffusion equation, and so on are
written in the form of series or integrals.

In statistics, special functions arise as cumulative dis-
tribution functions (gamma and beta distributions, for
example). In number theory, zeta functions, Dirichlet
series, and modular forms are used.

Some topics that fall outside the scope of this article
are mentioned in the final section.

2 Bernoulli Numbers, Euler Numbers,
and Stirling Numbers

The Bernoulli numbers Bn are defined by the generating
function

z
ez − 1

=
∞∑
n=0

Bn
n!
zn, |z| < 2π.

Because the function z/(ez −1)−1+ 1
2z is even, all Bn

with odd index n � 3 vanish: B2n+1 = 0, n = 1,2,3, . . . .
The first nonvanishing numbers are

B0 = 1, B1 = − 1
2 , B2 = 1

6 , B4 = − 1
30 , B6 = 1

42 .

The Bernoulli numbers are named after Jakob Ber-

noulli, who mentioned them in his posthumous Ars

Conjectandi of 1713. He discussed summae potesta-

tum, sums of equal powers of the first n integers; for a

nonnegative integer p,

n−1∑
m=0

mp = 1
p + 1

p∑
k=0

(
p + 1
k

)
Bknp+1−k,

where
(
n
k

)
= n!/[k! (n − k)!]. The Bernoulli numbers

occur in practically every field of mathematics and par-

ticularly in combinatorial theory, finite-difference cal-

culus, numerical analysis, analytic number theory, and

probability theory.

The Bernoulli polynomials are defined by the gener-

ating function

zexz

ez − 1
=

∞∑
n=0

Bn(x)
n!

zn, |z| < 2π.

The first few polynomials are

B0(x) = 1, B1(x) = x − 1
2 , B2(x) = x2 − x + 1

6 .

For the Euler numbers En, we have the generating

function

1
coshz

= 2ez

e2z + 1
=

∞∑
n=0

En
n!
zn, |z| < 1

2π.

In contrast to the Bernoulli numbers, the Euler numbers

are integers. The first few are

E0 = 1, E2 = −1, E4 = 5, E6 = −61,

while those with odd index are zero.

The numbers s(n, k) in the generating function

∞∑
n=0

s(n, k)
xn

n!
= (ln(1 + x))k

k!
, |x| < 1,

and the numbers S(n, k) in the generating function

∞∑
n=0

S(n, k)
xn

n!
= (e

x − 1)k

k!

are called Stirling numbers of the first and second

kind, respectively. They are defined for 0 � k � n
and are named after James Stirling. The Stirling num-

bers of the second kind have the following combinato-

rial interpretation: S(n, k) is the number of partitions
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of {1,2, . . . , n} into exactly k nonempty subsets. For

example, S(4,2) = 7, since

{1,2,3,4} = {1} ∪ {2,3,4} = {2} ∪ {1,3,4}
= {3} ∪ {1,2,4} = {4} ∪ {1,2,3}
= {1,2} ∪ {3,4} = {1,3} ∪ {2,4}
= {1,4} ∪ {2,3}.

3 The Gamma Function and Related Functions

The triangular numbers Tn = 1 + 2 + · · · + n can be

written as 1
2n(n+1). Euler thought that it must be pos-

sible to express n! = 1 · 2 · · · · · (n− 1) ·n as a simple

formula (the factorial notation was not used by Euler).

In 1729 he proved that for n! such a simple formula

does not exist, but he did come up with the formula

n! =
∫ 1
0 (− lnx)n dx. Nowadays, this integral is written

as

Γ (z) =
∫∞

0
tz−1e−t dt, Rez > 0, (1)

which is obtained when we use the values t = − lnx and

n = z − 1. This notation was formulated by Legendre

in 1809, and he also coined the term “gamma function”

for Γ .

The fundamental property Γ (z + 1) = zΓ (z) follows

easily by integrating by parts in (1), and this relation

shows that the singularities at z = 0,−1 − 2, . . . are

poles of first order. From the Maclaurin expansion of

e−t and the Prym decomposition

Γ (z) =
∫ 1

0
tz−1e−t dt +

∫∞

1
tz−1e−t dt,

we obtain the expansion due to Mittag-Leffler

Γ (z) =
∞∑
n=0

(−1)n

n!(n+ z) +
∫∞

1
tz−1e−t dt,

where z �= 0,−1,−2, . . . . As the integral is an entire

function of z, we see that the pole at z = −n has a

residue (−1)n/n!.

There is another definition as an infinite product,

1
Γ (z)

= zeγz
∞∏
n=0

((
1 + z

n

)
e−z/n

)
,

where γ is Euler’s constant, defined by the limit

γ = lim
N→∞

( N∑
n=1

1
n

− lnN
)
= 0.5772 . . . . (2)

From the infinite product it follows that

Γ (z) = lim
n→∞

n!nz

z(z + 1) · · · (z +n) .

Important properties are the reflection formula (due
to Euler (1771))

Γ (z)Γ (1 − z) = π
sin(πz)

, z ≠ an integer, (3)

and the duplication formula

Γ ( 1
2 )Γ (2z) = 22z−1Γ (z)Γ (z + 1

2 ),

where z �= 0,−1,−2, . . . and Γ ( 1
2 ) =

√
π .

A closely related special function is the beta integral,
defined for Rep > 0 and Req > 0 by

B(p, q) =
∫ 1

0
tp−1(1 − t)q−1 dt. (4)

The relationship between the beta integral and the
gamma function is given by

B(p, q) = Γ (p)Γ (q)
Γ (p + q) .

The derivative of the gamma function itself does not
play an important role in the theory and applications of
special functions. It is not a very manageable function.
Much more interesting is the logarithmic derivative:

ψ(z) = d
dz

ln Γ (z) = Γ
′(z)
Γ (z)

.

It satisfies the recursion relationψ(z+1) = ψ(z)+1/z
and it has an interesting series expansion:

ψ(z) = −γ +
∞∑
n=0

(
1

n+ 1
− 1
z +n

)
,

for z ≠ 0,−1,−2, . . . .
Stirling’s asymptotic formula for factorials

n! ∼
√

2πnnne−n, n→ ∞, (5)

has several refinements, first in the form

Γ (z) =
√

2π/z zze−z+μ(z), μ(z) = θ/z, (6)

with 0 < θ < 1, if z > 0, and second in the form

Γ (z) ∼
√

2π/z zze−z
∞∑
n=0

an
zn
, (7)

which is valid for large z inside the sector −π < phz <
π (where phz = argz is the phase or argument of z).
The first few coefficients are

a0 = 1, a1 = 1
12 , a2 = 1

288 , a3 = − 139
51 840 .

For the asymptotic expansion of the logarithm of the
gamma function the coefficients are explicitly known
in terms of Bernoulli numbers:

ln Γ (z) ∼ (z − 1
2 )− z + 1

2 ln(2π)

+
∞∑
n=1

B2n

2n(2n− 1)z2n−1
, (8)
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which is again valid for large z inside the sector −π <
phz < π . This expansion is more efficient than the one
in (7) because it is in powers of z−2. Moreover, estimates
of the remainder in the expansion in (8) are available.

4 The Riemann Zeta Function

The Riemann zeta function is defined by the series

ζ(s) =
∞∑
n=1

1
ns
, Re s > 1. (9)

This function was known to Euler, but its main proper-
ties were discovered by Riemann. A well-known result
in analysis is the divergence of the harmonic series∑∞
n=1(1/n) (see (2)), and indeed, the Riemann zeta

function has a singular point at s = 1, a pole of order 1.
The limit lims→1(s − 1)ζ(s) exists and equals 1. Apart
from this pole, ζ(s) is analytic throughout the complex
s-plane.

The relationship between the Riemann zeta function
and the gamma function is shown in the reflection
formula:

ζ(1 − s) = 2(2π)−sΓ (s)ζ(s) cos( 1
2πs), s �= 0. (10)

The most remarkable thing about ζ(s) is its relation-
ship with the theory of prime numbers. We demon-
strate one aspect of this relationship here. Assume that
Re s > 1. Subtract the series for 2−sζ(s) from the one
in (9). We then obtain

(1 − 2−s)ζ(s) = 1
1s

+ 1
3s

+ 1
5s

+ 1
7s

+ · · · .

Similarly, we obtain

(1 − 2−s)(1 − 3−s)ζ(s) =
∑ 1
ns
,

where the summation now runs over n � 1, except for
multiples of 2 and 3. Now, let pn denote the nth prime
number, starting with p1 = 2. By repeating the above
procedure we obtain

ζ(s)
m∏
n=1

(1 − p−s
n ) = 1 +

∑ 1
ns
,

where the summation runs over integers n > 1, except
for multiples of the primes p1, p2, . . . , pm. The sum of
this series vanishes as m → ∞ (since pm → ∞). From
this we obtain the result:

1
ζ(s)

=
∞∏
n=1

(1 − p−s
n ), Re s > 1. (11)

This formula is of fundamental importance to the rela-
tionship between the Riemann zeta function and the
theory of prime numbers.

An immediate consequence is that ζ(s) does not

have zeros in the half-plane Re s > 1. The reflection

formula (10) makes it clear that the only zeros in the

half-plane Re s < 0 occur at the points −2,−4,−6, . . . .
These are called the trivial zeros of the zeta function.

Riemann conjectured that all the zeros in the strip

0 � Re s � 1 (it is known that there are infinitely many

of them) are located on the line Re s = 1
2 . This conjec-

ture, the Riemann hypothesis, has not yet been proved

or disproved. An important part of number theory is

based on this conjecture. Much time has been spent on

attempting to verify or disprove the Riemann hypoth-

esis, both analytically and numerically. It is one of the

seven Millennium Prize Problems of the Clay Mathemat-

ics Institute, with a prize of $1 000 000 on offer for its

resolution.

5 Gauss Hypergeometric Functions

The Gauss hypergeometric function,

F(a, b; c;z) = 1 + ab
c
z + a(a+ 1)b(b + 1)

c(c + 1)2!
z2 + · · · ,

plays a central role in the theory of special functions.

(We always assume that c �= 0,−1,−2, . . . .) With more

compact notation,

F(a, b; c;z) =
∞∑
n=0

(a)n(b)n
(c)n n!

zn, |z| < 1, (12)

where Pochhammer’s symbol (a)n is defined by

(a)n = Γ (a+n)
Γ (a)

= (−1)nΓ (1 − a)
Γ (1 − a−n) ,

using (3). Many special cases arise in the area of orthog-

onal polynomials (see section 7), in probability theory

(as distribution functions: see section 6), and in physics

(as Legendre functions: see section 10).

When a = 0,−1,−2, . . . , the power series in (12)

terminates and F(a, b; c;z) becomes a polynomial of

degree −a. The same holds for b; note the symmetry

F(a, b; c;z) = F(b,a; c;z).
Euler knew of the hypergeometric function, but

Gauss made a more systematic study of it. The name

“hypergeometric series” was introduced by John Wallis

in 1655.

The geometric series 1/(1 − z) = 1 + z + z2 + · · · is

the simplest example, and more generally we have

(1 − z)−a =
∞∑
n=0

(a)n
n!

zn = F(a, b;b;z), |z| < 1, (13)
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for any b. Other elementary examples are

F( 1
2 ,1; 3

2 ;z2) = 1
2z

−1 ln([1 + z]/[1 − z]),
F( 1

2 ,1; 3
2 ;−z2) = z−1 arctanz,

F( 1
2 ,

1
2 ; 3

2 ;z2) = z−1 arcsinz,

F( 1
2 ,

1
2 ; 3

2 ;−z2) = z−1 ln(z +
√

1 + z2),

as well as complete elliptic integrals. We have

K(k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

= π
2
F( 1

2 ,
1
2 ; 1;k2)

for 0 � k2 < 1. Similarly, for 0 � k2 � 1,

E(k) =
∫ π/2

0

√
1 − k2 sin2 θ dθ = π

2
F(− 1

2 ,
1
2 ; 1;k2).

The integral representation

F(a, b; c;z) = Γ (c)
Γ (b)Γ (c − b)

×
∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−a dt

(14)

can be used when Re c > Reb > 0 and for |ph(1−z)| <
π . This representation extends the z-domain of the

function defined by the power series in (12) consid-

erably. The relationship between the integral in (14)

and the hypergeometric function follows if we expand

(1 − tz)−a as in (13) and using the beta integral (4).

Several other integral representations along contours

in the complex plane that have fewer or no restrictions

on the parametersa, b, and c can be obtained from (14).

The function F(a, b; c;z) satisfies the differential

equation (given by Gauss)

z(1 − z)F ′′ + (c − (a+ b + 1)z)F ′ − abF = 0. (15)

From the theory of differential equations it follows that

(15) has three regular singular points, at z = 0, z = 1,

and z = ∞.

A function may be expressed in terms of hyper-

geometric functions in several different ways. The

example (1−z)−1 = F(1, b;b;z) demonstrates the basic

idea. We can write

1
1 − z = −1

z(1 − 1/z)
= −1

z
F(1, b;b; 1/z). (16)

We therefore have a second representation of (1−z)−1

but with a different domain of convergence of the

power series, |z| > 1. In the general case, F(a, b; c;z)
can be written as a linear combination of other F -func-

tions, with different a, b, and c, and power series in z,

1/z, 1 − z, z/(z − 1), 1/(1 − z), or 1 − 1/z.

The simplest general set of such relations is

F(a, b; c;z) = (1 − z)−aF(a, c − b; c;z/(z − 1))

= (1 − z)−bF(c − a,b; c;z/(z − 1))

= (1 − z)−a−bF(c − a, c − b; c;z).

The first of these follows most easily from changing
the variable of integration in (14), t  → (1 − t), the sec-
ond from the symmetry in F(a, b; c;z) with respect to
a and b, and the third from using the first or second
relation twice. This gives another way of extending the
z-domain of the function defined by the power series
in (12).

The Gauss hypergeometric function has many gener-
alizations, of which we mention the most natural one,
which takes the form

pFq
(a1, a2, . . . , ap
b1, b2, . . . , bq

; z
)

=
∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

zn

n!
, (17)

which is convergent for |z| < 1 if p = q + 1 or
for all z when p � q. All bj should be different
from 0,−1,−2, . . . . Note that the Gauss hypergeometric
function F = 2F1.

6 Probability Functions

An essential concept in probability theory is the cumu-
lative distribution function F(x). It is defined on the
real line, and it is nondecreasing with F(−∞) = 0 and
F(∞) = 1. Other intervals are also used. The normal or
Gaussian distribution

P(x) = 1√
2π

∫ x
−∞

e−t
2/2 dt

is a major example. The error functions

erfx = 2√
π

∫ x
0

e−t
2

dt, erfcx = 2√
π

∫∞

x
e−t

2
dt

are also used, and the following relationship holds:
erfx + erfcx = 1. P(x) and the complementary func-
tionQ(x) = 1−P(x) are related to erfc in the following
ways:

P(x) = 1
2 erfc(−x/

√
2), Q(x) = 1

2 erfc(x/
√

2).

Error functions occur in other branches of applied
mathematics, heat conduction, for example. Extra pa-
rameters such as mean and variance can be included
in the basic forms. An extensive introduction to prob-
ability functions can be found in Johnson et al. (1994,
1995).
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More degrees of freedom are available in the incom-
plete beta function ratio Ix(p, q), which is based on the
beta integral in (4) and is given by

Ix(p, q) = 1
B(p, q)

∫ x
0
tp−1(1 − t)q−1 dt,

with x ∈ [0,1] and p,q > 0. Special cases are the
F -(variance-ratio) distribution and Student’s t-distribu-
tion. The function Ix(p, q) can be written as a Gauss
hypergeometric function.

For the gamma distribution we split up the integral
in (1) that defines the gamma function. This gives the
incomplete gamma function ratios

P(a,x) = 1
Γ (a)

∫ x
0
ta−1e−t dt,

Q(a,x) = 1
Γ (a)

∫∞

x
ta−1e−t dt,

where a > 0. The functions P(a,x) and Q(a,x) can be
written in terms of confluent hypergeometric functions
(see section 8).

A further generalization is the noncentral χ2 distri-
bution, which can be defined by the integral

Pμ(x,y) =
∫ y

0

(
z
x

)(μ−1)/2
e−x−zIμ−1(2

√
xz)dz, (18)

where Iμ is a modified Bessel function (see section 9).
The complementary function is Qμ = 1 − Pμ , and this
function also plays a role in physics, for instance in
problems on radar communications, where it is called
the generalized Marcum Q-function.

In terms of the incomplete gamma function ratios we
have the expansions

Pμ(x,y) = e−x
∞∑
n=0

xn

n!
P(μ +n,y),

Qμ(x,y) = e−x
∞∑
n=0

xn

n!
Q(μ +n,y).

In statistics and probability theory one is more famil-
iar with the definition through the χ2 probability func-
tions, which are defined by

P(χ2 | ν) = P(a,x), Q(χ2 | ν) = Q(a,x),
where ν = 2a and χ2 = 2x. The noncentral χ2 distri-
bution functions are then defined by

P(χ2 | ν, λ) =
∞∑
n=0

e−λ/2
( 1

2λ)
n

n!
P(χ2 | ν + 2n),

Q(χ2 | ν, λ) =
∞∑
n=0

e−λ/2
( 1

2λ)
n

n!
Q(χ2 | ν + 2n),

where λ � 0 is called the noncentrality parameter.

7 Orthogonal Polynomials

These special functions arise in many branches of pure

and applied mathematics. For example, the Hermite

polynomials Hn play a role in the form e−x
2/2Hn(x) as

eigenfunctions of the Schrödinger equation for a linear

harmonic oscillator.

Let pn be a polynomial of degree n defined on

(a, b), a real interval, where a = −∞ and/or b = +∞
are allowed. Let w be a nonnegative weight function

defined on (a, b). Suppose that∫ b
a
pn(x)pm(x)w(x)dx = 0 (19)

if and only if n �= m. Then the family {pn} consti-

tutes a system of orthogonal polynomials on (a, b)with

respect to weight w.

Orthogonal polynomials can also be defined with

Lebesgue measures, on curves in the complex plane

(such as the unit circle), and with respect to discrete

weight functions or measures. In the last case, the

integral in (19) becomes a sum.

The families of polynomials associated with the

names of Jacobi, Gegenbauer, Chebyshev, Legendre,

Laguerre, and Hermite are called the classical orthog-

onal polynomials. They share many features, and they

have the following characteristics:

(i) the family {p′
n} is also an orthogonal system;

(ii) the polynomial pn satisfies a second-order linear

differential equation A(x)y′′ +B(x)y′ +λny = 0,

where A and B do not depend on n and λn does

not depend on x; and

(iii) there is a Rodrigues formula of the form

pn(x) = 1
Knw(x)

dn

dxn
(w(x)Xn(x)),

where X(x) is a polynomial with coefficients not

depending on n, and Kn does not depend on x.

These three properties are so characteristic that any

system of orthogonal polynomials that has them can

be reduced to classical orthogonal polynomials.

Classical orthogonal polynomials satisfy recurrence

relations of the form

pn+1(x) = (anx + bn)pn(x)− cnpn−1(x) (20)

for n = 1,2, . . . .
In 1815, Gauss introduced the use of orthogonal

polynomials in numerical quadrature for the Legendre

case a = −1, b = 1, w(x) = 1. The general formula



232 IV. Areas of Applied Mathematics

for a family {pn} of polynomials that are orthogonal
on the interval (a, b) with weight w(x) is∫ b

a
w(x)f(x)dx =

n∑
k=1

λk,nf (xk,n)+ Rn,

where xk,n (the nodes) are the zeros of pn. Several
forms are available for the weights λk,n; if the pn are
orthonormal (

∫ b
a p2

n(x)w(x)dx = 1),

1
λk,n

=
n−1∑
j=1

p2
j (xk,n).

The remainder Rn = 0 for an arbitrary polynomial
f(x) = qm(x) with degree m not exceeding 2n− 1.

As an example, consider the Hermite polynomials
Hn(x). They have weight function e−x

2
on (−∞,∞);

they follow from the Rodrigues formula

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
;

they satisfy the differential equation y′′ − 2xy′ +
2ny = 0; they satisfy the recursion (20) with an = 2,
bn = 0, cn = 2n and initial values H0(x) = 1, H1(x) =
2x; and they have the generating function

e2xz−z2 =
∞∑
n=0

Hn(x)
n!

zn.

Jacobi, Gegenbauer, Legendre, and Chebyshev poly-
nomials are special cases of the Gauss hypergeometric
function. Laguerre and Hermite polynomials are spe-
cial cases of the confluent hypergeometric function (see
section 8).

8 Confluent Hypergeometric or
Kummer Functions

When we take b → ∞ in F(a, b; c;z/b), using the series
(12) and limn→∞(b)n/bn = 1, the result is 1F1(a; c;z)
(put p = q = 1 in (17)):

1F1(a; c;z) =
∞∑
n=0

(a)n
(c)n

zn

n!
. (21)

This series converges for all complex z, with the usual
exception c = 0,−1,−2, . . . . When a = c, 1F1(a;a;z) =
ez .

The function F(a, b; c;z/b) satisfies a differential
equation with three regular singularities: at z = 0, z =
b, and z = ∞. In the limit as b → ∞, two singularities
merge. This limiting process is called a confluence, and
so 1F1(a; c;z) is called the confluent hypergeometric
function. It satisfies the differential equation

zF ′′ + (c − z)F ′ − aF = 0, (22)

which has a regular singularity at z = 0 and an irregular

singularity at z = ∞.

We have the integral representation

1F1(a; c;z) = Γ (c)
Γ (a)Γ (c − a)

∫ 1

0
ta−1(1 − t)c−a−1ezt dt,

which is valid when Re c > Rea > 0. When we expand

the exponential function, we obtain the series in (21).

For a second solution of (22), we have

U(a, c, z) = 1
Γ (a)

∫∞

0
ta−1(1 + t)c−a−1e−zt dt,

where we assume Rez > 0 and Rea > 0.

The functions 1F1(a; c;z) and U(a, c, z) are named

after Kummer. Special cases are Coulomb functions,

Laguerre polynomials, Bessel functions, parabolic cylin-

der functions, incomplete gamma functions, Fresnel

integrals, error functions, and exponential integrals.

The Whittaker functions are an alternative pair of

Kummer functions and they have the following defini-

tions:

Mκ,μ(z) = e−z/2z1/2+μ
1F1( 1

2 + μ − κ; 1 + 2μ;z),

Wκ,μ(z) = e−z/2z1/2+μU( 1
2 + μ − κ,1 + 2μ, z).

These functions satisfy the differential equation

w′′ +
(
− 1

4
+ κ
z

+
1
4 − μ2

z2

)
w = 0.

Solutions of the differential equation

w′′ − ( 1
4z

2 + a)w = 0 (23)

can be expressed in terms of Kummer functions, but

they are often called Weber parabolic cylinder func-

tions, after Heinrich Weber, because they arise when

solving the Laplace equation ΔV = 0 by separating

the variables into parabolic cylindrical coordinates,

(ξ, η, z). These parabolic cylindrical coordinates are

related to rectangular coordinates (x,y, z) through the

equations x = 1
2c(ξ

2 − η2) and y = cξη, where c is a

scale factor. When ξ or η are kept constant, say ξ = ξ0

or η = η0, then we have

y2 = −cξ2
0(2x − cξ2

0), y2 = cη2
0(2x − cη2

0),

which are parabolas with foci at the origin.

Solutions of (23) can first be written in terms of Kum-

mer functions, and then linear combinations give the

Weber functions, U(a,±z) and V(a,±z). One can also

use the notation Dν(z) = U(− 1
2 − ν, z); this function

can be written in terms of a Hermite polynomial when

ν = 0,1,2, . . . .
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9 Bessel Functions

Bessel functions show up in many physics and engi-
neering problems, in Fourier theory and abstract har-
monic analysis, and in statistics and probability theory.
Most frequently they occur in connection with differen-
tial equations. The earliest systematic study was under-
taken by Bessel in 1824 for a problem connected with
planetary motion. For historical notes and an extensive
treatment, see Watson (1944).

We have seen the modified Bessel function Iμ(z) in
the noncentral χ2 distribution, (18). In mathematical
physics Bessel functions are most commonly associ-
ated with the partial differential equations of the poten-
tial problem, wave motion, or diffusion, in cylindrical or
spherical coordinates. By separating the variables with
respect to these coordinates in the time-independent
wave equation (the Helmholtz equation) Δv +k2v = 0,
several differential equations are obtained and one of
them can be put in the form of the Bessel differential
equation:

z2w′′ + zw′ + (z2 − ν2)w = 0. (24)

Proper normalizations and combinations of solutions
of (24) give the ordinary Bessel functions

Jν(z), Yν(z), H(1)ν (z), H(2)ν (z), (25)

also called cylinder functions, where ν is the order of
these functions. The modified Bessel functions Iν(z)
and Kν(z) follow from these with z replaced by ±iz.

In physical problems with circular or cylindrical sym-
metry Bessel functions with order ν = n, an inte-
ger, are used, while in spherical coordinates the Bessel
functions arise with ν = n+ 1

2 .

Bessel functions of order ± 1
3 with argument 2

3z
3/2

are named Airy functions after George Biddell Airy,
a British astronomer, who used them when studying
rainbow phenomena. Airy functions are solutions of
the differential equation w′′ = zw. The real solutions
are oscillatory for z < 0 and exponential for z > 0.
Airy’s equation is the simplest second-order linear dif-
ferential equation that shows such a turning point (at
z = 0).

Other special functions with turning-point behav-
ior can be approximated in terms of Airy functions.
The function w(z) = √

zCν(νz), where Cν(z) is any
cylinder function that appears in (25), satisfies the
differential equation

w′′ +
(
ν2 1 − z2

z2
− 1

4z2

)
w = 0.

For large values of ν this equation has turning points
at z = ±1. In fact, the cylinder functions Cν(z) of
large order ν show turning-point behavior at z = ν .
Airy functions can be used to give powerful asymptotic
approximations (Olver 1997).

10 Legendre Functions

The associated Legendre functions Pμν (z) and Qμν(z)
satisfy Legendre’s differential equation

(1− z2)w′′ − 2zw′ +
(
ν(ν + 1)− μ2

1 − z2

)
w = 0. (26)

This equation has regular singularities at ±1 and ∞,
and it can therefore be transformed into the equation
of the Gauss hypergeometric functions (15). In fact,

Pμν (z) = ζμ/2

Γ (1 − μ)F(−ν, ν + 1; 1 − μ; 1
2 − 1

2z), (27)

where ζ = (z + 1)/(z − 1) and the branch cut is such
that phζ = 0 if z ∈ (1,∞). When z = x ∈ (−1,1), a real
solution is defined by replacing ζ with (1+x)/(1−x)
in (27).

We describe a few special cases that are relevant in
boundary-value problems for special choices of Legen-
dre functions and for specific domains: spheres, cones,
and tori. Many problems in other domains, however,
such as in a spheroid or a hyperboloid of revolution,
can be solved using Legendre functions.

10.1 Spherical Harmonics

These functions arise in a variety of applications, in par-
ticular in investigating gravitational wave signals from
a pulsar and in tomographic reconstruction of signals
from outer space.

First we consider the subclass of associated Legendre
functions defined by the Rodrigues-type formula

Pmn (x) = (−1)m
(1 − x2)m/2

2n n!
dn+m

dxn+m
(x2 − 1)n,

where n, m are nonnegative integers and x ∈ (−1,1).
For fixed order m they are orthogonal with respect to
the degreen, with weight functionw(x) = 1 on (−1,1).
For m = 0 they become the well-known Legendre
polynomials, Pn(x).

The Pmn (x) are used in representations of spherical
harmonics, which are given by

Ymn (θ,φ) = Nmn Pmn (cosθ)eimφ, (28)

where Nmn is used for normalization and does not
depend on θ orφ. These variables represent colatitude
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and longitude, respectively, on the sphere in the inter-
vals θ ∈ [0, π] (from north pole to south pole) and
φ ∈ [0,2π) (also called the azimuth).

The general bounded solution to Laplace’s equation,
Δf = 0, inside the unit sphere centered at the origin,
r = 0, is a linear combination

f(r , θ,φ) =
∞∑
n=0

n∑
m=−n

fmn rnYmn (θ,φ). (29)

The constants fmn can be computed when bound-
ary values on the sphere are given using orthogo-
nality relationships for Pmn (x) and the trigonomet-
ric elements. When the boundary values are given as
a real square-integrable function, the expansion (29)
converges inside the unit sphere.

10.2 Conical Functions

Conical functions Pμ−1/2+iτ(x) and Qμ−1/2+iτ(x) appear
in a large number of applications in engineering,
applied physics, cosmology, and quantum physics.
They occur in boundary-value problems involving con-
figurations of a conical shape. They are also the ker-
nel of the Mehler–Fock transform, which has numerous
applications. The functions were introduced by Gustav
Ferdinand Mehler in 1868, when he was working with
series that express the distance of a point on the axis
of a cone to a point located on the surface of the cone.

The integral representation

Pμ−1/2+iτ(cosθ)

=
√

2
π
(sinθ)μ

Γ ( 1
2 − μ)

∫ θ
0

cosh(τt)dt
(cos t − cosθ)μ+1/2 ,

with real τ , 0 < θ < π , and Reμ < 1
2 , shows that this

function is real for these values of the parameters.

The specific focus in physics is on the case when μ =
m, an integer. When this is the case, we can use

Pm−1/2+iτ(x) = ( 1
2 + iτ)m( 1

2 − iτ)mP−m
−1/2+iτ(x)

to obtain representations for all m.

10.3 Toroidal Harmonics

Toroidal harmonics are used to solve the potential
problem in a region bounded by a torus. The toroidal
coordinates (ξ, η,φ), with 0 � ξ < ∞, −π < η, φ � π ,
are related to the rectangular coordinates x, y , z (or
r , φ, z in cylindrical coordinates) through x = r cosφ,
y = r sinφ,

r = c sinhξ
coshξ − cosη

, z = r sinη
sinhξ

,

where c is a scale factor. The coordinates are chosen so
that ξ = ξ0 represents the toroidal surface.

The general solution of ΔΨ = 0 in toroidal coordin-
ates can be written in the form

Ψ(ξ, η,φ)

=
√

coshξ − cosη

×
∞∑

n,m=0

cosn(η− ηmn) cosm(φ−φmn)

× (AmnPmn−1/2(coshξ)+ BmnQmn−1/2(coshξ)),

where Amn, Bmn, ηmn, andφmn have to be determined
from the boundary condition.

11 Functions from Other
Boundary-Value Problems

The special functions mentioned in sections 5–10 are
all of hypergeometric type. All these functions were
known by 1850, usually as a result of the interaction
between mathematicians and physicists. In 1868, Math-
ieu used a different curvilinear coordinate system from
those used up to that point when he considered ellip-
tic cylinder coordinates. Other, more general systems
(such as oblate and prolate spheroidal and ellipsoidal
systems) were introduced soon after.

Actually, there are eleven three-dimensional coordi-
nate systems in which the time-independent wave equa-
tion, Δv +k2v = 0, is separable. The Laplace equation,
Δv = 0, is separable in two more systems (the bipolar
and bispherical systems).

The systems introduced since the time of Mathieu
can be solved in terms of special functions, but these
functions are not of hypergeometric type.

mathieu’s differential equation [III.21] is

w′′ + (λ− 2h2 cos 2x)w = 0.

The substitution t = cosx transforms this equation
into an algebraic form that has two regular singularities
at t = ±1 and one irregular singularity at infinity. This
implies that, in general, the solutions of Mathieu’s equa-
tion cannot be expressed in terms of hypergeometric
functions.

Another special feature is that, in general, no explicit
representations of solutions of Mathieu’s equation
(in the form of integrals, say) are known. Nor can
explicit power-series expansions or Fourier expansions
be derived: the coefficients are solutions of three-term
recurrence relations, and with a given value of h, con-
vergent expansions can be obtained for an infinite num-
ber of eigenvalues λ. These features also apply for other
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differential equations that follow from the boundary-
value problems with solutions that are beyond the class
of hypergeometric functions.

12 Painlevé Transcendents

For linear second-order differential equations the loca-
tion and nature of the singularities of the equation
can be investigated easily; we need only know the
coefficients in the differential equations.

For nonlinear equations this is not the case, as we see
from the simple example y′ = 1 +y2. No singularities
occur in the coefficients of this equation. The solution
y = tan(x−x0), however, has poles galore. In the exam-
ple y′ = −y2, we have the solution y = 1/(x − x0),
where x0 is again a free constant.

The properties of these nonlinear equations are also
found in painlevé equations [III.24], a topic that has
attracted many researchers in recent decades. The solu-
tions of the simple equations just mentioned are ana-
lytic except for poles. In the context of Painlevé equa-
tions, the poles of y = tan(x−x0) and y = 1/(x−x0)
are called movable poles: their locations change accord-
ing to the initial values. Types of singularities other
than poles, such as branch points and logarithmic
singularities, may occur in other examples.

In 1900, Painlevé found the six equations now named
after him by classifying second-order ordinary differen-
tial equations in a certain class. Painlevé equations have
the property that all movable singularities in the com-
plex plane of all solutions are poles, and this property
is called the Painlevé property. The first three equations
are

y′′ = 6y2 + x, y′′ = 2y3 + xy +α,

y′′ = (y
′)2

y
− y

′

x
+ 1
x
(αy2 + β)+ γy3 + δ

y
,

where α, β, γ, and δ are constants.
We have already discussed the important role that

special functions (Bessel, Kummer, and so on) play in
mathematical physics as solutions of linear differential
equations. The Painlevé transcendents play an analo-
gous role for nonlinear ordinary differential equations,
and applications can be found in many areas of physics
including nonlinear waves, plasma physics, statistical
mechanics, nonlinear optics, and fibre optics.

13 Concluding Remarks

We have given an overview of a selection of the clas-
sical special functions, but there are many other func-

tions we could have chosen to look at. We mention a

few other important topics.

The theory of Lie groups, and in particular their rep-

resentation theory, has shown how special functions

can be interpreted from a completely different point

of view. In the setting of q-functions, difference equa-

tions become a source for special functions. In recent

decades we have seen a boom in q-hypergeometric

function research.

Other areas of active research are the study of Jacobi

elliptic functions, the study of theta functions, and

the study of Weierstrass elliptic and related functions.

Since the turn of the century the relationship between

the theory of elliptic functions and the theory of ellip-

tic curves has been extensively explored, and this rela-

tionship was used by Andrew Wiles to prove Fermat’s

last theorem. A class of elliptic curves is used in some

cryptographic applications as well as for integer fac-

torization. Applications of theta functions are found in

physics, where they are used as solutions of diffusion

equations.

In the further reading list below we mention only a

few key works. In the NIST Handbook of Mathematical

Functions, nearly all of the formulas we have discussed

are given with extensive references to the relevant lit-

erature, including where to find a proof. Graphs of the

functions are also shown.
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IV.8 Spectral Theory
E. Brian Davies

1 Introduction

Applications of spectral theory arise in a wide range of

areas in applied mathematics, physics, and engineer-

ing, but there are also applications to geometry, prob-

ability, and many other fields. The origins of spectral

theory can be traced to Laplace at the start of the nine-

teenth century and, if one includes its connections with

musical harmonies, back to Pythagoras 2500 years ago.

Its present-day manifestations cover everything from

the design and testing of mechanical structures to the

algorithms that are used in the Google search engine.

There is an extensive mathematical theory behind the

subject, and there are computer packages (some highly

specialized but others, such as MATLAB, of a more gen-

eral character) that enable scientists and engineers to

determine the spectral features of the problems that

they are studying. Spectral theory is often important

for its own sake, but it can also be used as a way of writ-

ing the solution of a problem as a linear combination

of the solutions of a sequence of eigenvalue problems.

The word eigenvalue is a combination of the German

root “eigen,” meaning characteristic or distinctive, and

the English word “value,” which suggests that one is

seeking a numerical quantity λ that is naturally associ-

ated with the application being considered. This num-

ber is often interpreted as the energy or frequency of

some nonzero solution f of an equation of the form

Lf = λf . (1)

The symbol L refers to the linear operator that de-

scribes the particular problem being considered. The

solution f of the equation is called the eigenfunc-

tion (or eigenvector, depending on the context) corre-

sponding to the eigenvalue λ, and it may be a func-

tion of one or more variables. Although much of the

literature concentrates on determining the eigenvalues

of some model, the eigenfunctions carry much more

information.

Depending on the particular evolution equation in-

volved, if an eigenvalue λ = u + iv associated with

some problem is complex, then u is interpreted as the

frequency of oscillation or vibration of the system being

studied. If v < 0 then the vibration being considered is

stable and v is interpreted as its rate of decay. If v > 0

then the vibration is unstable and the size of v deter-

mines how unstable; unstable vibrations in engineering

structures can lead to catastrophic failure.

We conclude the introduction by mentioning inverse

problems [IV.15], in which one seeks to determine

important features of some problem from measure-

ments of its associated spectrum. This field has a

wide variety of important applications, ranging from

engineering to seismology.

2 Some Applications

In this section we describe a few applications of spec-

tral theory. These applications raise issues of great

importance in their respective subjects as presently

practised. Further applications are mentioned at the

end of the section, but these by no means exhaust the

possibilities.

Many physical structures, from violin strings and

drums to turbines and skyscrapers, vibrate under suit-

able circumstances, and in general the larger the struc-

ture, the more slowly it vibrates. It is often important to

know what the precise frequency of vibration is going

to be before manufacturing a structure because adjust-

ments after construction may be very expensive or even

impossible. Calculating the frequencies of the impor-

tant modes of vibration is now a well-developed branch

of engineering. Nevertheless, mistakes are occasionally

made.

As an example we mention the Millennium Bridge,

which crosses the Thames river in London and was

opened on June 10, 2000. Two days later it was closed,

for two years, because of an unexpected flaw in its

design. The problem was that when a large number

of pedestrians were on the bridge, they experienced a

lateral wobble, and this wobble caused them to adjust

their steps in order to stay upright. Unfortunately, this

caused them to start walking in synchrony, with the

effect that the lateral vibrations were enhanced until

they became potentially dangerous—to the people on

the bridge rather than to the bridge itself. The modeling

of the vibrations of the bridge had clearly not been ade-

quate. The problem was eventually resolved by insert-

ing a number of specially designed viscous dampers

underneath the structure. In spectral terms the effect

was to move the eigenvalues further away from the real

axis so that there was still a damping effect even when

the oscillations were driven by pedestrian effects. This

solved the problem, but at a cost of about £5 million.
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The design of aircraft involves similar problems but
in a much more serious form. Since the cost of a mod-
ern airliner can be over 100 million dollars, it is imper-
ative that unstable vibrations in the wings and control
surfaces be anticipated and eliminated before manu-
facturing starts. Aircraft have to operate over a wide
range of speeds and altitudes and with different load-
ings. Because an airliner uses so much fuel, its land-
ing weight can be a third less than it was when tak-
ing off. The relevant eigenvalue calculations are time-
consuming and expensive, and one cannot repeat them
for every possible set of parameters that might be
encountered in operation. The best that one can do
is to try to ensure that all of the relevant eigenvalues
have large enough negative imaginary parts for a range
of plausible values of the operational parameters. For
commercial airliners, going too far in this direction
reduces the efficiency of the design and hence the
profitability.

We turn to applications of spectral theory in chem-
istry. In the nineteenth century, Joseph von Fraunhofer
and others discovered that if one heated a chemical ele-
ment until it glowed and then passed the light emit-
ted through a spectroscope, one could see a series of
sharp lines. The frequencies of these lines could be
measured precisely, and they could be used to identify
the elements involved.

The spectroscopic lines for hydrogen have frequen-
cies of the form

Em,n = c
(

1
m2

− 1
n2

)
,

wherem and n are positive integers, but no reason was
known for the validity of this formula until quantum
theory was invented in 1925/26; we shall refer below to
energies, which are proportional to frequencies in this
context. It was found that the element hydrogen was
described by a differential operator whose (discrete, or
bound state) eigenvalues were given by λn = −c/n2,
where c is the same constant as above. The spectro-
scopic energies are not the eigenvalues of the oper-
ator but differences of eigenvalues, the reason being
that they measure the energy of the photon emitted
by an atom when it makes a transition between one
energy level and another. By the law of conservation
of energy, this equals the difference between the two
relevant energy levels of the hydrogen atom.

The new quantum theory [IV.23] was fully accepted
when the energy levels of helium were calculated
and found to be in agreement with spectroscopic
observations. Since that time, tens of thousands of

spectral lines of elements and chemical compounds
have been calculated and observed. If relativistic effects
are included in the models, the calculations agree with
observation in great detail.

The fact that such calculations are now possible
depends on the astonishing growth of computer power
over the last fifty years. In 1970 theoretical chemists
were often dismissed by “real” chemists, who knew
that their problems would never be solved by purely
theoretical methods. Some people persisted in spite of
this discouragement, and in the end two theoretical
chemists, Walter Kohn and John Pople, were awarded
a joint Nobel Prize in 1998 for their work developing
computational quantum chemistry over three decades.
The hard grind of these pioneers has now placed them
at the center of chemistry and molecular biology.

One of the stranger “applications” of spectral theory
is the apparent connection between the distribution of
the zeros of the Riemann zeta function and the dis-
tribution of the eigenvalues of a large random self-
adjoint matrix. There is no known rigorous argument
relating the zeros of the Riemann zeta function to the
eigenvalues of any self-adjoint matrix or operator, but
the numerical similarities observed in the two fields
have led to a number of deep conjectures, some of
which have been proved rigorously. There is no basis
for assuming that this line of investigation will lead
to a proof of the Riemann hypothesis, but anything
that prompts worthwhile conjectures must be taken
seriously.

Finally, we mention that this volume contains a sep-
arate article on random-matrix theory [IV.24], in
which spectral theory is only one of several tech-
niques involved. We have also avoided any discus-
sion of spectral issues in fluid mechanics [IV.28] and
solid mechanics [IV.32].

3 The Mathematical Context

Spectral theory involves finding the spectra of linear
operators that approximate the behavior of a variety of
systems; we mention some nonlinear eigenvalue prob-
lems in the final section. The subject has a body of gen-
eral theory, some of which is quite difficult, but also a
large range of techniques that are applicable only in
particular cases. These are constantly being refined,
and completely new ways of approaching problems
also appear at irregular intervals.1

1. A variety of recent developments in the subject are described in
Davies (2007).
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Applications of spectral theory require the introduc-
tion of appropriate mathematical models. The choice of
model always involves a compromise between simplic-
ity and accuracy. Pure mathematicians are more inter-
ested in obtaining insights that can be applied to a
range of similar operators, and they tend to consider
simple generic models. Obtaining insights has tradi-
tionally been associated with the proof of theorems,
but experimental mathematicians also obtain insights
by testing a wide range of examples using appropriate
software. The ultimate goal of numerical analysts is to
produce software that can be used by a wide variety of
people who have no interest in how it works and who
may use it for purposes that were never envisaged when
it was written. On the other hand, applied mathemati-
cians and physicists may be willing to spend months
or even years studying particular problems that are of
crucial importance for their group of researchers.

3.1 Finite Matrices

We start by considering the simplest case, in which one
wishes to solve Af = λf , where A is a general n×n
matrix and f is a column vector with length n. The
existence of a nonzero solution f is equivalent to λ
being a solution of the equation

det(A− λI) = 0.

This is a polynomial equation of degree n, so it must
have n solutions λ1, . . . , λn by the fundamental theo-
rem of algebra. The simplest case arises when these
solutions are all different. If this happens, let vr be
an eigenvector associated with λr for each r . Then
v1, . . . , vn is a basis for Cn and A has a diagonal matrix
with respect to this basis.

In general, no such basis exists. At the other extreme,
the Jordan block ⎛⎜⎜⎜⎜⎝

c 1 0 0

0 c 1 0

0 0 c 1

0 0 0 c

⎞⎟⎟⎟⎟⎠
has only one eigenvalue, namely c, and only one eigen-
vector, up to scalar multiples. Every finite matrix is
similar to a sum of such Jordan blocks (see jordan

canonical form [II.22]).

It used to be argued that such pathologies are irrel-
evant in the real world; generically, all roots of a poly-
nomial are different, and hence all eigenvalues of an
n×n matrix are generically distinct. Unfortunately,
highly non-self-adjoint matrices of even moderate size

are often ill-conditioned, in the sense that the attempt
to diagonalize them leads to highly unstable computa-
tions, in spite of the fact that the eigenvalues are all dis-
tinct. Numerical analysts have to take ill-conditioning
into account for all algorithms that might be applied
to non-self-adjoint matrices. One of the ways of doing
this involves pseudospectral theory, a new branch of
the subject that investigates the implications of, and
connections between, different types of ill-conditioning
(see Trefethen and Embree 2005).

Problems of the above type do not occur for self-
adjoint or normal matrices, i.e., those that satisfy A =
A∗ or AA∗ = A∗A, respectively. In both cases one has

‖(λI −A)−1‖ = dist(λ, Spec(A))−1

for all λ that do not lie in the spectrum Spec(A) of A,
provided ‖·‖ is the operator norm, defined below. This
is in sharp contrast to the general case, in which the left-
hand side may be vastly bigger than the right-hand side,
even for fairly small and “reasonable” matrices. In such
cases, it has been argued that the value of determining
the spectrum is considerably reduced.

3.2 Formalism

Most of the operators considered in spectral theory act
in infinite-dimensional vector spaces over the complex
number field. The detailed study of such operators is
rather technical, not because analysts like technicali-
ties but because spectra can have properties that do
not conform to one’s naive intuitions. One starts with a
complex hilbert or banach space [I.2 §19.4] B, with
norm ‖ · ‖. A linear operator A : B → B is said to be
bounded if its operator norm

‖A‖ = sup{‖Af‖ : ‖f‖ � 1}
is finite. One says that λ ∈ C lies in the spectrum
Spec(A) ofA if λI−A does not have a two-sided inverse
in the set of all bounded operators on B. The spectrum
of a bounded linear operator is always closed, bounded,
and nonempty. It contains any eigenvalues thatAmight
have, but can be larger than the set of all eigenvalues.
The spectral radius of A is defined by

ρ(A) = max{|λ| : λ ∈ Spec(A)},

and it satisfies

ρ(A) = lim
n→∞‖An‖1/n � ‖A‖.

The above definitions are not directly applicable to
differential operators or other unbounded linear oper-
ators. In such cases one considers a linear operator
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A : D → B, where the domain D of A is a norm-dense
linear subspace ofB. One needs to assume or prove that
A is closed in the sense that, if limn→∞ ‖fn−f‖ = 0 and
limn→∞ ‖Afn − g‖ = 0, then f ∈ D and Af = g. The
definition of the spectrum of an unbounded operator
is similar to that in the bounded case but also involves
reference to its domain. The spectrum of an unbounded
linear operator may be empty and it may equal C, but
it is always a closed set.

The spectrum of a linear operator is often hard to
determine. The fact that the spectrum of an arbitrar-
ily small perturbation of A may differ radically from
the spectrum of A implies that one has to be extremely
cautious about using numerical methods to determine
spectra unless one knows that this extreme sensitivity
does not arise for the operator of interest. A simple
example of this phenomenon is obtained as follows.
Given s ∈ R, one defines the bounded linear operator
As acting on the space -2(Z) by

(Asf )n =
⎧⎨⎩sfn+1 if n = 0,

fn+1 otherwise.

Some routine calculations establish that Spec(As) =
{z : |z| = 1} if s �= 0 but Spec(A0) = {z : |z| � 1}.
Indeed, every z such that |z| < 1 is an eigenvalue of
A0, in the sense that the corresponding eigenvector lies
in -2(Z).

3.3 Self-adjoint Operators

A bounded linear operator L acting on a Hilbert space
H with inner product 〈·, ·〉 is said to be self-adjoint if

〈Av,w〉 = 〈v,Aw〉 (2)

for all v,w ∈ H . The definition of self-adjointness
for unbounded operators is more technical. It implies
that (2) holds for all v , w in the domain of A, but it is
not implied by that condition, which is called symmetry
by specialists. The difference between self-adjointness
and symmetry was emphasized by John von Neumann
in the early days of quantum mechanics. It is often
evident that an operator of interest is symmetric, but
proving that it is self-adjoint can be very hard; indeed,
much of the literature before 1970 was devoted to this
question. The spectral theory of self-adjoint operators
is much more detailed and well understood than that
of non-self-adjoint operators.

The center point of the self-adjoint theory is the
spectral theorem, which was proved around 1930 by
von Neumann. There are various statements of this,
some easier to understand than others. Perhaps the

simplest is the statement that, if H is a self-adjoint
operator on the abstract Hilbert space H , then there
exists a unitary operator U from L2(X,dx) to H for
some measure space (X,dx) and a function f : X → R
such that

(U−1HUφ)(x) = f(x)φ(x)
for all φ ∈ L2(X,dx) and almost every x ∈ X.
Expressed more simply, H is unitarily equivalent to the
multiplication operator associated with f . This is an
analogue of the spectral theorem for self-adjoint matri-
ces because multiplication operators are the infinite-
dimensional analogue of diagonal matrices. The spec-
tral theorem implies that the spectrum of H is real;
in particular, every eigenvalue of H is real. The impli-
cations of this theorem are wide-ranging: it reduces
proofs of many of the properties of self-adjoint opera-
tors to the status of obvious trivialities, and its absence
makes the spectral theory of non-self-adjoint operators
far less transparent.

Another version of the spectral theorem introduces
the functional calculus formula

H =
∫

R

λdP(λ),

where P(λ) is a spectral projection ofH for every choice
of λ ∈ R. This leads to the formula

f(H) =
∫

R

f(λ)dP(λ)

for a wide variety of bounded and unbounded functions
f provided one masters the technicalities involved.
This version is more attractive, at least to mathemati-
cians, than the previous one, but it is somewhat less
easy to use.

If the spectrum of the operatorH consists of a count-
able set of eigenvalues λn, where n ∈ N, then the
spectral theorem may also be written in the form

H =
∞∑
n=1

λnPn.

In this formula each Pn is an orthogonal projection
whose range is the subspace consisting of all eigenvec-
tors associated with the eigenvalue λn. The rank of Pn
equals the multiplicity of the eigenvalue λn. The projec-
tions are orthogonal in the sense that PmPn = PnPm =
0 if m �= n, and

∑∞
n=1 Pn = I.

A more general formulation of the spectral theorem
applies to several commuting self-adjoint operators
simultaneously. However, there is nothing analogous
for even two self-adjoint operators that do not com-
mute. Von Neumann’s theory of operator algebras was
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an attempt to understand the complexities involved in

the study of noncommuting families of operators.

3.4 Classification of the Spectrum

In infinite dimensions the spectrum of a self-adjoint

operator may be divided into parts that have different

qualitative features. These include the absolutely con-

tinuous spectrum, the singular continuous spectrum,

the essential spectrum, the point spectrum, and the dis-

crete spectrum. The definitions are technical and will be

avoided here except for the following. One says that λ
lies in the discrete spectrum of a self-adjoint operator

H if it is an isolated eigenvalue with finite multiplicity.

The rest of the spectrum is called the essential spec-

trum. For many operators the essential spectrum coin-

cides with the continuous spectrum, but this is not true

for the Anderson model, which is discussed below.

For non-self-adjoint operators the situation is even

more complicated. Spectral theorists are aware that

there are several distinct definitions of the essential

spectrum, but many have contented themselves with

using only one. This suffices for many purposes, but in

some situations the others are of real importance.

Let H be a self-adjoint differential operator acting

in L2(RN). For many but not all such operators, one

can divide classical solutions of the differential equa-

tion Hg = λg into three types. For some λ, g may

decay rapidly at infinity and λ then lies in the discrete

spectrum of H. For other λ this may be false, but g
is bounded at infinity and λ lies in the essential spec-

trum ofH. If neither case pertains for any solution g of

Hg = λg, then λ does not lie in the spectrum of H. The

discrete spectrum ofH is a finite or countable set, while

the essential spectrum is typically an infinite interval or

a union of several disjoint intervals. In many cases the

essential spectrum can be determined in closed form

by using perturbation arguments, but the analysis of

the discrete spectrum is almost always harder, whether

one approaches this task from the theoretical end or

the computational one.

A further issue is that the spectrum of an opera-

tor can depend on the Banach space in which it oper-

ates. For example, the spectrum of the Laplace–Beltrami

operator on the hyperbolic space Hn of dimension n �
2 depends in an essential way on p when considered

as acting in Lp(Hn). This phenomenon is much less

common for differential operators acting in L2(RN).

3.5 The Variational Approach

One can obtain valuable upper and lower bounds on
the eigenvalues of many self-adjoint operators by using
variational methods, which go back to Rayleigh and
Ritz in the early years of the twentieth century (see
variational principle [II.35]). The simplest context
assumes that H has a complete orthonormal sequence
of eigenvectors φn, where n ∈ N, that the correspond-
ing eigenvalues satisfy λn � λn+1 for all n, and that
limn→∞ λn = +∞.

The variational formula involves the setL of all finite-
dimensional subspaces L of the domain of H. It is
not directly useful, but it leads to rigorous spectral
inequalities that have great value. Given L ∈ L, one first
defines

λ(L) = sup{〈Hf, f 〉 : f ∈ L and ‖f‖ = 1}.
The variational formula is then

λn = inf{λ(L) : dim(L) = n}.
Applications of the variational formula depend on com-
paring the eigenvalues of two self-adjoint operators.
If H1 and H2 have the same domain, then one writes
H1 � H2 if 〈H1f , f 〉 � 〈H2f , f 〉 for all f in the com-
mon domain. Many important applications require one
to define the notion H1 � H2 even when they do not
have the same domain, and this can be done by using
the theory of quadratic forms.

It follows immediately from the variational formula
for the eigenvalues that H1 � H2 implies that λ(1)n �
λ(2)n for all n, using an obvious notation. If the eigen-
values of H1 or H2 are already known, this leads to rig-
orous upper or lower bounds on the eigenvalues of the
other operator.

This idea can be recast in several ways, and it allows
one to obtain rigorous numerical upper and lower
bounds on the eigenvalues of some types of self-adjoint
operator. It also has the following theoretical conse-
quence. LetΩr , r = 1,2, be two bounded regions on RN

such that Ω2 ⊆ Ω1, and let Hr = −Δ act in L2(Ωr ) sub-
ject to Dirichlet boundary conditions. The eigenvalues
of the two operators then satisfy λ(1)n � λ(2)n for all n,
as above. This is called domain monotonicity and is one
ingredient in the proof of Weyl’s law, which dates from
1913 and states the following.

Let H be the Laplacian acting in L2(Ω) subject to
Dirichlet boundary conditions, whereΩ is any bounded
region in RN . Let

NH(s) = #{λ ∈ Spec(H) : λ � s},
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where each eigenvalue is counted according to its
multiplicity. Then

NH(s) = cNsN/2|Ω| + o(sN/2)
as s → ∞, where

cN = (4π)−N/2Γ (N/2 + 1)−1,

and Γ is the Gamma function.
A rigorous analysis of the next term in the asymp-

totic expansion of NH(s) was given by Victor Ivrii and
Richard Melrose in the above context, but the general
solution of this problem for a much wider class of oper-
ators was obtained only in the 1980s by Safarov and
Vassiliev (1996).

Unfortunately, the domain monotonicity mentioned
above holds only for Dirichlet boundary conditions,
and the Weyl law can be false for K = −Δ acting in
L2(Ω) subject to Neumann or other boundary condi-
tions unless one assumes that the boundary ∂Ω has
some regularity properties. Assuming always that Ω is
bounded, if ∂Ω is Lipschitz continuous, then K has dis-
crete spectrum and the asymptotic eigenvalue distribu-
tion ofK follows the same Weyl law as it does for Dirich-
let boundary conditions. If ∂Ω is Hölder continuous,
then K has discrete spectrum, but its spectral asymp-
totics may be non-Weyl. If one makes no assumptions
on ∂Ω, thenK need not have discrete spectrum; indeed,
the spectrum of K may equal [0,∞).

We finally comment that there is no obvious analogue
of the variational method for non-self-adjoint opera-
tors. When self-adjoint theorems have non-self-adjoint
analogues, this is often because one can use analytic
continuation arguments or some other aspect of ana-
lytic function theory. However, the most interesting
aspects of non-self-adjoint spectral theory are those
that have no self-adjoint analogues.

3.6 Evolution Equations

Applied mathematics and physics yield many examples
of systems that evolve over time according to one of the
following equations.

• The wave equation: d2f/dt2 = Lf .
• The evolution equation: df/dt = Lf , which is also

called the heat equation when appropriate.
• The Schrödinger equation: df/dt = −iLf , where i

is the square root of −1.

In these equations L is commonly a self-adjoint oper-
ator, but non-self-adjoint applications are of increas-
ing interest and involve radically new ideas. In many

applications f is a function on some region U in RN ,
or possibly on a Riemannian manifold, and L is a par-
tial differential operator. Solving these evolution equa-
tions starts with specifying the precise class of func-
tions that is to be considered. If U has a boundary, then
all admissible f must satisfy certain boundary condi-
tions, which are intrinsic to the model. The same evo-
lution equation has entirely different solutions if one
changes the boundary conditions. Once one has speci-
fied the problem in sufficient technical detail, one may
look for solutions that vary very simply in time. For
example, solutions of the wave equation that are of
the form f(t) = eiktg, where g = f(0), correspond
to solutions of the eigenvalue problem Lg = λg, where
λ = −k2.

We finally mention that the abstract study of evolu-
tion equations has led to a well-developed theory of
one-parameter semigroups.

4 Schrödinger Operators

Spectral theory can help one to understand differen-
tial operators of any order, whether or not they are
self-adjoint. These operators can act on L2(U), where
U is a region in Euclidean space or in a manifold, if
the manifold is provided with a measure. This section
focuses on one class of differential operators, which
have been studied with great intensity because of their
applications to quantum theory.

4.1 Spectral Theory of Schrödinger Operators

Schrödinger operators are self-adjoint second-order
partial differential operators. They play a fundamen-
tal role in describing the properties of elementary par-
ticles, atoms, and molecules as well as in describing
the collisions between particles that occur continually
inside fluids. There is a separate article in this vol-
ume on the underlying physics (see quantum theory

[IV.23]), and we restrict attention here to the quali-
tative properties of a few simple examples, in which
Planck’s constant � and the masses, charges, and spins
of the particles do not appear. If relativistic effects are
important, one needs to use the Dirac operator, whose
spectral properties are quite different.

Quantum theory has a special vocabulary because
of its history. For example, eigenvectors in the rele-
vant Hilbert space are called bound states and eigen-
values are often called energy levels, but this is not a
substantial problem, and we shall use both languages.
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At the above level of simplification a Schrödinger
operator is a differential operator of the form

(Hf)(x) = − 1
2Δf(x)+ V(x)f(x)

acting on functions f ∈ L2(RN), where Δ is the Laplace
operator. The function V is called the potential. For
quantum particles moving in three dimensions, one
puts N = 3, while the case N = 2 describes particles
moving on a flat interface between two media. Both of
these are subjects of great current interest in connec-
tion with electronic components and computers.

The spectral properties of H depend heavily on the
choice of the potential V . Much, but by no means all, of
the analysis to date has focused on one of the following
classes of potential. (All of the results below, and many
other that we cannot state here, have rigorous proofs
under suitable technical assumptions.)

If V(x) → +∞ as |x| → ∞, then H has discrete spec-
trum. In other words, there exists a complete orthonor-
mal sequence of eigenfunctions φn of H whose cor-
responding eigenvalues λn are monotonically increas-
ing with limn→∞ λn = +∞. The smallest eigenvalue λ1

has multiplicity 1 and the corresponding eigenfunction
φ1 is strictly positive, after multiplying by a suitable
constant.

If V(x) → 0 as |x| → ∞, then the spectrum is the
union of [0,∞) and a (possibly empty) sequence of neg-
ative eigenvalues λn that can be written in increasing
order. If there are infinitely many eigenvalues, then they
must converge to 0 as n → ∞. If there exist positive
constants c and ε such that |V(x)| � c/|x|2+ε for all
large enough x, then there can only be a finite number
of negative eigenvalues.

One says that H is periodic if there exists a dis-
crete group G of translations acting on RN such that
V(x + y) = V(x) for all x ∈ RN and all y ∈ G. It may
be proved that Spec(H) is the union of a finite or infi-
nite sequence of intervals [an, bn] called bands that are
separated by gaps (bn,an+1). One may label the bands
and gaps so that a1 < b1 < a2 < b2 < a3 < · · · .
If N = 1 then generically there are infinitely many
gaps, and the conditions on V under which there are
only finitely many have been studied in great detail.
In higher dimensions it is known that there are only
finitely many gaps.

In the Anderson model one studies Schrödinger oper-
ators for which the potential V is random in the sense
that it is any potential chosen from a precisely defined
class, which is provided with a probability measure. The
class and the probability measure are assumed to be

invariant under a discrete group of translations of RN ,
but individual potentials are not. An ergodicity assump-
tion implies that the spectrum of H almost surely does
not depend on the choice of V within the class. The
spectrum almost surely does not contain any isolated
eigenvalues. However, its detailed structure depends
on the dimension N and is not fully understood at a
rigorous level, in spite of very substantial progress for
N = 1.

A simple waveguide is obtained by considering a
Schrödinger operator on R × U , where U is a bounded
set in RN−1; most of the publications on this problem
assume that N = 2 or N = 3. This model is called a
quantum waveguide if one imposes Dirichlet bound-
ary conditions on R × (∂U); there is also a substan-
tial literature on similar operators subject to Neumann
boundary conditions because of their applications in
fluid mechanics. The two ends of the waveguide may
point in different asymptotic directions and the shape
of the waveguide may vary substantially in a bounded
region within RN . However, it is usually assumed that
the potential and the cross section of the waveguide
are asymptotically constant far enough away from the
origin. Standard methods in spectral and scattering
theory allow one to determine the continuous or essen-
tial spectrum of such operators, but there may also be
eigenvalues. The dependence of the eigenvalues on the
geometry of the waveguide has been studied in some
detail because of its potential applications to quantum
devices.

All of the above problems have discrete analogues,
but the case N = 1 has had the most attention.
One replaces L2(R) by -2(Z) and considers discrete
Schrödinger operators of the form

(Hf)n = fn−1 + vnfn + fn+1.

These operators are simpler to analyze than the usual
type of Schrödinger operators because they are usu-
ally bounded and one may often base proofs on induc-
tive arguments that are not possible in the continuous
context or in higher dimensions.

4.2 Scattering Theory

Scattering theory is a difficult subject to explain at an
elementary level, but it has important spectral impli-
cations. The subject may be studied at an abstract
operator-theoretic level, using trace class operators or
other technology, but this section will describe the
theory only for the time-dependent Schrödinger equa-
tion under very standard conditions. The idea is to
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compare the evolution of a system with respect to two
different Schrödinger operators, H0 = − 1

2Δ and H =
− 1

2Δ + V , assuming that the potential V(x) decreases
rapidly enough as |x| → ∞.2 If V is central (rotation-
ally invariant), it is possible to obtain a very explicit
analysis by decomposing the Hilbert space L2(RN)with
respect to the irreducible representations of the rota-
tion group. Current research focuses on more general
potentials and multibody scattering. There is also a
well-developed scattering theory for the wave equation.

The above assumptions imply that the spectrum
of H0 equals [0,∞) while the spectrum of H equals
[0,∞) together with a finite or infinite set of negative
eigenvalues. Solving the Schrödinger equation if ′(t) =
Hf(t) leads to the unitary operators

f(t) = e−iHtf (0).

If there exist positive constants c, ε such that |V(x)| �
c/|x|1+ε for all large enough x, then it may be shown
that the wave operators W±, defined by

W±f = lim
t→±∞

e−iHteiH0tf ,

exist for all f ∈ L2(RN). The wave operators are isome-
tries mapping L2(RN) one–one onto the linear subspace
L of L2(RN) that consists of all f that are orthogonal to
every eigenvector of H. The wave operators W± inter-
twine H and H0 in the sense that HW± = W±H0, and
this implies that the nonnegative spectra of H and H0

are identical in a very strong sense. It may be shown
that the scattering operator S defined by

S = W∗
−W+ = lim

t→+∞
eiH0te−2iHteiH0t

is a unitary operator that commutes with H0. By using
Fourier transforms, one may now analyze S in great
detail, and in simple cases this yields a complete analy-
sis of H in the sense of the spectral theorem for
self-adjoint operators.

This section has not considered the complete analy-
sis of short-range N-body scattering by Sigal and Sof-
fer, with important simplifications by Graf and others.
This outstanding result was achieved in 1987, but even
describing the result informally would take far more
space than is available here.

4.3 Resonances

In this section we consider only Schrödinger opera-
tors H, although it will be clear that some aspects
of the theory can be developed at a greater level of

2. For a much more systematic account, see Yafaev (2010).

generality. The theory is based on the discovery that
certain classes of Schrödinger operators have pseudo-
eigenvalues, usually called resonances, with nonzero
imaginary parts; resonances are supposed to describe
unstable states and their imaginary parts determine the
decay rates of the corresponding states. However, every
Schrödinger operator is self-adjoint, so its spectrum is
necessarily real and one seems to have a contradiction.
In fact, a resonance λ is associated with a “resonance
eigenfunction” according to the equation Hf = λf ,
but the function f satisfies a condition at infinity that
implies that it does not lie in the Hilbert space H .
Because of this, a number of mathematicians still feel
dissatisfied with the foundational aspects of resonance
theory. Nevertheless, the calculated resonances corre-
spond to quantities that can be measured experimen-
tally, and some comments are called for. The most
important is that any definition of resonance must
depend not only on the operator of interest but also
on some further background data.

Let H be a Schrödinger operator acting on L2(RN)
and suppose that the potential V decays at infinity
rapidly enough. The resolvent operators (zI−H)−1 are
then integral operators for all z ∉ R. In other words,

((zI −H)−1f)(x) =
∫

RN
Gz(x,y)f(y)dNy

for all z ∉ R and all sufficiently well-behaved f ∈
L2(RN); G is called the Green function for the resolvent
operator. The resolvent operators are norm-analytic
functions of z and the Green functions Gz(x,y) are
pointwise analytic functions of z for every x,y (exclud-
ing the case x = y , for which the Green function is
infinite unless N = 1).

Under certain reasonable conditions one can prove
that the Green function (but not the associated resol-
vent operator) can be analytically continued through
the real axis into a region in the lower half of the com-
plex plane called the “unphysical sheet.” In this region
it may have isolated poles, and by definition these are
the resonances of the operator. It can be proved that
the positions of the poles do not depend on the choice
of x, y and that they coincide with the poles of ana-
lytic functions that are associated with the scattering
operator for H.

5 Calculating Eigenvalues

5.1 Exactly Soluble Problems

Much of the nineteenth-century research in spectral
theory was devoted to finding problems that could be
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solved in closed form, often by using a variety of spe-

cial functions. In many cases we can now see that the

ultimate explanation for this was the presence of some

group symmetry. Some spectral problems for ordi-

nary differential equations are soluble using orthog-

onal polynomials, but the theory of orthogonal poly-

nomials has now grown far beyond the confines of

spectral theory or differential equations.

A typical exactly soluble example is provided by cir-

culant matrices. These are n×n matrices A whose

entries obey

Ar,s =
⎧⎨⎩ar−s if r � s,
ar−s+n if r � s,

for some coefficients ar . The eigenvalues of A may

be computed by using the finite Fourier transform to

diagonalize A. They are the numbers

λr =
n∑
s=1

ase2π irs/n,

where 1 � r � n. The obvious infinite generalization of

this is the operator Af = a∗ f acting on L2(R), where

∗ denotes convolution, defined by

(Af)(x) =
∫∞

−∞
a(x −y)f(y)dy.

Every convolution operator commutes with the group

of all translations (Tsf )(x) = f(x+ s). Amay be diag-

onalized by using the Fourier transform, the spectrum

of A being 0 together with the set of all

λk =
∫

R

a(x)e−ixk dx,

where k ∈ R.

Convolution operators lie at the heart of problems

involving digital signal processing and image enhance-

ment. The fast fourier transform [II.10] algorithm

of Cooley and Tukey, which was actually first described

by Gauss in 1805, was seminal in enabling computa-

tions to be carried out.

Any constant-coefficient partial differential operator

commutes with the group of all translations on RN

and may similarly be diagonalized, i.e., represented

as a multiplication operator, by means of Fourier

transforms.

5.2 Perturbation Techniques

Before the advent of computers, calculating the eigen-

values of problems that are not exactly soluble was

extremely laborious, and much effort was devoted
to reducing the work involved. Inevitably, the results
obtained were only applicable in special situations.
Perturbation theory allows one to calculate the eigen-
values of an operator A+ tB for small t ∈ C when the
eigenvalues and eigenvectors of A are already known.
There are two approaches to the theory, applicable in
different situations.

Analytic perturbation theory provides theorems that
prove, under suitable assumptions, that every eigen-
value of A + tB may be written as a convergent series
of the form

λ(t) = a0 + a1t + a2t2 + · · · ,
where a0 is an eigenvalue of A and an may be calcu-
lated directly fromA and B. In practice, one often needs
to calculate only a few terms of the series to obtain a
reasonable approximation (see Kato 1995).

If the eigenvalue of A that is being studied has multi-
plicity greater than 1, the above method needs modifi-
cation. The power series above has to be replaced by a
series involving fractional powers of t, as one may see
by calculating the eigenvalues of the matrix

A+ tB =
(

0 t
1 0

)
in closed form. The technology for dealing with such
problems was well established by the 1960s.

The use of perturbation expansions of the above type
is easiest to justify in finite dimensions. If the Hilbert
or Banach space H is infinite dimensional, then some
condition is needed and the easiest is the assumption
that B is bounded or relatively bounded with respect
to A. The latter condition requires the existence of a
constant a ∈ (0,1) and a constant b > 0 such that

‖Bf‖ � a‖Af‖ + b‖f‖
for all f ∈ Dom(A).

Asymptotic perturbation theory allows one to treat
certain situations in which convergent perturbation
expansions do not exist. An alternative approach to
some such problems depends on what is called semi-
classical analysis (see Zworski 2012). This involves
much more geometrical input than most theorems in
analytic perturbation theory. Much of the literature
in this field involves the theory of pseudodifferential
operators, but an impression of the issues involved can
be conveyed by the following example, in which the
operator involved acts in L2(RN).

One assumes that the operator Hh is self-adjoint
and that it depends on a small parameter in a rather
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special manner; the parameter is normally denoted by
h because of the origins of the subject in quantum
mechanics, where h is Planck’s constant. One assumes
that Hh is obtained by the “quantization” of a classical
Hamiltonian Hcl(p, q), where p,q ∈ RN . There are, in
fact, several types of quantization, and the difference
between these needs to be taken into account. A typical
example is the Schrödinger operator

(Hhf)(x) = −h2(Δf)(x)+ V(x)f(x)
obtained by quantizing Hcl(p, q) = p2 +V(q). The idea
is that one can understand the h → 0 asymptotics of
various features ofHh by utilizing intuitions that come
from differential geometry; for example, by an analysis
of neighborhoods of the critical points of the potential.
The nature of the results obtained precludes our delv-
ing more deeply into this important field. However, it
should be stated that, when perturbation expansions
in powers of h exist, they are usually asymptotic series
rather than convergent series.

5.3 Numerical Analysis

This is not the place to discuss methods for comput-
ing the eigenvalues of partial differential operators in
detail, but some general remarks may be in order. We
assume that one wishes to determine several eigen-
values of a self-adjoint differential operator A that is
known to have an infinite sequence of eigenvalues λn
that can be listed in increasing order, each eigenvalue
being repeated according to its multiplicity, with λn
diverging as n→ ∞ at a known rate.

There are special methods that enable one to calcu-
late large numbers of eigenvalues of an ordinary differ-
ential operator in one dimension with great accuracy.
Most general-purpose programs concentrate on two-
dimensional problems. In three dimensions all meth-
ods are computationally very demanding, because of
the large size of the matrix approximations needed.
As a result these programs are often optimized for
a specific problem that is of commercial, military, or
scientific importance.

There are two general approaches to the calcula-
tion of eigenvalues, which we call a priori and a pos-
teriori, and each of them depends on calculating the
eigenvalues associated with the truncation of A to a
finite-dimensional subspace L of high dimension.

The a priori method is far older and depends on the-
orems that state that, if one carries out the compu-
tations for a properly selected increasing sequence of
subspaces Lh, where h > 0 is a small parameter, then

the computed eigenvalues converge to the true eigen-

values of A as h → 0. Such theorems also provide an

estimate of the convergence rate. The weakness of this

approach is that the apparent convergence is usually

far faster than that yielded by the theorems.

Assuming that the differential operator acts in a

bounded region U in R2, the finite-element method

[II.12] is a prescription for generating a large finite-

dimensional space of functions on U starting from

a mesh, i.e., a subdivision of U into a collection of

small triangles, whose sizes are or order h (see Boffi

2010). This is carried out by the program, as is the

next stage, which is the construction of a large sparse

matrix, whose eigenvalues approximate a substantial

number of the smaller eigenvalues of the differential

operator. Under favorable circumstances one can make

a priori estimates of the difference between the com-

puted eigenvalues and the true eigenvalues. However,

programs of this type often try to determine which part

of the mesh is responsible for most of the error and

then refine the mesh locally. It is known that one has

to pay particular attention to corners of the region, par-

ticularly reentrant corners, so the mesh is usually made

much finer there from the start.

A posteriori methods obtain rigorous upper and

lower bounds on the eigenvalues of A from numeri-

cal computations; these bounds might be based on the

variational method described earlier (see Rump 2010,

part 3). This method has three major differences from

the a priori method. The first is that implementing the

method has a considerably higher computational cost

than that of the a priori method. If it is implemented

using interval arithmetic, then one needs to avoid var-

ious computational traps that are by now well known

to experts. The final feature is that one does not need

to prove that the upper and lower bounds converge to

the eigenvalue of interest as h → 0. One simply per-

forms the calculation for smaller and smaller h until

either one obtains a result for which the error bounds

are sufficiently small, or one accepts that the method is

not useful with the available computational resources.

Which of the two methods one uses must depend

on the circumstances. A lot of ready-made code exists

for the a priori method. Results obtained by using

the a priori method may be the starting point even if

one intends to use the a posteriori method eventually,

because it is always useful to have a good idea about the

approximate location of the solution before carrying

out further rigorous calculations.
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6 Other Applications of Spectral Theory

In this section we gather together a miscellaneous col-
lection of applications. Although it is far from com-
plete, it may serve to illustrate the vigor of the field.

6.1 Fredholm Operators

The results below can be extended to unbounded oper-
ators and to Banach spaces, but it is easiest to explain
them in a more restricted context.

A bounded operator A acting on a Hilbert space H is
said to be Fredholm if its kernel Ker(A) is finite dimen-
sional, its range is closed, and the orthogonal comple-
ment Coker(A) of its range is also finite dimensional.
The integer

Ind(A) = Dim(Ker(A))− Dim(Coker(A))

is called the index ofA. The index is a very useful invari-
ant of an operator because of the following fact. If A is
Fredholm then any small enough perturbation of A is
also Fredholm and the perturbation has the same index
as A. Hence, if As is a one-parameter family of opera-
tors depending norm continuously on s, and each As
is Fredholm, then Ind(As) does not depend on s. This
may be used to prove that the index of an elliptic dif-
ferential operator acting on the space of sections of a
vector bundle does not depend on the detailed values
of its coefficients. This fact is a key ingredient in the
Atiyah–Singer index theorem, which has ramifications
throughout global analysis.

Under the same hypotheses, if Ind(A0) �= 0 then
Ind(As) �= 0, so 0 is an eigenvalue of As or of A∗

s .
In either case, 0 ∈ Spec(As). This type of argument
can enable one to determine more about the spectra
of non-self-adjoint operators than one could by more
elementary methods.

A particular example of this is afforded by Toeplitz
operators, whose applications spread far and wide (see
Böttcher and Silbermann 2006). Given a sequence a ∈
-1(Z+), one can define the associated Toeplitz operator
A on -2(Z+) by

(Af)n =
∞∑
m=0

an−mfm

for all f ∈ -2(Z+). It may be shown that ‖A‖ � ‖a‖1.
The function

σ(θ) =
∞∑
n=0

ane−inθ

is called the symbol of A, and under the above assump-
tions it is a bounded continuous function that is

periodic with period 2π . One may in fact define a
Toeplitz operator associated with any bounded mea-
surable periodic symbol, but the technicalities become
much greater, and some of the key results are different.

Under the present assumptions one has

{σ(θ) : 0 � θ � 2π} ⊆ Spec(A),

but more is actually true. If a complex number λ does
not lie in the range of σ , then A is Fredholm and its
index equals the winding number of the closed curve σ
around λ. A theorem of Gohberg states that the spec-
trum of A consists of S = {σ(θ) : 0 � θ � 2π} together
with every λ ∉ S for which the winding number is
nonzero.

All of these results can be generalized to vector-
valued Toeplitz operators—a fact that extends their
possible applications substantially.

6.2 Spectral Geometry

In this subject one investigates the relationship be-
tween the geometry of a Riemannian manifold, or a
bounded region in Euclidean space, and the eigenvalues
λn of the associated Laplace–Beltrami operatorH = −Δ
(see Gilkey 2005). The Weyl law, already described,
establishes that one may determine the volume of a
region in RN from the eigenvalues of a related Laplace
operator, but far more than this is possible. In this con-
text it turns out to be easier to investigate the small t
asymptotics of

tr(e−Ht) =
∞∑
n=1

e−λnt

than the large s asymptotics of the spectral counting
functionNH(s) defined earlier. In 1966 Mark Kac asked
whether one can “hear the shape of a drum”; more
specifically he asked whether the size and shape of a
bounded Euclidean region U are uniquely determined
by the eigenvalues of the associated Laplace operator,
assuming Dirichlet boundary conditions. Many positive
results of great interest were obtained in the course of
studying this problem, but in 1992, Gordon, Webb, and
Wolpert constructed a very simple counterexample in
which the two plane regions concerned are fairly simple
polygons.

6.3 Graph Laplacians

The spectral analysis of graphs has many aspects, but
the first problem is that the word “graph” has more
than one meaning. The following two interpretations
lead to different mathematical results.
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One may define a graph [II.16] to be a finite or count-
able setX of vertices together with a setE of undirected
edges. In this case the adjacency matrix A is defined
by putting Ax,y = 1 if (x,y) ∈ E, and Ax,y = 0 other-
wise. It may be seen thatA is associated with a bounded
operator on -2(X) provided the degrees of the vertices
are uniformly bounded, where the degree of a vertex
x is defined to be #{y : (x,y) ∈ E}. The spectrum of
(X,E) is by definition the spectrum of A, which is real
because A is self-adjoint. The spectrum provides a set
of invariants of a graph. The spectral theory of finite
graphs is now a subject in its own right (see Brouwer
and Haemers 2012).

Physicists are also interested in quantum graphs,
in which the edges are continuous intervals of given
lengths (see Berkolaiko and Kuchment 2013). The
Hilbert space of interest is then L2(E), where E is
the union of the edges in E. One considers the
second-order differential operator on L2(E) given by
(Af)(x) = −f ′′(x) on each edge. In order to obtain
a self-adjoint operator one has to impose appropriate
boundary conditions at each of the vertices. The sim-
plest way of doing this is to require that if f lies in
the domain of A, then f is continuous at each vertex
and the sum of the outward-pointing first derivatives at
each vertex vanishes. These are called free or Kirchhoff
boundary conditions.

There are two reasons for studying quantum graphs.
The first is that they are mild generalizations of the one-
dimensional theory on R, and there is some interest in
determining how the geometry of the graph affects the
spectral theory of the operator A. The second is that
quantum graphs arise as limits of quantum waveguides
as the width of the waveguide decreases to zero. People
are interested in quantum waveguides because of their
potential applications, and quantum graphs provide a
useful first approximation to their properties.

6.4 Nonlinear Eigenvalue Problems

This article has concentrated on linear spectral theory,
which is by far the best-developed part of the subject.
There are two types of generalization of this theory to
a nonlinear context. In the first, one attempts to solve
Af = λf when f lies in some Banach or Hilbert space
of functions and A is a nonlinear operator. The earli-
est and best-known problem of this type is called the
Korteweg–de Vries equation. It is exactly soluble, sub-
ject to the solution of an associated linear inverse scat-
tering problem. There are many papers that general-
ize specified spectral properties of linear second-order

elliptic eigenvalue problems to the nonlinear context,

under suitable hypotheses. However, nonlinear prob-

lems are much harder, whether one approaches them

analytically or numerically, and current methods of

solution depend heavily on the equation of interest.

Another type of nonlinear eigenvalue problem looks

for solutions f of equations such as

λ2A2f + λA1f +A0f = 0,

where λ ∈ C and A0, A1, A2 are all linear opera-

tors. This is called a quadratic eigenvalue prob-

lem [IV.10 §5.8], and it is the most important case

of the more general polynomial eigenvalue problem.

It has applications to engineering, the wave equation,

control theory, nonlinear boundary-value problems,

oceanography, and other fields.

If A2 is invertible then the above problem is equiv-

alent to a standard eigenvalue problem for the block

matrix (
−A1A−1

2 I
−A0A−1

2 0

)
. (3)

This transformation does not reduce the theory to a

triviality because qualitative properties of the spectrum

may be less easy to deduce from (3) than from the origi-

nal problem. For example, even ifA0,A1,A2 are all self-

adjoint, the matrix (3) is non-self-adjoint, with no obvi-

ous special structure. There is a rich theory of finite-

dimensional quadratic pencils, which classifies them

into many different types, each with its own special

features.
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IV.9 Approximation Theory
Annie Cuyt

1 Introduction

Approximation theory is an area of mathematics that
has become indispensable to the computational sci-
ences. The approximation of magnitudes and func-
tions describing some physical behavior is an integral
part of scientific computing, queueing problems, neu-
ral networks, graphics, robotics, network traffic, finan-
cial trading, antenna design, floating-point arithmetic,
image processing, speech analysis, and video signal
filtering, to name just a few areas.

The idea of seeking a simple mathematical function
that describes some behavior approximately has two
sources of motivation. The exact behavior that one is
studying may not be able to be expressed in a closed
mathematical formula. But even if an exact description
is available it may be far too complicated for practical
use. In both cases a best and simple approximation is
required. What is meant by best and simple depends on
the application at hand.

The approximation is often used in a computer
implementation, and therefore its evaluation needs to
be efficient. The simplest and fastest functions for
implementation are polynomials because they use only
the fast hardware operations of addition and mul-
tiplication. Next come rational functions, which also
need the hardware operation of division, one or more
depending on their representation as a quotient of
polynomials or as a continued fraction. Rational func-
tions offer the clear advantage that they can reproduce
asymptotic behavior (vertical, horizontal, slant), which
is something polynomials are incapable of doing. For
periodic phenomena, linear combinations of trigono-
metric functions make good candidates. For growth

models or decaying magnitudes, linear combinations
of exponentials can be used.

In approximation theory one distinguishes between
interpolation and best approximation problems. In
the former one wants the approximate model to take
exactly the same values as prescribed by data given at
precise argument values. In the latter a set of data (not
necessarily discrete) is regarded as a trend and approx-
imated by a simple model in one or other best sense.
The difference is formalized in the following sections.

Besides constructing a good and efficient mathemati-
cal model, one should also take the following two issues
into account.

• What can be said about the convergence of the
selected mathematical model? In more practical
terms: does the model improve when one adds
more data?

• How sensitive is the mathematical model to per-
turbations in the input data? Data errors are usu-
ally unavoidable, and one wishes to know how
much they can be magnified in the approximation
process.

In the following sections we comment on both issues
where appropriate. We do not aim to discuss con-
vergence or undertake a sensitivity analysis for every
technique.

Despite the need for and interest in multidimensional
models and simulations, we restrict ourselves here
mostly to one-dimensional approximation problems. In
the penultimate section we include some brief remarks
on multivariate interpolation and approximation and
its additional complexity.

2 Numerical Interpolation

Let data fi be given at points xi ∈ [a, b], where i =
0, . . . , n. We assume that if some of the points xi are
repeated, then it is not only the value of some under-
lying function f(x) that is given (or measured) at xi
but also as many higher derivatives f (j)(xi) as there
are copies of the point xi. The interpolation problem
is to find a function of a specified form that matches
all the data at the points. In this section we deal with
the two extreme cases: the one in which all the points
xi are mutually distinct and no derivative information
is available, and the one in which the value of the func-
tion and that of the first n derivatives are all given at
one single point x0. Of course, intermediate situations
can also be dealt with. The approximating functions
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that we consider are polynomials, piecewise polyno-
mials (splines), and rational functions, each of which
has particular advantages. Finally, we present the con-
nection between exponential models and sparse inter-
polation, on the one hand, and exponential models and
Padé approximation, on the other.

2.1 Polynomial Interpolation

For n + 1 given values fi = f(xi) at mutually dis-
tinct points xi, the polynomial interpolation problem
of degree n,

pn(x) =
n∑
j=0

ajxj, pn(xi) = fi, i = 0, . . . , n, (1)

has a unique solution for the coefficients aj . Now let
us turn to the computation of pn(x). Essentially, two
approaches can be used, depending on the intended
subsequent use of the polynomial interpolant. If one
is interested in easily updating the polynomial inter-
polant by adding an extra data point and consequently
increasing the degree of pn(x), then Newton’s formula
for the interpolating polynomial is very suitable. If one
wants to use the interpolant for several sets of values
fi while keeping the points xi fixed, then Lagrange’s
formula is most appropriate. A simple rearrangement
of the Lagrange form as in (2) below results in the
barycentric form, which combines the advantages of
both approaches.

In the Newton form one writes the interpolating
polynomial pn(x) as

pn(x) = b0 + b1(x − x0)+ b2(x − x0)(x − x1)

+ · · · + bn(x − x0) · · · (x − xn−1).

The coefficients bj then equal the divided differences
bj = f[0, . . . , j] obtained from the recursive scheme

f[j] = fj, j = 0, . . . , n,

f [0, j] = fj − f0

xj − x0
, j = 1, . . . , n,

f [0,1, . . . , k− 1, k, j]

= f[0,1, . . . , k− 1, j]− f[0,1, . . . , k− 1, k]
xj − xk

,

k, j = 2, . . . , n.

Newton’s form for the interpolating polynomial is very
handy when one wants to update the interpolation with
an additional point (xn+1, fn+1). It suffices to add the
term

bn+1(x − x0) · · · (x − xn)

to pn(x) (which does not destroy the previous inter-

polation conditions since it evaluates to zero at all the

previous xi) and to complement the recursive scheme

for the computation of the divided differences with the

computation of the

f[0,1, . . . , k,n+ 1], k = 0, . . . , n.

In the Lagrange form, which is especially suitable if

the interpolation needs to be repeated for different sets

of fi at the same points xi, another form for pn(x) is

used. We write

pn(x) =
n∑
j=0

cjβj(x), βj(x) =
n∏
k=0
k�=j

(x − xk)
(xj − xk)

.

The basis functionsβj(x) satisfy a simple interpolation

condition themselves, namely,

βj(xi) =
⎧⎨⎩0 for j �= i,

1 for j = i.
The choice cj = fj for the coefficients therefore solves

the interpolation problem. So when altering the fi,
without touching the xi that make up the basis func-

tions βj(x), it takes no computation at all to get the

new coefficients cj .
The barycentric form of the interpolation polyno-

mial,

pn(x) = (x − x0) · · · (x − xn)
n∑
j=0

wj
x − xj

fj,

wj =
( n∏
k=0
k�=j

(xj − xk)
)−1

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2)

is easy to update and is backward stable [I.2 §23] for

evaluation of pn(x).
The sensitivity of the polynomial interpolant ex-

pressed in the Lagrange form is measured by the

value

Ln = max
a�x�b

n∑
j=0

|βj(x)|, (3)

which is also known as the Lebesgue constant. The

growth rate of Ln with n is only logarithmic when the

interpolation points are as in (5) below. This is the

slowest possible growth for polynomial interpolation.

Despite the simplicity and elegance of polynomial

interpolation, the technique has a significant draw-

back, as we discuss next: it may not converge for data

fi = f(xi) given at arbitrary points xi, even if f(x) is

continuous on [a, b].
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2.2 The Runge Phenomenon

What happens if we continue updating the interpola-
tion problem with new data? In other words, what hap-
pens if we let the degree n of the interpolating polyno-
mial pn(x) increase? Will the interpolating polynomial
of degree n become better and better? The answer is
no, at least not for freely chosen points xi. To see what
can go wrong, consider

f(x) = 1
1 + 25x2

, −1 � x � 1, (4)

and take equidistant interpolation points xi = −1 +
2i/n, i = 0, . . . , n. The error (f −p)(x) toward the end-
points of the interval then increases dramatically with
n. Take a look at the bell-shaped f(x) and the inter-
polating polynomial pn(x) for n = 10 and n = 20 in
figure 1.

This phenomenon is called Runge’s phenomenon,
after Carl Runge, who described this behavior for real-
valued interpolation in 1901. An explanation for it
can be found in the fundamental theorem of algebra,
which states that a polynomial has as many zeros as
its degree. Each of these zeros can be real or complex.
So if n is large and the zeros are all real, the poly-
nomial under consideration displays rather oscillatory
behavior.

On the other hand, under certain simple conditions
for f(x) besides continuity in [a, b], it can be proved
that if the interpolation points xi equal

xi =
a+ b

2
+ b − a

2
cos

(
(2i+ 1)π
2(n+ 1)

)
,

i = 0, . . . , n, (5)

where the values cos((2i + 1)/(n + 1)(π/2)) are the
zeros of the Chebyshev polynomial of the first kind of
degree n+ 1 (defined in section 3.3), then

lim
n→∞‖f − pn‖∞ = lim

n→∞ max
x∈[−1,1]

|(f − pn)(x)| = 0.

The effect of this choice of interpolation points is
illustrated in figure 2(a). A similar result holds if the
zeros of the Chebyshev polynomial of degree n+1 are
replaced by the extrema cos(iπ/n), i = 0, . . . , n, of the
Chebyshev polynomial of degree n.

In order to make use of this result in real-world appli-
cations, where the interpolation points xi cannot usu-
ally be chosen arbitrarily, interpolation at the Cheby-
shev zeros is mimicked, for instance by selecting a
proper subset of interpolation points x̃i from a fine
equidistant grid, with x̃i ≈ xi from (5). The grid is
considered to be sufficiently fine when the distance
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Figure 1 (a) Degree-10 and (b) degree-20 equidistant inter-
polation (solid lines) for function f in (4) (dashed lines).

between the points ensures that a grid point nearest
to a Chebyshev zero xi is never repeated. In a coarse
grid, the same grid point may be the closest one to more
than one Chebyshev zero, especially toward the ends of
the interval [−1,1].

This technique is called mock-Chebyshev interpola-
tion. For comparison, in figure 2(b) we display the
degree-20 mock-Chebyshev interpolant with the inter-
polation points selected from an equispaced grid with
gap 1/155.

If a lot of accurate data points have to be used in
an interpolation scheme, then splines, which are dis-
cussed in the next section, offer a better alternative
than a monolithic high-degree polynomial interpolant.
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Figure 2 Degree-20 (a) Chebyshev and (b) mock-Chebyshev
interpolation (solid lines) for function f in (4) (dashed lines).

2.3 Spline Interpolation

In order to avoid the Runge phenomenon when inter-
polating large data sets, piecewise polynomials, also
called splines, can be used. To this end we divide the
data set of n + 1 points into smaller sets, each con-
taining two data points. Rather than interpolating the
full data set by one polynomial of degree n, we inter-
polate each of the smaller data sets by a low-degree
polynomial. These separate polynomial functions are
then pieced together in such a way that the resulting
function is as continuously differentiable as possible.

Take, for instance, the data set (xi, fi) and consider
linear polynomials interpolating every two consecutive
(xi, fi) and (xi+1, fi+1). These linear polynomial pieces
can be joined together at the data points (xi, fi) to pro-
duce a piecewise-linear continuous function or polyg-
onal curve. Note that this function is continuous but
not differentiable at the interpolation points since it is
polygonal.
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Figure 3 A piecewise-cubic function that is
not twice continuously differentiable.

If we introduce two parameters, Δ and D, to respec-
tively denote the degree of the polynomial pieces and
the differentiability of the overall function, where obvi-
ously D � Δ (even D < Δ to avoid an overdetermined
system of defining equations, as explained below), then,
for the polygonal curve, Δ = 1 and D = 0. With Δ = 2
and D = 1, a piecewise-quadratic and smooth (mean-
ing continuously differentiable in the entire interval
[x0, . . . , xn]) function is constructed. The slope of a
smooth function is a continuous quantity. With Δ = 3
and D = 2, a piecewise-cubic and twice continuously
differentiable function is obtained. Twice continuously
differentiable functions also enjoy continuous curva-
ture. Can the naked eye distinguish between contin-
uous and discontinuous curvature in a function? The
untrained eye certainly cannot! As an example we take
the cubic polynomial pieces

c1(x) = x3 − x2 + x + 0.5, x ∈ [−1,0],

c2(x) = x3 + x2 + x + 0.5, x ∈ [0,1],
and join these together at x = 0 to obtain a new
piecewise-cubic function c(x) on [−1,1]. The result
is a function that is continuous and differentiable at
the origin, but for the second derivatives at the origin,
we have limx→0− c(2)(0) = −2 and limx→0+ c(2)(0) = 2.
Nevertheless, the result of the gluing procedure shown
in figure 3 is a very pleasing function that at first sight
looks fine. But while Δ equals 3, D is only 1.

Since a trained eye can spot these discontinuities, the
most popular choice for piecewise-polynomial inter-
polation in industrial applications is Δ = 3 and D =
2. Indeed, for manufacturing the continuity of the
curvature is important.
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Let us take a look at the general situation where

Δ =m andD =m−1, for which the resulting piecewise

polynomial is called a spline. Assume we are given the

interpolation points x0, . . . , xn. With these n+1 points

we can construct n intervals [xi, xi+1]. The points x0

and xn are the endpoints, and the other n− 1 interpo-

lation points are called the internal points. If Δ = m,

then for every interval [xi, xi+1] we have to determine

m+ 1 coefficients because the explicit formula for the

spline on [xi, xi+1] is a polynomial of degree m:

S(x) = si(x), x ∈ [xi, xi+1], i = 0, . . . , n− 1,

si(x) =
m∑
j=0

a(i)j x
j.

So, in total, n(m + 1) unknown coefficients a(i)j have

to be computed. From which conditions? There are the

n+ 1 interpolation conditions S(xi) = fi, and we have

the smoothness or continuity requirements at the inter-

nal points, meaning that a number of derivatives of

si−1(x) evaluated at the right endpoint of the domain

[xi−1, xi] should coincide with the derivatives of si(x)
when evaluated at the left endpoint of the domain

[xi, xi+1]:

s(k)i−1(xi) = s
(k)
i (xi), i = 1, . . . , n− 1, k = 0, . . . ,m− 1.

The latter requirements add another (n − 1)m conti-

nuity conditions. This brings us to a total of n + 1 +
(n−1)m = n(m+1)−m+1 conditions for n(m+1)
unknowns. In other words, we lack m − 1 conditions

to determine the degree-m piecewise-polynomial inter-

polant with overall smoothness of order m − 1. When

m = 1, which is the case for the piecewise-linear spline

or the polygonal curve, no conditions are lacking. When

m = 2, a value for s′0(x0) is usually given as an addi-

tional piece of information. When m = 3, which is the

case for the widely used cubic spline, values for s′′0 (x0)
and s′′n−1(xn) are often provided (the cubic spline with

clamped end conditions) or they are set to zero (the

natural cubic spline).

The natural cubic spline interpolant has a very ele-

gant property, namely, that it avoids oscillatory behav-

ior between interpolation points. More precisely, for

every twice continuously differentiable function f(x)
defined on [a, b] and satisfying f(xi) = fi for all i, we

have ∫ b
a
S′′(x)2 dx �

∫ b
a
f ′′(x)2 dx.

A simple illustration is given in figure 4 for n = 6 with

xi = i, i = 1, . . . ,6.
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Figure 4 (a) The polynomial interpolant
and (b) the natural cubic spline.

2.4 Padé Approximation

The rational equivalent of the Taylor series partial
sum is the irreducible rational function rk,-(x) =
pk,-(x)/qk,-(x) with numerator of degree at most k
and denominator of degree at most - that satisfies

r (i)k,-(x0) = f (i)(x0), i = 0,1, . . . , n, (6)

with n as large as possible. It is also called the [k/l]
Padé approximant. The aim is to have n = k + -. Note
that we are imposing one fewer condition than the total
number k + - + 2 of coefficients in rk,-. The reason is
that one degree of freedom is lost because multiplying
pk,- and qk,- by a scalar does not change rk,-.

A key question is whether n can be less than k +
-. The answer to this question requires some analy-
sis. Computing the numerator and denominator coeffi-
cients of rk,-(x) from (6) gives rise to a nonlinear sys-
tem of equations. So let us explore whether the Padé
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approximant can also be obtained from the linearized
approximation conditions

(fqk,- − pk,-)(i)(x0) = 0, i = 0,1, . . . , k+ -. (7)

We denote f (j)(x0)/j! by dj , where dj = 0 for j <
0. The linearized conditions (7) always have at least
one nontrivial solution for the numerator coefficients
a0, . . . , ak and the denominator coefficients b0, . . . , b-
because they form a homogeneous linear system of
k+ - + 1 conditions in k+ - + 2 unknowns:

d0b0 = a0,
d1b0 + d0b1 = a1,

...
dkb0 + · · · + dk−-b- = ak,

dk+1b0 + · · · + dk−-+1b- = 0,
...

dk+-b0 + · · · + dkb- = 0.

Moreover, all solutions pk,-(x) and qk,-(x) of (7) are
equivalent in the sense that they have the same irre-
ducible form. Every solution of (6) with n = k + -
therefore also satisfies (7), but not vice versa. From
pk,-(x) and qk,-(x) satisfying (7) we find, for the
unique irreducible form p∗

k,-(x)/q
∗
k,-(x), that

(f − rk,-)(i)(x0) = 0, i = 0, . . . , k′ + -′ + r ,
k′ = ∂p∗

k,-, -
′ = ∂q∗k,-, r � 0,

where ∂p denotes the degree of the polynomial p. In
some textbooks, the [k/l] Padé approximation prob-
lem is said to have no solution if k′ + -′ + r < k + -;
in others, the Padé approximant rk,- is identified with
rk′,-′ = p∗

k,-/q
∗
k,- if that is the case (this is the conven-

tion we adopt here). Let us illustrate the situation with
a simple example. Take x0 = 0 with d0 = 1, d1 = 0,
d2 = 1, and k = 1 = -. The linearized conditions (7) are
then

b0 = a0, b1 = a1, b0 = 0.

A solution is given by p1,1(x) = x and q1,1(x) = x. We
therefore find r1,1(x) = 1, k′ = 0, -′ = 0, and

(f − r1,1)(2)(x0) = 2 �= 0.

Since r = 1, we have k′ + -′ + r = 1 < k+ - = 2.
This kind of complication does not occur when - = 0.

The Padé approximant rk,0(x) is then merely the Tay-
lor series partial sum of degree k. But when asymptotic
behavior needs to be reproduced, a polynomial func-
tion is not very useful. In figure 5 one can compare the
Taylor series partial sum of degree 9 with the [5/4]
Padé approximant for the function f(x) = arctan(x).
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Figure 5 Padé approximants r9,0(x) (dotted line) and
r5,4(x) (dashed line) for arctan(x) (solid line).

Table 1 The Padé table for sin(x).

0 1 2

1 x x
x

1 + 1
6x2

· · ·

2 x x
x

1 + 1
6x2

· · ·

3 x − 1
6x

3 x − 1
6x

3
(− 7

60x
3 + x)

(1 + 1
20x2)

· · ·

...
...

...
. . .

Padé approximants can be organized in a table, where
the numerator degree indicates the row and the denom-
inator degree the column. To illustrate this we give
part of the Padé table for f(x) = sin(x) in table 1.
A sequence of Padé approximants in the Padé table can
converge uniformly or in measure only to a function
f(x) that is meromorphic in a substantial part of its
domain.

2.5 Rational Interpolation

The rational equivalent of polynomial interpolation
at mutually distinct interpolation points xi consists
of finding an irreducible rational function rk,-(x), of
numerator degree at most k and denominator degree
at most -, that satisfies

rk,-(xi) = fi, i = 0, . . . , k+ -, (8)

where fi = f(xi). Instead of solving (8) one considers
the linearized equations

(fqk,- − pk,-)(xi) = 0, i = 0, . . . , k+ -, (9)
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where pk,-(x) and qk,-(x) are polynomials of respec-
tive degree k and -. Condition (9) is a homogeneous lin-
ear system of k+-+1 equations in k+-+2 unknowns,
and it therefore always has a nontrivial solution. More-
over, as in the Padé approximation case, all solutions
of (9) are equivalent in the sense that they deliver the
same unique irreducible rational function.

In the construction of the irreducible form rk,-(x)
of pk,-(x)/qk,-(x), common factors in numerator and
denominator are canceled, and it may well be that
rk,- does not satisfy the interpolation conditions (8)
anymore, despite pk,- and qk,- being solutions of (9),
because one or more of the canceled factors may be of
the form x − xi with xi an interpolation point. A sim-
ple example illustrates this. Let x0 = 0, x1 = 1, x2 = 2
with f0 = 0, f1 = 3, f2 = 3, and take k = 1 = -. The
homogeneous linear system of interpolation conditions
is then

a0 = 0,

3(b0 + b1)− (a0 + a1) = 0,

3(b0 + 2b1)− (a0 + 2a1) = 0.

A solution is given by p1,1(x) = 3x and q1,1(x) = x.
Hence, r1,1(x) = 3 and clearly r1,1(x0) �= f0. The
interpolation point x0 is then called unattainable. This
problem can be fixed only by increasing the degrees k
and/or - until the interpolation point is attainable. Note
that unattainable interpolation points do not occur in
polynomial interpolation (- = 0).

A well-known problem with rational interpolation
and Padé approximation is the occurrence of undesir-
able poles in the interpolant rk,-(x). One way to avoid
this is to work with preassigned poles, either explicitly
or implicitly, by determining the denominator polyno-
mial qk,-(x) a priori. All k+ - + 1 interpolation condi-
tions are then imposed on the coefficients of the numer-
ator polynomial, and consequently the degree of the
numerator is raised to k+ -.

Let the interpolation points xi be ordered such that
x0 < x1 < · · · < xn with k + - = n. A popular choice
for the denominator polynomial that guarantees a pole-
free real axis, unless the location of the poles needs to
be controlled by other considerations, is

qn,n(x) =
n∑
j=0

(−1)j
n∏
k=0
k�=j

(x − xk).

With this choice, the rational interpolant can be written
in a barycentric form similar to that in (2):

rn,n(x) =
∑n
j=0 fj(−1)j/(x − xj)∑n
j=0(−1)j/(x − xj)

.

Again, this form is very stable for interpolation. Its

numerical sensitivity is measured by

Mn = max
a�x�b

n∑
i=0

|qn,n(xi)βi(x)|
|qn,n(x)|

.

And there is more good news now: in the case of

equidistant interpolation points, Mn grows as slowly

with n as the Lebesgue constant Ln in (3) for polyno-

mial interpolation in the Chebyshev zeros. The latter

makes the technique very useful in practice.

More practical choices for the denominator poly-

nomial qn,n(x) are possible, guaranteeing other fea-

tures, such as rapid convergence, comonotonicity, or

coconvexity (coconcavity).

2.6 Sparse Interpolation

When interpolating

f(x) = α1 +α2x100

by a polynomial, the previous techniques require 101

samples of f(x) to determine that f(x) is itself a poly-

nomial, while only four values need to be computed

from the data points, namely the two exponents 0

and 100 and the two coefficients α1 and α2. So it would

be nice if we could solve this polynomial reconstruction

problem from only four samples.

The above is a special case of the more general sparse

interpolation, which was studied as long ago as 1795,

by Gaspard de Prony, in which the complex values φj
and αj in the interpolant

φ(x) =
n∑
j=1

αjeφjx, αj,φj ∈ C, (10)

are to be determined from only 2n samples of φ(x).
While the nonlinear interpolation problems of Padé

approximation and rational interpolation are solved by

linearizing the conditions as in (7) and (9), the nonlin-

ear problem of sparse interpolation is solved by sepa-

rating the computation of the φj and the αj into two

linear algebra subproblems. Letφ(x) be sampled at the

equidistant points xi = iΔ, i = 0, . . . ,2n − 1, and let

us denote φ(xi) by fi. We introduce the n×n Hankel

matrices

H(r)n :=

⎛⎜⎜⎜⎝
fr · · · fr+n−1

...
.

.
.

...

fr+n−1 · · · fr+2n−2

⎞⎟⎟⎟⎠
and λj = eφjΔ, j = 1, . . . , n.
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The λj are then retrieved as the generalized eigen-
values of the problem

H(1)n vj = λjH(0)n vj, j = 1, . . . , n,

where the vj are the generalized right eigenvectors.
From the values λj , the complex numbers φj can
be retrieved uniquely subject to the restriction that
|Im(φjΔ)| < π . In order to satisfy this restriction, the
sampling interval Δ is usually adapted to the range of
the values Im(φj).

The αj are computed from the interpolation condi-
tions

n∑
j=1

αjeφjxi = fi, i = 0, . . . ,2n− 1, (11)

either by solving the system in the least-squares sense
or by solving a subset of n consecutive interpolation
conditions. Note that

eφjxi = λij
and that the coefficient matrix of (11) is therefore a
Vandermonde matrix.

With fi = φ(xi) we now define

f(x) =
∞∑
j=0

fjxj,

where xi = iΔ, i � 0. Since

fi =
n∑
j=1

αjeφjxi =
n∑
j=1

αjλij,

we can rewrite f(x) as follows:

f(x) =
n∑
j=1

αj
1 − xλj

. (12)

So we see that f(x) is itself a rational function of
degree n− 1 in the numerator and n in the denomina-
tor, with poles 1/λj . Hence, from Padé approximation
theory we know (as is to be expected) that rn−1,n(x)
reconstructs f(x); in other words,

rn−1,n(x) = f(x)
with

q(x) =
n∏
j=1

(1 − xλj).

The partial fraction decomposition (12) is the Laplace
transform of the exponential model (10), which ex-
plains why this approach is known as the Padé–Laplace
method.

This connection between approximation theory and
harmonic analysis is clearly not accidental. More con-
structions from harmonic analysis, including wavelets

and Fourier series, also provide important insights
into central problems in approximation theory. Other
mathematical models in which the major features of
a data set are represented using only a few terms
are considered in the theory of compressed sensing

[VII.10].

3 Best Approximation

When the quality of the data does not justify the impo-
sition of an exact match on the approximating func-
tion, or when the quantity of the data is simply over-
whelming and depicts a trend rather than very pre-
cise measurements, interpolation techniques are of no
use. It is better to find a linear combination of suit-
able basis functions that approximates the data in some
best sense. We first discuss the existence and unique-
ness of a best approximant and the discrete linear least-
squares problem. How the bestness or nearness of the
approximation is measured is then explained. Differ-
ent measures lead to different approximants and are
to be used in different contexts. We discuss the impor-
tance of orthogonal basis functions and describe the
continuous linear least-squares problem and the mini-
max approximation. A discussion of a connection with
Fourier series and the interpolation and approximation
of periodic data concludes the section.

3.1 Existence and Uniqueness

First and foremost we discuss the existence and unique-
ness of a best approximant p∗ from a finite-dimen-
sional subspace P to an element f from a normed linear
space V . More specifically, we ask for which of the -1-,
-2-, or -∞-norms can we guarantee that either at least
one or exactly one solution exists to the approximation
problem of finding p∗ ∈ P such that

‖f − p∗‖ � ‖f − p‖, p ∈ P.
The answer to the existence problem is affirmative
for all three mentioned norms. To guarantee unique-
ness of p∗, either the norm or the subspace P under
consideration must satisfy additional conditions. And
we must distinguish between discrete and continuous
approximation and norms.

When V is strictly convex, in other words, when a
sphere in V does not contain line segments, so that

‖x1 − c‖ = r = ‖x2 − c‖ ⇒
‖λx1 + (1 − λ)x2 − c‖ < r, 0 < λ < 1,
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then the best approximant p∗ to f is unique. This
applies, for instance, to the -2- or Euclidean norm, in
both the discrete and continuous cases.

In the discussion of the role of P with respect to the
uniqueness of p∗, we deal with the continuous case
first. When a basis {b0(x), . . . , bn(x)} for P satisfies the
Haar condition, meaning that every linear combination

qn(x) = λ0b0(x)+ · · · + λnbn(x)
has at most n zeros, then the continuous best -1 and
best -∞ approximation problems also have a unique
solution.

Let us now look at the discrete best approximation
problem in somewhat more detail. We consider a large
data set of values fi that we want to approximate by a
linear combination of some linearly independent basis
functions bj(x):

λ0b0(xi)+ · · · + λnbn(xi) = fi, i = 0, . . . ,m > n.
(13)

This (m + 1) × (n + 1) linear system can be written
compactly as

Aλ = f , λ =

⎡⎢⎢⎢⎣
λ0

...

λn

⎤⎥⎥⎥⎦ , f =

⎡⎢⎢⎢⎣
f0

...

fm

⎤⎥⎥⎥⎦ ,
A = (bj−1(xi−1)) ∈ R(m+1)×(n+1).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(14)

Unless the right-hand side f lies in the column space
of A, the system cannot be solved exactly. The residual
vector is given by

r = f −Aλ ∈ Rm+1,

and the solution λ we are looking for is the one that
solves the system best, in other words, the system that
makes the magnitude (or norm) of the residual vec-
tor minimal. The least-squares problem corresponds
to using the Euclidean norm or the -2-norm ‖r‖2 =
(r2

1 + · · · + r2
m)1/2 to measure the residual vector, and

the optimization problem translates to

(ATA)λ = ATf ,

which is a square linear system of equations called
the normal equations [IV.10 §7.1]. If the matrix A
of the overdetermined linear system has maximal col-
umn rank, then the matrix ATA is nonsingular and the
solution is unique.

When every (n+1)× (n+1) submatrix of the matrix
A in (14) is nonsingular, then the discrete best -∞
approximation problem has a unique solution as well.
An example showing the lack of uniqueness of the best

-1 approximation under the same condition is easy to

find. Take

A =
(

1

−1

)
, f =

(
1

2

)

in (14). Then the minimum of ‖Aλ−f‖1 with n = 0 and

b0(x) = 1 is the same for all −2 � λ0 � 1.

In practice, instead of solving the normal equa-

tions, more numerically stable techniques based on

orthogonal transformations [IV.10 §7.1] are ap-

plied directly to the overdetermined system (14). These

transformations do not alter the Euclidean norm of the

residual vector r and hence have no impact on the

optimization criterion.

Let us now see whether the Euclidean norm is the

correct norm to use.

3.2 Choice of Norm

If the optimal solution to the overdetermined linear

system is the one that makes the norm ‖r‖ of the resid-

ual minimal, then we must decide which norm to use to

measure r . Although norms are in a sense equivalent,

because they differ only by a scalar multiple depend-

ing only on the dimension, it makes quite a differ-

ence whether we minimize ‖r‖1, ‖r‖2, or ‖r‖∞. Let us

perform the following experiment.

Using a Gaussian random number generator with

mean μ and standard deviation σ , we generate m + 1

numbers fi. The approximation problem we consider

is the computation of an estimate for μ from the data

points fi, where σ expresses a tight or loose spread

around μ. Compare this with a real-life situation where

the data fi are collected by performing some measure-

ments of a magnitude μ, and σ represents the accuracy

of the measuring tool used to obtain the fi.
In the notation of (13), we want to fit the fi by a mul-

tiple of the basis function b0(x) = 1 because we are

looking for the constant μ. The overdetermined linear

system takes the form

λ0 · 1 = fi, i = 0, . . . ,m.

It is clear that this linear system does not have an exact

solution. The residual vector is definitely nonzero. We

shall see that different criteria or norms can be used to

express the closeness of the estimate λ0 for μ to the

data points fi or, in other words, the magnitude of the

residual vector r with components fi−λ0, and that the

standard deviation σ will also play a role.
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If the Euclidean norm is used, then the optimal

estimate λ(2)0 is the mean of the m measurements fi:

λ(2)0 = 1
m+ 1

m∑
i=0

fi.

If we choose the -1-norm ‖r‖1 = ∑m
i=1 |ri| as a way to

measure distances, then the value λ(1)0 that renders the

-1-norm of the residual vector minimal is the median

of the values fi. Any change that makes the larger val-

ues extremely large or the smaller values extremely

small therefore has no impact on λ(1)0 , which is rather

insensitive to outliers.

When choosing as distance function the -∞-norm

‖r‖∞ = maxi=1,...,m |ri|, the optimal solution λ(∞)0 to

the problem is given by

λ(∞)0 = 1
2

(
min

i=0,...,m
fi + max

i=0,...,m
fi
)
.

This can also be understood intuitively. The value for

λ1 that makes ‖r‖∞ minimal is the one that makes the

largest deviation minimal, so it should be right in the

middle between the extremes.

So the -∞-norm criterion performs particularly well

in the context of rather accurate data (in this experi-

ment meaning small standard deviation σ ) that suffer

relatively small input errors (such as roundoff errors).

When outliers or additional errors (such as from man-

ual data input) are suspected, use of the -1-norm is

recommended. If the measurement errors are believed

to be normally distributed with mean zero, then the -2-

norm is the usual choice. Approximation problems of

this type are therefore called least-squares problems.

3.3 Orthogonal Basis Functions

In the same way that we prefer to draw a graph using an

orthogonal set of axes (the smaller the angle between

the axes, the more difficult it becomes to make a clear

drawing), it is preferred to use a so-called orthogonal

set of basis functions bj(x) in (13). Orthogonal basis

functions bj(x) can tremendously improve the condi-

tioning or sensitivity of the problem (14). They are also

useful in continuous least-squares problems.

The notion of orthogonality in a function space par-

allels that of orthogonality in the vector space Rk:
for a positive weight function w(x) defined on the

interval [a, b], we say that the functions f and g are

w-orthogonal if

〈f ,g〉w =
∫ b
a
f(x)g(x)w(x)dx = 0.

The function w(x) can assign a larger weight to cer-
tain parts of the interval [a, b]. For instance, the func-
tionw(x) = 1/

√
1 − x2 on [−1,1] assigns more weight

toward the endpoints of the interval.

For w(x) = 1 and [a, b] = [−1,1], a sequence of
orthogonal polynomials Li(x) satisfying∫ 1

−1
Lj(x)Lk(x)dx = 0, j �= k,

is given by

L0(x) = 1, L1(x) = x,

Li+1(x) =
2i+ 1
i+ 1

xLi(x)−
i

i+ 1
Li−1(x), i � 1.

The polynomials Li(x) are called the Legendre polyno-
mials. For w(x) = 1/

√
1 − x2 and [a, b] = [−1,1], a

sequence of orthogonal polynomials Ti(x) satisfying∫ 1

−1
Tj(x)Tk(x)

1√
1 − x2

dx = 0, j �= k,

is given by

T0(x) = 1, T1(x) = x,
Ti+1(x) = 2xTi(x)− Ti−1(x), i � 1.

The polynomials Ti(x) are called the Chebyshev poly-
nomials (of the first kind). They are also very useful in
(continuous as well as discrete) least-squares problems,
as discussed below.

When the polynomials are to be used on an inter-
val [a, b] different from [−1,1], the simple change of
variable

x → 2
b − a

(
x − a+ b

2

)
transforms the interval [a, b] to the interval [−1,1], on
which the orthogonal polynomials are defined.

Orthogonal polynomials also satisfy the Haar condi-
tion, so every linear combination

qn(x) = a0p0(x)+ · · · + anpn(x)
of the orthogonal polynomials pi(x) of degree i =
0, . . . , n has at most n zeros. Therefore, orthogonal
polynomials are also a suitable basis in which to
express an interpolating function; the system of inter-
polation conditions

n∑
j=0

ajpj(xi) = fi, i = 0, . . . , n,

has a coefficient matrix that is guaranteed to be non-
singular for mutually distinct points xi.

The importance of orthogonal basis functions in
interpolation and approximation cannot be overstated.
Problems become numerically better conditioned and
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formulas simplify. For instance, the Chebyshev poly-

nomials Ti(x) also satisfy the discrete orthogonality

n∑
i=0

Tj(xi)Tk(xi) = (1 + δk0)
n+ 1

2
δjk,

j, k = 0,1, . . . ,

where δij is the kronecker delta [I.2 §2, table 3] and

xi = cos
(
(2i+ 1)π
2(n+ 1)

)
are the zeros of the Chebyshev polynomial Tn+1. When

expressing the polynomial interpolant pn(x) in (1) of

degree n in the Chebyshev basis,

pn(x) =
n∑
j=0

ajTj(x),

an easy explicit formula for pn(x) interpolating the

values fi at the points xi can be given:

pn(x) =
∑n
i=0 fi
n+ 1

+
n∑
j=1

(
2
∑n
i=0 fiTj(xi)
n+ 1

)
Tj(x).

Another elegant explicit formula, based on the contin-

uous orthogonality property of the Chebyshev polyno-

mials, is given in (16).

The practical utility of Chebyshev polynomials is

illustrated by the open source Chebfun software sys-

tem (see www.chebfun.org) for numerical computation

with functions, which is built on piecewise-polynomial

interpolation at the extrema of Chebyshev polynomials,

or what is equivalent (via the fast fourier transform

[II.10]), expansions in Chebyshev polynomials.

3.4 Chebyshev Series

Let us now choose the basis functions bj(x) = Tj(x)
and look for the coefficients λj that make the -2-norm

of

f(x)−
n∑
j=0

λjTj(x), −1 � x � 1,

minimal for f(x) defined on [−1,1], for simplicity.

We are looking for the polynomial pn(x) of degree n
that is closest to f(x), where we measure the distance

between the functions using the inner product

‖f − pn‖2
2 = 〈f − pn, f − pn〉

=
∫ 1

−1

(f − pn)2(x)√
1 − x2

dx. (15)

This is a continuous least-squares problem because the

norm of a function is minimized instead of the norm

of a finite-dimensional vector. Since∥∥∥∥f −
n∑
j=0

λjTj
∥∥∥∥2

2
=
〈
f −

n∑
j=0

λjTj, f −
n∑
j=0

λjTj
8

= ‖f‖2
2 −

n∑
j=0

〈f , Tj/‖Tj‖2〉2

+
n∑
j=0

(〈f , Tj/‖Tj‖2〉 − λj‖Tj‖2)2,

in which only the last sum of squares depends on λj ,
the minimum is attained for the so-called Chebyshev
coefficients

λj = 〈f , Tj〉/〈Tj, Tj〉. (16)

The partial sum of degree n of the Chebyshev series
development of a function,

f(x) =
∞∑
j=0

〈f , Tj〉
〈Tj, Tj〉

Tj(x),

is therefore the best polynomial approximation of
degree n to f(x) in the -2 sense. Since∣∣∣∣f(x)− n∑

j=0

〈f , Tj〉
〈Tj, Tj〉

Tj(x)
∣∣∣∣ �

∞∑
j=n+1

∣∣∣∣ 〈f , Tj〉
〈Tj, Tj〉

∣∣∣∣,
this error can be made arbitrarily small when the series
of Chebyshev coefficients converges absolutely, a con-
dition that is automatically satisfied for functions that
are continuously differentiable in [−1,1].

The above technique can be generalized to any weight
function and its associated family of orthogonal poly-
nomials: when switching the weight function, the norm
criterion (15) changes and the orthogonal basis is
changed.

The Chebyshev series partial sums are good overall
approximations to a function f(x) defined on the inter-
val [−1,1] (or [a, b] after a suitable change of variable).
To illustrate this, in figure 6 we compare, for the func-
tion f(x) = arctan(x), the error plots of the Chebyshev
series partial sum of degree 9 with the Taylor series par-
tial sum of the same degree. Its Chebyshev series and
Taylor series developments are, respectively, given by

arctan(x) =
∞∑
i=0

(−1)i
2(

√
2 − 1)2i+1

2i+ 1
T2i+1(x),

arctan(x) =
∞∑
i=0

(−1)i
1

2i+ 1
x2i+1.

Although explicit formulas for the Taylor series
expansion of most elementary and special functions
are known, the same is not true for Chebyshev series
expansions. For most functions, the coefficients (16)

http://www.chebfun.org
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Figure 6 Error plots of Chebyshev (solid line) and Taylor
(dashed line) partial sums of degree 9 for arctan(x).

have to be computed numerically because no analytic
expression for (16) can be given.

3.5 The Minimax Approximation

Instead of minimizing the -2-distance (15) between a
function f(x) ∈ C([a, b]) and a polynomial model for
f(x), we can consider the problem of minimizing the
-∞-distance. Every continuous function f(x) defined
on a closed interval [a, b] has a unique so-called mini-
max polynomial approximant of degree n. This means
that there exists a unique polynomial pn = p∗

n of
degree ∂pn � n that minimizes

‖f − pn‖∞ = max
x∈[a,b]

∣∣∣∣f(x)− n∑
j=0

λjxj
∣∣∣∣. (17)

More generally, if the set of basis functions {b0(x), . . . ,
bn(x)} satisfies the Haar condition, then there exists a
unique approximant

q∗n(x) = λ∗0 b0(x)+ · · · + λ∗nbn(x)
that minimizes

‖f − qn‖∞ = max
x∈[a,b]

∣∣∣∣f(x)− n∑
j=0

λjbj(x)
∣∣∣∣.

The minimum is attained and is not an infimum. When
bj(x) = xj , the polynomial p∗

n(x) is computed using
the Remez algorithm, which is based on its characteri-
zation given by the alternation property of the function

–1.0 –0.5 0.5 1.0
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–0.004

–0.002

0.002

0.004

0.006

0

Figure 7 Error plot of ex − p∗
3 (x).

(f −p∗
n)(x); p∗

n is the best polynomial approximant of

degree n if the error ‖f −p∗
n‖∞ is attained by the func-

tion f − p∗
n in at least n+ 2 points y0, . . . , yn+1 in the

interval [a, b] and this with alternating sign, meaning

that

∃y0 > y1 > · · · > yn+1 ∈ [a, b] :
(f − p∗

n)(yi) = s(−1)i‖f − p∗
n‖∞,

s = ±1, i = 0, . . . , n+ 1.

The Remez algorithm is an iterative procedure, and the

polynomial p∗
n(x) is obtained as the limit. The above

characterization is also called the equioscillation prop-

erty. We illustrate it in figure 7, where we plot the error

ex − p∗
3 (x) on [−1,1]. Compare this figure with fig-

ures 8 and 9, in which the error oscillates but does not

equioscillate.

How much better the (nonlinear) minimax approxi-

mation is, compared with a linear approximation pro-

cedure of degree n such as polynomial interpolation,

Chebyshev approximation, and the like, is expressed

by the norm ‖Pn‖∞ = sup‖f‖∞�1 ‖Pn(f)‖∞ of the lin-

ear operator Pn that associates with a function its par-

ticular linear approximant. Since Pn(p∗
n) = p∗

n , we

have

‖f − Pn(f)‖∞ = ‖f − p∗
n + p∗

n − Pn(f)‖∞
= ‖f − p∗

n + Pn(p∗
n − f)‖∞

� (1 + ‖Pn‖∞)‖f − p∗
n‖∞.
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Figure 8 Error plot of the Chebyshev
partial sum of degree 3 for ex .

The value ‖Pn‖∞ is called the Lebesgue constant. When

dealing with polynomial interpolation, ‖Pn‖∞ = Ln,

with Ln given by (3).

The quality of the continuous best -2 approximant

(such as that in figure 8) is expressed by

‖Pn‖∞ = 1
π

∫ π
0

∣∣∣∣sin((n+ 1
2 )θ)

sin( 1
2θ)

∣∣∣∣dθ,

which again grows only logarithmically with n. Contin-

uous -2 polynomial approximation and Lagrange inter-

polation in the Chebyshev zeros (such as in figure 9) can

therefore be considered near-best polynomial approxi-

mants.

3.6 Fourier Series

Let us return to a discrete approximation problem. Our

interest is now in data exhibiting some periodic behav-

ior, such as the description of rotation-invariant geo-

metric figures or the sampling of a sound waveform. A

suitable set of orthogonal basis functions is the set

1, cos(x), cos(2x), . . . , cos(nx),

sin(x), sin(2x), . . . , sin(nx)

⎫⎬⎭ (18)

as long as the distinct data points xi with i = 0, . . . ,m
are evenly spaced on an interval of length 2π because

then, for any two basis functions bj(x) and bk(x) from
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Figure 9 Error plot of the polynomial interpolant
of degree 3 in the Chebyshev zeros for ex .

(18), we have

〈bj, bk〉 =
m∑
i=0

bj(xi)bk(xi) =
m+ 1

2
δjk, j �= 0,

〈b0, bk〉 =
m∑
i=0

b0(xi)bk(xi) = (m+ 1)δ0k,

where δij is the Kronecker delta. For simplicity we

assume that the real data f0, . . . , fm are given on

[0,2π) at

x0 = 0, x1 = 2π
m
, x2 = 4π

m
, . . . , xm = 2mπ

m+ 1
.

Because of the periodicity, the value at xm+1 = 2π
equals the value at x0 and therefore it is not repeated.

Let m � 2n and consider the approximation

λ0

2
+

n∑
j=1

λ2j cos(jx)+
n∑
j=1

λ2j−1 sin(jx).

The values

λ2j =
2

m+ 1

m∑
i=0

fi cos(jxi), j = 0, . . . , n,

λ2j−1 = 2
m+ 1

m∑
i=0

fi sin(jxi), j = 1, . . . , n,

minimize the -2-norm

m∑
i=1

(
λ0

2
+

n∑
j=1

λ2j cos(jxi)+
n∑
j=1

λ2j−1 sin(jxi)− fi
)2

.
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When m = 2n, the minimum is zero because the least-

squares approximant becomes a trigonometric inter-

polant. Note that we have replaced λ0 by 1
2λ0 because

〈bj, bj〉 is smaller by a factor of 2 when j = 0.

If we form a single complex quantityΛj = λ2j−iλ2j−1

for j = 1, . . . , n, where i = √−1, these summations can

be computed using a discrete Fourier transform that

maps the data fi at the points xi to the Λj :

Λj =
1

m+ 1

m∑
i=0

fie−i2πij/(m+1), j = 0, . . . , n.

The functions in (18) also satisfy a continuous

orthogonality property:∫ 2π

0
cos(jx) cos(kx)dx = πδjk, j �= 0,∫ 2π

0
cos(jx) cos(kx)dx = π

2
δjk, j = 0,∫ 2π

0
cos(jx) sin(kx)dx = 0,∫ 2π

0
sin(jx) sin(kx)dx = πδjk.

They can therefore be used for a Fourier series repre-

sentation of a function f(x):

f(x) = λ0

2
+

∞∑
j=1

λ2j cos(jx)+
∞∑
j=1

λ2j−1 sin(jx),

λ2j =
〈f(x), cos(jx)〉

π
, j = 0,1, . . . ,

λ2j−1 = 〈f(x), sin(jx)〉
π

, j = 1,2, . . . .

The partial sum of trigonometric degreen of this series

minimizes the -2-norm

∫ 2π

0

(
f(x)− λ0

2
−

n∑
j=1

λ2j cos(jx)

−
n∑
j=1

λ2j−1 sin(jx)
)2

dx.

4 Multivariate Interpolation
and Approximation

The approximation of multivariate functions—contin-

uous ones as well as discontinuous ones—is an active

field of research due to its large variety of applica-

tions in the computational sciences and engineering.

A wide range of multivariate generalizations of the

above interpolation and approximation problems to

functions of several variables x,y, z, . . . have therefore

been developed: polynomial and rational ones, discrete

and continuous ones.

A fundamental issue in multivariate interpolation

and approximation is the so-called curse of dimen-

sionality [I.3 §2], meaning that, when the dimension-

ality increases, the number of different combinations

of variables grows exponentially in the dimensional-

ity. A polynomial of degree 3 in eight variables already

has 165 terms! Another problem is that the polynomial

basis of the multinomials does not satisfy the Haar

condition and there is no easy generalization of this

property to the multivariate case.

In order to counter both problems, the theory of

radial basis functions has been developed.

Let us consider data fi given at corresponding mul-

tidimensional vectors xi, i = 0, . . . , n. The data vectors

xi do not have to form a grid but can be scattered. A

radial basis function is a function whose value depends

only on the distance from the origin or from another

point, so its variable is r = ‖x‖2 or r = ‖x − c‖2.

When centering a radial basis function B(r) at each data

point, there is a basis function B(‖x−xj‖2) for each j =
0, . . . , n. The coefficients aj in a radial basis function

interpolant
∑n
j=0 ajB(‖x − xj‖2) are then computed

from the linear system

n∑
j=0

ajB(‖xi − xj‖2) = fi, i = 0, . . . , n.

Several commonly used types of radial basis functions

B(r) guarantee nonsingular systems of interpolation

conditions, in other words, nonsingular matrices(
B(‖xi − xj‖2)

)
i,j=0,...,n

.

We mention as examples the Gaussian, multiquadric,

inverse multiquadric, and a member of the Matern

family, respectively, given by

B(r) = e−(sr)
2
,

B(r) =
√

1 + (sr)2,

B(r) = 1/
√

1 + (sr)2,
B(r) = (1 + sr)e−sr .

The real parameter s is called a shape parameter. As can

be seen in figure 10, different choices for s greatly influ-

ence the shape of B(r). Smaller shape parameters cor-

respond to a flatter or wider basis function. The choice



262 IV. Areas of Applied Mathematics

(a)

(b)

(c)

Figure 10 Gaussian basis function with
(a) s = 0.4, (b) s = 1, and (c) s = 3.

of s has a significant impact on the accuracy of the

approximation, and finding an optimal shape param-

eter is not an easy problem. Another concern is the

numerical conditioning of the radial basis interpolation

problem, especially when the shape parameter is small.

The user often has to find the right trade-off between

accuracy and conditioning.

The concept of radial basis function also allows one
to work mesh free. In a mesh or grid of data points each
point has a fixed number of neighbors, and this connec-
tivity between neighbors is used to define mathemat-
ical operators such as the derivative and the divided
difference. Multivariate mesh-free methods allow one
to generalize these concepts and are especially use-
ful when the mesh is difficult to maintain (e.g., in
high-dimensional problems, when there is nonlinear
behavior, discontinuities, singularities, etc.).

5 Future Research

Especially in multivariate approximation theory, many
research questions remain unsolved: theory for the
multivariate case is not nearly as well developed as it
is for the univariate case. But researchers continue to
push the boundaries in the one-variable case as well:
what is the largest function class or the most gen-
eral domain for which a result holds, for example?
Many papers can be found on Jackson-type inequalities
(approximation error bounds in terms of the function’s
smoothness), Bernstein-type inequalities (bounds on
derivatives of polynomials), and convergence proper-
ties of particular approximations (polynomial, spline,
rational, trigonometric), to name just a few fundamen-
tal topics. The development of orthogonal basis func-
tions, on disconnected regions or in more variables,
also deserves (and is getting) a lot of attention.
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IV.10 Numerical Linear Algebra and
Matrix Analysis
Nicholas J. Higham

Matrices are ubiquitous in applied mathematics. Ordi-
nary differential equations (ODEs) and partial differen-
tial equations (PDEs) are solved numerically by finite-
difference or finite-element methods, which lead to sys-
tems of linear equations or matrix eigenvalue prob-
lems. Nonlinear equations and optimization problems
are typically solved using linear or quadratic models,
which again lead to linear systems.

Solving linear systems of equations is an ancient task,
undertaken by the Chinese around 1 c.e., but the study
of matrices per se is relatively recent, originating with
Arthur Cayley’s 1858 “A memoir on the theory of matri-
ces.” Early research on matrices was largely theoret-
ical, with much attention focused on the development
of canonical forms, but in the twentieth century the
practical value of matrices started to be appreciated.
Heisenberg used matrix theory as a tool in the develop-
ment of quantum mechanics in the 1920s. Early propo-
nents of the systematic use of matrices in applied math-
ematics included Frazer, Duncan, and Collar, whose
1938 book Elementary Matrices and Some Applications
to Dynamics and Differential Equations emphasized the
important role of matrices in differential equations and
mechanics. The continued growth of matrices in appli-
cations, together with the advent of mechanical and
then digital computing devices, allowing ever larger
problems to be solved, created the need for greater
understanding of all aspects of matrices from theory
to computation.

This article treats two closely related topics: matrix
analysis, which is the theory of matrices with a focus
on aspects relevant to other areas of mathematics, and
numerical linear algebra (also called matrix computa-
tions), which is concerned with the construction and
analysis of algorithms for solving matrix problems as
well as related topics such as problem sensitivity and
rounding error analysis.

Important themes that are discussed in this article
include the matrix factorization paradigm, the use of
unitary transformations for their numerical stability,
exploitation of matrix structure (such as sparsity, sym-
metry, and definiteness), and the design of algorithms
to exploit evolving computer architectures.

Throughout the article, uppercase letters are used for
matrices and lowercase letters for vectors and scalars.

Matrices and vectors are assumed to be complex, unless
otherwise stated, andA∗ = (aji) denotes the conjugate
transpose of A = (aij). An unsubscripted norm ‖ · ‖
denotes a general vector norm and the corresponding
subordinate matrix norm. Particular norms used here
are the 2-norm ‖·‖2 and the Frobenius norm ‖·‖F. All of
these norms are defined in the language of applied

mathematics [I.2 §§19.3, 20]. The notation “i = 1 :n”
means that the integer variable i takes on the values
1,2, . . . , n.

1 Nonsingularity and Conditioning

Nonsingularity of a matrix is a key requirement in many
problems, such as in the solution of n linear equations
inn unknowns. For some classes of matrices, nonsingu-
larity is guaranteed. A good example is the diagonally
dominant matrices. The matrix A ∈ Cn×n is strictly
diagonally dominant by rows if∑

j �=i
|aij| < |aii|, i = 1 :n,

and strictly diagonally dominant by columns if A∗ is
strictly diagonally dominant by rows. Any matrix that
is strictly diagonally dominant by rows or columns
is nonsingular (a proof can be obtained by applying
Gershgorin’s theorem in section 5.1).

Since data is often subject to uncertainty, we wish
to gauge the sensitivity of problems to perturbations,
which is done using condition numbers [I.2 §22]. An
appropriate condition number for the matrix inverse is

lim
ε→0

sup
‖ΔA‖�ε‖A‖

‖(A+ΔA)−1 −A−1‖
ε‖A−1‖ .

This expression turns out to equal κ(A) = ‖A‖‖A−1‖,
which is called the condition number of A with respect
to inversion. This condition number occurs in many
contexts. For example, suppose A is contaminated
by errors and we perform a similarity transformation
X−1(A + E)X = X−1AX + F . Then ‖F‖ = ‖X−1EX‖ �
κ(X)‖E‖ and this bound is attainable for some E.
Hence the errors can be multiplied by a factor as large
as κ(X). We therefore prefer to carry out similarity
and other transformations with matrices that are well-
conditioned , that is, ones for which κ(X) is close to its
lower bound of 1. By contrast, a matrix for which κ is
large is called ill-conditioned. For any unitary matrix X,
κ2(X) = 1, so in numerical linear algebra transforma-
tions by unitary or orthogonal matrices are preferred
and usually lead to numerically stable algorithms.

In practice we often need an estimate of the matrix
condition number κ(A) but do not wish to go to the



264 IV. Areas of Applied Mathematics

expense of computing A−1 in order to obtain it. Fortu-
nately, there are algorithms that can cheaply produce a
reliable estimate of κ(A) once a factorization of A has
been computed.

Note that the determinant, det(A), is rarely com-
puted in numerical linear algebra. Its magnitude gives
no useful information about the conditioning of A, not
least because of its extreme behavior under scaling:
det(αA) = αn det(A).

2 Matrix Factorizations

The method of Gaussian elimination (GE) for solving a
nonsingular linear system Ax = b of n equations in
n unknowns reduces the matrix A to upper triangular
form and then solves for x by substitution [I.3 §7.1].
GE is typically described by writing down the equations
a(k+1)
ij = a(k)ij − a(k)ik a

(k)
kj /a

(k)
kk (and similarly for b) that

describe how the starting matrix A = A(1) = (a(1)ij )
changes on each of the n − 1 steps of the elimina-
tion in its progress toward upper triangular form U .
Working at the element level in this way leads to a pro-
fusion of symbols, superscripts, and subscripts that
tend to obscure the mathematical structure and hin-
der insights being drawn into the underlying process.
One of the key developments in the last century was
the recognition that it is much more profitable to work
at the matrix level. Thus the basic equation above is
written as A(k+1) = MkA(k), where Mk agrees with the
identity matrix except below the diagonal in the kth
column, where its (i, k) element is mik = −a(k)ik /a

(k)
kk ,

i = k + 1 :n. Recurring the matrix equation gives U :=
A(n) = Mn−1 · · ·M1A. Taking the Mk matrices over to
the left-hand side leads, after some calculations, to the
equation A = LU , where L is unit lower triangular, with
(i, k) element mik. The prefix “unit” means that L has
ones on the diagonal.

GE is therefore equivalent to factorizing the matrix
A as the product of a lower triangular matrix and an
upper triangular matrix—something that is not at all
obvious from the element-level equations. Solving the
linear systemAx = b now reduces to the task of solving
the two triangular systems Ly = b and Ux = y .

Interpreting GE as LU factorization separates the
computation of the factors from the solution of the tri-
angular systems. It is then clear how to solve efficiently
several systems Axi = bi, i = 1 : r , with different right-
hand sides but the same coefficient matrix A: compute
the LU factors once and then reuse them to solve for
each xi in turn.

This matrix factorization1 viewpoint dates from
around the 1940s and has been extremely successful
in matrix computations. In general, a factorization is a
representation of a matrix as a product of “simpler”
matrices. Factorization is a tool that can be used to
solve a variety of problems, as we will see below.

Two particular benefits of factorizations are unity
and modularity. GE, for example, can be organized
in several different ways, corresponding to different
orderings of the three nested loops that it comprises,
as well as the use of different blockings of the matrix
elements. Yet all of them compute the same LU factor-
ization, carrying out the same mathematical operations
in a different order. Without the unifying concept of a
factorization, reasoning about these GE variants would
be difficult.

Modularity refers to the way that a factorization
breaks a problem down into separate tasks that can
be analyzed or programmed independently. To carry
out a rounding error analysis of GE, we can analyze the
LU factorization and the solution of the triangular sys-
tems by substitution separately and then put the analy-
ses together. The rounding error analysis of substitu-
tion can be reused in the many other contexts in which
triangular systems arise.

An important example of the use of LU factoriza-
tion is in iterative refinement. Suppose we have used
GE to obtain a computed solution x̂ to Ax = b in
floating-point arithmetic. If we form r = b − Ax̂ and
solve Ae = r , then in exact arithmetic y = x̂ + e is
the true solution. In computing e we can reuse the LU
factors of A, so obtaining y from x̂ is inexpensive. In
practice, the computation of r , e, and y is subject to
rounding errors so the computed ŷ is not equal to x.
But under suitable assumptions ŷ will be an improved
approximation and we can iterate this refinement pro-
cess. Iterative refinement is particularly effective if r
can be computed using extra precision.

Two other key factorizations are the following.

• Cholesky factorization: for Hermitian positive-def-
inite A ∈ Cn×n, A = R∗R, where R is upper tri-
angular with positive diagonal elements, and this
factorization is unique.

• QR factorization: for A ∈ Cm×n with m � n, A =
QR, where Q ∈ Cm×m is unitary (Q∗Q = Im) and
R ∈ Cm×n is upper trapezoidal, that is, R = [ R1

0

]
with R1 ∈ Cn×n upper triangular.

1. Or decomposition—the two terms are essentially synonymous.
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These two factorizations are related: if A ∈ Cm×n with

m � n has full rank and A = QR is a QR factorization,

in which without loss of generality we can assume that

R has positive diagonal, then A∗A = R∗R, so R is the

Cholesky factor of A∗A.

The Cholesky factorization can be computed by what

is essentially a symmetric and scaled version of GE. The

QR factorization can be computed in three main ways,

one of which is the classical Gram–Schmidt orthogonal-

ization. The most widely used method constructs Q as

a product of Householder reflectors, which are unitary

matrices of the form H = I − 2vv∗/(v∗v), where v
is a nonzero vector. Note that H is a rank-1 perturba-

tion of the identity, and since it is Hermitian and uni-

tary, it is its own inverse; that is, it is involutory . The

third approach builds Q as a product of Givens rota-

tions, each of which is a 2 × 2 matrix
[ c s
−s c

]
embedded

into two rows and columns of anm×m identity matrix,

where (in the real case) c2 + s2 = 1.

The Cholesky factorization helps us to make the

most of the very desirable property of positive-definite-

ness. For example, supposeA is Hermitian positive-def-

inite and we wish to evaluate the scalar α = x∗A−1x.

We can rewrite it as x∗(R∗R)−1x = (x∗R−1)(R−∗x) =
z∗z, where z = R−∗x. So once the Cholesky factoriza-

tion has been computed we need just one triangular

solve to compute α, and of course there is no need to

explicitly invert the matrix A.

A matrix factorization might involve a larger num-

ber of factors: A = N1N2 · · ·Nk, say. It is immediate

that AT = NT
kN

T
k−1 · · ·NT

1 . This factorization of the

transpose may have deep consequences in a particu-

lar application. For example, the discrete Fourier trans-

form is the matrix–vector product y = Fnx, where the

n×nmatrix Fn has (p, q) element exp(−2π i(p−1)(q−
1)/n); Fn is a complex, symmetric matrix. The fast

fourier transform [II.10] (FFT) is a way of evaluating

y in O(n log2n) operations, as opposed to the O(n2)
operations that are required by a standard matrix–

vector multiplication. Many variants of the FFT have

been proposed since the original 1965 paper by Coo-

ley and Tukey. It turns out that different FFT vari-

ants correspond to different factorizations of Fn with

k = log2n sparse factors. Some of these methods

correspond simply to transposing the factorization in

another method (recall that FT
n = Fn), though this

was not realized when the methods were developed.

Transposition also plays an important role in auto-

matic differentiation [VI.7]; the so-called reverse or

adjoint mode can be obtained by transposing a matrix
factorization representation of the forward mode.

The factorizations described in this section are in
“plain vanilla” form, but all have variants that incor-
porate pivoting. Pivoting refers to row or column inter-
changes carried out at each step of the factorization as
it is computed, introduced either to ensure that the fac-
torization succeeds and is numerically stable or to pro-
duce a factorization with certain desirable properties
usually associated with rank deficiency. For GE, partial
pivoting is normally used: at the start of the kth stage of
the elimination, an element a(k)rk of largest modulus in
the kth column below the diagonal is brought into the
(k, k) (pivot) position by interchanging rows k and r .
Partial pivoting avoids dividing by zero (if a(k)kk = 0 after
the interchange then the pivot column is zero below the
diagonal and the elimination step can be skipped). More
importantly, partial pivoting ensures numerical stabil-
ity (see section 8). The overall effect of GE with partial
pivoting is to produce an LU factorization PA = LU ,
where P is a permutation matrix.

Pivoted variants of Cholesky factorization and QR
factorization take the form PTAP = R∗R and AP =
Q
[ R

0

]
, where P is a permutation matrix and R satisfies

the inequalities

|rkk|2 �
j∑
i=k

|rij|2, j = k+ 1 :n, k = 1 :n.

If A is rank deficient then R has the form R = [ R11 R12
0 0

]
with R11 nonsingular, and the rank of A is the dimen-
sion of R11. Equally importantly, when A is nearly rank
deficient this tends to be revealed by a small trailing
diagonal block of R.

A factorization of great importance in a wide variety
of applications is the singular value decomposition

[II.32] (SVD) of A ∈ Cm×n:

A = UΣV∗, Σ = diag(σ1, σ2, . . . , σp) ∈ Rm×n, (1)

where p = min(m,n), U ∈ Cm×m and V ∈ Cn×n are
unitary, and the singular values σi satisfy σ1 � σ2 �
· · · � σp � 0. For a square A (m = n), the 2-norm
condition number is given by κ2(A) = σ1/σn.

The polar decomposition of A ∈ Cm×n with m � n
is a factorization A = UH in which U ∈ Cm×n has
orthonormal columns and H ∈ Cn×n is Hermitian
positive-semidefinite. The matrix H is unique and is
given by (A∗A)1/2, where the exponent 1/2 denotes the
principal square root [II.14], while U is unique if A
has full rank. The polar decomposition generalizes to
matrices the polar representation z = reiθ of a complex
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number. The Hermitian polar factorH is also known as
the matrix absolute value, |A|, and is much studied in
matrix analysis and functional analysis.

One reason for the importance of the polar decom-
position is that it provides an optimal way to orthogo-
nalize a matrix; a result of Fan and Hoffman (1955) says
that U is the nearest matrix with orthonormal columns
to A in any unitarily invariant norm (a unitarily invari-
ant norm is one with the property that ‖UAV‖ = ‖A‖
for any unitary U and V ; the 2-norm and the Frobe-
nius norm are particular examples). In various appli-
cations a matrix A ∈ Rn×n that should be orthogonal
drifts from orthogonality because of rounding or other
errors; replacing it by the orthogonal polar factor U is
then a good strategy.

The polar decomposition also solves the orthogonal
Procrustes problem, for A,B ∈ Cm×n,

min{‖A− BQ‖F : Q ∈ Cn×n, Q∗Q = I},
for which any solution Q is a unitary polar factor of
B∗A. This problem comes from factor analysis and mul-
tidimensional scaling in statistics, where the aim is to
see whether two data sets A and B are the same up to
an orthogonal transformation.

Either of the SVD and the polar decomposition can
be derived, or computed, from the other. Histori-
cally, the SVD came first (Beltrami, in 1873), with the
polar decomposition three decades behind (Autonne,
in 1902).

3 Distance to Singularity and
Low-Rank Perturbations

The question commonly arises of whether a given per-
turbation of a nonsingular matrix A preserves nonsin-
gularity. In a sense, this question is trivial. Recalling
that a square matrix is nonsingular when all its eigen-
values are nonzero, and that the product of two matri-
ces is nonsingular unless one of them is singular, from
A+ΔA = A(I +A−1ΔA) we see that A+ΔA is nonsin-
gular as long as A−1ΔA has no eigenvalue equal to −1.
However, this is not an easy condition to check, and in
practice we may not know ΔA but only a bound for its
norm. Since any norm of a matrix exceeds the modulus
of every eigenvalue, a sufficient condition for A + ΔA
to be nonsingular is that ‖A−1ΔA‖ < 1, which is cer-
tainly true if ‖A−1‖‖ΔA‖ < 1. This condition can be
rewritten as the inequality ‖ΔA‖/‖A‖ < κ(A)−1, where
κ(A) = ‖A‖‖A−1‖ � 1 is the condition number intro-
duced in section 1. It turns out that we can always
find a perturbation ΔA such that A + ΔA is singular

and ‖ΔA‖/‖A‖ = κ(A)−1. It follows that the relative
distance to singularity

d(A) = min{‖ΔA‖/‖A‖ : A+ΔA is singular} (2)

is given by d(A) = κ(A)−1. This reciprocal relation
between problem conditioning and the distance to a
singular problem (one with an infinite condition num-
ber) is common to a variety of problems in linear alge-
bra and control theory, as shown by James Demmel in
the 1980s.

We may want a more refined test for whether A+ΔA
is nonsingular. To obtain one we will need to make
some assumptions about the perturbation. Suppose
that ΔA has rank 1: ΔA = xy∗ for some vectors x and
y . From the analysis above we know that A + ΔA will
be nonsingular if A−1ΔA = A−1xy∗ has no eigenvalue
equal to −1. Using the fact that the nonzero eigenvalues
of AB are the same as those of BA for any conformable
matrices A and B, we see that the nonzero eigenvalues
of (A−1x)y∗ are the same as those of y∗A−1x. Hence
A+ xy∗ is nonsingular as long as y∗A−1x �= −1.

Now that we know when A+xy∗ is nonsingular, we
might ask if there is an explicit formula for the inverse.
Since A + xy∗ = A(I + A−1xy∗), we can take A = I
without loss of generality. So we are looking for the
inverse of B = I + xy∗. One way to find it is to guess
that B−1 = I + θxy∗ for some scalar θ and equate the
product with B to I, to obtain θ(1+y∗x)+1 = 0. Thus
(I +xy∗)−1 = I −xy∗/(1+y∗x). The corresponding
formula for (A+ xy∗)−1 is

(A+ xy∗)−1 = A−1 −A−1xy∗A−1/(1 +y∗A−1x),

which is known as the Sherman–Morrison formula.
This formula and its generalizations originated in the
1940s and have been rediscovered many times. The
corresponding formula for a rank-p perturbation is
the Sherman–Morrison–Woodbury formula: for U,V ∈
Cn×p ,

(A+UV∗)−1 = A−1 −A−1U(I + V∗A−1U)−1V∗A−1.

Important applications of these formulas are in opti-
mization, where rank-1 or rank-2 updates are made
to Hessian approximations in quasi-newton meth-

ods [IV.11 §4.2] and to basis matrices in the simplex

method [IV.11 §3.1]. More generally, the task of updat-
ing the solution to a problem after a coefficient matrix
has undergone a low-rank change, or has had a row or
column added or removed, arises in many applications,
including signal processing [IV.35], where new data
is continually being received and old data is discarded.
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The minimal distance in the definition (2) of the dis-
tance to singularity d(A) can be shown to be attained
for a rank-1 matrix ΔA. Rank-1 matrices often feature
in the solutions of matrix optimization problems.

4 Computational Cost

In order to compare competing methods and predict
their practical efficiency, we need to know their com-
putational cost. Traditionally, computational cost has
been measured by counting the number of scalar arith-
metic operations and retaining only the highest-order
terms in the total. For example, using GE we can solve
a system of n linear equations in n unknowns with
n3/3+O(n2) additions, n3/3+O(n2)multiplications,
and O(n) divisions. This is typically summarized as
2n3/3 flops, where a flop denotes any of the scalar
operations +, −, ∗, /. Most standard problems involv-
ing n×nmatrices can be solved with a cost of order n3

flops or less, so the interest is in the exponent (1, 2, or 3)
and the constant of the dominant term. However, the
costs of moving data around a computer’s hierarchi-
cal memory and the costs of communicating between
different processors on a multiprocessor system can
be equally important. Simply counting flops does not
therefore necessarily give a good guide to performance
in practice.

Seemingly trivial problems can offer interesting chal-
lenges as regards minimizing arithmetic costs. For
matrices A, B, and C of any dimensions such that the
product ABC is defined, how should we compute the
product? The associative law for matrix multiplication
tells us that (AB)C = A(BC), but this mathematical
equivalence is not a computational one. To see why,
note that for three vectors a,b, c ∈ Rn we can write

(ab∗)︸ ︷︷ ︸
n×n

c = a(b∗c)︸ ︷︷ ︸
1×1

.

Evaluation of the left-hand side requiresO(n2) flops, as
there is an outer product ab∗ and then a matrix–vector
product to evaluate, while evaluation of the right-hand
side requires just O(n) flops, as it involves only vec-
tor operations: an inner product and a vector scaling.
One should always be alert for opportunities to use the
associative law to save computational effort.

5 Eigenvalue Problems

The eigenvalue problem Ax = λx for a square matrix
A ∈ Cn×n, which seeks an eigenvalue λ ∈ C and an
eigenvector x �= 0, arises in many forms. Depending on

–4 –3 –2 1
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–1

0

1

2

–1 0 32 54 76 8

Figure 1 Gershgorin disks for the matrix in (3);
the eigenvalues are marked as solid dots.

the application we may want all the eigenvalues or just

a subset, such as the ten that have the largest real part,

and eigenvectors may or may not be required as well.

Whether the problem is Hermitian or non-Hermitian

changes its character greatly. In particular, while a Her-

mitian matrix has real eigenvalues and a linearly inde-

pendent set of n eigenvectors that can be taken to

be orthonormal, the eigenvalues of a non-Hermitian

matrix can be anywhere in the complex plane and there

may not be a set of eigenvectors that spans Cn.

5.1 Bounds and Localization

One of the first questions to ask is whether we can find

a finite region containing the eigenvalues. The answer

is yes because Ax = λx implies |λ| ‖x‖ = ‖Ax‖ �
‖A‖‖x‖, and hence |λ| � ‖A‖. So all the eigenvalues lie

in a disk of radius ‖A‖ about the origin. More refined

bounds are provided by Gershgorin’s theorem.

Theorem 1 (Gershgorin’s theorem, 1931). The eigen-

values of A ∈ Cn×n lie in the union of the n disks in

the complex plane

Di =
{
z ∈ C : |z − aii| �

∑
j �=i

|aij|
}
, i = 1 :n.

An extension of the theorem says that if k disks form

a connected region that is isolated from the other disks

then there are precisely k eigenvalues in this region.

The Gershgorin disks for the matrix⎡⎢⎢⎢⎢⎢⎣
−1 1/3 1/3 1/3

3/2 −2 0 0

1/2 0 3 1/4

1 0 −1 6

⎤⎥⎥⎥⎥⎥⎦ (3)

are shown in figure 1. We can conclude that there is one

eigenvalue in the disk centered at 3, one in the disk

centered at 6, and two in the union of the other two

disks.
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Gershgorin’s theorem is most useful for matrices
that are close to diagonal, such as those eventually pro-
duced by the Jacobi iterative method for eigenvalues of
Hermitian matrices. Improved estimates can be sought
by applying Gershgorin’s theorem to a matrix D−1AD
similar to A, with the diagonal matrix D chosen in an
attempt to isolate and shrink the disks. Many variants
of Gershgorin’s theorem exist with disks replaced by
other shapes.

The spectral radius ρ(A) (the largest absolute value
of any eigenvalue of A) satisfies ρ(A) � ‖A‖, as shown
above, but this inequality can be arbitrarily weak, as
the matrix

[
1 θ
0 1

]
shows for |θ| � 1. It is natural to ask

whether there are any sharper relations between the
spectral radius and norms. One answer is the equality

ρ(A) = lim
k→∞

‖Ak‖1/k. (4)

Another is the result that given any ε > 0 there is a
norm such that ‖A‖ � ρ(A) + ε; however, the norm
depends onA. This result can be used to give a proof of
the fact, discussed in the article on the jordan canon-

ical form [II.22], that the powers ofA converge to zero
if ρ(A) < 1.

The field of values, also known as the numerical
range, is a tool that can be used for localization and
many other purposes. It is defined for A ∈ Cn×n by

F(A) =
{
z∗Az
z∗z

: 0 �= z ∈ Cn
}
.

The set F(A) is compact and convex (a nontrivial prop-
erty proved by Toeplitz and Hausdorff), and it con-
tains all the eigenvalues of A. For normal matrices it
is the convex hull [II.8] of the eigenvalues. The nor-
mal matrices A are those for which AA∗ = A∗A, and
they include the Hermitian, the skew-Hermitian, and
the unitary matrices. For a Hermitian matrix, F(A) is
a segment of the real axis, while for a skew-Hermitian
matrix it is a segment of the imaginary axis. Figure 2
illustrates two fields of values, the second of which is
the convex hull of the eigenvalues because a circulant

matrix [I.2 §18] is normal.

5.2 Eigenvalue Sensitivity

If A is perturbed, how much do its eigenvalues change?
This question is easy to answer for a simple eigenvalue
λ—one that has algebraic multiplicity [II.22] 1. We
need the notion of a left eigenvector ofA corresponding
to λ, which is a nonzero vectory such thaty∗A = λy∗.
If λ is simple with right and left eigenvectors x and
y , respectively, then there is an eigenvalue λ + Δλ of

–20 –10 0

–10

0

10

0 20 40

–20

–10

0

10
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Figure 2 Fields of values for (a) a pentadiagonal Toeplitz
matrix and (b) a circulant matrix, both of dimension 32. The
eigenvalues are denoted by crosses.

A+ΔA such thatΔλ = y∗ΔAx/(y∗x)+O(‖ΔA‖2) and

so

|Δλ| � ‖y‖2‖x‖2

|y∗x| ‖ΔA‖ +O(‖ΔA‖2).

The term ‖y‖2‖x‖2/|y∗x| can be shown to be an

(absolute) condition number for λ. It is at least 1 and

tends to infinity as y and x approach orthogonality

(which can never exactly be achieved for simple λ), so

λ can be very ill-conditioned. However, if A is Hermi-

tian then we can take y = x and the bound simplifies

to |Δλ| � ‖ΔA‖ +O(‖ΔA‖2), so all the eigenvalues of

a Hermitian matrix are perfectly conditioned.

Much research has been done to obtain eigenvalue

perturbation bounds under both weaker and stronger

assumptions about the problem. Suppose we drop the

requirement that λ is simple. Consider the matrix and

perturbation

A =

⎡⎢⎢⎣
0 1 0

0 0 1

0 0 0

⎤⎥⎥⎦ , ΔA =

⎡⎢⎢⎣
0 0 0

0 0 0

ε 0 0

⎤⎥⎥⎦ .
The eigenvalues of A are all zero, and those of A+ΔA
are the third roots of ε. The change in the eigenvalue

is proportional not to ε but to a fractional power of ε.
In general, the sensitivity of an eigenvalue depends on

the jordan structure [II.22] for that eigenvalue.

5.3 Companion Matrices and the Characteristic

Polynomial

The eigenvalues of a matrix A are the roots of its

characteristic polynomial [I.2 §20], det(λI − A).
Conversely, associated with the polynomial

p(λ) = λn − an−1λn−1 − · · · − a0
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is the companion matrix

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

an−1 an−2 · · · · · · a0

1 0 · · · · · · 0

0 1
. . . 0

...
. . . 0

...

0 · · · · · · 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the eigenvalues of C are the roots of p, as noted in
methods of solution [I.3 §7.2].

This relation means that the roots of a polynomial
can be found by computing the eigenvalues of an n×n
matrix, and this approach is used by some computer
codes, for example the roots function of MATLAB.
While standard eigenvalue algorithms do not exploit
the structure of C , this approach has proved competi-
tive with specialist polynomial root-finding algorithms.
Another use for the relation is to obtain bounds for
roots of polynomials from bounds for matrix eigen-
values, and vice versa.

Companion matrices have many interesting proper-
ties. For example, any nonderogatory [II.22] n × n
matrix is similar to a companion matrix. Companion
matrices have therefore featured strongly in matrix
analysis and also in control theory. However, similar-
ity transformations to companion form are little used
in practice because of problems with ill-conditioning
and numerical instability.

Returning to the characteristic polynomial, p(λ) =
det(λI −A) = λn −an−1λn−1 − · · · −a0, we know that
p(λi) = 0 for every eigenvalue λi of A. The Cayley–
Hamilton theorem says that p(A) = An − an−1An−1 −
· · · − a0I = 0 (which cannot be obtained simply by
putting “λ = A” in the previous expression!). Hence the
nth power of A and inductively all higher powers are
expressible as a linear combination of I, A, . . . , An−1.
Moreover, if A is nonsingular then from A−1p(A) = 0 it
follows that A−1 can also be written as a polynomial in
A of degree at most n− 1. These relations are not use-
ful for practical computation because the coefficients
ai can vary tremendously in magnitude, and it is not
possible to compute them to high relative accuracy.

5.4 Eigenvalue Inequalities for Hermitian Matrices

The eigenvalues of Hermitian matrices A ∈ Cn×n,
which in this section we order λn � · · · � λ1, satisfy
many beautiful inequalities. Among the most impor-
tant are those in the Courant–Fischer theorem (1905),
which states that every eigenvalue is the solution of a

min-max problem over a suitable subspace S of Cn:

λi = min
dim(S)=n−i+1

max
0�=x∈S

x∗Ax
x∗x

.

Special cases are λn = minx �=0 x∗Ax/(x∗x) and λ1 =
maxx �=0 x∗Ax/(x∗x).

Takingx to be a unit vector ei in the previous formula

for λ1 gives λ1 � aii for all i. This inequality is just

the first in a sequence of inequalities relating sums of

eigenvalues to sums of diagonal elements, obtained by

Schur in 1923:

k∑
i=1

λi �
k∑
i=1

ãii, k = 1 :n, (5)

where {ãii} is the set of diagonal elements of A
arranged in decreasing order: ã11 � · · · � ãnn. There

is equality for k = n, since both sides equal trace(A).
These inequalities say that the vector [λ1, . . . , λn] of

eigenvalues majorizes the vector [ã11, . . . , ãnn] of diag-

onal elements.

In general there is no useful formula for the eigen-

values of a sum A + B of Hermitian matrices. How-

ever, the Courant–Fischer theorem yields the upper and

lower bounds

λk(A)+ λn(B) � λk(A+ B) � λk(A)+ λ1(B),

from which it follows that |λk(A + B) − λk(A)| �
max(|λn(B)|, |λ1(B)|) = ‖B‖2. The latter inequality

again shows that the eigenvalues of a Hermitian matrix

are well-conditioned under perturbation.

The Cauchy interlace theorem has a different flavor. It

relates the eigenvalues of successive leading principal

submatrices Ak = A(1 :k,1 :k) by

λk+1(Ak+1) � λk(Ak) � λk(Ak+1)

� · · · � λ2(Ak+1) � λ1(Ak) � λ1(Ak+1)

for k = 1 :n − 1, showing that the eigenvalues of Ak
interlace those of Ak+1.

In 1962 Alfred Horn made a conjecture that a cer-

tain set of linear inequalities involving real numbers

αi, βi, and γi, i = 1 :n, is necessary and sufficient for

the existence of n× n Hermitian matrices A, B, and C
with eigenvalues the αi, βi, and γi, respectively, such

that C = A + B. The conjecture was open for many

years but was finally proved to be true in papers pub-

lished by Klyachko in 1998 and by Knutson and Tao in

1999, which exploited deep connections with algebraic

geometry, representations of Lie groups, and quantum

cohomology.



270 IV. Areas of Applied Mathematics

5.5 Solving the Non-Hermitian Eigenproblem

The simplest method for computing eigenvalues, the
power method, computes just one: the largest in mod-
ulus. It comprises repeated multiplication of a starting
vector x by A. Since the resulting sequence is liable to
overflow or underflow in floating-point arithmetic, one
normalizes the vector after each iteration. Therefore
one step of the power method has the form x ← Ax,
x ← ν−1x, where ν = xj with |xj| = maxi |xi|. If A
has a unique eigenvalue λ of largest modulus and the
starting vector has a component in the direction of the
corresponding eigenvector, then ν converges to λ andx
converges to the corresponding eigenvector. The power
method is most often applied to (A−μI)−1, where μ is
an approximation to an eigenvalue of interest. In this
form it is known as inverse iteration and convergence is
to the eigenvalue closest to μ. We now turn to methods
that compute all the eigenvalues.

Since similarities X−1AX preserve the eigenvalues
and change the eigenvectors in a controlled way, car-
rying out a sequence of similarity transformations to
reduceA to a simpler form is a natural way to tackle the
eigenproblem. Some early methods used nonunitary X,
but such transformations are now avoided because of
numerical instability when X is ill-conditioned. Since
the 1960s the focus has been on using unitary similar-
ities to compute the Schur decomposition A = QTQ∗,
where Q is unitary and T is upper triangular. The diag-
onal entries of T are the eigenvalues of A, and they can
be made to appear in any order by appropriate choice
of Q. The first k columns of Q span an invariant

subspace [I.2 §20] corresponding to the eigenvalues
t11, . . . , tkk. Eigenvectors can be obtained by solving
triangular systems involving T .

For some matrices the Schur factor T is diagonal;
these are precisely the normal matrices defined in sec-
tion 5.1. The real Schur decomposition contains only
real matrices when A is real: A = QRQT, where Q is
orthogonal and R is real upper quasitriangular, which
means that R is upper triangular except for 2×2 blocks
on the diagonal corresponding to complex conjugate
eigenvalues.

The standard algorithm for solving the non-Her-
mitian eigenproblem is the QR algorithm, which was
proposed independently by John Francis and Vera
Kublanovskaya in 1961. The matrix A ∈ Cn×n is
first unitarily reduced to upper Hessenberg form H =
U∗AU (hij = 0 for i > j + 1), with U a product of
Householder matrices. The QR iteration constructs a

sequence of upper Hessenberg matrices beginning with
H1 = H defined by Hk−μkI =: QkRk (QR factorization,
computed using Givens rotations),Hk+1 := RkQk+μkI,
where the μk are shifts chosen to accelerate the con-
vergence of Hk to upper triangular form. It is easy to
check that Hk+1 = Q∗

kHkQk, so the QR iteration carries
out a sequence of unitary similarity transformations.

Why the QR iteration works is not obvious but can
be elegantly explained by analyzing the subspaces
spanned by the columns of Qk. To produce a practi-
cal and efficient algorithm various refinements of the
iteration are needed, which include

• deflation, whereby when an element on the first
subdiagonal of Hk becomes small, that element
is set to zero and the problem is split into two
smaller problems that are solved independently,

• a double shift technique for real A that allows
two QR steps with complex conjugate shifts to be
carried out entirely in real arithmetic and gives
convergence to the real Schur form, and

• a multishift technique for including m different
shifts in a single QR iteration.

A proof of convergence is lacking for all current shift
strategies. Implementations introduce a random shift
when convergence appears to be stagnating. The QR
algorithm works very well in practice and continues
to be the method of choice for the non-Hermitian
eigenproblem.

5.6 Solving the Hermitian Eigenproblem

The eigenvalue problem for Hermitian matrices is eas-
ier to solve than that for non-Hermitian matrices, and
the range of available numerical methods is much
wider.

To solve the complete Hermitian eigenproblem we
need to compute the spectral decomposition A =
QDQ∗, where D = diag(λi) contains the eigenvalues
and the columns of the unitary matrix Q are the cor-
responding eigenvectors. Many methods begin by uni-
tary reduction to tridiagonal form T = U∗AU , where
tij = 0 for |i − j| > 1 and the unitary matrix U is
constructed as a product of Householder matrices. The
eigenvalue problem for T is much simpler, though still
nontrivial. The most widely used method is the QR algo-
rithm, which has the same form as in the non-Hermitian
case but with the upper Hessenberg Hk replaced by
the Hermitian tridiagonal Tk and the shifts chosen to
accelerate the convergence of Tk to diagonal form. The
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Hermitian QR algorithm with appropriate shifts has
been proved to converge at a cubic rate.

Another method for solving the Hermitian tridiag-
onal eigenproblem is the divide and conquer method .
This method decouples T in the form

T =
[
T11 0

0 T22

]
+αvv∗,

where only the trailing diagonal element of T11 and the
leading diagonal element of T22 differ from the corre-
sponding elements of T and hence the vector v has
only two nonzero elements. The eigensystems of T11

and T22 are found by applying the method recursively,
yielding T11 = Q1Λ1Q∗

1 and T22 = Q2Λ2Q∗
2 . Then

T =
[
Q1Λ1Q∗

1 0

0 Q2Λ2Q∗
2

]
+αvv∗

= diag(Q1,Q2)(diag(Λ1, Λ2)+αṽṽ∗)diag(Q1,Q2)∗,

where ṽ = diag(Q1,Q2)∗v . The eigensystem of a rank-
1 perturbed diagonal matrix D+ρzz∗ can be found by
solving the secular equation obtained by equating the
characteristic polynomial to zero:

f(λ) = 1 + ρ
n∑
j=1

|zj|2
djj − λ

= 0.

Putting the pieces together yields the overall eigende-
composition.

Other methods are suitable for computing just a por-
tion of the spectrum. Suppose we want to compute the
kth smallest eigenvalue of T and that we can some-
how compute the integer N(x) equal to the number of
eigenvalues of T that are less than or equal to x. Then
we can apply the bisection method [I.4 §2] to N(x)
to find the point where N(x) jumps from k − 1 to k.
We can compute N(x) by making use of the following
result about the inertia of a Hermitian matrix, defined
by inertia(A) = (ν, ζ,π), where ν is the number of neg-
ative eigenvalues, ζ is the number of zero eigenvalues,
and π is the number of positive eigenvalues.

Theorem 2 (Sylvester’s inertia theorem). If A is
Hermitian and M is nonsingular, then inertia(A) =
inertia(M∗AM).

Sylvester’s inertia theorem says that the number
of negative, zero, and positive eigenvalues does not
change under congruence transformations. By using GE
we can factorize2 T − xI = LDL∗, where D is diago-
nal and L is unit lower bidiagonal (a bidiagonal matrix

2. The factorization may not exist, but if it does not we can simply
perturb T slightly and try again without any loss of numerical stability.

is one that is both triangular and tridiagonal). Then
inertia(T − xI) = inertia(D), so the number of nega-
tive or zero diagonal elements of D equals the number
of eigenvalues of T − xI less than or equal to 0, which
is the number of eigenvalues of T less than or equal
to x, that is, N(x). The LDL∗ factors of a tridiagonal
matrix can be computed in O(n) flops, so this bisec-
tion process is efficient. An alternative approach can be
built by using properties of Sturm sequences, which are
sequences comprising the characteristic polynomials
of leading principal submatrices of T − λI.

5.7 Computing the SVD

For a rectangular matrix A ∈ Cm×n the eigenvalues of
the Hermitian matrix

[ 0 A
A∗ 0

]
of dimension m + n are

plus and minus the nonzero singular values of A along
with m + n − 2 min(m,n) zeros. Hence the SVD can
be computed via the eigendecomposition of this larger
matrix. However, this would be inefficient, and instead
one uses algorithms that work directly on A and are
analogues of the algorithms for Hermitian matrices.
The standard approach is to reduce A to bidiagonal
form B by Householder transformations applied on the
left and the right and then to apply an adaptation of the
QR algorithm that works on the bidiagonal factor (and
implicitly applies the QR algorithm to the tridiagonal
matrix B∗B).

5.8 Generalized Eigenproblems

The generalized eigenvalue problem (GEP) Ax = λBx,
with A,B ∈ Cn×n, can be converted into a standard
eigenvalue problem if B (say) is nonsingular: B−1Ax =
λx. However, such a transformation is inadvisable
numerically unless B is very well-conditioned. If A and
B have a common null vector z, the problem takes on a
different character because then (A−λB)z = 0 for any
λ; such a problem is called singular . We will assume
that the problem is regular , so that det(A−λB) �≡ 0. The
linear polynomial A− λB is sometimes called a pencil .

It is convenient to write λ = α/β, where α and β are
not both zero, and rephrase the problem in the more
symmetric form βAx = αBx. If x is a nonzero vector
such that Bx = 0, then, since the problem is assumed
to be regular, Ax �= 0 and so β = 0. This means that
λ = ∞ is an eigenvalue. Infinite eigenvalues may seem
a strange concept, but in fact they are no different in
most respects to finite eigenvalues.

An important special case is the definite generalized
eigenvalue problem, in which A and B are Hermitian
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and B (say) is positive-definite. If B = R∗R is a Cholesky
factorization, then Ax = λBx can be rewritten as
R−∗AR−1 · Rx = λRx, which is a standard eigenprob-
lem for the Hermitian matrix C = R−∗AR−1. This argu-
ment shows that the eigenvalues of a definite prob-
lem are all real. Definite generalized eigenvalue prob-
lems arise in many physical situations where an energy-
minimization principle is at work, such as in problems
in engineering and physics.

A generalization of the QR algorithm called the QZ
algorithm computes a generalization to two matrices
of the Schur decomposition: Q∗AZ = T , Q∗BZ = S,
where Q and Z are unitary and T and S are upper tri-
angular. The generalized Schur decomposition yields
the eigenvalues as the ratios tii/sii and enables eigen-
vectors to be computed by substitution.

The quadratic eigenvalue problem (QEP) Q(λ)x =
(λ2A2 + λA1 + A0)x = 0, where Ai ∈ Cn×n, i = 0 : 2,
arises most commonly in the dynamic analysis of struc-
tures when the finite-element method is used to dis-
cretize the original PDE into a system of second-order
ODEs A2q̈(t) + A1q̇(t) + A0q(t) = f(t). Here, the Ai
are usually Hermitian (though A1 is skew-Hermitian in
gyroscopic systems) and positive (semi)definite. Anal-
ogously to the GEP, the QEP is said to be regular if
det(Q(λ)) �≡ 0. The quadratic problem differs funda-
mentally from the linear GEP because a regular problem
has 2n eigenvalues, which are the roots of det(Q(λ)) =
0, but at most n linearly independent eigenvectors,
and a vector may be an eigenvector for two different
eigenvalues. For example, the QEP with

Q(λ) = λ2I + λ
[
−1 −6

2 −9

]
+
[

0 12

−2 14

]
has eigenvalues 1, 2, 3, and 4, with eigenvectors

[
1
0

]
,[

0
1

]
,
[

1
1

]
, and

[
1
1

]
, respectively. Moreover, there is no

Schur form for three or more matrices; that is, we can-
not in general find unitary matrices U and V such that
U∗AiV is triangular for i = 0 : 2.

Associated with the QEP is the matrixQ(X) = A2X2+
A1X +A0, with X ∈ Cn×n. From the relation

Q(λ)−Q(X) = A2(λ2I −X2)+A1(λI −X)
= (λA2 +A2X +A1)(λI −X),

it is clear that if we can find a matrix X such that
Q(X) = 0, known as a solvent, then we have reduced
the QEP to finding the eigenvalues of X and solving one
n × n GEP. For the 2 × 2 Q above there are five sol-
vents, one of which is

[
3 0
1 2

]
. The existence and enumer-

ation of solvents is nontrivial and leads into the theory

of matrix polynomials. In general, matrix polynomials
are matrices of the form

∑k
i=0 λiAi whose elements are

polynomials in a complex variable; an older term for
such matrices is λ-matrices.

The standard approach for numerical solution of the
QEP mimics the conversion of the scalar polynomial
root problem into a matrix eigenproblem described in
section 5.3. From the relation

L(λ)z ≡
([
A1 A0

I 0

]
+ λ

[
A2 0

0 −I

])[
λx
x

]

=
[
Q(λ)x

0

]
,

we see that the eigenvalues of the quadratic Q are the
eigenvalues of the 2n×2n linear polynomial L(λ). This
is an example of an exact linearization process—thanks
to the hidden λ in the eigenvector! The eigenvalues of L
can be found using the QZ algorithm. The eigenvectors
of L have the form z = [ λx

x
]
, where x is an eigenvector

of Q, and so x can be obtained from either the first n
(if λ �= 0) or the last n components of z.

6 Sparse Linear Systems

For linear systems coming from discretization of dif-
ferential equations it is common that A is banded ,
that is, the nonzero elements lie in a band about the
main diagonal. An extreme case is a tridiagonal matrix,
of which the classic example is the second-difference
matrix, illustrated for n = 4 by

A =

⎡⎢⎢⎢⎢⎣
−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −2

⎤⎥⎥⎥⎥⎦ , A−1 = −1
5

⎡⎢⎢⎢⎢⎣
4 3 2 1

3 6 4 2

2 4 6 3

1 2 3 4

⎤⎥⎥⎥⎥⎦ .
This matrix corresponds to a centered finite-differ-

ence approximation [II.11] to a second derivative:
f ′′(x) ≈ (f (x + h) − 2f(x) + f(x − h))/h2. Note
that A−1 is a full matrix. For banded matrices, GE pro-
duces banded LU factors and its computational cost is
proportional to n times the square of the bandwidth.

A matrix is sparse if advantage can be taken of the
zero entries because of either their number or their dis-
tribution. A banded matrix is a special case of a sparse
matrix. Sparse matrices are stored on a computer not as
a square array but in a special format that records only
the nonzeros and their location in the matrix. This can
be done with three vectors: one to store the nonzero
entries and the other two to define the row and column
indices of the elements in the first vector.
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Sparse matrices help to explain the tenet: never solve
a linear system Ax = b by computing x = A−1 ×b. The
reasons for eschewing A−1 are threefold.

• ComputingA−1 requires three times as many flops
as solving Ax = b by GE with partial pivoting.

• GE with partial pivoting is backward stable for
solving Ax = b (see section 8) but solution via
A−1 is not.

• If A is sparse, A−1 is generally dense and so
requires much more storage than GE with partial
pivoting.

When GE is applied to a sparse matrix, fill-in occurs
when the row operations cause a zero entry to become
nonzero during the elimination. To minimize the stor-
age and the computational cost, fill-in must be avoided
as much as possible. This can be done by employing
row and column interchanges to choose a suitable pivot
from the active submatrix. The first such strategy was
introduced by Markowitz in 1957. At the kth stage, with
c(k)j denoting the number of nonzeros in rows k to n of
column j and r (k)i the number of nonzeros in columns
k to n of row i, the Markowitz strategy finds the pair
(r , s) that minimizes (r (k)i −1)(c(k)j −1) over all nonzero
potential pivots a(k)ij and then takes a(k)rs as the pivot.
The quantity being minimized is a bound on the fill-in.
In practice, the potential pivots must be restricted to
those not too much smaller in magnitude than the par-
tial pivot in order to preserve numerical stability. The
result of GE with Markowitz pivoting is a factorization
PAQ = LU , where P and Q are permutation matrices.

The analogue of the Markowitz strategy for Her-
mitian positive-definite matrices chooses a diagonal
entry a(k)ii as the pivot, where r (k)i is minimal. This is
the minimum-degree algorithm, which has been very
successful in practice. Figure 3 shows in the first
row a sparse and banded symmetric positive-definite
matrix A of dimension 225 followed to the right by its
Cholesky factor. The Cholesky factor has many more
nonzeros than A. The second row shows the matrix
PAPT produced by an approximate minimum-degree
ordering (produced by the MATLAB symamd function)
and its Cholesky factor. We can see that the permu-
tations have destroyed the band structure but have
greatly reduced the fill-in, producing a much sparser
Cholesky factor.

As an alternative to GE for solving sparse linear sys-
tems one can apply iterative methods, described in sec-
tion 9; for sufficiently large problems these are the only
feasible methods.
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Figure 3 Sparsity plots of a symmetric positive-definite
matrix (left) and its Cholesky factor (right) for original
matrix (first row) and reordered matrix (second row). nz is
the number of nonzeros.

7 Overdetermined and
Underdetermined Systems

Linear systems Ax = b with a rectangular matrix
A ∈ Cm×n are very common. They break into two cat-
egories: overdetermined systems, with more equations
than unknowns (m > n), and underdetermined systems,
with fewer equations than unknowns (m < n). Since in
general there is no solution when m > n and there are
many solutions when m < n, extra conditions must
be imposed for the problems to be well defined. These
usually involve norms, and different choices of norms
are possible. We will restrict our discussion mainly to
the 2-norm, which is the most important case, but other
choices are also of practical interest.

7.1 The Linear Least-Squares Problem

Whenm > n the residual r = b−Ax cannot in general
be made zero, so we try to minimize its norm. The most
common choice of norm is the 2-norm, which gives the
linear least-squares problem

min
x∈Cn

‖b −Ax‖2. (6)

This choice can be motivated by statistical consider-
ations (the Gauss–Markov theorem) or by the fact that
the square of the 2-norm is differentiable, which makes
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the problem explicitly solvable. Indeed, by setting the
gradient of ‖b − Ax‖2

2 to zero we obtain the normal
equationsA∗Ax = A∗b, which any solution of the least-
squares problem must satisfy. If A has full rank then
A∗A is positive-definite and so there is a unique solu-
tion, which can be computed by solving the normal
equations using Cholesky factorization. For reasons of
numerical stability it is preferable to use a QR factor-
ization: ifA = Q[ R1

0

]
then the normal equations reduce

to the triangular system R1x = c, where c is the first n
components of Q∗b.

WhenA is rank deficient there are many least-squares
solutions, which vary widely in norm. A natural choice
is one of minimal 2-norm, and in fact there is a unique
minimal 2-norm solution, xLS, given by

xLS =
r∑
i=1

(u∗
i b/σi)vi,

where

A = UΣV∗, U = [u1, . . . , um], V = [v1, . . . , vn], (7)

is an SVD and r = rank(A). The use of this formula in
practice is not straightforward because a matrix stored
in floating-point arithmetic will rarely have any zero
singular values. Therefore r must be chosen by desig-
nating which singular values can be regarded as negligi-
ble, and this choice should take account of the accuracy
with which the elements of A are known.

Another choice of least-squares solution in the rank-
deficient case is a basic solution: one with at most r
nonzeros. Such a solution can be computed via the QR
factorization with column pivoting.

7.2 Underdetermined Systems

When m < n and A has full rank, there are infinitely
many solutions toAx = b and again it is natural to seek
one of minimal 2-norm. There is a unique such solution
xLS = A∗(AA∗)−1b, and it is best computed via a QR
factorization, this time of A∗. A basic solution, with
m nonzeros, can alternatively be computed. As a sim-
ple example, consider the problem “find two numbers
whose sum is 5,” that is, solve [1 1]

[ x1
x2

] = 5. A basic
solution is [5 0]T, while the minimal 2-norm solution
is [5/2 5/2]T. Minimal 1-norm solutions to underdeter-
mined systems are important in compressed sensing

[VII.10].

7.3 Pseudoinverse

The analysis in the previous two subsections can be
unified in a very elegant way by making use of the

Moore–Penrose pseudoinverse A+ of A ∈ Cm×n, which
is defined as the unique X ∈ Cn×m satisfying the
Moore–Penrose conditions

AXA = A, XAX = X,
(AX)∗ = AX, (XA)∗ = XA.

(It is certainly not obvious that these equations have
a unique solution.) In the case where A is square and
nonsingular, it is easily seen that A+ is just A−1. More-
over, if rank(A) = n then A+ = (A∗A)−1A∗, while if
rank(A) = m then A+ = A∗(AA∗)−1. In terms of the
SVD (7),

A+ = V diag(σ−1
1 , . . . , σ−1

r ,0, . . . ,0)U∗,

where r = rank(A). The formula xLS = A+b holds for
all m and n, so the pseudoinverse yields the minimal
2-norm solution to both the least-squares (overdeter-
mined) problem Ax = b and an underdetermined sys-
tem Ax = b. The pseudoinverse has many interesting
properties, including (A+)+ = A, but it is not always
true that (AB)+ = B+A+.

Although the pseudoinverse is a very useful theoret-
ical tool, it is rarely necessary to compute it explicitly
(just as for its special case the matrix inverse).

The pseudoinverse is just one of many ways of gen-
eralizing the notion of inverse to rectangular matri-
ces, but it is the right one for minimum 2-norm solu-
tions to linear systems. Other generalized inverses can
be obtained by requiring only a subset of the four
Moore–Penrose conditions to hold.

8 Numerical Considerations

Prior to the introduction of the first digital comput-
ers in the 1940s, numerical computations were carried
out by humans, sometimes with the aid of mechanical
calculators. The human involvement in a sequence of
calculations meant that potentially dangerous events
such as dividing by a tiny number or subtracting two
numbers that agree to almost all their significant digits
could be observed, their effect monitored, and possible
corrective action taken—such as temporarily increas-
ing the precision of the calculations. On the very early
computers intermediate results were observed on a
cathode ray tube monitor, but this became impossi-
ble as problem sizes increased (along with available
computing power). Fears were raised in the 1940s that
algorithms such as GE would suffer exponential growth
of errors as the problem dimension increased, due to
the rapidly increasing number of arithmetic operations,
each having its associated rounding error [II.13].
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These fears were particularly concerning given that the
error growth might be unseen and unsuspected.

The subject of rounding error analysis grew out of
the need to understand the effect of rounding errors on
algorithms. The person who did the most to develop the
subject was James Wilkinson, whose influential papers
and 1961 and 1965 books showed how backward

error analysis [I.2 §23] can be used to obtain deep
insights into numerical stability. We will discuss just
two particular examples.

Wilkinson showed that when a nonsingular linear
system Ax = b is solved by GE in floating-point
arithmetic the computed solution x̂ satisfies

(A+ΔA)x̂ = b, ‖ΔA‖∞ � p(n)ρnu‖A‖∞.
Here, p(n) is a cubic polynomial, the growth factor

ρn =
maxi,j,k |a(k)ij |
maxi,j |aij|

� 1

measures the growth of elements during the elimina-
tion, and u is the unit roundoff [II.13]. This is a back-
ward stability result : it says that the computed solu-
tion x̂ is the exact solution of a perturbed system. Ide-
ally, we would like ‖ΔA‖∞ � u‖A‖∞, which reflects the
uncertainty caused by converting the elements of A to
floating-point numbers. The polynomial term p(n) is
pessimistic and might be more realistically replaced by
its square root. The danger term is the growth factorρn,
and the conclusion from Wilkinson’s analysis is that a
pivoting strategy should aim to keep ρn small. If no
pivoting is done, ρn can be arbitrarily large (e.g., for
A = [ ε 1

1 1

]
with 0 < ε � 1, ρn ≈ 1/ε). For partial pivot-

ing, however, it can be shown that ρn � 2n−1 and that
this bound is attainable. In practice, ρn is almost always
of modest size for partial pivoting (ρn � 50, say); why
this should be so remains one of the great mysteries of
numerical analysis!

One of the benefits of Wilkinson’s backward error
analysis is that it enables us to identify classes of matri-
ces for which pivoting is not necessary, that is, for
which the LU factorization A = LU exists and ρn is
nicely bounded. One such class is the matrices that
are diagonally dominant by either rows or columns, for
which ρn � 2.

The potential instability of GE can be attributed to the
fact thatA is premultiplied by a sequence of nonunitary
transformations, any of which can be ill-conditioned.
Many algorithms, including Householder QR factoriza-
tion and the QR algorithm for eigenvalues, use exclu-
sively unitary transformations. Such algorithms are

usually (but not always) backward stable, essentially
because unitary transformations do not magnify errors:
‖UAV‖ = ‖A‖ for any unitary U and V for the 2-norm
and the Frobenius norm. As an example, the QR algo-
rithm applied toA ∈ Cn×n produces a computed upper
triangular matrix T̂ such that

Q̃∗(A+ΔA)Q̃ = T̂ , ‖ΔA‖F � p(n)u‖A‖F,

where Q̃ is some exactly unitary matrix and p(n) is a
cubic polynomial. The computed Schur factor Q̂ is not
necessarily close to Q̃—which in turn is not necessarily
close to the exact Q!—but it is close to being orthogo-
nal: ‖Q̂∗Q̂− I‖F � p(n)u. This distinction between the
different Q matrices is an indication of the subtleties
of backward error analysis. For some problems it is not
clear exactly what form of backward error result it is
possible to prove while obtaining useful bounds. How-
ever, the purpose of a backward error analysis is always
the same: either to show that an algorithm behaves in a
numerically stable way or to shed light on how it might
fail to do so and to indicate what quantities should be
monitored in order to identify potential instability.

9 Iterative Methods

In numerical linear algebra, methods can broadly be
divided into two classes: direct and iterative. Direct
methods, such as GE, solve a problem in a fixed num-
ber of arithmetic operations or a variable number that
in practice is fairly constant, as for the QR algorithm for
eigenvalues. Iterative methods are infinite processes
that must be truncated at some point when the approx-
imation they provide is “good enough.” Usually, iter-
ative methods do not transform the matrix in ques-
tion and access it only through matrix–vector products;
this makes them particularly attractive for large, sparse
matrices, where applying a direct method may not be
practical.

We have already seen in section 5.5 a simple iterative
method for the eigenvalue problem: the power method.
The stationary iterative methods are an important class
of iterative methods for solving a nonsingular linear
system Ax = b. These methods are best described in
terms of a splitting

A = M −N,
with M nonsingular. The system Ax = b can be rewrit-
ten Mx = Nx + b, which suggests constructing a
sequence {x(k)} from a given starting vector x(0) via

Mx(k+1) = Nx(k) + b. (8)
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Different choices of M and N yield different methods.
The aim is to chooseM in such a way that it is inexpen-
sive to solve (8) while M is a good enough approxima-
tion to A that convergence is fast. It is easy to analyze
convergence. Denote by e(k) = x(k) −x the error in the
kth iterate. Subtracting Mx = Nx + b from (8) gives
M(x(k+1) − x) = N(x(k) − x), so

e(k+1) = M−1Ne(k) = · · · = (M−1N)k+1e(0). (9)

If ρ(M−1N) < 1 then (M−1N)k → 0 as k → ∞ (see jor-

dan canonical form [II.22]) and so x(k) converges to
x at a linear rate. In practice, for convergence in a rea-
sonable number of iterations we need ρ(M−1N) to be
sufficiently less than 1 and the powers ofM−1N should
not grow too large initially before eventually decaying;
in other words, M−1N must not be too nonnormal.

Three standard choices of splitting are as follows,
where D = diag(A) and L and U denote the strictly
lower and strictly upper triangular parts of A, respec-
tively.

• M = D, N = −(L+ U): Jacobi iteration (illustrated
in methods of solution [I.3 §6]).

• M = D + L, N = −U : Gauss–Seidel iteration.
• M = (1/ω)D + L, N = ((1 −ω)/ω)D − U , where
ω ∈ (0,2) is a relaxation parameter: successive
overrelaxation (SOR) iteration.

Sufficient conditions for convergence are that A is
strictly diagonally dominant by rows for the Jacobi
iteration and that A is symmetric positive-definite for
the Gauss–Seidel iteration. How to choose ω so that
ρ(M−1N|ω) is minimized for the SOR iteration was
elucidated in the landmark 1950 Ph.D. thesis of David
Young.

The Google PageRank algorithm [VI.9], which un-
derlies Google’s ordering of search results, can be inter-
preted as an application of the Jacobi iteration to a
certain linear system involving the adjacency matrix

[II.16] of the graph corresponding to the whole World
Wide Web. However, the most common use of station-
ary iterative methods is as preconditioners within other
iterative methods.

The aim of preconditioning is to convert a given lin-
ear system Ax = b into one that can be solved more
cheaply by a particular iterative method. The basic idea
is to use a nonsingular matrix W to transform the sys-
tem to (W−1A)x = W−1b in such a way that (a) the pre-
conditioned system can be solved in fewer iterations
than the original system and (b) matrix–vector multi-
plications with W−1A (which require the solution of a

linear system with coefficient matrix W ) are not signif-

icantly more expensive than matrix–vector multiplica-

tions with A. In general, this is a difficult or impossible

task, but in many applications the matrix A has struc-

ture that can be exploited. For example, many elliptic

PDE problems lead to a positive-definite matrixA of the

form

A =
[
M1 F
FT M2

]
,

where M1z = d1 and M2z = d2 are easy to solve. In

this case it is natural to take W = diag(M1,M2) as the

preconditioner. When A is Hermitian positive-definite

the preconditioned system is written in a way that pre-

serves the structure. For example, for the Jacobi pre-

conditioner, D = diag(A), the preconditioned system

would be written D−1/2AD−1/2x̃ = b̃, where x̃ = D1/2x
and b̃ = D−1/2b. Here, the matrixD−1/2AD−1/2 has unit

diagonal and off-diagonal elements lying between −1

and 1.

The most powerful iterative methods for linear sys-

tems Ax = b are the Krylov methods. In these methods

each iterate x(k) is chosen from the shifted subspace

x(0) +Kk(A, r (0)), where

Kk(A, r (0)) = span{r (0), Ar (0), . . . , Ak−1r (0)}
is a krylov subspace [II.23] of dimension k, with

r (k) = b − Ax(k). Different strategies for choosing

approximations from within the Krylov subspaces yield

different methods. For example, the conjugate gradi-

ent method (CG, for Hermitian positive-definite A) and

the full orthogonalization method (FOM, for general A)

make the residual r (k) orthogonal to the Krylov sub-

space Kk(A, r (0)), while the minimal residual method

(MINRES, for Hermitian A) and the generalized min-

imal residual method (GMRES, for general A) mini-

mize the 2-norm of the residual over all vectors in the

Krylov subspace. How to compute the vectors defined

in these ways is nontrivial. It turns out that CG can

be implemented with a recurrence requiring just one

matrix–vector multiplication and three inner products

per iteration, and MINRES is just a little more expen-

sive. GMRES, being applicable to non-Hermitian matri-

ces, is significantly more expensive, and it is also much

harder to analyze its convergence behavior. For gen-

eral matrices there are alternatives to GMRES that

employ short recurrences. We mention just BiCGSTAB,

which has the distinction that the 1992 paper by Henk

van der Vorst that introduced it was the most-cited

paper in mathematics of the 1990s.
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Theoretically, Krylov methods converge in at most
n iterations for a system of dimension n. However, in
practical computation rounding errors intervene and
the methods behave as truly iterative methods not
having finite termination. Since n is potentially huge,
a Krylov method would not be used unless a good
approximate solution was obtained in many fewer than
n iterations, and preconditioning plays a crucial role
here. Available error bounds for a method help to guide
the choice of preconditioner, but care is needed in inter-
preting the bounds. To illustrate this, consider the CG
method for Ax = b, where A is Hermitian positive-
definite. In the A-norm, ‖z‖A = (z∗Az)1/2, the error
on the kth step satisfies

‖x − x(k)‖A � 2‖x − x(0)‖A
(
κ2(A)1/2 − 1
κ2(A)1/2 + 1

)k
,

where κ2(A) = ‖A‖2‖A−1‖2. If we can precondition A
so that its 2-norm condition number is very close to 1,
then fast convergence is guaranteed. However, another
result says that if A has k distinct eigenvalues then CG
converges in at most k iterations. A better approach
might therefore be to choose the preconditioner so
that the eigenvalues of the preconditioned matrix are
clustered into a small number of groups.

Another important class of iterative methods is
multigrid methods [IV.13 §3], which work on a hier-
archy of grids that come from a discretization of
an underlying PDE (geometric multigrid) or are con-
structed artificially from a given matrix (algebraic
multigrid).

An important practical issue is how to terminate
an iteration. Popular approaches are to stop when the
residual r (k) = b − Ax(k) (suitably scaled) is small or
when an estimate of the error x−x(k) is small. Compli-
cating factors include the fact that the preconditioner
can change the norm and a possible desire to match the
error in the iterations with the discretization error in
the PDE from which the linear system might have come
(as there is no point solving the system to greater accu-
racy than the data warrants). Research in recent years
has led to good understanding of these issues.

The ideas of Krylov methods and preconditioners can
be applied to problems other than linear systems. A
popular Krylov method for solving the least-squares
problem (6) is LSQR, which is mathematically equiva-
lent to applying CG to the normal equations. In large-
scale eigenvalue problems only a few eigenpairs are
usually required. A number of methods project the
original matrix onto a Krylov subspace and then solve

a smaller eigenvalue problem. These include the Lanc-
zos method for Hermitian matrices and the Arnoldi
method for general matrices. Also of much current
research interest are rational Krylov methods based
on rational generalizations of krylov subspaces

[II.23].

10 Nonnormality and Pseudospectra

Normal matrices A ∈ Cn×n (defined in section 5.1)
have the property that they are unitarily diagonaliz-
able: A = QDQ∗ for some unitary Q and diagonal
D = diag(λi) containing the eigenvalues on its diago-
nal. In many respects normal matrices have very pre-
dictable behavior. For example, ‖Ak‖2 = ρ(A)k and
‖etA‖2 = eα(tA), where the spectral abscissa α(tA) is
the largest real part of any eigenvalue of tA. However,
matrices that arise in practice are often very nonnor-
mal. The adjective “very” can be quantified in various
ways, of which one is the Frobenius norm of the strictly
upper triangular part of the upper triangular matrix T
in the Schur decomposition A = QTQ∗. For example,
the matrix

[ t11 θ
0 t22

]
is nonnormal for θ �= 0 and grows

increasingly nonnormal as |θ| increases.

Consider the moderately nonnormal matrix

A =
[
−0.97 25

0 −0.3

]
. (10)

While the powers of A ultimately decay to zero, since
ρ(A) = 0.97 < 1, we see from figure 4 that initially they
increase in norm. Likewise, since α(A) = −0.3 < 0 the
norm ‖etA‖2 tends to zero as t → ∞, but figure 4 shows
that there is an initial hump in the plot. In station-
ary iterations the hump caused by a nonnormal iter-
ation matrix M−1N can delay convergence, as is clear
from (9). In finite-precision arithmetic it can even hap-
pen that, for a sufficiently large hump, rounding errors
cause the norms of the powers to plateau at the hump
level and never actually converge to zero.

How can we predict the shape of the curves in fig-
ure 4? Let us concentrate on ‖Ak‖2. Initially it grows
like ‖A‖k2 and ultimately it decays like ρ(A)k, the decay
rate following from (4). The height of the hump is
related to pseudospectra, which have been popularized
by Nick Trefethen.

The ε-pseudospectrum of A ∈ Cn×n is defined, for a
given ε > 0, to be the set

Λε(A) = {z ∈ C : z is an eigenvalue of A+ E
for some E with ‖E‖2 < ε}, (11)
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Figure 4 2-norms of (a) powers and (b) exponentials of 2 × 2 matrix A in (10).

and it can also be represented, in terms of the resolvent

(zI −A)−1, as

Λε(A) = {z ∈ C : ‖(zI −A)−1‖2 > ε−1}.

The 0.001-pseudospectrum, for example, tells us the

uncertainty in the eigenvalues of A if the elements are

known only to three decimal places. Pseudospectra pro-

vide much insight into the effects of nonnormality of

matrices and (with an appropriate extension of the def-

inition) linear operators. For nonnormal matrices the

pseudospectra are much bigger than a perturbation of

the spectrum by ε. It can be shown that for any ε > 0,

sup
k�0

‖Ak‖ � ρε(A)− 1
ε

, ‖Ak‖ � ρε(A)k+1

ε
,

where the pseudospectral radius ρε(A) = max{|λ| : λ ∈
Λε(A)}. For A in (10) and ε = 10−2, these inequali-

ties give an upper bound of 230 for ‖A3‖ and a lower

bound of 23 for supk�0 ‖Ak‖, and figure 5 plots the

corresponding ε-pseudospectrum.

11 Structured Matrices

In a wide variety of applications the matrices have

a special structure. The matrix elements might form

a pattern, as for toeplitz or hamiltonian matri-

ces [I.2 §18], the matrix may satisfy a nonlinear equa-

tion such as A∗ΣA = Σ, where Σ = diag(±1), which

yields the pseudo-unitary matrices A, or the subma-

trices may satisfy certain rank conditions (as for qua-

siseparable matrices). We discuss here two of the oldest

and most-studied classes of structured matrices, both
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Figure 5 Approximation to 10−2-pseudospectrum of A in
(10) comprising eigenvalues of 5000 randomly perturbed
matrices A+ E in (11). The eigenvalues of A are marked by
white circles.

of which were historically important in the analysis of

iterative methods for linear systems arising from the

discretization of differential equations.

11.1 Nonnegative Matrices

A nonnegative matrix is a real matrix all of whose

entries are nonnegative. A number of important classes

of matrices are subsets of the nonnegative matrices.

These include adjacency matrices, stochastic matri-

ces [II.25], and Leslie matrices (used in population

modeling). Nonnegative matrices have a large body

of theory, which originates with Perron in 1907 and

Frobenius in 1908.
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To state the celebrated Perron–Frobenius theorem

we need the definition that A ∈ Rn×n with n � 2 is

reducible if there is a permutation matrix P such that

PTAP =
[
A11 A12

0 A22

]
,

where A11 and A22 are square, nonempty submatrices,

and it is irreducible if it is not reducible. A matrix with

positive entries is trivially irreducible. A useful char-

acterization is that A is irreducible if and only if the

directed graph associated with A (which has n vertices,

with an edge connecting the ith vertex to the jth vertex

if aij �= 0) is strongly connected [II.16].

Theorem 3 (Perron–Frobenius). If A ∈ Rn×n is non-

negative and irreducible then

(1) ρ(A) > 0,

(2) ρ(A) is an eigenvalue of A,

(3) there is a positive vectorx such thatAx = ρ(A)x,

(4) ρ(A) is an eigenvalue of algebraic multiplicity 1.

To illustrate the theorem consider the following two

irreducible matrices and their eigenvalues:

A =

⎡⎢⎢⎣
8 1 6

3 5 7

4 9 2

⎤⎥⎥⎦ , Λ(A) = {15,±2
√

6},

B =

⎡⎢⎢⎣
0 0 6
1
2 0 0

0 1
3 0

⎤⎥⎥⎦ , Λ(B) = {1, 1
2 (−1 ±

√
3i)}.

The Perron–Frobenius theorem correctly tells us that

ρ(A) = 15 is a distinct eigenvalue of A and that it has

a corresponding positive eigenvector, which is known

as the Perron vector. The Perron vector of A is the vec-

tor of all ones, as A forms a magic square and ρ(A) is

the magic sum! The Perron vector of B, which is both a

Leslie matrix and a companion matrix, is [6 3 1]T. There

is one notable difference between A and B: for A, ρ(A)
exceeds the other eigenvalues in modulus, but all three

eigenvalues of B have modulus 1. In fact, Perron’s orig-

inal version of Theorem 3 says that if A has all positive

elements then ρ(A) is not only an eigenvalue of A but

is larger in modulus than every other eigenvalue. Note

that B3 = I, which provides another way to see that the

eigenvalues of B all have modulus 1.

We saw in section 9 that the spectral radius plays an

important role in the convergence of stationary itera-

tive methods, through ρ(M−1N), where A = M −N is a

splitting. In comparing different splittings we can use

the result that for A,B ∈ Rn×n, with |A| denoting the
matrix (|aij|),

|aij| � bij ∀i, j ⇒ ρ(A) � ρ(|A|) � ρ(B).

11.2 M-Matrices

A ∈ Rn×n is anM-matrix if it can be written in the form
A = sI − B, where B is nonnegative and s > ρ(B). M-
matrices arise in many applications, a classic one being
Leontief’s input–output models in economics.

The special sign pattern of an M-matrix—positive
diagonal elements and nonpositive off-diagonal ele-
ments—combines with the spectral radius condition to
give many interesting characterizations and properties.
For example, a nonsingular matrix A with nonpositive
off-diagonal elements is an M-matrix if and only if A−1

is nonnegative. Another characterization, which makes
connections with section 1, is that A is an M-matrix
if and only if A has positive diagonal entries and AD
is diagonally dominant by rows for some nonsingular
diagonal matrix D.

An important source ofM-matrices is discretizations
of differential equations, and the archetypal example is
the second-difference matrix, described at the start of
section 6, which is an M-matrix multiplied by −1. For
this application it is an important result that when A
is an M-matrix the Jacobi and Gauss–Seidel iterations
for Ax = b both converge for any starting vector—a
result that is part of the more general theory of regular
splittings.

Another important property of M-matrices is imme-
diate from the definition: the eigenvalues all lie in the
open right half-plane. This means that M-matrices are
special cases of positive stable matrices, which in turn
are of great interest due to the fact that the stabil-
ity of various mathematical processes is equivalent to
positive (or negative) stability of an associated matrix.

The class of matrices whose inverses are M-matrices
is also much studied. To indicate why, we state a result
about matrix roots. It is known that if A is an M-matrix
thenA1/2 is also anM-matrix. But ifA is stochastic (that
is, it is nonnegative and has unit row sums), A1/2 may
not be stochastic. However, if A is both stochastic and
the inverse of an M-matrix, then A1/p is stochastic for
all positive integers p.

12 Matrix Inequalities

There is a large body of work on matrix inequal-
ities, ranging from classical nineteenth-century and
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early twentieth-century inequalities (some of which are
described in section 5.4) to more recent contributions,
which are often motivated by applications, notably in
statistics, physics, and control theory. In this section we
describe just a few examples, chosen for their interest
or practical usefulness.

An important class of inequalities on Hermitian
matrices is expressed using the Löwner (partial) order-
ing in which, for HermitianX and Y ,X � Y denotes that
X−Y is positive-semidefinite while X > Y denotes that
X − Y is positive-definite. Many inequalities between
real numbers generalize to Hermitian matrices in this
ordering. For example, if A, B, C are Hermitian and A
commutes with B and C , then

A � 0, B � C ⇒ AB � AC.
A function f is matrix monotone if it preserves the

order, that is, A � B implies f(A) � f(B), where f(A)
denotes a function of a matrix [II.14]. Much is known
about this class of functions, including that t1/2 and
log t are matrix monotone but t2 is not.

Many matrix inequalities involve norms. One exam-
ple is

‖|A| − |B|‖F �
√

2‖A− B‖F,

where A,B ∈ Cm×n and |·| is the matrix absolute value
defined in section 2. This inequality can be regarded as
a perturbation result that shows the matrix absolute
value to be very well-conditioned.

An example of an inequality that finds use in the
analysis of convergence of methods in nonlinear opti-
mization is the Kantorovich inequality, which for Her-
mitian positive-definite A with eigenvalues λn � · · · �
λ1 and x �= 0 is

(x∗Ax)(x∗A−1x)
(x∗x)2

� (λ1 + λn)2
4λ1λn

.

This inequality is attained for somex, and the left-hand
side is always at least 1.

Many inequalities are available that generalize scalar
inequalities for means. For example, the arithmetic–
geometric mean inequality (ab)1/2 � 1

2 (a+b) for pos-
itive scalars has an analogue for Hermitian positive-
definite A and B in the inequality A # B � 1

2 (A + B),
whereA#B is the geometric mean defined as the unique
Hermitian positive-definite solution toXA−1X = B. The
geometric mean also satisfies the extremal property

A # B = max

{
X : X = X∗,

[
A X
X B

]
� 0

}
,

which hints at matrix completion problems, in which the
aim is to choose missing elements of a matrix in order

to achieve some goal, which could be to satisfy a partic-

ular matrix property or, as here, to maximize an objec-

tive function. Another mean for Hermitian positive-

definite matrices (and applicable more generally) is the

log-Euclidean mean, exp( 1
2 (logA + logB)), where log

is the principal logarithm [II.14], which is used in

image registration, for example.

Finally, we mention an inequality for the matrix expo-

nential. Although there is no simple relation between

eA+B and eAeB in general, for Hermitian A and B the

inequality trace(eA+B) � trace(eAeB) was proved inde-

pendently by S. Golden and J. Thompson in 1965. Orig-

inally of interest in statistical mechanics, the Golden–

Thompson inequality has more recently found use

in random-matrix theory [IV.24]. Again for Her-

mitian A and B, the related inequalities ‖eA+B‖ �
‖eA/2eBeA/2‖ � ‖eAeB‖ hold for any unitarily invariant

norm.

13 Library Software

From the early days of digital computing the benefits

of providing library subroutines for carrying out basic

operations such as the addition of vectors and the for-

mation of vector inner products was recognized. Over

the ensuing years many matrix computation research

codes were published, including in the linear algebra

volume of the Handbook for Automatic Computation

(1971) and in the Collected Algorithms of the ACM.

Starting in the 1970s the concept of standardized sub-

programs was developed in the form of the Basic Lin-

ear Algebra Subprograms (BLAS), which are specifica-

tions for vector (level 1), matrix–vector (level 2), and

matrix–matrix (level 3) operations. The BLAS have been

widely adopted, and highly optimized implementations

are available for most machines. The freely available

LAPACK library of Fortran codes represents the current

state of the art for solving dense linear equations, least-

squares problems, and eigenvalue and singular value

problems. Many modern programming packages and

environments build on LAPACK.

It is interesting to note that the TOP500 list (www

.top500.org) ranks the world’s fastest computers by

their speed (measured in flops per second) in solving

a random linear system Ax = b by GE. This benchmark

has its origins in the 1970s LINPACK project, a precur-

sor to LAPACK, in which the performance of contempo-

rary machines was compared by running the LINPACK

GE code on a 100 × 100 system.

http://www.top500.org
http://www.top500.org
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14 Outlook

Matrix analysis and numerical linear algebra remain

very active areas of research. Many problems in applied

mathematics and scientific computing require the solu-

tion of a matrix problem at some stage, so there is

always a demand for better understanding of matrix

problems and faster and more accurate algorithms for

their solution. As the overarching applications evolve,

new problem variants are generated, often involving

new assumptions on the data, different requirements

on the solution, or new metrics for measuring the suc-

cess of an algorithm. A further driver of research is

computer hardware. With the advent of processors with

many cores, the use of accelerators such as graph-

ics processing units, and the harnessing of vast num-

bers of processors for parallel computing, the standard

algorithms in numerical linear algebra are having to be

reorganized and possibly even replaced, so we are likely

to see significant changes in the coming years.

Further Reading

Three must-haves for researchers are the influential

treatment of numerical linear algebra by Golub and

Van Loan and the two volumes by Horn and Johnson,

which contain a comprehensive treatment of matrix

analysis.
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IV.11 Continuous Optimization
(Nonlinear and Linear
Programming)
Stephen J. Wright

1 Overview

At the core of any optimization problem is a mathe-
matical model of a system. This model could be con-
structed according to physical, economic, behavioral,
or statistical principles, and it describes relationships
between variables that define the state of the system; it
may also place restrictions on the states, in the form of
constraints on the variables. The model also includes
an objective function that measures the desirability of
a given set of variables. The optimization problem is to
find the set of variables that achieves the best possible
value of the objective function, among all those values
that satisfy the given constraints.

1.1 Examples

Optimization problems are ubiquitous, as we illustrate
with some examples.

(1) A firm wishes to maximize its profit, given con-
straints on availability of resources (equipment, labor,
raw materials), production costs, and forecast demand.

(2) In order to forecast weather, we first need to solve
a problem to identify the state of the atmosphere a
few hours ago. This is done by finding the state that
is most consistent with recent meteorological observa-
tions (temperature, wind speed, humidity, etc.) taken
at a variety of locations and times. The model con-
tains differential equations that describe evolution of
the atmosphere, statistical elements that describe prior
knowledge of the atmospheric state, and an objective
function that measures the consistency between the
atmospheric state and the observations.

(3) Computer systems for recognizing handwritten dig-
its contain models that read the written character, in
the form of a pixelated image, and output their best
guess as to the digit that is represented in the image.
These models can be “trained” by presenting them with
a (typically large) set of images containing known dig-
its. An optimization problem is solved to adjust the
parameters in the model so that the error count on the
training set is minimized. If the training set is represen-
tative of the images that the system will see in future,
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this optimized model can be trusted to perform reliable
digit recognition.

(4) Given a product that is produced in a number of
cities and consumed in other cities, we wish to find the
least expensive way to transport the product from sup-
ply locations to demand locations. Here, the model con-
sists of a graph that describes the transportation net-
work, capacity constraints, and the cost of transporting
one unit of the product between two adjacent locations
in the network.

(5) Given a set of possible investments along with the
means, variances, and correlations of their expected
returns, an investor wishes to allocate his or her funds
in a way that balances the expected mean return of the
portfolio with its variance, in a way that fits his or her
appetite for risk.

These examples capture some of the wide variety of
applications currently seen in the field. As they suggest,
the mathematical models that underlie optimization
problems vary widely in size, complexity, and struc-
ture. They may contain simple algebraic relationships,
systems of ordinary or partial differential equations,
models derived from Bayesian statistics, and “black-
box” models whose internal details are not accessi-
ble and can be accessed only by supplying inputs and
observing outputs.

1.2 Continuous Optimization

In continuous optimization, the variables in the model
are nominally allowed to take on a continuous range of
values, usually real numbers. This feature distinguishes
continuous optimization from discrete or combinato-
rial optimization, in which the variables may be binary
(restricted to the values 0 and 1), integer (for which only
integer values are allowed), or more abstract objects
drawn from sets with finitely many elements. (discrete

optimization [IV.38] is the subject of another article
in this volume.)

The algorithms used to solve continuous optimiza-
tion problems typically generate a sequence of values
of the variables, known as iterates, that converge to a
solution of the problem. In deciding how to step from
one iterate to the next, the algorithm makes use of
knowledge gained at previous iterates, and information
about the model at the current iterate, possibly includ-
ing information about its sensitivity to perturbations
in the variables. The continuous nature of the prob-
lem allows sensitivities to be defined in terms of first

and second derivatives of the functions that define the
models.

1.3 Standard Paradigms

Research in continuous optimization tends to be orga-
nized into several paradigms, each of which makes cer-
tain assumptions about the properties of the objective
function, variables, and constraints. To define these
paradigms, we group the variables into a real vector
x with n components (that is, x ∈ Rn) and define the
general continuous optimization problem as follows:

min
x∈Rn

f (x) (1a)

subject to ci(x) = 0, i ∈ E, (1b)

ci(x) � 0, i ∈ I, (1 c)

where the objective f and the constraints ci, i ∈ E ∪I ,
are real-valued functions on Rn. To this formulation is
sometimes added a geometric constraint

x ∈ Ω, (2)

where Ω ⊂ Rn is a closed convex set. (Any nonconvex-
ity in the feasible set is conventionally captured by the
algebraic constraints (1b) and (1 c) rather than the geo-
metric constraint (2).) All functions in (1) are assumed
to at least be continuous. A point x that satisfies all the
constraints is said to be feasible.

There is considerable flexibility in the way that a
given optimization problem can be formulated; the
choice of formulation has a strong bearing on the
effectiveness with which the problem can be solved.
One common reformulation technique is to replace an
inequality constraint by an equality constraint plus a
bound by introducing a new “slack” variable:

ci(x) � 0 � ci(x)+ si = 0, si � 0.

Referring to the general form (1), we distinguish
several popular paradigms.

• In linear programming, the objective function and
the constraints are affine functions of x; that is,
they have the form aTx + b for some a ∈ Rn and
b ∈ R.

• In quadratic programming, we have

f(x) = 1
2x

TQx + cTx + d
for some n×n symmetric matrix Q, vector c ∈
Rn, and scalar d ∈ R, while all constraints ci are
linear. When Q is positive-semidefinite, we have a
convex quadratic program.
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• In convex programming, the objective f and the
negated inequality constraint functions −ci, i ∈
I , are convex functions, while the equality con-
straints ci, i ∈ E, are affine functions. (These
assumptions, along with the convexity and closed-
ness of Ω in the case when (2) is included in the
formulation, imply that the set of feasible points
is closed and convex.)

• Conic optimization problems have the form (1), (2),
where the set Ω is assumed to be a closed, con-
vex cone that is pointed (that is, it contains no
straight line), while the objective f and equality
constraints ci, i ∈ E, are assumed to be affine.
There are no inequalities; that is, I = ∅.

• In unconstrained optimization, there are not any
constraints (1b), (1 c), and (2), while the objective
f is usually assumed to be smooth, with at least
continuous first derivatives. Nonsmooth optimiza-
tion allows f to have discontinuous first deriva-
tives, but it is often assumed that f has some other
structure that can be exploited by the algorithms.

• In nonlinear programming, the functions f and ci,
i ∈ E ∪ I , are generally nonlinear but smooth, at
least having continuous first partial derivatives on
the region of interest.

An important special class of conic optimization
problems is semidefinite programming, in which the
vector x of unknowns contains the elements of a sym-
metric m×m matrix X that is required to be positive-
semidefinite. It is natural and useful to write this
problem in terms of the matrix X as follows:

min
X∈SRm×m

C •X (3a)

subject to Ai •X = bi, i = 1,2, . . . , p, (3b)

X - 0. (3 c)

Here, SRm×m denotes the set of symmetric m×m
matrices, the matrices C and Ai, i = 1,2, . . . , p, all
belong to SRm×m, and the operator • is defined on pairs
of matrices in SRm×m as follows:

X • Z =
m∑
i=1

m∑
j=1

xijzij = trace(XZ).

The constraint (3 c) instantiates the geometric con-
straint (2).

Terminology

“Mathematical programming” is a historical term that
encompasses optimization and closely related areas
such as complementarity problems. Its origins date to

the 1940s, with the development of the simplex method
of George Dantzig, the first effective method for lin-
ear programming (7). The term “programming” origi-
nally referred to the formalized, systematic mathemat-
ical procedure by which problems can be solved. Only
later did “programming” become roughly synonymous
with “computer programming,” causing some confu-
sion that optimization researchers have often been
called on to explain. The more modern term “optimiza-
tion” is generally preferred, although the term “pro-
gramming” is still attached (probably forever) to such
problems as linear programming and integer program-
ming.

1.4 Scope of Research

Research in optimization encompasses

• study of the mathematical properties of the prob-
lems themselves;

• development, testing, and analysis of algorithms
for solving particular classes of problems (such as
one of the paradigms described above); and

• development of models and algorithms for spe-
cific application areas.

We give a brief description of each of these aspects.

One topic of fundamental interest is the characteri-
zation of solution sets: are there verifiable conditions
that we can check to determine whether a given point
is a solution to the optimization problem? Given the
uncertainty that is present in many practical settings,
we may also be interested in the sensitivity of the solu-
tion to perturbations in the data or in the objective
and constraint functions. Ill-conditioned problems are
those in which the solution can change significantly
when the data or functions change slightly. Another
important fundamental concept is duality. Often, the
data and functions that define an optimization prob-
lem can be rearranged to produce a new “dual” prob-
lem that is related to the original problem in interesting
ways. The concept of duality can also be of great practi-
cal importance in designing more efficient formulations
and algorithms.

The study of algorithms for optimization problems
blends theory and practice. The design of algorithms
that work well on practical problems requires a good
deal of intuition and testing. Most algorithms in use
today have a solid theoretical basis, but the theory
often allows wide latitude in the choice of certain
parameters, and algorithms are often “engineered” to
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find suitable values for these parameters and to incor-
porate other heuristics. Analysis of algorithms tackles
such issues as whether the iterates can be guaranteed
to converge to a solution (or some other point of inter-
est); whether there is an upper bound on the number of
iterations needed, as a function of the size or complex-
ity of the problem; and the rate of convergence, partic-
ularly after the iterates enter a certain neighborhood
of the solution. Algorithmic analysis is typically worst-
case in nature. It gives important indications about how
the algorithm will behave in practice, but it does not
tell the whole story. Famously, the simplex method
(described in section 3.1) is known to perform badly
in the worst case—its running time may be exponen-
tial in the problem size—yet its performance on most
practical problems is impressively good.

Development of software that implements efficient
algorithms is another important activity. High-quality
codes are available both commercially and in the pub-
lic domain. Modeling tools—high-level languages that
serve as a front end to algorithmic software packages—
have become more popular in recent years. They relieve
users of much of the burden of transforming their prac-
tical problem to a set of functions (the objective and
constraint functions in (1)), allowing the model to be
expressed in intuitive terms, related more directly to
the application.

With the growth in the size and complexity of practi-
cal optimization problems, issues of modeling, formu-
lation, and customized algorithm design have become
more prominent. A particular application can be for-
mulated as an optimization problem in many different
ways, and different formulations can lead to very differ-
ent solver performance. Experience and testing is often
required to identify the most effective formulation.

Many modern applications cannot be solved effec-
tively with packaged software for one of the standard
paradigms of section 1.3. It is necessary to assemble a
customized algorithm, drawing on a variety of algorith-
mic elements from the optimization toolbox and also
on tools from other disciplines in scientific computing.
This approach allows the particular structure or con-
text of the problem to be exploited. Examples of special
context include the following.

• Low-accuracy solutions may suffice for some prob-
lems.

• Algorithms that require less data movement—or
sampling from a large data set, or the ability to
handle streaming data—may be essential in other
settings.

• Algorithms that produce (possibly suboptimal)
solutions in real time may be essential in such
contexts as industrial control.

1.5 Connections

Continuous optimization is a highly interconnected
discipline, having close relationships with other areas
of mathematics, with scientific computing, and with
numerous application areas. It also has close connec-
tions to discrete optimization, which often requires
continuous optimization problems to be solved as
subproblems or relaxations.

In mathematics, continuous optimization relies heav-
ily on various forms of mathematical analysis, espe-
cially real analysis and functional analysis. Certain
types of analysis have been developed in close asso-
ciation with the discipline of optimization, including
convex analysis, nonsmooth analysis, and variational
analysis. The theory of computational complexity also
plays a role in the study of algorithms. Game theory is
particularly relevant when we examine duality and opti-
mality conditions for optimization problems. Control
theory is also relevant: for framing problems involv-
ing dynamical models and as an important source of
applications for optimization. Statistics provides vital
tools for stochastic optimization and for optimization
in machine learning, in which the model is available
only through sampling from a data set.

Continuous optimization also intersects with many
areas in numerical analysis and scientific computing.
Numerical linear algebra is vitally important, since
many optimization algorithms generate a sequence of
linear approximations, and these must be solved with
linear algebra tools. Differential equation solvers are
important counterparts to optimization in applications
such as data assimilation and distributed parameter
identification, which involve optimization of ordinary
differential equation and partial differential equation
models. The ubiquity of multicore architectures and the
wide availability of cluster computing have given new
prominence to parallel algorithms in some areas (such
as machine learning), requiring the use of software
tools for parallel computing.

Finally, we mention some of the many connections
between optimization and the application areas within
which it has become deeply embedded. Machine learn-
ing uses optimization algorithms extensively to per-
form classification and learning tasks. The challenges
posed by machine learning applications (e.g., large
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data sets) have driven recent developments in stochas-
tic optimization and large-scale unconstrained opti-
mization. Compressed sensing, in which sparse signals
are recovered from randomized encodings, also relies
heavily on optimization formulations and specialized
algorithms. Engineering control is a rich source of chal-
lenging optimization problems at many scales, fre-
quently involving dynamic models of plant processes.
In these and many other areas, practitioners have made
important contributions to all aspects of continuous
optimization.

2 Basic Principles

We mention here some basic theory that underpins con-
tinuous optimization and that serves as a starting point
for the algorithms outlined in later sections.

Possibly the most fundamental issues are how we
define a solution to a problem and how we recognize a
given point as a solution. The answers become more
complicated as we expand the classes of functions
allowed in the formulation. The type of solution most
amenable to analysis is a local solution. The point x∗ is
a local solution of (1) if x∗ is feasible and if there is an
open neighborhood N of x∗ such that f(x) � f(x∗)
for all feasible pointsx ∈ N . Furthermore,x∗ is a strict
local solution if f(x) > f(x∗) for all feasible x ∈ N
with x ≠ x∗. A global solution is a point x∗ such that
f(x) � f(x∗) for all feasible x.

As we see below, we can use the derivatives of the
objective and constraint functions to construct testable
conditions that verify that x∗ is a local solution under
certain assumptions. It is difficult to verify global opti-
mality, even when the objective and constraint func-
tions are smooth, because of the difficulty of gaining
a global perspective on these functions. However, in
convex optimization, where the objective f is a con-
vex function and the set of feasible points is also con-
vex, all local solutions are global solutions. (Convex
optimization includes linear programming and conic
optimization as special cases.)

Global optimization techniques have also been de-
vised for certain classes of nonconvex problems. It is
possible to prove results about the performance of
such methods when the function f satisfies additional
properties (such as Lipschitz continuity, with known
Lipschitz constant) and the feasible region is bounded.
One class of methods for solving the global optimiza-
tion problem uses a process of subdividing the feasi-
ble region and using information about f to obtain a

lower bound on the objective in that region, leading to
a branch-and-bound algorithm akin to methods used in
integer programming.

We now turn to characterizations of local solutions
for problems defined by smooth functions, assuming
for simplicity that f and ci, i ∈ E ∪ I , have continu-
ous second partial derivatives. We use ∇f(x) to denote
the gradient of f (the vector [∂f/∂xi]ni=1 of first par-
tial derivatives) and ∇2f(x) to denote the Hessian of f
(the n×n matrix [∂2f/∂xi∂xj]ni,j=1 of second partial
derivatives). An important tool, both in the character-
ization of solutions for smooth problems and in the
design of algorithms, is Taylor’s theorem. This result
can be used to estimate the value of f by using its
derivative information at a nearby point. For example,
we have

f(x + p) = f(x)+∇f(x)Tp + o(‖p‖), (4a)

f(x + p) = f(x)+∇f(x)Tp
+ 1

2p
T∇2f(x)p + o(‖p‖2), (4b)

where the notation o(t) indicates a quantity that goes
to zero faster than t. These formulas can be used to
construct low-order approximations to (1) that are valid
in the neighborhood of a current iterate x and can thus
be used to identify a possibly improved iterate x + p.

For unconstrained optimization of a smooth function
f , we have the following necessary condition.

Ifx∗ is a local solution of minx f(x), then∇f(x∗) = 0.

Note that this is only a necessary condition; it is possi-
ble to have ∇f(x) = 0 withoutx being a minimizer. (An
example is the scalar function f(x) = x3, which has no
minimizer but which has ∇f(0) = 0.) To complement
this result, we have the following sufficient condition.

If x∗ is a point such that ∇f(x∗) = 0 with ∇2f(x∗)
positive-definite, then x∗ is a strict local solution of
minx f(x).

Turning to constrained optimization—the general
form (1), with smooth functions—characterization of
local solutions becomes somewhat more complex. A
central role is played by the Lagrangian function,
defined as follows:

L(x, λ) = f(x)−
∑

i∈E∪I
λici(x). (5)

This is a linear combination of objective and constraint
functions, where the weights λi are called Lagrange
multipliers. The following set of conditions, known as
the Karush–Kuhn–Tucker conditions or KKT conditions
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after their inventors, are closely related to local opti-
mality of x∗ for the problem (1): there exist λ∗i , i ∈
E ∪ I , such that

∇xL(x∗, λ∗) = 0, (6a)

ci(x∗) = 0, i ∈ E, (6b)

ci(x∗) � 0, i ∈ I, (6 c)

λ∗i � 0, i ∈ I, (6d)

λ∗i ci(x
∗) = 0, i ∈ I. (6 e)

Condition (6 e) is a complementarity condition that indi-
cates complementarity between each inequality con-
straint value ci(x∗) and its Lagrange multiplier λ∗i ; for
each i, at least one of these two quantities must be zero.
Roughly speaking, the Lagrange multipliers measure
the sensitivity of the optimal objective value f(x∗) to
perturbations in the constraints ci. When x∗ is a local
solution of (1), the KKT conditions will hold, provided
an additional condition called a constraint qualification
is satisfied. The constraint qualification requires the
true geometry of the feasible set near x∗ to be captured
by linear approximations to the constraint functions
around x∗.

When the functions in (1) are nonsmooth, it becomes
harder to define optimality conditions, as even the con-
cept of derivative becomes more complicated. We con-
sider the simplest problem of this type: the uncon-
strained problem minx f(x), where f is a convex (pos-
sibly nonsmooth) function. The subdifferential of f at
a point x is defined from the collection of supporting
hyperplanes to f at x:

∂f(x) := {v : f(z) � f(x)+ vT(z − x)
for all z in the domain of f}.

For example, the function f(x) = ‖x‖1 = ∑n
i=1 |xi|

is nonsmooth, with subdifferential consisting of the
vectors v such that

vi = +1 if xi > 0,

vi ∈ [−1,1] if xi = 0,

vi = −1 if xi < 0.

When f is smooth at x in addition to being convex,
we have ∂f(x) = {∇f(x)}. A necessary and sufficient
condition for x∗ to be a solution of minx f(x) is that
0 ∈ ∂f(x∗).

3 Linear Programming

Consider the problem

min
x
cTx subject to Ax = b, x � 0, (7)

where x ∈ Rn as before, b ∈ Rm is the right-hand
side, and A ∈ Rm×n is the constraint matrix. Any opti-
mization problem with an affine objective function and
affine constraints can, after some elementary transfor-
mations, be written in this standard form. As illus-
trated by the example in figure 1, the feasible region
for the problem (7) is polyhedral, and the contours of
the objective function are lines.

There are three possible outcomes for a linear pro-
gram.

(a) The problem is infeasible; that is, there is no point
x that satisfies Ax = b and x � 0.

(b) The problem is unbounded ; that is, there is a
sequence of feasible points xk such that cTxk ↓
−∞.

(c) The problem has a solution; that is, there is a feasi-
ble point x∗ such that cTx∗ � cTx for all feasible
x.

When a solution exists (case (c)), it may not be uniquely
defined. However, we can note that the set of solutions
itself forms a polyhedron and that at least one solution
lies at a vertex of this polyhedron, that is, at a point that
does not lie in the interior of a line joining any other
two points in the polyhedron.

By rearranging the data in (7), we obtain another
linear program called the dual :

max
λ,s
bTλ subject to ATλ+ s = c, s � 0. (8)

(In discussions of duality, the original problem (7) is
called the primal problem.) The primal and dual prob-
lems are related by a powerful duality theory that has
important practical implications. Weak duality states
that, if x is a feasible point for (7) and (λ, s) is a fea-
sible point for (8), then the primal objective is greater
than or equal to the dual objective. This statement is
easily proved in a single line:

cTx = (ATλ+ s)Tx � λTAx = λTb.

The other fundamental duality result—strong duality—
states that there are three possible outcomes for the
pair of problems (7) and (8):

(a) one of the two problems is infeasible and the other
is unbounded;

(b) both problems are infeasible; or
(c) (7) has a solution x∗ and (8) has a solution (λ∗, s∗)

with objective functions equal (that is, cTx∗ =
bTλ∗).
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x*

Figure 1 Feasible region (unshaded), objective function con-
tours (dashed lines), and optimal vertex x∗ for a linear
program in two variables.

Specializing (6) to the case of linear programming, we
see that the primal and dual problems share a common
set of KKT conditions:

Ax = b, ATλ+ s = c, (9a)

x � 0, s � 0, (9b)

xisi = 0, i = 1,2, . . . , n. (9 c)

If (x∗, λ∗, s∗) is any vector triple that satisfies these
conditions, x∗ is a solution of (7) and (λ∗, s∗) is a
solution of (8).

We now discuss the two most important classes of
algorithms for linear programming.

3.1 The Simplex Method

The simplex method, devised by George Dantzig in
the 1940s, remains a fundamental approach of practi-
cal and theoretical importance in linear programming.
Geometrically speaking, the simplex method moves
from vertex to neighboring vertex of the feasible set,
decreasing the objective function with each move and
terminating when it cannot find a neighboring vertex
with a lower objective value. The method is imple-
mented by maintaining a basis: a subset ofm out of the
n components of x that are allowed to be nonzero at
the current iteration. The values of these basic compo-
nents ofx are determined uniquely by them linear con-
straintsAx = b. Each step of the simplex method starts
by choosing a nonbasic variable to enter the basis. This

variable is allowed to increase away from zero, a pro-
cess that, because of the requirement to maintain fea-
sibility of the linear constraints Ax = b, causes the val-
ues of the existing basic variables to change. The enter-
ing variable is allowed to increase to the point where
one of the basic variables reaches zero, upon which it
leaves the basis, and the iteration is complete.

Efficient implementation of the simplex method
depends both on good “pricing” strategies (to choose
which nonbasic variable should enter the basis) and on
efficient linear algebra (to update the values of the basic
variables as the entering variable increases away from
zero). Both topics have seen continued development
over the years, and highly effective software is avail-
able, both commercially and in the public domain. Spe-
cialized, highly efficient versions of the simplex method
exist for some special cases of linear programming,
such as those arising from transportation or routing
over networks.

The simplex method is an example of an active-set
method: a subset of the inequality constraints (which
are the bounds x � 0) is held to be active at each iter-
ation. In the simplex method, the active set consists of
the nonbasic variables, those indices i for which xi = 0.
This active set changes only slightly from one iteration
to the next; in fact, the simplex method changes just a
single component of the active (nonbasic) set at each
iteration.

The theoretical properties of the simplex method
remain a source of fascination because, despite its prac-
tical efficiency, its worst-case behavior is poor. In an
article from 1972, Klee and Minty famously showed
that the number of steps may be exponential in the
dimension of the problem. There have been various
attempts to understand the “average-case” behavior, in
which the number of iterations required is roughly lin-
ear in the problem dimensions, that is, the numbers of
variables and constraints. The “smoothed analysis” of
Spielman and Teng shows that any linear program for
which the simplex method behaves badly can be mod-
ified, with small perturbations, to become a problem
that requires only polynomially many iterations.

An algorithm with polynomial complexity (in the
worst case) was announced in 1979: Khachiyan’s ellip-
soid algorithm. Though of great theoretical interest, it
was not a practical alternative to simplex. The interior-
point revolution began with Karmarkar’s algorithm
(in 1984); this is also a polynomial-time approach,
but it has much better computational properties than
the ellipsoid approach. It motivated a new class of
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algorithms—primal–dual interior-point methods—that

not only had attractive theoretical properties but were

also truly competitive with the simplex method on

practical problems. We describe these next.

3.2 Interior-Point Methods

As their name suggests, primal–dual interior-point

methods generate a sequence of iterates (xk, λk, sk),
k = 1,2, . . . , in both primal and dual variables, in

which xk and sk contain all positive numbers (that is,

they are strictly feasible with respect to the constraints

x � 0 and s � 0 in (9b)). Steps between iterates are

obtained by applying Newton’s method to a perturbed

form of the condition (9 c) in which the right-hand side

0 is replaced by a positive quantity μk > 0, which is

gradually decreased to zero as k → ∞. The Newton

equations for each step (Δxk,Δλk,Δsk) are obtained

from a linearization of these perturbed KKT conditions:

specifically,⎡⎢⎢⎣
0 AT I
A 0 0

S 0 X

⎤⎥⎥⎦
⎡⎢⎢⎣
Δxk

Δλk

Δsk

⎤⎥⎥⎦ = −

⎡⎢⎢⎣
ATλk + sk − c
Axk − b

XkSke− μk1

⎤⎥⎥⎦ ,
where Xk is the diagonal matrix whose diagonal ele-

ments come from xk, Sk is defined similarly, and 1 is

the vector of length n whose elements are all 1. The

new iteration is obtained by setting

(xk+1, λk+1, sk+1)
= (xk +αkΔxk, λk + βkΔλk, sk + βkΔsk),

whereαk andβk are step lengths in the range [0,1] cho-

sen so as to ensure that xk+1 > 0 and sk+1 > 0, among

other goals. Convergence, with polynomial complex-

ity, can be demonstrated under appropriate schemes

for choosing μk and the step lengths αk and βk.
Clever schemes for choosing these parameters and for

enhancing the search directions using “second-order

corrections” lead to good practical behavior.

Primal–dual interior-point methods have the addi-

tional virtue that they are easily extendible to convex

quadratic programming and monotone linear comple-

mentarity problems, with only minor changes to the

algorithm and the convergence theory. As we see in sec-

tion 6.3, they can also be extended to general nonlinear

programming, though the modifications in this case are

more substantial and the convergence guarantees are

weaker.

4 Unconstrained Optimization

Consider the problem of simply minimizing a function
without constraints:

min
x
f(x),

where f has at least continuous first derivatives. This
problem is important in its own right. It also appears
as a subproblem in many methods for constrained opti-
mization, and it serves to illustrate several algorithmic
techniques that can also be applied to the constrained
case.

4.1 First-Order Methods

The Taylor approximation (4a) shows that f decreases
most rapidly in the direction of the negative gradient
vector −∇f(x). Steepest-descent methods move in this
direction, each iteration having the form

xk+1 = xk −αk∇f(xk),
for some positive step length αk. A suitable value of
αk can be found by performing (approximately) a one-
dimensional search along the direction −∇f(xk), thus
guaranteeing a decrease in f at every iteration. When
further information about f is available, it may be pos-
sible to choose αk to guarantee descent in f without
doing a line search. A nonstandard approach, which
first appeared in a 1988 paper by Barzilai and Borwein,
chooses αk according to a formula that allows f to
increase (sometimes dramatically) on some iterations,
while often achieving better long-term behavior than
standard steepest-descent approaches.

For the case of convex f , there has been renewed
focus on accelerated first-order methods that still
require only the calculation of a gradient ∇f at each
step but that have more attractive convergence rates
than steepest descent, both in theory and in practice.
The common aspect of these methods is a “momen-
tum” device, in which the step from xk to xk+1 is based
not just on the latest gradient ∇f(xk) but also on the
step from the previous iterate xk−1 to the current iter-
ate xk. In heavy-ball and conjugate gradient methods,
the steps have the form

xk+1 = xk −αk∇f(xk)+ βk(xk − xk−1)

for positive parameters αk and βk, which are chosen in
a variety of ways. Accelerated methods that have been
proposed more recently also make use of momentum
together with the latest gradient ∇f(xk), but combine
these factors in different ways. Some methods separate
the steepest-descent steps from the momentum steps,
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alternating between these two types of steps to produce
two interleaved sequences of iterates, rather than the
single sequence {xk}.

For convex f , first-order methods are characterized
in some cases by linear convergence (with the error in
xk decreasing to zero in a geometric sequence) or sub-
linear convergence (with the error decreasing to zero
but not geometrically, typically at a rate of 1/k or 1/k2,
where k is the iteration number).

4.2 Superlinear Methods

When second derivatives of f are available, we can use
the second-order Taylor approximation (4b) to moti-
vate Newton’s method, a fundamental algorithm in both
optimization and nonlinear equations. When ∇2f is
positive-definite at the current iterate xk, we can define
the step pk to be the minimizer of the right-hand side
of (4b) (with the o(‖p‖2) term omitted), yielding the
formula

pk = −[∇2f(xk)]−1∇f(xk). (10)

The next iterate is defined by choosing a step length
αk > 0 and setting xk+1 = xk + αkpk. This method is
characterized by quadratic convergence, in which the
error in xk+1 is bounded by a constant multiple of the
square of the error in xk, for all xk sufficiently close to
the solution x∗. (The number of digits of agreement
between xk and x∗ doubles at each of the last few
iterations.)

Enhancements of the basic approach based on (10)
yield more robust and general implementations. For
example, the Hessian matrix ∇2f(xk) may be modi-
fied during the computation of pk to ensure that it is
a descent direction for f . Another important class of
methods known as quasi-Newton methods avoids the
calculation of second derivatives altogether, instead
replacing ∇2f(xk) in (10) by an approximation Bk that
is constructed using first-derivative information. The
possibility of such an approximation is a consequence
of another form of Taylor’s theorem, which posits the
following relationship between two successive gradi-
ents:

∇f(xk+1)−∇f(xk) ≈ ∇2f(xk)(xk+1 − xk).
In updating the Hessian approximation to Bk+1 after
the step to xk+1 is taken, we ensure that Bk+1 mimics
this property of the true Hessian; that is, we enforce
the condition

∇f(xk+1)−∇f(xk) ≈ Bk+1(xk+1 − xk).

We obtain a variety of quasi-Newton methods by
imposing various other conditions on Bk+1: close-
ness to Bk in some metric, for example, and positive-
semidefiniteness. Limited-memory quasi-Newton meth-
ods store Bk implicitly by means of the difference vec-
tors between successive iterates and successive gradi-
ents at a limited number of prior iterations (typically
between five and twenty).

4.3 Derivative-Free Methods

Methods that require the user to supply only function
values f (and not gradients or Hessians) have been
enormously popular for many years. More recently,
they have attracted the attention of optimization re-
searchers, who have tried to improve their perfor-
mance, equip them with a convergence theory, and
customize them to certain specific classes of prob-
lems, such as problems in which f is obtained from
a simulation.

In the absence of gradient or Hessian values, it is
sometimes feasible to use finite differencing to con-
struct approximations to these higher-order quantities
and then apply the methods described above. Another
possible option is to use algorithmic differentiation to
obtain derivatives directly from computer code and,
once again, use them in the algorithms described above.

Methods that use only function values are usually
best suited to problems of modest dimension n. Model-
based methods use interpolation among function val-
ues at recently visited points to construct a model of
the function f . This model is used to generate a new
candidate, which is accepted as the next iterate if it
yields a sufficient improvement in the function value
over the best point found so far. The model is updated
by changing the set of points on which the interpola-
tion is based, replacing older points with higher val-
ues of f by newer points with lower function val-
ues. Pattern-search methods take candidate steps along
a fixed set of directions, shrinking step lengths as
needed to evaluate a new iterate with a lower function
value. After a successful step, the step length may be
increased, to speed future progress. Appropriate main-
tenance of the set of search directions is crucial to
efficient implementation and valid convergence theory.
Another derivative-free method is the enormously pop-
ular simplex method of Nelder and Mead from 1965.
This method—unrelated to the method of the same
name for linear programming—maintains a set ofn+ 1
points that form the vertex of a simplex in Rn. At each
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iteration, it replaces one of these points with a new one,
by expanding or contracting the simplex along promis-
ing directions or reflecting one of the vertices through
its opposite face. Various attempts have been made
in the years since to improve the performance of this
method and to develop a convergence theory.

4.4 Stochastic Gradient Methods

Important problems have recently been identified for
which evaluation of ∇f or even f is computationally
expensive but where it is possible to obtain an unbiased
estimate of ∇f cheaply. Such problems are common in
data analysis, where f typically has the form

f(x) = 1
N

N∑
i=1

fi(x)

for large N , where each fi depends on a single item
in the data set. If i is selected at random from
{1,2, . . . , N}, the vector gk = ∇fi(xk) is an unbiased
estimate of ∇f(xk). For convex f , methods that use
this approximate gradient information have been a
focus of work in the optimization and machine learning
communities for some years, and efforts have recently
intensified as their wide applicability has become evi-
dent. The basic iteration has the form xk+1 = xk −
αkgk, where the choice of gk may be based on addi-
tional information about f , such as lower and upper
bounds on its curvature. (Line searches are not practi-
cal in this setting, as evaluation of f is assumed to be
too expensive.) Additional devices such as averaging of
the iterates xk or the gradient estimates gk enhance
the properties of the method in some settings, such
as when f is only weakly convex. Typical convergence
analysis shows that the expected value of the error in
xk, or of the difference between the function value after
k iterations and its optimal value, approaches zero at
a sublinear rate, such as O(1/k) or O(1/

√
k).

5 Conic Optimization

Conic optimization problems have the form

min cTx subject to Ax = b, x ∈ Ω,
whereΩ is a closed, convex, pointed cone. They include
linear programming (7) and semidefinite programming
(3) as special cases. It is possible to design generic algo-
rithms with good complexity properties for this prob-
lem class provided that we can identify a certain type
of barrier function for Ω. A barrier function ϕ is con-
vex with domain the interior of Ω, withϕ(x)→ ∞ as x

approaches the boundary ofΩ. The additional property
required for an efficient algorithm is self-concordancy,
which is the property that for any x in the domain of
ϕ, and any v ∈ Rn, we have that

|t′′′(0)| � 2|t′′(0)|3/2,
where t(α) :=ϕ(x+αv). Because the third derivatives
are bounded in terms of the second derivatives, the
function ϕ is well approximated (locally at least) by a
quadratic, so we can derive complexity bounds on New-
ton’s method applied to ϕ, with a suitable step-length
scheme. We can use this barrier function to define
an interior-point method in which each iterate xk is
obtained by finding an approximate minimizer of the
following equality-constrained optimization problem:

min
x
cTx + μkϕ(x) subject to Ax = b,

where the positive parameter μk can be decreased grad-
ually to zero as k increases, as in interior-point meth-
ods for linear programming. One or more steps of New-
ton’s method can be used to find the approximate solu-
tion to this subproblem, starting from the previous
iterate.

For linear programming, the cone Ω = {x | x �
0} admits a self-concordant barrier function ϕ(x) =
−∑ni=1 logxi. In semidefinite programming, where Ω
is the cone of positive-semidefinite matrices, we have
ϕ(X) = − log detX.

In practice, the most successful interior-point meth-
ods for semidefinite programming are primal–dual
methods rather than primal methods. These methods
are (nontrivial) extensions of the linear programming
approaches of section 3.2.

6 Nonlinear Programming

Next we turn to methods for nonlinear programming,
in which the functions f and ci in (1) are smooth non-
linear functions. A basic principle used in construct-
ing algorithms for this problem is successive approxi-
mation of the nonlinear program by simpler problems,
such as quadratic programming or unconstrained opti-
mization, to which methods from the previous sections
can be applied. Taylor’s theorem is instrumental in con-
structing these approximations, using first- or second-
order expansions of functions around the current iter-
ate xk and possibly also the current estimates of the
Lagrange multipliers for the constraints (1b) and (1 c).
The optimality conditions described in section 2 also
play a central role in algorithm design.
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6.1 Gradient Projection

Gradient projection is an extension of the steepest-
descent approach for unconstrained optimization in
which steps are taken along the negative gradient direc-
tion but projected onto the feasible set. Considering the
formulation

minf(x) subject to x ∈ Ω,
the basic gradient projection step is

xk+1 = PΩ(xk −αk∇f(xk)),
where PΩ(·) denotes projection onto the closed con-
vex constraint set Ω. This approach may be practical
if the projection can be computed inexpensively, as is
the case when Ω is a “box” defined by bounds on the
variables. It is possible to enhance the gradient method
by using second-order information in a selective way
(simple projection of the Newton step does not work).

6.2 Sequential Quadratic Programming

In sequential quadratic programming we use Taylor’s
theorem to form the following approximation of (1)
around the current point xk:

min
d∈Rn

∇f(xk)Td+ 1
2d

THkd (11a)

subject to ci(xk)+∇ci(xk)Td = 0, i ∈ E, (11b)

ci(xk)+∇ci(xk)Td � 0, i ∈ I, (11 c)

where Hk is a symmetric matrix. Denoting the solution
of (11) by dk, the next iterate is obtained by setting

xk+1 = xk +αkdk

for some step length αk > 0. The subproblem (11) is
a quadratic program; it can be solved with methods
of active-set or interior-point type. The matrix Hk may
contain second-order information from both objective
and constraint functions; an “ideal” value is the Hes-
sian of the Lagrangian function defined in (5), that is,
Hk = ∇2

xxL(xk, λk), where λk are estimates of the
Lagrange multipliers, obtained for example from the
solution of the subproblem (11) at the previous iter-
ation. When second derivatives are not readily avail-
able, Hk could be a quasi-Newton approximation to
the Lagrangian Hessian, updated by formulas similar
to those used in unconstrained optimization.

A line search can be performed to find a suitable
value of αk in the update step. An alternative approach
to stabilizing sequential quadratic programming is to
add a “trust region” to the subproblem (11), in the form
of a constraint ‖d‖∞ � Δk, for some Δk > 0.

6.3 Interior-Point Methods

The interior-point methods for linear programming

described in section 3.2 can be extended to nonlinear

programming, and software based on such extensions

has been highly successful. To avoid notational clutter,

we consider a formulation of nonlinear programming

containing nonnegativity constraints on x along with

equality constraints:

minf(x) subject to cj(x) = 0, j ∈ E; x � 0. (12)

(This problem is no less general than (1); simple trans-

formations can be used to express (1) in the form (12).)

Following (6), and introducing an additional vector s in

the style of (9), we can write the optimality conditions

for this problem as

∇f(x)−
∑
j∈E

λ∇cj(x)− s = 0, (13a)

cj(x) = 0, j ∈ E, (13b)

x � 0, s � 0, (13 c)

xisi = 0, i = 1,2, . . . , n. (13d)

As in linear programming, interior-point methods gen-

erate a sequence of iterates (xk, λk, sk) in which all

components of xk and sk are strictly positive. The

basic primal–dual step is obtained by applying New-

ton’s method at (xk, λk, sk) to the nonlinear equations

defined by (13a), (13b), and (13d), with the right-

hand side in (13d) replaced by a positive parameter

μk, which is reduced to zero gradually as the iterations

progress. The basic approach can be enhanced in vari-

ous ways: quasi-Newton approximations, line searches

or trust regions, second-order corrections to the search

direction, and so on.

6.4 Augmented Lagrangian Methods

An approach for solving (12) that was first proposed in

the early 1970s is enjoying renewed popularity because

of its successful use in new application areas. Originally

known as the “method of multipliers,” it is founded on

the augmented Lagrangian function

LA(x, λ;μ) := f(x)+
∑
j∈E

λjcj(x)+
1

2μ

∑
j∈E

c2
j (x)

for some positive parameter μ. The method defines a

sequence of primal–dual iterates (xk, λk) for a given

sequence of parameters {μk}, where each iteration is

defined as follows:
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• obtain xk+1 by solving (approximately) the prob-
lem

min
x

LA(x, λk;μk) subject to x � 0; (14)

• update Lagrange multipliers

λk+1
j = λkj + cj(xk)/μk, j ∈ E;

• choose μk+1 ∈ (0, μk] by some heuristic.

The original problem with nonlinear constraints is
replaced by a sequence of bound-constrained problems
(14). Unlike in interior-point methods, it is not neces-
sary to drive the parameters μk to zero to obtain satis-
factory convergence. Although the motivation for this
approach is perhaps not as clear as for other algo-
rithms, it can be seen that, if the Lagrange multipliers
λk happen to be optimal in (14), then the solution of the
original nonlinear program (12) would also be optimal
for this subproblem. Under favorable assumptions, and
provided that the sequence {μk} is chosen judiciously,
we find that the sequence (xk, λk) converges to a point
satisfying the optimality conditions (13).

Augmented Lagrangian methods were first proposed
by Hestenes (in 1969) and Powell (in 1969). A 1982 book
by Bertsekas was influential in later developments. The
approach has proved particularly useful in “splitting”
schemes, where the objective f is decomposed natu-
rally into a sum of functions, each of which is assigned
its own copy of the variable vector x. Equality of the
different copies is enforced via equality constraints,
and the augmented Lagrangian method is applied to
the resulting equality-constrained problem. The appeal
of this approach is that minimization with respect to
each copy of x can be performed independently and
these individual minimizations may be simpler to per-
form than minimization of the original function f .
Moreover, the possibility arises of performing these
minimizations simultaneously on a parallel computer.

6.5 Penalty Functions and Filters

Penalty functions combine the objective and constraint
functions for a nonlinear program (1) into a single func-
tion, yielding an alternative problem whose solution
is an approximate solution to the original constrained
problem. The augmented Lagrangian function of sec-
tion 6.4 can be viewed as a penalty function. Another
important case is the -1 penalty function, which is
defined as follows:

f(x)+ ν
∑
i∈E

|ci(x)| + ν
∑
i∈I

max(−ci(x),0), (15)

where ν > 0 is a chosen penalty parameter. Note that
each term in the summations is positive if and only if
the corresponding constraint in (1) is violated. Under
certain conditions, we have for ν sufficiently large that
a local solution of (1) is an exact minimizer of (15).
In other words, we can replace the constrained prob-
lem (1) by the unconstrained, but nonsmooth, prob-
lem of minimizing (15). One possible way to make use
of this observation is to choose ν and minimize (15)
directly, increasing ν as needed to ensure that the solu-
tions of (15) and (1) coincide. More commonly, (15)
is used as a merit function to evaluate the quality
of proposed steps dk generated by some other algo-
rithm, such as sequential quadratic programming or
an interior-point method. Such steps are accepted only
if they produce a sufficient reduction in (15) or some
other merit function.

An alternative device to decide whether proposed
steps are acceptable is a filter, which dispenses with
the penalty parameter ν in (15) and considers the objec-
tive function f and the constraint violations separately.
Defining the violation measure by

h(x) =
∑
i∈E

|ci(x)| +
∑
i∈I

max(−ci(x),0),

the filter consists of a set of pairs {(f-, h-) : - ∈ F} of
objective and constraint values such that no pair dom-
inates another: that is, we do not have f- � fj and
h- � hj for any - ∈ F and j ∈ F . An iteratexk is accept-
able provided that (f (xk),h(xk)) is not dominated by
any point in the filter F . When accepted, the new pair
is added to the filter, and any pairs that are dominated
by it are removed. (This basic strategy is amended in
several ways to improve its practical performance and
to facilitate convergence analysis.)

7 Final Remarks

Our brief description of major problem classes in con-
tinuous optimization, and algorithms for solving them,
has necessarily omitted several important topics. We
mention several of these before closing.

Stochastic and robust optimization deal with prob-
lems in which there is uncertainty in the objective func-
tions or constraints but where the uncertainty can be
quantified and modeled. In these problems we may
seek solutions that minimize the expected value of the
uncertain objective or solutions that are guaranteed to
satisfy the constraints with a certain specified proba-
bility. The stochastic gradient method of section 4.4
provides one tool for solving these problems, but there
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are many other relevant techniques from optimization
and statistics that can be brought to bear.

Equilibrium problems are not optimization problems,
in that there is no objective to be minimized, but they
use a range of algorithmic techniques that are closely
related to optimization techniques. The basic formula-
tion is as follows: given a function F : Rn → Rn, find a
vector x ∈ Rn such that

x � 0, F(x) � 0, xiFi(x) = 0, i = 1,2, . . . , n.

(Note that the KKT conditions in (6) have a similar
form.) Equilibrium problems arise in economic appli-
cations and game theory. More recently, applications
have been identified in contact problems in mechanical
simulations.

Nonlinear equations, in which we seek a vector x ∈
Rn such that F(x) = 0 for some smooth function
F : Rn → Rn, arise throughout scientific computing.
Newton’s method, so fundamental in continuous opti-
mization, is also key here. The Newton step is obtained
by solving

∇F(xk)dk = −F(xk)
(compare this with (10)), where ∇F(x) = [∂Fi/∂xj]ni,j=1

is the n×n Jacobian matrix.
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IV.12 Numerical Solution of Ordinary
Differential Equations
Ernst Hairer and Christian Lubich

1 Introduction: Euler Methods

Ordinary differential equations are ubiquitous in sci-
ence and engineering: in geometry and mechanics
from the first examples onward (Newton, Leibniz,
Euler, Lagrange), in chemical reaction kinetics, molecu-
lar dynamics, electronic circuits, population dynamics,

and in many more application areas. They also arise,

after semidiscretization in space, in the numerical

treatment of time-dependent partial differential equa-

tions, which are even more impressively omnipresent

in our technologically developed and financially con-

trolled world.

The standard initial-value problem is to determine

a vector-valued function y : [t0, T ] → Rd with a given

initial value y(t0) = y0 ∈ Rd such that the derivative

y′(t) depends on the current solution value y(t) at

every t ∈ [t0, T ] in a prescribed way:

y′(t) = f(t,y(t)) for t0 � t � T , y(t0) = y0.

Here, the given function f is defined on an open subset

of R × Rd containing (t0, y0) and takes values in Rd.

If f is continuously differentiable, then there exists a

unique solution at least locally on some open interval

containing t0. In many applications, t represents time,

and it will be convenient to refer to t as time in what

follows.

In spite of the ingenious efforts of mathematicians

throughout the eighteenth and nineteenth centuries, in

most cases the solution of a differential equation can-

not be given in closed form by functions that can be

evaluated directly on a computer. This even applies to

linear differential equations y′ = Ay with a square

matrix A, for which y(t) = e(t−t0)Ay0, as comput-

ing the matrix exponential [II.14] is a notoriously

tricky problem. One must therefore rely on numerical

methods that are able to approximate the solution of a

differential equation to any desired accuracy.

1.1 The Explicit Euler Method

The ancestor of all the advanced numerical methods

in use today was proposed by Leonhard Euler in 1768.

On writing down the first terms in the Taylor expan-

sion of the solution at t0 and using the prescribed ini-

tial value and the differential equation at t = t0, it

is noted that y(t0 + h) = y(t0) + hy′(t0) + · · · =
y0 +hf(t0, y0)+· · · . Choosing a small step size h > 0

and neglecting the higher-order terms represented by

the dots, an approximation y1 to y(t1) at the later time

t1 = t0 + h is obtained by setting

y1 = y0 + hf(t0, y0).

The next idea is to take y1 as the starting value for a

further step, which then yields an approximation to the

solution at t2 = t1+h as y2 = y1+hf(t1, y1). Continu-

ing in this way, at the (n+1)st step we take yn ≈ y(tn)
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as the starting value for computing an approximation
at tn+1 = tn + h as

yn+1 = yn + hf(tn,yn),
and after a sufficient number of steps, we reach the
final time T . The computational cost of the method lies
in the evaluations of the function f . The step size need
not be the same in each step and could be replaced by
hn in the formula, so that tn+1 = tn + hn.

It is immediate that the quality of the approximation
yn depends on two aspects: the error made by trun-
cating the Taylor expansion and the error introduced
by continuing from approximate solution values. These
two aspects are captured in the notions of consistency
and stability, respectively, and are fundamental to all
numerical methods for ordinary differential equations.

1.2 The Implicit Euler Method and Stiff Differential

Equations

A minor-looking change in the method, already consid-
ered by Euler in 1768, makes a big difference; taking as
the argument of f the new value instead of the previous
one yields

yn+1 = yn + hf(tn+1, yn+1),

from which yn+1 is now determined implicitly. In
general, the new solution approximation needs to be
computed iteratively, typically by a modified Newton
method such as y(k+1)

n+1 = y(k)n+1 + Δy(k)n+1, where the
increment is computed by solving a linear system of
equations

(I − hJn)Δy(k)n+1 = −r (k)n+1

with an approximation Jn to the Jacobian matrix
∂yf(tn,yn) and the residual

r (k)n+1 = y(k)n+1 −yn − hf(tn+1, y
(k)
n+1).

The computational cost per step has increased dramat-
ically; whereas the explicit Euler method requires a sin-
gle function evaluation, we now need to compute the
Jacobian and then solve a linear system and evaluate f
on each Newton iteration.

Why it may nevertheless be preferable to perform the
computation using the implicit rather than the explicit
Euler method is evident for the scalar linear example,
made famous by Germund Dahlquist in 1963,

y′ = λy,
where the coefficient λ is large and negative (or complex
with large negative real part). Here the exact solution
y(t) = e(t−t0)λy0 decays to zero as time increases, and

0.5 1.0 1.5
0

1

2

Figure 1 The exact solution (solid line), the implicit Euler
solution (h = 0.5, dashed line), and two explicit Euler solu-
tions (h = 0.038, dotted line; h = 0.041, gray line) for the
problem y′ = −50(y − cos t), y(0) = 0.

so does the numerical solution given by the implicit
Euler method for every step size h > 0:

y impl
n = (1 − hλ)−ny0.

In contrast, the explicit Euler method yields

yexpl
n = (1 + hλ)ny0,

which decays to zero for growing n only when h is so
small that |1+hλ| < 1. This imposes a severe step-size
restriction when λ is a negative number of large abso-
lute value (just think of λ = −1010). For larger step
sizes the numerical solution suffers an instability that
is manifested in wild oscillations of increasing ampli-
tude. The problem is that the explicit Euler method and
the differential equation have completely different sta-
bility behaviors unless the step size is chosen extremely
small (see figure 1).

Such behavior is not restricted to the simple scalar
example considered above but extends to linear sys-
tems of differential equations in which the matrix has
some eigenvalues with large negative real part and to
classes of nonlinear differential equations with a Jaco-
bian matrix ∂yf having this property. The explicit and
implicit Euler methods also give rise to very different
behaviors for nonlinear differential equations in which
the function f(t,y) has a large (local) Lipschitz con-
stant L with respect to y , while for some inner product
the inequality

〈f(t,y)− f(t, z),y − z〉 � -‖y − z‖2

holds for all t and y , z with a moderate constant -� L
(called a one-sided Lipschitz constant).

Differential equations for which the numerical solu-
tion using the implicit Euler method is more efficient



IV.12. Numerical Solution of Ordinary Differential Equations 295

than that using the explicit Euler method are called stiff
differential equations. They include important appli-
cations in the description of processes with multiple
timescales (e.g., fast and slow chemical reactions) and
in spatial semidiscretizations of time-dependent par-
tial differential equations. For example, for the heat
equation, stable numerical solutions are obtained with
the explicit Euler method only when temporal step
sizes are bounded by the square of the spatial grid size,
whereas the implicit Euler method is unconditionally
stable.

1.3 The Symplectic Euler Method and Hamiltonian

Systems

An important class of differential equations for which
neither the explicit nor the implicit Euler method is
appropriate is Hamiltonian differential equations,

p′ = −∇qH(p, q), q′ = +∇pH(p, q),
which are fundamental to many branches of physics.
Here, the real-valued Hamilton function H, defined on
a domain of Rd+d, represents the total energy, and
q(t) ∈ Rd and p(t) ∈ Rd represent the positions and
momenta, respectively, of a conservative system at time
t. The total energy is conserved:

H(p(t), q(t)) = const.

along any solution (p(t), q(t)) of the Hamiltonian sys-
tem. It turns out that a partitioned method obtained
by applying the explicit Euler method to the position
variables and the implicit Euler method to the momen-
tum variables (or vice versa) behaves much better than
either Euler method applied to the system as a whole.
The symplectic Euler method reads

pn+1 = pn − h∇qH(pn+1, qn),

qn+1 = qn + h∇pH(pn+1, qn).

For a separable HamiltonianH(p,q) = T(p)+V(q) the
method is explicit.

Figure 2 illustrates the qualitative behavior of the
three Euler methods applied to the differential equa-
tions of the mathematical pendulum,

p′ = − sinq, q′ = p,
which are Hamiltonian with H(p,q) = 1

2p
2 −cosq. The

energy of the implicit Euler solution decreases, while
that of the explicit Euler solution increases. The sym-
plectic Euler method nearly conserves the energy over
extremely long times.

−π π
q

p ExplicitSymplecticImplicit

Figure 2 The pendulum equation: Euler polygons with step
size h = 0.3; initial value p(0) = 0 and q(0) = 1.7 for the
explicit Euler method, q(0) = 1.5 for the symplectic Euler
method, and q(0) = 1.3 for the implicit Euler method. The
solid lines are solution curves for the differential equations.

2 Basic Notions

In this section we describe some of the mechanisms
that lead to the different behaviors of the various
methods.

2.1 Local Error

For the explicit Euler method, the error after one step
of the method starting from the exact solution, called
the local error, is given as

dn+1 = (y(tn)+ hf(tn,y(tn)))−y(tn + h).
By estimating the remainder term in the Taylor expan-
sion of y(tn + h) at tn, we can bound dn+1 by

‖dn+1‖ � Ch2 with C = 1
2 max
t0�t�T

‖y′′(t)‖,

provided that the solution is twice continuously dif-
ferentiable, which is the case if f is continuously
differentiable.

2.2 Error Propagation

Since the method advances in each step with the com-
puted values yn instead of the exact solution values
y(tn), it is important to know how errors, once intro-
duced, are propagated by the method. Consider explicit
Euler steps starting from different starting values:

un+1 = un + hf(tn,un),
vn+1 = vn + hf(tn, vn).

When f is (locally) Lipschitz continuous with Lipschitz
constant L, the difference is controlled by the stability
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estimate

‖un+1 − vn+1‖ � (1 + hL)‖un − vn‖.

2.3 Lady Windermere’s Fan

The above estimates can be combined to study the
error accumulation, as illustrated by the fan of figure 3
(named by Gerhard Wanner in the 1980s after a play
by Oscar Wilde). Each arrow from left to right repre-
sents a step of the numerical method, with different
starting values. The fat vertical bars represent the local
errors, whose propagation by the numerical method is
controlled using the stability estimate repeatedly from
step to step; the global error

en = yn −y(tn)
is the sum of the propagated local errors (represented
as the distances between two adjacent arrowheads end-
ing at tn in figure 3). The contribution of the first
local error d1 to the global error en is bounded by
(1 + hL)n−1‖d1‖, as is seen by applying the stability
estimate n− 1 times following the numerical solutions
starting fromy1 andy(t1). The contribution of the sec-
ond local error d2 is bounded by (1+hL)n−2‖d2‖, and
so on. Since the local errors are bounded by Ch2, the
global error is thus bounded by

‖en‖ �
n−1∑
j=0

(1 + hL)jCh2

= (1 + hL)n − 1
1 + hL− 1

Ch2

� enhL − 1
L

Ch.

With M = (e(T−t0)L − 1)C/L, the global error satisfies

‖en‖ � Mh for tn � T .

The numerical method thus converges to the exact
solution as h→ 0 with nh fixed, but only at first order,
that is, with an error bound proportional to h. We will
later turn to higher-order numerical methods, with an
error bound proportional to hp with p > 1.

2.4 Stiff Differential Equations

The above error bound becomes meaningless for stiff
problems, where L is large. The implicit Euler method
admits an analogous error analysis in which only the
one-sided Lipschitz constant - appears in the stability
estimate; provided that h- < 1,

‖un+1 − vn+1‖ � 1
1 − h-‖un − vn‖

Numerical method

y1

y2

y3

yn

y0

t1 t2 t3 tnt0
...

Exact solution

y (tn)

Figure 3 Lady Windermere’s fan.

holds for the results of two Euler steps starting from
un and vn. For stiff problems with - � L this is
much more favorable than the stability estimate of the
explicit Euler method in terms of L. It leads to an error
bound ‖en‖ � mh, in which m is essentially of the
same form as M above but with the Lipschitz constant
L replaced by the one-sided Lipschitz constant -.

The above arguments explain the convergence behav-
ior of the explicit and implicit Euler methods and their
fundamentally different behavior for large classes of
stiff differential equations. They do not explain the
favorable behavior of the symplectic Euler method for
Hamiltonian systems. This requires another concept,
backward analysis, which is treated next.

2.5 Backward Analysis

Much insight into numerical methods is obtained by
interpreting the numerical result after a step as the
(almost) exact solution of a modified differential equa-
tion. Properties of the numerical method can then be
inferred from properties of a differential equation. For
each of the Euler methods applied to y′ = f(y) an
asymptotic expansion

f̃ (ỹ) = f(ỹ)+ hf2(ỹ)+ h2f3(ỹ)+ · · ·
can be uniquely constructed recursively such that, up
to arbitrarily high powers of h,

y1 = ỹ(t1),
where ỹ(t) is the solution of the modified differential
equation ỹ′ = f̃ (ỹ) with initial value y0. The remark-
able feature is that, when the symplectic Euler method
is applied to a Hamiltonian system, the modified dif-
ferential equation is again Hamiltonian. The modified
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Hamilton function has an asymptotic expansion

H̃ = H + hH2 + h2H3 + · · · .

The symplectic Euler method therefore conserves the

modified energy H̃ (up to arbitrarily high powers of h),

which is close to the exact energy H. This conserva-

tion of the modified energy prevents the linearly grow-

ing drift in the energy that is present along numerical

solutions of the explicit and implicit Euler methods. For

these two methods the modified differential equation is

no longer Hamiltonian.

3 Nonstiff Problems

3.1 Higher-Order Methods

A method is said to have order p if the local error

(recall that this is the error after one step of the method

starting from the exact solution) is bounded by Chp+1,

where h is the step size and C depends only on bounds

of derivatives of the solution y(t) and of the func-

tion f . As for the Euler method in section 2.1, the order

is determined by comparing the Taylor expansions of

the exact solution and the numerical solution, which for

a method of order p should agree up to and including

the hp term.

A drawback of the Euler methods is that they are

only of order 1. There are different ways to increase the

order: using additional, auxiliary function evaluations

in passing from yn to yn+1 (one-step methods); using

previously computed solution values yn−1, yn−2, . . .
and/or their function values (multistep methods); or

using both (general linear methods). For nonstiff initial-

value problems the most widely used methods are

explicit Runge–Kutta methods of orders up to 8, in the

class of one-step methods, and Adams-type multistep

methods up to order 12. For very stringent accuracy

requirements of 10 or 100 digits, high-order extrapo-

lation methods or high-order Taylor series expansions

of the solution (when higher derivatives of f are avail-

able with automatic differentiation software) are some-

times used.

3.2 Explicit Runge–Kutta Methods

Two ideas underlie Runge–Kutta methods. First, the

integral in

y(t0 + h) = y(t0)+ h
∫ 1

0
y′(t0 + θh)dθ,

with y′(t) = f(t,y(t)), is approximated by a quadra-

ture formula with weights bi and nodes ci:

y1 = y0 + h
s∑
i=1

biY ′
i , Y ′

i = f(t0 + cih, Yi).

Second, the internal stage values Yi ≈ y(t0 + cih)
are determined by another quadrature formula for the

integral from 0 to ci:

Yi = y0 + h
s∑
j=1

aijY ′
j , i = 1, . . . , s,

with the same function values Y ′
j as for y1. If the coef-

ficients satisfy aij = 0 for j � i, then the above

sum actually extends only from j = 1 to i− 1, and

hence Y1, Y ′
1, Y2, Y ′

2, . . . , Ys , Y ′
s can be computed explic-

itly one after the other. The methods are named after

Carl Runge, who in 1895 proposed two- and three-

stage methods of this type, and Wilhelm Kutta, who

in 1901 proposed what is now known as the classi-

cal Runge–Kutta method of order 4, which extends the

Simpson quadrature rule from integrals to differential

equations:

ci aij
bj

≡

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

2
6

2
6

1
6

Using Lady Windermere’s fan as in section 2, one

finds that the global error yn − y(tn) of a pth-order

Runge–Kutta method over a bounded time interval

is O(hp).
The order conditions of general Runge–Kutta meth-

ods were elegantly derived by John Butcher in 1964

using a tree model for the derivatives of f and their

concatenations by the chain rule, as they appear in the

Taylor expansions of the exact solution and the numer-

ical solution. This enabled the construction of meth-

ods of even higher order, among which excellently con-

structed methods of orders 5 and 8 by Dormand and

Prince (from 1980) have found widespread use. These

methods are equipped with lower-order error indica-

tors from embedded formulas that use the same func-

tion evaluations. These error indicators are used for an

adaptive selection of the step size that is intended to

keep the local error close to a given error tolerance in

each time step.



298 IV. Areas of Applied Mathematics

3.3 Extrapolation Methods

A systematic, if suboptimal, construction of explicit
Runge–Kutta methods of arbitrarily high order is pro-
vided by Richardson extrapolation of the results of
the explicit Euler method obtained with different step
sizes. This technique makes use of an asymptotic
expansion of the error,

y(t,h)−y(t) = e1(t)h+ e2(t)h2 + · · · ,
where y(t,h) is the explicit Euler approximation at t
obtained with step size h. At t = t0 + H, the error
expansion coefficients up to order p can be eliminated
by evaluating at h = 0 (extrapolating) the interpola-
tion polynomial through the Euler values y(t0 +H,hj)
for j = 1, . . . , p corresponding to different step sizes
hj = H/j. This gives a method of order p, which for-
mally falls into the general class of Runge–Kutta meth-
ods. Instead of using the explicit Euler method as the
basic method, it is preferable to use Gragg’s method
(from 1964), which uses the explicit midpoint rule

yn+1 = yn−1 + 2hf(tn,yn), n � 1,

and an explicit Euler starting step to compute y1. This
method has an error expansion in powers ofh2 (instead
of h, above) at even n, and with the elimination of each
error coefficient one therefore gains a power of h2.
Extrapolation methods have built-in error indicators
that can be used for order and step-size control.

3.4 Adams Methods

The methods introduced by astronomer John Couch
Adams in 1855 were the first of high order that
used only function evaluations, and in their cur-
rent variable-order, variable-step-size implementations
they are among the most efficient methods for general
nonstiff initial-value problems.

When k function values fn−j = f(tn−j , yn−j) (j =
0, . . . , k−1) have already been computed, the integrand
in

y(tn+1) = y(tn)+ h
∫ 1

0
f(tn + θh,y(tn + θh))dθ

is approximated by the interpolation polynomial P(t)
through (tn−j , fn−j), j = 0, . . . , k − 1, yielding the
explicit Adams method of order k,

yn+1 = yn + h
∫ 1

0
P(tn + θh)dθ,

which, upon inserting the Newton interpolation for-
mula, becomes (for constant step size h)

yn+1 = yn + hfn + h
k−1∑
i=1

γi∇ifn,

with the backward differences ∇fn = fn−fn−1, ∇ifn =
∇i−1fn−∇i−1fn−1, and with coefficients (γi) = ( 1

2 ,
5

12 ,
3
8 ,

251
720 , . . . ). The method thus corrects the explicit Euler

method by adding differences of previous function
values.

Especially for higher orders, the accuracy of the
approximation suffers from the fact that the interpo-
lation polynomial is used outside the interval of inter-
polation. This is avoided if the (as yet) unknown value
(tn+1, fn+1) is added to the interpolation points. Let
P∗(t) denote the corresponding interpolation poly-
nomial, which is now used to replace the integrand
f(t,y(t)). This yields the implicit Adams method of
order k+ 1, which takes the form

yn+1 = yn + hfn+1 + h
k∑
i=1

γ∗
i ∇ifn+1,

with (γ∗
i ) = (− 1

2 ,−
1

12 ,−
1

24 ,−
19
720 , . . . ). The equation

for yn+1 is solved approximately by one or at most
two fixed-point iterations, taking the result from the
explicit Adams method as the starting iterate (the pre-
dictor ) and inserting its function value on the right-
hand side of the implicit Adams method (the corrector ).

In a variable-order, variable-step-size implementa-
tion, the required starting values are built up by start-
ing with the methods of increasing order 1,2,3, . . . , one
after the other. Strategies for increasing or lowering
the order are based on monitoring the backward differ-
ence terms. Changing the step size is computationally
more expensive, since it requires a recalculation of all
method coefficients. It is facilitated by passing informa-
tion from one step to the next by the Nordsieck vector,
which collects the values of the interpolation polyno-
mial and all its derivatives at tn scaled by powers of
the step size.

3.5 Linear Multistep Methods

Both explicit and implicit Adams methods (with con-
stant step size) belong to the class of linear multistep
methods

k∑
j=0

αjyn+j = h
k∑
j=0

βjfn+j ,

with fi = f(ti, yi) and αk �= 0. This class also includes
important methods for stiff problems, in particular the
backward differentiation formulas to be described in
the next section. The theoretical study of linear mul-
tistep methods was initiated by Dahlquist in 1956. He
showed that for such methods

consistency + stability ⇐⇒ convergence,
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which, together with the contemporaneous Lax equiva-
lence theorem for discretizations of partial differential
equations, forms a basic principle of numerical analy-
sis. What this means here is described in more detail
below.

In contrast to one-step methods, having high order
does not by itself guarantee that a multistep method
converges as h→ 0. In fact, choosing the method coef-
ficients in such a way that the order is maximized for
a given k leads to a method that produces wild oscil-
lations, which increase in magnitude with decreasing
step size. One requires in addition a stability condi-
tion, which can be phrased as saying that all solutions
to the linear difference equation

∑k
j=0αjyn+j = 0 stay

bounded as n→ ∞, or equivalently:

All roots of the polynomial
∑k
j=0 αjζj are in the com-

plex unit disk, and those on the unit circle are simple.

If this stability condition is satisfied and the method
is of order p, then the error satisfies yn − y(tn) =
O(hp) on bounded time intervals, provided that the
error in the starting values is O(hp).

Dahlquist also proved order barriers: the order of a
stable k-step method cannot exceed k+ 2 if k is even,
k+ 1 if k is odd, and k if the method is explicit (βk = 0).

3.6 General Linear Methods

Predictor–corrector Adams methods fall neither into
the class of multistep methods, since they use the pre-
dictor as an internal stage, nor into the class of Runge–
Kutta methods, since they use previous function values.
Linear multistep methods and Runge–Kutta methods
are extreme cases of a more general class of methods

un+1 = Sun + hΦ(tn,un,h),
where un is a vector (usually of dimension a multi-
ple of the dimension of the differential equation) from
which the solution approximation yn ≈ y(tn) can be
obtained by a linear mapping, S is a square matrix,
and Φ depends on function values of f . (For exam-
ple, for predictor–corrector methods we would have
un = (yn,ypred

n ,yn−1, . . . , yn−k+1) in this framework.)
More general methods like these have been studied

since the mid-1960s with the objective of looking for
the “greatest good as a mean between extremes” (in
the words of Aristotle and John Butcher). They include
a number of methods of potential interest for both
nonstiff and stiff problems, such as two-step Runge–
Kutta methods or general linear methods with inherent
Runge–Kutta stability, but as of now do not appear to

have found their way into applications via competitive
software.

4 Stiff Problems

We saw in the introduction that for important classes
of differential equations, called stiff equations, the
implicit Euler method yields a drastic improvement
over the explicit Euler method. Are there higher-order
methods with similarly good properties?

4.1 Backward Differentiation Formula Methods

The k-step implicit Adams methods, though natu-
rally extending the implicit Euler method, perform
disappointingly on stiff problems for k > 1. Multi-
step methods from another extension of the implicit
Euler method, which is based on numerical differen-
tiation rather than integration, turn out to be better
for stiff problems. Suppose that k solution approxi-
mations yn−k+1, . . . , yn have already been computed,
and consider the interpolation polynomialu(t) passing
through yn+1−j at tn+1−j for j = 0, . . . , k, including the
as yet unknown approximation yn+1. We then require
the collocation condition

u′(t) = f(t,u(t)) at t = tn+1,

or equivalently, in the case of a constant step size h,

k∑
j=1

1
j
∇jyn+1 = hfn+1.

This backward differentiation formula (BDF) is an
implicit linear multistep method of order k, which is
found to be unstable for k > 6. Methods for smaller k,
however, up to k � 5, are currently the most widely
used methods for stiff problems, which are imple-
mented in numerous computer codes. The usefulness
of these methods was first observed by Curtiss and
Hirschfelder in 1952, who also coined the notion of
stiff differential equations. Bill Gear’s BDF code “DIF-
SUB” from 1971 was the first widely used code for stiff
problems. It brought BDF methods (“Gear’s method”)
to the attention of practitioners in many fields.

4.2 A-Stability and Related Notions

Which properties make BDF methods successful for
stiff problems? In 1963, Dahlquist systematically stud-
ied the behavior of multistep methods on the scalar
linear differential equation

y′ = λy with λ ∈ C, Reλ � 0,
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whose use as a test equation can be justified by lin-
earization of the differential equation and diagonaliza-
tion of the Jacobian matrix. The behavior of a numerical
method on this deceivingly simple scalar linear differ-
ential equation gives much insight into its usefulness
for more general stiff problems, as is shown by both
numerical experience and theory.

Clearly, the exact solution y(t) = etλy0 remains
bounded for t → +∞ when Reλ � 0. Following
Dahlquist, a method is called A-stable if for every λ ∈ C
with Reλ � 0, the numerical solutionyn stays bounded
as n → ∞ for every step size h > 0 and every choice
of starting values. The implicit Euler method and the
second-order BDF method are A-stable, but the BDF
methods of higher order are not. Dahlquist’s second-
order barrier states that the order of an A-stable lin-
ear multistep method cannot exceed 2. This funda-
mental, if negative, theoretical result has led to much
work aimed at circumventing the barrier by using other
methods or weaker notions of stability.

The stability region S is the set of all complex z =
hλ, such that every numerical solution of the method
applied to y′ = λy with step size h stays bounded.
The stability regions of explicit and implicit k-step
Adams methods with k > 1 are bounded, which leads to
step-size restrictions when λ has large absolute value.
The BDF methods up to order 6 are A(α)-stable; that
is, the stability region contains an unbounded sector
|arg(−z)| � α with α = 90◦, 90◦, 86◦, 73◦, 51◦, 17◦ for
k = 1, . . . ,6, respectively. The higher-order BDF meth-
ods therefore perform well for differential equations
where the Jacobian has large eigenvalues near the neg-
ative real half-axis, but they behave poorly when there
are large eigenvalues near the imaginary axis.

4.3 Implicit Runge–Kutta Methods

It turns out that there is no order barrier for A-stable
Runge–Kutta methods.

Explicit Runge–Kutta methods cannot be A-stable
because application of such a method to the linear test
equation yields yn+1 = P(hλ)yn, where P is a poly-
nomial of degree s, the number of stages. The stability
region of such a method is necessarily bounded, since
|P(z)| → ∞ as |z| → ∞.

On the other hand, an implicit Runge–Kutta method
has

yn+1 = R(hλ)yn
with a rational function R(z), called the stability func-
tion of the method, which is an approximation to the

exponential at the origin, R(z) = ez+O(zp+1) as z → 0.
The method is A-stable if |R(z)| � 1 for Rez � 0. The
subtle interplay between order and stability is clari-
fied by the theory of order stars, developed by Wanner,
Hairer, and Nørsett in 1978. In particular, this theory
shows that among the padé approximants [IV.9 §2.4]
Rk,j(z) to the exponential (the rational approxima-
tions of numerator degree k and denominator degree
j of highest possible order p = j + k), precisely
those with k � j � k + 2 are A-stable. Optimal-
order implicit Runge–Kutta methods having the diag-
onal Padé approximants Rs,s as stability function are
the collocation methods based on the Gauss quadra-
ture nodes, while those having the subdiagonal Padé
approximants Rs−1,s are the collocation methods based
on the right-hand Radau quadrature nodes. We turn to
these important implicit Runge–Kutta methods next.

4.4 Gauss and Radau Methods

A collocation method based on the nodes 0 � c1 <
· · · < cs � 1 determines a polynomial u(t) of degree
at most s such that u(t0) = y0 and the differential
equation is satisfied at the s points t0 + cih:

u′(t) = f(t,u(t)) at t = t0 + cih, i = 1, . . . , s.

The solution approximation at the endpoint is then

y1 = u(t0 + h),
which is taken as the starting value for the next step.
As was shown by Ken Wright (in 1970), such a col-
location method is equivalent to an implicit Runge–
Kutta method, the order of which is equal to the order
of the underlying interpolatory quadrature with nodes
ci. The highest order p = 2s is thus obtained with
Gauss nodes. Nevertheless, Gauss methods have found
little use in stiff initial-value problems (as opposed
to boundary-value problems; see section 6). The rea-
son for this is that the stability function here satisfies
|R(z)| → 1 as z → −∞, whereas ez → 0 as z → −∞.

The desired damping property at infinity is obtained
for the subdiagonal Padé approximant. This is the sta-
bility function for the collocation method at Radau
points, which are the nodes of the quadrature formula
of order p = 2s − 1 with cs = 1. Let us collect the basic
properties: the s-stage Radau method is an implicit
Runge–Kutta method of order p = 2s − 1; it is A-stable
and has R(∞) = 0.

The Radau methods have some more remarkable fea-
tures: they are nonlinearly stable with the so-called
algebraic stability property; their last internal stage
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equals the starting value for the next step (this prop-
erty is useful for very stiff and for differential-algebraic
equations); and their internal stages all have order s.

The last property does indeed hold for every collo-
cation method with s nodes. It is important because of
the phenomenon of order reduction; in the application
of an implicit Runge–Kutta method to stiff problems,
the method may have only the stage order, or stage
order + 1, with stiffness-independent error constants,
instead of the full classical orderp that is obtained with
nonstiff problems.

The implementation of Radau methods by Hairer and
Wanner (from 1991) is known for its robustness in
dealing with stiff problems and differential-algebraic
equations of the type My′ = f(t,y) with a singular
matrix M .

4.5 Linearly Implicit Methods

BDF and implicit Runge–Kutta methods are fully im-
plicit, and the resulting systems of nonlinear equations
need to be solved by variants of Newton’s method. To
reduce the computational cost while retaining favor-
able linear stability properties, linearly implicit meth-
ods have been proposed, such as the linearly implicit
Euler method, in which only a single iteration of New-
ton’s method is done in each step:

(I − hJn)(yn+1 −yn) = hfn,
where Jn ≈ ∂yf(tn,yn). Thus just one linear system
of equations is solved in each time step. The method is
identical to the implicit Euler method for linear prob-
lems and therefore inherits its A-stability. Higher-order
linearly implicit methods can be obtained by Richard-
son extrapolation of the linearly implicit Euler method,
or they are specially constructed Rosenbrock meth-
ods. Like explicit Runge–Kutta methods, these methods
determine the solution approximation as

y1 = y0 + h
s∑
i=1

biY ′
i , Yi = y0 + h

i−1∑
j=1

aijY ′
j ,

but compute the derivative stages consecutively by
solving s linear systems of equations (written here for
an autonomous problem, f(t,y) = f(y) and J =
∂yf(y0)):

(I − γhJ)Y ′
i = f(Yi)+ hJ

i−1∑
j=1

γijY ′
j .

Such methods are easy to implement, and they have
gained popularity in the numerical integration of

spatial semidiscretizations of partial differential equa-
tions. For large problems, the dominating numeri-
cal cost is in the solution of the systems of linear
equations, using either direct sparse solvers or itera-
tive methods such as preconditioned Krylov subspace
methods.

4.6 Exponential Integrators

While it appears an obvious idea to use the exponen-
tial of the Jacobian in a numerical method, this was for
a long time considered impractical, and particularly so
for large problems. This attitude changed, however, in
the mid-1990s when it was realized that Krylov sub-
space methods for approximating a matrix exponential
times a vector, eγhJv , show superlinear convergence,
whereas there is generally only linear convergence for
solving linear systems (I − γhJ)x = v . Unless a good
preconditioner for the linear system is available, com-
puting the action of the matrix exponential is there-
fore computationally less expensive than solving a cor-
responding linear system. This fact led to a revival of
methods using the exponential or related functions like
ϕ(z) = (ez−1)/z, such as the exponential Euler method

yn+1 = yn + hϕ(hJn)fn.
The method is exact for linear f(y) = Jy + c. It dif-
fers from the linearly implicit Euler method in that
the entire function ϕ(z) replaces the rational function
1/(1 − z). Higher-order exponential methods of one-
step and multistep type have also been constructed.
Exponential integrators have proven useful for large-
scale problems in physics and for nonlinear parabolic
equations, as well as for highly oscillatory problems
like those considered in section 5.6.

4.7 Chebyshev Methods

For moderately stiff problems one can avoid numeri-
cal linear algebra altogether by using explicit Runge–
Kutta methods of low order (2 or 4) and high stage
number, which are constructed to have a large stability
domain covering a strip near the negative real semi-
axis. The stability function of such methods is a high-
degree polynomial related to Chebyshev polynomials.
The stage number is chosen adaptively to include the
product of the step size with the dominating eigen-
values of the Jacobian in the stability domain. With s
stages, one can cover intervals on the negative real axis
of a length proportional to s2. The quadratic growth
of the stability interval with the stage number makes
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these methods suitable for problems with large neg-

ative real eigenvalues of the Jacobian, such as spa-

tial semidiscretizations of parabolic partial differential

equations.

5 Structure-Preserving Methods

The methods discussed so far are designed for general

differential equations, and a distinction was drawn only

between nonstiff and stiff problems. There are, how-

ever, important classes of differential equations with a

special, often geometric, structure, whose preservation

in the numerical discretization leads to substantially

better methods, especially when integrating over long

times. The most prominent of these are Hamiltonian

systems, which are all-important in physics. Their flow

has the geometric property of being symplectic.

In respecting the phase space geometry under dis-

cretization and analyzing its effect on the long-time

behavior of a numerical method, there is a shift of view-

point from concentrating on the approximation of a

single solution trajectory to considering the numerical

method as a discrete dynamical system that approxi-

mates the flow of a differential equation.

While many differential equations have interest-

ing structures to preserve under discretization—and

much work has been done in devising and analyz-

ing appropriate numerical methods for doing so—we

will restrict our attention to Hamiltonian systems here.

Their numerical treatment has been an active research

area for the past two decades.

5.1 Symplectic Methods

The time-t flow of a differential equation y′ = f(y)
is the map ϕt that associates with an initial value y0

at time 0 the solution value at time t: ϕt(y0) = y(t).
Consider a Hamiltonian system

p′ = −∇qH(p, q), q′ = ∇pH(p, q),

or equivalently, for y = (p, q),

y′ = J−1∇H(y) with J =
(

0 I
−I 0

)
.

The flowϕt of a Hamiltonian system is symplectic ; that

is, the derivative Dϕt with respect to the initial value

satisfies

Dϕt(y)TJ Dϕt(y) = J

for all y and t for which ϕt(y) exists. This is a quad-
ratic relation formally similar to orthogonality, with J
in place of the identity matrix I, but it is related to
the preservation of areas rather than lengths in phase
space.

A numerical one-step method yn+1 = Φh(yn) is
called symplectic if the numerical flow Φh is a symplec-
tic map:

DΦh(y)TJ DΦh(y) = J.
Such methods exist; the “symplectic Euler method”
of section 1.3 is indeed symplectic. Great interest
in symplectic methods was spurred when, in 1988,
Lasagni, Sanz-Serna, and Suris independently char-
acterized symplectic Runge–Kutta methods as those
whose coefficients satisfy the condition

biaij + bjaji − bibj = 0.

Gauss methods (see section 4.4) were already known
to satisfy this condition and were thus found to be
symplectic. Soon after those discoveries it was realized
that a numerical method is symplectic if and only if
the modified differential equation of backward analy-
sis (section 2.5) is again Hamiltonian. This made it
possible to prove rigorously the almost-conservation
of energy over times that are exponentially long in
the inverse step size, as well as further favorable
long-time properties such as the almost-preservation
of KAM (Kolmogorov–Arnold–Moser) tori of perturbed
integrable systems over exponentially long times.

5.2 The Störmer–Verlet Method

By the time symplecticity was entering the field of
numerical analysis, scientists in molecular simulation
had been doing symplectic computations for more than
20 years without knowing it; the standard integrator
of molecular dynamics, the method used successfully
ever since Luc Verlet introduced it to the field in 1967,
is symplectic. For a HamiltonianH(p,q) = 1

2p
TM−1p+

V(q)with a symmetric positive-definite mass matrixM ,
the method is explicit and is given by the formulas

pn+1/2 = pn − 1
2h∇V(qn),

qn+1 = qn + hM−1pn+1/2,

pn+1 = pn+1/2 − 1
2h∇V(qn+1).

Such a method was also formulated by the astronomer
Störmer in 1907, and in fact it can even be traced back
to Newton’s Principia from 1687, where it was used as
a theoretical tool in the proof of the preservation of
angular momentum in the two-body problem (Kepler’s
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second law), which is indeed preserved by this method.
Given that there are already sufficiently many Newton
methods in numerical analysis, it is fair to refer to
the method as the Störmer–Verlet method (the Verlet
method and the leapfrog method are also often-used
names). As will be discussed in the next three subsec-
tions, the symplecticity of this method can be under-
stood in various ways by relating the method to dif-
ferent classes of methods that have proven useful in a
variety of applications.

5.3 Composition Methods

Let us denote the one-step map (pn, qn)  → (pn+1, qn+1)
of the Störmer–Verlet method by ΦSV

h , that of the sym-
plectic Euler method of section 1.3 by ΦSE

h , and that
of the adjoint symplectic Euler method by ΦSE∗

h , where
instead of the argument (pn+1, qn) one uses (pn, qn+1).
The second-order Störmer–Verlet method can then be
interpreted as the composition of the first-order sym-
plectic Euler methods with halved step size:

ΦSV
h = ΦSE∗

h/2 ◦ΦSE
h/2.

Since the composition of symplectic maps is sym-
plectic, this shows the symplecticity of the Störmer–
Verlet method. We further note that the method is time
reversible (or symmetric): Φ−h ◦ Φh = id, or equiva-
lently Φh = Φ∗

h with the adjoint method Φ∗
h := Φ−1

−h.
This is known to be another favorable property for
conservative systems.

Moreover, from first-order methods we have ob-
tained a second-order method. More generally, start-
ing from a low-order method Φh, methods of arbitrary
order can be constructed by suitable compositions

Φcsh ◦ · · · ◦Φc1h or Φ∗
bsh ◦Φash ◦ · · · ◦Φ∗

b1h ◦Φa1h.

The first to give systematic approaches to high-order
compositions were Suzuki and Yoshida in 1990. When-
ever the base method is symplectic, so is the composed
method. The coefficients can be chosen such that the
resulting method is symmetric.

5.4 Splitting Methods

Splitting the Hamiltonian H(p,q) = T(p) + V(q) into
its kinetic energy T(p) = 1

2p
TM−1p and its potential

energy V(q), we have that the flows ϕTt and ϕVt of the
systems with Hamiltonians T and V , respectively, are
obtained by solving the trivial differential equations

ϕTt :

⎧⎨⎩p′ = 0,

q′ = M−1p,
ϕVt :

⎧⎨⎩p′ = −∇V(q),
q′ = 0.

We then note that the Störmer–Verlet method can be
interpreted as a composition of the exact flows of the
split differential equations:

ΦSV
h =ϕTh/2 ◦ϕVh ◦ϕTh/2.

Since the flows ϕTh/2 and ϕVh are symplectic, so is their
composition.

Splitting the vector field of a differential equation and
composing the flows of the subsystems is a structure-
preserving approach that yields methods of arbitrary
order and is useful in the time integration of a variety
of ordinary and partial differential equations, such as
linear and nonlinear Schrödinger equations.

5.5 Variational Integrators

For the Hamiltonian H(p,q) = 1
2p

TM−1p + V(q), the
Hamilton equations of motion ṗ = −∇V(q), q̇ = M−1p
can be combined to give the second-order differential
equation

Mq̈ = −∇V(q),
which can be interpreted as the Euler–Lagrange equa-
tions for minimizing the action integral∫ tN

t0
L(q(t), q̇(t))dt with L(q, q̇) = 1

2 q̇
TMq̇ − V(q)

over all paths q(t)with fixed endpoints. In the Störmer–
Verlet method, eliminating the momenta yields the sec-
ond-order difference equations

M(qn+1 − 2qn + qn−1) = −h2∇V(qn),
which are the discrete Euler–Lagrange equations for
minimizing the discretized action integral

N−1∑
n=0

1
2h
(
L
(
qn,

qn+1 − qn
h

)
+ L

(
qn+1,

qn+1 − qn
h

))
,

which results from a trapezoidal rule approximation
to the action integral and piecewise-linear approxima-
tion to q(t). The Störmer–Verlet method can thus be
interpreted as resulting from the direct discretization
of the Hamilton variational principle. Such an interpre-
tation can in fact be given for every symplectic method.
Conversely, symplectic methods can be constructed by
minimizing a discrete action integral. In particular,
approximating the action integral by a quadrature for-
mula and the positions q(t) by a piecewise polynomial
leads to a symplectic partitioned Runge–Kutta method,
which in general uses different Runge–Kutta formu-
las for positions and momenta. With Gauss quadra-
ture one reinterprets in this way the Gauss methods
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of section 4.4, and with higher-order Lobatto quadra-

ture formulas one obtains higher-order relatives of the

Störmer–Verlet method.

5.6 Oscillatory Problems

Highly oscillatory solution behavior in Hamiltonian sys-

tems typically arises when the potential is a multi-

scale sum V = V[slow] + V[fast], where the Hessian of

V[fast] has positive eigenvalues that are large compared

with those of V[slow]. (Here we assume that M = I
for simplicity.) With standard methods such as the

Störmer–Verlet method, very small time steps would

be required, for reasons of both accuracy and stabil-

ity. Various numerical methods have been devised with

the aim of overcoming this limitation. We describe

just one such method here: a multiple-time-stepping

method that reduces the computational work signif-

icantly when the slow force f [slow] = −∇V[slow] is

far more expensive to evaluate than the fast force

f [fast] = −∇V[fast]. A basic principle is to rely on

averages instead of pointwise force evaluations. In the

averaged-force method, the force fn = −∇V(qn) in

the Störmer–Verlet method is replaced by an averaged

force f̄n as follows. We freeze the slow force at qn and

consider the auxiliary differential equation

ü = f [slow](qn)+ f [fast](u)

with initial values u(0) = qn, u̇(0) = 0. We then define

the averaged force as

f̄n =
∫ 1

−1
(1 − |θ|)(f [slow](qn)+ f [fast](u(θh)))dθ,

which equals

f̄n = 1
h2
(u(h)− 2u(0)+u(−h)).

The value u(h) is computed approximately using

smaller time steps, noting that u(h) = u(−h).
The argument of f [slow] might preferably be replaced

with an averaged value q̄n in order to mitigate the

adverse effect of possible step-size resonances that

appear when the product of h with an eigenfrequency

of the Hessian is close to an integral multiple of π .

If the fast potential is quadratic, V[fast](q) = 1
2q

TAq,

the auxiliary differential equation can be solved exactly

in terms of trigonometric functions of the matrix h2A.

The resulting method can then be viewed as an expo-

nential integrator, as considered in section 4.6.

6 Boundary-Value Problems

In a two-point boundary-value problem, the differential
equation is coupled with boundary conditions of the
same dimension:

y′(t) = f(t,y(t)), a � t � b,
r(y(a),y(b)) = 0.

As an important class of examples, such problems arise
as the Euler–Lagrange equations of variational prob-
lems, typically with separated boundary conditions
ra(y(a)) = 0, rb(y(b)) = 0.

6.1 The Sensitivity Matrix

The problem of existence and uniqueness of a solu-
tion is more subtle than for initial-value problems. For
a linear boundary-value problem

y′(t) = C(t)y(t)+ g(t), a � t � b,
Ay(a)+ By(b) = q,

a unique solution exists if and only if the sensitivity
matrix E = A + BU(b,a) is invertible, where U(t, s)
is the propagation matrix yielding v(t) = U(t, s)v(s)
for every solution of the linear differential equation
v′(t) = C(t)v(t).

A solution of a nonlinear boundary-value problem is
locally unique if the linearization along this solution
has an invertible sensitivity matrix.

6.2 Shooting

Just as Newton’s method replaces a nonlinear system
of equations with a sequence of linear systems, the
shooting method replaces a boundary-value problem
with a sequence of initial-value problems. The objec-
tive is to find an initial value x such that the solution of
the differential equation with this initial value, denoted
y(t;x), satisfies the boundary conditions

F(x) := r(x,y(b;x)) = 0.

Newton’s method is now applied to this nonlinear sys-
tem of equations; starting from an initial guess x0, one
iterates

xk+1 = xk +Δxk with DF(xk)Δxk = −F(xk).
Here, the derivative matrix DF(xk) turns out to be
the sensitivity matrix Ek of the linearization of the
boundary-value problem along y(t;xk). In the kth iter-
ation, one solves numerically the initial-value problem
with initial value xk together with its linearization

(Yk)′(t) = ∂yf(t,y(t;xk))Yk(t), Yk(a) = I.
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6.3 Multiple Shooting

The conceptual elegance of the shooting method—that
it reduces everything to the solution of initial-value
problems over the whole interval—can easily turn into
its computational obstruction. Newton’s method may
be very sensitive to the choice of the initial value x0.
The norms of the matrices E−1 and U(b,a), which
determine the effect of perturbations in the boundary-
value problem and the initial-value problem, respec-
tively, are unrelated and may differ widely.

The problem can be avoided by subdividing the inter-
val a = t0 < t1 < · · · < tN = b, shooting on every
subinterval, and requiring continuity of the solution at
the nodes tn. With y(t; tn,xn) denoting the solution
of the differential equation that starts at tn with ini-
tial value xn, this approach leads to a larger nonlinear
system with the continuity conditions

Fn(xn−1, xn) = y(tn; tn−1, xn−1)− xn = 0

for n = 1, . . . , N together with the boundary conditions

F0(x0, xN) := r(x0, xN) = 0.

Newton’s method is now applied to this system of equa-
tions. In each iteration one solves initial-value problems
on the subintervals together with their linearization,
and then a linear system with a large sparse matrix is
solved for the increments in (x0, . . . , xN).

6.4 Collocation

In the collocation approach to the boundary-value
problem, one determines an approximationu(t) that is
a continuous, piecewise polynomial of degree at most s
and that satisfies the boundary conditions and the dif-
ferential equation at a finite number of collocation
points tn,i = tn−1 + ci(tn − tn−1) (for n = 1, . . . , N and
i = 1, . . . , s):

u′(t) = f(t,u(t)) at t = tn,i,
r (u(a),u(b)) = 0.

The method can be interpreted, and implemented, as a
multiple-shooting method in which a single step with a
collocation method for initial-value problems, as con-
sidered in section 4.4, is made to approximate the solu-
tion in each subinterval. The most common choice, as
first implemented by Ascher, Christiansen, and Russell
in 1979, is collocation at Gauss nodes, which has good
stability properties in the forward and backward direc-
tions. The order of approximation at the grid points
tn is p = 2s. Moreover, if the boundary-value prob-
lem results from a variational problem, then Gauss

collocation can be interpreted as a direct discretization
of the variational problem (see section 5.5).

7 Summary

The numerical solution of ordinary differential equa-
tions is an area driven by both applications and theory,
with efficient computer codes alongside beautiful the-
orems, both relying on the insight and knowledge of
the researchers that are active in this field. It is an
area that interacts with neighboring fields in com-
putational mathematics (numerical linear algebra

[IV.10], the numerical solution of partial differ-

ential equations [IV.13], and optimization [IV.11]),
with the theory of differential equations [IV.2] and
dynamical systems [IV.20], and time and again with
the application areas in science and engineering in
which numerical methods for differential equations are
used.
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IV.13 Numerical Solution of Partial
Differential Equations
Endre Süli

1 Introduction

Numerical solution of partial differential equations
(PDEs) is a rich and active field of modern applied
mathematics. The subject’s steady growth is stimulated
by ever-increasing demands from the natural sciences,
from engineering, and from economics to provide accu-
rate and reliable approximations to mathematical mod-
els involving PDEs whose exact solutions are either too
complicated to determine in closed form or (as is the
case for many) are not known to exist. While the his-
tory of numerical solution of ordinary differential equa-
tions is firmly rooted in eighteenth- and nineteenth-
century mathematics, the mathematical foundations
of the field of numerical solution of PDEs are much
more recent; they were first formulated in the land-
mark paper “Über die partiellen Differenzengleichun-
gen der mathematischen Physik” (“On the partial differ-
ence equations of mathematical physics”) by Richard
Courant, Karl Friedrichs, and Hans Lewy, which was
published in 1928. Today, there is a vast array of pow-
erful numerical techniques for specific PDEs, including
the following:

• level set and fast-marching methods for front-
tracking and interface problems;

• numerical methods for PDEs on (possibly evolving)
manifolds;

• immersed boundary methods;
• mesh-free methods;
• particle methods;
• vortex methods;
• various numerical homogenization methods and

specialized numerical techniques for multiscale
problems;

• wavelet-based multiresolution methods;
• sparse finite-difference and finite-element meth-

ods, greedy algorithms, and tensorial methods for
high-dimensional PDEs;

• domain-decomposition methods for geometrically
complex problems; and

• numerical methods for PDEs with stochastic coef-
ficients that arise in a variety of applications,
including uncertainty quantification [II.34]
problems.

Our brief review cannot do justice to this huge and
rapidly evolving subject. We shall therefore confine
ourselves to the most standard and well-established
techniques for the numerical solution of PDEs: finite-
difference methods, finite-element methods, finite-vol-
ume methods, and spectral methods. Before embarking
on our survey, it is appropriate to take a brief excursion
into the theory of PDEs in order to fix the relevant nota-
tional conventions and to describe some typical model
problems.

2 Model Partial Differential Equations

A linear partial differential operator L of order m with
real-valued coefficients aα = aα(x), |α| � m, on a
domain Ω ⊂ Rd, defined by

L :=
∑

|α|�m
aα(x)∂α, x ∈ Ω,

is called elliptic if, for every x := (x1, . . . , xd) ∈ Ω and
every nonzero ξ := (ξ1, . . . , ξd) ∈ Rd,

Qm(x, ξ) :=
∑

|α|=m
aα(x)ξα ≠ 0.

Here, α := (α1, . . . , αd) is a d-component vector with
nonnegative integer entries, called a multi-index, |α| :=
α1 + · · · +αd is the length of the multi-index α, ∂α :=
∂α1
x1 · · · ∂αdxd , with ∂xj := ∂/∂xj , and ξα := ξα1

1 · · ·ξαdd . In
the case of complex-valued coefficients aα, the defini-
tion above is modified by demanding that |Qm(x, ξ)| ≠
0 for all x ∈ Ω and all nonzero ξ ∈ Rd. A typi-
cal example of a first-order elliptic operator with com-
plex coefficients is the Cauchy–Riemann operator ∂z̄ :=
1
2 (∂x + i∂y), where i := √−1. With this general def-
inition of ellipticity, even-order operators can exhibit
some rather disturbing properties. For example, the
Bitsadze equation ∂xxu + 2i∂xyu − ∂yyu = 0 admits
infinitely many solutions on the unit disk Ω in R2 cen-
tered at the origin, all of which vanish on the bound-
ary ∂Ω of Ω. Indeed, with z = x + iy , u(x,y) =
(1−|z|2)f (z) is a solution that vanishes on ∂Ω for any
complex analytic function f . A stronger requirement,
referred to as uniform ellipticity, is therefore frequently
imposed: for real-valued coefficients aα, |α| � m, and
m = 2k, where k is a positive integer, uniform elliptic-
ity demands the existence of a constant C > 0 such that
(−1)kQ2k(x, ξ) � C|ξ|2k for all x ∈ Ω and all nonzero
ξ ∈ Rd.

The archetypal linear second-order uniformly ellip-
tic PDE is −Δu + c(x)u = f(x), x ∈ Ω. Here, c
and f are real-valued functions defined on Ω, and
Δ := ∑d

i=1 ∂2
xi is the Laplace operator. When c < 0 the
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equation is called the Helmholtz equation. In the spe-
cial case when c(x) ≡ 0 the equation is referred to as
Poisson’s equation, and when c(x) ≡ 0 and f(x) ≡ 0
it is referred to as Laplace’s equation. Elliptic PDEs
arise in a range of mathematical models in continuum
mechanics, physics, chemistry, biology, economics, and
finance. For example, in a two-dimensional flow of an
incompressible fluid with flow velocity u = (u1, u2,0),
the stream functionψ, related tou byu = ∇×(0,0,ψ),
satisfies Laplace’s equation. The potential Φ of a grav-
itational field, due to an attracting massive object of
density ρ, satisfies Poisson’s equation ΔΦ = 4πGρ,
where G is the universal gravitational constant.

More generally, one can consider fully nonlinear
second-order PDEs:

F(x,u,∇u,D2u) = 0,

where F is a real-valued function defined on the set
Υ := Ω × R × Rd × Rd×dsymm, with a typical element
υ := (x, z,p,R), where x ∈ Ω, z ∈ R, p ∈ Rd, and R ∈
Rd×dsymm;Ω is an open set in Rd;D2u denotes the Hessian
matrix of u; and Rd×dsymm is the d(d + 1)/2-dimensional
linear space of real symmetric d× d matrices, d � 2.
An equation of this form is said to be elliptic on Υ
if the d× d matrix whose entries are ∂F/∂Rij , i, j =
1, . . . , d, is positive-definite at each υ ∈ Υ . An impor-
tant example, encountered in connection with optimal
transportation problems, is the Monge–Ampère equa-
tion: detD2u = f(x) with x ∈ Ω. For this equation to
be elliptic it is necessary to demand that the twice con-
tinuously differentiable function u be uniformly con-
vex at each point of Ω, and for such a solution to exist
we must also have f positive.

Parabolic and hyperbolic PDEs typically arise in math-
ematical models in which one of the independent phys-
ical variables is time, denoted by t. For example, the
PDEs

∂tu+ Lu = f and ∂ttu+ Lu = f ,
where L is a uniformly elliptic partial differential oper-
ator of order 2m and u and f are functions of
(t, x1, . . . , xd), are uniformly parabolic and uniformly
hyperbolic, respectively. The simplest examples are
the (uniformly parabolic) unsteady heat equation and
the (uniformly hyperbolic) second-order wave equation,
where

Lu := −
d∑

i,j=1

∂xj (aij(t, x)∂xiu),

and where aij(t, x) = aij(t, x1, . . . , xd), i, j = 1, . . . , d,
are the entries of a d× d matrix, which is positive-
definite, uniformly with respect to (t, x1, . . . , xd).

Not all PDEs are of a certain fixed type. For example,
the following PDEs are mixed elliptic–hyperbolic ; they
are elliptic for x > 0 and hyperbolic for x < 0:

∂xxu+ sign(x)∂yyu = 0 (Lavrentiev equation),

∂xxu+ x∂yyu = 0 (Tricomi equation),

x∂xxu+ ∂yyu = 0 (Keldysh equation).

Stochastic analysis is a fertile source of PDEs of
nonnegative characteristic form, such as

∂tu−
d∑

i,j=1

∂xj (aij∂xiu)+
d∑
i=1

bi∂xiu+ cu = f ,

where bi, c, and f are real-valued functions of (t, x1,
. . . , xd), and aij = aij(t, x1, . . . , xd), i, j = 1, . . . , d,
are the entries of a positive-semidefinite matrix; since
the aij are dependent on the temporal variable t, the
equation is, potentially, of changing type. An important
special case is when the aij are all identically equal to
zero, resulting in the following first-order hyperbolic
equation, which is also referred to as the advection (or
transport ) equation:

∂tu+
d∑
i=1

bi(t, x)∂xiu+ c(t, x)u = f(t, x).

The nonlinear counterpart of this equation,

∂tu+
d∑
i=1

∂xi[f (t, x,u)] = 0,

plays an important role in compressible fluid dynamics,
traffic flow models, and flow in porous media. Special
cases include the Burgers equation ∂tu+ ∂x( 1

2u
2) = 0

and the Buckley–Leverett equation ∂tu + ∂x(u2/(u2 +
1
4 (1 −u)2)) = 0.

PDEs are rarely considered in isolation; additional
information is typically supplied in the form of bound-
ary conditions (imposed on the boundary ∂Ω of the
domain Ω ⊂ Rd in which the PDE is studied) or, in the
case of parabolic and hyperbolic equations, as initial
conditions at t = 0. The PDE in tandem with the bound-
ary/initial conditions is referred to as a boundary-value
problem/initial-value problem or, when both boundary
and initial data are supplied, as an initial–boundary-
value problem.

3 Finite-Difference Methods

We begin by considering finite-difference methods
for elliptic boundary-value problems. The basic idea
behind the construction of finite-difference methods is
to discretize the closure, Ω̄, of the (bounded) domain
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of definition Ω ⊂ Rd of the solution (the so-called ana-
lytical solution) to the PDE by approximating it with a
finite set of points in Rd, called the mesh points or grid
points, and replacing the partial derivatives of the ana-
lytical solution appearing in the equation by divided dif-
ferences (difference quotients) of a grid function, i.e.,
a function that is defined at all points in the finite-
difference grid. The process results in a finite set of
equations with a finite number of unknowns, the values
of the grid function representing the finite-difference
approximation to the analytical solution over the finite-
difference grid. We illustrate the construction by con-
sidering a simple second-order uniformly elliptic PDE
subject to a homogeneous Dirichlet boundary condition:

−Δu+ c(x,y)u = f(x,y) in Ω, (1)

u = 0 on ∂Ω (2)

on the unit square Ω := (0,1)2; here, c and f are real-
valued functions that are defined and continuous onΩ,
and c � 0 on Ω. Let us suppose for simplicity that the
grid points are equally spaced. Thus we take h := 1/N ,
where N � 2 is an integer. The corresponding finite-
difference grid is then Ω̄h := {(xi,yj) : i, j = 0, . . . , N},
where xi := ih and yj := jh, i, j = 0, . . . , N . We also
define Ωh := Ω̄h ∩Ω and ∂Ωh := Ω̄h \Ωh.

It is helpful to introduce the following notation for
first-order divided differences:

D+
xu(xi,yj) := u(xi+1, yj)−u(xi,yj)

h

and

D−
xu(xi,yj) := u(xi,yj)−u(xi−1, yj)

h
,

with D+
yu(xi,yj) and D−

y(xi,yj) defined analogously.
Then,

D2
xu(xi,yj) := D−

xD+
xu(xi,yj),

D2
yu(xi,yj) := D−

yD+
yu(xi,yj)

are referred to as the second-order divided difference of
u in the x-direction and the y-direction, respectively,
at (xi,yj) ∈ Ωh.

Assuming that u ∈ C4(Ω̄) (i.e., that u and all of its
partial derivatives up to and including those of fourth
order are defined and continuous on Ω̄), we have that,
at any (xi,yj) ∈ Ωh,

D2
xu(xi,yj) =

∂2u
∂x2

(xi,yj)+O(h2) (3)

and

D2
yu(xi,yj) =

∂2u
∂y2

(xi,yj)+O(h2) (4)

as h → 0. Omission of the O(h2) terms in (3) and (4)
above yields that

D2
xu(xi,yj) ≈

∂2u
∂x2

(xi,yj),

D2
yu(xi,yj) ≈

∂2u
∂y2

(xi,yj),

where the symbol “≈” signifies approximate equality in
the sense that as h→ 0 the expression on the left of the
symbol converges to the expression on its right. Hence,

− (D2
xu(xi,yj)+D2

yu(xi,yj))+ c(xi,yj)u(xi,yj)
≈ f(xi,yj) for all (xi,yj) ∈ Ωh,

(5)

u(xi,yj) = 0 for all (xi,yj) ∈ ∂Ωh. (6)

It is instructive to note the similarity between (1) and
(5), and between (2) and (6). Motivated by the form of
(5) and (6), we seek a grid function U whose value at
the grid point (xi,yj) ∈ Ω̄h, denoted by Uij , approx-
imates u(xi,yj), the unknown exact solution to the
boundary-value problem (1), (2) evaluated at (xi,yj),
i, j = 0, . . . , N . We define U to be the solution to the
following system of linear algebraic equations:

− (D2
xUij +D2

yUij)+ c(xi,yj)Uij
= f(xi,yj) for all (xi,yj) ∈ Ωh, (7)

Uij = 0 for all (xi,yj) ∈ ∂Ωh. (8)

As each equation in (7) involves five values of the
grid function U (namely, Uij , Ui−1,j , Ui+1,j , Ui,j−1,
Ui,j+1), the finite-difference method (7) is called the
five-point difference scheme. The matrix of the lin-
ear system (7), (8) is sparse, symmetric, and positive-
definite, and for given functions c and f it can be
efficiently solved by iterative techniques from numer-

ical linear algebra [IV.10], including krylov sub-

space [II.23] type methods (e.g., the conjugate gradi-
ent method) and multigrid methods. Multigrid methods
were developed in the 1970s and 1980s and are widely
used as the iterative solver of choice for large sys-
tems of linear algebraic equations that arise from finite-
difference and finite-element approximations in many
industrial applications. The key objective of a multigrid
method is to accelerate the convergence of standard
iterative methods (such as Jacobi iteration and succes-
sive over-relaxation) by using a hierarchy of coarser-
to-finer grids. A multigrid method with an intention-
ally reduced convergence tolerance can also be used as
an efficient preconditioner for a Krylov subspace itera-
tion. The preconditioner P for a nonsingular matrix A
is an approximation of A−1 whose purpose is to ensure
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that PA is a good approximation of the identity matrix,
thereby ensuring that iterative algorithms for the solu-
tion of the preconditioned version, PAx = Pb, of the
system of linear algebraic equations Ax = b exhibit
rapid convergence.

One of the central questions in the numerical analysis
of PDEs is the mathematical study of the approximation
properties of numerical methods. We will illustrate this
by considering the finite-difference method (7), (8). The
grid function T defined on Ωh by

Tij := −(D2
xu(xi,yj)+D2

yu(xi,yj))

+ c(xi,yj)u(xi,yj)− f(xi,yj) (9)

is called the truncation error of the finite-difference
method (7), (8). Assuming that u ∈ C4(Ω̄), it follows
from (3)–(5) that, at each grid point (xi,yj) ∈ Ωh,
Tij = O(h2) as h → 0. The exponent of h in the state-
ment Tij = O(h2) (which, in this case, is equal to 2) is
called the order of accuracy (or order of consistency) of
the method.

It can be shown that there exists a positive constant
c0, independent of h, U , and f , such that(
h2

N∑
i=1

N−1∑
j=1

|D−
xUij|2

+ h2
N−1∑
i=1

N∑
j=1

|D−
yUij|2 + h2

N−1∑
i=1

N−1∑
j=1

|Uij|2
)1/2

� c0

(
h2

N−1∑
i=1

N−1∑
j=1

|f(xi,yj)|2
)1/2

. (10)

Such an inequality (which expresses the fact that the
numerical solution U ∈ Sh,0 is bounded by the data (in
this case f ∈ Sh) uniformly with respect to the grid size
h, where Sh,0 denotes the linear space of all grid func-
tions defined on Ω̄h that vanish on ∂Ωh and where Sh
is the linear space of all grid functions defined on Ωh)
is called a stability inequality. The smallest real number
c0 > 0 for which (10) holds is called the stability con-
stant of the method. It follows in particular from (10)
that if fij = 0 for all i, j = 1, . . . , N−1, then Uij = 0 for
all i, j = 0, . . . , N . Therefore, the matrix of the system
of linear equations (7), (8) is nonsingular, which then
implies the existence of a unique solution U to (7), (8)
for any h = 1/N , N � 2. Consider the difference opera-
tor Lh : U ∈ Sh,0  → f = LhU ∈ Sh defined by (7), (8). The
left-hand side of (10) is sometimes denoted by ‖U‖1,h
and the right-hand side by ‖f‖0,h; hence, the stability
inequality (10) can be rewritten as

‖U‖1,h � c0‖f‖0,h

with f = LhU , and stability can then be seen to be
demanding the existence of the inverse to the linear
finite-difference operator Lh : Sh,0 → Sh, and its bound-
edness, uniformly with respect to the discretization
parameter h. The mapping U ∈ Sh,0  → ‖U‖1,h ∈ R is a
norm on Sh,0, called the discrete (Sobolev)H1(Ω)-norm,
and the mapping f ∈ Sh  → ‖f‖0,h ∈ R is a norm on
Sh, called the discrete L2(Ω)-norm. It should be noted
that the stability properties of finite-difference meth-
ods depend on the choice of norm for the data and for
the associated solution.

In order to quantify the closeness of the approxi-
mate solution U to the analytical solution u at the grid
points, we define the global error e of the method (7),
(8) by eij := u(xi,yj) − Uij . Clearly, the grid function
e = u − U satisfies (7), (8) if f(xi,yj) on the right-
hand side of (7) is replaced by Tij . Hence, by the stabil-
ity inequality, ‖u − U‖1,h = ‖e‖1,h � c0‖T‖0,h. Under
the assumption that u ∈ C4(Ω̄) we thus deduce that
‖u−U‖1,h � c1h2, where c1 is a positive constant, inde-
pendent of h. The exponent of h on the right-hand side
(which is 2 in this case) is referred to as the order of con-
vergence of the finite-difference method and is equal
to the order of accuracy. Indeed, the fundamental idea
that stability and consistency together imply conver-
gence is a recurring theme in the analysis of numerical
methods for differential equations.

The five-point difference scheme can be generalized
in various ways. For example, instead of using the same
grid size h in both coordinate directions, one could
have used a grid size Δx = 1/M in the x-direction
and a possibly different grid size Δy = 1/N in the
y-direction, where M,N � 2 are integers. One can
also consider boundary-value problems on more com-
plicated polygonal domains Ω in R2 such that each
edge of Ω is parallel with one of the coordinate axes,
for example, the L-shaped domain (−1,1)2 \ [0,1]2.
The construction above can be extended to domains
with curved boundaries in any number of dimensions;
at grid points that are on (or next to) the boundary,
divided differences with unequally spaced grid points
are then used.

In the case of nonlinear elliptic boundary-value
problems, such as the Monge–Ampère equation on a
bounded open set Ω ⊂ Rd, subject to the nonhomo-
geneous Dirichlet boundary condition u = g on ∂Ω,
a finite-difference approximation is easily constructed
by replacing at each grid point (xi,yj) ∈ Ω the value
u(xi,yj) of the analytical solution u (and its partial
derivatives) in the PDE with the numerical solution Uij
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(and its divided differences) and by then imposing the
numerical boundary condition Uij = g(xi,yj) for all
(xi,yj) ∈ ∂Ωh. Unfortunately, such a simple-minded
method does not explicitly demand the convexity of U
in any sense, and this can lead to instabilities. In fact,
there is no reason why the sequence of finite-difference
solutions should converge to the (convex) analytical
solution of the Monge–Ampère equation as h→ 0. Even
in two space dimensions the resulting method may
have multiple solutions, and special iterative solvers
need to be used to select the convex solution. Enforc-
ing convexity of the finite-difference solution in higher
dimensions is much more difficult. A recent develop-
ment in this field has been the construction of so-called
wide-stencil finite-difference methods, which are mono-
tone, and the convergence theory of Barles and Sougani-
dis therefore ensures convergence of the sequence of
numerical solutions, as h → 0, to the unique viscosity
solution of the Monge–Ampère equation.

We close this section on finite-difference methods
with a brief discussion about their application to time-
dependent problems. A key result is the Lax equiva-
lence theorem, which states that, for a finite-difference
method that is consistent with a well-posed initial-
value problem for a linear PDE, stability of the method
implies convergence of the sequence of grid functions
defined by the method on the grid to the analytical solu-
tion as the grid size converges to zero, and vice versa.
Consider the unsteady heat equation ut − Δu+ u = 0
for t ∈ (0, T ], with T > 0 given, and (x,y) in the unit
squareΩ = (0,1)2, subject to the homogeneous Dirich-
let boundary conditionu = 0 on (0, T ]×∂Ω and the ini-
tial condition u(0, x,y) = u0(x,y), (x,y) ∈ Ω, where
u0 and f are given real-valued continuous functions.
The computational domain [0, T ] × Ω̄ is discretized
by the grid {tm = mΔt : m = 0, . . . ,M} × Ω̄h, where
Δt = T/M , M � 1, and h = 1/N , N � 2. We consider
the θ-method

Um+1
ij −Umij
Δt

− (D2
xU

m+θ
ij +D2

yU
m+θ
ij )+Um+θ

ij = 0

for all i, j = 1, . . . , N − 1 and m = 0, . . . ,M − 1, sup-
plemented with the initial condition U0

ij = u0(xi,yj),
i, j = 0, . . . , N , and the boundary condition Um+1

ij = 0,
m = 0, . . . ,M−1, for all (i, j) such that (xi,yj) ∈ ∂Ωh.
Here, θ ∈ [0,1] and

Um+θ
ij := (1 − θ)Umij + θUm+1

ij ,

with Umij and Um+1
ij representing the approximations

to u(tm,xi,yj) and u(tm+1, xi, yj), respectively. The

values θ = 0, 1
2 , 1 are particularly relevant; the corre-

sponding finite-difference methods are called the for-
ward (or explicit ) Euler method, the Crank–Nicolson
method, and the backward (or implicit ) Euler method,
respectively; their truncation errors are defined by

Tm+1
ij := u(t

m+1, xi, yj)−u(tm,xi,yj)
Δt

− (1 − θ)(D2
xu(tm,xi,yj)+D2

yu(tm,xi,yj))

− θ(D2
xu(tm+1, xi, yj)+D2

yu(tm+1, xi, yj))

+ (1 − θ)u(tm,xi,yj)+ θu(tm+1, xi, yj)

for i, j = 1, . . . , N − 1, m = 0, . . . ,M − 1. Assuming
that u is sufficiently smooth, Taylor series expansion
yields that Tij = O(Δt + h2) for θ ≠ 1

2 and Tij =
O((Δt)2 + h2) for θ = 1

2 . Thus, in particular, the for-
ward and backward Euler methods are first-order accu-
rate with respect to the temporal variable t and second-
order accurate with respect to the spatial variables x
and y , whereas the Crank–Nicolson method is second-
order accurate with respect to both the temporal vari-
able and the spatial variables. The stability properties
of the θ-method are also influenced by the choice of
θ ∈ [0,1]; we have that

max
1�m�M

‖Um‖2
0,h +Δt

M−1∑
m=0

‖Um+θ‖2
1,h � ‖U0‖2

0,h

for θ ∈ [0, 1
2 ), provided that 2d(1 − 2θ)Δt � h2, with

d = 2 (space dimensions) in our case; and for θ ∈ [ 1
2 ,1],

irrespective of the choice of Δt and h. Thus, in particu-
lar, the forward (explicit) Euler method is conditionally
stable, the condition being that 2dΔt � h2, with d = 2
here, while the Crank–Nicolson and backward (implicit)
Euler methods are unconditionally stable.

A finite-difference method approximates the analyt-
ical solution using a grid function that is defined over
a finite-difference grid contained in the computational
domain. Next we will consider finite-element methods,
which involve piecewise polynomial approximations of
the analytical solution, defined over the computational
domain.

4 Finite-Element Methods

Finite-element methods (FEMs) are a powerful and gen-
eral class of techniques for the numerical solution of
PDEs. Their historical roots can be traced back to a
paper by Richard Courant, published in 1943, that pro-
posed the use of continuous piecewise affine approxi-
mations for the numerical solution of variational prob-
lems. This represented a significant advance from a
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practical point of view over earlier techniques by Ritz
and Galerkin from the early 1900s, which were based
on the use of linear combinations of smooth functions
(e.g., eigenfunctions of the differential operator under
consideration). The importance of Courant’s contribu-
tion was, unfortunately, not recognized at the time and
the idea was forgotten until the early 1950s, when it
was rediscovered by engineers. FEMs have since been
developed into an effective and flexible computational
tool with a firm mathematical foundation.

4.1 FEMs for Elliptic PDEs

Suppose that Ω ⊂ Rd is a bounded open set in Rd with
a Lipschitz-continuous boundary ∂Ω. We will denote by
L2(Ω) the space of square-integrable functions (in the
sense of Lebesgue) equipped with the norm ‖v‖0 :=
(
∫
Ω |v|2 dx)1/2. Let Hm(Ω) denote the Sobolev space

consisting of all functions v ∈ L2(Ω)whose (weak) par-
tial derivatives ∂αv belong to L2(Ω) for all α such that
|α| � m. Hm(Ω) is equipped with the norm ‖v‖m :=
(
∑

|α|�m ‖∂αv‖2
0)1/2. We denote by H1

0(Ω) the set of all
functions v ∈ H1(Ω) that vanish on ∂Ω.

Let a and c be real-valued functions, defined and con-
tinuous on Ω̄, and suppose that there exists a positive
constant c0 such that a(x) � c0 for all x ∈ Ω̄. Assume
further that bi, i = 1, . . . , d, are continuously differ-
entiable real-valued functions defined on Ω̄ such that
c − 1

2∇ · b � c0 on Ω̄, where b := (b1, . . . , bd), and let
f ∈ L2(Ω). Consider the boundary-value problem

−∇ · (a(x)∇u)+ b(x) · ∇u+ c(x)u = f(x)
for x ∈ Ω, with u|∂Ω = 0. The construction of the
finite-element approximation of this boundary-value
problem commences by considering the following weak
formulation of the problem: find u ∈ H1

0(Ω) such that

B(u,v) = -(v) ∀v ∈ H1
0(Ω), (11)

where the bilinear form B(·, ·) is defined by

B(w,v)

:=
∫
Ω
[a(x)∇w · ∇v + b(x) · ∇wv + c(x)wv]dx

and -(v) :=
∫
Ω fv dx, with w,v ∈ H1

0(Ω). If u is suf-
ficiently smooth (for example, if u ∈ H2(Ω)∩H1

0(Ω)),
then integration by parts in (11) implies that u is a
strong solution of the boundary-value problem, i.e.,
−∇ · (a(x)∇u) + b(x) · ∇u + c(x)u = f(x) almost
everywhere in Ω, and u|∂Ω = 0. More generally, in
the absence of such an additional assumption about
smoothness, the function u ∈ H1

0(Ω) satisfying (11) is

Figure 1 Finite-element triangulation of the computational
domain Ω̄, a polygonal region of R

2. Vertices on ∂Ω are
denoted by solids dots, and vertices internal toΩ by circled
solid dots.

called a weak solution of this elliptic boundary-value
problem. Under our assumptions on a, b, c, and f , the
existence of a unique weak solution follows from the
Lax–Milgram theorem.

We will consider the finite-element approximation of
(11) in the special case when Ω is a bounded open
polygonal domain in R2. The first step in the construc-
tion of the FEM is to define a triangulation of Ω̄. A trian-
gulation of Ω̄ is a tessellation of Ω̄ into a finite number
of closed triangles Ti, i = 1, . . . ,M , whose interiors are
pairwise disjoint, and for each i, j ∈ {1, . . . ,M}, i ≠ j,
for which Ti ∩ Tj is nonempty, Ti ∩ Tj is either a com-
mon vertex or a common edge of Ti and Tj (see figure 1).
The vertices in the triangulation are also referred to as
nodes.

Let hT denote the longest edge of a triangle T in the
triangulation, and let h be the largest among the hT .
Furthermore, let Sh denote the linear space of all real-
valued continuous functions vh defined on Ω̄ such that
the restriction of vh to any triangle in the triangulation
is an affine function, and define Sh,0 := Sh∩H1

0(Ω). The
finite-element approximation of the problem (11) is as
follows: find uh in the finite-element space Sh,0 such
that

B(uh,vh) = -(vh) ∀vh ∈ Sh,0. (12)

Let us denote by xi, i = 1, . . . , L, the set of all vertices
(nodes) in the triangulation (see figure 1), and let N =
N(h) denote the dimension of the finite-element space
Sh,0. We will assume that the vertices xi, i = 1, . . . , L,
are numbered so that xi, i = 1, . . . , N , are within Ω and
the remaining L−N vertices are on ∂Ω. Furthermore,
let {ϕj : j = 1, . . . , N} ⊂ Sh,0 denote the so-called nodal
basis for Sh,0, where the basis functions are defined
by ϕj(xi) = δij , i = 1, . . . , L, j = 1, . . . , N . A typical
piecewise-linear nodal basis function is shown in fig-
ure 2. Thus, there exists a vector U = (U1, . . . , UN)T ∈
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Figure 2 A typical piecewise-linear nodal basis function.
The basis function is identically zero outside the patch of
triangles surrounding the central node, at which the height
of the function is equal to 1.

RN such that

uh(x) =
N∑
j=1

Ujϕj(x). (13)

Substitution of this expansion into (12) and taking vh =
ϕk, k = 1, . . . , N , yields the following system ofN linear
algebraic equations in the N unknowns, U1, . . . , UN :

N∑
j=1

B(ϕj,ϕk)Uj = -(ϕk), k = 1, . . . , N. (14)

By recalling the definition of B(·, ·), we see that the
matrix A := ([B(ϕj,ϕk)]Nj,k=1)

T of this system of lin-
ear equations is sparse and positive-definite (and, if b is
identically zero, then the matrix is symmetric as well).
The unique solution U = (U1, . . . , UN)T ∈ RN of the lin-
ear system, upon substitution into (13), yields the com-
puted approximationuh to the analytical solutionu on
the given triangulation of the computational domain Ω̄,
using numerical algorithms for sparse linear systems

[IV.10 §6], including Krylov subspace type methods and
multigrid methods.

As Sh,0 is a (finite-dimensional) linear subspace of
H1

0(Ω), v = vh is a legitimate choice in (11). By
subtracting (12) from (11), with v = vh, we deduce that

B(u−uh,vh) = 0 ∀vh ∈ Sh,0, (15)

which is referred to as the Galerkin orthogonality prop-
erty of the FEM. Hence, for any vh ∈ Sh,0,

c0‖u−uh‖2
1 � B(u−uh,u−uh)
= B(u−uh,u− vh)
� c1‖u−uh‖1 ‖u− vh‖1,

where
c1 := (M2

a +M2
b +M2

c )1/2,

with Mv := maxx∈Ω̄ |v(x)|, v ∈ {a,b, c}. We therefore
have that

‖u−uh‖1 � c1

c0
min
vh∈Sh,0

‖u− vh‖1. (16)

This result is known as Céa’s lemma, and it is an impor-
tant tool in the analysis of FEMs. Suppose, for exam-
ple, that u ∈ H2(Ω) ∩ H1

0(Ω), and denote by Ih the
finite-element interpolant of u defined by

Ihu(x) :=
N∑
j=1

u(xj)ϕj(x).

It follows from (16) that ‖u−uh‖1 � (c1/c0)‖u−Ihu‖1.
Assuming further that the triangulation is shape regu-
lar in the sense that there exists a positive constant c∗,
independent of h, such that for each triangle in the tri-
angulation the ratio of the longest edge to the radius
of the inscribed circle is bounded below by c∗, argu-
ments from approximation theory imply the existence
of a positive constant ĉ, independent of h, such that
‖u − Ihu‖1 � ĉh‖u‖2. Hence, the following a priori
error bound holds in the H1-norm:

‖u−uh‖1 � (c1/c0)ĉh‖u‖2.

We deduce from this inequality that, as the triangu-
lation is refined by letting h → 0, the sequence of
finite-element approximationsuh computed on succes-
sively refined triangulations converges to the analyt-
ical solution u in the H1-norm. It is also possible to
derive a priori error bounds in other norms, such as
the L2-norm.

The inequality (16) of Céa’s lemma can be seen to
express the fact that the approximation uh ∈ Sh,0 to
the solution u ∈ H1

0(Ω) of (11) delivered by the FEM
(12) is a near-best approximation to u from the linear
subspace Sh,0 of H1

0(Ω). Clearly, c1/c0 � 1. When the
constant c1/c0 � 1, the numerical solution uh sup-
plied by the FEM is typically a poor approximation to
u in the ‖ · ‖1-norm, unless h is very small; for exam-
ple, if a(x) = c(x) ≡ ε and b(x) = (1,1)T, then c1/c0 =√

2(1+ε2)1/2/ε� 1 if 0 < ε� 1. Such non-self-adjoint
elliptic boundary-value problems arise in mathematical
models of diffusion–advection–reaction, where advec-
tion dominates diffusion and reaction in the sense that
|b(x)| � a(x) > 0 and |b(x)| � c(x) > 0 for all
x ∈ Ω̄. The stability and approximation properties of
the classical FEM (12) for such advection-dominated
problems can be improved by modifying, in a consis-
tent manner, the definitions of B(·, ·) and -(·) through
the addition of “stabilization terms” or by enriching the
finite-element space with special basis functions that
are designed so as to capture sharp boundary and inte-
rior layers exhibited by typical solutions of advection-
dominated problems. The resulting FEMs are generally
referred to as stabilized finite-element methods. A typ-
ical example is the streamline-diffusion finite-element
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method, in which the bilinear form of the standard FEM
is supplemented with an additional numerical diffusion
term, which acts in the streamwise direction only, i.e.,
in the direction of the vector b, in which classical FEMs
tend to exhibit undesirable numerical oscillations.

If, on the other hand, b is identically zero on Ω̄,
then B(·, ·) is a symmetric bilinear form, in the sense
that B(w,v) = B(v,w) for all w,v ∈ H1

0(Ω). The
norm ‖ · ‖B defined by ‖v‖B := [B(v,v)]1/2 is called
the energy norm on H1

0(Ω) associated with the ellip-
tic boundary-value problem (11). In fact, (11) can then
be restated as the following (equivalent) variational
problem: find u ∈ H1

0(Ω) such that

J(u) � J(v) ∀v ∈ H1
0(Ω),

where
J(v) := 1

2B(v,v)− -(v).
Analogously, the FEM (12) can then be restated equiv-
alently as follows: find uh ∈ Sh,0 such that J(uh) �
J(vh) for all vh ∈ Sh,0. Furthermore, Céa’s lemma, in
terms of the energy norm, ‖ ·‖B , becomes ‖u−uh‖B =
minvh∈Sh,0 ‖u− vh‖B . Thus, in the case when the func-
tion b is identically zero the numerical solution uh ∈
Sh,0 delivered by the FEM is the best approximation to
the analytical solution u ∈ H1

0(Ω) in the energy norm
‖ · ‖B .

We illustrate the extension of these ideas to nonlin-
ear elliptic PDEs through a simple model problem. For a
real number p ∈ (1,∞), let Lp(Ω) := {v :

∫
Ω |v|p dx <

∞} and W1,p(Ω) := {v ∈ Lp(Ω) : |∇v| ∈ Lp(Ω)}.
Furthermore, let W1,p

0 (Ω) denote the set of all v ∈
W1,p(Ω) such that v|∂Ω = 0. For f ∈ Lq(Ω), where
1/p + 1/q = 1, p ∈ (1,∞), consider the problem of
finding the minimizer u ∈ W1,p

0 (Ω) of the functional

J(v) := 1
p

∫
Ω
|∇v|p dx −

∫
Ω
fv dx, v ∈ W1,p

0 (Ω).

With Sh,0 as above, the finite-element approximation of
the problem then consists of finding uh ∈ Sh,0 that
minimizes J(vh) over all vh ∈ Sh,0. The existence and
uniqueness of the minimizers u ∈ W1,p

0 (Ω) and uh ∈
Sh,0 in the respective problems is a direct consequence
of the convexity of the functional J. Moreover, ash→ 0,
uh converges to u in the norm of the Sobolev space
W1,p(Ω).

Problems in electromagnetism and continuum me-
chanics are typically modeled by systems of PDEs in-
volving several dependent variables, which may need to
be approximated from different finite-element spaces
because of the disparate physical nature of the vari-
ables and the different boundary conditions that they

may be required to satisfy. The resulting finite-element
methods are called mixed finite-element methods. In
order for a mixed FEM to possess a unique solution and
for the method to be stable, the finite-element spaces
from which the approximations to the various compo-
nents of the vector of unknowns are sought cannot be
chosen arbitrarily; they need to satisfy a certain com-
patibility condition, usually referred to as the inf-sup
condition.

FEMs of the kind described in this section—where the
finite-element space containing the approximate solu-
tion is a subset of the function space in which the
weak solution to the problem is sought—are called con-
forming finite-element methods. Otherwise, the FEM is
called nonconforming. Nonconforming FEMs are nec-
essary in some application areas because in certain
problems (such as div-curl problems from electromag-
netism and variational problems exhibiting a Lavren-
tiev phenomenon, for example), conforming FEMs may
converge to spurious solutions. Discontinuous Galerkin
finite-element methods (DGFEMs) are extreme instances
of nonconforming FEMs, in the sense that pointwise
interelement continuity requirements in the piecewise
polynomial approximation are completely abandoned,
and the analytical solution is approximated by dis-
continuous piecewise polynomial functions. FEMs have
several advantages over finite-difference methods: the
concept of higher-order discretization is inherent to
FEMs; it is, in addition, particularly convenient from the
point of view of adaptivity that FEMs can easily accom-
modate very general tessellations of the computational
domain, with local polynomial degrees in the approxi-
mation that may vary from element to element. Indeed,
the notion of adaptivity is a powerful and important
idea in the field of numerical approximation of PDEs,
and it is this that we will further elaborate on in the
context of finite-element methods below.

4.2 A Posteriori Error Analysis and Adaptivity

Provided that the analytical solution is sufficiently
smooth, a priori error bounds guarantee that, as the
grid size h tends to 0, the corresponding sequence of
numerical approximations converges to the exact solu-
tion of the boundary-value problem. In practice, one
may unfortunately only be able to afford to compute
on a small number of grids/triangulations, the mini-
mum grid size attainable being limited by the compu-
tational resources available. A further practical consid-
eration is that the regularity of the analytical solution



314 IV. Areas of Applied Mathematics

may exhibit large variations over the computational
domain, with singularities localized at particular points
(e.g., at corners and edges of the domain) or low-
dimensional manifolds in the interior of the domain
(e.g., shocks and contact discontinuities in nonlinear
conservation laws, or steep internal layers in advection-
dominated diffusion equations). The error between the
unknown analytical solution and numerical solutions
computed on locally refined grids, which are best suited
for such problems, cannot be accurately quantified by
typical a priori error bounds and asymptotic conver-
gence results that presuppose uniform refinement of
the computational grid as the grid size tends to 0.
The alternative is to perform a computation on a cho-
sen computational grid/triangulation and use the com-
puted approximation to the exact solution to quan-
tify the approximation error a posteriori, and also to
identify parts of the computational domain in which
the grid size was inadequately chosen, necessitating
local, so-called adaptive, refinement or coarsening of
the computational grid/triangulation (h-adaptivity). In
FEMs it is also possible to locally vary the degree of
the piecewise polynomial function in the finite-element
space (p-adaptivity). Finally, one may also make adjust-
ments to the computational grid/triangulation by mov-
ing/relocating the grid points (r -adaptivity). The adap-
tive loop for an h-adaptive FEM has the following
form:

SOLVE → ESTIMATE → MARK → REFINE.

Thus, a finite-element approximation is first computed
on a certain fixed, typically coarse, triangulation of the
computational domain. Then, in the second step, an
a posteriori error bound is used to estimate the error
in the computed solution; a typical a posteriori error
bound for an elliptic boundary-value problem Lu = f
(where L is a second-order uniformly elliptic opera-
tor and f is a given right-hand side) is of the form
‖u−uh‖1 � C∗‖R(uh)‖∗, where C∗ is a (computable)
constant; ‖ · ‖∗ is a certain norm, depending on the
problem; and R(uh) = f − Luh is the (computable)
residual, which measures the extent to which the com-
puted numerical solution uh fails to satisfy the PDE
Lu = f . In the third step, on the basis of the a pos-
teriori error bound, selected triangles in the triangula-
tion are marked as having an inadequate size (i.e., too
large or too small, relative to a fixed local tolerance,
which is usually chosen as a suitable fraction of the
prescribed overall tolerance, TOL). Finally, in the fourth
step, the marked triangles are refined or coarsened,

as the case may be. This four-step adaptive loop is
repeated either until a certain termination criterion is
reached (e.g., C∗‖R(uh)‖∗ < TOL) or until the com-
putational resources are exhausted. A similar adaptive
loop can be used in p-adaptive FEMs, except that the
step REFINE is then interpreted as adjustment (i.e., an
increase or decrease) of the local polynomial degree,
which may then vary from triangle to triangle instead
of being a fixed integer over the entire triangulation. It
is also possible to combine different adaptive strate-
gies; for example, simultaneous h- and p-adaptivity
is referred to as hp-adaptivity ; thanks to the sim-
ple communication at the boundaries of adjacent ele-
ments in the subdivision of the computational domain,
hp-adaptivity is particularly easy to incorporate into
DGFEMs (see figure 3).

5 Finite-Volume Methods

Finite-volume methods have been developed for the
numerical solution of PDEs in divergence form, such
as conservation laws [II.6] that arise in continuum
mechanics. Consider, for example, the following system
of nonlinear PDEs:

∂u
∂t

+∇ · f(u) = 0, (17)

where u := (u1, . . . , un)T is an n-component vector
function of the variables t � 0 and x := (x1, . . . , xd);
the vector function f(u) := (f1(u), . . . , fd(u))T is the
corresponding flux function. The PDE (17) is supple-
mented with the initial condition u(0, x) = u0(x),
x ∈ Rd. Suppose that Rd has been tessellated into
disjoint closed simplexes κ (intervals if d = 1, trian-
gles if d = 2, and tetrahedrons if d = 3), whose union
is the whole of Rd and such that each pair of dis-
tinct simplexes from the tessellation is either disjoint
or has only closed simplexes of dimension less than
or equal to d− 1 in common. In the theory of finite-
volume methods the simplexes κ are usually referred
to as cells (rather than elements). For each particular
cell κ in the tessellation of Rd the PDE (17) is integrated
over κ, which gives∫

κ

∂u
∂t

dx +
∫
κ
∇ · f(u)dx = 0. (18)

By defining the volume average

ūκ(t) := 1
|κ|

∫
κ
u(t, x)dx, t � 0,

where |κ| is the measure of κ, and applying the diver-
gence theorem, we deduce that

dūκ
dt

+ 1
|κ|

∮
∂κ
f (u) · ν dS = 0,
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Figure 3 An hp-adaptive finite-element grid: (a) in a discon-
tinuous Galerkin finite-element approximation of the com-
pressible Euler equations of gas dynamics with local poly-
nomial degrees ranging from 1 to 7; and (b) the approximate
density on the grid. (Figure courtesy of Paul Houston.)

where ∂κ is the boundary of κ and ν is the unit outward

normal vector to ∂κ.

In the present construction the constant volume aver-

age is assigned to the barycenter of a cell, and the

resulting finite-volume method is therefore referred to

as a cell-center finite-volume method. In the theory of

finite-volume methods the local region κ over which the

PDE is integrated is called a control volume. In the case

of cell-center finite-volume methods, the control vol-

umes therefore coincide with the cells in the tessella-

tion. An alternative choice, resulting in vertex-centered

finite-volume methods, is that for each vertex in the

computational grid one considers the patch of cells sur-

rounding the vertex and assigns to the vertex a con-

trol volume contained in the patch of elements (e.g.,

in the case of d = 2, the polygonal domain defined
by connecting the barycenters of cells that surround
a vertex).

Thus far, no approximation has taken place. In order
to construct a practical numerical method, the inte-
gral over ∂κ is rewritten as a sum of integrals over all
(d− 1)-dimensional open faces contained in ∂κ, and
the integral over each face is approximated by replac-
ing the normal flux f(u) · ν over the face, appearing
as the integrand, by interpolation or extrapolation of
control volume averages. This procedure can be seen
as a replacement of the exact normal flux over a face of
a control volume with a numerical flux function. Thus,
for example, denoting by eκλ the (d− 1)-dimensional
face of the control volume κ that is shared with a
neighboring control volume λ, we have that∮

∂κ
f (u) · ν dS ≈

∑
λ : eκλ⊂∂κ

gκλ(ūκ, ūλ),

where the numerical flux function gκλ is required to
possess the following two crucial properties.

Conservation ensures that fluxes from adjacent con-
trol volumes that share a mutual interface exactly
cancel when summed. This is achieved by demanding
that the numerical flux satisfies the identity

gκλ(u,v) = −gλκ(v,u)
for each pair of neighboring control volumes κ and
λ.

Consistency ensures that, for each face of each con-
trol volume, the numerical flux with identical state
arguments reduces to the true total flux of that same
state passing through the face, i.e.,

gκλ(u,u) =
∫
eκλ
f (u) · ν dS

for each pair of neighboring control volumes κ and
λ with common face eκλ := κ ∩ λ.

The resulting spatial discretization of the nonlin-
ear conservation law is then further discretized with
respect to the temporal variable t by time stepping, in
steps ofΔt, starting from the given initial datumu0, the
simplest choice being to use the explicit Euler method.

The historical roots of this construction date back
to the work of Sergei Godunov in 1959 on the gas
dynamics equations; Godunov used piecewise-constant
solution representations in each control volume with
value equal to the average over the control volume
and calculated a single numerical flux from the local
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solution of the Riemann problem posed at the inter-

faces. A Riemann problem (named after Bernhard Rie-

mann) consists of a conservation law together with

piecewise-constant data having a single discontinuity.

Additional resolution beyond the first-order accuracy

of the Godunov scheme can be attained by reconstruc-

tion/recovery from the computed cell averages (as in

the MUSCL (monotonic upstream-centered scheme for

conservation laws) scheme of Van Leer, which is based

on piecewise-linear reconstruction, or by piecewise

quadratic reconstruction, as in the piecewise parabolic

method of Colella and Woodward) by exactly evolv-

ing discontinuous piecewise-linear states instead of

piecewise-constant states, or by completely avoiding

the use of Riemann solvers (as in the Nessyahu–Tadmor

and Kurganov–Tadmor central difference methods).

Thanks to their built-in conservation properties,

finite-volume methods have been widely and success-

fully used for the numerical solution of both scalar non-

linear conservation laws and systems of nonlinear con-

servation laws, including the compressible Euler equa-

tions of gas dynamics. There is a satisfactory conver-

gence theory of finite-volume methods for scalar mul-

tidimensional conservation laws; efforts to develop a

similar body of theory for multidimensional systems

of nonlinear conservation laws are, however, hampered

by the incompleteness of the theory of well-posedness

for such PDE systems.

6 Spectral Methods

While finite-difference methods provide approximate

solutions to PDEs at the points of the chosen com-

putational grid, and finite-element and finite-volume

methods supply continuous or discontinuous piece-

wise polynomial approximations on tessellations of

the computational domain, spectral methods deliver

approximate solutions in the form of polynomials of a

certain fixed degree, which are, by definition, smooth

functions over the entire computational domain. If

the solution to the underlying PDE is a smooth func-

tion, a spectral method will provide a highly accurate

numerical approximation to it.

Spectral approximations are typically sought as lin-

ear combinations of orthogonal polynomials [II.29]

over the computational domain. Consider a nonempty

open interval (a, b) of the real line and a nonnegative

weight function w, which is positive on (a, b), except

perhaps at countably many points in (a, b), and such

that ∫ b
a
w(x)|x|k dx <∞ ∀k ∈ {0,1,2, . . . }.

Furthermore, let L2
w(a,b) denote the set of all real-

valued functions v defined on (a, b) such that

‖v‖w :=
(∫ b

a
w(x)|v(x)|2 dx

)1/2
<∞.

Then ‖·‖w is a norm on L2
w(a,b), induced by the inner

product (u,v)w :=
∫ b
a w(x)u(x)v(x)dx. We say that

{Pk}∞k=0 is a system of orthogonal polynomials on (a, b)
if Pk is a polynomial of exact degree k and (Pm, Pn)w =
0 when m ≠ n. For example, if (a, b) = (−1,1) and
w(x) = (1−x)α(1+x)β, withα,β ∈ (−1,1) fixed, then
the resulting system of orthogonal polynomials are
the Jacobi polynomials, special cases of which are the
Gegenbauer (or ultraspherical) polynomials (α = β ∈
(−1,1)), Chebyshev polynomials of the first kind (α =
β = − 1

2 ), Chebyshev polynomials of the second kind
(α = β = 1

2 ), and Legendre polynomials (α = β = 0). On
a multidimensional domain Ω ⊂ Rd, d � 2, that is the
Cartesian product of nonempty open intervals (ak, bk),
k = 1, . . . , d, of the real line and a multivariate weight
function w of the form w(x) = w1(x1) · · ·wd(xd),
where x = (x1, . . . , xd) and wk is a univariate weight
function of the variable xk ∈ (ak, bk), k = 1, . . . , d,
orthogonal polynomials with respect to the inner prod-
uct (·, ·)w defined by (u,v)w =

∫
Ω w(x)u(x)v(x)dx

are simply products of univariate orthogonal polyno-
mials with respect to the weights wk, defined on the
intervals (ak, bk), k = 1, . . . , d, respectively.

Spectral Galerkin methods for PDEs are based on
transforming the PDE problem under consideration
into a suitable weak form by multiplication with a test
function, integration of the resulting expression over
the computational domain Ω, and integration by parts,
if necessary, in order to incorporate boundary con-
ditions. As in the case of finite-element methods, an
approximate solution uN to the analytical solution u
is sought from a finite-dimensional linear space SN ⊂
L2
w(Ω), which is now, however, spanned by the first
(N + 1)d elements of a certain system of orthogonal
polynomials with respect to the weight functionw. The
function uN is required to satisfy the same weak for-
mulation as the analytical solution, except that the test
functions are confined to the finite-dimensional linear
space SN . In order to exploit the orthogonality proper-
ties of the chosen system of orthogonal polynomials,
the weight function w has to be incorporated into the
weak formulation of the problem, which is not always
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easy, unless of course the weight function w already
appears as a coefficient in the differential equation, or if
the orthogonal polynomials in question are the Legen-
dre polynomials (since then w(x) ≡ 1). We describe
the construction for a uniformly elliptic PDE subject to
a homogeneous Neumann boundary condition:

−Δu+u = f(x) x ∈ Ω := (−1,1)d,

∂u
∂ν

= 0 on ∂Ω,

where f ∈ L2(Ω) and ν denotes the unit outward nor-
mal vector to ∂Ω (or, more precisely, to the (d− 1)-
dimensional open faces contained in ∂Ω). Let us con-
sider the finite-dimensional linear space

SN := span{Lα := Lα1 · · ·Lαd :

0 � αk � N, k = 1, . . . , d},
where Lαk is the univariate Legendre polynomial of
degree αk of the variable xk ∈ (−1,1), k = 1, . . . , d.
The Legendre–Galerkin spectral approximation of the
boundary-value problem is defined as follows: find
uN ∈ SN such that

B(uN,vN) = -(vN) ∀vN ∈ SN, (19)

where the linear functional -(·) and the bilinear form
B(·, ·) are defined by

-(v) :=
∫
Ω
fv dx

and

B(w,v) :=
∫
Ω
(∇w · ∇v +wv)dx,

respectively, withw,v ∈ H1(Ω). As B(·, ·) is a symmet-
ric bilinear form and SN is a finite-dimensional linear
space, the task of determining uN is equivalent to solv-
ing a system of linear algebraic equations with a sym-
metric square matrix A ∈ RK×K with K := dim(SN) =
(N+1)d. Since B(V,V) = ‖V‖2

1 > 0 for all V ∈ SN \{0},
where, as before, ‖ · ‖1 denotes the H1(Ω)-norm, the
matrix A is positive-definite, and therefore invertible.
Thus we deduce the existence and uniqueness of a solu-
tion to (19). Céa’s lemma (see (16)) for (19) takes the
form

‖u−uN‖1 = min
vN∈SN

‖u− vN‖1. (20)

If we assume that u ∈ Hs(Ω), s > 1, results from
approximation theory imply that the right-hand side
of (20) is bounded by a constant multiple of N1−s‖u‖s ,
and we thus deduce the error bound

‖u−uN‖1 � CN1−s‖u‖s , s > 1.

Furthermore, if u ∈ C∞(Ω̄) (i.e., all partial derivatives
of u of any order are continuous on Ω̄), then ‖u−uN‖1

will converge to zero at a rate that is faster than
any algebraic rate of convergence; such a superalge-
braic convergence rate is usually referred to as spectral
convergence and is the hallmark of spectral methods.

SinceuN ∈ SN , there exist Uα ∈ R, with multi-indices
α = (α1, . . . , αd) ∈ {0, . . . , N}d, such that

uN(x) =
∑

α∈{0,...,N}d
UαLα(x).

Substituting this expansion into (19) and taking vN =
Lβ, with β = (β1, . . . , βd) ∈ {0, . . . , N}d, we obtain the
system of linear algebraic equations∑
α∈{0,...,N}d

B(Lα, Lβ)Uα = -(Lβ), β ∈ {0, . . . , N}d,

(21)

for the unknowns Uα, α ∈ {0, . . . , N}d, which is
reminiscent of the system of linear equations (14)
encountered in connection with finite-element meth-
ods. There is, however, a fundamental difference:
whereas the matrix of the linear system (14) was sym-
metric, positive-definite, and sparse, the one appearing
in (21) is symmetric, positive-definite, and full. It has to
be noted that because

B(Lα, Lβ) =
∫
Ω
∇Lα · ∇Lβ dx +

∫
Ω
LαLβ dx,

in order for the matrix of the system to become diag-
onal, instead of Legendre polynomials one would need
to use a system of polynomials that are orthogonal in
the energy inner product (u,v)B := B(u,v) induced
by B.

If the homogeneous Neumann boundary condition
considered above is replaced with a 1-periodic bound-
ary condition in each of the d coordinate directions
and the function f appearing on the right-hand side
of the PDE −Δu + u = f(x) on Ω = (0,1)d is a 1-
periodic function in each coordinate direction, then one
can use trigonometric polynomials instead of Legen-
dre polynomials in the expansion of the numerical
solution. This will then result in what is known as
a Fourier–Galerkin spectral method. Because trigono-
metric polynomials are orthogonal in both the L2(Ω)
and the H1(Ω) inner product, the matrix of the result-
ing system of linear equations will be diagonal, which
greatly simplifies the solution process. Having said this,
the presence of (periodic) nonconstant coefficients in
the PDE will still destroy orthogonality in the associ-
ated energy inner product (·, ·)B , and the matrix of the
resulting system of linear equations will then, again,
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become full. Nevertheless, significant savings can be
made in spectral computations through the use of fast
transform methods, such as the fast Fourier transform
or the fast Chebyshev transform, and this has con-
tributed to the popularity of Fourier and Chebyshev
spectral methods.

Spectral collocation methods seek a numerical solu-
tion uN from a certain finite-dimensional space SN ,
spanned by orthogonal polynomials, just as spectral
Galerkin methods do, except that after expressing uN
as a finite linear combination of orthogonal polyno-
mials and substituting this linear combination into the
differential equation Lu = f under consideration, one
demands that LuN(xk) = f(xk) at certain carefully
chosen points xk, k = 1, . . . , K, called the collocation
points. Boundary and initial conditions are enforced
analogously. A trivial requirement in selecting the col-
location points is that one ends up with as many equa-
tions as the number of unknowns, which is, in turn,
equal to the dimension of the linear space SN .

We illustrate the procedure by considering the para-
bolic equation

∂tu− ∂2
xxu = 0, (t, x) ∈ (0,∞)× (−1,1),

subject to the initial condition u(0, x) = u0(x) with
x ∈ [−1,1] and the homogeneous Dirichlet bound-
ary conditions u(t,−1) = 0, u(t,1) = 0, t ∈ (0,∞).
A numerical approximation uN is sought in the form
of the finite linear combination

uN(t,x) =
N∑
k=0

ak(t)Tk(x)

with (t, x) ∈ [0,∞)× [−1,1], where

Tk(x) := cos(k arccos(x)), x ∈ [−1,1],

is the Chebyshev polynomial (of the first kind) of degree
k � 0. Note that there are N + 1 unknowns, the coeffi-
cients ak(t), k = 0,1, . . . , N . We thus require the same
number of equations. The function uN is substituted
into the PDE and it is demanded that, for t ∈ (0,∞)
and k = 1, . . . , N − 1,

∂tuN(t, xk)− ∂2
xxuN(t, xk) = 0.

It is further demanded that uN(t,−1) = 0 and
uN(t,1) = 0 for t ∈ (0,∞) and thatuN(0, xk) = u0(xk)
for k = 0, . . . , N , where the (N + 1) collocation points
are defined by xk := cos(kπ/N), k = 0, . . . , N ; these
are the (N + 1) points of extrema of TN on the interval
[−1,1]. By writing uk(t) := uN(t,xk), after some cal-
culation based on properties of Chebyshev polynomials

one arrives at the following set of ordinary differential
equations:

duk(t)
dt

=
N−1∑
l=1

(D2
N)klu

l(t), k = 1, . . . , N − 1,

whereD2
N is the spectral differentiation matrix of second

order, whose entries (D2
N)kl can be explicitly calculated.

One can then use any standard numerical method for a
system of ordinary differential equations to evolve the
values uk(t) = uN(t,xk) of the approximate solution
uN at the collocations points xk, k = 1, . . . , N − 1, con-
tained in (−1,1), from the values of the initial datum
u0 at the same points.

7 Concluding Remarks

We have concentrated on four general and widely appli-
cable families of numerical methods: finite-difference,
finite-element, finite-volume, and spectral methods. For
additional details the reader is referred to the books
listed below and to the rich literature on numeri-
cal methods for PDEs for the construction and analy-
sis of other important techniques for specialized PDE
problems.
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IV.14 Applications of Stochastic
Analysis
Bernt Øksendal and Agnès Sulem

1 Introduction

Stochastic analysis is a relatively young mathemati-
cal discipline, characterized by a unification of prob-
ability theory (stochastics) and mathematical analysis.
Key elements of stochastic analysis are, therefore, inte-
gration and differentiation of random/stochastic func-
tions. Stochastic analysis is currently applied to a wide
variety of applications in a number of different areas,
including finance, physics, engineering, biology, and
also within other fields of mathematics itself. We can
mention only some of these applications here, and we
refer the reader to the list of further reading at the end
of the article for more information.

Probability theory and mathematical analysis were
traditionally disjoint mathematical disciplines that had
little or no interaction. In 1923 Norbert Wiener gave
a mathematically rigorous description of the erratic
motion of pollen grains in water, a phenomenon that
was observed by Robert Brown in 1828. This motion,
called Brownian motion, was modeled by Wiener as a
stochastic process called the Wiener process, denoted
by W(t) = W(t,ω) or B(t) = Bt = Bt(ω) = B(t,ω).
Heuristically, one could say that the position of a pollen
grain at time t is represented by B(t,ω). Here, ω is a
“scenario” parameter that could represent, for exam-
ple, a pollen grain or an experiment, depending on the
model setup.

Wiener showed that t → B(t,ω) is continuous but
nowhere differentiable for almost all ω ∈ Ω (i.e., for
allω except on a set of P -measure zero, where P is the
probability law of B(·)). Nevertheless, he showed that
it is possible to define what was later called the Wiener

integral, namely,

I(f )(ω) :=
∫ T

0
f(t)dB(t,ω) (T > 0 fixed), (1)

as a square-integrable element with respect to P for
all deterministic square-integrable functions f with
respect to the Lebesgue measure on [0, T ]. This con-
struction represents the first combination of proba-
bility and analysis, and as such marks the birth of
stochastic analysis.

Subsequently, in 1942 Kiyoshi Itô extended Wiener’s
construction to include stochastic integrands ϕ(t,ω)
that are adapted (to Ft ), in the sense that for each t
the value of ϕ(t,ω) can be expressed in terms of the
history Ft of B(t,ω), i.e., in terms of previous values of
B(s,ω), s � t. He showed that in this case the integral
can in some sense be represented as a limit of Riemann
sums:∫ T

0
ϕ(t,ω)dB(t,ω) = lim

N→∞

N∑
i=1

ϕ(ti+1)(Bti+1 − Bti ) (2)

(0 = t0 < t1 < · · · < tN = T being a partition of [0, T ])
if ϕ satisfies ∫ T

0
ϕ2(t,ω)dt <∞ a.s.,

and then the limit in (2) exists in a weak sense (in prob-
ability with respect to P ; “a.s.” is an abbreviation for
“almost surely,” i.e., with probability 1).

Itô proceeded to study such integrals and their prop-
erties in a series of papers in the 1950s. He proved
a useful chain rule, now called the Itô formula, for
processes that are sums of Itô integrals and integrals
with respect to Lebesgue measure. Such processes are
today known as Itô processes. Moreover, he studied
corresponding stochastic differential equations of the
form

dX(t) = b(t,X(t))dt + σ(t,X(t))dBt, 0 � t � T ,
X(0) = x ∈ R,

⎫⎬⎭
(3)

where b : [0, T ] × R → R and σ : [0, T ] × R → R are
given functions satisfying certain conditions, and he
proved the existence and uniqueness of solutions X(·)
of such equations, later known as (Itô) stochastic differ-
ential equations (SDEs). Note that (3) is just a shorthand
notation for the stochastic integral equation

X(t) = x +
∫ t

0
b(s,X(s))ds +

∫ t
0
σ(s,X(s))dBs,

0 � t � T . (4)

For several years the work of Itô was considered an
interesting theoretical construction, but one without
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any applications. But this changed in the late 1960s and
early 1970s when Henry McKean published a book with
a useful introduction to the stochastic analysis of Itô
and Samuelson proposed modeling the price of a stock
in a financial market by the solution X(t) of an SDE of
the form

dX(t) = αX(t)dt + βX(t)dB(t), 0 � t � T ,
X(0) = x > 0,

⎫⎬⎭ (5)

with β > 0 and α constants. This was the beginning
of a wide range of applications of stochastic analysis.
The amazing subsequent development of the subject
can be seen as the result of fruitful interplay between
applications and theory. We think this strong two-
way communication between problems and concepts
in applications and the development of corresponding
mathematical theory is unique to stochastic analysis.

In the following sections we will briefly review some
examples of this interaction.

2 Applications to Finance

The application of stochastic analysis to finance is
undoubtedly one of the most spectacular examples of
the application of mathematics in our society. Before
stochastic analysis entered the field, finance was, with
a few exceptions, an area almost devoid of mathemat-
ics. Today, though, finance is strongly influenced by
the theory and methods of stochastic analysis. Here we
give just a brief introduction to this area of applica-
tion, while we refer to the articles on financial math-

ematics [V.9] and portfolio theory [V.10] elsewhere
in this volume for more information on this huge and
active research topic.

The breakthrough came in the late 1960s/early
1970s, when

• Jan Mossin studied a discrete-time financial model
and solved the problem of finding the portfolio
that maximizes the expected utility of the terminal
wealth, using dynamic programming,

• Robert Merton used the (continuous-time) finan-
cial market model of Samuelson (see above) and
solved the optimal-portfolio problem by using the
Hamilton–Jacobi–Bellman equation, and

• Fischer Black and Myron Scholes developed their
famous Black–Scholes option-pricing formula.

Merton and Scholes were awarded the Nobel Memorial
Prize in Economic Sciences for these achievements in
1997 (Black died in 1995).

To see why stochastic analysis is such a natural tool
for finance, let us consider a simple financial market
model with two investment possibilities.

(1) A risk-free investment with constant unit price
S0(t) = 1.

(2) A risky investment, with unit price S1(t) given by

dS1(t) = S1(t)[αdt + βdB(t)], t � 0,

S1(0) > 0,

as in Samuelson’s model.

If ϕ(t) = (ϕ0(t),ϕ1(t)) is a portfolio, giving the num-
ber of units held at time t of the risk-free and risky
investments, respectively, then

Xϕ(t) :=ϕ0(t)S0(t)+ϕ1(t)S1(t)

is the total value of the portfolio at time t. We say that
the portfolio is self-financing if the infinitesimal change
in the wealth at a given time t, dXϕ(t), comes from the
change in the market prices only, i.e., if

dXϕ(t) =ϕ0(t)dS0(t)+ϕ1(t)dS1(t).

We assume from now on that all portfolios are self-
financing. Since dS0(t) = 0, this gives the integral
representation

Xϕx (t) = x +
∫ t

0
ϕ1(s)dS1(s)

= x +
∫ t

0
ϕ1(s)αS1(s)ds +

∫ t
0
ϕ1(s)βS1(s)dBs,

(6)

where x is the initial value and the last integral is the
Itô integral.

Note that this integral representation is natural
because of the interpretation (2) of the Itô integral as
a limit of Riemann sums, where the portfolio choice
ϕ1(ti) is taken as the left-hand side of the partition-
ing intervals [ti, ti+1) of [0, T ]. Heuristically, first we
decide on the portfolio, then comes the price change.
With this mathematical setup the breakthroughs of
Mossin and Merton can be formulated more precisely,
as follows.

2.1 The Portfolio-Optimization Problem

(Mossin/Merton)

Given a utility function (i.e., a continuous, increasing,
concave function) U : [0,∞)→ R, find a portfolio ϕ∗ ∈
A (the family of admissible portfolios) such that

sup
ϕ∈A

E[U(Xϕ(T))] = E[U(Xϕ∗
(T))], (7)
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where T > 0 is a given terminal time and E[·] denotes
expectation with respect to P . This may be regarded as
a stochastic control problem. With specific choices of
utility functions, e.g., U(x) = lnx or U(x) = (1/γ)xγ
for some constant γ ∈ (−∞,1)\{0}, this problem
can be solved explicitly by dynamic programming, as
Merton did (see section 4).

2.2 The Option-Pricing Problem (Black–Scholes)

Suppose that at time t = 0 you are offered a contract
that pays (S(T)−K)+ (= max{S(T)−K,0}) at a speci-
fied future time T . Here, K > 0 is a constant, also speci-
fied in the contract. Such a contract is called a European
call option, and K is called the exercise price. This con-
tract is equivalent to a contract that gives the owner the
right, but not the obligation, to buy one unit of the risky
asset at time T at the price K. To see this equivalence,
we argue as follows. If the market price S(T) turns out
to be greater than K, then according to the second con-
tract the owner can buy one unit at the priceK and then
immediately sell it at S(T), giving a profit of S(T)−K.
If, however, S(T) � K, the contract is worthless and the
payoff is 0. This leads to the contract payoff (S(T)−K)+
in general, which is in agreement with the first contract.
The question is, then, how much would you be willing
to pay at time t = 0 for such a contract? If you are a
careful person, you might argue as follows.

If I pay an amount z for the contract, I start with an ini-
tial wealth −z, and with this initial wealth it should be
possible for me to find a portfolio ϕ ∈ A (in particu-
lar, a self-financing portfolio) such that the sum of the
corresponding terminal wealth Xϕ−z(T) and the payoff
of the contract is, almost surely, nonnegative.

This gives the following expression for the buyer’s price
of a call option:

pbuyer := sup{z; there exists ϕ ∈ A such that

Xϕ−z(T)+ (S(T)−K)+ � 0 a.s.}.
This problem of finding the option price pbuyer is of
a different type from the Merton problem in (7). The
Black–Scholes option-pricing formula states that

pbuyer = EQ[(S(T)−K)+], (8)

where EQ means expectation with respect to the mea-
sure Q, defined to be the unique probability measure
Q equivalent to P such that S1(t) is a martingale under
Q, i.e.,

EQ[S1(t) | Fs] = S1(s)

for all 0 � s � t � T .

Such a measure is called an equivalent martingale
measure. In this financial market there is only one
equivalent martingale measure, and it is given by

dQ(ω) = exp
(
− α
β
B(T)− 1

2

(
α
β

)2

T
)

dP(ω) on FT .

Substituting this into (8) and using the probabilistic
properties of Brownian motion we get an explicit for-
mula for the call option price pbuyer in terms of K, β,
and T . A surprising feature of this formula is that it
does not contain α, and we are therefore led to the
important conclusion that the option price does not
depend on the drift coefficient α.

The ground-breaking results in sections 2.1 and 2.2
motivated a lot of research activity. Other models were
introduced and studied, and at the same time other
areas of applications were found (see section 7).

We now proceed to present some applications that
are not necessarily connected to finance.

3 Backward Stochastic Differential Equations

Returning to the equation (6) for the wealth Xϕx (t) cor-
responding to a given (self-financing) portfolio ϕ(t) =
(ϕ0(t),ϕ1(t)), one may ask the following question.
Given a random variable F(ω), assumed to depend only
on the history FT of B(t,ω) up to time t, does there
exist a portfolio ϕ such that Xϕx (T) = F a.s.?

If we substitute

Z(t) :=ϕ1(t)S(t)

into (6), we see that this question can be formulated as
follows. Given F , find X(t) and Z(t) such that

dX(t) = α
β
Z(t)dt + Z(t)dB(t), 0 � t � T ,

X(T) = F a.s.

This is called a backward stochastic differential equa-
tion (BSDE) in the two unknown (adapted) processes X
and Z . In contrast to (3), it is the terminal value F of X
that is given, not the initial value. More generally, given
a function g(t,y, z,ω) : [0, T ] × R × R ×Ω → R and a
random variable F , as above, the corresponding BSDE
in the two unknown (adapted) processes Y(t), Z(t) has
the form

dY(t) = −g(t, Y(t), Z(t),ω)dt + Z(t)dBt, 0 � t � T ,
Y(T) = F a.s.

The process g is sometimes called the driver.
The original motivation for studying BSDEs came

from stochastic control theory (see section 4), but a
number of other developments have since been found,
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such as the probabilistic representations of solutions of
nonlinear parabolic partial differential equations devel-
oped by Pardoux and Peng in 1990. In the 1990s, Duffie
and Epstein used BSDEs to introduce the concept of the
recursive utility of a consumption process, and around
ten to fifteen years ago BSDEs were used to define con-
vex risk measures as a model for the risk of a financial
position.

4 Optimal Stochastic Control

The portfolio-optimization problem presented in sec-
tion 2 may be regarded as a special case of a gen-
eral optimal stochastic control problem of the following
type. Suppose that the state X(t) = Xs,x(t) of a sys-
tem at time t is described by a stochastic differential
equation of the form

dX(t) = b(t,X(t),u(t),ω)dt+σ(t,X(t),u(t),ω)dBt
(9)

for s � t � T , with X(s) = x, (x ∈ R and 0 � s � T
given), where b : [0, T ]×R×V×Ω → R and σ : [0, T ]×
R×V×Ω → R are given functions such that b(·, x, v, ·)
and σ(·, x, v, ·) are adapted processes for each given
x ∈ R and v ∈ V, a given set of control values. The
process u(t) = u(t,ω) is our control process. To be
admissible it is required that u be adapted and that
u(t,ω) ∈ V for all t ∈ [0, T ] and almost all ω ∈ Ω.
The set of admissible control processes is denoted by
A. With each choice of u ∈ A, (s, x) ∈ [0, T ] × R, we
associate a performance Ju(s, x) given by

Ju(s, x) = E
[∫ T

0
f(t,Xs,x(t),u(t),ω)dt

+ g(Xs,x(t),ω)
]
, (10)

where f : [0, T ] × R × V × Ω → R and g : R × Ω → R
are given functions. Sometimes f is called the profit
rate and g is called the bequest or salvage function.
We assume that f(·, x, v, ·) is adapted and that g(x, ·)
depends only on the history FT of the underlying
Brownian motion B(t,ω), s � t � T , for each x and v .

The problem is to find a control u∗ ∈ A and a
function Φ(s,x) such that

Φ(s,x) = sup
u∈A

Ju(s, x) = Ju∗(s, x), (s, x) ∈ [0, T ]×R.

(11)
Such a process u∗ (if it exists) is called an optimal
control, and Φ is called the value function.

For example, if we represent the portfolio in (6) by
the fraction π(t) of the total wealth X(t) invested in

the risky asset at time t, then

π(t) = ψ1(t)S1(t)
X(t)

and (6) can be written

dX(t) = π(t)X(t)[αdt + βdB(t)], 0 � t � T ,
X(0) = x > 0.

⎫⎬⎭
(12)

Comparing (12) and (7) with (9)–(11), we see that the

optimal-portfolio problem is an example of an optimal

stochastic control problem, as claimed.

There are two main solution methods for stochastic

control problems: the dynamic programming principle

and the maximum principle.

4.1 The Dynamic Programming Principle

The dynamic programming principle, introduced by

R. Bellman in the 1950s, applies only to Markovian

problems. These are problems where the coefficients

b(s,x, v), σ(s,x, v), f(s, x, v), and g(x), for fixed val-

ues of s, x, and v , do not depend on ω. Moreover, the

control process u(t) must be Markovian, in the sense

thatu(t) = u0(t,X(t)) for some deterministic function

u0 : [0, T ]×R → V. (Such a control is called a feedback

control.) In this case, the dynamic programming prin-

ciple leads to the Hamilton–Jacobi–Bellman equation,

which (under some conditions) states the following.

Suppose that ϕ is a smooth function such that

f(s, x, v)+Avϕ(s,x) � 0, 0 � s � T , x ∈ R, v ∈ V,

and that

ϕ(T,x) = g(x).

Then

ϕ(s,x) � Φ(s,x), (s, x) ∈ [s, T]× R.

Moreover, assume that, in addition, for all (s, x) ∈
[0, T ]× R there exists u0(s, x) ∈ V such that

f(s, x,u0(s, x))+Au0(s,x)ϕ(s,x) = 0. (13)

Then

ϕ(s,x) = Φ(s,x), (s, x) ∈ [s, T]× R

and

u∗(t) := u0(t,X(t))

is an optimal (Markovian) control.

Here, Av denotes the generator of the Markov pro-

cess Xvs,x(t) obtained by using the constant control
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u(t) := v ∈ V. It is a parabolic second-order partial
differential operator given by

Avϕ(s,x) := ∂ϕ
∂s
(s, x)+ b(s,x, v)∂ϕ

∂x
(s,x)

+ 1
2σ

2(s, x, v)
∂2ϕ
∂x2

(s, x).

For example, for the problem (7) with (12) we get

Avϕ(s,x) := ∂ϕ
∂s
(s, x)+αvx ∂ϕ

∂x
(s,x)

+ 1
2β

2v2x2(s, x, v)
∂2ϕ
∂x2

(s, x),

which is maximal when

v = v∗ = − αϕ′(s, x)
β2xϕ′′(s, x)

,

where

ϕ′(s, x) = ∂ϕ
∂x
(s,x) and ϕ′′(s, x) = ∂

2ϕ
∂x2

(s, x).

Substituting into (13) we get

∂ϕ
∂s
(s, x)− α

2(ϕ′)2(s, x)
2β2ϕ′′(s, x)

= 0.

In particular, if

U(x) = g(x) = 1
γ
xγ, x > 0,

for some parameter γ ∈ (−∞,1)\0, then we see that
the above equation holds for

ϕ(s,x) = h(s)xγ,
where

h′(s)− α2γ
2β2(γ − 1)

h(s) = 0, 0 � s � T ,

h(T) = 1/γ.

This gives an optimal control (portfolio)

u∗(t)=π∗(t)=− αh(t)γxγ−1

β2xγ(γ−1)h(t)xγ−2
= α
β2(1−γ) ,

which is one of the classical results of Mossin and
Merton.

4.2 The Maximum Principle

The maximum principle goes back to L. Pontryagin and
his group, who developed this method for determinis-
tic control problems in the 1950s. It was adapted to
stochastic control by J.-M. Bismut and subsequently
extended further by A. Bensoussan, E. Pardoux, S. Peng,
and others throughout the 1970s, 1980s, and 1990s.
Basically, the maximum principle approach to the
stochastic control problem (11) is as follows.

First, we define the associated Hamiltonian H : R5 →
R by

J(t, x,u,p, q) = f(t, x,u)+ b(t, x,u)p + σ(t,x,u)q.
(14)

Here, p, q are adjoint variables, somehow related to
Lagrange multipliers.

Next, associated with the Hamiltonian we consider,
for given u ∈ A, the BSDE

dp(t) = −∂H
∂x
(t,X(t),u(t), p(t), q(t))dt + q(t)dBt,

0 � t � T ,
p(T) = g′(X(T))

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(15)

in the two unknown adjoint processes p(t) = p(u)(t),
q(t) = q(u)(t), where X(t) = X(u)(t) is the solution of
(9) corresponding to the control u.

The maximum principle relates the maximization of
Ju(s, x) in (10) to the maximization of the Hamilto-
nian. For example, under some concavity assumptions
we have the following result.

The sufficient maximum principle (assumes concav-

ity). Suppose that û ∈ A, with associated solution
X̂(t) = X(û)(t), p̂(t) = p(û)(t), and q̂(t) = q(û)(t)
of the forward–backward SDE system (9), (15). Suppose
that for each t, u = û(t) maximizes the Hamiltonian,
in the sense that

u→ H(t, X̂(t),u, p̂(t), q̂(t))
is maximal for u = û(t). Then, û(·) is an optimal
control for the problem (11).

To illustrate how this result works, let us apply it to
once again solve the problem (12), (7); in this case, the
Hamiltonian becomes, with u = π ,

H(t,x,π,p, q) = πxαp +πxβq (16)

and

dp̂(t) = −(π̂(t)αp̂(t)+ π̂(t)βq̂(t))dt + q̂(t)dB(t),

p̂(t) = U ′(X̂(T)).

⎫⎬⎭
(17)

Since H is linear in π , the only possibility for the
existence of a maximum of

π → H(t, X̂(t),π, p̂(t), q̂(t))
is that

αp̂(t)+ βq̂(t) = 0,

i.e.,

q̂(t) = −α
β
p̂(t). (18)
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Substituting this into (17) we get

dp̂(t) = −α
β
p̂(t)dB(t),

which has the solution

p̂(t) = p̂(0) exp
(
− α
β
B(t)− 1

2

(
α
β

)2

t
)
. (19)

Now assume, as above, that

U(x) = 1
γ
xγ. (20)

The requirement

p̂(T) = U ′(X̂(T)) (21)

then gives the equation

p̂(0) exp
(
− α
β
B(T)− 1

2

(
α
β

)2

T
)

= xγ−1 exp
(
(γ − 1)

∫ T
0
π̂(t)βdB(t)

+ (γ − 1)
∫ T

0
(π̂(t)α− 1

2 π̂
2(t)β2)dt

)
.

(22)

From (22), it is natural to try π̂ such that

(γ − 1)π̂(t)β = −α
β
,

i.e.,

π̂(t) = α
β2(1 − γ) . (23)

Since, by (19), p̂(t) is a martingale, from (21) we obtain
p̂(0) = E[U ′(X̂(T))], and substituting this into (22) we
verify that (22) holds with π̂ as in (23).

This confirms the result we found in section 4.1.

5 Optimal Stopping

To describe the problem of optimal stopping of a
stochastic process S(t), we first need to explain the
crucial concept of a stopping time.

A random time τ : Ω → [0,∞] is called a stopping
time (with respect to the history of S(·)) if, for any time
t, the decision of whether or not to stop at time t is
based only on the history of S(s) for s � t.

For example, if S(t) is the position at time t of a car
driving along a road in a city, then

τ1 := the first time we come to a traffic light

will be a stopping time because this instant can be
decided simply by recording the history of S up to that
time. On the other hand, if we define

τ2 := the last time we come to a traffic light,

then τ2 will not be a stopping time because we would
need to know the future in order to decide whether or
not a given traffic light is the last one.

Thus, since we cannot assume knowledge about the
future, we see that stopping times are the natural ran-
dom times to consider in applications: the optimal time
to sell (or buy) an object with a stochastic price process,
the optimal time to start a new business, the optimal
time to close down a factory, and so on.

If the state Y(t) ∈ Rk at time t is described by an SDE
of the form

dY(t) = b(Y(t))dt + σ(Y(t))dB(t), t � 0,
y(0) = y ∈ Rk,

⎫⎬⎭ (24)

then the associated optimal stopping problem is to find
a stopping time τ∗ (with respect to Y(·)), called an
optimal stopping time, such that

Φ(y) := sup
τ∈T

Ey
[∫ τ

0
f(Y(t))dt + g(Y(τ))

]

= Ey
[∫ τ∗

0
f(Y(t))dt + g(Y(τ∗))

]
, (25)

where T is the set of all Y(·) stopping times and we
interpret g(Y(τ)) as 0 if τ = ∞. Here, f and g are given
functions, and Ey denotes the expectation assuming
that Y(0) = y . The function Φ is called the value
function of the optimal stopping problem.

As in stochastic control problems, it often turns out
that in order to find an optimal stopping time τ∗, it
helps to simultaneously try to find the value functionΦ.
In fact, under some technical conditions one can prove
the following.

The optimal stopping theorem. Let A be the generator
of Y(·) (see section 4).

(a) Then

(a) AΦ(y)+ f(y) � 0 for all y and
(b) Φ(y) � g(y) for all y .

Moreover, at all points y , at least one of the two
inequalities holds with equality. We can therefore
combine (i) and (ii) into the equation

max{AΦ(y)+f(y), g(y)−Φ(y)} = 0 for all y.
(26)

(b) Let D be the continuation region, defined by D =
{y ; g(y) < Φ(y)}. Then it is optimal to stop the
first time that Y(t) exits from D, i.e.,

τ∗ = inf{t > 0; Y(t) �∈ D}. (27)

(c) Moreover, Φ and g meet smoothly at ∂D, i.e.,

∇Φ(y) = ∇g(y) for y ∈ ∂D (28)

(this is called the high contact or smooth fit princi-
ple).
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This theorem shows that there is a close connec-
tion between optimal stopping problems (which are
stochastic) and variational inequality problems and free
boundary problems, which are nonstochastic classical
analysis problems.

Regarding variational inequality problems, the equa-
tion (26) is an example of a classical variational
inequality. The operator A and the functions f and
g are given, and the problem is to find Φ such that
(26) holds. A classical example in which this problem
appears is the problem of finding the wet region in a
porous sand wall of a dam.

A free boundary problem is a problem of the follow-
ing type. Given a differential operator A and functions
f and g, find a function Φ and a domain D such that

(i) AΦ(y)+ f(y) = 0 for y ∈ D,
(ii) Φ(y) = g(y) for y ∈ ∂D, and

(iii) ∇Φ(y) = ∇g(y) for y ∈ ∂D,

where ∇ denotes the gradient operator. Applications of
this type of problem include the problem of finding the
boundary of a melting ice cube.

The link between the optimal stopping problem and
the free boundary problem is provided by the high
contact principle (28).

It can also be shown that optimal stopping problems
are related to reflected BSDEs. In a reflected BSDE we are
given a driver g as in section 3 as well as a lower barrier
process L(t), and we want to find processes Y(t), Z(t)
and a nondecreasing process K(t) (all of them adapted)
with K(0) = 0 such that the following hold:

• dY(t) = −g(Y(t), Z(t),ω)dt+Z(t)dB(t)−dK(t),
and

• Y(t) � L(t) for all t.

6 Filtering Theory

Suppose we model the size of a population, e.g., the fish
population in a lake, by a stochastic logistic differential
equation of the form

dX(t) = X(t)[K −X(t)](αdt +βdB(t)), t � 0, (29)

where α, β, and K > 0 are constants. K is called the
carrying capacity of the lake; it represents the maxi-
mal population size that the lake can sustain. Heuristi-
cally, the “noisy” factor α + β(dB(t)/dt) representing
the nutritional quality of the lake, subject to random
fluctuations (the quantity dB(t)/dt, called white noise),
can be rigorously defined as a stochastic distribution.

Even if there are good theoretical reasons for choos-

ing such a model, the problem of how to estimate the

coefficients α, β, and K, and also X(t) itself, remains.

To simplify matters, let us assume that α, β, and K are

known. How do we find X(t)?
The problem is that we do not know the precise value

of X(t0) for any t0. To compensate for this, we make

(necessarily imprecise, or “noisy”) observations Y(t) on

X(t), i.e., we observe

Y(t) = X(t)+ γ dB1(t)
dt

or

dY(t) = X(t)dt + γ dB1(t), t � t0,

where γ > 0 is a known constant and B1(·) is another

Brownian motion, usually assumed to be independent

of B(·).
The filtering problem is as follows: what is the best

estimate, X̂(t), of X(t) based on the observations Y(s),
s � t?

By saying that an estimate X̃(t) is based on Y(s),
s � t, we mean that it should be possible to express

X̃(t) by means of the values Y(s), s � t, only. In other

words, X̃(·) should be adapted to the history (filtration)

{FY
t }t�0 generated by Y(t), t � 0. By saying that X̂(t)

is the best estimate based on Y , we mean best in the

sense of minimal mean square error, i.e.,

E[(X(t)− X̂(t))2] = inf
X̃∈Y

E[(X(t)− X̃(t))2], (30)

where Y is the set of all estimates based on Y . The

solution of the problem (30) can be expressed as

X̂(t) = E[X(t) | FY
t ], (31)

where the right-hand side denotes the conditional

expectation of X(t) with respect to FY
t . The filter-

ing problem is therefore the problem of finding this

conditional expectation of X(t).
The filtering problem is difficult in general, and an

explicit solution is known only in special cases. The

most famous solvable case is the linear case, in which

we have

dX(t) = F(t)X(t)dt + C(t)dB(t) (signal process),

dY(t) = G(t)X(t)dt +D(t)dB1(t) (observations),

where F(t), C(t), G(t), and D(t) > 0 are known,

bounded deterministic functions, D(t) being bounded

away from 0.



326 IV. Areas of Applied Mathematics

The Kalman–Bucy filtering theorem then states that
the best estimate X̂(t) solves the SDE

dX̂(t) =
(
F(t)− G

2(t)S(t)
D2(t)

)
X̂(t)dt

+ G(t)S(t)
D2(t)

dY(t),

X̂(0) = E[X(0)],

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(32)

where S(t) := E[(X(t) − X̂(t))2] (the minimal mean
square error) satisfies the (deterministic) Riccati equa-
tion

dS(t)
dt

= 2F(t)S(t)− G
2(t)
D2(t)

S2(t)+ C2(t), t � 0,

S(0) = E[(X(0)− E[X(0)])2].

⎫⎪⎪⎬⎪⎪⎭
(33)

Note that in (32), X̂(t) is indeed expressed in terms
of the observations Y(s), s � t, only, assuming that the
initial distribution ofX(0) is Gaussian, with given mean
E[X(0)] and variance S(0).

7 Outlook

In this short article we have been able to discuss only
the classical stochastic calculus based on Brownian
motion and some of the well-known (and spectacu-
lar) applications of this theory. But we should point
out that in recent years there has been rapid research
development both in the mathematical foundations of
stochastic analysis and in further applications of the
subject.

• For example, the theory of stochastic integration
has been extended to other integrator processes,
such as Lévy processes, Poisson random measures,
and, more generally, semimartingales.

• Stochastic differential equations and more general
stochastic integral or stochastic functional differ-
ential equations, and even stochastic partial dif-
ferential equations driven by such processes, are
being studied. In particular, mean-field SDEs are
used in connection with the modeling of systemic
risk in finance.

• Stochastic optimization methods (stochastic con-
trol, singular control, impulse control, optimal
stopping) for such systems are being developed
accordingly, with associated generalized BSDEs.

• Various ways of representing model uncertainty
in applications have been introduced and stud-
ied, including nonlinear expectation theory and the
theory of G-Brownian motion.

• An axiomatic approach to the concept of convex
risk measures has been developed. Such risk mea-
sures can be represented either by a BSDE or by a
dual approach, using a family of probability mea-
sures that are absolutely continuous with respect
to P .

• The relationship between performance and avail-
able information is being studied. In particular,
what is the optimal performance of a controller
for which only partial (e.g., delayed) information
is available? This topic may also combine optimal
control with filtering.

• In the opposite direction, anticipative stochastic
calculus, i.e., stochastic calculus with nonadapted
integrands, has been developed. Combined with
the recently developed stochastic calculus of varia-
tions (Malliavin calculus) and the Hida white noise
calculus, this gives an efficient mathematical tool
for investigating the actions of insiders in financial
markets.

• Stochastic differential games involving players
with asymmetric information is another hot topic
with obvious applications in several areas, includ-
ing biology, engineering, investment theory, and
finance. This is a challenging area of research in
which the full force of the mathematical machin-
ery discussed above is needed.
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IV.15 Inverse Problems
Fadil Santosa and William W. Symes

1 What Is an Inverse Problem?

In inverse problems one is interested in determining

parameters of a system from measurements. Much of

applied mathematics is about modeling and under-

standing phenomena that occur in the world. The mod-

els are often based on first principles: physical laws,

empirical laws, etc. A common use of models is for pre-

diction; if we know all the parameters of a model, we

can predict how the model will respond to a given exci-

tation. In inverse problems we perform experiments in

which the response of a model to prescribed excitations

is measured. The goal is to determine the unknown

parameters of the model from the measured data.

1.1 Background and History

Perhaps the oldest formally studied inverse problem—

dating back to the work of Herglotz (1907) and Wiechert

(1910)—is that of determining properties of the Earth’s

subsurface from measurement of seismological data.

This problem falls into the category of geophysical

inverse problems, which includes techniques for imag-

ing the near subsurface for deposits of oil and other

minerals.

In physics the classical inverse problem involves find-

ing the potential in the Schrödinger equation from scat-

tering experiments. Still in the same family are scat-

tering problems involving geometrical scatterers where

one is interested in determining the geometrical shape

from measurements of the acoustic or electromagnetic

response of the object. In military applications such

problems fall under the study of sonar and radar

[VII.17].

Medical imaging has been a driving force in the devel-

opment of inverse problems. The ability to visualize

and characterize the internal structures of a patient is

of great value in diagnostics. A very important imaging

modality, x-ray computed tomography [VII.9, VII.19]

(abbreviated X-ray CT and also known as computer-

assisted tomography), can be viewed as an inverse

problem. The conductivities of biological tissues can

also be a target of medical imaging and could poten-

tially provide further diagnostic capabilities that com-

plement other imaging modalities.

2 Language and Concepts

One of the most influential researchers in the area of

inverse problems was Pierre Sabatier, who is responsi-

ble for formalizing its study. He provided much of the

vocabulary of the subject, which we describe in some

detail below.

2.1 The Forward Map

In inverse problems, we are interested in determining

the properties of a system that we call a model,m. The

model is related to observations that we call data, d.

To be mathematically precise, we call M the set of all

possible models under consideration. We would nor-

mally attach mathematical properties to this set that

are consistent with the physics. The space of data D
also needs to be characterized. The forward map is

the mathematical relationship between a model and its

associated measurement. Let us indicate this by F(m).
In an inverse problem we are given data d from which

we wish to find, to the extent possible, the unknown

model m. Thus, we wish to “solve” F(m) ≈ d for a

given d. We use the approximation symbol “≈” above

because noise is inherent in any measurement. In most

inverse problems it is unlikely that the data d is in the

range of the forward map for all m in M .

To illustrate the above concept let us consider the

inverse problem of X-ray CT. The model in question

will be X-ray attenuation, described by an attenuation

coefficient ρ(x) that is a function of position x. A

possible space of functions for the model is a set of

nonnegative functions with an upper bound, namely

L∞(Ω), where Ω is the domain being scanned. The

data are input and output X-ray intensities, I0 and I,
respectively, parametrized by X-ray trajectory L (see

figure 1), usually given as the logarithm of their ratio:

log(I(L)/I0(L)). The forward map, based on Beer’s law,

is

R(ρ; I0, L) = −
∫
L
ρ d-,

that is, R(ρ; I0, L) is the line integral of ρ(x) along

line L. The inverse problem of a computer-assisted

tomography scan is to determine ρ(x) from the data

log(I(L)/I0(L)). The found ρ(x) is often displayed as

a set of images, aiding in diagnostics.
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I0

I

L

Figure 1 Schematic of a generic X-ray CT setup. The inten-
sity of the X-ray entering the body is I0; the intensity at exit
is I. The data value is log(I/I0) for the ray L. The forward
map is the line integral of the attenuation coefficient ρ(x)
along the line L. The inversion of ρ(x) depends on the mea-
surement setup and is particularly straightforward in two
dimensions, as described in section 3.1.

2.2 Inversion and Data Fitting

There are instances where the solution to the equa-

tion F(m) = d can be written down explicitly. That is,

we have a formula for m in terms of the given data

d. An example is when F is a linear operator whose

inverse can be calculated. Another popular approach

is to view the inverse problem as a data-fitting prob-

lem. In this case we seek a model m that minimizes

the misfit ‖F(m) − d‖. The choice of norm is critical

and depends on what additional information is avail-

able about the map F and the data d. The most impor-

tant information is the regularity of the map and the

statistical properties of the noise embedded in the data.

2.3 Linear and Nonlinear Inverse Problems

In a linear inverse problem, the forward map satisfies

the property

F(m1 +m2) = F(m1)+ F(m2).

In practical terms, linearity often means that the prob-

lem is easy to solve. If both m and d are finite dimen-

sional, then a linear forward map can be represented

as a matrix. In this instance, the linear inverse problem

amounts to a linear system of equations.

For nonlinear inverse problems, the above relation-

ship does not hold. Nonlinear inverse problems are usu-

ally more difficult to analyze and to solve, and iterative

techniques are often employed for solving them.

One can linearize a nonlinear inverse problem by
assuming that the unknown model can be written as

m =m0 +Δm,
where m0 is known and Δm is small. The concept of
smallness can be made precise mathematically. Then,
if the forward map F(·) associated with the problem is
differentiable, we approximate it by a two-term Taylor
series:

F(m) ≈ F(m0)+GΔm.
Here, G is a linear operator representing the derivative
(Jacobian) of the forward map F(·). Thus, given data d,
the linearized inverse problem seeks to determine Δm
from the equation

GΔm = d− F(m0).

In some situations we can solve a nonlinear inverse
problem by successively seeking solutions to a se-
quence of linearized inverse problems. Such an ap-
proach, when applied to a least-squares formulation,
may be viewed as a Gauss–Newton method.

2.4 Ill-Posedness and Ill-Conditioning

Hadamard defined a mathematical problem as well-
posed if it has a unique solution that depends contin-
uously on the data. Another way to put this is to say
that a problem is well-posed if (i) a solution to the prob-
lem exists, (ii) the solution is unique, and (iii) the solu-
tion depends continuously on the data. A mathematical
problem that does not possess these three attributes is
called ill-posed. There are instances in which a prob-
lem is well-posed but is unstable to perturbations in
the data. That is, the continuity in (iii) is weak. Such
problems are often called ill-conditioned or unstable.
It turns out that most inverse problems of interest are
ill-posed, or at least ill-conditioned.

To put these concepts in the context of an inverse
problem, violating (i) is equivalent to saying that, given
data d and a forward map F(·), the equation F(m) =
d does not have a solution. Violating condition (ii) is
equivalent to the existence of two models,m1 andm2,
distinct from each other, such that

F(m1) = F(m2).

Finally, violating condition (iii) is equivalent to saying
that there are m1 and m2 such that

‖m1 −m2‖ is arbitrarily large

even if

‖F(m1)− F(m2)‖ is finite.
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This notion is best understood in terms of limits of
sequences.

These ideas are very easy to see in the case of a
finite-dimensional linear inverse problem where the
mapping F(·) is a matrix operation: F(m) = Gm for
some matrix G. Consider an inverse problem of find-
ingm in Gm = d. Nonexistence is equivalent to having
data d that are not in the range of G. Nonuniqueness
amounts to G having a null space, i.e., nontrivial solu-
tions to Gx = 0. If G has a null space with x being a
null vector, then if m1 −m2 = ax, Gm1 − Gm2 = 0
while a → ∞, thus violating condition (iii). Finally, ill-
conditioning means that the inverse of F has a large
norm, a circumstance that can be succinctly described
by the singular value decomposition [II.32].

The study of inverse problems is often about mathe-
matically overcoming ill-posedness or ill-conditioning.
Various techniques can help ameliorate its disastrous
effects, as we now explain.

2.5 A Priori Information and Preferences

We often have prior information about the unknown in
an inverse problem, and such information can be valu-
able in solving the problem. We have previously alluded
to situations where the model is of the form

m =m0 +Δm.
Under such circumstance, we can view m as a pri-
ori information. There are also situations in which we
know some characteristics of the unknown. An exam-
ple is in imaging, where the model is an image. Suppose
we know that the image is piecewise constant or that
the image is sparse. We can then formulate the prob-
lem such that the solution has the desired properties.
The technique to be described next is often employed
to enforce a preference.

2.6 Regularization

Tikhonov regularization is an approach for solving an
ill-posed or ill-conditioned problem. It involves intro-
ducing auxiliary terms that make the problem well-
posed. The classical inverse problem considered by
Tikhonov is a linear inverse problem. Here, the forward
map is a linear operator acting on the model parame-
ters, given by Gm. We are given data d and wish to find
m. Instead of posing an equation for m, we seek the
minimizer to

‖Gm− d‖2 + λ‖Bm‖2. (1)

Here, we have used the L2-norm. The second term in (1)
is often referred to as the penalty term. The linear oper-
ator B is called the regularizing operator. Some mathe-
matical properties are imposed on B. Examples include
B = I (the identity) when enforcing smallness in m,
and B equal to the equivalent of the spatial derivative
withm when it represents parameters distributed over
space when enforcing smoothness of B.

The point of Tikhonov theory is a notion of “consis-
tency.” To get a sense of its mathematical significance,
suppose that G is not invertible. Let m0 be the true
model; thus, d0 = Gm0 is noiseless data for the inverse
problem. We use e = d − d0, to represent the noise in
the data for a given experiment. Denote by m the min-
imizer of (1) for a given d. Tikhonov theory states that
under the right mathematical assumptions on G and
B, there exists a sequence of values for λ such that if
there is a sequence of data d→ d0, then the minimizer
m →m0.

While such a theory is of limited practical value,
the use of regularization is very powerful for solving
ill-conditioned inverse problems. The main challenge
in its use is choosing the penalty parameter λ. There
are two main methods used for setting λ: the L-curve
method and the method of cross-validation. The former
is intuitive, whereas the latter is based on statistical
assumptions on the noise in the data.

It should be pointed out that different choices of
the regularizing operator B and the norms used can
give very different answers. For example, when B is the
derivative operator and the L1-norm is used, we get the
well-known total variation regularization. When B = I
and the L1-norm is again used, we get what is now
known as compressed sensing [VII.10].

2.7 A Statistical Approach

Bayesian statistics offer a different point of view when
solving inverse problems. In this statistical approach
we view the inverse problem as one where we have a
prior distribution on the unknown model m. The data
d is used to update the prior.

To be more precise, instead of a model m and an
observation d, we consider random variables M and D
representing models and data. By having a prior for the
model, we mean that we have a probability distribution
π(m). For example,m could be finite dimensional and
π(m) could be a multivariate normal distribution. In
the statistical framework, data d is observed and we
wish to know the conditional probability distribution
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π(m|d). The question becomes that of updating the
prior probability distribution form given that we have
observed d.

The update is done using bayes’s rule [V.11 §1]. This
requires a model for the joint probability distribution
π(m,d), which may be as simple as

π(m,d) = f(Gm− d),
depending on the assumptions.

Computationally, statistical methods can be very
costly. However, the payoff can be large because one
is often able to get an answer to an inverse prob-
lem with confidence intervals. The method of apply-
ing the Bayesian framework to inverse problems is
often referred to as inversion with uncertainty quan-
tification. Aside from the computational cost, a cri-
tique sometimes leveled against this approach is that
the prior probability distribution for the model π(m)
is very difficult to obtain in practice. Nevertheless,
Bayesian approaches have become a major tool for
solving inverse problems.

3 Selected Examples of Inverse Problems

3.1 X-Ray Computed Tomography

X-ray CT is a method by which the X-ray absorption
coefficients of a body are estimated. We have already
briefly mentioned the mathematical problem associ-
ated with CT in section 2.1. We provide more detail
here.

We consider the problem in two dimensions. In fig-
ure 2 the path of the X-ray is indicated by the dashed
line, denoted by Lθ,s . The angle θ is one of the parame-
ters of the ray, the other being the displacement s. The
ray path Lθ,s is given by

x cosθ +y sinθ − s = 0.

Letting ρ(x,y) be the attenuation and letting d- be the
length element along the path, the forward map for the
inverse problem of CT is

Rθ[ρ](s) =
∫
Lθ,s
ρ(x,y)d-.

In the inverse problem, we are given data Pθ(s) for 0 �
θ < 2π and a � s � b, and we solve

Rθ[ρ](s) = Pθ(s)
for ρ(x,y). We may assume that ρ(x,y) is compactly
supported. Modern CT can be attributed to the work of
Cormack and Hounsfield, who shared the 1979 Nobel
Prize in Physiology or Medicine for their work. However,

θ
L  ,s

x

y

s

θ

P   (s)θ

Figure 2 Schematic of X-ray CT in two dimensions. The
dashed line represents the path of the X-ray. The projection
is parametrized by the angle θ. Data at this angle are the
function Pθ(s), where s parametrizes the ray displacement
as indicated.

the mathematics that makes CT a reality dates back to
the work of Radon, who in 1907 showed that a function
could be reconstructed from its projections. One can
use Radon’s theory to obtain an inversion formula for
ρ(x,y) given Pθ(s), which is given by

ρ(x,y) = 1
2π2

∫ π
0

∫∞

−∞

P ′
θ(s)

x cosθ +y sinθ − s ds dθ,

although the formula is of limited practical use. Here,
P ′
θ(s) is the derivative of Pθ(s) with respect to s.
Several practical computational approaches are avail-

able for solving the inverse problem of X-ray CT. Some
are based on Fourier transforms, while others are based
on solving a system of linear equations. Modern CT
scanners are designed for high-speed data acquisition
and low X-ray dosage. Algorithms are designed for each
machine in order to optimize computational efficiency
and accuracy.

3.2 Seismic Travel-Time Tomography

In travel-time tomography, the data consist of records
of the time taken for a wave packet to leave a source,
travel through the Earth’s interior, and arrive at a point
on the surface of the Earth. Such data are called travel-
time data and can be extracted from seismic records.
In the simplest model, the Earth is flat and two dimen-
sional. The sound speed depends only on depth, and
the source is located on the surface. Using geometrical
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Figure 3 Schematic of a travel-time inverse problem. A wave
source is located at the origin. A ray emanates from the
source, and its trajectory is determined by the take-off angle
and the sound speed profile c(z). It returns to the surface
at x = X(p), where p is the ray parameter. The inverse
problem is to find c(z) from X(p).

optics we follow a ray emanating from the source and
trace its path back to the surface (see figure 3). A ray is
parametrized by the angle it makes with the surface at
the source.

Suppose that the unknown sound speed profile as a
function of depth is c(z). Let us locate the source at
the origin. A ray leaves the origin, making an angle i0
with respect to the vertical. According to geometrical
optics, the quantity

p = sin i
c(z)

is constant along the ray, where i is the angle the ray
makes at depth z, measured clockwise from the verti-
cal. This quantity is called the ray parameter. Fermat’s
principle governs the ray trajectory, and the point at
which a ray with parameter p arrives on the surface,
X(p), is given by

X(p) =
∫ Z(p)

0

p dz√
c(z)−2 − p2

.

The function Z(p) is the maximum depth the ray
reaches in its trajectory, and it is the solution to

c(Z(p)) = 1/p,

since the ray’s angle i isπ/2 at this point. In the inverse
problem, we are given travel-time data X(p) for a range
of values of p, and the goal is to recover c(z) to a
maximum depth possible.

This problem was considered by Herglotz (1907) and
Wiechert (1910), who provided a formula for the solu-
tion. It is related to the well-known Abel problem in
which one attempts to find the shape of a hill given the
return times of a particle that goes up the hill at fixed
velocities. Bôcher (1909) studied the Abel problem and

arrived at the mathematical conditions under which
the hill can be constructed uniquely. The techniques
of Bôcher can be applied to the geophysical travel-time
problem. A solution that gives z as a function of c is
available for this problem:

z(c) = − 1
π

∫ c−1

c−1
0

X(p)√
p2 − c−2

dp.

The formula is valid when X(p) has continuous deriva-
tives. In particular, it is not valid when X(p) is mul-
tivalued, which occurs when c(z) has a “low-velocity
zone,” i.e., an interval in which c(z) dips below an
otherwise-increasing trend.

3.3 Geophysical Inversion for Near-Surface

Properties

In an attempt to determine the near-surface (several
kilometers in depth) properties of the Earth, geophysi-
cists perform experiments on the surface to gather data
from which they hope to infer the properties of the sub-
surface. One such experiment is seismic exploration,
wherein elastic waves are used to probe the Earth.
As these waves propagate into the Earth, the inhomo-
geneities in the Earth diffract and reflect the waves in
a process called scattering. The scattered waves are
measured on the surface using geophones. The inverse
problem is to determine the material properties of the
Earth from the scattered data.

In a typical measurement, a localized source, in
the form of heavy equipment that “thumps” the sur-
face, is introduced. An array of geophones collects the
response of the Earth to the source. Data collection
is over a given time window. Such a measurement is
called a “shot.” The measurement is then repeated at
another source location. The totality of the data con-
sist of geophone readings from a number of shots (see
figure 4).

Geophysicists have developed a number of approxi-
mation methods to interpret such data. These methods
have been successful in situations where the wave phe-
nomena are well modeled by the approximations. Cur-
rent research focuses on more accurate modeling of
the wave phenomena, the development of problem for-
mulations that are computationally feasible, and com-
putational methods that exploit the power of modern
computers.

In the simplest useful approximation, the Earth is
modeled as an acoustic fluid occupying a two- or three-
dimensional half-space, with spatially variable bulk
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Figure 4 Data collection in seismic exploration. The vibra-
tor truck is capable of “thumping” the surface and produces
waves that travel into the interior of the Earth. These waves
are reflected by the inhomogeneities in the Earth and return
to the surface. Geophones record the reflected waves. This
“shot” is repeated after the source and the receiver array
have been moved to a new location.

modulus κ(x) and constant density ρ. Despite the
neglect of significant physics, this model underlies
the vast bulk of contemporary seismic imaging and
inversion technology.

The examples that follow are two dimensional. The
state of the acoustic Earth is captured by the pres-
sure field u(x, t): x = (x1, x2) are spatial coordinates
with x2 > 0, and t is time. The acoustic wave equation
satisfied by u(x, t) is

∂2u
∂t2

= κ
ρ
Δu+ f (i)(x, t),

where f (i)(x, t) is a time-varying and spatially localized
source of energy and f (i)(x, t) = 0 for t < 0. The index
i refers to the location of the source. On the bound-
ary {x : x2 = 0}, representing the Earth’s surface, we
assume the Dirichlet boundary condition u = 0. This
is a reasonable approximation, as pressures in the air
are orders of magnitude smaller than pressures in the
water or rock.

Since the seismic experiment consists of several
shots, it produces several pressure fields u(i)(x, t),
caused by several source fields f (i)(x, t) represent-
ing varying placements of the “thumping” machinery,
i = 1,2, . . . , n. The data recorded by the geophones
is the pressure at a number of geophone locations
{x(i)j : j = 1,2, . . . ,m} near the surface (but not on it:
there, u = 0!). Note that the geophone locations may
depend on the shot index i; the entire apparatus of the
survey may move from shot to shot, not just the energy
source equipment.

The seismic inverse problem can be posed as a
data-fitting optimization problem, as explained in sec-
tion 2.2. In the terminology of that section, the model
m is the bulk modulus κ(x) and the data d are the vec-
tors of functions of time, one for each shot and receiver
location. The value of the forward map F is the sam-
pling of the pressure field predicted via solution of the
wave equation:

F[κ] = {u(i)(x(i)j , t) : i = 1, . . . , n,

j = 1, . . . ,m, 0 < t < T}.
The inverse problem is to determine κ(x) (insofar as
possible) from the data {d(i)j (t) : i = 1, . . . , n, j =
1, . . . ,m, 0 < t < T}:

F[κ] � d.
The most commonly used optimization formulation of
this problem seeks to choose κ to minimize the mean-
square residual

‖F[κ]− d‖2 =
n∑
i=1

m∑
j=1

∫ T
0
|u(i)(x(i)j , t)− d

(i)
j (t)|2 dt.

In the current seismic literature, estimation of κ (or
other mechanical parameter fields) by minimization of
the mean-square residual is known as full waveform
inversion (FWI). This approach to extracting informa-
tion about the Earth from seismic data was first stud-
ied in the 1980s. Early implementations were gener-
ally unsuccessful, partly because at that time only two-
dimensional simulation was feasible. Since the turn
of the twenty-first century, though, advances in algo-
rithms and hardware performance have enabled three-
dimensional simulation and iterative minimization of
the mean-square residual for three-dimensional distri-
butions of κ and similar parameters. While the tech-
nology is still in the early stages of development, it has
already become clear that FWI can produce information
about the geometry of subsurface rock that is far bet-
ter in terms of both quality and resolution than that
obtainable with older methods based on more drastic
approximation.

While plenty of FWI success stories can be found,
we see failures too: failures driven by a fundamental
mathematical difficulty. This issue was discovered in
the 1980s, the first period of active research on FWI,
and remains the main impediment to its widespread
use.

The problem is easy to illustrate with a two-dimen-
sional example. Figure 5(a) displays an example two-
dimensional bulk modulus κ that is widely used in



IV.15. Inverse Problems 333

0

1.0

2.0

3.0

D
ep

th
 (

k
m

)
1 2 3 4 5 6 7 8 9

Surface position (km)

10 20 30 40 50 60 70
Bulk modulus (GPa)

0

0

2

T
im

e 
(s

)

–2 –1
Offset (km)

(a)

(b)

Figure 5 (a) The Marmousi model for the bulk modulus.
(b) The simulated seismic data associated with the model.

research on FWI: the Marmousi model. We choose one

source location and solve the wave equation numer-

ically to produce the simulated data depicted in fig-

ure 5(b). The simulated data consist of pressure read-

ings at a set of geophones located equidistant from

each other, starting some distance from the source. The

figure displays the recordings for a single shot, at hor-

izontal position 6 km from the left edge of the model

in figure 5(a), at a depth of 6 m. The horizontal axis in

figure 5(b) is receiver index (j = 1, . . . ,m, m = 96) and

the vertical axis is time. The pressure reading is given

a gray level value.

To demonstrate the sensitivity of the cost function

to a small change in the bulk modulus, we made a

convex combination of the bulk modulus in figure 5(a)

(95%) with a constant background of κ0 = 2.25 GPa

(5%). Let κ1 be the bulk modulus in figure 5(a), and let

κ2 = 0.95κ1+0.05κ0. We will measure the difference in

the forward maps for these two bulk moduli. The for-

ward map at κ2 is the simulated pressure field shown in
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Figure 6 (a) The simulated seismic data with a different
model, consisting of 0.95 times the model in figure 5(a)
added to 0.05 times a constant bulk modulus of 2.25 GPa;
the net difference is well under 5% root mean square. (b) The
residual, which is the difference between figure 5(a) and
part (a) of this figure.

figure 6(a), and the residual, the difference between the

two maps, F(κ2) − F(κ1), is shown in figure 6(b). The

difference F(κ2)− F(κ1) is very visible. In fact, the L2-

norm of the difference is almost twice as large (184%)

as the norm of the simulated data F(κ1).
From this example we can already see that the pre-

dicted data may change very rapidly as a function of

the model. The reason for this rapid change is that the

oscillatory signal has shifted in time by a large fraction

of a wavelength, which yields a large mean-square (L2)

change. This “cycle skipping” phenomenon arises from

the influence of the bulk modulus on the speed of the

waves embedded in the solution of the wave equation.
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The size of the predicted data (figure 6(a)) has not
changed much, however. For a variety of reasons, prin-
cipally conservation of acoustic energy, the overall size
of the data (measured with the L2-norm, for example)
depends only weakly on the model (κ). This combi-
nation of very rapid change while staying the same
size suggests that the predicted data cannot continue
to “run away” from the “observed” data; the distance
between them must oscillate.

In another numerical experiment we made a con-
vex combination of 90% Marmousi bulk modulus and
10% constant bulk modulus, i.e., κ3 = 0.9κ1 + 0.1κ0.
We found ‖F(κ3) − F(κ1)‖/‖F(κ1)‖ to be 144%. We
note that this is smaller than ‖F(κ2)−F(κ1)‖/‖F(κ1)‖.
That is, we have observed that the least-squares objec-
tive function (the mean-square residual) has local min-
ima other than its global minimum, at least when
restricted to the line segment through the target model
in figure 5(a) and the homogeneous κ = κ0.

This is a very serious obstacle because the compu-
tational size of these problems is so large that only
variants of local search algorithms (mainly, Newton’s
method) are (barely) feasible, and these find only local
extrema.

The problem of local minima turns up with consider-
able regularity in research into, and field applications
of, FWI. Since, in the field, we do not know the answer
a priori, a frequent result is “zombie inversion”: a fail-
ure to accurately estimate the structure of the Earth
without any effective indication of failure. Quality con-
trol of FWI is a current research topic of great interest.
Acquisition of unusually low-frequency data can lead to
an escape from the local-minimum problem, and this
is another topic of great current interest. At the time
of writing, there is still no mathematical justification
of the effectiveness of low-frequency inversion. Finally,
considerable effort is being put into alternative objec-
tive functions with better convexity properties than the
least-squares function studied here.

3.4 Electrical Impedance Tomography

In electrical impedance tomography we are given an
object whose spatially dependent conductivity is un-
known (see figure 7). Electrostatic measurements are
taken on the boundary of the object. The objec-
tive is to determine the unknown conductivity from
these boundary measurements. This problem is often
referred to as the “Calderon problem” because Alberto
Calderon was the first to study it mathematically,
in 1980.

Ω

Figure 7 A schematic of electrical impedance tomography.
The body Ω has variable conductivity in its interior. The
inverse problem is to determine the conductivity distribu-
tion from boundary measurements. In practice, the mea-
surement is done by attaching electrodes to the bound-
ary of Ω, indicated in the figure by black circles. Current
is assigned to the electrodes, while voltages are measured
at all the electrodes. The data so collected represent a
sampling of the Dirichlet-to-Neumann map.

Let σ(x), where x is the spatial variable in two or
three dimensions, represent the conductivity of the
object Ω. Potential theory, which follows from Ohm’s
law, states that the electrical potential in Ω satisfies

∇ · σ(x)∇u = 0

if there are no sources in the interior of Ω. In the
idealized mathematical problem, we are allowed to
prescribe any boundary value g to u(x), i.e.,

u|∂Ω = g.
For each g we measure the normal derivative of the
potential u(x) at the boundary:

∂u
∂ν

∣∣∣∣
∂Ω

= f .

We therefore have an f for every g. The totality of these
pairs of functions is our data. The mathematical name
for such data is the Dirichlet-to-Neumann map. It is
clear that it depends on σ(x). Denoting this map by Γσ ,
we have f = Γσg. The inverse problem is to determine
σ(x) given Γσ .

In practice, we are not given the Dirichlet-to-Neu-
mann map in its entirety. Rather, we are given a finite
collection of pairs

{f (i), g(i)}, i = 1,2, . . . , n.

A practical approach to measurement is to attach a
number of electrodes to the surface of the object.
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Current is made to flow between a pair of electrodes,

while voltage is measured on all the electrodes. There-

fore, in practice, we do not have (f (i), g(i)) but rather

samples of their values at the electrodes.

The Calderon problem has received a lot of atten-

tion in the past thirty years due to its practical impor-

tance. Barber and Brown developed a practical medi-

cal imaging device using this principle in 1984. The

same problem crops up in other applications such as

nondestructive testing and geophysical prospecting.

The mathematical question of unique determination

of σ(x) from Γσ is a well-developed area. The results

depend on the number of dimensions. In two dimen-

sions, the earliest uniqueness result (from 1984) is due

to Kohn and Vogelius, who showed that if σ(x) is ana-

lytic then it is uniquely determined by Γσ . The next

seminal result on this subject was due to Sylvester

and Uhlmann in 1987. They proved global uniqueness

results in dimensions three and higher. Their approach

is based on the powerful method of complex geomet-

rical optics. Global uniqueness was proved a few years

later by Nachman in two dimensions using a method

called ∂-bar.

Recent work has focused on how rough σ(x) can be

while retaining uniqueness and on the case where σ(x)
is a matrix function. The latter study has led to the dis-

covery of transformation optics [VI.1], which has

provided a strategy for cloaking and invisibility.

While uniqueness can be established, it is very dif-

ficult to reconstruct σ(x) from actual measurements

in practice. This is due to the fact that the problem

of determining σ(x) from Γσ is very ill-conditioned.

There have been several successful approaches. They

are based on linearization of the relationship between

Γσ and σ , on least-squares fitting, and on a direct

reconstruction method called the ∂-bar method. The

last approach involves synthesizing data for a scatter-

ing problem from the measured data, which in itself is

ill-conditioned.

4 Related Problems

There are problems that could be viewed as inverse

problems but do not go by that name. One set arises

in the study of control theory for distributed parame-

ter systems. Statisticians view an inverse problem as a

problem of parameter estimation from data. This point

of view precedes the more recent statistical approaches

to inverse problems.

5 Outlook

Inverse problems is an active research field with sev-
eral devoted journals and a community of researchers
coming from many disciplines. Many of the prob-
lems arise in engineering and scientific applications
but the core language and tools are mathematical in
nature. Progress in new imaging technologies, includ-
ing functional magnetic resonance imaging and pho-
toacoustic tomography, has been made possible by
advances in inverse problems. Inverse problems tech-
niques have also made important contributions to engi-
neering fields such as nondestructive evaluation of
materials and structures.
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IV.16 Computational Science
David E. Keyes

1 Definitions

Computational science—the systematic study of the
structure and behavior of natural and human-engi-
neered systems accomplished by computational means
—embraces the domains of mathematical modeling,
mathematical analysis, numerical analysis, and com-
puting. In order to reach the desired degrees of pre-
dictive power, fidelity, and speed of turnaround, com-
putational science often stretches the state of the art
of computing in terms of both hardware and soft-
ware architecture. Because each decision made along
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the way—such as the choice between a partial dif-
ferential equation (PDE) and a particle representation
for the model, between a structured and an unstruc-
tured grid for the spatial discretization, between an
implicit and an explicit time integrator, or between a
direct and an iterative method for the linear solver—
can greatly affect computational performance, compu-
tational science is a highly interdisciplinary field of
endeavor.

Definitions of computational science and the related
discipline of scientific computing are not universal, but
we may usefully distinguish between them by consid-
ering computational science to be the vertically inte-
grated union of models and data, mathematical tech-
nique, and computational technique, while scientific
computing is the study of techniques in the inter-
section of many discipline-specific fields of compu-
tational science. Computational chemistry, computa-
tional physics, computational biology, computational
finance, and all of the flavors of computational engi-
neering (chemical, civil, electrical, mechanical, etc.)
depend on a common set of techniques connecting
the conceptualization of a system to its realization
on a computational platform. These techniques—such
as representing continuous governing equations with
a discrete set of basis functions, encoding this repre-
sentation for digital hardware, integrating or solving
the discrete system, estimating the error in the result,
adapting the computational approximation, visualiz-
ing functionals of the results, performing sensitiv-
ity analyses, or performing optimization or control—
span diverse applications from science and engineering
and are the elements of scientific computing. Chain-
ing together such techniques to form a simulation
to address a specific application constitutes computa-
tional science. Practitioners often use the more inclu-
sive terms “computational science and engineering”
and “scientific and engineering computing,” but in this
article the “engineering” applications are understood
to be subsumed in the “scientific.”

Practitioners also often distinguish between com-
putational science executed by means of simulation
and that executed by “mining” data, the latter with-
out necessarily possessing a model. Simulation is often
referred to as the “third paradigm” of science and data
analytics as the “fourth paradigm.” These are in appo-
sition to the “first paradigm” of theory, which is mil-
lennia old, and the “second paradigm” of controlled
experiment or observation, which is centuries old.
The interplay of theoretical hypothesis and controlled

experimentation defines the modern scientific method,
in the era since, say, Galileo. Recently, the same stan-
dards of reproducibility [VIII.5] and reporting have
been applied to simulation, and the interplay among
the first three paradigms has become highly produc-
tive. Until recently, science generally tended to be
“data poor,” but now most scientific campaigns are
data rich, with many “drowning” in data, so a contem-
porary challenge of computational science is to inte-
grate the third and fourth paradigms. When a model
is given, its simulation is called the “forward prob-
lem.” The availability of data allows aspects of the
underlying model to be inferred or improved upon; this
is the domain of inverse problems [IV.15]. Whereas
forward problems are by design generally well-posed,
inverse problems are often unavoidably ill-posed, due
to ill-conditioning or nonuniqueness. There are many
elements of scientific computing in this intersecting
domain of the third and fourth paradigms, includ-
ing data assimilation, parameter inversion, optimiza-
tion and control, and uncertainty quantification

[II.34]. These “post-forward problem” techniques are
today applied throughout the computational sciences
and they drive a considerable amount of research in
applied and computational mathematics. Simulation
and data analytics have attained peer status with theory
and experiment in many areas of science.

Computer simulation and data analytics enhance or
leapfrog theoretical and experimental progress in many
areas of science critical to society, such as advanced
energy systems (e.g., fuel cells, fusion), biotechnology
(e.g., genomics, drug design), nanotechnology (e.g., sen-
sors, storage devices), and environmental modeling
(e.g., climate prediction, pollution remediation). Sim-
ulation and analytics also offer promising near-term
hope for progress in answering a number of scientific
questions in such areas as the fundamental structure
of matter, the origin of the universe, and the functions
of proteins and enzymes.

2 Historical Trends

The strains on theory were apparent to John von Neu-
mann (1903–57) and drove him to pioneer compu-
tational fluid dynamics and computational radiation
transport, and to contribute to supporting fields, espe-
cially numerical analysis and digital computer architec-
ture. Models of fluid and transport phenomena, when
expressed as mathematical equations, are inevitably
nonlinear, while the bulk of mathematical theory (for
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algebraic, differential, and integral equations) is lin-
ear. Computation was to von Neumann, and remains
today, the best means of making systematic progress in
transport phenomena and many other scientific arenas.
Breakthroughs in the theory of nonlinear systems come
only occasionally, but computational understanding
gains steadily with increases in speed and resolution.

The strains on experimentation—the gold standard
of scientific truth—have grown along with expectations
for it. Unfortunately, many systems and many ques-
tions are all but inaccessible to experiment. (We sub-
sume under “experiment” both experiments designed
and conducted by scientists and observations of natu-
ral phenomena, such as celestial events, that are out of
the direct control of scientists.) The experiments that
scientists need to perform to answer pressing ques-
tions are sometimes deemed unethical (e.g., because of
their impact on living beings), hazardous (e.g., because
of their impact on our planetary environment), unten-
able (e.g., because they are prohibited by treaties), inac-
cessible (e.g., those in astrophysics or core geodynam-
ics), difficult (e.g., those requiring measurements that
are too rapid or numerous to be instrumentable), too
time-consuming (in that a decision would need to be
made before the experimental results could be attained,
e.g., certification of a system or a material lifetime),
or simply too expensive (including detectors, the Large
Hadron Collider facility cost over $10bn and the Inter-
national Thermonuclear Experimental Reactor is pro-
jected to cost well over $20bn). There is thus a strong
incentive to narrow the regimes that must be inves-
tigated experimentally using predictive computational
simulation and data analytics.

As experimental means approach practical limits, for
more than two decades computational performance
on real applications has improved at a rate of more
than three orders of magnitude per decade (see high-

performance computing [VII.12]). Over the same
period, the acquisition cost of a high-performance com-
puter system designed for scientific applications has
fallen by almost three orders of magnitude per decade
per unit of performance, together with the electrical
power required per unit of performance, so that after
a decade a system a thousand times more powerful
costs about the same to own and operate. These trends
in performance and cost are well documented in the
history of the Gordon Bell Prizes and of the annual
Top 500 lists (see www.top500.org). Increased compu-
tational power can be invested in fine resolution of mul-
tiscale phenomena, high fidelity, full dimensionality,

integration of multiple interacting models in complex
systems, and running large ensembles of forward prob-
lems to gain scientific understanding. Unfortunately,
however, after more than two decades of riding Moore’s
law, physical barriers to extrapolating the favorable
energy trends in computing are approaching, and these
barriers are now significant drivers in computational
science research.

Contemporary computational science stands at the
confluence of four independently and fruitfully devel-
oping quests: the mathematization of nature, epit-
omized by Newton; numerical analysis, epitomized
by von Neumann; high-performance computer per-
formance, epitomized by Cray; and scientific soft-
ware engineering, represented by numerous contempo-
raries. A predigital computer vision of computational
science was proposed by L. F. Richardson in his 1922
monograph on numerical weather prediction. Richard-
son’s parallel computer was an army of human cal-
culators arrayed at latitudinal and longitudinal incre-
ments along the interior surface of a mammoth globe.
Richardson’s monograph appeared prior to the exis-
tence of not only any digital computer but also to
the stability analysis of finite-difference methods for
PDEs, which was addressed by Courant, Friedrichs, and
Lewy in 1928. Since computers now commit O(1015)
floating-point rounding errors per second on simula-
tions that execute for days, numerical analysis has a
central role.

Until von Neumann and Goldstein’s landmark 1947
work on the stability of Gaussian elimination, it was not
clear how large a system (in this case, of linear equa-
tions) could be a candidate for computational solution
using floating-point arithmetic, due to the accumula-
tion of rounding errors. We can now make use of dig-
ital computers to solve systems of equations billions
of times larger than the authors considered. Thanks
to continued advances in numerical analysis, and par-
ticularly in error analysis and optimal algorithms, the
size of simulations in many fields continues to grow
to take advantage of all of the resolution that com-
puters can provide. Of course, for systems that are
fundamentally “chaotic” in continuous form—meaning
that solution trajectories that started infinitesimally far
apart can diverge exponentially in finite time—the sci-
entific benefit of greater resolution must be carefully
considered in relation to the exponent of divergence. In
1950, von Neumann (with Charney and Fjørtoft) intro-
duced a form of PDE stability analysis that was comple-
mentary to that of Courant, Friedrichs, and Lewy. This

http://www.top500.org
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analysis clarified a fundamental bound on the size of

the time step of a simulation relative to the fastest sig-

nal speed of the phenomenon being modeled and the

granularity of the spatial sampling. The 1950s, 1960s,

and 1970s witnessed advances in discretization and

equation solving, the development of high-level pro-

gramming languages [VII.11], and improvements in

hardware that allowed ambition for computational sim-

ulation to soar. By 1979, computational fluid dynami-

cists were able to claim dramatic reductions in wind

tunnel and flight testing of the Boeing 767 thanks to

simulations performed to narrow the parameter spaces

of design and testing. These simulations, heroic at the

time though extremely modest by contemporary stan-

dards, gave practical and economic embodiment to the

dream of computational science.

Two landmarks defining the ambitions and culture

of computational science were the articles by Peter

Lax in 1986 championing simulation as the “third

leg” of the scientific platform and by Ken Wilson in

1989 on “grand challenges” in computational science.

These articles were influential in unlocking funding

for computational science campaigns in government,

academia, and industry and in democratizing access

to high-performance computers, which had previously

been the province of relatively few pioneers at national

and industrial laboratories.

The formation of the U.S. federal Networking and

Information Technology Research and Development

organization in 1992 coordinated investments in re-

search, training, and infrastructure from ten federal

agencies in high-performance computing and com-

munications and provided recognition for the inter-

dependent ecology of applications, algorithms, soft-

ware, and architecture. The U.S. Department of Energy’s

Accelerated Strategic Computing Initiative of 1997

enshrined predictive simulation as a substitute for

weapon detonations under a nuclear test ban in the

United States and dramatically expanded investment

in training computational scientists and engineers. The

Department of Energy’s Scientific Discovery through

Advanced Computing (SciDAC) program, established in

2001, extended the culture of the Accelerated Strate-

gic Computing Initiative program throughout mission

space, from astrophysics and geophysics to quan-

tum chemistry and molecular biology. The document

that founded the SciDAC program declared the com-

puter, after tuning for accuracy and performance, to

be a reliable scientific instrument like any microscope,

telescope, beamline, or spectrometer and of more gen-
eral purpose.

As the Internet expanded to universities, and as the
World Wide Web (developed at CERN for the sharing
of experimental data sets among theoretical physicists)
connected scientists and engineers globally, computa-
tional science and engineering forged a global iden-
tity. Today, scientific professional societies such as the
Society for Industrial and Applied Mathematics, the
Institute of Electrical and Electronics Engineers, the
Association for Computing Machinery, and the Amer-
ican Physical Society sponsor activities and publica-
tions that promote the core enabling technologies of
scientific computing. The expectations of large-scale
simulation and data analytics to guide scientific dis-
covery, engineering design, and corporate and pub-
lic policy have never been greater. Nor have the cost-
effectiveness and power of computing hardware, which
are now driven by commercial market forces far beyond
the scientific yearnings that gave birth to computing.
Computational science and scientific computing span
the gap between ever more demanding applications and
ever more complex architectures. These fields provide
enormous opportunities for applied and computational
mathematicians.

3 Synergies and Hurdles

Simulation has aspects in common with both theory
and experiment. First, it is fundamentally theoretical,
in that it starts with a model, typically a set of equa-
tions. A powerful simulation capability breathes new
life into theory by creating a demand for improve-
ments in mathematical models. Simulation is also fun-
damentally experimental, in that upon constructing
and implementing a model, one may systematically
observe the transformation of inputs (or controls) into
outputs (or observables). Simulation effectively bridges
theory and experiment by allowing the execution of
“theoretical experiments” on systems, including those
that could never exist in the physical world, such as a
fluid without viscosity or a perfectly two-dimensional
form of turbulence. Computation also bridges theory
and experiment by virtue of the computer, which serves
as a universal and versatile data host. Once data have
been digitized, they can be compared side by side
with simulated results in visualization systems built
for the simulations. They may also be reliably trans-
mitted and retrievably archived. Moreover, simulation
and experiment can complement each other by allow-
ing a more complete picture of a system than either
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can provide on its own. Some data may be unmeasur-
able even with the best experimental techniques avail-
able, and some mathematical models may be too sensi-
tive to unknown parameters to invoke with confidence.
Simulation can be used to “fill in” the missing exper-
imental fields, using experimentally measured fields
as input data. Data assimilation can also be system-
atically employed throughout a simulation to keep it
from “drifting” from measurements, thus overcoming
the effect of modeling uncertainty. Many data-mining
techniques in effect build statistical models from data
that may be as predictive as executing the dynamics of
a traditional model.

Some of the ingredients that are required for suc-
cess in computational science include insights and
models from scientists; theory, methods, and algo-
rithms from mathematicians; and software and hard-
ware infrastructure from computer scientists. There
are numerous ways to translate a physical model into
mathematical algorithms and to implement a compu-
tational program on a given computer. Decisions made
without considering upstream and downstream stages
may cut off highly productive options. A bidirectional
dialogue, up and down the hierarchy at each stage, can
ensure that the best resources and technologies are
employed. To bridge the algorithmic gap between the
application and the architecture, mathematicians must
consider implications of both. For example, in repre-
senting a field that is anticipated to be smooth, one
may select a high-order discretization. In anticipating
a port to a hybrid architecture emphasizing SIMDiza-
tion (SIMD stands for single-instruction-multiple-data),
one may produce uniformly structured data aggre-
gates even if this over-resolves the modeled phenom-
ena somewhere relative to the required accuracy. If one
requires the adjoint of an operator to perform opti-
mization in the presence of PDE constraints, one may
pay an extra price in the forward problem to employ
an implicit Newton method, which creates a Jacobian
matrix that is then available for adjoint use. However,
this Jacobian matrix may be the largest single working
set of data in the problem, and its layout may dominate
implementation decisions.

While the promise of computational science is pro-
found, so are its limitations. The limitations often come
down to a question of resolution. Though of vast size,
computers are triply finite: they represent individual
quantities only to a finite precision, they keep track
of only a finite number of such quantities, and they
operate at a finite rate. Although all matter is, in fact,

composed of a finite number of atoms, the number of
atoms in a macroscopic sample of matter, on the scale
of Avogadro’s number, places simulations at macro-
scopic scales from “first principles” (i.e., from the quan-
tum theory of electronic structure) well beyond any
conceivable digital computational capability. Similar
problems arise when timescales are considered. For
example, the range of timescales in protein folding is
at least twelve orders of magnitude, since a process
that takes milliseconds to complete occurs in molec-
ular dance steps (bond vibrations) that occur in fem-
toseconds (a trillion times shorter); again, this is far too
wide a range to routinely simulate using first principles.

Some simulations of systems adequately described
by PDEs of the macroscopic continuum (fluids such as
air or water) can be daunting even for the most pow-
erful computers foreseeably available. Today’s com-
puters are capable of execution rates in the tens of
petaflop/s (1 petaflop/s is 1015 arithmetic operations
per second) and can cost tens to hundreds of mil-
lions of dollars to purchase and millions of dollars per
year to operate. However, to simulate fluid mechani-
cal turbulence in the boundary and wake regions of
a typical vehicle using “first principles” of continuum
modeling (Navier–Stokes) would tie up such a com-
puter for months, which makes this level of simula-
tion too expensive and too slow for routine use. To
attempt first-principles modeling based on Boltzmann
kinetics would be far worse. Practitioners must decide
whether upscaled continuum models such as Reynolds-
averaged Navier–Stokes or large-eddy simulation will
be adequate or whether discrete particle methods such
as lattice Boltzmann or discrete simulation Monte Carlo
would be more efficient to resolve certain scientific
questions on certain architectures.

The “curse of dimensionality” leads to the phe-
nomenon whereby increasing the resolution of a sim-
ulation in each relevant dimension quickly eats up
any increases in processor power. For explicitly time-
discretized problems in three dimensions, the com-
putational complexity of a simulation grows like the
fourth power of the resolution in one spatial dimen-
sion. Therefore, an increase in computer performance
by a factor of 100 provides an increase in resolution
in each spatial and temporal dimension by a factor of
only slightly more than 3. The “blessing of dimensional-
ity” refers to an entirely different observation: complex
dynamics of real systems can often be represented in
a relatively small number of principal components. If
one represents the dynamics in terms of this efficient
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basis, rather than the nodal basis that is implicit in tab-
ulating solution values on a mesh, one’s predictive abil-
ity may effectively advance by the equivalent of several
computer generations with a few strokes of a pen.

A standard means of bringing more computational
power to bear on a problem is to divide the work to
be done over many processors by means of domain
decomposition that partitions mesh cells or particles
and employs message-passing between the computa-
tional nodes. Typically, the same program runs on each
node, but it may execute different instruction streams
on different nodes due to encountering different data.
This programming model is variously known as “single-
program/multiple-data,” “bulk synchronous process-
ing,” or “communicating sequential processes.” Par-
allelism in computer architecture can provide addi-
tional factors of hundreds of thousands, or more, to
the aggregate performance available for the solution
of a given problem, beyond the factor available from
Moore’s law (a doubling of transistor density about
every eighteen months) applied to individual proces-
sors alone. However, the desire for increased resolution
and, hence, accuracy is seemingly insatiable. The curse

of dimensionality [I.3 §2] means that “business as
usual” in scaling up today’s simulations by riding the
computer performance curve alone, without attention
to algorithms that squeeze more scientific information
out of each byte stored or flop processed, will not be
cost-effective.

The “curse” of knowledge explosion—namely, that no
one computational scientist can hope to track advances
in all of the facets of the mathematical theories, com-
putational models and algorithms, applications and
computing systems software, and computing hardware
(computers, data stores, and networks) that may be
needed in a successful simulation effort—is another
substantial hurdle to the progress of simulation. Effec-
tive collaboration is a means by which it could be
overcome.

4 Cross-cutting Themes

Computational science embraces diverse scientific dis-
ciplines; however, themes that cut across different dis-
ciplines, and even themes that appear to be universal,
do emerge. We discuss some of these in this section.

4.1 Balance of Errors

Computational science proceeds by stages of suc-
cessive transformation and approximation, including

continuous modeling, numerical discretization, digital
solution, and analysis and interpretation of the results,
at each of which errors are made. The overall error
can be estimated by recursive application of the tri-
angle inequality. The error estimates for individual
stages should be made commensurate, since it adds
no value to produce an exact algebraic solution to a
discrete system that is only an approximate represen-
tation, for instance, or to overly refine a discretization
within which there are coefficients that are only imper-
fectly known, or where the underlying physical “laws”
are merely approximate correlations. One of the pri-
mary and most difficult tasks in computational science
is to estimate and balance the errors at each stage, to
avoid overinvesting in work that does not ultimately
contribute to the accuracy of the desired output. “Val-
idation” and “verification” are two generalized stages
of a comprehensive error analysis of a computational
science campaign, the former measuring the degree to
which the model represents the salient features under
investigation and the latter measuring the quality of
the solution to the model. The ultimate goal is to get
the greatest scientific insight at the lowest “cost.” Error
estimation in an individual execution is an essential
aspect of insight, but it must be accompanied by judi-
cious selection of cases to run and by performance
tuning to run them efficiently.

4.2 Uncertainty Quantification

To be accepted as a means of scientific discovery, engi-
neering design, and decision support, computational
science must embrace standards of predictivity and
reproducibility. Uncertainty can enter computations in
a number of ways, but fundamentally, there are two
types: epistemic and aleatoric. Epistemic uncertainties
are those that could, in principle, be reduced to zero,
leading to accurate deterministic simulations, but for
which the modeler simply lacks sufficient knowledge.
Aleatoric uncertainties are those that are regarded as
unknowable, except in a statistical sense, because of
fundamental randomness. Uncertainty in the output of
a simulation can enter via the structure of the model
itself, via parameters, or via approximations committed
by the algorithm. Classical approaches to uncertainty
quantification are Monte Carlo in nature: one executes
the model for a cloud of inputs distributed according
to various assumptions and then performs statistics
on the output. This is direct, but it can be wasteful of
simulation resources. A more progressive approach is
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to derive models for the statistical properties of the
distribution and propagate them along with the uncer-
tain solution. Uncertainty quantification has justifiably
become an interdisciplinary research area dependent
upon mathematical, statistical, and domain knowledge.
It is also a driver within computational science that jus-
tifies investment in scaling the hardware–software envi-
ronment, since it greatly increases complexity relative
to that of the execution of an individual forward model.

4.3 The Ideal Basis

The quest for the ideal basis in which to represent a
problem is a recurring theme in scientific computing,
since solving the same problem in an ideal basis can
bring a critical improvement in computational com-
plexity, that is, in the number of operations required
to reach a solution of given accuracy. Rank, sparsity,
and boundary conditions are among the features that
allow intelligent choice of basis. Problems arrive at the
doors of computational scientists with a choice of basis
implicit; they are described by objects and operators
that are convenient and natural to the scientific com-
munity. However, the best formulation for computa-
tion may be quite different. Some algorithms derive
their own discrete bases that adapt to the operator,
such as harmonic interpolants. Reduced-order models
are important at the application level, where physical
insight may guide a low-dimensional representation of
an apparently high-dimensional system. They are also
critical at the algorithmic kernel level, where a more
automatically adaptive process may incrementally pro-
duce a reduced basis, such as a krylov subspace [II.23]
in linear algebra. Possessing multiple models for the
same phenomena can increase algorithmic creativity.
For instance, in linear problems, an inexpensive model
may be used to construct a preconditioner for an expen-
sive one. In nonlinear problems, the solution to a crude
model may provide a more robust starting estimate
than is otherwise available.

4.4 A Canonical “Algorithmic Basis”

Though the applications of computational science
are very diverse, there are a number of algorithmic
paradigms that recur throughout them. Seven of these
floating-point algorithms were identified by Phillip
Colella in 2004, and he called them the “seven dwarfs.”
This set was expanded by six integer algorithms in 2006
by the Berkeley scientific computing group, bringing us
up to “13 dwarves”: dense direct solvers, sparse direct

solvers, fast transforms, N-body methods, structured
(grid) iterations, unstructured (grid) iterations, Monte
Carlo, combinatorial logic, graph traversal, graphical
models, finite-state machines, dynamic programming,
and backtrack and branch-and-bound. These kernels
have been characterized by their amenability to scal-
ing on what are known as “hybrid” or “hierarchical”
architectures. In such architectures, cores are prolif-
erated within a node of fixed memory and memory
bandwidth resources in a shared-memory manner. The
resulting nodes are then proliferated in a distributed-
memory manner, being connected by a network that
scales with the number of nodes. The fact that so many
problems in computational science can be reduced to
a relatively small set of similar tasks has profound
implications for the scientific software environment
and for research and development investment. It is
possible for the work of a relatively small number
of experts in computational mathematics and com-
puter science to serve a relatively large number of
scientists and engineers who are expert in something
else, namely their fields of application. Vendors can
invest in software libraries with well-defined interfaces
(such as ones based on fast Fourier transforms or the
basic linear algebra subroutines) that can access their
hardware in custom ways. Researchers in numerical
analysis can be confident, for instance, that work to
improve a dense symmetric eigensolver has the poten-
tial to be adopted by thousands of chemists solving
the Schrödinger equation or that work to improve a
sparse symmetric eigensolver could be used by thou-
sands of mechanical engineers analyzing vibrational
modes. The list of “dwarfs/dwarves” is binned into
fairly broad categories above and many subcategoriza-
tions are required in practice to arrive at a problem
specification that leads directly to the selection of soft-
ware. Many of the dwarfs do not yet have optimal
implementations or even weakly scalable implemen-
tations. These dwarfs make good targets for ongoing
mathematical research.

4.5 Polyalgorithms

While it may be possible to describe many computa-
tional science applications with reference to a rela-
tively small number of kernels, each such specifica-
tion can typically be approached by a large number of
algorithms. A polyalgorithm is a set of algorithms that
can accomplish the same task(s), together with a set
of rules for selecting among the members of the set,
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based on the characteristics of the input, the require-
ments of the output, and the properties of the exe-
cution environment. Sometimes, one algorithm offers
superior performance in terms of the number of opera-
tions, the pattern of memory references, running time,
or other metrics over a wide range of inputs, output
requirements, and environment, which renders the con-
cept trivial. More typically, each algorithm has a niche
in which it is superior to all others, and there is no
transitivity with respect to performance metrics across
all possible uses. Problem size (discrete dimension)
is a fundamental input characteristic. A method that
requires, asymptotically, O(N2) operations may beat a
method that requires only O(N) or O(N logN) oper-
ations if N is small and the constant hidden by the
order symbol is small compared with the constant for
an asymptotically superior method. Between two such
algorithms there is therefore a crossover point inN that
dictates selection between them. Other input character-
istics that are often important include sparsity, symme-
try, definiteness, heterogeneity, and isotropy. Output
requirements may vary dramatically from one applica-
tion to another. For instance, in an eigenanalysis sce-
nario, are all eigenvalues required, or just the largest,
the smallest, or those closest to an interior value? Are
eigenvectors required? Environmental characteristics
may include the number of processing elements, the
availability of built-in floating-point precisions, the rel-
ative cost of communication versus computation, and
the size of various memories, caches, or buffers. It is
therefore beneficial to have access to a variety of well-
characterized approaches to accomplish each kernel
task.

4.6 Space-Time Trade-Offs

Often, scientific computing algorithms are parametriz-
able in ways that allow one to make space-time com-
plexity trade-offs. If memory is limited, one may store
less and compute more. If extra memory is available,
one may store more and compute less. This princi-
ple has many manifestations in practical implementa-
tions and algorithmic tunings. Classical examples are
the size of windows of past vectors to retain in a
Krylov-style iterative method or a quasi-Newton iter-
ative method. Contemporary examples emerge from
the different latencies that different levels of computer
memory possess from fast registers (which are essen-
tially one cycle away), to caches of various levels, to
main memory (thousands of cycles away), to disk files

(millions of cycles away), to data distributed over the
Internet. It may be cheaper to recompute some data
than to store and retrieve them. On the other hand, as in
modified Newton iterative methods, it may be cheaper
and/or faster to reuse old data (in this case a Jaco-
bian) than to constantly refresh them. In performance-
oriented computing it may even be advantageous, on
average, to assume values (on the basis of experience
or rational assumption) for data that are not avail-
able when they appear on the critical path as an input
for one process and to “roll back” the computation
when they arrive if they are too far from the assumed
values. Under the heading of space-time trade-offs,
one may also employ multiple precisions of floating-
point arithmetic, as in classical iterative refinement

[IV.10 §2] for linear systems. In this algorithm, one
stores simultaneously and manipulates both high- and
low-precision forms of some objects, doing the bulk of
the arithmetic on the low-precision objects in order to
refine the high-precision ones.

4.7 Continuum–Discrete Duality

In computational science it is frequently convenient to
have multiple views of the same object. Nature is fun-
damentally discrete but at a scale typically too fine for
digital computers. We therefore work through ideal-
ized continuous models, such as Navier–Stokes PDEs
to calculate momentum transfer in fluids with small
mean free paths between molecular collisions. The con-
tinuous fields are then integrated over control vol-
umes, parametrized by finite elements, or represented
by pointwise values in finite differences, returning the
model to finite cardinality, typically a much smaller car-
dinality than that of the original molecular model. How-
ever, adaptive error analyses for refining the spatial
resolution or approximation order of the discretization
reemploy the underlying continuous model. The opti-
mal complexity solver known as the multigrid method
makes simultaneous use of several different discrete
approximations to the underlying continuum through
recursive coarsening. Ordering multidimensional and
possibly irregularly spaced coordinate data into the
linear address space of computer memory may take
advantage of a discrete analogue to Hilbert’s contin-
uous space-filling curves. Thus, computational mathe-
matics moves fluidly back and forth between the con-
tinuous and the discrete. However, continuous proper-
ties such as conservation or zero divergence are not
necessarily preserved in the dual discrete representa-
tion. The computational scientist needs to be aware of
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operations, such as variational differentiation or appli-
cation of boundary conditions, that may not commute
with the switch of representations. Thus, for example,
“discretize then optimize” may yield a different result
from “optimize then discretize” (and famously often
does).

4.8 Numerical Conditioning

Numerical conditioning is a primary concern of the
computational scientist; it affects the accuracy that can
be guaranteed by theory or expected in practice and
the convergence rate of many algorithms. It is there-
fore a key factor in the scientist’s choice of how pre-
cise a floating-point arithmetic to employ. In computa-
tional science applications, the condition number of a
discrete operator is often related to the quality of the
discretization in resolving multiscale features in the
solution. The continuous operator may have an infinite
condition number, so the greater the resolution, the
worse the numerical condition number. The progres-
sively worsening conditioning of elliptic operators, in
particular, as they better resolve fine-wavelength com-
ponents in the output, is a bane of iterative methods
whose iteration count grows with ill-conditioning. The
computational work required to solve the problem to a
given accuracy grows superlinearly overall, linearly in
the cost per iteration times a factor that depends on
the condition number. Optimal algorithms must gener-
ally possess a hierarchical structure that handles each
component of the error on its own natural scale.

4.9 The Nested-Loop Co-design Process

The classic computational science development para-
digm is reflected in figure 1, which is adapted from a
figure in a report to the U.S. Department of Energy in
2000. On the left is what could be called a “validation
and verification” loop. On the right is a performance
tuning loop. The left loop is the province of the com-
putational mathematician, who may make convenient
assumptions, such as that memory is flat, in deriving
algorithms that deliver bounded error while minimiz-
ing floating-point operations or memory capacity. The
right loop is the province of computer scientists (and
ultimately architects), who inherit a mathematical spec-
ification of an algorithm and optimize its implementa-
tion for power and runtime. At the time this scheme
was introduced in aid of launching the unprecedent-
edly interdisciplinary SciDAC program, these loops
were primarily envisioned to be sequential. First the

validation and verification loop would converge and
then the performance tuning loop would, resulting in a
computational tool for scientific discovery. “Codesign”
is a classic concept from embedded systems that is
increasingly being invoked in the general-purpose sci-
entific computing context; it puts an outer loop around
these algorithmic and performance loops based on
the recognition that isolated design keeps significant
performance and efficiency gains off the table. An
unstructured grid PDE may not be a good discretiza-
tion for exploitation of hybrid hardware with signif-
icant SIMDization, for instance. Such feedback could
lead to consideration of lattice Boltzmann methods in
some circumstances, for example.

4.10 From Computing to Understanding

As hardware improves exponentially in performance,
computational modeling has the luxury of becoming
a science by means of which a simulated system is
“poked” intelligently and repeatedly to reveal gener-
alizable insight into behavior. Historically, computa-
tional science research was driven by the gap between
the capabilities of the hardware and the complexity
of the systems intended for modeling. Effort was con-
centrated on isolating a component of the overall sys-
tem and improving computational capability thanks
to improvements in algorithms, software, and hard-
ware. This inevitably involves invoking assumptions for
ignored coupling; for instance, an ocean model may
be executed with simple assumptions for atmospheric
forcing. Today, highly capable components are being
reunified into complex systems that make fewer decou-
pling compromises. For instance, ocean and atmo-
spheric models drive each other across the interface
between them by passing fluxes of mass, momentum,
and energy in various forms. With increased computa-
tional power and memory, these complex systems can
be partially quantified with respect to uncertainty and
then subjected to true experiments by being embedded
into ensemble runs. “What if” questions can be posed
and executed by controlling inputs. This progression is
powered at every stage by new mathematics, and some-
times, in turn, it generates new mathematical ques-
tions. In building up capability, the focus is on reducing
computational complexity. In coupling components,
the focus is on balancing error and stability analy-
sis, with a continued premium on complexity reduc-
tion. Finally, the focus is on uncertainty quantification
and the formulation of hypotheses from observation—
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Figure 1 Diagram that launched the SciDAC program in 2000, courtesy of Thom Dunning Jr.

hypotheses that may eventually be provable theoreti-
cally or be subject to controlled experimental testing
in the real world.

4.11 The “Multis”

The discussion of the cross-cutting themes of com-
putational science can be conveniently and mnemon-
ically encapsulated in the list of the “multis.” Scien-
tific and engineering applications are typically multi-
physics, multiscale, and multidimensional in nature.
Algorithms to tackle them are typically hierarchical,
using interacting multimodels, on multilevels of refine-
ment, in multiprecisions. These then have to be imple-
mented on multinode distributed systems, with mul-
ticore nodes, and multiprotocol programming styles,
all of which requires a multidisciplinary approach in
which the mathematician plays a critical bridging role.
We elaborate on multiphysics in the next section.

4.12 Encapsulation in Software

There have been many efforts to respond to the tar-
gets presented by one or more of the “dwarfs” and
the complexity of the applications and algorithms of
computational science with well-engineered software
packages. The Portable Extensible Toolkit for Scientific
Computing (PETSc), a freely downloadable suite of data
structures and routines from Argonne National Labo-
ratory that has been in continuous development since

1992, is an example that incorporates generic parallel

programming primitives, matrix and vector interfaces,

and solvers for linear, nonlinear, and transient prob-

lems. PETSc emphasizes ease of experimentation. Its

strong encapsulation design allows users to hierarchi-

cally compose methods at runtime for coupled prob-

lems. Several relatively recent components have sub-

stantially improved composability for multiphysics and

multilevel methods. For example, DMComposite man-

ages distributed-memory objects for coupled problems

by handling the algebraic aspects of gluing together

function spaces, decomposing them for residual eval-

uation, and setting up linear operators to act on the

coupled function spaces. A matrix assembly interface

is available that makes it possible for individual physics

modules to assemble parts of global matrices without

needing global knowledge or committing in advance to

matrix format. The FieldSplit preconditioner solves

linear block systems using either block relaxation or

approximate block factorization (as in “physics-based”

preconditioners for stiff waves or block precondi-

tioners for incompressible flow). FieldSplit can be

nested inside other preconditioners, including geomet-

ric or algebraic multigrid ones, with construction of

the hierarchy and other algorithmic choices exposed

as runtime options. Recent enhancements to the TS

component support implicit–explicit time integration

schemes. Multiphysics applications that have employed
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these capabilities include lithosphere dynamics, sub-
duction and mantle convection, ice sheet dynamics,
subsurface reactive flow, tokamak fusion, mesoscale
materials modeling, and electrical power networks.

5 Multiphysics Modeling

A multiphysics system consists of multiple coupled
components, each component governed by its own
principle(s) for evolution or equilibrium, typically con-
servation or constitutive laws. Multiphysics simulation
is an area of computational science possessing mathe-
matical richness. Coupling individual simulations may
introduce stability, accuracy, or robustness limitations
that are more severe than the limitations imposed by
the individual components. A major classification in
such systems is whether the coupling occurs in the
bulk (e.g., through source terms or constitutive rela-
tions that are active in the overlapping domains of the
individual components) or whether it occurs over an
idealized interface that is lower dimensional or over a
narrow buffer zone (e.g., through boundary conditions
that transmit fluxes, pressures, or displacements). Typ-
ical examples of bulk-coupled multiphysics systems
that have their own extensively developed literature
include radiation with hydrodynamics in astrophysics
(radiation–hydrodynamics, or “rad–hydro”), electricity
and magnetism with hydrodynamics in plasma physics
(magnetohydrodynamics), and chemical reaction with
transport in combustion or subsurface flows (reac-
tive transport). Typical examples of interface-coupled
multiphysics systems are ocean–atmosphere dynam-
ics in geophysics, fluid-structure dynamics in aero-
elasticity, and core–edge coupling in tokamaks. Beyond
these classic multiphysics systems are many others
that share important structural features.

The two simplest systems that exhibit the crux of
a multiphysics problem are the coupled equilibrium
problem

F1(u1, u2) = 0, (1a)

F2(u1, u2) = 0 (1b)

and the coupled evolution problem

∂tu1 = f1(u1, u2), (2a)

∂tu2 = f2(u1, u2). (2b)

When (2a)–(2b) is semidiscretized in time, the evo-
lution problem leads to a set of problems that take
the form (1a)–(1b) and that are solved sequentially to
obtain values of the solution u(tn) at a set of discrete

times. Here u refers generically to a multiphysics solu-
tion, which has multiple components indicated by sub-
scripts u = (u1, . . . , uNc); the simplest case of Nc = 2
components is indicated here.

Initially, we assume for convenience that the Jaco-
bian J = ∂(F1, F2)/∂(u1, u2) is diagonally dominant in
some sense and that ∂F1/∂u1 and ∂F2/∂u2 are non-
singular. These assumptions are natural in the case
where the system arises from the coupling of two indi-
vidually well-posed systems that have historically been
solved separately. In the equilibrium problem, we refer
to F1 and F2 as the component residuals; in the evolu-
tion problem, we refer to f1 and f2 as the component
tendencies.

The choice of solution approach for these coupled
systems relies on a number of considerations. From
a practical standpoint, existing codes for component
solutions often motivate operator splitting as an expe-
ditious route to a first multiphysics simulation, mak-
ing use of the separate components. This approach,
however, may ignore strong couplings between com-
ponents. Solution approaches ensuring a tight coupling
between components require smoothness, or continu-
ity, of the nonlinear, problem-defining functions, Fi,
and their derivatives.

Classic multiphysics algorithms preserve the in-
tegrity of the two uniphysics problems, namely, solv-
ing the first equation for the first unknown, given the
second unknown, and solving the second equation for
the second unknown, given the first. Multiphysics cou-
pling is taken into account by iteration over the pair of
problems, typically in a Gauss–Seidel manner (see algo-
rithm 1), linearly or nonlinearly, according to context.
Here we employ superscripts to denote iterates.

Algorithm 1 (Gauss–Seidel multiphysics coupling).

Given initial iterate {u0
1, u

0
2}

for k = 1,2, . . . until convergence do
Solve for v in F1(v,uk−1

2 ) = 0; set uk1 = v
Solve for w in F2(uk1,w) = 0; set uk2 = w

end for

Likewise, the simplest approach to the evolutionary
problem employs a field-by-field approach in a way
that leaves a first-order-in-time splitting error in the
solution. Algorithm 2 gives a high-level description
of this process that produces solution values at time
nodes t0 < t1 < · · · < tN . Here, we use the nota-
tion u(t0), . . . , u(tN) to denote discrete time steps. An
alternative that staggers solution values in time is also
possible.
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Algorithm 2 (multiphysics operator splitting).

Given initial values {u1(t0),u2(t0)}
for n = 1,2, . . . , N do

Evolve one time step in ∂tu1+f1(u1, u2(tn−1)) = 0
to obtain u1(tn)
Evolve one time step in ∂tu2 + f2(u1(tn),u2) = 0
to obtain u2(tn)

end for

If the residuals or tendencies and their deriva-
tives are sufficiently smooth and if one is willing
to write a small amount of solver code that goes
beyond the legacy component codes, a good algorithm
for both the equilibrium problem and the implicitly
time-discretized evolution problem is the Jacobian-free
Newton–Krylov method (see below). Here, the problem
is formulated in terms of a single residual that includes
all components in the problems,

F(u) ≡
[
F1(u1, u2)
F2(u1, u2)

]
= 0, (3)

where u = (u1, u2). The basic form of newton’s

method [II.28] to solve (3), for either equilibrium or
transient problems, is given by algorithm 3. Because of
the inclusion of the off-diagonal blocks in the Jacobian,
for example,

J =

⎡⎢⎢⎢⎣
∂F1

∂u1

∂F1

∂u2

∂F2

∂u1

∂F2

∂u2

⎤⎥⎥⎥⎦ ,
Newton’s method is regarded as being “tightly cou-
pled.”

Algorithm 3 (Newton’s method).

Given initial iterate u0

for k = 1,2, . . . until convergence do

Solve J(uk−1)δu = −F(uk−1)
Update uk = uk−1 + δu

end for

The operator and algebraic framework described
here is relevant to many divide and conquer strategies
in that it does not “care” (except in the critical matter
of devising preconditioners and nonlinear component
solvers for good convergence) whether the coupled
subproblems are from different equations defined over
a common domain, the same equations over different
subdomains, or different equations over different sub-
domains. The general approach involves iterative cor-
rections within subspaces of the global problem. All the
methods have in common an amenability to exploiting

a “black-box” solver philosophy that amortizes exist-
ing software for individual physics components. The
differences are primarily in the nesting and ordering of
loops and the introduction of certain low-cost auxiliary
operations that transcend the subspaces.

Not all multiphysics problems can be easily or reli-
ably cast into these equilibrium or evolution frame-
works, which are primarily useful for deterministic
problems with smooth operators for linearization.
In formulating multiphysics problems, modelers first
apply asymptotics to triangularize or even diagonal-
ize the underlying Jacobian as much as possible, prun-
ing provably insignificant dependences but bearing
in mind the conservative rule: “coupled until proven
uncoupled.” One then applies multiscale analyses to
simplify further, eliminating stiffness from mecha-
nisms that are dynamically irrelevant to the goals of
the simulation.

Perhaps the simplest approach for solving systems
of nonlinear equations (3) is the fixed-point iteration,
also known as the Picard or nonlinear Richardson itera-
tion. The root-finding problem (3) is reformulated into a
fixed-point problem u = G(u) by defining a fixed-point
iteration function, for example,

G(u) := u−αF(u),
where α > 0 is a fixed-point damping parameter that is
typically chosen to be less than 1. Fixed-point methods
then proceed through the iteration

uk+1 = G(uk),
with the goal that ‖uk+1 − uk‖ < ε. If the iteration
function is a contraction, that is, if there exists some
γ ∈ (0,1) such that

‖G(u)−G(v)‖ � γ‖u− v‖
for all vectors u and v in a closed set containing the
fixed-point solution u0, then the fixed-point iteration
is guaranteed to converge. This convergence is typi-
cally linear, however, and can be slow even from a good
initial guess.

Newton’s method (algorithm 3) offers faster con-
vergence, up to quadratic. However, direct computa-
tion of δu in algorithm 3 may be expensive for large-
scale problems. Inexact Newton methods generalize
algorithm 3 by allowing computation of δu with an
iterative method, requiring only that ‖J(uk−1)δu +
F(uk−1)‖ < εk for some set of tolerances, εk. Newton–
Krylov methods are variants of inexact Newton meth-
ods in which δu is computed with a Krylov subspace
method. This choice is advantageous because the only
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information required by the Krylov subspace method

is a method for computing Jacobian-vector products

J(uk)v . A consequence of this reliance on only matrix-

vector products is that these directional derivatives

may be approximated and the Jacobian matrix J(uk) is

never itself needed. The Jacobian-free Newton–Krylov

method exploits this approach, using a finite-difference

approximation to these products:

J(uk)v ≈ F(u
k + σv)− F(uk)

σ
,

where σ is a carefully chosen differencing parameter

and F is sufficiently smooth. This specialization facil-

itates use of an inexact Newton method by eliminat-

ing the need to identify and implement the Jacobian.

Of course, the efficiency of the Jacobian-free Newton–

Krylov method depends on preconditioning the inner

Krylov subspace method, and the changes in the Jaco-

bian as nonlinear iterations progress place a premium

on preconditioners with low setup cost. Implemen-

tations of inexact Newton methods are available in

several high-performance software libraries, including

PETSc, which was mentioned above.

Fixed-point and inexact Newton methods can be used

to solve multiphysics problems in a fully coupled man-

ner, but they can also be used to implement coupling

strategies such as algorithms 1 and 2. With an implicit

method for one of the components, one can directly

eliminate it in a linear or nonlinear Schur complement

formulation. The direct elimination process for u1 in

the first equation of the equilibrium system (1a), given

u2, can be symbolically denoted

u1 = G(u2),

with which the second equation (1b) is well defined in

the form

F2(G(u2),u2) = 0.

Each iteration thereof requires subiterations to solve (in

principle to a high tolerance) the first equation. Unless

the first system is much smaller or easier than the sec-

ond, this is not likely to be an efficient algorithm, but

it may have robustness advantages.

If the problem is linear,

F1(u1, u2) = f1 −A11u1 −A12u2,

F2(u1, u2) = f2 −A21u1 −A22u2,

⎫⎬⎭ (4)

then F2(G(u2),u2) = 0 involves the traditional Schur

complement

S = A22 −A21A−1
11A12.

If the problem is nonlinear and if Newton’s method is

used in the outer iteration, the Jacobian

dF2

du2
= ∂F2

∂u1

∂G
∂u2

+ ∂F2

∂u2

is, to within a sign, the same Schur complement.

Similar procedures can be defined for the evolution

problem, which, when each phase is implicit, becomes

a modified root-finding problem on each time step

with the Jacobian augmented with an identity or mass

matrix.

If the types of nonlinearities in the two compo-

nents are different, a better method may be the non-

linear Schwarz method or the additive Schwarz pre-

conditioned inexact Newton (ASPIN) method. In non-

linear Schwarz, one solves component subproblems

(by Newton or any other means) for componentwise

corrections,

F1(uk−1
1 + δu1, uk−1

2 ) = 0,

F2(uk−1
1 , uk−1

2 + δu2) = 0,

and uses these legacy componentwise procedures im-

plicitly to define modified residual functions of the two

fields:

G1(u1, u2) ≡ δu1,

G2(u1, u2) ≡ δu2.

One then solves the modified root-finding problem

G1(u1, u2) = 0,

G2(u1, u2) = 0.

If one uses algorithm 3 to solve the modified problem,

the Jacobian is⎡⎢⎢⎢⎣
∂G1

∂u1

∂G1

∂u2

∂G2

∂u1

∂G2

∂u2

⎤⎥⎥⎥⎦ ≈

⎡⎢⎢⎢⎣ I
(
∂F1

∂u1

)−1 ∂F1

∂u2(
∂F2

∂u2

)−1 ∂F2

∂u1
I

⎤⎥⎥⎥⎦ ,
which clearly shows the impact of the cross-coupling

in the off-diagonals. In practice, the outer Newton

method must converge in a few steps for ASPIN to be

worthwhile, since the inner iterations can be expen-

sive. In nonlinear Schwarz, the partitioning of the global

unknowns into u1 and u2 need not be along purely

physical lines, as it would be if they came from a pair

of legacy codes. The global variables can be partitioned

into overlapping subsets, and the decomposition can

be applied recursively to obtain a large number of small
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Newton problems. The key to the convenience of non-

linear Schwarz is that the outer iteration is Jacobian-

free and the inner iterations may involve legacy solvers.

(This is also true for the Jacobian-free Newton–Krylov

method, where the inner preconditioner may involve

legacy solvers.)

Error bounds on linear and nonlinear block Gauss–

Seidel solutions of coupled multiphysics problems

show how the off-diagonal blocks of the Jacobian enter

the analysis. Consider the linear case (4) for which the

Jacobian of the physics-blocked preconditioned system

is [
I A−1

11A12

A−1
22A21 I

]
.

Let the product of the coupling blocks be defined by the

square matrix C ≡ A−1
11A12A−1

22A21, the norm of which

may be bounded as ‖C‖ � ‖A−1
11 ‖‖A12‖‖A−1

22 ‖‖A21‖.

Provided ‖C‖ � 1, any linear functional of the solution

(u1, u2) of (4) solved by the physics-blocked Gauss–

Seidel method (algorithm 1) satisfies conveniently com-

putable bounds in terms of residuals of the individual

physics blocks of (4). The cost of evaluating the bound

involves the action of the inverse uniphysics operators

A−1
11 and A−1

22 on vectors coming from the uniphysics

residuals and the dual vectors defining the linear func-

tionals of interest. The bounds provide confidence

that the block Gauss–Seidel method has been iter-

ated enough to produce sufficiently accurate outputs

of interest, be they point values, averages, fluxes, or

similar. The required actions of the inverse uniphysics

operators are a by-product of an implicit method for

each phase. The nonlinear case is similar, except that

the Jacobian matrices from each physics phase that

comprise C may change on each block Gauss–Seidel

iteration.

Preconditioning is essential for efficiency whenever a

Krylov subspace method is used. While there has been

considerable success in developing black-box algebraic

strategies for preconditioning linear systems, precon-

ditioners for multiphysics problems generally need to

be designed by hand.

A widely used approach is to use a block-diagonal

approximation of the Jacobian of the system. Improved

performance can generally be achieved by captur-

ing the strong couplings in the preconditioner and

leaving the weak couplings to be resolved by the

outer Krylov/Newton iterations. Such approaches gen-

erally lead to identification of a Schur complement

that embodies the important coupling, and their suc-

cess relies on judicious approximation of the Schur
complement.

6 Anatomy of a Large-Scale Simulation

We illustrate many issues in computational science by
discussing the multiphysics application of turbulent
reacting flows. Fittingly, the first ACM–SIAM Prize in
Computational Science and Engineering was awarded
in 2003 to two scientists at Lawrence Berkeley National
Laboratory who addressed this difficult problem by
integrating analytical and numerical techniques. Apart
from the scientific richness of the combination of fluid
turbulence and chemical reaction, turbulent flames are
at the heart of the design of equipment such as recip-
rocating engines, turbines, furnaces, and incinerators
for efficiency and minimal environmental impact. Effec-
tive properties of turbulent flame dynamics are also
required as model inputs in a broad range of larger-
scale simulation challenges, including fire spread in
buildings or wildfires, stellar dynamics, and chemical
processing.

The first step in such simulations is to specify the
models for the reacting flows. The essential feature of
reacting flows is the set of chemical reactions at a pri-
ori unknown locations in the fluid. As well as chemical
products, these reactions produce both temperature
and pressure changes, which couple to the dynamics
of the flow. Thus, an accurate description of the reac-
tions is critical to predicting the shape and properties
of the flame. Simultaneously, it is the fluid flow that
transports the reacting chemical species to the reac-
tion zone and transports the products of the reaction
and the released energy away from the reaction zone.
The location and shape of the reaction zone are deter-
mined by a delicate balance of species, energy, and
momentum fluxes and are highly sensitive to how these
fluxes are specified at the boundaries of the compu-
tational domain. Turbulence can wrinkle the reaction
zone, giving it a much greater area than it would have
in its laminar state, without turbulence. Hence, incor-
rect prediction of turbulence intensity may under- or
over-represent the extent of reaction.

From first principles, the reactions of molecules are
described by the schrödinger equation [III.26] and
fluid flow is described by the navier–stokes equa-

tions [III.23]. However, each of these equation sets
is too difficult to solve directly, so we must rely on
approximations. These approximations define the com-
putational models used to describe the flame. For
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the combustion of methane, a selected set of eighty-
four reactions involves twenty-one chemical species
(methane, oxygen, water, carbon dioxide, and many
trace products and reaction intermediates). A particu-
larly useful approximation of the compressible Navier–
Stokes model allows detailed consideration of the con-
vection, diffusion, and expansion effects that shape the
reaction, but it is filtered to remove sound waves, which
pose complications that do not measurably affect com-
bustion in the laboratory regime of the flame. The selec-
tion of models such as these requires context-specific
expert judgment. For instance, in a jet turbine simula-
tion, sound waves might represent a nonnegligible por-
tion of the energy budget of the problem and would
need to be modeled. However, in a jet, it might be valid
(and very cost-effective) to use a less intricate chemi-
cal reaction mechanism to answer the questions con-
cerning flame stability, thrust, noise, and the like. If
atmospheric pollution were the main subject of the
investigation, on the other hand, an even more detailed
chemical model involving more photosensitive trace
species might be required. (Development of the chem-
istry model and validation of the predictions of the
simulation make an interesting scientific story, but one
that is too long to be told here.)

The computations that led to the first ACM–SIAM
Prize in Computational Science and Engineering were
performed on an IBM SP supercomputer named “Sea-
borg” at the National Energy Research Scientific Com-
puting Center, using as many as 2048 processors.
At the time, they were among the most demanding
combustion simulations ever performed, though they
have since been eclipsed in terms of both complex-
ity and computational resources by orders of magni-
tude. The ability to perform them was not, however,
merely (or even mainly) a result of improvements in
computer technology. Improvements in algorithm tech-
nology were even more instrumental in making the
computations feasible. As mentioned above, mathe-
matical analysis was used to reformulate the equations
describing the fluid flow so that high-speed acoustic
transients were removed analytically while compress-
ibility effects due to chemical reactions were retained.
The resulting model of the fluid flow was discretized
using high-resolution finite-difference methods, com-
bined with local adaptive mesh refinement by which
regions of the finite-difference grid were automatically
refined or coarsened in a structured manner to maxi-
mize overall computational efficiency. The implementa-
tion used an object-oriented, message-passing software

(a) (b)

1 cm

Figure 2 A comparison of (a) the experimental particle
image velocimetry crossview of the turbulent V flame and
(b) a simulation. Reproduced from “Numerical simulation
of a laboratory-scale turbulent V-flame” by J. B. Bell et al.
(Proceedings of the National Academy of Sciences of the USA
102:10,009 (2005)).

framework that handled the complex data distribu-

tion and dynamic load balancing needed to effectively

exploit thousandfold parallelism. The data analysis

framework used to explore the results of the simulation

and create visual images that lead to understanding is

based on recent developments in “scripting languages”

from computer science. The combination of these algo-

rithmic innovations reduced the computational cost

by a factor of 10 000 for the same effective resolu-

tion compared with a standard uniform-grid approach.

(See figure 2 for a side-by-side comparison of a slot-

ted V-flame experiment and a realization of a three-

dimensional time-dependent simulation prepared for

the same conditions.)

As the reaction zone shifts, the refinement auto-

matically tracks it, adding and removing resolution

dynamically. Unfortunately, the adaptivity and mathe-

matical filtering employed to save memory and reduce

the number of operations complicate the software and

throw the execution of the code into a regime of com-

putation that processes fewer operations per second

and uses thousands of processors less uniformly than

a “business as usual” algorithm would. As a result, the

scientifically effective simulation runs at a small per-

centage of the theoretical peak rate of the hardware. In

this case, a simplistic efficiency metric like “percentage

of theoretical peak” is misleading.

Software of this complexity and versatility could

never be assembled in the traditional mode of devel-

opment whereby individual researchers with sepa-

rate concerns asynchronously toss software written to

a priori specifications “over the transom.” Behind any
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simulation as complex as this stands a tightly coordi-
nated, vertically integrated multidisciplinary team.

7 The Grand Challenge of
Computational Science

Many “grand challenges” of computational science, in
simulating complex multiscale multiphysics systems,
await the increasing power of high-performance com-
puting and insight and innovation in mathematics. It
can be argued that any system that can deterministi-
cally and reproducibly simulate another system must
be at least as “complex” as the system being simulated.
Therefore, the high-performance computational envi-
ronment itself is the most complex system to model.
The grandest challenge of computational science is
making this complex simulation system sufficiently
manageable to use that scientists who are expert in
something else (e.g., combustion, reservoir modeling,
magnetically confined fusion) can employ it effectively.
In over six decades of computational science, humans
have so far bridged the gap between the complexity
of the system being modeled and machine complex-
ity, with von Neumann as an exemplar of an indi-
vidual who made contributions at all levels, from the
modeling of the physics to the construction of com-
puter hardware. After all of the components of the
chain are delivered, the remaining challenge is the
vertical integration of models and technology, lead-
ing to a hardware–software instrument that can be
manipulated to perform the theoretical experiments of
computational science.

Glossary

Computational science (and engineering): the verti-
cally integrated multidisciplinary process of exploring
scientific hypotheses using computers.

Computational “X” (where “X” is a particular natural or
engineering science, such as physics, chemistry, biol-
ogy, geophysics, fluid dynamics, structural mechanics,
or electromagnetodynamics): a specialized subset of
computational science concentrating on models, prob-
lems, techniques, and practices particular to problems
from “X.”

Scientific computing: an intersection of tools and tech-
niques in the pursuit of different types of computa-
tional “X.”

Strong/weak coupling of physical models: strong
(respectively, weak) coupling refers to strong (respec-
tively, weak) interactions between different physics

models that are intrinsic in a natural process. Math-
ematically, the off-diagonal blocks of the Jacobian
matrix of a strongly coupled multiphysics model may
be full or sparse but contain relatively large entries.
In contrast, a weakly coupled multiphysics model con-
tains relatively small off-diagonal entries.

Tight/loose coupling of numerical models: tight (re-
spectively, loose) coupling refers to a high (respec-
tively, low) degree of synchronization of the state vari-
ables across different physical models. A tightly cou-
pled scheme (sometimes referred to as a strongly cou-
pled scheme) keeps all the state variables as synchro-
nized as possible across different models at all times,
whereas a loosely coupled scheme might allow the state
variables to be shifted by one time step or be staggered
by a fraction of the time step.
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IV.17 Data Mining and Analysis
Chandrika Kamath

1 The Need for Data Analysis

Technological advances are enabling us to acquire ever-
increasing amounts of data. The amount of data, now
routinely measured in petabytes, is matched only by
its complexity, with the data available in the form of
images, sequences of images, multivariate time series,
unstructured text documents, graphs, sensor streams,
and mesh data, sometimes all in the context of a sin-
gle problem. Mathematical techniques from the fields
of machine learning, optimization, pattern recognition,
and statistics play an important role as we analyze
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Figure 1 A schematic showing the
overall process of data analysis.

these data to gain insight and exploit the information
present in them.

The types of analysis that can be done are often as
varied as the data themselves. One of the best-known
examples occurs in the task of searching, or informa-
tion retrieval, where we want to identify documents
containing a given phrase, retrieve images similar to
a query image, or find the answer to a question from a
repository of facts. In other analysis tasks, the focus is
prediction, where, given historical data that relate input
variables to output variables, we want to determine the
outputs that result from a given set of inputs. For exam-
ple, given examples of malignant and benign tumors in
medical images, we may want to build a model that will
identify the type of tumor in an image. Or we could
analyze credit card transactions to build models that
identify fraudulent use of a card. In other problems
the focus is on building descriptive models. For exam-
ple, we want to group chemicals with similar behavior
to understand what might cause that behavior, or we
may cluster users who like similar movies so we can
recommend other movies to them.

Data mining is the semiautomatic process of dis-
covering associations, anomalies, patterns, and statis-
tically significant structures in data. At the risk of over-
simplification, we can consider data mining, or data
analysis, to have three phases, as shown in figure 1: the
representation of the data, dimension reduction, and
the identification of patterns.

First, the raw data are processed to bring them into a
form more suitable for analysis. This is especially true
when the data are in the form of images, text docu-
ments, or other formats that require us to identify the
objects in the raw data and find appropriate represen-
tations for them. A common way of representing data
is in the form of a table (see table 1) in which each
row represents a data item (which could be a docu-
ment, an image, a galaxy, or a chemical compound) and
in which the columns are the features, or descriptors,
that characterize the data item. These features are cho-
sen to reflect the analysis task and could include the
frequency of different words in a document, the tex-

Table 1 Table data, with each data item Ii characterized
by d features, and potentially an output Oi.

f1 f2 · · · fd O

I1 f11 f12 · · · f1d O1

I2 f21 f22 · · · f2d O2
... · · · · · · · · · · · · · · ·
In fn1 fn2 · · · fnd On

ture of an image, the shape of the objects in an image,
or the properties of the atomic species that constitute
a chemical compound. Sometimes a data item may be
associated with an output variable, which could be dis-
crete (e.g., indicating if a transaction is valid or fraudu-
lent) or continuous (such as the formation enthalpy of
a chemical compound). This table, viewed as a matrix,
could be sparse if not all features are available for a
given data item, for example, words that do not occur
in a document.

Each data item in the table can be considered as a
point in a space spanned by the features; if the num-
ber of features is high, that is, the point is in a high-
dimensional space, it can make the analysis challeng-
ing. This requires dimension reduction techniques to
identify the key features in the data.

The final step of pattern recognition is often seen as
the focus of analysis. However, its success is strongly
dependent on how well the previous steps have been
performed. Not identifying the data items correctly
or representing them using inappropriate features can
result in inaccurate insights into the data.

The process of data analysis is iterative: the represen-
tation of the data is refined and the dimension reduc-
tion and pattern recognition steps repeated until the
desired accuracy is obtained. Data analysis is also inter-
active, with the domain experts providing input at each
step to ensure the relevance of the process to the prob-
lem being addressed. Depending on the type of data
being analyzed and the problem being addressed, these
three phases of data representation, dimension reduc-
tion, and pattern recognition can be implemented using
a host of mathematical techniques. In the remainder of
this article we review some of these techniques, iden-
tify their relationship with methods in other domains,
and discuss future trends.

2 History

Data analysis has a long history. We could say that it
started with the ancient civilizations, which, observing
the motions of celestial objects, identified patterns that
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led to the laws of celestial mechanics. Some of the early
ideas in statistics arose when governments collected
demographic and economic data to help them manage
their populations better, while probability played an
important role in the study of games of chance and the
analysis of random phenomena. The field of statistics,
as we know it today, goes back at least a couple of hun-
dred years. By modern standards, the data sets being
analyzed then were tiny, composed of a few hundred
numbers. However, given that this analysis was done
before the advent of computers, it was a remarkable
achievement. The field has evolved considerably since
then, prompted by new sources of data, a broader range
of questions being addressed through the analysis, and
different fields contributing different insights into the
data.

The recent surge in both the size and the complexity
of data started in the 1970s as technology enabled us
to generate, store, and process vast amounts of data.
Sensors provided some of the richest sources of data,
ranging from those used in medicine, such as positron

emission tomography [VII.9] (PET) and magnetic

resonance imaging [VII.10 §4.1] (MRI) scanning, to
sensors monitoring equipment, such as cars and sci-
entific experiments, and sensors observing the world
around us through telescopes and satellites. Comput-
ers not only enabled the analysis of these data, they
contributed to this data deluge as well. Numerical sim-
ulations are increasingly being used to model complex
phenomena in problems where experiments are infea-
sible or expensive. The resulting spatiotemporal data,
often in the form of variables at grid points, are ana-
lyzed to gain insight into the phenomena. The Internet,
connecting computers worldwide, is one of the newest
sources of data, providing insight into how the world
is connected. These data are generated by sensors that
observe network traffic, by web services that monitor
the online browsing patterns of users, and by the net-
work itself, which changes dynamically as connections
are made or broken.

The tasks in data analysis have also evolved to handle
the new types of data, the new questions being asked of
the data, and the new ways in which users interact with
the data. For example, network data, images, mesh data
from simulations, and text documents are not in a form
that can be directly used for pattern identification; they
all have to be converted to an appropriate representa-
tion first. The high dimensionality of many data sets
has led to the development of dimension reduction
techniques, which shed light on the important features

of the objects in a data set. The desire to improve
the accuracy of predictions by analyzing many differ-
ent modalities of data simultaneously has led to data
fusion techniques. More recently, a recognition that the
analysis of the data should be closely coupled with their
generation has resulted in the reemergence of ideas
from the field of design of experiments. Further, as data
analysis gains acceptance and the results are used in
making decisions, techniques to address missing and
uncertain features have become important, and tools
to reason under uncertainty are playing a greater role,
especially when the risks and rewards associated with
the decisions can be so high.

Along with these new sources of data and the novel
questions that are being asked of the data, different
fields have started to contribute to the broad area
of data analysis. In addition to statistics, advances in
the field of pattern recognition have focused on pat-
terns in signals and images, while work in artificial
intelligence and machine learning have tried to mimic
human reasoning, and developments in rule-based sys-
tems have been used to extract meaningful rules from
data. The more recent field of data mining was orig-
inally motivated by the need to make better use of
databases, though it too is evolving into specialized
topics such as web mining, scientific data mining, text
mining, and graph mining. Domain scientists have also
contributed their ideas for analyzing data. As a result,
data analysis is replete with examples where the same
algorithm is known by different names in different
domains, and a technique proposed in one domain is
found to be a special case of a technique from a dif-
ferent domain. The process of inference from data has
benefited immensely from the contributions of these
different fields, with each providing its own perspective
on the data and, in the process, making data analysis
a field rich in the diversity of mathematical techniques
employed.

3 Data Representation

Many pattern recognition algorithms require the data
to be in a tabular form, as shown in table 1. However,
this is rarely the form in which the data are given to
a data analyst, especially when the raw data are avail-
able as images, time series, documents, or network
data. Converting the data into a representation suit-
able for analysis is a crucial first step in any analysis
endeavor. However, this task is difficult as the repre-
sentation is very dependent on the problem, the type of
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data, and the quality of the data. Domain- and problem-
dependent methods are often used, and the represen-
tation is iteratively refined until the analysis results are
acceptable.

Consider the problem of improving the quality of
images, which are often corrupted by noise, making it
difficult to identify the objects in the data. A simple
solution is to apply a mean filter. In the case of a 3 × 3
filter, this would imply convolving an image with

1
9

⎛⎜⎜⎝
1 1 1

1 1 1

1 1 1

⎞⎟⎟⎠ ,
thus replacing each image pixel by the weighted aver-
age of the pixel and its eight neighbors. While a mean
filter assigns equal weight to all pixels within its sup-
port, a two-dimensional Gaussian filter with standard
deviation σd,

wd(pi, pj) =
1

2πσ2
d

exp
(
− ‖pi − pj‖2

2σ2
d

)
,

assigns a lower weight when the pixel pj is farther
from the pixel pi. A more recent development, the bilat-
eral filter, applies this idea in both the domain and
the range of the neighborhood around each pixel. Each
weight in the filter is the normalized product of the
corresponding weights wd and wr:

wr(pi, pj) =
1

2πσ2
r

exp
(
− δ(I(pi)− I(pj))

2

2σ2
r

)
,

where σr is the standard deviation of the range fil-
ter and δ(I(pi) − I(pj)) is a measure of the distance
between the intensities at pixels pi and pj . When the
intensity difference is high—near an edge of an object,
for example—less smoothing is done, making it easier
to identify the edge in the next step of the analysis.

In 1987 Perona and Malik noted that convolving an
image with the Gaussian filter is equivalent to solving
the diffusion equation

∂
∂t
I(x,y, t) = ∂2

∂x2
I(x,y, t)+ ∂2

∂y2
I(x,y, t),

where I(x,y, t) is the two-dimensional image I(x,y)
at time t = 0.5σ2

d and I(x,y,0) is the original image.
This allowed the adoption of ideas from partial differ-
ential equations (PDEs) to address the ill-posedness of
the original formulation and to enhance de-noising by
making suitable choices for the coefficients of the PDEs
in order to restrict smoothing near the edges of objects
in an image.

There has been similar evolution in the realm of seg-
mentation techniques for identifying objects in images.

Starting with the idea that there is a sharp gradient in
the intensity at the boundary of an object, we can use a
simple filter, such as the Sobel operators in the x- and
y-dimensions,

Lx =

⎛⎜⎜⎝
−1 0 1

−2 0 2

−1 0 1

⎞⎟⎟⎠ , Ly =

⎛⎜⎜⎝
1 2 1

0 0 0

−1 −2 −1

⎞⎟⎟⎠ ,
to obtain the magnitude and orientation of the gradi-
ent. This basic idea is used in the Canny edge detec-
tor, which, despite its simplicity, performs quite well.
It starts by smoothing the image using a Gaussian filter
and then applies the Sobel operators. The edges found
are thinned to a single pixel by suppressing values that
are not maximal in the gradient direction. Finally, a two-
parameter hysteresis thresholding retains both strong
edge pixels and moderate-intensity edge pixels that are
connected to the strong edge pixels. This results in a
robust and well-localized detection of edges. However,
in regions of low contrast, the gradient detectors may
fail to identify any edge pixels, leading to edges that are
not closed contours. To address this drawback, we need
to use techniques such as snakes and implicit active
contours, which again blend ideas from image process-
ing and PDEs. In turn, this allows us to identify objects
in mesh data from simulations by using the PDE version
of a segmentation algorithm.

Other segmentation techniques, referred to as re-
gion-growing methods, identify objects in images by
exploiting the fact that the pixels in the interior of
an object are similar to each other. Starting with the
highest intensity pixel, a similarity metric is used to
grow a region around it. The process is repeated with
the highest intensity pixel among the remaining ones,
until all pixels are assigned to a region. Cleanup is
often required to merge similar regions that are adja-
cent to each other or to remove very small regions. This
idea of grouping data items based on their similarity
is referred to as clustering and is described further in
section 5.3. These clustering techniques can be applied
to images and mesh data by defining a similarity met-
ric that takes into account both the spatial locations of
and the values at the pixels or mesh points.

Once we have identified objects in images, or se-
quences of images, we can represent them using
features such as shape, texture, size, and various
moments. There are different ways in which many of
these features can be defined. For example, for objects
in images, the shape feature can be represented as a
linear combination of two-dimensional basis functions
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such as shapelets or the angular radial transform
described in the MPEG-7 multimedia standard. The
coefficients of the linear combination would be the
features representing the object. Alternatively, we can
focus on the boundary of an object and define the shape
features as the coefficients of a Fourier series expansion
of the curve that describes the boundary.

The features used to represent the objects in the data
are very dependent on the problem and the type of data.
It is often challenging to identify and extract features
for some types of data, such as images or mesh data.
Not only must the features characterize the objects
in these data, they must also be invariant to rotation,
translation, and scaling, as the patterns in the objects
are often invariant to such transformations of the data.
Further, if we are analyzing many images of varying
quality, each with a variety of objects, it can be difficult
to find a single set of algorithms, with a single set of
parameters, that can be used to extract the objects and
their features.

In contrast, the task of feature extraction is relatively
easy for other types of data. For example, in docu-
ments it is clear that the features are related to the
words or terms in the collection of documents being
analyzed. As discussed in text mining [VII.24], a doc-
ument can be represented using the term frequency of
each term in the document, suitably weighted to reflect
its importance in the document or collection of docu-
ments. However, representing documents is not with-
out its own challenges, such as the need for word-sense
disambiguation for words with multiple meanings, the
representation of tables or diagrams in documents, and
analysis across documents in different languages.

4 Dimension Reduction

The number of features used to represent the data
items in a data set can vary widely, ranging from a
handful to thousands. These features can be numeric
or categorical. Often, not all the features are relevant to
the task at hand, or some features may be correlated,
resulting in a duplication of information. Since extract-
ing and storing features can be expensive, and irrele-
vant features can adversely affect the accuracy of any
models built from the data, it is often useful to identify
the important features in a data set. This task of dimen-
sion reduction maps a data item described in the high-
dimensional feature space into a lower-dimensional
feature space.

There are two broad categories of dimension reduc-
tion methods. In the first category, the features are

transformed, linearly or nonlinearly, into a lower-

dimensional space. A popular method for linear trans-

formation is principal component analysis (PCA), which

has been rediscovered in many domains, ranging from

fluid dynamics, climate, signal processing, and linear

algebra to text mining, with each contributing differ-

ent insights into what such techniques reveal about

the data. PCA is an orthogonal transform that converts

the data into a set of uncorrelated variables called the

principal components. The first principal component

captures the largest variability in the data; each of the

remaining principal components has the highest vari-

ance subject to the constraint that it is orthogonal to all

the previous principal components. PCA can be calcu-

lated by an eigendecomposition of the data covariance

or correlation matrix or by the application of the sin-

gular value decomposition [II.32] to the data matrix.

Usually, the data are first centered by subtracting the

mean.

A challenging issue in the practical application of

transform-based methods is the selection of the dimen-

sion of the lower-dimensional space. Often, a decision

on the number of principal components to keep is made

using a threshold on the percentage variance explained

by the principal components that are retained. This

essentially implies that the components that are dis-

carded are considered as noise in the data. Thus, PCA

can also be used to reduce the noise in data.

The second category of dimension reduction tech-

niques selects a subset of the original features. These

feature selection techniques are applicable to prediction

tasks, such as classification and regression, where each

data item is also associated with an output variable. By

identifying important features, such techniques enable

us to make judicious use of limited resources available

for measuring the features. They can also be invalu-

able in problems where focusing on just the important

variables makes it easier to gain insight into a complex

phenomenon.

There are two types of feature selection algorithms:

filters, which are not coupled to the prediction task, and

wrappers, which are coupled to the prediction task.

As an example of a filter method, consider a simple

problem where we have data items of two categories,

or classes, and we need to find the features that are

most useful in discriminating between these classes.

For each feature we can build a histogram of the val-

ues that the feature takes for each of the two classes.

A large distance between the histograms for the two
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Figure 2 The feature in (a) (with a larger distance between
the histograms of feature values for two different classes
(solid and dotted lines)) is considered more important than
the feature in (b). The large overlap in (b) indicates that there
is a larger range of values of the feature for which an object
could belong to either of the two classes, making the feature
less discriminating.

classes indicates that the feature is likely to be impor-
tant, but if the histograms overlap, then the feature
is unlikely to be helpful in differentiating between the
classes (figure 2). The features can be ordered based on
the distances between the histograms and the reduced
dimension can be determined by placing an appropri-
ate threshold on the distance. Any suitable measure for
distances between histograms can be used. For exam-
ple, we can first convert the histogram for each class
into a probability distribution by normalizing it so that
the area under the curve is 1. Then, we can either use
the Kullback–Leibler divergence

dKL(P,Q) =
b∑
i=1

Pi ln
(
Pi
Qi

)
as a measure of the difference between two distribu-
tions P and Q defined over b bins, or we can create a

symmetric version

d(P,Q) = dKL(P,Q)+ dKL(Q, P),

which, unlike the Kullback–Leibler divergence, is a dis-
tance metric, as d(P,Q) = d(Q,P). Other distances can
also be used, such as the Wasserstein metric, or, as it is
referred to in computer science, the earth mover’s dis-
tance. This intuitively named metric considers the two
distributions as two ways of piling dirt on a region, with
the distance being defined as the minimum cost of turn-
ing one pile into the other. The cost is the amount of
dirt moved times the distance over which it is moved.

The wrapper approach to feature selection evaluates
each subset of features based on the accuracy of pre-
diction using that subset. Suppose we use a decision
tree classifier (section 5.2) to build a predictive model
for the two-class problem. The forward selection wrap-
per method starts by selecting the single feature that
gives the highest accuracy with the decision tree. It then
chooses the next feature to add such that the subset
of two features has the highest accuracy. Additional
features are included to create larger subsets until
the addition of any new feature does not result in an
improvement in prediction accuracy. A backward selec-
tion approach starts with all the features and progres-
sively removes features. The wrapper approach is more
computationally expensive than the filter approach as
it involves evaluating the accuracy of a classifier. How-
ever, it may identify subsets that are more appropriate
when used in conjunction with a specific classifier.

5 Pattern Recognition

In pattern recognition tasks, we use the features that
describe each data item to identify patterns among the
data items. For example, if we process astronomical
images to identify the galaxies in them and extract suit-
able features for each galaxy, we are then able to use the
features in several different ways, as discussed next.

5.1 Information Retrieval

In information retrieval, given a query data item,
described by its set of features, the task is to retrieve
other items that are similar in some sense to the query.
Usually, the retrieved items are returned in an order
based on the similarity to the query. The similarity met-
ric chosen depends on the problem and the representa-
tion of the data item. While Euclidean distance between
feature vectors is a common metric, the cosine of the
angle between the two vectors is used for document
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similarity, and more complex distances could be used
if the data items are represented as graphs.

Data sets used in information retrieval are often mas-
sive, and a brute-force search by comparing each item
with the query item is expensive and will not result in
the real-time turnaround often required in such analy-
sis. Ideas from computer science, especially the use
of sophisticated data structures that allow for fast
nearest-neighbor searches, provide solutions to this
problem. As these data structures perform better than
a brute-force search only when the data items have a
limited number of features, dimension reduction tech-
niques are often applied to the data before storing them
in these efficient data structures.

5.2 Classification and Regression

In some pattern recognition tasks we are given exam-
ples of patterns, referred to as a training set, and the
goal is to identify the pattern associated with a new
data item. This is done by using the training set to cre-
ate a predictive model that is then used to assign the
pattern to the new data item. The items in the training
set all have an output variable associated with them. If
this variable is discrete, the problem is one of classifi-
cation; if it is continuous, the problem is one of regres-
sion, where, instead of predicting a pattern, we need to
predict the value of the continuous variable for the new
data item.

Techniques for regression and classification tend to
be quite similar. The simplest such technique is the
nearest-neighbor method, where, given the data item
to which we need to assign an output, we identify the
nearest neighbors to this item in the feature space and
use the outputs of these neighbors to calculate the out-
put for the query. In classification problems we can use
the majority class, while in regression problems we can
use a weighted average of the outputs of the neighbors.
The neighbors are usually identified either by specify-
ing a fixed number of neighbors k, which leads to the
k-nearest-neighbor method, or by specifying the neigh-
bors within a radius ε, which leads to the ε-nearest-
neighbor method. While nearest-neighbor techniques
are intuitively appealing, it is a challenge to set a value
for k or ε, and the techniques may not work well if
the query data item does not have neighbors in close
proximity.

More complex predictive models can be built from a
training set using other classification algorithms. Deci-
sion trees divide the data set into regions using hyper-
planes parallel to the axis, such that each region has
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Figure 3 A schematic of a decision tree for a data set with
two features: (a) the decision boundaries between open and
closed circles; (b) the corresponding decision tree.

data items with the same output value (or similar ones).
The tree is a data structure that is either a leaf, which
indicates the output, or a decision node that specifies
some test to be carried out on a feature, with a branch
and subtree for each possible outcome of the test. For
example, in figure 3 the open and closed circles are sep-
arated by first making the decision F1 < A1; data items
that satisfy this constraint are next split using F2 < B2,
while data items that do not satisfy the constraint are
split using F2 < B1. Then, given a data item with certain
values of features (F1, F2), we can follow its path down
the decision tree and assign it the majority class of the
leaf node at which the path ends.

A key task in building a decision tree is the choice
of decision at each node of the tree. This is obtained
by considering each feature in turn, sorting the values
of the feature, and evaluating a quality metric at the
midpoints between consecutive values of the feature.
This metric is an indication of the suitability of a split
using that feature and midpoint value. The feature–
midpoint value combination that optimizes the quality
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metric across all features is chosen as the decision at
the node. For example, in a two-class problem, a split
that divides the data items at the node into two groups,
each of which has a majority of items of one class, is
preferable to a split where each of the two groups has
an equal mix of the two classes. A commonly used met-
ric is the Gini index, which finds the split that most
reduces the node impurity, where the impurity for a c
class problem with n data items is defined as follows:

LGini = 1.0 −
c∑
i=1

( |Li|
|TL|

)2

,

RGini = 1.0 −
c∑
i=1

( |Ri|
|TR|

)2

,

Impurity = (|TL|LGini + |TR|RGini)/n,

where |TL| and |TR| are the number of data items, |Li|
and |Ri| are the number of data items of class i, and
LGini and RGini are the Gini indices on the left- and right-
hand side of the split, respectively.

This simple idea of dividing the data items in feature
space using decisions parallel to the axes appeared at
nearly the same time in the literature relating to both
machine learning and statistics, where it was referred
to as the decision tree method and the classification
tree method, respectively. Both communities have con-
tributed to the advancement of the method. Ideas from
machine learning have been used to create more com-
plex decision boundaries by considering a linear combi-
nation of the features in the decision at each node. The
process of making the decisions at each node of the tree
has been related to probabilistic techniques, providing
insight into the behavior of decision trees and indicat-
ing ways in which they can be improved. In particular,
a statistical approach to decision tree modeling takes
advantage of the trade-off between bias, which arises
when the classifier underfits the data and cannot rep-
resent the true function being predicted, and variance,
which arises when the classifier overfits the data.

Decision trees are not only simple to create and
apply, they are also easy to interpret, providing use-
ful insight into how a pattern is assigned to a data
item. Further, the process used in making the decision
at each node of the tree indicates which features are
important in the data set. This makes the decision tree
method a popular first choice for use in classification
and regression problems.

Other, more complex, algorithms in common use
are neural networks and support vector machines. The
simplest neural network, called a perceptron, takes a

weighted combination of the input features and out-
puts a 1 if the combination is greater than a threshold
and 0 otherwise, thus acting as a two-class classifier.
The task is to use the training set to learn the weights,
an adaptive process that starts with random weights,
applies the classifier, and modifies the weights when-
ever the classification is in error. When the two classes
are not linearly separable, that is, they cannot be sep-
arated using a single line, we need to find the weights
using optimization techniques [IV.11] such as the
gradient descent, conjugate gradient, quasi-Newton, or
Levenberg–Marquardt methods.

More complex neural networks include multiple lay-
ers (in addition to the first layer, which represents the
features) and, instead of a simple thresholding, use
a continuously differentiable sigmoid function. This
allows neural networks to model complex functions
to differentiate among classes. However, they can be
difficult to interpret, and designing the architecture of
the network—which includes the number of layers, the
number of nodes in a layer, and the connectivity among
the nodes—can be a challenge.

Another classification algorithm that uses optimiza-
tion techniques is the support vector machine. This
uses a nonlinear function to map the input into a
higher-dimensional space in which the data are lin-
early separable. There are many hyperplanes that lin-
early separate the data. The optimal one, as indicated
by statistical learning theory, is the maximum mar-
gin solution, where the margin is the distance between
the hyperplane and the closest example of each class.
These examples are referred to as the support vec-
tors. This solution is obtained by solving a quadratic

programming problem [IV.11] subject to a set of lin-
ear inequality constraints. Support vector machines
provide some insight into the process of classifica-
tion through the identification of the support vec-
tors, though it is a challenge to find the nonlinear
transformation that linearly separates the data.

A probabilistic approach to inference is provided by
Bayesian reasoning, which assumes that quantities of
interest are governed by probability distributions. This
enables us to make decisions by reasoning about these
probabilities in the presence of observed data. Bayes’s
theorem,

P(h | D) = P(D | h)P(h)/P(D),
is a way of calculating the posterior probability P(h |
D), or the probability of hypothesis h given data D,
from the prior probability of the hypothesis before we
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have seen the data, P(h); the probability P(D | h) of
seeing the data D in a world where the hypothesis h
holds; and the prior probability p(D) of seeing the data
D without any knowledge of which hypothesis holds.
Bayes’s theorem is essentially derived from the two dif-
ferent ways of representing the probability of observ-
ing both h and D together by writing it conditional
either on D or h.

Given the probabilistic insight provided by Bayes’s
theorem, it is invaluable in tasks requiring reason-
ing under uncertainty. The theorem also plays a role
in the naive Bayes classifier. The new data item is
assigned the most probable output value given the val-
ues of its features. This most probable output value is
obtained by applying Bayes’s theorem using probabili-
ties derived from the training data, combined with the
added simplifying assumption that the feature values
are conditionally independent, given the output.

A recent development in classification techniques is
that of ensemble learning, where more than one clas-
sifier is created from the training data. This is done
by introducing randomization into the process, by cre-
ating new training sets using sampling with replace-
ment from the original training set, for example, or
by selecting a random subset of features or samples
to use in making the decision at each node. The class
label assigned to a new data item is obtained by using
a voting scheme on the labels assigned by each clas-
sifier in the ensemble. While ensembles are compu-
tationally more expensive as multiple classifiers have
to be created, the ensemble prediction is often more
accurate.

5.3 Clustering

Clustering is a descriptive technique used when the
data items are not associated with an output value.
It can be seen as complementary to classification.
Instead of using the output value to identify bound-
aries between items of different classes near each other
in feature space, we use the features to identify groups
of items in feature space that are similar to, or close to,
each other (figure 4). Intuitively, if the features are cho-
sen carefully, two data items with similar features are
likely to be similar. Thus, if we know that some chem-
ical compounds, with desirable properties, occur in a
certain part of an appropriately defined feature space,
other compounds near them might also have the same
property. Or, if a customer is interested in a specific
movie or book, others that are nearby in feature space
could be recommended to them.

F1

F2

Figure 4 A schematic showing three
clusters in a two-dimensional data set.

Clustering techniques broadly fall into one of two cat-
egories. In hierarchical methods we have two options:
start from the bottom, with each item belonging to a
singleton cluster, and merge the clusters, two at a time,
based on a similarity metric; or start at the top, with all
items forming a single cluster, and split that into two,
followed by a split of each of the two clusters, and so
on. In both methods, we need to determine how many
clusters to select in the hierarchy.

In contrast, partitional methods start with a prede-
termined number of clusters and divide the data items
into these clusters such that the items within a cluster
are more similar to each other than they are to the items
in other clusters. The best-known partitional algorithm
is the k-means algorithm, which divides the data items
into k clusters by first randomly selecting k cluster cen-
ters. It then assigns each data item to the nearest clus-
ter center. The items in each cluster are then used to
update the cluster centers and the process continues
until convergence. The k-means algorithm is very pop-
ular and, despite its simplicity, works well in practice.
The main challenge is to determine the number of clus-
ters; this can be done by evaluating a clustering crite-
rion such as the sum of squared errors of each data
item from its cluster center and then selecting the k
that minimizes this error.

The k-means algorithm is related to algorithms in
other domains; examples include Voronoi diagrams
from computational geometry, the expectation–maxi-
mization algorithm from statistics, and vector quanti-
zation in signal processing.

There is a third category of clustering algorithms that
shares properties of both hierarchical and partitional
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methods. These graph-based algorithms are related to
the reordering methods used in direct solvers and the
domain decomposition techniques used in PDEs. Essen-
tially, they represent the data items as nodes in a graph,
with the edges weighted according to the similarity
between the data items. Clustering is then done either
by using graph partitioning algorithms, where clusters
are identified by minimizing the weights of the edges
that are cut by the partitioning, or by using spectral
graph theory and calculating the second eigenvector of
the graph laplacian [V.12 §5]. The nodes of the graph
are split into two using the eigenvector components,
and the process is then repeated on the two parts.

6 The Future

As data-mining algorithms have gained a foothold in
application domains such as astronomy and remote
sensing, other domains such as medical imaging, with
similar types of data and problems, have started con-
sidering data mining as a potential solution to their
analysis problems. These new domains have in turn
introduced new challenges to the analysis process and
posed new questions, prompting the development of
new algorithms. And then, when these algorithms are
adopted by other communities, the cycle is continued.

There are several key developments from the last
decade that will drive the future of data mining and
analysis. These developments have been motivated
both by the types of data being analyzed and by the
requirements of the analysis.

There has been an explosion in the types of data
being analyzed. While raw data in a tabular form is
still the norm in some problem domains, other types
of data—ranging from images and sequences of images
to text documents, web pages, links between web
pages, chemical compounds, deoxyribonucleic acid
(DNA) sequences, mesh data from simulations, and
graphs representing social networks—have prompted
a new look at algorithms for finding accurate and
appropriate representations of such data. This has also
prompted greater interest in data fusion, where we ana-
lyze multiple modalities of data. For example, we may
consider PET scans and MRI scans, as well as clinical
data, to treat a patient. Or we may consider not just
the links between web pages but also the text, figures,
and images on those pages.

Adding to this complexity is the distributed nature
of some of the data sets. For example, the use of sen-
sor networks is becoming common in the surveillance

and monitoring of experiments and complex systems.
The networks may be autonomous and may reorganize,
changing their positions in response to changes in their
environment. In some problems, such as when moni-
toring climate, the sensors may be stationary but geo-
graphically scattered over the Earth. In all these cases,
the data set to be analyzed is in several pieces that may
not be collocated and the size of the data may make it
difficult to collocate all the pieces in one place. There
is a need for algorithms that analyze distributed data
and build a model, or models, to represent the whole
data set. In autonomous sensor networks there is an
additional requirement that the amount of information
exchanged between sensors be small, implying that it
is the models and not the data that are exchanged.
Such ideas are also relevant in telemedicine, as well as
space exploration, where the distances and limited con-
nectivity imply caution in determining what data and
information are transferred.

This brings up the need for effective compression
techniques: both lossy, for problems which can toler-
ate the loss of some information, and lossless, where it
is important that the data be preserved in their orig-
inal state. Compression will also play a role as we
move to exascale computation, where it is becoming
clear that the amount of data generated by simulations
run on massively parallel machines will outpace the
technology of the input–output system.

The ever-increasing volume of data will increase the
need for algorithms that exploit parallel computers;
otherwise we run the risk of the data not being analyzed
at all. In addition, such algorithms will be invaluable in
problems where a real-time or near-real-time response
is required.

This short response time is required in the analy-
sis of streaming data, where we analyze data as they
are collected to identify untoward incidents, interesting
events, or concept drift, where the statistical properties
of the data change from one normal state to another.
This is prompting the development of new algorithms
that yield approximate results, as well as the creation
of incremental versions of existing algorithms, where
the models being built are constantly being updated to
incorporate new data and discard old data. A particu-
lar challenge in such analysis is the need to minimize
false positives while ensuring that we do not miss any
positives, especially in problems where the analysis is
used in decision support.

As data analysis comes to be viewed as one step in
a closed system in which the data are analyzed and
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decisions are made based on the analysis, without a
human in the loop, there is an increasing need to under-
stand the uncertainty in the analysis results. Uncer-
tainty can arise as a result of several factors, includ-
ing the quality of the raw data, the suitability of the
chosen analysis algorithms for the data being studied,
the sensitivity of the results to the parameters used
in the algorithms, a lack of complete understanding
of the process or system being analyzed, and so on.
Thus, ideas from uncertainty quantification and rea-
soning under uncertainty become important, especially
when the risks associated with the decisions are high.

This brings up the interesting issue of using data
analysis techniques to influence the data we collect so
that they better meet our needs. So far we have viewed
data analysis as a process that starts once the data have
been collected, but sometimes we have control over
what data to generate, such as which data items to label
to create a training set or which input parameters to use
for an experiment or a simulation. We can borrow ideas
from the field of design of experiments, both physical
and computational, to closely couple the generation of
the data with their analysis, hopefully improving the
quality of that analysis.

This borrowing of ideas from other domains will
continue to increase as data analysis evolves to meet
new demands. We have already seen how ideas from
the traditional data analysis disciplines such as statis-
tics, pattern recognition, and machine learning are
being combined with ideas from fields such as image
and video processing, mathematical optimization, nat-
ural language processing, linear algebra, and PDEs to
address challenging problems in data analysis. This
cycle involving the development of novel algorithms
followed by their application to different problem
domains, which in turn generates new analysis require-
ments, will continue, ensuring that data mining and
analysis remain very exciting areas for the foreseeable
future. Applied mathematics will remain a cornerstone
of the field, not just by contributing to the extraction of
insight into the data but also by playing a critical role
in convincing the application experts that the insight
obtained is based on sound mathematical principles.
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IV.18 Network Analysis
Esteban Moro

1 Introduction

Almost 300 years ago Euler posed the problem of find-
ing a walk through the seven bridges of Königsberg and
laid the foundations of graph theory. Euler’s approach
was probably one of the first examples of how to use
network analysis to solve a real-world problem. Since
then, network analysis has been used in many con-
texts, from biology to economics and the social sci-
ences. The general approach is to map the constituent
units of the system and its interdependencies onto a
network and analyze that network in order to under-
stand and predict a given process. For example, buyers
and items form a network of purchases that is used
in recommendation engines; protein–protein interac-
tion networks are used to unveil functionally coherent
families of proteins; social relationships might reveal
potential adoption of products and services by social
contagion.

The analysis of networks is an old subject in math-
ematics, and it has its roots in many other disciplines,
such as engineering, the social sciences, and computer
science. However, in recent times the digital revolu-
tion has brought with it easier access to detailed infor-
mation about phenomena such as biological reactions,
economic transactions, social interactions, and human
movements. This has allowed us to study networks with
an unprecedented level of detail. While this data revo-
lution has produced an enormous boost in the models
and applications of network theory, reaching unusual
areas such as politics, crime, cooking, and so on, it
has also challenged the available analytical methods
because of the large size of real networks, which are
typically made up of millions or even billions of nodes.
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As a consequence, network analysis is a rapidly chang-
ing field that attracts many researchers from diverse
disciplines. This article discusses the mathematical
concepts behind network analysis and also some of the
main applications to real-world problems.

2 Definitions

The main mathematical object in network analysis is
the network itself. A network (or a graph) is a pair G =
(V , E) of a set V of vertices (nodes) together with a set
E ∈ V × V of edges (links). The numbers of nodes and
edges are denoted by n = |V | and m = |E|. Any edge
is a relation between two vertices of V . Mathematically,
a network can be represented by the adjacency matrix
A, where aij has the value 1 if there is an edge between
vertices i and j and 0 otherwise (see plate 5). If the edge
is undirected thenaij = aji, while if the direction of the
edge matters then the network is directed and A is in
general nonsymmetric. Another variant is a weighted
network, in which the nonzero elements of A represent
the strength of the relationship: aij = wij ∈ R.

Although a complete description of the network is
given by the adjacency matrix, we can obtain valu-
able insights by measuring local (node-centric) and/or
global properties of the graph. For example, the degree
or connectivity, ki, of node i in an undirected network is
the number of connections or edges that the node has.
The graph density, D = 2m/(n(n− 1)), measures how
sparse or dense a graph is by the ratio of the number
of edges to the maximum possible number of edges
for an n-node graph. In a complete graph every node
is connected to every other node, so D = 1. A path
in the network is a sequence of edges that connects a
distinct sequence of nodes. The graph is connected if
one can get from any node to any other node by fol-
lowing a path. The distance δ(i, j) between two nodes
i and j is the length of the shortest path (also known
as a geodesic) between them; if no such path exists,
we set δ(i, j) = ∞. Distance can be also defined tak-
ing into account the weights of the edges. Finally, the
diameter - of a graphG is the maximum value of δ(i, j)
over all pairs of i, j ∈ V . Table 1 summarizes some key
definitions and notation for easy reference.

One of the most common interests in network analy-
sis is in the “substructures” that may be present in
the network. The neighborhood of a node (its ego net-
work), which comprises itself and its ki neighbors, can
be thought of as a substructure. More generally, any
subset of the graph is called a subgraph G′ = (E′, V ′),

where E′ ⊆ E and V ′ ⊆ V . The connected components
of a graph are the subgraphs in which any two vertices
are connected to each other by paths. We say that there
is a giant component if there is a component that com-
prises a large fraction of the nodes. A clique in an undi-
rected graph G is a subgraph G′ that is complete. A
maximal clique in G is a clique of the largest possible
size in G. Another measure of the “core” of the net-
work is the k-core of G, which is defined as the maxi-
mal connected subgraph of G in which all the vertices
have degree at least k. Equivalently, it is one of the con-
nected components of the subgraph of G formed by
repeatedly deleting all vertices of degree less than k.
Finally, network motifs are recurrent and statistically
significant subgraphs or patterns within a graph. More
informal definitions of clusters in the network are used
in the community-finding problem, in which a graph
G is divided into a partition of dense subgraphs (see
section 3.5).

In some applications the static structure of networks
or graphs is not enough to incorporate the dynamical
nature of nodes and the interactions between them.
For example, if we want to study the phone calls made
between the customers of a mobile phone company, we
will need to incorporate the fact that calls take place
at different times. To this end, we can define tempo-
ral graphs, Gt = (Vt, Et), in which we have a different
set of nodes and edges for each t � 0. Time-varying
graphs are affected by the temporal aspects of interac-
tions, like causality, which add a new perspective to net-
work analysis. Also, when multiple types of edges are
present (multiplexity), we must consider a description
in which nodes have a different set of neighbors in each
layer (type). For example, one can consider each layer
as the different types of social ties among the same set
of individuals. Or one could picture each layer as rep-
resenting a particular time in a temporal graph, or the
layers could be the mathematical setup for the bipar-
tite network of users and items in recommendation
algorithms.

3 Properties

The German mathematician Dietrich Braess noted that
adding extra roads to a traffic network can lead to
greater congestion. This paradox shows one of the char-
acteristics of network analysis: namely, that networks
have emergent properties that cannot be explained sim-
ply by the sum of their components. Here, we review
some of the key properties of networks that are found



362 IV. Areas of Applied Mathematics

Table 1 The key definitions and notation for a graph G = (V , E) with n nodes and m edges.

Degree or connectivity ki Number of connections or edges that node i has
Diameter - maxi,j∈V δ(i, j)
Degree distribution pk Fraction of nodes in G that have degree k
Average degree k̄

∑n
i=1ki/n or

∑
kkpk

Average degree of neighbors knn Average degree of (next-nearest) neighbors of a node in G
Graph density D 2m/(n(n− 1))
Distance δ(i, j) Length of the shortest path between nodes i and j
Clustering coefficient C Relative frequency of triangles to triplets in G
Individual clustering coefficient Ci Relative frequency of triangles to triplets involving node i

in real examples and incorporated in the most repre-
sentative models. The properties cover most scales of
network, from local features like connectivity or clus-
tering to the study of a network’s modular structure
(motifs, communities).

3.1 Heterogeneity

Many unique properties of networks are due to their
heterogeneity. In the simplest approximation, networks
are heterogeneous in the connectivity sense: a homoge-
neous network is one in which each node i has the same
degree ki ≈ k̄, where k̄ is the average degree in the net-
work. However, in real-world networks the distribution
of connectivities is highly heterogeneous. In fact, one is
very likely to find nodes with ki � k̄. A simple way to
characterize heterogeneity is by using the degree dis-
tribution of the network, pk, the fraction of nodes in
the network that have degree k. In a homogeneous net-
work, pk peaks around the average value k̄. However,
real-world networks are usually heavily skewed, with a
long tail of nodes having ki � k̄. These high-degree
nodes or hubs have an important role in many proper-
ties of the network. Conversely, the network contains
many nodes that are poorly connected. The connec-
tivity description of the network is thus that of “few
giants, many dwarves.”

Although measuring the tail of heavily skewed dis-
tributions is statistically tricky, recent work has found
that some real-world networks have power-law degree
distributionspk ∼ k−α, where the scaling exponent typ-
ically lies in the range 2 < α < 3. Some instances of
this observation are the network structure of the Inter-
net, the network of links between Web pages, the net-
work of citations between papers, phone communica-
tion networks, metabolic networks, and financial net-
works. Networks with power-law degree distributions
are usually referred to as scale-free networks because
pk lacks a characteristic degree. They have attracted

wide attention in the literature due to their ubiquity in
many complex systems and also because of their possi-
ble modeling by simple growth models. In other situa-
tions, degree distributions seem to be better described
by exponentials or power-law distributions with expo-
nential cutoffs. Regardless of which statistical model is
best for describing pk, the large heterogeneity found in
networks implies that there is no such thing as typical
connectivity in the network. Node degree is not the only
network property that shows heterogeneity. For exam-
ple, the weights (intensity) of edges, the frequency of
motifs, and the distribution of community sizes are all
described by broad distributions, showing that hetero-
geneity appears at different scales of the network and
in various network descriptions.

3.2 Clustering

As well as being unequally shared among the nodes,
edges tend to be clustered in a network. For example,
the neighbors of a given node are very likely to them-
selves be linked by an edge. In the language of social
networks, the probability that a friend of your friend is
also your friend is very large. A way of measuring net-
work clustering is to calculate the transitivity or clus-
tering coefficient, 0 � C � 1, which measures the rel-
ative frequency of triangles (cliques of size 3) in the
network with respect to the total number of triplets
(three nodes connected by at least two edges). In a fully
connected graph, C = 1. Clustering can also be mea-
sured locally: Ci measures the fraction of neighbors of
a node i that are also neighbors of each other. Social
and biological networks display large clustering coef-
ficients when compared with random network models,
while technological networks like the World Wide Web,
the Internet, or power grids have much less cluster-
ing. The origin of this difference lies in the potential
mechanisms behind clustering or its absence: in social
networks people who spend time with a common third
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(a)

(b)

Figure 1 (a) Yeast protein–protein interactions (data from
von Mering, C., et al., 2002, Nature). (b) The power grid of
the western states of the United States (data from Watts,
D. J., and S. H. Strogatz, 1998, Nature). Links that belong
to a triangle are shown in black, with the rest in gray. For
reasons of clarity, nodes are removed in both cases. The
clustering coefficients are (a) C = 0.44 and (b) C = 0.09.

person are likely to encounter each other, and thus tri-
adic closure is favored by social interactions. Actually,
triadic closure is exploited by many online social net-
works for friend-recommendation algorithms. In bio-
logical networks large clustering might be due to con-
current interaction of proteins in biological processes.
However, efficiency in technological networks discour-
ages the formation of redundant edges between nodes
that are already close in the network, and C is therefore
very small (see figure 1).

In some networks Ci decreases with the degree
ki. This means that low-degree nodes are densely

clustered while hubs’ neighborhoods are sparsely con-
nected, a result which, together with the existence of
densely connected groups of nodes (communities; see
section 3.5), reflects the hierarchical organization of
some networks: low-degree nodes are situated in dense
communities, while hubs link different communities.

Triangles are not the only cliques or motifs that
are over-represented in networks. For example, some
three- or four-node motifs occur in large numbers even
in small networks. However, most represented motifs
in food webs, for example, are distinct from those
found in transcriptional regulatory networks and from
those in the World Wide Web, a finding that some
authors ascribe to the function of the network. Net-
works may therefore be classified into distinct func-
tional families based on their typical motifs. At a higher
level, the relative size of the maximal clique or the k-
core of the graph are also measures of the degree of
clustering in the network.

3.3 Small World

Many naturally occurring networks exhibit the small-
world phenomenon; that is, they have a small graph
diameter. This was famously illustrated by the psy-
chologist Stanley Milgram in 1967, who discovered
the famous “six degrees of separation” (on average)
between two persons in the worldwide social network.
The experiment was later reproduced using email and
measuring the distance in massive social graphs. The
fact that networks are densely connected creates a
wealth of short paths between nodes, and the typical
distance between nodes is therefore very small. Illus-
trations of the small-world phenomenon are actors’
“Bacon numbers,” or mathematicians’ Erdös numbers:
the distance from Paul Erdös in the graph whose edges
represent coauthorship of papers. The average Erdös
number is only around 5.

Mathematically speaking, a small-world network re-
fers to a network model in which the diameter increases
sufficiently slowly with the number of nodes n in the
network—typically, as logn or slower. However, this
property is trivially satisfied in a tree-like network if we
assume that the number of nodes at distance d from a
given node scales as dk̄, where k̄ is the average num-
ber of neighbors. The small-world property is there-
fore sometimes accompanied by the condition that the
clustering coefficient is bounded away from zero as n
increases. In real-world networks, where n is fixed, a
small-world network is defined as one in which - is
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smaller and C is much bigger than the values found
in statistically equivalent random network models.

3.4 Centrality

The concept of the centrality of a network tries to
answer the question of which is its most important
node. Depending on the nature of the relationships
and the process under study, centrality means different
things. For example, degree centrality approximates
the centrality of a node by its degree in the network ki.
In most situations, this is a highly effective measure of
centrality. These highly connected nodes, usually called
hubs, might have a major impact on the robustness of
the network if they are removed or damaged.

However, hubs might be located in the periphery of
the network. More global and advanced measures of
centrality are eigenvector, betweenness, and closeness
centrality, which take into account the relative position
of one node with respect to the rest.

Eigenvector centrality relies on the idea of central-
ity propagation: the centrality of a node xi is a lin-
ear function of the centrality of its neighbors xi =
(1/λ)

∑
j aijxj . Writing x = (x1, . . . , xN), we obtain an

eigenvector equation Ax = λx. Among all the possi-
ble solutions of this equation, the one with the great-
est eigenvalue has all entries positive (by the perron–

frobenius theorem [IV.10 §11.1]). The components of
the related eigenvector are taken to be the centrality
of each node. Several generalizations of this method
are possible; for example, a variant of eigenvector cen-
trality is Google’s PageRank algorithm [VI.9], used
to rank the importance of Web pages, which in turn is
also used in network analysis to measure the centrality
of nodes. Some other centrality measures, such as Katz
centrality, the Bonacich power, and the Estrada index,
can be obtained as solutions of eigenvalue problems of
functions of the adjacency matrix [II.14].

Another well-known centrality measure is between-
ness, introduced by Freeman in 1979, which is defined
as the number of times node i appears in the short-
est paths between any pair of nodes in the network.
Specifically, if gjk is the number of geodesic paths from
i to j, and if gjik is the number of these geodesics
that pass through node i, then the betweenness cen-
trality of node i is given by bi = ∑

j≠k≠i gikj/gij .
The idea behind betweenness is that it measures the
volume of flow through a node of a process that is
happening in the network. Finally, closeness centrality
(also introduced by Freeman) is defined as the average

distance from one node to the rest of the network, i.e.,
ci = (1/n)

∑
j δ(i, j).

Centrality is widely used to determine the key nodes
in the network. For example, it is used to find influential
individuals in online social networks, to identify lead-
ers in organizations, as a method for selecting individu-
als to target in viral marketing campaigns, or to identify
central airports in the air transportation network.

3.5 Communities

In most networks (see plate 5 and figure 2) there are
groups of nodes that are more densely connected inter-
nally than with the rest of the network. This feature of
a network is called its community structure. Commu-
nity structure is common in many networks, and its
determination yields a mesoscopic description of the
network. But primarily it is interesting because it can
reveal groups of vertices that share common proper-
ties or subgraphs that play different functional roles in
the system. In fact, communities in social networks are
found to be related to social, economic, or geographi-
cal groups; communities in metabolic networks might
reflect functional groups; and communities in citation
networks are related to research topics.

The hypothesis underneath these findings is that
the network itself contains the information needed
to reveal the groups and that the communities can
be obtained using a graph-partitioning technique that
assigns vertices to each group (see figure 2). Mathemat-
ically speaking, the problem of identifying graph com-
munities is not well defined. To start with, there is no
clear definition of what a community is in a graph. This
ambiguity is the reason behind the wealth of algorithms
in the literature, each of which implicitly assumes its
own mathematical and/or statistical definition of com-
munities and thus produces different partitions in the
graph. On top of that, graph-partitioning problems are
typically np-hard [I.4 §4.1] and their solutions are gen-
erally achieved using heuristics and/or approximation
algorithms that might not deliver the exact solution
or even the same approximate solution. Most of the
time, therefore, we need further external information
to validate the partition obtained.

Many different methods have been developed and
employed for finding communities in graphs. Some of
them rely on graph-partitioning techniques (such as
the minimum-cut method) or data-clustering analysis
(such as hierarchical clustering) borrowed from com-
puter science. Some problems with these methods are



Plate 1 (II.16). Force-directed graph visualizations. A sample of forty-nine graphs from the University of
Florida Sparse Matrix Collection. The color is determined by the length of the edges: short ones are red,
medium-length edges are green, and long edges are blue.



Plate 2 (II.16). Looking like Dr. Seuss’s “red fish, blue fish,”
the top image is the graph from a constraint matrix for a
linear programming problem, while the bottom image is the
graph from a frequency-domain circuit simulation.



Plate 3 (II.16). The graph of a Hessian matrix from a
convex quadratic programming problem.

Plate 4 (II.16). A close-up of a graph from a
financial portfolio optimization problem.
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Plate 5 (IV.18). Network of email exchanges between aca-
demic staff at Universidad Carlos III de Madrid. The graph
has 1178 nodes and 3830 links. Each link indicates that
at least two emails were exchanged between those nodes,
and the node colors correspond to the different depart-
ments within the institution. Node size and link width are
log-proportional to their degree and weight (the number of
emails exchanged), respectively. Square white nodes corre-
spond to the mathematics department, which forms a dense
community within the network. The two-dimensional lay-
out was obtained using a force-directed graph-drawing algo-
rithm. The network has average degree k̄ = 6.5, clustering
coefficient C = 0.21, and diameter � = 12. (b) The distribu-
tion of connectivity pk for the network. The red vertical line
corresponds to the value k = k̄.
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Plate 6 (V.17). An X-ray computed tomography volume rendering of brine layers within a lab-grown sea ice
single crystal with S = 9.3 ppt. The (noncollocated) 8 mm × 8 mm × 2 mm subvolumes (a)–(c) illustrate a
pronounced change in the microscale morphology and connectivity of the brine inclusions during warming
((a) T = −15 ◦C, φ = 0.033; (b) T = −6 ◦C, φ = 0.075; (c) T = −3 ◦C, φ = 0.143). (d) Data for the vertical fluid
permeability k taken in situ on Arctic sea ice, displayed on a linear scale. (e) Divergence of the brine correlation
length in the vertical direction as the percolation threshold is approached from below. (f) Comparison of Arctic
permeability data in the critical regime (twenty-five data points) with percolation theory in (7). In logarithmic
variables, the predicted line has the equation y = 2x−7.5, while a best fit of the data yields y = 2.07x−7.45,
assuming φc = 0.05. (Parts (a)–(d) are adapted from Golden, K. M., H. Eicken, A. L. Heaton, J. Miner, D. Pringle,
and J. Zhu. 2007. Thermal evolution of permeability and microstructure in sea ice. Geophysical Research
Letters 34:L16501. Copyright 2005 American Geophysical Union. Reprinted by permission of John Wiley &
Sons, Inc.)



Plate 7 (V.17). Ocean swells propagating through a vast
field of pancake ice in the Southern Ocean off the coast of
East Antarctica (photo by K. M. Golden). These long waves
do not “see” the individual floes, whose diameters are on
the order of tens of centimeters. The bulk wave propaga-
tion characteristics are largely determined by the homog-
enized or effective rheological properties of the pancake/
frazil conglomerate on the surface.
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Plate 8 (V.17). (a) Shading shows the solution to Laplace’s equation within the Antarctic MIZ (ψ) on August 26,
2010, and the black curves show MIZ width measurements following the gradient ofψ (only a subset is shown
for the sake of clarity) (courtesy of Courtenay Strong). (b) Same as (a) but for the Arctic MIZ on August 29, 2010.
(c) Width of the July–September MIZ for 1979–2011 (red curve). Percentiles of daily MIZ widths are shaded
dark gray (25th to 75th) and light gray (10th to 90th). Results are based on analysis of satellite-derived sea
ice concentrations from the National Snow and Ice Data Center. (Parts (b) and (c) are adapted from Strong, C.,
and I. G. Rigor. 2013. Arctic marginal ice zone trending wider in summer and narrower in winter. Geophysical
Research Letters 40(18):4864–68.)



(a) (b) (c)

(d) (e) (f)

Plate 9 (V.17). The evolution of melt pond connectivity and color-coded connected components: (a) discon-
nected ponds, (b) transitional ponds, (c) fully connected melt ponds. The bottom row of figures shows the
color-coded connected components for the corresponding image above: (d) no single color spans the image,
(e) the red phase just spans the image, (f) the connected red phase dominates the image. The scale bars repre-
sent 200 m for (a) and (b), and 35 m for (c). (Adapted from Hohenegger, C., B. Alali, K. R. Steffen, D. K. Perovich,
and K. M. Golden. 2012. Transition in the fractal geometry of Arctic melt ponds. The Cryosphere 6:1157–62
(doi:10.5194/tc-6-1157-2012).)



Plate 10 (VI.5). The flow generated by a two-dimensional
flapping wing mimicking dragonfly wing motion. The col-
ors indicate the vorticity field, with red and blue represent-
ing positive and negative vorticity, respectively. The wing
motion creates a downward jet composed of counterrotat-
ing vortices. Each vortex pair can be viewed as the cross
section of a donut-shaped vortex ring in three dimensions.
From Z. J. Wang (2010), Two dimensional mechanism for
insect hovering, Physical Review Letters 85(10):2216–19.

Plate 11 (VI.5). A fruit fly making a sharp yaw turn of 120◦

in about 20 wing beats, or 80 ms. The wing hinge acts as
if it is a torsional spring. To adjust its wing motion, the
wing hinge shifts the equilibrium position of the effective
torsional spring, and this leads to a slight shift of the angle
of attack of that wing. The asymmetry in the left and right
wings creates a drag imbalance that causes the insect to
turn. To turn 120◦, the asymmetry in the wing angle of
attack is only about 5◦ or so. From A. J. Bergou, L. Ristroph,
J. Guckenheimer, I. Cohen, and Z. J. Wang (2010), Fruit flies
modulate passive wing pitching to generate in-flight turns,
Physical Review Letters 104:148101.
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Plate 12 (VII.7). CIE 1931 color space chromaticity dia-
gram, with the gamut of sRGB shown. (File adapted from
an original on Wikimedia Commons.)

(a)

(b)

Plate 13 (VII.7). (a) Original image. (b) Image converted to
LAB space and A channel negated ((L,A, B, )← (L,−A,B)).



Plate 14 (VII.8). An inpainted image. (Courtesy of
Bugeau, Bertalmio, Caselles, and Sapiro.)

(b)(a)

(d)(c)

Plate 15 (VII.8). A contour (in green) evolving from the ini-
tial position in part (a) to the segmentation in part (d).
The deformation (the two stages shown in parts (b) and
(c)) is governed by a geometric partial differential equation.
(Courtesy of Michailovich, Rathi, and Tannenbaum.)



(a)

(b)

Plate 16 (VII.8). For each of the two examples, the subfigures
in the top row correspond to three original frames, while
those in the bottom row are (from left to right) two cor-
responding white-background composites and a (different)
special effect. The special effects are (a) a delayed-fading
foreground and (b) an inverted background. (Original videos
courtesy of Artbeats (www.artbeats.com) and Getty Images
(www.gettyimages.com).)

Plate 17 (VII.8). The first column shows two frames from
a mimicking video, while the tracking/segmentation masks
are displayed in different colors in the remaining columns.
The two dancers are correctly detected as performing dif-
ferent actions. (Courtesy of Tang, Castrodad, Tepper, and
Sapiro.)

http://www.artbeats.com
http://www.gettyimages.com


Plate 18 (VII.9). (a) A PET “heat map” image; (b) the image in (a) fused with the CT scan of the same section
shown in (c). From the fused image it is apparent that the increased uptake of fluorodeoxyglucose, indicated
by the yellow arrow, is in the gall bladder and is not the result of bowel activity. (Images courtesy of Dr. Joel
Karp, Hospital of the University of Pennsylvania.)



(a)

(b)

Plate 19 (VII.13). (a) Direct volume rendering of the insta-
bility of an interface between two fluids of different den-
sities, termed the Rayleigh–Taylor instability. (b) Isosur-
facing used to visualize the visible human data set (www
.imagevis3D.org).

http://www..imagevis3D.org
http://www..imagevis3D.org
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Plate 20 (VII.13). (a) Vector visualization of a stellar mag-
netic field using streamlines (Schott et al. 2012). (b) Glyph-
based tensor visualization of anatomic covariance tensor
fields (Kindlmann et al. 2004).



Plate 21 (VII.13). MizBee: a multiscale synteny browser
for exploring comparative genomics data.

Plate 22 (VII.13). EnsembleVis: a framework designed for
exploring short-term weather forecasts (Potter et al. 2009).



(a)

(b)

Plate 23 (VII.13). Visualizations of bioelectric fields in
the heart and brain (Tricoche and Scheuermann 2003).
(a) Stream surfaces show the bioelectric field in the direct
vicinity of epicardium, or outer layer of the heart. (b) Tex-
tures applied across a cutting plane reveal details of a
source of electric current in the brain and the interaction
of the current with the surrounding tissue.



IV.18. Network Analysis 365

Mr. Hi

John A.

Figure 2 A social network of friendships between thir-
ty-four members of a karate club at a U.S. university in the
1970s. The club was led by president John A. and karate
instructor Mr. Hi (pseudonyms). Edge width is proportional
to the number of common activities the club members took
part in. In 1997 Zachary studied how the club was split
into two separate clubs (white and gray symbols) after long
disputes between two factions within the club. A commu-
nity-finding algorithm (label propagation) applied to the
network before the split finds three communities (dashed
lines) that have a large overlap with the factions after the
split.

that the number of communities has to be given by
the algorithm and/or there is no way to discriminate
between the many possible partitions obtained by the
procedure. To circumvent these issues a quality func-
tion of the partition has to be given. In a seminal paper,
Newman and Girvan introduced the concept of the mod-
ularity of a partition, which measures the difference
between the actual density of edges within communi-
ties and the fraction that would be expected if edges
were distributed at random:

Q = 1
2m

∑
i,j
(aij − pij)γ(ci, cj),

where the sum runs over all pairs of vertices, γ(ci, cj) =
1 if i and j are in the same community (zero other-
wise), and pij represents the expected number of edges
between i and j in a null model, i.e., a model of a
random graph with the same number of nodes and
edges (see section 4). Given the large heterogeneity of
degrees in the network, the most used model is the con-
figuration model in which pij = kikj/(2m). Despite
its limitations, modularity has had a great impact in
community-finding algorithms. It gives a quantitative

measure of the partition found, and it can therefore be
employed to get the best (maximum-modularity) par-
tition in divisive algorithms. In addition, modularity
optimization is itself a popular method for community
detection.

Other popular methods include clique-based meth-
ods such as the clique-percolation algorithm (which
defines a community as percolation clusters of k-
cliques), random-walk methods (where a community
is a region of the graph in which a random walker
spends a long time), and consensus algorithms (where
a community is defined as a group of nodes that
share common outcomes in a dynamical coordina-
tion process). Examples of consensus algorithms are
label-propagation algorithms, in which nodes are given
unique labels that are then updated by majority voting
in the neighborhood of nodes. Labels reached asymp-
totically by this consensus process are taken as com-
munities in the graph.

Community finding in networks is a computationally
complex task. Typically, algorithm times scale with the
number of nodes n and edges m, and some methods
are therefore not suitable for finding communities in
very large networks. In recent years, however, much
progress has been made in accelerating the algorithms,
and it is possible to efficiently apply algorithms such as
the Louvain method, Infomap, or the fast greedy algo-
rithm of Clauset, Newman, and Moore to networks with
millions of nodes.

4 Models

Building on the observations of real-world networks
and their common properties found in many systems,
one can create mathematical models of networks. Mod-
els are important for two reasons: the first is that sim-
ple null network models can be used to test the sta-
tistical significance of the results found in real-world
applications. Of course, the very definition of null net-
work models depends on the context and the process to
be considered. On the other hand, modeling networks
allows us to obtain good mathematical representations
of the observed systems, which can then be used for
further testing or even to make predictions about the
future behavior of a process.

4.1 The Erdös–Rényi Model

The random graph model is the most used model
type. In this technique, graphs are generated accord-
ing to a probability distribution or a random process.
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(a)

(b)

(c)

Figure 3 Examples of networks generated by (a) the
Erdös–Rényi model, (b) the preferential-attachment model,
and (c) the small-world model. All networks have the same
number of nodes n = 50 and edges m = 100. The size of a
node is proportional to its connectivity ki.

Here, we review some of the most popular examples in
mathematical studies and applications.

In 1959 Paul Erdös, Alfréd Rényi, and (independently)
Edgar Gilbert proposed a simple binomial random

graph model, G(n,p), in which the graph of n nodes

is constructed by connecting each pair of nodes with

probability p (see figure 3). The distribution of degrees

in G(n,p) is given by the binomial distribution, which

becomes a Poisson distribution in the limit of large n:

pk =
(
n− 1
k

)
pk(1 − p)n−1−k ≈ k

ke−k̄

k!
,

where k̄ = (n− 1)p is the mean degree. Thus, pk does

not have heavy tails. Despite this difference from real

networks, many properties of G(n,p) are exactly solv-

able in the limit of large n, and the random graph

model has therefore attracted a lot of attention in the

mathematics community. For example, the diameter

is approximately given by - ∼ logn/log k̄, and thus

G(n,p) has the small-world property. On the other

hand, the clustering coefficient is C = p = k̄/(n − 1),
which tends to zero in the limit of a large system (for

finite k̄), unlike real-world networks where C is finite

even for large n. Obviously, G(n,p) does not have

any community structure either. Nonetheless, G(n,p)
can be used as a zero-information model, providing a

benchmark for comparison with other models and data.

4.2 The Configuration Model

To allow for non-Poisson degree distributions, we can

generalize the Erdös–Rényi model to the configuration

model, which was first given in its simple explicit form

by Bollobás. In this model the degree distribution pk or

degree sequence k1, . . . , kn is given and a random graph

is formed with that particular distribution or degree

sequence. A simple algorithm to generate such ran-

dom graphs is to give each vertex a number of “stubs”

of edges, either according to the distribution or from

the degree sequence, and then pick stubs in pairs uni-

formly at random and connect them to form edges. The

ensemble of graphs produced in this way is called the

configuration model. Many properties of the configura-

tion model are known. Molloy and Reed showed that

there is almost surely a giant component if k2 −2k̄ > 0

(where k2 = ∑
k k2pk), and that the probability of find-

ing a loop on the graph decays like n−1, i.e., the graph

has a local tree-like structure for large n. This was used

by Newman to show in a simple way that the clustering

coefficient decays asymptotically like C ∼ n−1.

One of the most important properties of the config-

uration model is that the distribution qk of degrees of

nodes obtained following a randomly chosen edge is

not given by pk. Instead, since in choosing a random
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edge there are k ways to get to a node with connectiv-

ity k, we obtain that qk ∼ kpk. The average degree of

(next-nearest) neighbors of a node is therefore

knn =
∑
k
kqk ∼ k

2

k̄
.

Since real-world networks are very heterogeneous, we

usually find that k2 > k̄, and the neighbors of a ran-

domly chosen node therefore have more connectivity

than the node itself. This fact has a key role in many

processes that happen in networks (see section 6). In

social networks it is known as the friendship para-

dox, posed by the sociologist Feld in 1991: on aver-

age, your friends have more friends than you do. It

also has other direct consequences; for example, in

scale-free networks with 2 < α < 3, we find that

the diameter - ∼ log logN , and, thus, scale-free net-

works are ultrasmall. For α > 3 we recover the small-

world behavior - ∼ logN . Finally, since edges are dis-

tributed randomly among nodes, the probability that

two nodes with degrees ki and kj are connected is

given by kikj/(2m), a result used in the definition of

modularity Q as a null model approximation for pij .

5 Other Random Models

Configuration models can be generalized to exponen-

tial random graphs, also called p∗ models. These are

ensembles of graphs in which the probability of observ-

ing a graph G with a given set of properties {xi} is

P(G) = eH(G)/Z , where Z = ∑
G eH(G) and the network

Hamiltonian is given by H(G) = ∑
i θixi(G), with {θi}

the ensemble parameters. For example, we could take

x1 to be the number of edges, x2 to be the number

of vertices with a given degree, x3 to be the number

of triangles in the network, and so on. Much of the

progress made in this field has come through the use

of Monte Carlo simulations of the ensemble and/or by

using real network data to estimate the parameters of

the model.

Another random graph model is the family of sto-

chastic block models, in which nodes are assigned to

s different blocks and vertices are placed randomly

between nodes of different blocks with a probability

that depends only on the blocks of the nodes. Specifi-

cally, if zi denotes the block that the vertex i belongs to,

then we can define an s × s stochastic block matrix M ,

where mij gives the probability that a vertex of type

zi is connected to a node of group zj . Blocks can be

groups of nodes that have similar structural equiva-
lence, have similar demographics, or belong to the same
community.

5.1 The Small-World Model

The small-world model was introduced by Watts and
Strogatz as a random graph that has two independent
structural properties of real networks: a finite cluster-
ing coefficient, and the small-world property - ∼ logn
when n increases. The basic idea of this model is to
build a graph embedded in a one-dimensional lattice
in which nodes are connected to a local neighborhood
of size d and then the edges are “rewired” with prob-
ability p (see figure 3). When p = 0 we recover a
one-dimensional regular graph, while when p = 1 we
recover a random graph. The local tight neighborhood
provides the finite clustering property, while the long-
range rewired links are responsible for the low diam-
eter of the network. Specifically, as n → ∞ the clus-
tering coefficient is C ∼ 3(d − 1)/[2(2d − 1)](1 − p)3
and the diameter scales as n and logn for p = 0
and p = 1, respectively. One interesting feature of the
Watts–Strogatz model is that it interpolates between
a regular graph and a completely random graph. A
major limitation of the model is that it produces unre-
alistic degree distributions (pk decays exponentially).
Many variations of the small-world model have been
proposed and studied.

5.2 The Preferential-Attachment Model

While the models above incorporate the observed
macrofeatures of networks, generative models try to
explain those features as an emergent property that is
due to microscopic mechanisms. A particularly popular
class of models is the network growth model, in which
the dynamics of node and edge creation create the
observed network properties. Probably the best-known
example is the so-called preferential-attachment model
of Barabási and Albert, which aims to explain the scale-
free property of the degree distribution. This is done
using the rich-get-richer mechanism in edge creation:
nodes are added to the network with a certain num-
ber m of edges emerging from them, and those edges
are connected to preexisting nodes with connectiv-
ity k with probability πk. This preferential-attachment
mechanism has been observed in many growing net-
works, from citation and collaboration networks to the
Internet and online social networks. Simple rate equa-
tions can be written for the evolution of the system,
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and we find that the degree of each node grows accord-
ing to a power law ki(t) ∼ tβ and that for all t the
degree distribution is scale free pk ∼ k−α, where the
exponents α, β depend on the preferential-attachment
probability. In the linear case, where πk = k, we obtain
that α = 3, a value that is similar to those found in
real-world networks such as the World Wide Web.

The preferential-attachment model has the small-
world property with a double logarithmic correction
- ∼ logn/ log logn, and numerical results suggest
that the cluster coefficient C behaves as C ∼ n−0.75.
Although C vanishes in the limit n → ∞, it can have
large values for finite n. One of the main criticisms
of the preferential-attachment mechanism is that it
requires global information about the network, which
is clearly an unrealistic assumption in many situations.
This and other criticisms have been addressed by mod-
ifying the original model using local network formation
rules, triadic closure, or finite memory of nodes.

6 Processes

Beyond the metrics and models presented in the previ-
ous sections, much of our knowledge about networks
comes from our ability to explain processes happening
on the network by analyzing its structure. For example,
we would like to understand whether the node with the
largest centrality is also the fastest to become aware of
information spreading in the network. Or perhaps we
want to know what the relationship is between an Inter-
net network’s degree of heterogeneity and its resilience
to targeted attacks. Progress in this direction comes
from simulating simple models of these processes on
real or synthetic models of networks and from the
availability of data that is empowering (and sometimes
challenging) our understanding of how networks work.

6.1 Spreading

Probably the most-studied process in networks is how
things spread around them. In particular, a wealth
of work has been done on understanding how net-
work structure (and dynamics) impacts the spread-
ing of information, viruses, diseases, rumors, etc. For
example, people have studied how the structure of net-
works of sexual contacts (or the network of flows of
passengers between airports and cities) influences the
spread of diseases; others have studied the best way
of choosing the people who are initially targeted in a
viral marketing campaign on a social network in order
to optimize the reach and velocity of the campaign.

Spreading models are typically borrowed from epi-
demiology: diseases spread to susceptible (noninfect-
ed) (S) nodes when they are exposed to infected (I)
nodes, and then they can decay into the recovered (R)
state. This is the so-called sir model [V.16], which has
a long history in mathematical epidemiology. Although
the model is dynamical in nature, Grassberger found
that it could be mapped exactly onto bond percolation
in the network: outbreaks in the spreading process cor-
respond to clusters in the percolation problem. Perco-
lation is a well-known problem in mathematics; in its
bond version it describes the behavior of connected
clusters in a random graph in which edges are occu-
pied with probability λ. The question is then whether
there is a cluster that “percolates” the whole network,
i.e., a connected cluster of a fraction of the network,
the so-called giant component. This would correspond
to a large disease outbreak in the spreading problem. In
most systems there exists a critical λc at which the per-
colation transition, or epidemic breakout in epidemiol-
ogy, happens for λ > λc. In viral marketing we would
like our campaigns to operate above λc, so the spread-
ing “goes viral,” while in disease spreading, vaccination
and health policies are designed to maintain λ < λc.
Although λc depends on the virulence of the disease,
it is also affected by the structure of the network in
which disease propagates. For example, in the con-
figuration model with degree distribution pk, starting
from one infected initial seed we have, on average, that
R0 = λk̄ of its neighbors are infected. Each of these
R0 infected neighbors goes on to infect an average of
R1 = λ(knn − 1) new next-nearest neighbors. The same
happens in the following steps. The size of the outbreak
is therefore given by

s̄ = 1 + R0 + R0R1 + R0R2
1 + · · · = 1 + R0

1 − R1
. (1)

Thus, outbreak size diverges as R1 → 1, that is, when
λ → λc = 1/(knn − 1) = k̄/(k2 − k̄). This is actually the
Molloy and Reed criterion for the existence of a giant
component applied to the corresponding configuration
model in which edges are occupied with probability λ.
Since heterogeneity in networks usually implies that
k2 � k̄, the epidemic threshold is always very small.
Moreover, in networks that are scale free with expo-
nent α � 3, we have that k2 diverges. This implies that
in highly heterogeneous networks, the critical point
vanishes and information or disease spreads all over
the network, an interesting result of Pastor-Satorras
and Vespignani that has been suggested as an explana-
tion for the prevalence of computer viruses. Although
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this result was obtained for a very particular epidemic
model in the configurational model, the general under-
standing is that network heterogeneity favors spread-
ing. Indeed, R0 and R1 are widely used in epidemiology
to assess epidemic outbreak, where they are known as
the basic reproduction numbers. Away from the config-
uration model, epidemic spreading in real networks is
controlled by the first eigenvalue σ1 of the adjacency
matrix, so that λc = 1/σ1. Furthermore, network clus-
tering and its community structure tends to reduce the
spread of infection, since spreading gets trapped in
densely connected areas of the network.

Two related questions are finding the nodes in the
network that spread most efficiently and, conversely,
finding the ones that are affected by the spreading pro-
cess earliest. Both of these questions are related to cen-
trality in the network: the more central a node is, the
larger the outbreak cluster that can generate from it,
and also the faster it becomes aware of the spread-
ing process. This result allows us to strategically target
initial spreaders in information spreading or to vacci-
nate more central people in social networks to stop epi-
demics. But it also provides a way of choosing a set of
central nodes (sensors) in the network that can help us
detect epidemic outbreaks or information spreading as
quickly as possible. For example, Fowler and Christakis
and collaborators have found that a set of sensors is
highly effective in detecting outbreaks in information
and disease spreading, even in massive networks.

6.2 Contagion

Closely related to information diffusion, yet mechanis-
tically different, is behavior contagion, or how expo-
sure to certain individual behavioral characteristics can
drive the propagation of those characteristics from
individual to individual in a network. The importance
of social-network structure in promoting positive or
arresting damaging behavior has recently been stud-
ied in many contexts, ranging from spreading of health
behaviors, to product/service adoption, to political
opinion, to participation in time-critical events, to the
diffusion of innovations, and so on. Taken together,
these studies hint at some generalities regarding behav-
ior contagion: it critically depends on the structural
diversity of the network (i.e., from how many differ-
ent social communities the behavior is exposed) and
on social reinforcement (i.e., how additional exposures
change the probability of adoption and how cluster-
ing in networks promotes it). However, recent work

has highlighted the problem that most of the observed
causal influence in social networks could be chiefly due
to latent homophily or other assortative confounder
variables. For example, an individual might buy a par-
ticular product not because she is influenced by the
network surrounding her but because she belongs to
a group to which that product is appealing. A more
refined statistical network would be needed to establish
causality in behavior contagion.

6.3 Robustness

In many applications, networks should be robust to
small topological or dynamical perturbations. For ex-
ample, communication networks, power grids, or or-
ganizational business processes should be resilient
to intentional attacks, random failures in stations,
or organizational changes, respectively. In the most
simple approximation network, robustness is studied
under a random or intentional removal of nodes and/or
edges. The question is at which point in this removal
process does the network stop operating as intended,
e.g., when a significant fraction of nodes in communi-
cation networks can no longer communicate with each
other. This obviously happens when there is no path
between those nodes, and in that case the network
becomes disconnected with a number of small compo-
nents. In this form, the robustness problem is then very
similar to percolation, where nodes or edges are unoc-
cupied when they are attacked or they fail. Depending
on the removal strategy there will be a critical fraction
qc such that when q nodes are removed with q > qc

the network becomes disconnected, while the removal
of q < qc nodes leaves a large fraction of nodes in a con-
nected component (the giant component ). For example,
if a fraction q of randomly chosen nodes are removed
from the configuration model with degree distribution
pk, then each node has (1 − q)k̄ neighbors on average
and each of the neighbors will itself have (1 − q)knn

neighbors. Thus, starting from a node that has not been
removed we can form a connected component that has
average size given by equation (1), where R0 = (1−q)k̄
and R1 = (1 − q)(knn − 1), recovering the Molloy–
Reed criterion that qc ≈ 1 − k̄/k2. This implies that
highly heterogeneous networks (where k2 � k̄) are very
robust against random attacks. Conversely, given the
structural importance (centrality) of hubs or bridges,
an intentional attack to remove those nodes could dis-
connect the network very easily. Thus, although the het-
erogeneous and modular structure of networks makes
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them resilient against random attacks, the central role

of hubs and bridges between communities makes net-

works very fragile when it comes to targeted attacks

against them.

In some situations failures can propagate in the net-

work like avalanches. This is the case in power trans-

mission grids or the Internet, where the removal or fail-

ure of nodes changes the balances of flows and could

lead to high loads in other nodes and their possible

failure. Another example is cascades of bank failures

in financial networks. In this case, the robustness of

the network depends both on its topological structure

and on how the capacities/tolerance of nodes are dis-

tributed over it. Finally, in some technological problems

networks are interconnected; for example, in Italy’s

major 2003 blackout it was found that the coupling

between the power grid network and the communica-

tion network caused further breakdown of power sta-

tions. The effect of heterogeneity in random attacks

is the opposite in interconnected networks from the

effect in simple networks: a broader distribution of

degree increases the vulnerability of interconnected

networks.

6.4 Consensus

Repeated information sharing and behavior contagion

can lead to the formation of consensus or synchroniza-

tion in the network. Examples of consensus formation

in networks are the problems of opinion formation in

society, synchronization of biological neural networks,

or protocols in distributed computing. Simple mod-

els of consensus formation are the well-known math-

ematical problems of the voter model or the Kuramoto

model of coupled oscillators. Important questions in

consensus processes are whether the network struc-

ture favors the appearance of consensus and its impact

on the time to reach it. The answer to the first question

depends on the way in which models or experiments

are engineered. For example, in the voter model, con-

sensus is not reached in general in heterogeneous net-

works, although finite-size fluctuations induce consen-

sus after a time τ ∼ n. Since most consensus problems

can be written in a diffusion-like framework, the time

to consensus can be obtained from the spectral prop-

erties of the graph. For example, consider the simple

local average consensus problem

ẋi =
∑
j∈Ni

(xj(t)− xi(t)),

where the Ni are the neighbors of node i, and xi(t)
is the state of node i. The collective dynamics of the
agents can be written as ẋ = −Lx, where L is the Lapla-
cian matrix [L]ij = kiδij − aij . Since L always has a
zero eigenvalue σ1 = 0, the timescale in the consensus
problem is given by the second smallest eigenvalue σ2,
which is usually called the algebraic connectivity. The
time to achieve consensus is then given by τ ∼ 1/σ2.
In general, heterogeneity has a large influence on τ :
while in the voter model larger heterogeneity (more
hubs) favors consensus, synchronization of oscillators
is more difficult in highly heterogeneous networks. On
the other hand, it appears that community structure
has a large influence in reaching consensus. In fact, this
is the main idea behind some community-finding algo-
rithms that are based on consensus formation, such as
the label-propagation algorithm (see section 3.5)

6.5 Network Prediction/Inference

Networks contain explicit information about the nodes
they contain and how they interact, but they might also
contain implicit information about interactions that
might happen in the future or about the possibility
that a given node, edge, or subgraph disappears from
the network after some time. For example, in a social
context, the fact that two people share a large num-
ber of friends indicates that those two people might be
friends as well. This kind of analysis is not only use-
ful in predicting how a network might evolve, but it
also helps us to make inferences about links that are
unobserved or are missing from the data. Most of the
processes of link formation and decay can be predicted
by looking at the local neighborhood or community of
the link: nonconnected nodes that have structural sim-
ilarity tend to become connected. The simplest similar-
ity measure is the number of shared neighbors in the
network (or the embeddedness of an edge), but other
dyadic or neighborhood measures have been proposed.
Conversely, studying four years’ worth of banker rela-
tionships in a large organization, Burt found that edges
between nodes that are very similar do not decay eas-
ily, and therefore network evolution happens mostly
at the bridge positions between communities, where
nodes are structurally different.

7 Applications

It would be impossible to cover all the applications of
network analysis here. Although it has long been used
in the social sciences, the last few decades have seen
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many technological, engineering, economic, and bio-
logical problems being studied using network analysis.
Here we review some of those applications.

7.1 Social Networks

The analysis of social networks has a long tradition, and
in fact many of the techniques and ideas in network
analysis are derived from sociology. Social networks
are defined by a set of actors (persons, organizations,
etc.) and edges that represent relationships between
them (friendships, business relationships, etc.). Tradi-
tional social network analysis was devoted to explain-
ing the role of network structures, dyadic properties,
or network positions in social processes. At the level
of the network, for example, the connectedness or
cohesion of a group or of the network itself could
be an explanatory variable in consensus formation,
shared norms, etc. Dyadic properties of social networks
refer to concepts like distance between nodes, struc-
tural equivalence (sharing the same relationships to
all other nodes), reciprocity (the tendency of nodes to
form mutual connections), etc., that can be used to
find structural equivalence classes, that is, types of
actors in the network. Regarding network positions,
the most studied concept is that of the use of central-
ity to determine the most important actor in a social
network with respect to information sharing, economic
opportunities, prestige, and so on.

Different social positions also lead to different net-
work roles; for example, bridges are nodes that appear
between communities and thus have a large central-
ity (see figure 4). Bridges are surrounded by structural
holes (i.e., the lack of a connection between two nodes
in communities connected by a bridge), and thus only
bridges can access information from different sources
and communities and benefit from their position in
the network. The potential benefits that their posi-
tion in a network could yield to a group or individ-
ual are known as social capital theory (introduced by
Burt in the 1990s). Intimately related to the concept
of bridges and structural holes is Granovetter’s theory
of weak ties: if strong ties are associated with inti-
mate and intense relationships, Granovetter’s theory is
that weak ties are associated with bridges, that is, that
our strongest edges happen within communities (see
figure 4). Weak ties therefore enable people to reach
information that is not accessible via strong ties. Gra-
novetter used a survey of job seekers to prove this; he
asked people who had found a job through contacts

Weak
tie

Structural
hole

Bridge

Strong
tie

Figure 4 The network of email communication between two
departments (white and gray symbols) from plate 5. Most
communication happens within departments, and some
individuals have special roles as bridges between them.
Also, there are a large number of structural holes in the
network; weak ties happen between the departments while
strong ties occur between people in the same department
(the Granovetter hypothesis).

how often they saw the person who had helped them

get their job. The majority were acquaintances rather

than close friends. In more recent work, Onnela and

collaborators measured these social theories quantita-

tively; using a large graph of mobile phone communi-

cations, they found that people with weak ties (those

with a smaller number of calls) tend to have larger

betweenness than those with strong ties.

Much work has been devoted to understanding

when and why information propagates in social net-

works. Understanding how fast and how far informa-

tion spreads is important in viral marketing, social

mobilizations, innovation spreading, and computer

viruses, for example. Although information spreading

is affected by many factors, including the value of

the content transmitted and exogenous campaigns, the

very network structure shapes the speed and reach

of information spreading. As we show in section 6,

it is possible to study how the structural proper-

ties of the network—such as heterogeneity, cluster-

ing, and communities—influence the spreading, and

to study what structural properties (centrality, degree,

k-coreness) of an initial set of nodes are needed to

maximize the spreading in the network.
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Although behavior contagion is difficult to assess in
many contexts, network analysis is widely used in mar-
keting and social media to detect and predict changes
of behavior. For example, it is used in the telecommu-
nication industry to predict churn or product/service
adoption using the social network of a company’s
clients obtained through the calls placed between them.
The basic idea is that behavior like churning or adop-
tion has a viral component and propagates on the net-
work. Thus, the probability to churn or buy a particular
product or service depends on the number of neigh-
bors in the social network that have already done so.
The analysis of the social network of clients permits
one to identify and target those individuals most likely
to make a purchase.

Disease spreading is also influenced by an infected
person’s social network. Here, the approach is dif-
ferent depending on the scale at which spreading is
being studied. At small scale, the study of networks
of sexual contacts can help to understand and con-
trol the spread of sexually transmitted diseases. These
networks show high heterogeneity, modular structure,
and small-world phenomena—properties that promote
the spread of the disease across the network. In turn,
since highly heterogeneous networks are susceptible
to intentional attacks, targeted vaccination of super-
spreaders might be enough to prevent an epidemic,
a result that reinforces standard public-health guide-
lines. At a large scale, we can consider metapopula-
tion network models, in which nodes are populations
(groups, patches, cities) and edges account for the prob-
ability of transmission between populations. In these
examples, human mobility networks play a major role.
For example, the worldwide airport transportation net-
work is highly connected; it is a small world, and its
structure therefore favors epidemics on a global scale
(see figure 5). In 2003 the SARS outbreak took just a
few weeks to spread from Hong Kong to thirty-seven
countries. Analysis of transportation networks allows
us to predict which airports or hubs will be most likely
to promote aggressive spatial spreading.

7.2 Economics and Finance

The complexity of interdependencies between differ-
ent agents, financial instruments, traders, etc., can be
also studied using network analysis. In these stud-
ies, the main aim is to understand how the network
structure impacts the performance of institutions or
economies and also the role it plays in economic risks

Figure 5 A network of passenger flows among U.S. airports.
The network has 489 airports and 5609 different routes
between them. The diameter of the network is only 8. The
black line shows one of the largest geodesics in the network:
that between the airports of Grand Canyon West, AZ, and
Fort Pierce, FL.

and their possible mitigation. For example, the 2008

financial crisis has shown that systemic risk can prop-

agate rapidly between interconnected financial struc-

tures. A potentially vulnerable market for contagion of

financial shocks is the interbank loan market, where

banks exchange large amounts of capital for short dura-

tions to accommodate temporal fluctuations. Network

analysis has shown the important role of the topology

of that market in the systemic risk of the system. Specif-

ically, it has been found that contagion of bank failures

can be promoted by the heterogeneity and density of

the network, and the fragility of the system to exter-

nal shocks has also been demonstrated. The impact of

the structure of financial networks and global markets

on their stability has attracted the interest of regula-

tors and central bankers in using network analysis to

evaluate systemic risk.

Network analysis is also used to map how organi-

zational environments affect an organization’s perfor-

mance, that is, how market transactions, contracts,

mergers, interlocking board directorates, or strategic

alliances shape organizations, create innovation, or

define the future performance of companies in a par-

ticular sector. For example, in 1994 Saxenian hypoth-

esized that the dramatic growth of Silicon Valley in

the previous decades could be explained, in part, by

the cooperative and informal exchange of information

among the organizations in the area. At the world level,

the study of the network of international trade allows
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us to analyze indirect trade interactions between coun-

tries, the effect of globalization on the world economy,

or the cascade effect of financial crises in different

countries.

7.3 Biology

Many biological problems are intrinsically complex;

they include the interaction of a large number of

molecules, cells, individuals, or species. Mapping all

this information into a network allows us to analyze the

common structure of those problems and to develop

tools that may prove useful for applications in a wide

variety of biological problems.

For example, new noninvasive techniques for mea-

suring brain structure and activity, such as neuroimag-

ing (e.g., magnetic resonance imaging [VII.10 §4.1]

(MRI), functional MRI, and diffusion tensor imaging)

and neurophysiological recordings (e.g., electroenceph-

alography, magnetoencephalography), have allowed us

to collect large amounts of spatiotemporal data about

brain structure and activity. Analyzing the anatomi-

cal and/or functional connectivity of different areas of

the brain, researchers have constructed network mod-

els of the brain. Brain networks (connectome) seem

to be organized in communities or modules, have the

small-world property, and also present highly influen-

tial (hubs) nodes; they even seem to be scale free. Those

communities appear to coincide with known cognitive

networks or function subdivisions of the human brain,

while the small diameter of the network seems to allow

for efficient information processing.

The recent development of high-throughput tech-

niques in molecular biology has led to an unprece-

dented amount of data about the molecular inter-

actions that occur in biological organisms, e.g., the

metabolic networks of biochemical reactions between

metabolic substrates, the interaction networks between

proteins (interactome), and the regulatory networks

that represent the interactions between genes. A know-

ledge of the topologies of complex biological networks

and their impact on biological processes is needed not

only to understand those processes but also to develop

more effective treatment strategies for complex dis-

eases. Most of the available analyses are concerned

with the application of the concept of centrality, which

allows us to determine the essential protein or gene (or

groups of them) in the organism and then apply the

results to drug target identification.

7.4 Other Applications

Network analysis has expanded into many other areas.

For example, it is used in sports to understand the style

of play and the performance of teams. In football, by

analyzing the network of passes between players it was

found that a large clustering coefficient, or the diversity

of the distribution of passes (entropy), correlates with

the performance of the Spanish team that won the 2010

FIFA World Cup. Similar analysis has been done for bas-

ketball in the 2010 NBA Playoffs. Another interesting

and recent application has been to map and under-

stand the networks of cuisines, recipes, and ingredients

in cooking. The availability of online recipe reposito-

ries has allowed researchers to find similarities among

different regional cuisines in China, and to unveil the

flavor network in culinary ingredients.

Since networks shape the information we receive and

influence our behavior, a major concern is how much

of our private life is encoded in the network structures

and dynamics around us. For example, the information

we leave behind in social networks can be used for iden-

tity disclosure or to unveil private personal traits. Net-

work analysis can be used in this context to understand

how to perform privacy-preserving network analysis,

typically by graph-modification algorithms in which

some edges or nodes are changed and/or removed. The

idea is that these modifications conserve enough of the

structure to perform analysis globally while hindering

the identification of individuals and/or personal traits.

7.5 Software Tools

Much of the progress in network analysis in recent

years is down to the availability of not only data but

also the software tools needed to analyze it and visu-

alize it. The most well-known tools are those that

include a graphical user interface, such as UCINet,

Pajek, Cytoscape, NetMiner, and Gephi. More power-

ful analyses of large networks can be done using pack-

ages such as the igraph package (ported to R, Python,

and C) or the NetworkX library for Python, tools that

are also widely used in producing high-quality graphics

(the figures in this article were produced using igraph).

In the era of large data sets, efficient storage of net-

works can be achieved using the graph structure of

nodes, edges, and the relationships between them. A

number of graph databases have been developed in

which the network structure is used internally to store

and query network data. Typically, graph databases
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scale more naturally to large graphs and are more pow-
erful for graph-like queries; for example, computing the
neighborhood of a node or the shortest path between
two nodes in the graph is much easier and faster than
in relational databases. Prominent examples of these
databases are Neo4j and Sparksee.

8 Outlook

In this article we have introduced the main mathemati-
cal tools needed to analyze networks, and we have also
illustrated how a large variety of complex systems can
be studied by mapping the interdependencies between
their constituent units into a network. But network
analysis is not just a powerful methodology for analyz-
ing those graphs; it is also a different way of conceiving
those systems as collective structures with emergent
behaviors that cannot be explained by the sum of their
individual parts. For example, the world economy, the
biological processes that occur in cells or ecosystems,
mass mobilization, and the performance of organiza-
tions all depend on the structure and dynamics of the
whole network rather than on the sum of individual
behaviors. Recent and future technologies will allow us
to collect more data more quickly from those systems,
allowing us to detect and promote more interdepen-
dencies between the units of the system. For example,
in the near future it will be possible to completely map
the connectome in the brain. Or perhaps we will be
able to monitor the activity within cities on an unprece-
dented scale or reveal the interdependencies between
financial and economic activities to help us prevent
future economic and societal crises. We might therefore
expect that the observation of systems will deliver more
and more networked data. Network analysis will be the
required tool for validating, modeling, and predicting
the behavior of those systems.
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IV.19 Classical Mechanics
David Tong

Classical mechanics is an ambitious subject. Its pur-
pose is to predict the future and reconstruct the past, to
determine the history of every particle in the universe.

The fundamental principles of classical mechanics
were laid down by Galileo and Newton in the sixteenth
and seventeenth centuries. They provided a framework
to explain vast swathes of the natural world, from plan-
ets to tides to falling cats. In later centuries the frame-
work of classical mechanics was reformulated, most
notably by Lagrange and Hamilton. While this new way
of viewing classical mechanics often makes it simpler
to solve problems, its main advantage lies in the new
mathematical perspective it offers on the subject. In
particular, it reveals the door to the quantum world that
lies beyond the classical.

This article begins by reviewing the Newtonian frame-
work, providing examples of important physical sys-
tems that can be solved. It then goes on to describe
the Lagrangian and Hamiltonian frameworks of classi-
cal mechanics. Throughout, the emphasis of the arti-
cle is more on the role that classical mechanics plays
in the fundamental laws of physics than on practical
engineering applications of the theory.

1 Newtonian Mechanics

Newtonian mechanics describes the motion of particles,
which are defined to be objects of insignificant size.
This means that if we want to say what a particle looks
like at a given time t, the only information that we have
to give is its position in R3, specified by a 3-vector r ≡
(x,y, z). The goal of classical dynamics is to determine
the vector function r(t) in any given situation. This, in
turn, tells us the velocity v = dr/dt ≡ ṙ of the particle.
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1.1 Newton’s Laws of Motion

The motion of a particle of mass m at the position
r is governed by a second-order differential equation
known as Newton’s second law :

dp
dt

= F(r, ṙ; t), (1)

where p =mṙ is the momentum of the particle and F
is the force, an input that must be specified. Examples
will be given below. In general, the force can depend
on both the position r and the velocity ṙ. It can also
depend explicitly on time.

In most situations the mass is independent of time. In
this case, Newton’s second law reduces to the familiar
form F =ma, where a ≡ r̈ is the acceleration. We will
not consider phenomena with time-dependent mass in
the following.

Because (1) is a second-order differential equation,
a unique solution exists only if we specify two initial
conditions. This has a consequence: if we are given a
snapshot of some situation and asked what happens
next, then there is no way of knowing the answer. It is
not enough to be told only the positions of the particles
at some point in time; we need to know their velocities
too.

1.1.1 Principle of Relativity

Equation (1) is not quite correct as stated; we must add
the caveat that it holds in an inertial frame. This is a
choice of coordinates appropriate for an observer who
sees a free particle travel in a straight line, also known
as uniform motion.

The statement that, in the absence of a force, a par-
ticle travels in a straight line is sometimes called New-
ton’s first law. However, setting F = 0 in (1) already tells
us that free particles travel in straight lines. So is the
first law nothing more than a special case of the sec-
ond? In fact, a better formulation of the first law is the
statement that inertial frames exist. This then sets the
stage for the second law.

Inertial frames are not unique. Indeed, there are
infinitely many of them. Let S be an inertial frame in
which the position of a particle is measured as r. There
are then 10 = 3 + 3 + 3 + 1 independent transforma-
tions S → S′ such that S′ is also an inertial frame. These
transformations are the following.

Spatial translation: r′ = r + c for any constant c.
Rotations: r′ = Or, where O is a 3 × 3 orthogonal

matrix with OTO = I.

Boosts: r′ = r + ut for constant velocity u.
Time translation: t′ = t + d for constant d.

If the motion of a particle is uniform in S, then it
will also be uniform in S′. These transformations make
up the Galilean group under which Newton’s laws are
invariant. The physical meaning of these transforma-
tions is that position, direction, and velocity are rela-
tive. But acceleration is not. One does not have to accel-
erate relative to something else. It makes perfect sense
to simply say that one is, or is not, accelerating.

1.1.2 Systems of Particles

The discussion above is restricted to the motion of a
single particle. It is simple to generalize to many parti-
cles; we just add an index to everything in sight. Let par-
ticle i have massmi and position ri, where i = 1, . . . , N ,
withN the number of particles. Newton’s law now reads

dpi
dt

= Fi, (2)

where Fi is the force on the ith particle. The novelty
is that forces can now be working between particles. In
general, we can decompose the force as

Fi =
∑
j≠i
Fij + Fext

i ,

where Fij is the force acting on the ith particle due to
the jth particle, while Fext

i is the external force on the
ith particle.

The total mass of the system isM =∑
i mi. We define

the center of mass as R = ∑
i miri/M and the total

momentum as P =∑
i pi = MṘ.

The center of mass motion is particularly simple.
From (1),

MR̈ =
∑
i
Fi =

∑
i

∑
j≠i
Fij +

∑
i
Fext
i

=
∑
i<j
(Fij + Fji)+

∑
i
Fext
i ,

where, in the second line, we have rewritten the sum
to be over all pairs i < j. At this stage we invoke New-
ton’s third law of motion: every action has an equal and
opposite reaction. Or, in equation form, Fij = −Fji. We
see that the first term vanishes and we are left with

MR̈ =
∑
i
Fext
i .

This is identical in form to Newton’s second law (1) for
a single particle. This is an important formula. It says
that the center of mass of a system of particles acts as
if all the mass were concentrated there. In other words,
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it does not matter if you throw a tennis ball or a very
lively cat; the center of mass of each traces the same
path.

1.2 Forces

Newton’s second law is not useful until someone else
tells us what the force F is in any given situation. Here
we provide several examples of forces.

1.2.1 Conservative Forces and Energy

We start by considering time-independent forces that
are a function only of the position of the particle, F =
F(r). Within this class there is a special class known as
conservative forces. These can be expressed as

F = −∇V(r)
for some scalar function V(r). Systems that admit a
potential of this form include gravitational, electro-
static, and interatomic forces. The importance of con-
servative forces lies in the fact that there is a conserved
quantity called energy :

E = 1
2mṙ · ṙ + V(r) ≡ T + V.

(Recall that the scalar dot product is defined as ṙ · ṙ =
ẋ2 + ẏ2 + ż2.) The function T is known as the kinetic
energy ; V is known as the potential energy. It is simple
to show that if the equation of motion (1) is obeyed,
then E does not change over time:

dE
dt

= (mr̈ +∇V) · ṙ = 0.

In section 2.3 we prove a result called Noether’s the-
orem, which offers a deep explanation of why a con-
served quantity called energy exists.

Example (harmonic oscillator). Perhaps the simplest
example of a conservative force is provided by the har-
monic oscillator, which describes a particle attached to
a spring. The particle moves in one dimension, with
position x(t) and has potential energy V = 1

2kx
2,

where k > 0 is known as the spring constant. The
resulting force, F = −kx, is known as hooke’s law

[III.15]. The equation of motion mẍ = −kx has the
general solution x = A cosω0t + B sinω0t, where A
and B are integration constants. This describes a parti-
cle oscillating around the origin with angular frequency
ω0 =

√
k/m.

The harmonic oscillator is by far the most impor-
tant system in all of theoretical physics. For any sys-
tem described by a potential energy V , the stable equi-
librium points are the minima of V . This means that

if the particle is placed at an equilibrium point then,
by construction, dV/dx = 0, ensuring that it remains
at the equilibrium point for all time. Moreover, Tay-
lor expanding the potential tells us that small devia-
tions from equilibrium are generically governed by the
harmonic oscillator.

1.2.2 Central Forces

Central forces form a subclass of conservative forces
in which the potential depends only on the distance to
the origin:

V(r) = V(r),
where r = |r|. The resulting force always points in the
direction of the origin:

F(r) = −∇V = −dV
dr
r̂, (3)

where r̂ ≡ r/r is the unit radial vector. In addi-
tion to energy, central forces enjoy another conserved
quantity, known as angular momentum:

L =mr × ṙ,
where × denotes the cross product [I.2 §24]. Notice
that, in contrast to the linear momentum p =mṙ, the
angular momentum L depends on the choice of ori-
gin. It is perpendicular to both the position and the
momentum.

When we take the time derivative of L we get two
terms. But one of these contains ṙ × ṙ = 0, and we are
left with

dL
dt

=mr × r̈ = r × F.
The quantity τ = r×F is called the torque. For a general
force F, we find an equation that is very similar to New-
ton’s law: dL/dt = τ. However, for central forces (3), F
is parallel to the position r and the torque vanishes. We
find that angular momentum is conserved:

dL
dt

= 0.

As with energy, we will gain a better understanding of
why L is conserved when we prove Noether’s theorem
in section 2.3. For now, note that L is a constant vector
and, by construction,L·r = 0, which means that motion
governed by a central potential takes place in a plane
perpendicular to the vector L.

1.2.3 Gravity

To the best of our knowledge, there are four fundamen-
tal forces in nature. They are gravity, electromagnetism,
the strong nuclear force, and the weak nuclear force.
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The two nuclear forces operate only on small scales,
comparable with the size of the nucleus of an atom,
and it makes little physical sense to discuss them with-
out quantum mechanics. We will discuss the remaining
two, starting with Newtonian gravity.

Gravity is a conservative force. Consider a particle of
massM fixed at the origin. A particle of massmmoving
in its presence experiences a central potential energy

V(r) = −GMm
r

. (4)

HereG is Newton’s constant; it determines the strength
of the gravitational force and is given by G ≈ 6.67 ×
10−11 m3 kg−1 s−2. The force on the particle, F = −∇V ,
points toward the origin and is proportional to 1/r2.
For this reason it is called the inverse-square law.

Motion governed by the potential (4) describes the
orbits of planets around the sun and is known as
the Kepler problem. It is not difficult to solve New-
ton’s equation for this potential, and solutions can be
found in all of the references in the further reading
section below. Instead, here we present a very slick,
but indirect, method to find the orbits of the planets.
We have already seen that the conservation of angu-
lar momentum ensures that the motion takes place in
a plane. However, the potential (4) is special since it
admits yet another conserved quantity known as the
Laplace–Runge–Lenz vector:

e = ṙ × L
GMm

− r
r
.

With a little algebra, one can show that de/dt = 0. Its
magnitude e = |e| satisfies

er cosθ = L2/GMm2 − r ,
where θ is the angle between L and r. This is the
equation for a conic section. The solution with e < 1
describes an ellipse, with the origin at one of the foci.
For the special case of e = 0, the orbit is a circle. Note
that these orbits are closed: the particle periodically
returns to the same position. This is not generally true
for orbits in central potentials other than (4). The solu-
tions with e > 1 are not closed orbits; these describe
hyperbolas.

The elliptical solutions with e < 1 describe the plan-
etary orbits, with the sun sitting at the focus. Nearly
all planets in the solar system have e < 0.1, which
means that their orbits are approximately circular. The
only exception is Mercury, the closest planet to the sun,
which has e ≈ 0.2. In contrast, some comets have very
eccentric orbits. The most famous, Halley’s Comet, has
e ≈ 0.97.

We could try to extend our analysis to the problem
of three objects all moving under their mutual grav-
ity, but here things are dramatically harder. No gen-
eral solution to the three-body problem is known, and
to answer any practical questions one must resort to
numerical methods. Historically, though, the study of
the three-body problem has led to a number of new
mathematical developments, including chaos.

1.2.4 Electromagnetism

Throughout the universe, at each point in space there
exist two vectors, E and B. These are known as the
electric and magnetic fields. The laws governing E and
B are called maxwell’s equations [III.22]. An impor-
tant application of these equations is described in
magnetohydrodynamics [IV.29].

For the purposes of this article, the role of E and B
is to guide any particle that carries electric charge. The
force experienced by a particle with electric charge q is
called the Lorentz force:

F = q(E(r)+ ṙ × B(r)). (5)

Here, the notation E(r) and B(r) emphasizes that the
electric and magnetic fields are functions of position.
The term ṙ × B involves the vector cross product.

In principle, both E and B can change in time. How-
ever, here we will consider only situations in which they
are static. In this case, the electric field is always of the
form

E = −∇φ
for some function φ(r) called the electric potential or
the scalar potential. This means that a static electric
field gives rise to a conservative force. The electric
potential is related to the potential energy by V = qφ.

As an example, consider the electric field due to a
particle of charge Q fixed at the origin. This is given by

E = −∇
(

Q
4πε0r

)
= Q

4πε0

r̂
r2
. (6)

The quantity ε0 has the grand name the permittivity
of free space and is a constant given by ε0 ≈ 8.85 ×
10−12 m−3 kg−1 s2 C2, where C stands for Coulomb,
the unit of electric charge. The quantity ε0 should be
thought of as characterizing the strength of the electric
interaction.

The force between two particles with charges Q and
q is F = qE, with E given by (6). This is known as
the Coulomb force. It is a remarkable fact that, mathe-
matically, the force is identical to the Newtonian grav-
itational force arising from (4): both forces have the
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characteristic inverse-square form. This means that
the classical solutions describing an electron orbiting
a proton, say, are identical to those describing the
planets orbiting the sun.

We turn now to magnetic fields. These give rise to
a velocity-dependent force (5) with magnitude propor-
tional to the speed of the particle, but with direction
perpendicular to that of the particle. The magnetic
force does not contribute to the energy of the particle.

For a constant magnetic field B = (0,0, B), the
equations of motion read

mẍ = qBẏ, mÿ = −qBẋ,
together with z̈ = 0. This last equation tells us that the
particle travels at constant velocity in the z-direction
parallel to B. The equations in the xy-plane, perpendic-
ular to B, are also easily solved to reveal that a magnetic
field causes particles to move in circles:

x = v
ω
(cosωt − 1) and y = − v

ω
sinωt,

where v is the speed and ω = qB/m is the cyclotron
frequency. The time to undergo a full circle is fixed:
T = 2π/ω, independent of v . The bigger the circle, the
faster the particle moves.

1.2.5 Friction

At a fundamental level, energy is always conserved.
However, in many everyday processes this does not
appear to be the case. At a microscopic level, the kinetic
energy of an object is transferred to the motion of
many atoms, where it manifests itself as an increase
in temperature. If we do not care about what all these
atoms are doing, it is useful to package our igno-
rance into a single macroscopic force that we call fric-
tion. In practice, friction forces are important in nearly
all applications, not just in questions in fundamental
physics.

There are a number of different kinds of friction
forces. When two solid objects are in contact they expe-
rience dry friction. Experimentally, one finds that the
complicated dynamics involved in friction can often be
summarized by a single force that opposes the motion.
This force has magnitude F = μR, where R is the com-
ponent of the reaction force normal to the floor and μ
is a constant called the coefficient of friction. For steel
rubbing against steel, μ ≈ 0.6. With a layer of grease
added between the metals, it drops to μ ≈ 0.1. For steel
rubbing against ice, it is as low as μ ≈ 0.02.

A somewhat different form of friction, known as
drag, occurs when an object moves through a fluid,

either a liquid or a gas. The resistive force is opposite
to the direction of the velocity and, typically, falls into
one of two categories.

Linear drag is described by F = −γv, where the coef-
ficient of friction, γ, is a constant. This form of drag
holds for objects moving slowly through very viscous
fluids. For a spherical object of radius L, there is a for-
mula due to Stokes that gives γ = 6πηL, where η is the
dynamic viscosity of the fluid.

In contrast, quadratic drag is described by F =
−γ|v|v, where, again, γ is a constant. For quadratic
friction, γ is usually proportional to the surface area
of the object, i.e., γ ∝ L2. Quadratic drag holds for
fast-moving objects in less viscous fluids. This includes
objects falling in air.

The kind of drag experienced by an object is deter-
mined by the Reynolds number R ≡ ρvL2/η, where ρ
is the density of the fluid and η is the viscosity. For
R � 1, linear drag dominates; for R � 1, quadratic
friction dominates.

Systems that suffer any kind of friction are dissipa-
tive. They do not have a conserved energy.

To illustrate the effect of friction we return to the
harmonic oscillator that we met in section 1.2.1. Adding
a linear drag term to the equation of motion gives the
damped harmonic oscillator:

mẍ = −γẋ − kx.
We can look for solutions of the form x = eiβt . The
results fall into one of the following three categories
depending on the relative values of the natural fre-
quency ω2

0 = k/m and the magnitude of friction α =
γ/2m.

Underdamped: ω2
0 > α2. The solution takes the form

x = e−αt(AeiΩt + Be−iΩt), where Ω =
√
ω2

0 −α2.
Here, the system oscillates with a frequency Ω <
ω0, while the amplitude of the oscillations decays
exponentially.

Overdamped: ω2
0 < α2. The general solution is now

x = e−αt(AeΩt+Be−Ωt), whereΩ =
√
α2 −ω2

0. There
are no oscillations.

Critical damping: ω2
0 = α2. For this special case, the

general solution is x = (A + Bt)e−αt . Again, there
are no oscillations, but the system does achieve some
mild linear growth for times t < 1/α, after which it
decays away.

In each of these cases, the solutions tend asymptoti-
cally to x = 0 at large times. Energy is not conserved.
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2 The Lagrangian Formulation

There are two reformulations of Newtonian mechanics:
the first is due to Lagrange and the second to Hamil-
ton. These new approaches are not particularly useful
in modeling phenomena in which friction plays a dom-
inant role. However, when energy is conserved these
reformulations provide a new perspective on classical
mechanics, one that is more elegant, is more power-
ful, and, ultimately, provides the link to more sophisti-
cated theories of physics, such as quantum mechanics.
The starting point is one of the most profound ideas in
theoretical physics: the principle of least action.

2.1 The Principle of Least Action

First, let us get our notation right. Part of the power
of the Lagrangian formulation over the Newtonian
approach is that it does away with vectors in favor
of more general coordinates. We start by doing this
trivially. Let us rewrite the positions of N particles
with coordinates ri as xa, where a = 1, . . . ,3N ≡ n.
Newton’s equations (2) then read

ṗa = − ∂V
∂xa

, (7)

where pa =maẋa. The number of degrees of freedom
of the system is said to be n. These parametrize an n-
dimensional space known as the configuration space C .
Each point in C specifies a configuration of the system
(i.e., the positions of all N particles). Time evolution
gives rise to a curve in C .

Define the Lagrangian to be a function of the posi-
tions xa and the velocities ẋa of all the particles. It is
formulated as follows:

L(xa, ẋa) = T(ẋa)− V(xa), (8)

where T = 1
2

∑
ama(ẋa)2 is the kinetic energy and

V(xa) is the potential energy. Note the minus sign
between T and V . To describe the principle of least
action, we consider all smooth paths xa(t) in C with
fixed endpoints such that

xa(ti) = xainitial and xa(tf) = xafinal.

Of all these possible paths, only one is the true path
taken by the system. Which one?

To each path let us assign a number called the action
S, defined as

S[xa(t)] =
∫ tf
ti
L(xa(t), ẋa(t))dt.

The action is a functional (i.e., a function of the path
that is itself a function). The principle of least action is
the following result.

Theorem (principle of least action). The actual path
taken by the system is an extremum of S.

Proof. Consider varying a given path slightly:

xa(t)→ xa(t)+ δxa(t),
where we fix the endpoints of the path by demanding
that δxa(ti) = δxa(tf) = 0. Then the change in the
action is

δS = δ
∫ tf
ti
Ldt

=
∫ tf
ti
δLdt

=
∫ tf
ti

(
∂L
∂xa

δxa + ∂L
∂ẋa

δẋa
)

dt.

In this last equation we are using the summation con-
vention, according to which any term with a repeated
a or b index is summed. This means that this term,
and similar terms in subsequent equations, should be
thought of as including an implicit

∑3N
a=1. The second

term above includes δẋa ≡ d(δxa)/dt and can be
integrated by parts to get

δS =
∫ tf
ti

(
∂L
∂xa

− d
dt

(
∂L
∂ẋa

))
δxa dt +

[
∂L
∂ẋa

δxa
]tf
ti
.

But the final term vanishes since we have fixed the end-
points of the path so that δxa(ti) = δxa(tf) = 0. The
requirement that the action is an extremum says that
δS = 0 for all changes in the path δxa(t). We see that
this holds if and only if

∂L
∂xa

− d
dt

(
∂L
∂ẋa

)
= 0 ∀a. (9)

These are known as the euler–lagrange equations

[III.12]. To finish the proof we need only show that these
equations are equivalent to Newton’s. From the defini-
tion of the Lagrangian (8), we have ∂L/∂xa = −∂V/∂xa,
while ∂L/∂ẋa = pa. It is then easy to see that equations
(9) are indeed equivalent to (7).

The principle of least action is an example of a vari-
ational principle of the type discussed further in cal-

culus of variations [IV.6]. The path of the particle is
viewed globally, as a whole rather than at any instance
in time. At first this may appear somewhat teleological.
Yet, as we have shown above, this perspective is entirely
equivalent to the more local Newtonian methodology.

The principle of least action is a slight misnomer. The
proof requires only that δS = 0; it does not specify
whether it is a maximum or a minimum of S. Since L =
T − V , we can always increase S by taking a very fast,
wiggly path with T � 0, so the true path is never a
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maximum. However, it may be either a minimum or a
saddle point. “Principle of stationary action” would be
a more accurate, but less catchy, name. It is sometimes
called “Hamilton’s principle.”

Somewhat astonishingly, all the fundamental laws of
physics can be written in terms of an action principle.
This includes electromagnetism, general relativity, the
standard model of particle physics, and attempts to
go beyond the known laws of physics such as string
theory. There is also a beautiful generalization of the
action principle to quantum mechanics that is due to
Richard Feynman. It is known as the theory of path inte-
grals, and in it the particle takes all paths with some
weight determined by S.

Returning to classical mechanics, there are two very
important reasons for working with the Lagrangian for-
mulation. The first is that the Euler–Lagrange equations
hold in any coordinate system, while Newton’s laws are
restricted to an inertial frame. The second is the ease
with which we can deal with certain types of constraints
in the Lagrangian system. We discuss the former of
these reasons below, but first let us look at an example.

Example (the Lorentz force). A particle with charge
q moving in a background electric and magnetic field
experiences the Lorentz force law (5). A static electric
field E = −∇φ gives rise to a conservative force and fits
naturally into the Lagrangian formulation. But in the
presence of a magnetic field B, it is less obvious that the
equation of motion can be written using a Lagrangian.
To do so, we first need to introduce the vector potential
A and write (possibly time-dependent) magnetic and
electric fields as

B = ∇×A, E = −∇φ− 1
c
∂A
∂t
,

where c is the speed of light. One can then check
that the Euler–Lagrange equations arising from the
Lagrangian

L = 1
2mṙ · ṙ − q

(
φ− 1

c
ṙ ·A

)
(10)

coincide with Newton’s equations for the Lorentz force
law (5).

2.2 Changing Coordinate Systems

We stressed in section 1 that Newton’s equation of
motion (2) holds only in inertial frames. In contrast,
Lagrange’s equations hold in any coordinate system.
This means that we could choose to work with any
coordinates

qa = qa(x1, . . . , x3N ; t),

where we have included the possibility of using a coor-
dinate system that changes with time t. The Lagrangian
can then be written as a function of L = L(qa, q̇a; t), and
the equations of motion (9) are equivalent to

d
dt

(
∂L
∂q̇a

)
− ∂L
∂qa

= 0. (11)

One can prove the equivalence of (9) and (11) through
application of the chain rule. Alternatively, one can note
that the principle of least action is a statement about
the path taken and makes no mention of the coordi-
nate used; it must therefore be true in all coordinate
systems.

The general variables qa are called generalized coor-
dinates; the variables pa = ∂L/∂q̇a are called general-
ized momenta. These coincide with what we usually call
“momenta” only in Cartesian coordinates.

2.2.1 Rotating Coordinate Systems

We can illustrate the flexibility of the Lagrangian
approach by deriving the fictitious forces at play in a
noninertial, rotating coordinate system. Consider a free
particle with Lagrangian

L = 1
2mṙ · ṙ.

Now measure the motion of the particle with respect to
a coordinate system that is rotating with constant angu-
lar velocity ω = (0,0,ω) about the z-axis. Denote the
coordinates in the rotating frame as r′ = (x′, y′, z′).
We have the relationships z′ = z and

x′ = x cosωt +y sinωt,

y′ = y cosωt − x sinωt.

These expressions can be substituted directly into the
Lagrangian to find L in terms of the rotating coordin-
ates:

L = 1
2m[(ẋ

′ −ωy′)2 + (ẏ′ +ωx′)2 + ż2]

≡ 1
2m(ṙ

′ +ω× r′) · (ṙ′ +ω× r′).
We can now derive the Euler–Lagrange equations in the
rotating frame, differentiating Lwith respect to ra′ and
ṙ a′. We find that

m(r̈′ +ω× (ω× r′)+ 2ω× ṙ′) = 0.

We learn that in the rotating frame the particle does
not follow a straight line with r̈′ = 0. Instead, we find
the appearance of two extra terms in the equation of
motion.

The term ω× (ω× r′) is called the centrifugal force.
It points outward in the plane perpendicular to ω with
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magnitude mω2|r′⊥| = m|v⊥|2/|r′⊥|, where the sub-
script ⊥ denotes the projection perpendicular to ω.
This is the force you feel pinning you to the side of
a car when you take a corner too fast.

The term −2ω× ṙ′ is called the Coriolis force. Notice
that it is mathematically identical to the Lorentz force
(5) for a particle moving in a constant magnetic field.
In myth the Coriolis force determines the direction in
which the water draining from a sink rotates, but in
practice it is too small on domestic scales to have a
noticeable effect. It is, however, significant on large
length scales, where it dictates the circulation of oceans
and the atmosphere.

The centrifugal and Coriolis forces are referred to
as fictitious forces because they are a result of the
reference frame rather than any interaction. However,
we should not underestimate their importance just
because they are “fictitious.” According to Einstein’s
theory of general relativity, gravity is also a fictitious
force, on the same footing as the Coriolis and centrifu-
gal forces.

2.3 Noether’s Theorem

A symmetry of a physical system is an invariance under
a transformation. We have already met a number of
symmetries in our discussion of inertial frames; the
laws of (nonrelativistic) physics are invariant under the
Galilean group, composed of rotations and translations
in space and time. A beautiful theorem due to Emmy
Noether relates these symmetries to conservation laws.

Consider a one-parameter family of maps between
generalized coordinates

qa(t)→ Qa(s, t), s ∈ R,

such that Qa(0, t) = qa(t). This transformation is said
to be a continuous symmetry of the Lagrangian L if

∂
∂s
L(Qa(s, t), Q̇a(s, t); t) = 0.

Noether’s theorem states that for each such symme-
try there exists a conserved quantity. The proof is
straightforward. We compute

∂L
∂s

= ∂L
∂Qa

∂Qa

∂s
+ ∂L
∂Q̇a

∂Q̇a

∂s
.

Evaluated at s = 0, we have

∂L
∂s

∣∣∣∣
s=0

= ∂L
∂qa

∂Qa

∂s

∣∣∣∣
s=0

+ ∂L
∂q̇a

∂Q̇a

∂s

∣∣∣∣
s=0

= d
dt

(
∂L
∂q̇a

)
∂Qa

∂s

∣∣∣∣
s=0

+ ∂L
∂q̇a

∂Q̇a

∂s

∣∣∣∣
s=0
,

where we have used the Euler–Lagrange equations. The
result is a total derivative:

∂L
∂s

∣∣∣∣
s=0

= d
dt

(
∂L
∂q̇a

∂Qa

∂s

∣∣∣∣
s=0

)
= 0.

We learn that the quantity
∑
a(∂L/∂q̇a)(∂Qa/∂s), eval-

uated at s = 0, is constant for all time whenever the
equations of motion are obeyed. Notice that the proof
of Noether’s theorem is constructive: it does not just
tell us about the existence of a conserved quantity, it
also tells us what that quantity is.

Homogeneity of Space

Consider a closed system of N particles interacting
through a potential V(|ri − rj|) that, as the nota-
tion suggests, depends only on the relative distances
between the particles i, j = 1, . . . , N . The Lagrangian

L = 1
2

∑
i
miṙi · ṙi − V(|ri − rj|) (12)

has the symmetry of translation: ri → ri + sn for any
vector n and for any real number s, so L(ri, ṙi, t) =
L(ri + sn, ṙi, t). This is the statement that space is
homogeneous. From Noether’s theorem we can com-
pute the conserved quantity associated with transla-
tions. It is

∑
i pi · n, which we recognize as the total lin-

ear momentum in the direction n. Since this holds for
all n, we conclude that

∑
i pi is conserved. The familiar

fact that the total linear momentum is conserved is due
to the homogeneity of space.

Homogeneity of Time

The laws of physics are the same today as they were
yesterday. This invariance under time translations also
gives rise to a conserved quantity. Mathematically, this
means that L is invariant under t → t + s, or, in other
words, ∂L/∂t = 0. It is straightforward to check that
this condition ensures that

H =
∑
a
q̇a(∂L/∂q̇a)− L

is conserved. This is the energy of the system. We learn
that time is to energy what space is to momentum, a les-
son that resonates into the relativistic world of Einstein.
We will meet the quantity H again in the next section,
where, viewed from a slightly different perspective, it
will be rebranded the Hamiltonian.

One can also show that the isotropy of space, mean-
ing invariance under rotations, gives rise to the conser-
vation of angular momentum. In fact, suitably general-
ized, it turns out that all conservation laws in nature are
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related to symmetries through Noether’s theorem. This
includes the conservation of electric charge and the
conservation of particles such as protons and neutrons
(known as baryons).

3 The Hamiltonian Formulation

The next step in the formulation of classical mechanics
is due to Hamilton. The basic idea is to place the gen-
eralized coordinates qa and the generalized momenta
pa = ∂L/∂q̇a on a more symmetric footing.

We can start by thinking pictorially. Recall that the
coordinates {qa} define a point in n-dimensional con-
figuration space C . Time evolution is a path in C . How-
ever, the state of the system is defined by {qa} and
{pa} in the sense that this information will allow us to
determine the state at all times in the future. The pair
{qa,pa} defines a point in 2n-dimensional phase space.
Since a point in phase space is sufficient to determine
the future evolution of the system, paths in phase space
can never cross. We say that evolution is governed by a
flow in phase space.

3.1 Hamilton’s Equations

The Lagrangian L(qa, q̇a; t) is a function of the coordin-
ates qa, their time derivatives q̇a, and (possibly) time.
We define the Hamiltonian to be the Legendre trans-
form of the Lagrangian with respect to the q̇a variables:

H(qa,pa; t) =
n∑
a=1

paq̇a − L(qa, q̇a, t),

where q̇a is eliminated from the right-hand side in
favor of pa by using pa = ∂L/∂q̇a = pa(qa, q̇a; t) and
inverting to get q̇a = q̇a(qa,pa; t). Now we look at the
variation of H. Once again employing the summation
convention, we have

δH = (δpaq̇a + paδq̇a)

−
(
∂L
∂qa

δqa + ∂L
∂q̇a

δq̇a + ∂L
∂t
δt
)

= δpaq̇a − ∂L
∂qa

δqa − ∂L
∂t
δt.

But we know that this can be rewritten as

δH = ∂H
∂qa

δqa + ∂H
∂pa

δpa + ∂H
∂t
δt.

We now equate terms. We also make use of the Euler–
Lagrange equations, which can be written as ṗa =
∂L/∂qa. The end result is

ṗa = − ∂H
∂qa

, q̇a = ∂H
∂pa

.

For Lagrangians with explicit time dependence these
are supplemented with −∂L/∂t = ∂H/∂t. These are
Hamilton’s equations. We have replaced n second-
order differential equations by 2n first-order differ-
ential equations for qa and pa. Recast in this man-
ner, Hamilton’s equations are ideally suited for dealing
with initial-value problems rather than the boundary-
value problems that are more natural in the Lagrangian
formulation.

A Particle in a Potential

The simplest example is a single particle moving in a
potential. The Lagrangian is L = 1

2mṙ · ṙ − V(r) and
the momentum p = mṙ. The steps above give us the
Hamiltonian

H = p · ṙ − L = 1
2m

p ·p + V(r).

Hamilton’s equations are simply ṙ = p/m and ṗ =
−∇V , both of which are familiar: the first is the defini-
tion of momentum in terms of velocity; the second is
Newton’s equation for this system.

The Lorentz Force

A charged particle moving in an electric and magnetic
field is described by the Lagrangian (10). From this we
can compute the momentum, p =mṙ + (q/c)A, which
now differs from what we usually call momentum by
the addition of the vector potential A. The Hamiltonian
is

H(p,r) = 1
2m

(
p − q

c
A
)(
p − q

c
A
)
+ qφ.

One can check that Hamilton’s equations reduce to
Newton’s equations with the Lorentz force law (5).

3.2 Looking Forward

The advantage of the Hamiltonian formulation over
the Lagrangian is not really a practical one. Instead,
the true value of the formulation lies in what it tells
us about the structure of classical mechanics. It is, at
heart, a geometric formulation of classical mechanics
and can be expressed in more abstract form using the
language of symplectic geometry. Moreover, the Hamil-
tonian framework provides a springboard for later
developments, including chaos theory and integrabil-
ity. (See the article on chaos [II.3] in this book.) Perhaps
most importantly, the Hamiltonian offers the most
direct link to more fundamental theories of physics and
particularly to quantum mechanics.
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Further Reading

This article is based on two lecture courses given by
the author to undergraduates at the University of Cam-
bridge. Full lecture notes for both courses can be down-
loaded from the author’s Web page: www.damtp.cam.ac
.uk/user/tong/teaching.html.

Lev Landau and Evgeny Lifshitz’s Mechanics (Butter-
worth-Heinemann, Oxford, 3rd edn, 1982) is one of
the most concise, elegant, and conceptually gorgeous
textbooks ever written.

A more modern, pedagogical approach to Newtonian
mechanics can be found in Mary Lunn’s A First Course in
Mechanics (Oxford Science Publications, Oxford, 1991).

A good introduction to the Lagrangian and Hamil-
tonian formulation is Louis Hand and Janet Finch’s
Analytic Mechanics (Cambridge University Press, Cam-
bridge, 1998).

IV.20 Dynamical Systems
Philip Holmes

1 Introduction

The theory of dynamical systems describes the con-
struction and analysis of models for things that move
or evolve over time and space. It combines analytical,
geometrical, topological, and numerical methods for
studying differential equations and iterated mappings.
These methods stem from the work of Newton and his
successors, the great natural philosophers of the eigh-
teenth and nineteenth centuries, and in particular from
Henri Poincaré. As such, the study of dynamical sys-
tems is normal mathematics rather than the paradigm
shift that some popular accounts have claimed for
chaos theory [II.3]. Nonetheless, problems from the
applied sciences have continued to strongly influence
and motivate it, especially over the past half century
(see Aubin and Dahan Dalmedico (2002) for a socio-
historical discussion of developments in the turbulent
decade around 1970).

It is a capacious field, implying different things to
different people, including deterministic and stochas-
tic systems of finite or infinite dimensions, ergodic

theory [II.3], and holomorphic dynamics (the study of
iterated functions on the complex plane). I shall focus
on ordinary differential equations (ODEs) and iterated
maps defined on Euclidean space Rn, but note that
the theory generalizes to manifolds, much of it gen-
eralizes to infinite dimensions, and some of it general-
izes to stochastic systems. In contrast to classical ODE

theory, which focuses on specific initial or boundary-
value problems, dynamical systems theory brings a
qualitative and geometrical approach to the analysis
of nonlinear ODEs, addressing the existence, stability,
and global behavior of sets of solutions, rather than
seeking exact or approximate expressions for individ-
ual solutions (see ordinary differential equations

[IV.2]).
We consider systems of ODEs (1) and discrete map-

pings (2):

ẋj = fj(x1, x2, . . . , xn;μ), (1)

xj(l+ 1) = Fj(x1(l), . . . , xn(l);μ), (2)

where j = 1, . . . , n; ẋj denotes the time derivative; fj
and Fj are smooth, real-valued functions; the xj are
state variables; and μ is a control parameter. In solving
(1) or (2) with given initial conditions x(0) to obtain
orbits x(t) = (x1(t), . . . , xn(t)) or {x(l)}∞l=0, μ is kept
fixed.

In studying the ODE (1), one seeks to describe the
behavior of the flow map

x(t,x(0)) = φt(x(0)) or φt : U → Rn, (3)

generated by the vector field f (x) = (f1(x), . . . ,
fn(x)), which transports initial points x(0) ∈ U ⊆ Rn

to their images at time t: φt(x(0)). If φt can be found,
then, fixing a time interval t = T , (1) reduces to (2),
but explicit formulas can be derived only in exceptional
cases, and in any case the study of iterated maps is no
less complicated than that of ODEs. Of course, numeri-
cal algorithms for ODEs can provide excellent approxi-
mations ofφT (see numerical solution of ordinary

differential equations [IV.12]).
Before describing the theory, I sketch some histori-

cal threads through the work of A. A. Andronov, V. I.
Arnold, G. D. Birkhoff, A. N. Kolmogorov, S. Smale, and
other key figures. Two motivating examples are then
introduced: one physical and one mathematical.

2 A Brief History

Dynamical systems theory began with Poincaré’s work
on differential equations and celestial mechanics from
1879 to 1912. In addition to special methods for two-
dimensional ODEs, many other central concepts first
appeared in Poincaré’s work, including invariant mani-
folds (smooth hypersurfaces composed of families of
orbits), first-return (Poincaré) maps for the study of
periodic motions, bifurcations, coordinate changes to
normal forms that simplify analyses, and perturbation
methods. Notably, Poincaré realized that, due to the

http://www.damtp.cam.ac.uk/user/tong/teaching.html
http://www.damtp.cam.ac.uk/user/tong/teaching.html
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presence of “doubly asymptotic” points or homoclinic
and heteroclinic orbits, certain differential equations
describing mechanical systems with N � 2 degrees
of freedom were not integrable. More precisely, they
do not possess enough independent, analytic functions
of x that remain constant on solutions, which would
imply that the geometry of invariant manifolds is rel-
atively simple. During this period A. M. Lyapunov also
made important contributions to stability theory.

Birkhoff extended Poincaré’s work, in particular prov-
ing that maps from an annulus to itself having two peri-
odic orbits with different periods also contain compli-
cated limit sets that separate the domains of attraction
of those orbits. This prepared the way for Cartwright
and Littlewood’s proof that the van der Pol equation—
a periodically forced nonlinear oscillator—possesses
infinitely many periodic orbits and a set of nonperiodic
orbits “of the power of the continuum.” N. Levinson
subsequently drew this to Smale’s attention, prompt-
ing his construction of the horseshoe map: a proto-
typical example with an unstable chaotic set, which is
nonetheless structurally stable, implying that the flows
of the original and perturbed systems are topologically
equivalent (homeomorphic). The qualitative behavior
of structurally stable vector fields and maps survives
small perturbations.

Structural stability had been introduced by Andronov
and L. S. Pontryagin in 1937 under the name “sys-
tèmes grossières” (coarse systems). From this perspec-
tive, a bifurcation occurs when a system becomes struc-
turally unstable as a parameter varies; its behavior
changes as one passes through the bifurcation point.
Andronov’s group in Gorky (now Nizhni Novgorod)
also did important work in bifurcation theory. M. M.
Peixoto’s characterization of structurally stable flows
on two-dimensional manifolds required that they pos-
sess only finitely many fixed points and periodic orbits,
leading to Smale’s conjecture that the same should hold
in higher dimensions. The horseshoe map, with its infi-
nite set of periodic points, can be seen as a return
map for a three-dimensional flow and thus provided a
counterexample to this conjecture. Moreover, it showed
that the chaos glimpsed by Poincaré was prevalent in
ODEs of dimensions n � 3 as well as in maps of dimen-
sions n � 2. Smale’s influential work in the 1960s
introduced mathematicians to the field, but these ideas
did not reach the applied mathematical mainstream for
some time.

As was common in the Soviet Union, Andronov’s
group maintained strong connections between abstract

theory and applications, in its case, nonlinear oscilla-
tors and waves, electronic circuits, and control theory.
In Moscow, Kolmogorov and his students (including
D. V. Anosov, Ya. G. Sinai, and Arnold) did foundational
work on ergodic theory, billiards, and geodesic flows,
with links to mathematical physics. Smale’s visits in
1961 and during the International Congress of Math-
ematicians in 1966 helped introduce their work to the
wider mathematical world.

Lorenz’s paper on a three-dimensional ODE modeling
Rayleigh–Bénard convection was done almost indepen-
dently of the work described above, although in pre-
senting his discovery of sensitive dependence on initial
conditions in 1963, Lorenz appealed to Birkhoff’s work.
An earlier, extra-mathematical, discovery had taken
place in 1961 when Ueda, a graduate student in elec-
trical engineering at Kyoto University, observed irreg-
ular motions in analogue computer simulations of a
periodically forced van der Pol–Duffing equation.

3 Two Dynamical Systems

To motivate the theory described below, we first intro-
duce a problem from classical mechanics and then a
mathematical toy that is, perhaps surprisingly, related
to it.

3.1 The Double Pendulum

Consider a pendulum comprising two rigid links, the
first rotating about a fixed pivot, the second pivoting
about the end of the first (see figure 1(a)). Under New-
tonian mechanics, the four angles and angular veloci-
ties θ1, θ2, θ̇1, θ̇2 describe the pendulum’s state space,
and neglecting air resistance and friction, conservation
of energy implies that all motions started with given
potential and kinetic energy lie on a three-dimensional
subset of state space (typically, a smooth manifold).
However, unlike the one-link pendulum, its motions
are not generally periodic, and small changes in initial
conditions yield orbits that rapidly diverge. Part (b) of
figure 1 illustrates this sensitive dependence.

3.2 The Doubling Machine

Next we describe a piecewise-linear mapping defined
on the interval [0,1] by the rule

h(x) =
⎧⎨⎩2x if 0 � x < 1

2 ,

2x − 1 if 1
2 < x � 1

(4)

(see figure 2). An orbit of h is the sequence {xn}∞n=0

obtained by repeatedly doubling the initial valuex0 and
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Figure 1 (a) The double pendulum. (b) The numbers of
full turns, θ2, executed by three different orbits released
from rest with θ1(0) = 90◦, θ2(0) = −90◦, and θ2(0) =
−(90 ± 10−6)◦.

subtracting the integer part at each step:

0.2753  → 0.5506  → 1.1012 = 0.1012  → 0.2024  → · · · .

To understand the sensitive dependence on initial

conditions and its consequences, we represent the

numbers between 0 and 1 in binary form:

x0 = a1

2
+ a2

22
+ a3

23
+ · · · + aj

2j
+ · · · ,

where each coefficient aj is either 0 or 1. Thus,

x1 = h(x0) = 2
∞∑
j=1

aj
2j

= a1 + a2

2
+ a3

22
+ · · · ,

but since the integer part is removed on every iteration,

we have

x1 = a2

2
+ a3

22
+ a4

23
+ · · · ,

and in general,

xk = ak+1

2
+ ak+2

22
+ · · · =

∞∑
j=1

aj+k
2j

.

Applyingh is equivalent to shifting the “binary point”

and dropping the leading coefficient,

(a1a2a3a4 · · · )  → (a2a3a4 · · · ),

10

1

0

x

h (x)

Figure 2 The doubling map, h.

just as multiplication by 10 shifts a decimal point. Were
x0 known to infinite accuracy, with all the ak spec-
ified, the current state, xk, at each step would also
be known exactly. But given only the first N coeffi-
cients (a1, a2, . . . , aN), after N iterations, one cannot
even determine whether xN+1 lies above or below 1

2 .
Moreover, if two points differ only at the Nth binary
place and thus lie within ( 1

2 )
N−1, after N iterations

they lie on opposite sides of 1
2 and thereafter behave

essentially independently. Repeated doubling amplifies
small differences.

The binary representation exemplifies symbolic dy-
namics. To every infinite sequence of zeros and ones
there corresponds a point in [0,1], and vice versa.
Hence, any random sequence corresponds to a state
x0 ∈ [0,1] whose orbit hk(x0) realizes that sequence;
the map h has infinitely many orbits whose itineraries
are indistinguishable from random sequences. It also
has infinitely many periodic orbits, corresponding to
periodic sequences. These can be enumerated by listing
all distinct sequences of lengths 1,2,3, . . . that contain
no subsequences of smaller period, showing that there
are approximately 2N/N orbits of periodN and a count-
able infinity in all. Nonetheless, since numbers picked
at random are almost always irrational (they form a set
of full measure), almost all orbits are nonperiodic (see
section 4.5).

4 Dynamical Systems Theory

As noted above, dynamical systems theory emphasizes
the study of the global orbit structure or phase portrait,
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its dependence on parameters, and the description of
qualitative properties such as the existence of closed
orbits (periodic solutions). We start by describing some
important tools and concepts.

4.1 Judicious Linearization

While few nonlinear systems can be “solved” com-
pletely, much can be deduced from linear analysis. The
linearization of the ODE (1) near a fixed point or equilib-
rium xe, where f (xe) = 0, is obtained by substituting
x = xe + ξ into (1), expanding in a Taylor series, and
neglecting quadratic and higher-order terms to obtain

ξ̇ = Df (xe)ξ for |ξ| � 1. (5)

Here, Df (xe) is the n×n Jacobian matrix of first
partial derivatives ∂fi/∂xj evaluated at xe.

Linear ODEs with constant coefficients, like (5), are
completely soluble in terms of elementary functions.
One assumes the exponential form

ξ =
n∑
j=1

vj exp(λjt)

and computes the eigenvalues λj and eigenvectors vj
ofDf (xe). IfDf (xe) hasn linearly independent eigen-
vectors, then any solution may be expressed as a lin-
ear combination x(t) = ∑n

j=1 cjvj exp(λjt), and the
cj can be uniquely determined by initial conditions.
Eigenvalues and eigenvectors can, of course, be com-
plex numbers and vectors, but using Euler’s formula
exp(±it) = cos t±i sin t, and allowing complex cj , solu-
tions to real-valued ODEs can be written as combina-
tions of exponential and trigonometrical functions. (If
Df (xe) has fewer than n linearly independent eigen-
vectors, generalized eigenvectors are required and
terms of the form tk exp(λjt) appear.)

If every eigenvalue of Df (xe) has nonzero real part,
xe is called a hyperbolic or nondegenerate fixed point.
Excepting special cases, like the energy-conserving pen-
dulum, fixed points are typically hyperbolic, and their
stability in the original nonlinear system (1) can be
deduced from the linearized system.

A fixed point xe of (1) is Lyapunov or neutrally stable
if for every neighborhood U / xe there is a neighbor-
hood V ⊆ U , also containing xe, such that every solu-
tion x(t) of (1) starting in V remains in U for all t � 0.
If x(t) → xe as t → ∞ for all x(0) ∈ V , then xe is
asymptotically stable. If xe is not stable, it is unstable.
More descriptively, if all nearby orbits approach xe, it
is called a sink; if all recede from it, it is a source; and

E  

u

E 

s
xeB (xe)

xe

(a)

(b)

Figure 3 Stable and unstable manifolds. (a) Nearxe the local
manifolds can be expressed as graphs, as in (7). (b) Glob-
ally, stable and unstable manifolds may intersect, forming
a homoclinic orbit.

if some approach and some recede, it is a saddle point.
Sinks are the simplest attractors: see section 4.5.

Choosing the neighborhood V small enough that the
linear part Df (xe)ξ dominates the higher-order terms
that were ignored in (5), it follows that, if all the eigen-
values ofDf (xe) have strictly negative real parts, then
xe is asymptotically stable but, if at least one eigen-
value has strictly positive real part, then xe is unstable.
When one or more eigenvalues have zero real part, the
local behavior is determined by the leading nonlinear
terms, as described in section 4.3, but if xe is hyper-
bolic, then the entire orbit structure nearby is topologi-
cally equivalent to that of the nonlinear ODE (1). Similar
results hold for the discrete mapping (2), and systems
can also be linearized near periodic and other orbits.

4.2 Invariant Manifolds

Remarkably, the decomposition of the state space
into invariant subspaces for the linearized system (5)
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also holds for the nonlinear system near xe. Sup-
pose that Df (xe) has s � n and u = n − s eigen-
values λ1, . . . , λs and λs+1, . . . , λs+u with strictly neg-
ative and strictly positive real parts, respectively, and
define the linear subspaces Es = span{v1, . . . ,vs} and
Eu = span{vs+1, . . . ,vs+u} spanned by their (general-
ized) eigenvectors. As t increases, orbits of (5) in the
stable subspace Es decay exponentially, while those in
the unstable subspace Eu grow.

The stable manifold theorem states that, near a
hyperbolic fixed point xe, equations (1) and (2) possess
local stable and unstable manifolds W s

loc(x
e), Wu

loc(x
e)

of dimensions s and u, respectively, tangent at xe to
Es and Eu. The former consists of all orbits that start
and remain near xe for all future time and approach it
as t → ∞:

W s
loc(x

e) = {x ∈ V | φt(x)→ xe as t → ∞
and φt(x) ∈ V for all t � 0}; (6)

the unstable manifold Wu
loc(x

e) is defined similarly,
with the substitutions “past time” and “t → −∞.” These
smooth, curved subspaces locally resemble their linear
counterparts Es and Eu (see figure 3(a)).

Near xe the local stable and unstable manifolds can
be expressed as graphs over Es and Eu, respectively.
Letting Es⊥ denote the (n− s)-dimensional orthogonal
complement to Es and letting y ∈ Es and z ∈ Es⊥ be
local coordinates, we can write

W s
loc(x

e) = {(y,z) | (y,z) ∈ B(0), z = g(y)} (7)

for a smooth functiong : Es → Es⊥. We cannot generally
compute g, but it can be approximated as described in
section 4.3.

The global stable and unstable manifolds are defined
as the unions of backward and forward images of the
local manifolds under the flow map: W s(xe) is the set
of all points whose orbits approach xe as t → +∞,
even if they leave B(xe) for a while, and Wu(xe) is
defined analogously for t → −∞. Stable manifolds can
intersect neither themselves nor the stable manifolds
of other fixed points, since this would violate unique-
ness of solutions (the intersection point would lead
to more than one future). The same is true of unsta-
ble manifolds, but intersections of stable and unsta-
ble manifolds can and do occur; they lie on solutions
that lead from one fixed point to another. Intersection
points of manifolds that belong to the same fixed point
are called homoclinic, while those for manifolds that
belong to different fixed points are called heteroclinic
(see figure 3(b)).
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Figure 4 The stable, center, and unstable manifolds.

4.3 Center Manifolds, Local Bifurcations, and

Normal Forms

As parameters change, so do phase portraits and the
resulting dynamics. New fixed points can appear, the
stability of existing ones can change, and homoclinic
and heteroclinic orbits can form and vanish. bifur-

cation theory [IV.21] addresses such questions, and
it relies on three further ideas: structural instabil-
ity, dimension reduction, and nonlinear coordinate
changes.

As noted in section 2, a structurally stable system
survives small perturbations of its defining vector field
f or map F in the following sense. The phase portraits
of the original and perturbed systems are topologically
equivalent ; they can be transformed into each other
by a continuous coordinate change that preserves the
sense of time, so that sinks remain sinks and sources,
sources. Since eigenvalues of the Jacobian matrix deter-
mine stability, both the values and the derivatives of the
perturbing functions must be small.

There are many ways in which structural stability can
be lost, but the simplest is when a single (simple) eigen-
value passes through zero or when the real parts of a
complex conjugate pair do the same. More generally,
suppose that, in addition to s and u eigenvalues with
negative and positive real parts, the Jacobian Df (xe)
also has c eigenvalues with zero real part (s+c+u = n).

The center manifold theorem asserts that, along with
the s- and u-dimensional stable and unstable mani-
folds, a smooth c-dimensional local center manifold
W c

loc exists, tangent to the subspace Ec spanned by the
eigenvectors belonging to the eigenvalues with zero
real part. As figure 4 suggests, this allows one to
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separate the locally stable and unstable directions from

the structurally unstable ones and thus to reduce the

analysis to that of a c-dimensional system restricted to

the center manifold, a considerable simplification when

c� n.

To describe the reduction process we assume that

coordinates have been chosen with the degenerate

equilibrium xe at the origin and such that the matrix

Df (xe) is block diagonalized. Then (1) can be written

in the form

ẋ = Ax + f (x,y), ẏ = By + g(x,y), (8)

wherex ∈ Ec andy ∈ Es⊕Eu, the span of the stable and

unstable subspaces (explicit reference to the parameter

μ is dropped). All eigenvalues of the c × cmatrixA have

zero real parts and the (s + u) × (s + u) matrix B has

only eigenvalues with nonzero real parts. The center

manifold can be expressed as a graph y = h(x) over

Ec, and hence, as long as solutions remain on W c
loc, the

state (x,y) of the system is specified by the x vari-

ables alone. The reduced system is the projection of the

vector field on W c
loc onto the linear subspace Ec:

ẋ = Ax + f (x,h(x)). (9)

The graph h is found by substituting y = h(x) into

the second component of (8) and using the chain rule

and the first component of (8) to obtain a (partial)

differential equation:

Dh(x)[Ax + f (x,h(x))] = Bh(x)+ g(x,h(x))
with h(0) = 0, Dh(0) = 0. (10)

The latter conditions are due to the tangency of W c
loc

to Ec at xe = 0. Solutions of (10) can be approxi-

mated as a Taylor series in x, and stability and bifur-

cation behavior near the nonhyperbolic fixed point can

be deduced from the resulting approximation to the

reduced system (9).

The third idea—to choose a coordinate system that

simplifies the nonlinear terms of the reduced system—

effectively extends the use of similarity transforma-

tions to diagonalize and decouple components in lin-

ear systems. Normal form theory simplifies the Taylor

series by iteratively performing nonlinear coordinate

changes that successively remove, at each order, non-

resonant terms that do not influence the qualitative

behavior. Lie algebra provides bookkeeping methods,

and the computations can be (semi-) automated using

computer algebra.

To illustrate the resulting simplification, consider a
two-dimensional ODE of the form

ẋ = Ax + f (x), A =
[

0 −1

1 0

]
, (11)

the linear part of which is a harmonic oscillator whose
phase plane is filled with periodic orbits surrounding a
neutrally stable fixed point (a center). Asymptotic sta-
bility or instability of xe = 0 depends on the non-
linear function f (x), and in particular on the leading
terms in its Taylor series. There are six quadratic terms,
eight cubic terms, and in general 2(k + 1) terms of
order k, but normal form transformations can succes-
sively remove all the even terms and all but two terms
of each odd order, at the expense of modifying those
terms. After such a transformation and written in polar
coordinates (x1 = r cosθ, x2 = r sinθ), equation (11)
becomes

ṙ = α3r3 +α5r5 +O(r7),

θ̇ = 1 + β3r2 + β5r4 +O(r6).

⎫⎬⎭ (12)

Not only is the number of coefficients greatly reduced,
but the circular symmetry implicit in the localized lin-
ear system is extended to higher order, uncoupling the
azimuthal θ dynamics from the radial dynamics. Since
the latter alone govern decay or growth of orbits, sta-
bility is determined by the first nonzero αk, explicit
formulas for which emerge from the transformation.

Normal forms not only simplify the functions defin-
ing degenerate vector fields, they also allow the system-
atic introduction of parameters that unfold the bifur-
cation point to reveal the variety of structurally stable
systems in its neighborhood, much as one can perturb
a matrix to split a real eigenvalue of multiplicity 2 into
a pair of distinct ones by adding a parameter. Equa-
tion (12), for example, is unfolded by the addition of
a linear term μr to the first component; as μ passes
through zero, a Hopf bifurcation occurs, giving rise to
a limit cycle (see bifurcation theory [IV.21]).

4.4 Limit Cycles and Poincaré Maps

The van der Pol equation—mentioned in section 2 as a
motivating example in the study of chaotic orbits—also
illustrates a simpler and more pervasive tool: the first
return or Poincaré map. Without external forcing, this
self-excited oscillator possesses a stable limit cycle, an
isolated periodic orbit that attracts all nearby orbits.
The ODE is

ẋ1 = x2 + μx1 − 1
3x

3
1 , ẋ2 = −x1, (13)
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Figure 5 (a) An annular trapping regionB and the limit cycle
of the van der Pol equation (13) with μ = 1. (b) The Poincaré
map for equation (13) expands lengths for x1 small and
contracts them for x1 large, implying the existence of at
least one fixed point corresponding to a periodic orbit.

and linearization reveals that, for μ > 0, this planar sys-

tem has a source at (x1, x2) = (0,0). It can, moreover,

be shown that all orbits eventually enter and remain

within an annular trapping region B surrounding the

source. Since no fixed points lie in B, the Poincaré–

Bendixson theorem implies that it contains at least one

periodic orbit (see figure 5(a)). As indicated at the end

of section 4.3, one can also show that a stable periodic

orbit appears in a Hopf bifurcation as μ passes through

zero.

More generally, if γ is a periodic orbit in an ODE of

dimension n � 2, we may construct a cross section Σ, a

subset of an (n− 1)-dimensional manifold pierced by
γ at a pointp and transverse to the flow in that all orbits
cross Σ with nonzero speed. Thus, by continuity, orbits
starting at q ∈ Σ sufficiently close to p remain near γ
and next intersect Σ again at a point q′ ∈ Σ, defining a
Poincaré map

P : Σ → Σ or q  → q′ = P(q). (14)

Evidently, p is a fixed point for the map P.

The positive x1-axis is a suitable cross section for
equation (13), and the instability of the fixed point
(0,0) and the attractivity of the trapping region B from
outside imply that P(x1) takes the form sketched in
figure 5(b). Since P is continuous, it must intersect the
diagonal at least once in a fixed point p > 0, corre-
sponding to the limit cycle. In fact, p is unique and the
linearized map satisfies 0 < (dP/dx1)|x1=p < 1, imply-
ing asymptotic stability of both p and the limit cycle.
In general, if all the eigenvalues of the linearized map
DP(p) have moduli strictly less than 1, then p and its
associated periodic orbit are asymptotically stable; if at
least one eigenvalue has modulus greater than 1, they
are unstable.

This parallels the eigenvalue criteria for flows de-
scribed in section 4.1, and the Poincaré map provides
a second connection between ODEs and iterated maps
(cf. the time T flow map φT of section 1). Conversely,
a mapping F : U ⊂ Rn → Rn can be suspended
to produce a T -periodic vector field on the (n+ 1)-
dimensional space Rn × S1. Analyses of the ODE (1)
and the mapping (2) are therefore closely related, and
analogs of the stable, unstable, and center manifold
theorems hold for iterated maps.

4.5 Chaos and Strange Attractors

Several definitions of chaos have been advanced, but
the following captures its key properties. A set of differ-
ential equations or an iterated map is called chaotic, or
is said to have chaotic solutions, if it possesses a set S of
orbits such that (1) almost all pairs of orbits in S display
sensitive dependence on initial conditions; (2) there is
an infinite set of periodic orbits that is dense in S; and
(3) there is a dense orbit in S (see chaos [II.3]).

Sensitive dependence means that, for any preassigned
number β < |S|, any point x0 in S, and any neighbor-
hood U of x0, no matter how small, there exists a point
y0 ∈ U and a time T such that the orbits x(T) and
y(T) starting at x0 and y0 are separated by at least
β; almost all solutions diverge locally. An orbit x(t) is
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dense in S if, given any point z in S and any neighbor-
hood U of z, no matter how small, there exists a time
tz such that x(tz) lies inside U : x(t) passes arbitrarily
close to all points in S.

For the doubling map, a binary sequence a∗ cor-
responding to a dense orbit x∗ can be built by con-
catenating all subsequences of lengths 1, 2, 3, etc.:
a∗ = 0 1 00 01 10 11 000 001 . . . . As one iterates and
drops leading symbols, every subsequence appears at
its head, implying that the orbit of x∗ contains points
that lie arbitrarily close to every point in [0,1]. Hence
{hk(x∗)}∞k=0 is dense and h satisfies the definition,
where S = [0,1] is the entire state space.

Positive topological entropy also implies that typical
orbits explore S, and there are examples of maps with
this property that have no periodic orbits, so this def-
inition is sometimes preferred. However, topological
entropy (roughly speaking, the growth rate of distinct
orbits as one progressively refines a discretization of S)
is technically complicated, and the above definition will
suffice here.

4.5.1 Smale’s Horseshoe

The doubling map may seem to be a purely mathe-
matical construct, but as promised in sections 2–3, it
is related to the double pendulum and to forced non-
linear oscillators. To understand this, we now describe
Smale’s construction. Consider a piecewise-linear map-
ping G defined on the unit square Q = [0,1] × [0,1]
by means of its action on two horizontal strips H0 =
[0,1] × [0,1/μ] and H1 = [1 − 1/μ,1] × [0,1] with
images V0 = G(H0) = [0, λ]× [0,1] and V1 = G(H1) =
[1 − λ,1]× [0,1], and having Jacobians

DG|H0 =
[
λ 0

0 μ

]
, DG|H1 =

[
−λ 0

0 −μ

]
(15)

for 0 < λ < 1
2 and μ > 2 (so that the images fit within

Q as defined). To make G continuous, the image of the
central strip between H0 and H1 is taken as a semicir-
cular arch joining V0 to V1. G can be thought of as the
Poincaré map of a flow that compressesQ horizontally,
then stretches it vertically, and finally bends its middle
to form the eponymous horseshoe (see figure 6).

The invariant set Λ of G consists of points that
remain in Q under all forward and backward iterates:
Λ = ⋂+∞

j=−∞Gj(Q). We construct Λ step by step. Points
that remain in Q for one backward iteration occupy
two vertical strips V0 and V1, the images of H0 and
H1. G−2(Q)∩Q is obtained by considering the second
iterates G(V0) and G(V1) of H0 and H1, which form

nested arches standing on pillars, each of width λ2,
lying within V0 and V1. At each step, vertical distances
are expanded by μ and horizontal distances shrunk
by λ, and the middle (1 − 2λ) fraction of the strips is
removed. Continuing, Λ−n = ⋂0

j=−nGj(Q) is 2n verti-
cal strips, each of width λn, and passing to the limit,
Λ−∞ = ⋂0

j=−∞Gj(Q) is a Cantor set of vertical line
intervals. Similarly, Λ+∞ = ⋂+∞

j=0Gj(Q) is a Cantor set
of horizontal intervals, and since any vertical and any
horizontal segment intersect at a point,Λ = Λ−∞∩Λ+∞
is a Cantor set of points.

A Cantor set is uncountable, closed, and contains no
interior or isolated points; every point is an accumu-
lation point. Cantor sets are examples of fractals, sets
having fractional dimension.

Orbits of G can be described by symbolic dynamics,
which codes points x ∈ Λ as binary sequences based
on their visits toH0 andH1. A mapping a : Λ→ {0,1}Z ,
where a = {aj}+∞−∞ and {0,1}Z denotes the space of
bi-infinite sequences with entries 0 or 1, is defined as
follows:

aj(x) =
⎧⎨⎩0 if G(x) ∈ H0,

1 if G(x) ∈ H1.
(16)

Given a suitable metric on {0,1}Z , it can be shown that
a is a one-to-one, continuous, invertible map, a homeo-
morphism. Every point in Λ is faithfully coded by a
sequence in {0,1}Z , and, via equation (16), the action
of G on Λ becomes the shift map

σ : {0,1}Z → {0,1}Z , with aj = σ(aj+1). (17)

This generalizes the binary representation of sec-
tion 3.2 because G is invertible and points have past
orbits as well as future orbits. The countably infinite
set of periodic orbits is coded as before (for such an
orbit, future and past are the same), but homoclinic
and heteroclinic orbits to any periodic orbit or pair of
orbits can now be formed by connecting semi-infinite
periodic tails with an arbitrary central sequence. A
dense orbit can be built by growing the sequence
0 1 00 01 10 11 000 001 . . . forward and backward, and
since all possible finite sequences appear in the set of
all periodic orbits, this latter set is also dense in Λ.
G is linear on H0 ∪ H1 with eigenvalues ±λ and ±μ

and λ < 1 < μ, so Λ is a hyperbolic set in which
almost all pairs of orbits separate exponentially quickly
and G is chaotic in the above sense. Moreover, it is
structurally stable, so the chaos survives small per-
turbations, and Smale also proved that horseshoes
appear in any smooth map that possesses a transverse
homoclinic point.
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Figure 6 Smale’s horseshoe, showing the square Q (left) and its images G(Q) (center right)
and G2(Q) (far right), with the strips Hj and their images Vj = G(Hj) shaded.

There are computable conditions that detect homo-

clinic points for rather general classes of weakly per-

turbed systems. Applying these to the ODEs describ-

ing a double pendulum, like that of figure 1 but with a

heavy upper link and a light lower one, allows one to

prove that, given any alternating sequence of positive

and negative integers s1,−s2, s3, . . . , an orbit exists on

which the lower link first turns s1 times clockwise, then

s2 times counterclockwise, then s3 times clockwise, and

so on. Since any sequence chosen from a suitable prob-

ability distribution corresponds to an orbit, one cannot

tell whether the motion is deterministic or stochastic.

The horseshoe Λ is a set of saddle type; almost all

orbits that approach it eventually leave, so its presence

does not necessarily imply physically observable chaos.

However, its stable manifold can form a fractal bound-

ary separating orbits that have different fates, as in

the forced van der Pol equation. To observe persistent

chaos, one requires strange attractors.

4.5.2 Strange Attractors

Again there are subtle issues and competing defini-

tions, but to convey the main ideas we define an attract-

ing set A as the intersection of all forward images of a

trapping region B,

A =
⋂
t�0

φt(B), (18)

and an attractor as an attracting set that contains

a dense orbit. Sinks and asymptotically stable limit

cycles provide simple examples, as do stable invariant

tori that carry quasiperiodic, and hence densely wind-

ing, motions. A strange attractor additionally exhibits

sensitive dependence and chaos. The following exam-

ple further emphasizes the geometrical viewpoint of

dynamical systems theory.

The lorenz equations [III.20] are a (very) low-

dimensional projection of the coupled Navier–Stokes

and heat equations modeling convection in a fluid layer:

ẋ1 = σ(x2 − x1),

ẋ2 = ρx1 − x2 − x1x3,

ẋ3 = −βx3 + x1x2.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (19)

The parameters σ and β are fixed and ρ is proportional

to the temperature difference across the layer. The ori-

gin is always a fixed point, representing stationary fluid

and heat transport by conduction. For ρ > 1, x = 0 is

a saddle point with one positive and two negative real

eigenvalues; two further fixed points q±, correspond-

ing to steadily rotating convection cells, also exist. For

σ = 10, ρ = 28, β = 8
3 (the values used by Lorenz),

these are also saddles, but a trapping region exists and

(19) has an attracting set A containing the unstable

fixed points.

Lorenz, who had studied with Birkhoff, realized that

A has infinitely many “sheets.” He also generated a

one-dimensional return map related to the doubling

map of section 3.2 and gave a symbolic description of

its orbits. We adopt the geometric model of Gucken-

heimer and Williams here, defining a cross section Σ
lying above the origin. In suitable nonlinear coordin-

ates, Σ is a square [−1,1] × [−1,1] whose boundaries

±1×[−1,1] containq± and their local stable manifolds,

and whose centerline 0× [−1,1] lies in the stable man-

ifold of 0. Assuming that all orbits leaving Σ circulate

around ±1× [−1,1] (except those in 0× [−1,1], which

flow into x = 0), a Poincaré map F can be defined (see

figure 7(a)).
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Figure 7 The Poincaré map of the geometric Lorenz attrac-
tor. (a) A cross section Σ showing Σ± and their images
F(Σ±), and the subset V (light gray) and its image F(V)
(dark gray). (b) The one-dimensional map f(u).

More precisely, Guckenheimer and Williams assert

that coordinates (u,v) can be chosen in which the

horizontal (u) dynamics decouples and F takes the

form

F(u,v) = (f (u), g(u,v)), (20)

where g contracts in the v-direction, f expands by a

factor greater than or equal to
√

2 in the u-direction,

and F(−u,−v) = −F(u,v) respects the symmetry

(x1, x2, x3) → (−x1,−x2, x3) of (19). Thus, F maps

the open rectangles Σ− = (−1,0) × (−1,1) and Σ+ =
(0,1) × (−1,1) into the interior of Σ, and since orbits

starting near u = 0 pass close to 0, the strong stable

eigenvalue of 0 pinches the images of Σ± at their end-

points (r±, s±) = limu→0 F(u,v). Continuing to iter-

ate, a complicated attracting set appears: at the second

step, F(Σ±) comprises 4 thinner strips, 2 each inside

F(Σ−) and F(Σ+), then 8, 16, etc., as in the Cantor set of

Smale’s horseshoe, but pinched together at their ends.

Defining a subset V ⊂ Σ (shaded in figure 7), it can be

shown that A = ⋂
n�0 Fn(V) contains a dense orbit

and so A is an attractor. Due to the expansive nature
of f (figure 7(b)), which resembles the doubling map
of section 3.2, F has sensitive dependence and A is
therefore strange.

The geometric picture has been verified by W. Tucker
for equation (19) using a computer-assisted proof
showing that a stable foliation exists, a continuous fam-
ily of curves F such that, if C ∈ F , then F(C) ∈ F (here,
F is composed of vertical line segments u = const.).

The key properties necessary for strange attractors
are (1) stretching in some state-space directions and
(2) contraction in others, so that volumes decrease, cou-
pled with (3) bending (the horseshoe) or discontinuous
cutting (the Lorenz example) to place forward images
under the flow map φt into a trapping region. There
are now many examples, and smooth maps like that of
the horseshoe, which often arise in applications, can
produce very complicated dynamics, including infinite
sequences of homoclinic bifurcations.

5 Conclusion

I have sketched some central ideas and themes in
dynamical systems theory but have necessarily omit-
ted much. In closing, here are some important topics
and connections to other concepts, areas, and problems
described in this volume.

Chaotic orbits admit statistical descriptions, and
there is a flourishing ergodic theory of dynamical sys-
tems, describing, for example, invariant measures sup-
ported on strange attractors and decay of correlations
along orbits. Stochastic ODEs are also treated proba-
bilistically (see applications of stochastic analy-

sis [IV.14]). Interest in hybrid systems [II.18], with
nonsmooth vector fields and discontinuous jumps, is
growing, and the classification of their bifurcations pro-
ceeds (see slipping, sliding, rattling, and impact:

nonsmooth dynamics and its applications [VI.15]).
Many equations inherit symmetries from the phe-

nomena they model, and equivariant dynamical sys-
tems is an important area. Symmetries can both con-
strain behaviors and stabilize objects that typically
lack structural stability in nonsymmetric systems (e.g.,
heteroclinic cycles). Symmetries also profoundly affect
normal forms and their unfoldings (see symmetry in

applied mathematics [IV.22]).
The Lorenz and other examples show that steady

three-dimensional velocity fields of fluids or other con-
tinuums can exhibit chaotic mixing, which dramatically
enhances transport of heat, pollutants, and reactants in
such flows (see continuum mechanics [IV.26]).
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IV.21 Bifurcation Theory
Paul Glendinning

1 Introduction

Bifurcation theory describes the qualitative changes in

the dynamics of systems caused by small changes of

parameters in the model. It uses dynamical systems

theory [IV.20] to determine the different conditions

that lead to changes, and to describe the dynamics as

a function of the parameter. This leads to a theoret-

ical list of typical changes that can be used to under-

stand the existence and stability of different solutions

in a problem. Parameters are present in most applica-

tions. They are quantities that are constant in any real-

ization of the system but that may take different values

in different realizations depending on the details of the

situation being modeled. Examples include the Raleigh

and Reynolds numbers in fluid dynamics, virulence in

disease models, and reaction rates in chemistry.

The “tipping points” that generate so much interest

in economics, say, or climate change are good exam-

ples of the idea of a bifurcation: if the parameters sat-

isfy some condition then the associated dynamics is of

one type, but if they stray above a threshold, even by a

small amount, then the resultant dynamics can change

drastically.

There are two types of bifurcation, though the two

can be mixed in more complicated problems. One

involves changes in the spectrum of the linearization

of a system about some solution; this type is an exten-

sion of the classical linear stability analysis that dom-

inated so much of applied mathematics in the 1950s

and 1960s. This leads to local bifurcation theory. The

second type of bifurcation builds on Poincaré’s qualita-

tive analysis of dynamical systems to look at global fea-

tures of the system, and in particular homoclinic and

heteroclinic orbits (a homoclinic orbit approaches the

same solution in forward and backward time, while a

heteroclinic orbit is a solution that tends to one solu-

tion in forward time and another in backward time).

The analysis of perturbations of these solutions is the

basis of global bifurcation theory.

Although bifurcation theory can be applied to more

general systems, we will restrict ourselves to the cases

of autonomous ordinary differential equations in con-

tinuous time, which generate flows, and maps in dis-

crete time, which generate sequences, i.e.,

ẋ = f(x, μ) (flow),

xn+1 = f(xn, μ) (map),
(1)

where x ∈ Rp are the dependent variables and μ ∈ Rm

are the parameters. The simplest solutions are those

that are constant. For flows, this implies that ẋ = 0,

so f(x, μ) = 0. These solutions are called stationary

points. For maps, a constant solution is called a fixed

point. Fixed points satisfy xn+1 = xn, or x = f(x, μ).
Since periodic orbits of flows can be analyzed using a

return map [IV.20], the discrete-time case can describe

behavior near periodic orbits of flows.

In some sense, then, bifurcation theory for the sim-

plest dynamical objects is about the variation in the

number of solutions of equations such as f(x, μ) =
0 as the parameters vary. This leads to an approach

through singularity theory. The linear stability of solu-

tions is determined by the eigenvalues of the lineariza-

tion (the Jacobian matrix) of the flow or map. In contin-

uous time, simple eigenvalues of the Jacobian matrix

λ lead to solutions that are proportional to eλt and
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eigenvalues with negative real parts are therefore sta-

ble while those with positive real parts are unstable. In

the discrete-time case, solutions are proportional to λn,

so the role of the imaginary axis is replaced by the unit

circle since λn → 0 as n → ∞ if |λ| < 1. The power of

local bifurcation theory lies in its ability to go beyond

this linear approach.

Linearization determines the local behavior near sta-

tionary points and fixed points provided the eigen-

values of the Jacobian matrix are not on the imaginary

axis (for continuous-time flows) or the unit circle (for

discrete-time maps). Such solutions are called hyper-

bolic, and no local bifurcations can occur at hyperbolic

solutions. Local bifurcation theory therefore considers

behavior near nonhyperbolic solutions; local in both

phase space and parameter space.

One further term that is used in bifurcation theory

needs explanation before we move on to examples. The

codimension of a bifurcation is essentially the num-

ber of parameters required to be able to observe the

bifurcation in typical systems. Codimension-one bifur-

cations are therefore observed in one-parameter fami-

lies of systems, while higher-codimension bifurcations

are observed by varying more parameters. These can

often act as organizing centers for bifurcations with

lower codimension.

2 Five Canonical Examples

The “typical” local bifurcations can be classified using

their Taylor series expansions. In section 3 we dis-

cuss why the changes in dynamics described here are

actually more general, but first we simply describe the

different possibilities using examples.

The first is the saddle–node or tangent bifurcation.

Consider the following scalar equations, with p =m =
1 in (1):

ẋ = μ − x2 (flow),

xn+1 = xn + μ − x2
n (map).

Looking for stationary points of the continuous-time

system (ẋ = 0) and fixed points of the discrete-time

system (xn+1 = xn) gives x2 = μ, so if μ < 0 there are

no such points, while if μ > 0 there are two, x± = ±√μ.

Stability is determined by the 1 × 1 Jacobian matrix of

derivatives. For the flow this is −2x±, so x+ is stable

(negative eigenvalue) and x− is unstable. For the map

the Jacobian is 1 − 2x±, which has modulus less than

one at x+ (for small μ), indicating stability, while x−

(a)x

x y

µ

µ

(b)

(c)

(e)

(d)
per 2

Figure 1 The simple bifurcations.

is unstable. The existence and stability of stationary

points or fixed points are represented in the bifurcation

diagram of figure 1(a), which shows the locus of sta-

tionary points and periodic orbits on the vertical axis

as a function of the parameter (on the horizontal axis).

By convention, the stability of solutions is indicated by

plotting stable solutions with solid lines and unstable

solutions with dotted lines.

If the origin is constrained to be a solution for all μ, or

if the linear term in the parameter of the Taylor series

of the function f(x, μ) of (1) vanishes at the bifurcation

point, then a simple scalar model is

ẋ = μx − x2 (flow),

xn+1 = (1 + μ)xn − x2
n (map).

In these cases the stationary points are at x = 0 and

x = μ, and for small |μ| the origin is stable if μ <
0 and unstable if μ > 0, while the nontrivial solution

has the opposite stability properties. This is called a

transcritical bifurcation or exchange of stability, since

the two branches of solutions cross and exchange their

stability properties, as shown in figure 1(b).

If there is symmetry in the problem or if additional

coefficients in the Taylor expansion of the map are zero,
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then the quadratic part may vanish identically, leaving

ẋ = μx − x3 (flow),

xn+1 = (1 + μ)xn − x3
n (map).

This leads to a pitchfork bifurcation. If |μ| is sufficiently
small, then the origin is stable if μ < 0 and unstable if
μ > 0. If μ > 0, a pair of new stable stationary solutions
with x2 = μ also exists. This is a supercritical pitchfork
bifurcation: the pair of bifurcating solutions are stable
(see figure 1(c)). If these solutions are unstable, then the
bifurcation is said to be subcritical.

For maps there is another way in which a fixed
point can lose stability in one-dimensional systems: the
eigenvalue of the linearization can pass through −1. In
this case the canonical example is

xn+1 = −(1 + μ)xn + x3
n,

which has a unique local fixed point at x = 0 that is
stable if μ < 0 and unstable if μ > 0 (with |μ| suffi-
ciently small). Due to the symmetry of the equations it
is easy to see that there are two nontrivial solutions to
the equation xn+1 = −xn if μ > 0. These lie on a stable
orbit of period two (x → −x → x), and this is therefore
called a period-doubling bifurcation (see figure 1(d)). To
indicate that the bifurcating period-two orbit is stable,
it is called a supercritical period-doubling bifurcation;
if the new orbit is unstable, coexisting with the stable
fixed point, it is called subcritical. These bifurcations
do not have a direct analogue for stationary points of
flows, but they can occur as bifurcations of periodic
orbits of flows, where the map represents a Poincaré
map of the flow.

Another local bifurcation, shown in figure 1(e), oc-
curs only in maps or flows with a phase space of dimen-
sion greater than one: a pair of complex conjugate
eigenvalues pass through the imaginary axis for flows,
or the unit circle for maps. Using polar coordinates
(r , θ) for the flow and complex coordinates z = x+ iy
for the map, the canonical examples are

ṙ = μr − r3, θ̇ =ω (flow),

zn+1 = (1 + μ)e2π iωzn − |zn|2zn (map).

The origin is stable once again if μ < 0 and |μ| is suf-
ficiently small, but if μ > 0 there is an attracting circle
with radius

√μ. In the continuous case, this is a stable
periodic orbit, and the bifurcation is called a supercriti-
cal Hopf bifurcation. In the discrete case, the dynamics
on the invariant circle is more complicated: solutions
are periodic ifω is rational, and nonperiodic and dense
on the circle ifω is irrational. With more general nonlin-
ear terms, this Hopf (or Neimark–Sacker ) bifurcation of

maps has more cases. The rational case usually breaks
up into a finite collection of stable and unstable peri-
odic orbits, and these exist over intervals of parameters
in a phenomenon called mode locking.

3 Dimension Reduction

The examples above are relevant more generally be-
cause there is a (local) dimension reduction possible
near nonhyperbolic fixed points. Intuitively, this can be
described by noting that, in eigenspaces correspond-
ing to eigenvalues that are not on the imaginary axis
(for flows) or the unit circle (for maps), the dynamics
is determined by the linearization and decays to zero
in forward time for stable directions or backward time
for unstable directions. The only interesting directions
in which changes can occur are, therefore, the “cen-
tral” directions associated with zero or purely imagi-
nary eigenvalues (flows) or eigenvalues with modulus
one (maps).

It turns out that this observation can be made rigor-
ous in at least two ways. These are the center man-

ifold theorem [IV.20 §4.3] and Lyapunov–Schmidt
reduction. These describe how to construct projections
onto the nonhyperbolic directions (valid for parameters
close to the values at which the nonhyperbolic solution
exists) such that any change in dynamics occurs in this
projection. In particular, if there is a simple nonhyper-
bolic eigenvalue (the “typical” case), then the analysis
reduces to a system with the same dimension as the
corresponding eigenspace, i.e., dimension one for a real
eigenvalue and dimension two for a complex conjugate
pair of eigenvalues.

On these projections the leading terms of the Taylor
series expansion of the projected equations are essen-
tially the examples of the previous section. In the Hopf
bifurcation for maps there are some extra subtleties
that are admirably described in Arrowsmith and Place’s
book An Introduction to Dynamical Systems.

The mathematical analysis of the bifurcations de-
scribed above then follows using the dimension reduc-
tion and further analysis, e.g., by using the implicit
function theorem to describe all possible local fixed
points or periodic orbits. This produces a set of gener-
icity (or nondegeneracy) conditions in terms of higher-
order derivatives of the function f of (1) at the bifurca-
tion point that need to be satisfied in addition to the
existence of a neutral direction if the corresponding
bifurcation is to be observed.

Although the center manifold theorem and Lyapu-
nov–Schmidt reduction lead to the same conclusions
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about dimension reduction, they use quite different
methods. The center manifold theorem is established
using invariant manifold theory for dynamical systems,
e.g., by following the invariant manifold from the triv-
ial linear case into the nonlinear regime. Lyapunov–
Schmidt reduction relies on projection techniques onto
linear eigendirections.

4 Global Bifurcations

Many global bifurcations involve homoclinic orbits. A
homoclinic orbit to a stationary point of a flow is
an orbit that approaches the stationary point in for-
ward and backward time. This is a codimension-one
phenomenon in typical families of differential equa-
tions, and so there is a straightforward bifurcation in
which a given homoclinic orbit exists at an isolated
value of the parameter. For periodic orbits the situation
is rather different because homoclinic orbits typically
persist over a range of parameter values, and the inter-
est is therefore in how homoclinic orbits are created or
destroyed as the parameter varies.

4.1 Homoclinic Bifurcations to Stationary Points:

Planar Flows

Suppose an autonomous flow in the plane is defined
by a differential equation that can be written (after a
change of coordinates) as

ẋ = λ1x+f1(x,y ;μ), ẏ = −λ2y+f2(x,y ;μ), (2)

where the functions fi vanish at the origin for all μ and
denote nonlinear terms. The direction of time has been
chosen such that λ2 > λ1 > 0, so locally the stationary
point at the origin has a saddle structure as shown in
figure 2. There is a one-dimensional stable manifold of
solutions that tend to the origin as t → ∞ that is tan-
gential to the y-axis at the origin, and there is a one-
dimensional unstable manifold of solutions that tend
to the origin as t → −∞ that is tangential to the x-axis
at the origin. Can these stable and unstable manifolds
intersect?

Typically, one-dimensional sets can intersect trans-
versely in two dimensions, so it might be expected that
it is fairly easy for such intersections to occur and that
these would be persistent under small changes of the
parameters. However, if the two manifolds intersect at
a point, then the trajectory through the intersection
point must also be in the intersection of the mani-
folds. In other words, the intersection cannot be trans-
verse, and a fairly straightforward argument shows that

(a) (b) (c)

Figure 2 The unstable manifold of a planar homoclinic
bifurcation: (a) μ < 0; (b) μ = 0, showing the return planes
used in the construction of the return map; and (c) μ > 0.

such intersections typically occur on codimension-one
manifolds in parameter space.

Now suppose that if μ = 0 there is a homoclinic orbit,
as shown in figure 2(b). Then as μ passes through zero
we can expect that the arrangements of the stable and
unstable manifolds vary as shown in parts (a) and (c)
of figure 2. The local change in behavior can be deter-
mined using a return map approach. Close to the sta-
tionary point, the flow is approximated by the linear
part of (2), as nonlinear terms are much smaller, so
approximate solutions are

x = x0eλ1t , y = y0e−λ2t .

Thus if h > 0 is a small constant, solutions that start at
(x0, h) with x0 > 0 intersect x = h after time T , where
h ≈ x0eλ1T or T ≈ (1/λ1) log(h/x0). At this intersec-
tion, y = y1 ≈ he−λ2T ≈ h(x0/h)λ2/λ1 . In other words,
a solution starting at (x0, h) with x0 > 0 intersects
x = h at (h,y1) and then evolves close to the unstable
manifold away from the stationary point until it returns
to y = h. If we choose the parametrization so that the
unstable manifold of the stationary point first strikes
y = h at (μ,h), then the solution starting at (h,y1)
withy1 > 0 small enough will intersecty = h at (x1, h)
close to (μ,h). Since this flow is bounded away from
stationary points, the return map is smooth and can be
approximated by a Taylor series: x1 = μ + Ay1 + · · · .
Composing these two maps, the linear approximation
near the origin and the return map close to the homo-
clinic orbit outside a neighborhood of the origin, we
find that the full flow close to the homoclinic orbit for
|μ| sufficiently small is modeled by the approximate
return map

xn+1 ≈ μ + axδn, xn > 0, δ = λ2/λ1,

with a constant, and the map is undefined if xn � 0
(if xn = 0 the solution returns on the stable manifold
and tends to the stationary point, while if xn < 0 we
have no information about the behavior of the unstable
manifold). Since δ > 1, there is a simple fixed point if
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Figure 3 Parameter (μ) versus period (T ) plots of the simple
periodic orbit as it approaches the homoclinic orbit at μ = 0
with T → ∞. (a) Real eigenvalues, or a saddle–focus, with
ρ/λ > 1. (b) A saddle–focus with ρ/λ < 1 (the Shilnikov
case).

μ > 0 at x∗ ≈ μ that is stable since the slope of the
map is small, of order xδ−1. Most of the time is spent
in the neighborhood of the stationary point, and so as
μ tends to zero from above, the period scales like

T ∼ − 1
λ1

logμ,

i.e., it tends to infinity and approaches the homoclinic
orbit itself. If μ < 0 then there is no periodic solution
locally. The effect of the bifurcation is to destroy or
create a stable periodic orbit. The period of this orbit
as a function of the parameter is sketched in figure 3(a).

4.2 Homoclinic Bifurcations to Stationary Points:

Lorenz-Like Flows

In R3, the bifurcation of a homoclinic orbit to a station-
ary point with a Jacobian matrix that has real eigen-
values is typically similar to the planar case. A peri-
odic orbit is created or destroyed by the bifurcation.
An interesting exception occurs if the system has the
symmetry (x,y, z)→ (−x,−y,z) with linearization

ẋ = λ1x + f1(x,y, z;μ),

ẏ = −λ2y + f2(x,y, z;μ),

ż = −λ3z + f3(x,y, z;μ),

with λ2 > λ3 > λ1 > 0, and again the functions fi van-
ish at the origin for all μ and denote nonlinear terms.
In this case the second branch of the unstable mani-
fold (the branch in x < 0) is the symmetric image of
the branch in x > 0, and analysis similar to that of
the previous subsection implies that the return map is
defined in both x > 0 and x < 0 by symmetry:

xn+1 ≈
⎧⎨⎩μ + axδn, xn > 0,

−μ − a|xn|δ, xn < 0,

with δ = λ3/λ1 < 1. If a > 0 then the slope of the map
tends to infinity as x tends to 0 from above or below,
so there are no stable periodic orbits. In fact, if μ > 0
all solutions leave a neighborhood of x = 0. However,
if μ < 0 then there is an unstable chaotic set of solu-
tions similar to the chaotic set for the map 2x (mod 1)
in the article on dynamical systems [IV.20 §3.2]. It is
this chaotic set, or more accurately a subset of this set,
that stabilizes at higher parameter values to become
the lorenz attractor [III.20].

4.3 Homoclinic Bifurcations to Stationary Points:

Shilnikov Flows

In generic systems a homoclinic orbit will approach the
stationary point tangential to the eigenspace associ-
ated with the eigenvalue of the Jacobian matrix with
smallest positive real part as t → −∞ and the eigen-
value with negative real part having the smallest mod-
ulus as t → ∞. These are called the leading eigenvalues
of the stationary point. In higher dimensions it is only
the leading eigenvalues that determine the behavior of
generic systems. The results can be phrased for general
flows in Rp , but for simplicity we consider only p = 3
and p = 4.

This means that there are two extra cases: the saddle–
focus,

ẋ = λx + f1(x,y, z;μ),

ẏ = −ρy +ωz + f2(x,y, z;μ),

ż = −ωy − ρz + f3(x,y, z;μ),

where ρ and λ are positive; and the focus–focus

ẋ = ρx +ωy + f1(x,y, z,w;μ),

ẏ = −ωx + ρy + f2(x,y, z,w;μ),

ż = −Rz +Ωw + f3(x,y, z,w;μ),

ẇ = −Ωz − Rw + f4(x,y, z,w;μ),

with R,ρ > 0, and Ω and ω nonzero. In both sets of
equations the functions fi are nonlinear and vanish at
the origin for all μ.

The dynamics associated with the existence of homo-
clinic orbits to stationary points described locally
by the saddle–focus or focus–focus was analyzed by
Leonid Shilnikov in the mid-to-late 1960s. For the
saddle–focus with ρ/λ > 1, the situation is similar to
the planar case: a periodic orbit can be continued with
changing parameter and approaches the homoclinic
orbit monotonically as in figure 3(a). In the remain-
ing cases the situation is more exotic. Shilnikov proved
that at the parameter value for which the homoclinic
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orbit exists there are a countable number of (unstable)

periodic orbits and the dynamics contains horseshoes

(and therefore unstable chaotic sets: see dynamical sys-

tems). Concentrating on the simplest periodic orbits—

those that visit a neighborhood of the origin once in

each period—it is possible to show that in the saddle–

focus case with ρ/λ < 1 these exist with period T at

parameters μ, where (to lowest order)

μ ∼ Ae−ρT cos(ωT +φ),

which is an oscillatory approach to μ = 0 as T →
∞, as shown in figure 3(b). The turning points here

correspond to saddle–node bifurcations, and on every

branch involving stable orbits in the saddle–node bifur-

cations the orbit loses stability via period doubling

before it reaches μ = 0. Moreover, there are infi-

nite sequences of more complicated homoclinic orbits

accumulating on μ = 0; these homoclinic orbits pass

through a neighborhood of the stationary point more

than once before tending to that point, and they are

called multipulse homoclinic orbits. The focus–focus

case is similar, but the accumulations can be more

complicated.

4.4 Homoclinic Tangles

Whereas the intersection of stable and unstable mani-

folds is generally a codimension-one phenomenon for

flows, it is persistent for maps. This is because the

intersection must be at least one dimensional for flows,

whereas for maps the existence of a point of inter-

section implies the existence of only a countable set

of intersections. If a point p is on the intersection

of the stable and unstable manifolds of a fixed point

of a smooth invertible map f , then so are its preim-

ages f−n(p), n = 1,2,3, . . . , which accumulate on

the fixed point along its unstable manifold, and its

images fn(x), which accumulate on the fixed point

along its stable manifold. This gives rise to homoclinic

tangles, as illustrated in figure 4(a). Transverse inter-

sections of stable and unstable manifolds imply that

chaotic sets exist, although the chaotic dynamics is

not stable. This phenomenon also occurs in periodi-

cally forced systems, which can be analyzed via strobo-

scopic (or Poincaré) maps and provides one of the few

ways of proving that a system has chaotic solutions. A

range of techniques, known as Melnikov methods, have

been developed to prove the existence of intersections

between stable and unstable manifolds.

(a) (b)

Figure 4 (a) Homoclinic tangles for maps.
(b) Homoclinic tangency.

4.5 Homoclinic Tangencies

The creation of persistent transverse intersections of
stable and unstable manifolds as a parameter varies
involves the existence of homoclinic tangencies at a
critical parameter value as illustrated in figure 4(b). On
one side of this value of the parameter there is no inter-
section locally, and on the other there is a transverse
intersection. The existence of a homoclinic tangency
implies all sorts of exotic dynamics at nearby parame-
ters. In the 1970s Sheldon Newhouse proved that there
are parameters close to the bifurcation point at which
the system has a countably infinite number of stable
periodic orbits, “infinitely many sinks,” and by the end
of the 1990s it had been established that there are
nearby parameter values (a positive measure of them)
at which the system has a strange attractor. Moreover,
the existence of a homoclinic tangency implies the exis-
tence of homoclinic tangencies for higher iterates of
the map at nearby parameter values at which the same
analysis holds, so the whole picture repeats for higher
periods.

5 Cascades of Bifurcations

By the mid-1970s numerical simulations had shown
that simple families of maps such as the quadratic (or
logistic) map

xn+1 = μxn(1 − xn)
can have many complicated bifurcations (see the lo-

gistic equation [III.19]). Mitchell Feigenbaum showed
that a much stronger and more precise statement is
possible. For smooth families of maps there are infinite
sequences (cascades) of period-doubling bifurcations.
Thus there are parameter values μn at which an orbit
of period 2n has a period-doubling bifurcation, creat-
ing an orbit of period 2n+1, n = 0,1,2, . . . , and these
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accumulate on a limit μ∗ at a rate

lim
n→∞

μn−1 − μn
μn − μn+1

= δ

or |μn − μ∗| ∼ Cδ−n. Most remarkably, δ is a con-
stant independent of the details of the map, a prop-
erty referred to as quantitative universality. In fact, this
“Feigenbaum constant” δ should really be thought of as
a function of the order of the turning point of the map;
if it behaves like |x|α with α > 1, then the rate is a
function of α. For the typical quadratic turning point,

δ ≈ 4.669201609 . . . .

This quantitative universality also manifests itself in
the phase space as a sort of self-similarity under scal-
ing. Feigenbaum was able to understand this by appeal-
ing to arguments based on renormalization analysis
from statistical physics. At the accumulation point
μ∗, the second iterate of the map, restricted to a
smaller interval and suitably rescaled, behaves in
almost exactly the same way as the map itself: they
both have periodic orbits of period 2n for all n =
0,1,2,3, . . . . This idea can be exploited by defining a
map T on unimodal functions f : [−1,1] → [−1,1]
with a maximum at x = 0 and with f(0) = 1:

T f(x) = − 1
α
f ◦ f(−αx),

where α = −f(1). Seen as a map on an appropriately
defined function space, it turns out that T has a fixed
point f∗ (so T f∗ = f∗) with a codimension-one sta-
ble manifold consisting of maps corresponding to the
special accumulation values of parameters μ∗ for some
family, and a one-dimensional unstable manifold with
eigenvalue δ > 1 (it is actually a little more compli-
cated than this, but this statement contains the essen-
tial structure). The universal accumulation rate δ is
therefore the unstable eigenvalue of a map in function
space, and the universal scaling is due to the fact that
under renormalization, maps on the stable manifold of
f∗ accumulate on f∗ and so the spatial scaling α tends
to −f∗(1).

These period-doubling cascades are not limited to
the doubling of fixed points. They can also be associ-
ated with periodic orbits of any period, creating cas-
cades of period 2np for some fixed p. Period-doubling
cascades also occur in higher dimensions and have
been observed numerically in simulations of partial dif-
ferential equations and experimentally in, for example,
the changing convection patterns of liquid helium. The
Lorenz maps of section 4.2 can also display cascades
of homoclinic bifurcations if the saddle index λ3/λ1

is greater than one due to a simple correspondence

between the Lorenz maps and unimodal maps based

on the symmetry of the system.

Many codimension-two bifurcations involve the exis-

tence of infinitely many bifurcation curves, and these

again can lead to cascades of bifurcations along appro-

priately chosen paths in parameter space. The special

role played by period-doubling of orbits of period 2n is

that it is a natural route to chaos: on one side of the

accumulation point of the period-doubling sequence

associated with a fixed point of the map the map is

simple, in the sense that it has only a finite number of

periodic orbits, while on the other side it is chaotic with

infinitely many periodic orbits of different periods (this

is not true of cascades associated with other periods in

general).

6 Codimension-Two Bifurcations

Codimension-two bifurcations are associated with spe-

cial properties of a flow that can be observed in two-

parameter systems but not (typically) in one-parameter

families. Since there is often scope to vary more than

one parameter in systems of interest, and because

they act as useful organizing centers for describing the

dynamics of one-parameter families and are the obvi-

ous next step after the codimension-one cases, many

codimension-two bifurcations have been catalogued.

Here we give two representative examples. One, the

Takens–Bogdanov bifurcation, involves two zero eigen-

values at a stationary point and therefore generalizes

the idea of local bifurcations to two-parameter systems.

The other, a gluing bifurcation, occurs when there is a

special value in parameter space at which two homo-

clinic orbits exist without a symmetry. This provides

an example with an infinite set of bifurcations but no

chaos.

6.1 Takens–Bogdanov Bifurcations

If a stationary point of a flow has two zero eigen-

values, then the linear part of the differential equation

on the center manifold in appropriate coordinates will

typically have the form(
0 1

0 0

)
(3)

after a linear change of coordinates (there is obviously

another possibility with every coefficient zero but this

is more complicated and nongeneric). A natural way
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to unfold this singularity is to introduce two small
parameters, μ and ν , and consider the linear part(

0 1

μ ν

)
with characteristic equation s2 − νs − μ = 0. If μ = 0
there is a simple root (so a bifurcation such as a saddle
node or pitchfork), and if ν = 0 and μ < 0 there is a
purely imaginary pair of eigenvalues, suggesting a Hopf
bifurcation (see section 2). By considering the nonlin-
ear terms of lowest order after successive near-identity
changes of coordinates, it is possible to show that the
local behavior is typically modeled by the normal form

ẋ = y, ẏ = μ + νy + x2 + bxy,
where we treat μ and ν as small parameters and, after
scaling, b = ±1. In what follows we treat the case b = 1
as an example. If μ = ν = 0 then the origin is a sta-
tionary point and the Jacobian is (3). The bifurcation at
μ = 0 is a saddle node (except in the degenerate case
ν = 0), and if μ = −ν2 (μ < 0), there is a Hopf bifur-
cation creating a periodic orbit that exists in ν2 < −μ
immediately after the bifurcation. Thinking about a cir-
cular path in parameter space enclosing the origin, it is
clear that there must be another bifurcation (the peri-
odic orbit is created but never destroyed), and in fact
there is a homoclinic bifurcation on a curve starting at
the origin given to leading order by μ = − 49

25ν
2 that

creates/destroys the periodic orbit as expected.

6.2 A Gluing Bifurcation

Suppose that at some parameter a system has a pair
of homoclinic orbits in the same configuration as the
Lorenz equations but without the symmetry and with
saddle index λ3/λ1 = δ > 1 (see section 4.2). There
is then a natural two-parameter unfolding locally such
that if one parameter is zero, one of the homoclinic
orbits persists, and if the other parameter is zero, then
the other homoclinic orbit exists, with both therefore
existing at the intersection of the two axes. In the same
way that an approximate return map was derived for
the Lorenz-type flows of section 4.2, the analysis of this
more general configuration leads to the approximate
map

xn+1 ≈
⎧⎨⎩−μ + axδn, xn > 0,

ν − a|xn|δ, xn < 0,

with δ > 1 and a > 0. There are now two small param-
eters, μ and ν , and since δ > 1 the derivative of the
map is small if |x| is small and nonzero. These maps

have many similarities with maps of the circle that can
be exploited to show that as the parameter varies in a
path from (μ, ν) = (ε,0) to (ε,0) for some small ε > 0,
the proportion of points of the attractor varies contin-
uously from zero to one, and if it is rational then there
is a stable periodic orbit with that proportion of points
in x > 0. These stable periodic orbits exist on small
intervals of the parameters in a form of mode locking.

7 Bits and Pieces

There are many other areas that could be covered in
a review such as this, and in this final section we
summarize just four of them.

7.1 Saddle–Node on Invariant Circle

Suppose that a saddle–node bifurcation of a station-
ary point occurs on a periodic orbit for a flow. At first
sight this might appear to be a codimension-two bifur-
cation: one parameter for the saddle node and the other
to locate it on a periodic orbit. However, if the peri-
odic orbit is stable, then at the point of saddle–node
bifurcation the connection between the weakly unsta-
ble direction and the stable manifold is persistent, so
it is in fact codimension one. These bifurcations, called
SNICs (saddle–node on invariant circle), create a sta-
ble periodic orbit from a stable-saddle pair of station-
ary points. The period of the orbit tends to infinity as
the bifurcation point is approached like the inverse of
the square root of the parameter (cf., the logarithmic
divergence for homoclinic bifurcations in section 4).

The SNIC in discrete-time systems is again of codi-
mension one, but this time chaotic solutions exist in a
neighborhood of the bifurcation and there are complex
foldings of the unstable manifold as it approaches the
fixed point. This was described in detail by Newhouse,
Palis, and Takens in the early 1980s.

7.2 Intermittency

Intermittency describes motion that is close to being
periodic for a long time, called the laminar phase,
and that then has a chaotic burst before returning
to the laminar, almost periodic, phase. It can also be
seen as a prototype for the more general mixed-mode
oscillations observed in neuroscience and elsewhere.
Although not strictly a bifurcation, the phenomenon
of intermittency is seen as parameters vary and this
makes it worth mentioning here. There are several dif-
ferent types of intermittency. The simplest case can
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be observed in the quadratic (or logistic) map xn+1 =
μxn(1 − xn). There are parameter values with stable

periodic orbits that can lose stability via saddle–node

bifurcations as the parameter is decreased through a

critical value μc. Just before the saddle–node bifurca-

tion creates the stable periodic orbit, solutions that

pass close to the locus of the periodic orbit will spend

a long time, proportional to |μ − μc|−1/2, close to the

points where the periodic orbit will eventually be cre-

ated, before moving away. If there is some reinjec-

tion mechanism due to global properties of the map,

then after moving away the solution may find its way

back into the laminar region and the process repeats.

The SNIC is a special case in which the reinjection is

always at the same point. This sequence of long lam-

inar regions interspersed by bursts is generalized by

the idea of mixed-mode oscillations, where the laminar

region may be replaced by much more complicated but

localized behavior.

7.3 Hamiltonian Flows

If the defining differential equation can be derived from

a Hamiltonian, so the phase space can be divided into

two sets of variables (q,p) ∈ Rn × Rn with a function

H(q,p) such that

q̇i =
∂H
∂pi

, ṗi = − ∂H
∂qi
, i = 1, . . . , n,

then this special structure (and generalizations of it)

implies that the dynamics has very special features.

These equations are important because they include

many Newtonian models where friction is ignored. The

equations of motion imply that H is constant on solu-

tions, so solutions lie on level sets of the function

H. This in turn implies that features that are spe-

cial (that is, have codimension one) in generic systems

are robust in Hamiltonian systems. A good example

is the existence of homoclinic orbits, so the global

bifurcations of Hamiltonian systems are very differ-

ent from those of the more general systems described

in section 4. (Note that the global bifurcation theo-

rems given above assumed that the homoclinic orbits

exist on codimension-one surfaces in parameter space.)

Even local bifurcations are special: a stationary point

of a two-dimensional Hamiltonian system is typically

either a saddle or a center, and this means that the

saddle–node bifurcation involves the creation of a cen-

ter and a saddle, with a set of periodic motions around

the center, bounded by a robust homoclinic orbit! The

differential equation with Hamiltonian

H(q,p) = 1
2p

2 + μq − 1
3q

3

has just such a transition as μ passes through zero.

7.4 Homoclinic Snaking

Since the existence of homoclinic orbits can be persis-
tent with changing parameters in Hamiltonian systems,
homoclinic orbits may be continued in parameter space
in the same way that periodic orbits can be continued
in more general systems. One interesting feature that
is observed is homoclinic snaking, where the curve of
homoclinic orbits oscillates as some measure (such as
a norm) increases with parameters. Models of pattern
formation such as the swift–hohenberg equations

[IV.27 §2] exhibit this snaking if the time-dependent
solutions are considered in one spatial dimension.
Localized solutions (solitary waves) can be found that
tend to zero at large spatial amplitudes but that have
more and more complicated oscillations between these
limits. In this case, the continuations of these solutions
oscillate in parameter space, gaining an extra spatial
maximum or minimum on each monotonic branch, in
a pattern that is reminiscent of the oscillation of the
periodic solution near the Shilnikov homoclinic orbits
of figure 3, except that the oscillations have a bounded
amplitude in parameter space rather than decreasing
amplitude as in the figure.

7.5 Piecewise-Smooth Systems

Many applications in mechanics (friction and impacts,
for example), biology (gene switching), and control
(threshold control) are modeled by piecewise-smooth
systems, where the dynamics evolves continuously
until some switching surface is reached, and then there
is a transition to a different (but still smooth) dynamics,
possibly with a reset to another part of phase space.
These are examples of hybrid systems [II.18]. The
evolution is therefore a sequence of behaviors deter-
mined by smooth dynamical systems that are stitched
together across the switching surfaces. New bifurca-
tions occur when a periodic orbit intersects a switch-
ing surface tangentially, introducing a new segment to
the dynamics, or if a fixed point or periodic orbit of a
map intersects the switching surface. In the example of
impacting systems, a standard model return map has a
square root singularity:

xn+1 =
⎧⎨⎩μ −√

xn, xn > 0,

μ + axn, xn < 0.
(4)
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The maps obtained in these situations have much in
common with the Lorenz maps discussed earlier with
δ < 1 as the derivative is unbounded as x tends to zero
from above, but they are also continuous unimodal
maps and so general theorems such as Sharkovskii’s
theorem (which describes how the existence of a peri-
odic orbit of a given period implies the existence of
other periodic orbits in continuous maps) hold (see
logistic equation [III.19]). When applied to the spe-
cial case of unimodal maps this restricts the order
in which periodic orbits are created. However, while
the logistic map has many windows of stable periodic
orbits, each with its own period-doubling cascade and
associated chaotic motion, the stable periodic orbits of
the square root map (4) are much more constrained. For
example, if 0 < a < 1

4 , the stable periodic orbits form
a period-adding sequence as μ decreases through zero.
There is a parameter interval on which a period-n orbit
is the only attractor, followed by a bifurcation creating
a stable period-(n+1) orbit so that the two stable orbits
of period n and period (n + 1) coexist. Then there is
a further bifurcation at which the period-n orbit loses
stability and the stable period-(n+ 1) orbit is the only
attractor. This sequence of behavior is repeated with n
tending to infinity as μ tends to zero.

8 Afterview

Bifurcation theory provides insights into why certain
types of dynamics occur and how they arise. In cases
such as period-doubling cascades it provides a frame-
work in which to understand the changes in complexity
of dynamics even if the behavior at a single param-
eter value might appear nonrepeatable. The number
of different cases that may need to be considered can
proliferate, and there is currently a nonuniformity of
nomenclature that means that it is hard to tell whether
a particular case has been studied previously in the lit-
erature. Given that the techniques are useful in any
discipline that uses dynamic modeling, this aspect is
unfortunate and leads to many reinventions of the
same result. However, this only underlines the central
role played by bifurcation theory in understanding the
dynamics of mathematical models wherever they occur.

Further Reading

Arrowsmith, D. K., and C. P. Place. 1996. An Introduction
to Dynamical Systems. Cambridge: Cambridge University
Press.

Glendinning, P. 1994. Stability, Instability and Chaos. Cam-
bridge: Cambridge University Press.

Guckenheimer, J., and P. Holmes. 1983. Nonlinear Oscil-
lations, Dynamical Systems, and Bifurcations of Vector
Fields. New York: Springer.

Kusnetsov, Y. A. 1995. Elements of Applied Bifurcation
Theory. New York: Springer.

IV.22 Symmetry in Applied
Mathematics
Ian Stewart

We tend to think of the applied mathematical toolkit as
a collection of specific techniques for precise calcula-
tions, each intended for a particular kind of problem,
solving a system of algebraic or differential equations
numerically, for example. But some of the most power-
ful ideas in mathematics are so broad that at first sight
they seem too vague and nebulous to have practical
implications. Among them are probability, continuity,
and symmetry.

Probability started out as a way to capture uncer-
tainty in gambling games, but it quickly developed into
a vitally important collection of mathematical tech-
niques used throughout applied science, economics,
sociology—even for formulating government policy.

Continuity proved such an elusive concept that it was
used intuitively for centuries before it could be defined
rigorously; now it underpins calculus, perhaps the most
widely used mathematical tool of them all, especially in
the form of ordinary and partial differential equations.
But continuity is also fundamental to topology, a rel-
ative newcomer from pure mathematics that is start-
ing to demonstrate its worth in the design of efficient
trajectories for spacecraft, improved methods for fore-
casting the weather, frontier investigations in quantum
mechanics, and the structure of biologically important
molecules, especially deoxyribonucleic acid (DNA).

Symmetry, the topic of this article, was initially a
rather ill-defined feeling that certain parts of shapes
or structures were much the same as other parts of
those shapes or structures. It has since become a vital
method for understanding pattern formation through-
out the scientific world, with applications that range
from architecture to zoology. Symmetry, it turns out,
underlies many of the deepest aspects of the natural
world. Our universe behaves the way it does because of
its symmetries—of space, time, and matter. Both rela-
tivity and particle physics are based on symmetry prin-
ciples. Symmetry methods shed light on difficult prob-
lems by revealing general principles that can help us
find solutions. Symmetry can be static, dynamic, even
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Figure 1 Which shapes are symmetric?

chaotic. It is a concept of great generality and deep
abstraction, where beauty and power go hand in hand.

1 What Is Symmetry?

Symmetry is most easily understood in a geometric set-
ting. Figure 1 shows a variety of plane figures, some
symmetric, some not. Which are which?

The short answer is that the top row consists of sym-
metric shapes and the bottom row consists of asym-
metric shapes. But there is more. Not only can shapes
be symmetric, or not—they can have different kinds of
symmetry. The heart (the middle of the top row) has the
most familiar symmetry, one we encounter every time
we look at ourselves in a mirror: bilateral symmetry.
The left-hand side of the figure is an exact copy of the
right-hand side, but flipped over. Three other shapes in
the figure are bilaterally symmetric: the circle, the pen-
tagon, and the circle with a square hole. The pentagon
with a tilted square hole is not; if you flip it left–right,
the pentagonal outline does not change but the square
hole does because of the way it is tilted.

However, the circle has more than just bilateral sym-
metry. It would look the same if it were reflected in
any mirror that runs through its center. The pentagon
would look the same if it were reflected in any mir-
ror that runs through its center and passes through a
vertex.

What about the fourth shape in the top row, the flow-
ery thing? If you reflect it in a mirror, it looks different,
no matter where the mirror is placed. However, if you
rotate it through a right angle about its center, it looks
exactly the same as it did to start with. So this shape has
rotational symmetry for a right-angle rotation. Thus
primed, we notice that the pentagon also has rotational
symmetry, for a rotation of 72◦, and the circle has
rotational symmetry for any angle whatsoever.

Most of the shapes on the bottom row look com-
pletely asymmetric. No significant part of any of them
looks much like some other part of the same shape. The

possible exception is the pentagon with a square hole.
The pentagon is symmetric, as we have just seen, and
so is the square. Surely combining symmetric shapes
should lead to a symmetric shape? On the other hand,
it does look a bit lopsided, which is not what we would
expect from symmetry. With the current definition of
symmetry, this shape is asymmetric, even though some
pieces of it are symmetric.

In the middle of the nineteenth century mathemati-
cians finally managed to define symmetry, for geomet-
ric shapes, by abstracting the common idea that unifies
all of the above discussion. The background involves
the idea of a transformation (or function or map). Some
of the most common transformations, in this context,
are rigid motions of the plane. These are rules for
moving the entire plane so that the distances between
points do not change. There are three basic types.

Translations. Slide the plane in a fixed direction so
that every point moves the same distance.

Rotations. Choose a point, keep this fixed, and spin the
entire plane around it through some angle.

Reflections. Choose a line, think of it as a mirror, and
reflect every point in it.

These transformations do not exhaust the rigid mo-
tions of the plane, but every rigid motion can be ob-
tained by combining them. One of the new transfor-
mations produced in this way is the glide reflection;
reflect the plane in a line and then translate it along
the direction of that line.

Having defined rigid motions, we can now define
what a symmetry is. Given some shape in the plane,
a symmetry of that shape is a rigid motion of the plane
that leaves the shape as a whole unchanged. Individ-
ual points in the shape may move, but the end result
looks exactly the same as it did to start with—not just
in terms of shape, but also location.

For example, if we reflect the pentagon about a line
through its center and a vertex, then points not on the
line flip over to the other side. But they swap places in
pairs, each landing where the other one started from, so
the final position of the pentagon fits precisely on top
of the initial position. This is false for the pentagon with
a square hole, and this is the reason why that shape is
not considered to possess symmetry.

The shapes in figure 1 are all of finite size, so they
cannot possess translational symmetry. Translational
symmetries require infinite patterns. A typical example
is a square tiling of the entire plane, like bathroom tiles
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but continued indefinitely. If this pattern is translated
sideways by the width of one tile, it remains unchanged.
The same is true if it is translated upward by the width
of one tile. It follows that, if the tiling is translated an
integer number of widths in either of these two direc-
tions, it again remains unchanged. The symmetry group
of translations is a lattice, consisting of integer com-
binations of two basic translations. The square tiling
also has rotational symmetries, through multiples of
90◦ about the center of a tile or a corner where four
tiles meet. Another type of rotational symmetry is rota-
tion through 180◦ about the center of the edge of a tile.
The square tiling pattern also has various reflectional
symmetries.

Lattices in the plane can be interpreted as wallpa-
per patterns. In 1891 the pioneer of mathematical crys-
tallography Yevgraf Fyodorov proved that there are
exactly 17 different symmetry classes of wallpaper pat-
terns. George Pólya obtained the same result indepen-
dently in 1924. Lattice symmetries, often in combina-
tion with rotations and reflections, are of crucial impor-
tance in crystallography, but now the “tiling” is the
regular atomic structure of the crystal, and it repeats
in three-dimensional space along integer combinations
of three independent directions. Again there may also
be rotations and reflections. The physics of a crystal
is strongly influenced by the symmetries of its atomic
lattice. In the 1890s Fyodorov, Arthur Shönflies, and
William Barlow proved that there are 230 symmetry
types of lattice, or 219 if certain mirror-image pairs are
considered to be the same.

Of course, no physical crystal can be of infinite
extent. However, the idealization to infinite lattices can
be a very accurate model for a real crystal because the
size of the crystal is typically much larger than the lat-
tice spacing. Real crystals differ from this ideal model
in many ways: dislocations, where the lattice fails to
repeat exactly; grain boundaries, where local lattices
pointing in different directions meet; and so on. All
applied mathematics involves a modeling step, repre-
senting the physical system by a simplified and ideal-
ized mathematical model. What matters is the extent
to which the model provides useful insights. Its failure
to include certain features of reality is not, of itself, a
valid criticism. In fact, such a failure can be a virtue if
it makes the analysis simpler without losing anything
important.

Symmetries need not be rigid motions. Another geo-
metric symmetry is dilation—change of scale. A log-
arithmic spiral, found in nature as a nautilus shell,

remains unchanged if it is dilated by some fixed amount
and also rotated through an appropriate angle.

Symmetry does not apply only to shapes; it is
equally evident in mathematical formulas. For exam-
ple, x +y + z treats the three variables x, y , and z
in exactly the same manner. But the expression x3 +
y − 2z2 does not. The first formula is symmetric in
x, y , and z; the second is not. This time the trans-
formations concerned are permutations of the three
symbols—ways to swap them around. However we per-
mute them, x + y + z stays the same. For instance, if
we swap x and y but leave z the same, the expression
becomes y + x + z. By the laws of algebra, this equals
x + y + z. But the same permutation applied to the
other expression yields y3 + x − 2z2, which is clearly
different.

Symmetry thereby becomes a very general concept.
Given any mathematical structure, and some class of
transformations that can act on the structure, we define
a symmetry to be any transformation that preserves the
structure—that is, leaves it unchanged.

If a physical system has symmetry, then most sensi-
ble mathematical models of that system will have corre-
sponding symmetries. (I say “most” because, for exam-
ple, numerical methods cannot always incorporate all
symmetries exactly. No computer model of a circle can
be unchanged by all rotations. This inability of numer-
ical methods to capture all symmetries can sometimes
cause trouble.) The precise formulation of symmetry
for a given model depends on the kind of model being
used and its relation to reality.

2 Symmetry Groups

The above definition tells us that a symmetry of some
structure (shape, equation, process) is not a thing but
a transformation. However, it also tells us something
deeper: structures may have several different sym-
metries. Indeed, some structures, such as the circle,
have infinitely many symmetries. So there is a shift of
emphasis from symmetry to symmetries, not symme-
try as an abstract property of a structure but the set of
all symmetries of the structure.

This set of transformations has a simple but vital fea-
ture. Transformations can be combined by performing
them in turn. If two symmetries of some structure are
combined in this way, the result is always a symmetry
of that structure. It is not hard to see why: if you do not
change something, and then you again do not change
it … you do not change it. This feature is known as the
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“group property,” and the set of all symmetry transfor-
mations, together with this operation of composition,
is the symmetry group of the structure.

The shapes in figure 1 illustrate several common
kinds of symmetry group. The rotations of the circle
form the circle group or special orthogonal group in
the plane, denoted by S1 or SO(2). The reflections and
rotations of the circle form the orthogonal group in
the plane, denoted by O(2). The rotations of the pen-
tagon form the cyclic group Z5 of order 5 (the order
of a group is the number of transformations that it
contains). The rotations of the flower shape form the
cyclic group Z4 of order 4. There is an analogous cyclic
group Zn whose order is any positive integer n; it can
be defined as the group of rotational symmetries of
a regular n-sided polygon. If we also include the five
reflectional symmetries of the pentagon, we obtain the
dihedral group D5, which has order 10. There is an
analogous dihedral group Dn of order 2n for any pos-
itive integer n: the rotations and reflections of a regu-
lar n-sided polygon. Finally, we mention the symmet-
ric group Sn of all permutations of a set with n ele-
ments, such as {1,2,3, . . . , n}. This has order n!, that
is, n(n− 1)(n− 2) · · ·3 · 2 · 1.

Even asymmetric shapes have some symmetry; the
identity transformation “leave everything as it is.” The
symmetry group contains only this trivial but useful
transformation, and it is symbolized by 1.

We mention one useful piece of terminology. Often
one group sits inside a bigger one. For example, SO(2)
is contained in O(2), and Zn is contained in Dn. In such
cases, we say that the smaller group is a subgroup of
the bigger one. (They may also be equal, a trivial but
sensible convention.)

The study of groups has led to a huge area of
mathematics known as group theory. Some of it is
part of abstract algebra, especially when the group is
finite—that is, contains a finite number of transforma-
tions. Examples are the cyclic, dihedral, and symmetric
groups. Another area, involving analysis and topology,
is the theory of Lie groups, such as the circle group,
the orthogonal group, and their analogues in spaces of
any dimension. Here the main emphasis is on continu-
ous families of symmetry transformations, which cor-
respond to all choices of some real number. For exam-
ple, a circle can be rotated through any real angle. Yet
another important area is representation theory, which
studies all the possible ways to construct a given group
using matrices, linear transformations of some vector
space.

One of the early triumphs of group theory in applied
mathematics was Noether’s theorem, proved by Emmy
Noether in 1918. This applies to a special type of
differential equation known as a Hamiltonian system,
which arises in models of classical mechanics in the
absence of frictional forces. Celestial mechanics—the
motion of the planets—is a significant example. The
theorem states that whenever a Hamiltonian system
has a continuous family of symmetries, there is an asso-
ciated conserved quantity. “Conserved” means that this
quantity remains unchanged as the system moves.

The laws of nature are the same at all times: if you
translate time from t to t + θ, the laws do not look
any different. These transformations form a continu-
ous family of symmetries, and the corresponding con-
served quantity is energy. Translational symmetry in
space (the laws are the same at every location) corre-
sponds to conservation of momentum. Rotations about
some axis in three-dimensional space provide another
continuous family of symmetries; here the conserved
quantity is angular momentum about that axis. All
of the conservation laws of classical mechanics are
consequences of symmetry.

3 Pattern Formation

Symmetry methods come into their own, and nowadays
are almost mandatory, in problems about pattern for-
mation. Often the most striking feature of some natural
or experimental system is the occurrence of patterns.
Rainbows are colored circular arcs of light. Ripples
caused by a stone thrown into a pond are expanding cir-
cles. Sand dunes, ocean waves, and the stripes on a tiger
or an angelfish are all patterns that can be modeled
using repeating parallel features. Crystal lattices are
repeating patterns of atoms. Galaxies form vast spirals,
which rotate without (significantly) changing shape—a
group of symmetries combining time translation with
spatial rotation.

Many of these patterns arise through a general mech-
anism called “symmetry breaking.” This is applicable
whenever the equations that model a physical system
have symmetry. I say “equations” here, even though
I have already insisted that the symmetries of the
system should appear in the equations, because it is
not unusual for the model equations to have more
symmetry than the pattern under consideration. Our
theories of symmetry breaking and pattern formation
rest on the structure of the symmetry group and its
implications for mathematical models of symmetric
systems.
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Figure 2 Taylor–Couette apparatus, showing
flow pattern for Taylor vortices.

A classic example is Taylor–Couette flow, in which
fluid is confined between two rotating cylinders (fig-
ure 2). In experiments this system exhibits a bewilder-
ing variety of patterns, depending on the angular veloc-
ities of the cylinders and the relative size of the gap
between them. The experiment is named after Mau-
rice Couette, who used a fixed outer cylinder and a
rotating inner one to measure the viscosity of fluids.
At the low velocities he employed, the flow is feature-
less, as in figure 3(a). In 1923 Geoffrey Ingram Taylor
noted that when the angular velocity of the inner cylin-
der exceeds a critical threshold, the uniform pattern
of Couette flow becomes unstable and instead a stack
of vortices appears; see figures 2 and 3(b). The vor-
tices spiral round the cylinder, and alternate vortices
spin the opposite way in cross section (small circles
with arrows). Taylor calculated this critical velocity and
used it to test the navier–stokes equations [III.23]
for fluid flow.

Further experimental and theoretical work followed,
and the apparatus was modified to allow the outer
cylinder to rotate as well. This can make a difference
because, in a rotating frame of reference, the fluid
is subject to additional centrifugal forces. In these
more general experiments, many other patterns were
observed. Figure 3 shows a selection of them.

The most obvious symmetries of the Taylor–Couette
system are rotations about the common axis of the
cylinders. These preserve the structure of the appara-
tus. But notice that not all patterns have full rotational
symmetry. In figure 3 only the first two—Couette flow
and Taylor vortices—are symmetric under all rotations.
Another family of symmetries arises if the system is

(a) (b)

(c) (d)

(e) (f)

Figure 3 Some of the numerous flow patterns in the Tay-
lor–Couette system: (a) Couette flow; (b) Taylor vortices;
(c) wavy vortices; (d) spiral vortices; (e) twisted vortices; and
(f) turbulent vortices. Source: Andereck et al. (1986).



IV.22. Symmetry in Applied Mathematics 407

modeled (as is common for some purposes) by two
infinitely long cylinders but restricted to patterns that
repeat periodically along their lengths. In effect, this
wraps the top of the cylinder round and identifies it
with the bottom. Mathematically, this trick employs a
modeling assumption: “periodic boundary conditions”
that require the flow near the top to join smoothly to
the flow near the bottom. With periodic boundary con-
ditions, the equations are symmetric under all vertical
translations. But again, not all patterns have full trans-
lational symmetry. In fact, the only one that does is
Couette flow. So all patterns except Couette flow break
at least some of the symmetries of the system.

On the other hand, most of the patterns retain some
of the symmetries of the system. Taylor vortices are
unchanged by vertical translations through distances
equal to the width of a vortex pair (see figure 2). The
same is true of wavy vortices, spirals, and twisted vor-
tices. We will see in section 7 how each pattern in the
figure can be characterized by its symmetry group.

There are at least two different ways to try to under-
stand pattern formation in the Taylor–Couette system.
One is to solve the Navier–Stokes equations numeri-
cally. The computations are difficult and become infea-
sible for more complex patterns. They also provide lit-
tle insight into the patterns beyond showing that they
are (rather mysterious) consequences of the Navier–
Stokes equations. The other is to seek theoretical
understanding, and here the symmetry of the appa-
ratus is of vital importance, explaining most of the
observed patterns.

4 Symmetry of Equations

To understand the patterns that arise in the Taylor–
Couette system, we begin with a simpler example and
abstract its general features. We then explain what
these features imply for the dynamics of the system.
In a later section we return to the Taylor–Couette sys-
tem and show how the general theory of dynamics with
symmetry classifies the patterns and shows how they
arise. This theory is based on a mathematical conse-
quence of the symmetry of the system being modeled;
the differential equations used to set up the model have
the same symmetries as the system. A symmetry of an
equation is defined to be a transformation of the vari-
ables that sends solutions of the equation to (usually
different) solutions.

The appropriate formulation of symmetry for an
ordinary differential equation is called equivariance.

Cube Rod Plate

(a) (b) (c)

Figure 4 (a) Cube under compression (force at back
not shown). (b) Rod solution. (c) Plate solution.

Suppose that Γ is a group of symmetries acting on the
variables x = (x1, . . . , xm) in the equation

dx
dt

= F(x).

Then F is equivariant if

F(γx) = γF(x) for all symmetries γ in Γ .

It follows immediately that, if x(t) is any solution of
the system, so is γx(t) for any symmetry γ. In fact,
this condition is logically equivalent to equivariance.
In simple terms, solutions always occur in symmet-
rically related sets. We will see an example of this
phenomenon below.

A central concept in symmetric dynamics is bifur-

cation [IV.21], for which the context is a family of dif-
ferential equations—an equation that contains one or
more parameters. These are variables that are assumed
to remain constant when solving the equation but can
take arbitrary values. In a problem about the motion
of a planet, for example, the mass of the planet may
appear as a parameter. Such a family undergoes a
bifurcation at certain parameter values if the solutions
change in a qualitative manner near those values. For
example, the number of equilibria might change, or
an equilibrium might become a time-periodic oscilla-
tion. Bifurcations have a stronger effect than, say, mov-
ing an equilibrium continuously or slightly changing
the shape and period of an oscillation. They provide a
technique for proving the existence of interesting solu-
tions by working out when simpler solutions become
unstable and what happens when they do.

To show how symmetries behave at a bifurcation
point, we consider a simple model of the deformation
of an elastic cube when it is compressed by six equal
forces acting at right angles to its faces (figure 4(a)).
We consider deformations into any cuboid shape with
sides (a, b, c). When the forces are zero, the shape of
the body is a cube, with a = b = c. The symmetry
group consists of the permutations of the coordinate
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Solution

Cube Cube

Rod

Plate

Force

Figure 5 Bifurcation diagram (solid lines, stable;
dashed lines, unstable).

axes, changing (a, b, c) to (a, c, b), (b, c, a), and so on.
Physically, these rotate or reflect the shape, and they
constitute the symmetric group S3.

As the forces increase, always remaining equal, the
cube becomes smaller. Initially, the sides remain equal,
but analysis of a simplified but reasonable model shows
that, when the forces become sufficiently large, the fully
symmetric “cube” state becomes unstable. Two alterna-
tive shapes then arise: a rod shape (a, b, c) with two
sides equal and smaller than the third, and a plate
shape (a, b, c) with two sides equal and larger than the
third (figure 4). The bifurcation diagram in figure 5 is a
schematic plot of the shape of the deformed cube, plot-
ted vertically, against the forces, plotted horizontally.
The diagram shows how the existence and stability of
the deformed states relate to the force. In this model
only the plate solutions are stable.

In principle there might be a third shape, in which
all three sides are of different lengths; however, such
a solution does not occur (even unstably) in the model
concerned.

Earlier, I remarked that solutions of symmetric equa-
tions occur in symmetrically related sets. Here, rod
solutions occur in three symmetrically related forms,
with the longer side of the rod pointing in any of the
three coordinate directions. Algebraically, these solu-
tions satisfy the symmetrically related conditions a =
b < c, a = c < b, and b = c < a. The same goes for
plate solutions.

5 Symmetry Breaking

The symmetry group for the buckling cube model
contains six transformations:

I : (a, b, c)  → (a, b, c),
X : (a, b, c)  → (a, c, b),

Y : (a, b, c)  → (c, b,a),
Z : (a, b, c)  → (b,a, c),
R : (a, b, c)  → (b, c, a),
S : (a, b, c)  → (c, a, b).

We can consider the symmetries of the possible
states, that is, the transformations that leave the shape
of the buckled cube unchanged. Rods and plates have
square cross section, and the two lengths in those direc-
tions are equal. If we interchange those two axes, the
shape remains the same. Only the cube state has all
six symmetries S3. The rod with a = b < c is symmet-
ric under the permutations that leave z fixed, namely
{I, Z}. The rod with a = c < b is symmetric under the
permutations that leave y fixed, namely {I, Y}. The rod
with b = c < a is symmetric under the permutations
that leavex fixed, namely {I, X}. The same holds for the
plates. If a solution existed in which all three sides had
different lengths, its symmetry group would consist of
just {I}. All of these groups are subgroups of S3.

Notice that the subgroups {I, X}, {I, Y}, {I, Z} are
themselves related by symmetry. For example, a solu-
tion (a, b, c) with a = b < c becomes (b, c, a) with
b = c < a when the coordinate axes are permuted
using R. In the terminology of group theory, these three
subgroups are conjugate in the symmetry group.

The buckling cube is typical of many symmetric sys-
tems. Solutions need not have all of the symmetries
of the system itself. Instead, some solutions may have
smaller groups of symmetries—subgroups of the full
symmetry group. Such solutions are said to break sym-
metry. For an equivariant system of ordinary differen-
tial equations, fully symmetric solutions may exist, but
these may be unstable. If they are unstable, the system
will find a stable solution (if it can), and this typically
breaks the symmetry.

In general, the symmetry group of a solution is a
subgroup of the symmetry group of the differential
equation. Some subgroups may not occur here. Those
that do are known as isotropy subgroups. For the buck-
ling cube, the group S3 has the five isotropy sub-
groups listed above. One subgroup is missing from that
list, namely {I, R, S}. This is not an isotropy subgroup
because a shape with these symmetries must satisfy the
condition (a, b, c) = (b, c, a), which forces a = b = c.
This shape is the cube, which has additional symme-
tries X, Y , and Z . This situation is typical of subgroups
that are not isotropy subgroups; the symmetries of
such a subgroup force additional symmetries that are
not in the subgroup.
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A first step toward classifying the possible symme-
try-breaking solutions of a differential equation with
a known symmetry group is to use group theory to
list the isotropy subgroups. Techniques then exist to
find solutions with a given isotropy subgroup. Only one
isotropy subgroup from each conjugacy class need be
considered because solutions come in symmetrically
related sets.

There are general theorems that guarantee the exis-
tence of solutions with certain types of isotropy sub-
group, but they are too technical to state here. Roughly
speaking, symmetry-breaking solutions often occur for
large isotropy subgroups (but ones smaller than the
full symmetry group). The theorems make this state-
ment precise. In particular, they explain why rod and
plate solutions occur for the buckling cube. Other gen-
eral theorems help to determine whether a solution is
stable or unstable.

6 Time-Periodic Solutions

A famous example of pattern formation is the Belou-
sov–Zhabotinskii (or BZ) chemical reaction. This in-
volves three chemicals together with an indicator that
changes color from red to blue depending on whether
the reaction is oxidizing or reducing. The chemicals are
mixed together and placed in a shallow circular dish.
They turn blue and then red. For a few minutes noth-
ing seems to be happening; then tiny blue spots appear,
which expand and turn into rings. As each ring grows,
a new blue dot appears at its center. Soon the dish
contains several expanding “target patterns” of rings.
Unlike water waves, the patterns do not overlap and
superpose. Instead, they meet to form angular junc-
tions (figure 6(a)). Different target patterns expand at
different rates, giving rings with differing thicknesses.
However, each set of rings has a specific uniform speed
of expansion, and the rings in that set all have the same
width.

Another pattern can be created by breaking up a
ring—by dragging a paperclip across it, for example.
This new pattern curls up into a spiral (close to an
Archimedean spiral with equally spaced turns), and the
spiral slowly rotates about its center, winding more and
more turns as it does so.

Neither pattern is an equilibrium, so the theorems
alluded to above are not applicable. Instead, we can
employ a different but related series of techniques.
These apply to time-periodic solutions, which repeat
their form at fixed intervals of time.

(a) (b)

Figure 6 Patterns in the BZ reaction: (a) snapshot of several
coexisting target patterns; (b) snapshot of two coexisting
spirals.

There are two main types of bifurcation in which the
fully symmetric steady state loses stability as a parame-
ter is varied, with new solutions appearing nearby. One
is a steady-state bifurcation (which we met above), for
which these new solutions are equilibria. The other is
hopf bifurcation [IV.21 §2], for which the new solu-
tions are time-periodic oscillations. Hopf bifurcation
can occur for equations without symmetry, but there is
a generalization to symmetric systems. The main new
ingredient is that symmetries can now occur not just
in space (the shape of the pattern) and time (integer
multiples of the period make no difference), but in a
combination of both.

A single target pattern in the BZ reaction has a purely
spatial symmetry: at any instant in time it is unchanged
under all rotations about its center. It also has a purely
temporal symmetry: in an ideal version where the pat-
tern fills the whole plane, it looks identical after a time
that is any integer multiple of the period.

A single spiral, occupying the entire plane, has no
nontrivial spatial symmetry, but it has the same purely
temporal symmetry as a target pattern. However, it has
a further spatiotemporal symmetry that combines both.
As time passes, the spiral slowly rotates without chang-
ing form. That is, an arbitrary translation of time, com-
bined with a rotation through an appropriate angle,
leaves the spiral pattern (and how it develops over time)
unchanged.

For symmetric equations there is a version of the
Hopf bifurcation theorem that applies to spatiotem-
poral symmetries when there is a suitable symmetry-
breaking bifurcation. Again, its statement is too tech-
nical to give here, but it helps to explain the BZ patterns.
In conjunction with the theory for steady-state bifurca-
tion, it can be used to understand pattern formation in
many physical systems.
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7 Taylor–Couette Revisited

The Taylor–Couette system is a good example of

the symmetry-breaking approach. A standard model,

derived from the Navier–Stokes equations for fluid

flow, involves three types of symmetry.

Spatial: rotation about the common axis of the cylin-

ders through any angle.

Temporal: shift time by an integer multiple of the

period.

Model: translation along the common axis of the cylin-

ders through any distance (a consequence of the

assumption of periodic boundary conditions).

Using bifurcation theory and a few properties of

the Navier–Stokes equations, the dynamics of this

model for the Taylor–Couette system can be reduced

to an ordinary differential equation (the so-called cen-

ter manifold reduction) in six variables. Two of these

variables correspond to a steady-state bifurcation from

Couette flow to Taylor vortices. This is steady in the

sense that the fluid velocity at any point remains con-

stant. The other four variables correspond to a Hopf

bifurcation from Couette flow to spirals. These are the

two basic “modes” of the system, and their combination

is called a mode interaction.

Symmetric bifurcation theory’s general theorems

now prove the existence of numerous flow patterns,

each with a specific isotropy subgroup. For example,

if the rotational symmetry remains unbroken, but the

group of translational symmetries breaks, a typical

solution will have a specific translational symmetry,

through some fraction of the length of the cylinder. All

integer multiples of this translation are also symme-

tries of that solution. This combination of symmetries

corresponds precisely to Taylor vortices; it leads to a

discrete, repetitive pattern vertically, with no change

in the horizontal direction.

A further breaking of the rotational symmetry pro-

duces a discrete set of rotational symmetries; these

characterize wavy vortices. Symmetry under any rota-

tion, if combined with a vertical translation through a

corresponding distance, characterizes spiral vortices,

and so on.

The only pattern in figure 3 that is not explained

in this manner is the final one: turbulent vortices.

This pattern turns out to be an example of symmet-

ric chaos, chaotic dynamics that possesses “symmetry

on average.” At each instant the turbulent vortex state

has no symmetry. But if the fluid velocity at each point

is averaged over time, the result has the same symme-

try as Taylor vortices. This is why the picture looks like

Taylor vortices with random disturbances. A general

theory of symmetric chaos also exists.

8 Conclusion

The symmetries of physical systems appear in the equa-

tions that model them. The symmetry affects the solu-

tions of the equations, but it also provides systematic

ways to solve them. One general area of application

is pattern formation, and here the methods of sym-

metric bifurcation theory have been widely used. Top-

ics include animal locomotion, speciation, hallucina-

tion patterns, the balance-sensing abilities of the inner

ear, astrophysics, liquid crystals, fluid flow, coupled

oscillators, elastic buckling, and convection.

In addition to a large number of specific applica-

tions, there are many other ways to exploit symmetry in

applied mathematics. This article has barely scratched

the surface.
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IV.23 Quantum Mechanics
David Griffiths

Quantum mechanics makes use of a wide variety
of tools and techniques from applied mathematics—
linear algebra, complex variables, differential equa-
tions, Fourier analysis, group representations—but the
mathematical core of the subject is the theory of eigen-
vectors and eigenvalues of self-adjoint operators in
Hilbert space.

1 A Single Particle in One Dimension

Let us begin with the simplest mechanical system: a
particle (which is physicists’ jargon for an object so
small, compared with other relevant distances, that it
can be considered to reside at a single point) of mass
m, constrained to move in one dimension (say, along
the x-axis) under the influence of a specified force F
(which may depend on position and time). The program
of classical mechanics [IV.19] is to determine the
location of the particle at time t: x(t). How do you cal-
culate it? By applying Newton’s second law of motion,
F = ma (or d2x/dt2 = F/m). If the force is conser-
vative (nonconservative forces, such as friction, do not
occur at a fundamental level), it can be expressed as
the negative gradient of the potential energy, V(x, t),
and Newton’s law becomes d2x/dt2 = −m−1∂V/∂x.
Together with appropriate initial conditions (typically,
x and dx/dt at t = 0), this determines x(t). From there
it is easy to obtain the velocity (v(t) ≡ dx/dt), momen-
tum (p ≡mv), kinetic energy (T ≡ 1

2mv
2), or any other

dynamical quantity.

The program of quantum mechanics is quite differ-
ent. Instead of x(t), we seek the wave function, Ψ(x, t),
which we obtain by solving schrödinger’s equation

[III.26],

i�
∂Ψ
∂t

= − �2

2m
∂2Ψ
∂x2

+ V(x, t)Ψ , (1)

where � ≡ 1.05457 × 10−34 J s is Planck’s constant, the
fingerprint of all quantum phenomena. Together with
appropriate initial conditions (typically, Ψ(x,0)) this
determines Ψ(x, t).

But what is this wave function, and how can it be said
to describe the state of the particle? After all, as its
name suggests, Ψ(x, t) is spread out in space, whereas
a particle, by its nature, is localized at a point. The
answer is provided by Born’s statistical interpretation
of the wave function: Ψ(x, t) tells you the probability

of finding the particle at the point x if you conduct
a (competent) measurement at time t. More precisely,∫ b
a |Ψ(x, t)|2 dx is the probability of finding the particle

between point a and point b. Evidently, the wave func-
tion must be normalized :

∫∞
−∞ |Ψ(x, t)|2 dx = 1 (the

particle has got to be somewhere). Once normalized,
at t = 0, Ψ remains normalized for all time.

The statistical interpretation introduces a kind of
indeterminacy into the theory, in the sense that even
if you know everything quantum mechanics has to tell
you about the particle (to wit: its wave function), you
still cannot predict with certainty the outcome of a
measurement to determine its position—all quantum
mechanics has to offer is statistical information about
the results from an ensemble of identically prepared
systems (each in the state Ψ ).

The average, or expectation value, of x can be written
in the form

〈x〉 =
∫∞

−∞
Ψ(x, t)∗xΨ(x, t)dx;

similarly, the expectation value of momentum is

〈p〉 =
∫∞

−∞
Ψ(x, t)∗

[
− i�

∂
∂x

]
Ψ(x, t)dx.

This is a consequence of de Broglie’s formula relating
momentum to the wavelength (λ) of Ψ : λ = 2π�/p. We
say that the observables x and p are “represented” by
the operators

x̂ ≡ x, p̂ ≡ −i�
∂
∂x
. (2)

In general, a classical dynamical quantity Q(x,p) is
represented by the quantum operator

Q̂ ≡ Q(x,−i�(∂/∂x))

(simply replace every p by p̂), and its expectation value
(in the state Ψ ) is obtained by “sandwiching” Q̂ between
Ψ and its conjugate Ψ∗, and integrating:

〈Q〉 =
∫∞

−∞
Ψ(x, t)∗Q̂Ψ(x, t)dx.

Thus, for example, kinetic energy T = 1
2mv

2 = p2/2m
is represented by the operator

T̂ = − �2

2m
∂2

∂x2
,

and the Schrödinger equation can be written

i�
∂Ψ
∂t

= ĤΨ ,

where Ĥ = T̂ + V̂ is the Hamiltonian operator, repre-
senting the total energy.

If the potential energy is independent of time, the
Schrödinger equation can be solved by separation of
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variables: Ψ(x, t) = e−iEt/�ψ(x), where E is the separa-
tion constant and ψ(x) satisfies the time-independent
Schrödinger equation:

Ĥψ = − �2

2m
d2ψ
dx2

+ Vψ = Eψ. (3)

The expectation value of the total energy is

〈H〉 =
∫∞

∞
Ψ(x, t)∗ĤΨ(x, t)dx

=
∫∞

−∞
Ψ(x, t)∗EΨ(x, t)dx

= E,
hence the choice of the letter E.

Suppose, for example, the particle is attached to
a spring of force constant k. Classically, this would
be a simple harmonic oscillator, with potential energy
V(x) = 1

2kx
2, and the (time-independent) Schrödinger

equation reads

− �2

2m
d2ψ
dx2

+ 1
2kx

2ψ = Eψ. (4)

The normalized solutions have energies En = (n +
1
2 )�ω (n = 0,1,2, . . . ) and are given by

ψn(x) = 1√
2nn!a

√
π

e−x
2/2a2

Hn(x/a),

where ω ≡
√
k/m is the classical (angular) frequency

of oscillation, a ≡
√

�/mω, and Hn is the nth hermite

polynomial [II.29]. (As a second-order ordinary dif-
ferential equation, (4) admits two linearly independent
solutions for every value of E, but all the other solu-
tions are not normalizable, so they do not represent
possible physical states.) The separable solutions of the
time-dependent Schrödinger equation in this case are
Ψn(x, t) = e−iEnt/�ψn(x). For instance, if the particle
happens to be in the state n = 0, the probability of
finding it outside the classical range (±

√
2E/k) is

2
∫∞

a
|Ψ0(x, t)|2 dx = 1 − erf(1) = 0.1573,

where erf(x) ≡ (2/√π)
∫ x
0 e−t

2
dt is the standard error

function.

Of course, not all solutions to the Schrödinger equa-
tion are separable, but the separable solutions do con-
stitute a complete set, in the sense that the most gen-
eral (normalizable) solution can be expressed as a lin-
ear combination of them, Ψ(x, t) = ∑∞

n=0 cnΨn(x, t).
Furthermore, they are orthonormal,∫∞

−∞
Ψn(x, t)∗Ψm(x, t)dx = δnm,

where δnm is the kronecker delta [I.2 §2, table 3], so
the expansion coefficients can be determined from the

initial wave function in the usual way:

cn =
∫∞

−∞
ψn(x)∗Ψ(x,0)dx.

2 States and Observables

Formally, the state of a system is represented, in quan-
tum mechanics, by a vector in hilbert space [I.2 §19.4].
In Dirac notation, vectors are denoted by kets |s〉 and
their duals by bras 〈s|; the inner product of |sa〉 and
|sb〉 is written as a “bra(c)ket” 〈sa|sb〉 = 〈sb|sa〉∗.
For instance, the wave function Ψ(x, t) resides in
the (infinite-dimensional) space L2 of square-integrable
functions f(x) on −∞ < x <∞, with the inner product

〈fa|fb〉 ≡
∫∞

−∞
fa(x)∗fb(x)dx.

But there exist much simpler quantum systems in
which the vector space is finite dimensional, and it pays
to explore the general theory in this context first.

In an n-dimensional space a vector is conveniently
represented by the column of its components (with
respect to a specified orthonormal basis): |s〉 = (c1, c2,
. . . , cn) (as a column), 〈s| is its conjugate transpose
(a row), and 〈sa|sb〉 = ∑n

i=1(ca)
∗
i (cb)i is their matrix

product. Observables (measurable dynamical quanti-
ties) are represented by linear operators; for the sys-
tem considered in section 1 they involve multiplica-
tion and differentiation, but in the finite-dimensional
case they are matrices, Q̂ ∈ Cn×n (with respect to a
specified basis). In its most general form, the statistical
interpretation reads as follows.

If you measure observable Q, on a system in the state
|s〉, you will get one of the eigenvalues of Q̂; the proba-
bility of getting the particular eigenvalue λi is |〈vi|s〉|2,
where |vi〉 is the corresponding normalized eigenvec-
tor, Q̂|vi〉 = λi|vi〉, with 〈vi|vi〉 = 1. In the act of
measurement the state “collapses” to the eigenvector,
|s〉 → |vi〉. (This ensures that an immediately repeated
measurement—on the same particle—will return the
same value.)

Of course, the outcome of a measurement must
be a real number, and the probabilities must add
up to 1. This is guaranteed if we stipulate that the
operators representing observables be self-adjoint, i.e.,
〈sa|Q̂sb〉 = 〈Q̂sa|sb〉 for all vectors |sa〉 and |sb〉, which
is to say that the matrix Q̂ is Hermitian (equal to its
transpose conjugate). (Physicists’ notation is sloppy
but harmless: technically, “s” is just the name of the
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vector, and you cannot multiply a matrix by a name.
But |Q̂s〉 means Q̂|s〉, of course, and 〈Q̂s| is its dual.)

The expectation value of Q, for a system in the
state |s〉, is 〈Q〉 = 〈s|Q̂|s〉, and the standard devia-
tion σQ—known informally as the uncertainty inQ, and
sometimes written ΔQ—is given by

σ2
Q ≡ 〈(Q̂− 〈Q〉)2〉 = 〈Q̂2〉 − 〈Q〉2.

It is zero if and only if |s〉 is an eigenvector of Q̂ (in
which case a measurement is certain to return the cor-
responding eigenvalue). Because noncommuting oper-
ators do not admit common eigenvectors, it is not pos-
sible, in general, to construct states with definite val-
ues of two different observables (say, A and B). This is
expressed quantitatively in the uncertainty principle:

σAσB � 1
2 |〈[Â, B̂]〉|, (5)

where square brackets denote the commutator,

[Â, B̂] ≡ ÂB̂ − B̂Â.
Consider, for example, a two-dimensional space in

which the state is represented by a (normalized) spinor,
|s〉 = (c1, c2), such that |c1|2 + |c2|2 = 1. The most
general 2 × 2 Hermitian matrix has the form

Q̂ =
(
a0 + a3 a1 − ia2

a1 + ia2 a0 − a3

)
=

3∑
i=0

aiσi,

where the ajs are real numbers, σ0 is the unit matrix,
and the other three σjs are the Pauli spin matrices:

σ1 ≡
(

0 1

1 0

)
, σ2 ≡

(
0 −i

i 0

)
, σ3 ≡

(
1 0

0 −1

)
.

(6)
The Pauli matrices constitute a basis for the Lie algebra
of SU(2), the group of “special” (unimodular) unitary
2 × 2 matrices.

Suppose we measure the observable represented by
σ3. According to the statistical interpretation, the out-
come could be +1 with probability P+ = |c1|2 or −1
with probability P− = |c2|2, since the eigenvalues and
eigenvectors in this case are obviously λ+ = +1, with
|s+〉 = (1,0), and λ− = −1, with |s−〉 = (0,1). But
what if we chose instead to measure σ1? The eigen-
values are again ±1, but the (normalized) eigenvec-
tors are now |s+〉 = 1√

2
(1,1) and |s−〉 = 1√

2
(1,−1).

The possible outcomes are the same as for σ3, but the
probabilities are quite different: P+ = 1

2 |c1 + c2|2 and
P− = 1

2 |c1 − c2|2. Clearly, a system cannot simultane-
ously be in an eigenstate of σ3 and of σ1, and hence
it cannot have definite values of both observables at
the same time. What if I measure σ3 and get (say) +1,
and then you measure σ1 and get (say) −1. Does this

not mean that the system has definite values of both?
No, because each measurement altered (collapsed) the
state: (c1, c2) → (1,0) → 1√

2
(1,−1). If I now repeat my

measurement of σ3, I am just as likely to get −1 as +1.
It is not that I am ignorant—I know the state of the
system precisely—but it simply does not have a defi-
nite value of σ3 if it is in an eigenstate of σ1. Indeed,
since [σ3, σ1] = 2iσ2, the uncertainty principle says
that Δ1Δ3 � |〈σ2〉|.

3 Continuous Spectra

In a finite-dimensional vector space every Hermitian
matrix has a complete set of orthonormal eigenvectors,
and implementation of the statistical interpretation is
straightforward. But in an infinite-dimensional Hilbert
space some or all of the eigenvectors may reside out-
side the space. For example, the eigenvectors of the
position operator (2) are dirac delta functions [III.7]

xfλ(x) = λfλ(x)⇒ fλ(x) = Aδ(x − λ), (7)

which are not square integrable, so they do not live in L2

and cannot represent physically realizable states. The
same goes for momentum,

−i�
∂fλ
∂x

= λfλ ⇒ fλ = A′eiλx/�. (8)

Evidently, a particle simply cannot have a definite posi-
tion or momentum in quantum mechanics. Moreover,
since x̂ and p̂ do not commute ([x̂, p̂] = i�), (5) says
that σxσp � 1

2 �, which is the original Heisenberg
uncertainty principle.

Even though the eigenfunctions of x̂ and p̂ are not
possible physical states, they are complete and orthog-
onal; the wave function can be expanded as a linear
combination of them, and the (absolute) square of the
coefficient represents the probability density for a mea-
surement outcome. Note that nonnormalizable eigen-
functions are associated with a continuous spectrum of
eigenvalues; probabilities become probability densities,
and discrete sums are replaced by integrals. Adopting
the convenient Dirac convention 〈fλ|f ′

λ〉 = δ(λ−λ′) (so
that A = 1 in (7) and A′ = 1/

√
2π� in (8)), we have

Ψ(x, t) =
∫
cλfλ(x)dλ

� cλ =
∫
fλ(x)∗Ψ(x, t)dx.

For eigenfunctions of position we get

cλ =
∫∞

−∞
δ(x − λ)Ψ(x, t)dx = Ψ(λ, t),

which is to say that the expansion coefficient is pre-
cisely the wave function itself (and we recover Born’s
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original statistical interpretation). For eigenfunctions
of momentum,

cλ = 1√
2π�

∫∞

−∞
e−iλx/�Ψ(x, t)dx ≡ Φ(λ, t),

which is the so-called momentum space wave function
(mathematically, the Fourier transform of the position
space wave function Ψ ). Of course, Ψ and Φ describe
the same state vector, referred to two different bases.

In general, E � min{V(x)}; in the case of a free
particle (V = 0) of energy E � 0, we have, from (3),

− �2

2m
d2ψ
dx2

= Eψ ⇒ ψ(x) = Aeikx,

so Ψ(x, t) = Aei(kx−Et/�), where k2 ≡ 2mE/�2. If k is
positive, Ψ is a wave propagating in the +x direction (if
k is negative, it travels in the −x direction). However, Ψ
is not normalizable, so it does not represent a possible
physical state—there is no such thing as a free particle
with precisely determined energy. But we can construct
a normalizable linear combination of these states:

Ψ(x, t) =
∫∞

−∞
c(k)ei(kx−k2

�t/2m) dk.

For instance, we might start with a Gaussian wave
packet of width σ0:

Ψ(x,0) = 1

(2πσ2
0 )1/4

e−(x/2σ0)2 eilx.

Then c(k) = (8πσ2
0 )1/4e−[σ0(k−l)]2 , so

Ψ(x, t) = e−l
2σ 2

0

(2πσ2
0 )1/4

√
1 + i�t/2mσ2

0

× exp
{ [(ix + 2lσ2

0 )/2σ0]2

1 + i�t/2mσ2
0

}
,

and hence

|Ψ(x, t)|2 = (2πσ2)−1/2 exp{−2[(x − l�t/m)/2σ]2},
where σ(t) ≡ σ0

√
1 + (�t/2mσ2

0 )2. The wave packet
travels at speed l�/m, spreading out as it goes. This is
the quantum description of a free particle in motion.

Some Hamiltonians (e.g., the harmonic oscillator)
have a discrete spectrum, with normalizable eigen-
states; some (e.g., the free particle, V = 0) have a contin-
uous spectrum and nonnormalizable eigenstates. Many
systems have some of each. For example, the delta-
function well, V(x) = −αδ(x) (for some positive con-
stant α), admits a single normalizable state ψ(x) =
(
√
mα/�)e−mα|x|/�2

with energy E = −mα2/2�2. This
represents a bound state: the particle is “stuck” in the
well. If (as here) V(x) → 0 as |x| → ∞, a bound state
is typically characterized by a negative energy. But the

delta-function well also admits scattering states, which
have the form

ψ(x) =
⎧⎨⎩Aeikx + Be−ikx, x � 0,

Feikx +Ge−ikx, x � 0,

where k ≡ √
2mE/� with E > 0. HereA is the amplitude

of an incoming wave from the left, and G is the ampli-
tude of an incoming wave from the right; B is an out-
going wave to the left, and F an outgoing wave to the
right (remember, ψ is to be combined with the time-
dependent factor exp(−iEt/�)). The outgoing ampli-
tudes are determined from the incoming amplitudes
by the boundary conditions at x = 0:

Δψ = 0, Δ
(

dψ
dx

)
= −2mα

�2
ψ(0).

In the typical case of a particle incident from the left,
G = 0, and the reflection coefficient (the probability of
reflection back to the left) is

R = |B|2
|A|2 = 1

1 + (2�2E/mα2)
,

while the transmission coefficient (the probability of
transmission through to the right) is

T = |F|2
|A|2 = 1

1 + (mα2/2�2E)
.

Naturally, R + T = 1. Of course, these scattering states
are not normalizable, and to represent an actual par-
ticle we should, in principle, form normalizable linear
combinations of them.

4 Three Dimensions

Quantum mechanics extends to three dimensions in the
obvious way: ∂2/∂x2 → ∇2 (the three-dimensional La-
placian), and the time-independent Schrödinger equa-
tion becomes

− �2

2m
∇2ψ+ Vψ = Eψ.

We will use spherical coordinates (r , θ,φ), where θ is
the polar angle, measured down from the z-axis (0 �
θ � π ), and φ is the azimuthal angle around from the
x-axis (0 � φ < 2π ). In the typical case where V is a
function only of r , we solve by separation of variables;
ψ(r , θ,φ) = (1/r)u(r)Yml (θ,φ), where

Yml (θ,φ) = (−1)m
√
(2l+ 1)

4π
(l−m)!
(l+m)! e

imφPml (cosθ)

(9)
is a spherical harmonic (l = 0,1,2, . . . , m = −l, . . . , l),
and Pml is an associated Legendre function. (Equa-
tion (9) applies for m � 0; for negative values, Y−m

l =
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(−1)m(Yml )
∗.) Meanwhile, u(r) satisfies the radial

equation

− �2

2m
d2u
dr2

+
[
V + �2

2m
l(l+ 1)
r2

]
u = Eu, (10)

which is identical to the one-dimensional Schrödinger
equation, except that the effective potential energy
carries an extra centrifugal term.

The spherical harmonics are eigenfunctions of the
angular momentum operator, L̂ ≡ r̂ × p̂ (L̂z =
−i�(x∂/∂y−y∂/∂x), and cyclic permutations thereof).
The components of angular momentum do not com-
mute,

[L̂i, L̂j] = i�L̂k with (ijk) = (xyz), etc., (11)

so it would be futile to look for simultaneous eigen-
states of all three. However, each component does com-
mute with the square of the total angular momentum,
L̂2 ≡ L̂2

x + L̂2
y + L̂2

z , so it is possible to construct simul-
taneous eigenfunctions of L̂2 and (say) L̂z . In spherical
coordinates, L̂2 is −�2 times the Laplacian restricted to
the unit sphere (r = 1), L̂z = −i�∂/∂φ, and spherical
harmonics are their eigenstates:

L̂2Yml = �2l(l+ 1)Yml , L̂zYml = �mYml . (12)

In addition to its orbital angular momentum, L, every
particle carries an intrinsic spin angular momentum, S
(distantly analogous to the daily rotation of the Earth
on its axis, while the orbital angular momentum cor-
responds to its annual revolution about the sun). The
components of Ŝ satisfy the same fundamental com-
mutation relations as L̂, namely, [Ŝx, Ŝy] = i�Ŝz (and
its cyclic permutations), and admit the same eigen-
values (with s and ms in place of l and m), Ŝ2|sms〉 =
�2s(s + 1)|sms〉, and Ŝz|sms〉 = �ms|sms〉. However,
whereas l can only be an integer, s can be an integer or
a half-integer; it is a fixed number, for a given type of
particle (0 for π mesons, 1

2 for protons and electrons,
1 for photons, 3

2 for the Ω−, and so on); we call it the
spin of the particle. In the case of spin 1

2 , there are just
two possible values forms :

1
2 (“spin up”) and − 1

2 (“spin
down”), and the resulting two-dimensional state space
is precisely the one we studied in section 2, with the
association Ŝx = 1

2 �σ1, Ŝy = 1
2 �σ2, Ŝz = 1

2 �σ3.

Hydrogen is the simplest atom, consisting of a sin-
gle electron bound to a single proton by the electrical
attraction of opposite charges. The proton is almost
2000 times heavier than the electron, so it remains
essentially at rest, and the potential energy of the elec-
tron is given by Coulomb’s law, V(r) = −e2/(4πε0r),
where e = 1.602 × 10−19 C is the charge of the proton

(−e is the charge of the electron). The radial equation

(10) reads

− �2

2m
d2u
dr2

+
[
− 1

4πε0

e2

r
+ �2

2m
l(l+ 1)
r2

]
u = Eu.

It admits a discrete set of bound states, with energies

En = E1

n2
, E1 = − me4

2(4πε0)2�2
= −13.606 eV (13)

for n = 1,2,3, . . . (as well as a continuum of scattering

states with E > 0). The normalized wave functions are

ψnlm =
√√√( 2
na

)3 (n− l− 1)!
2n[(n+ l)!]3

× e−r/na
(

2r
na

)l[
L2l+1
n−l−1

(
2r
na

)]
Yml , (14)

where Lpq(x) is an associated laguerre polynomial

[II.29], and a ≡ 4πε0�2/me2 = 0.5292×10−10 m is the

Bohr radius.

The principal quantum number, n, tells you the

energy of the state (13); the (misnamed) azimuthal

quantum number l, which ranges from 0 to n−1, spec-

ifies the magnitude of the orbital angular momentum,

and m gives its z component (12). Since s = 1
2 for the

electron, there are two linearly independent orienta-

tions for its spin. All told, the degeneracy of En (that

is, the number of distinct states sharing this energy)

is 2n2.

If the atom makes a transition, or “quantum jump,”

to a state with lower energy, a photon (quantum of

light) is emitted, carrying the energy released. (With the

absorption of a photon it could make a transition in the

other direction.) The energy of a photon is related to its

frequency ν by the Planck equation E = 2π�ν , so the

spectrum of hydrogen is given by

λ−1 = R(n−2
final −n−2

initial), (15)

with

R ≡ m
4πc�3

(
e2

4πε0

)2

= 1.097 × 107 m−1, (16)

where λ = c/ν is the wavelength (color) of the light.

The Rydberg formula (15), with R as an empirical con-

stant, was discovered experimentally in the nineteenth

century; Bohr derived it (and obtained the expression

forR) in 1913, using a serendipitous mixture of inappli-

cable classical physics and primitive quantum theory.

Schrödinger put it on a rigorous theoretical footing in

1924.
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5 Composite Structures

The theory generalizes easily to systems with more
than one particle. For example, two particles in one
dimension would be described by the wave function
Ψ(x1, x2, t), where∫ b1

x1=a1

∫ b2

x2=a2

|Ψ(x1, x2, t)|2 dx1 dx2

is the probability of finding particle 1 between a1 and
b1 and particle 2 between a2 and b2, if a measurement
is made at time t.

But here quantum mechanics introduces a new twist:
suppose the two particles are absolutely identical, so
there is no way of knowing which is #1 and which
#2. In classical physics such indistinguishability is
unthinkable—you could always stamp a serial number
on each particle. But you cannot put labels on electrons;
they simply do not possess independent identities—the
theory must treat the two particles on an equal footing.
There are essentially two possibilities (others occur in
special geometries): under interchange, Ψ can be sym-
metric, Ψ(x2, x1) = Ψ(x1, x2) (bosons), or antisymmet-
ric, Ψ(x2, x1) = −Ψ(x1, x2) (fermions). Some elemen-
tary particles (electrons and quarks, for example) are
fermions; others (photons and pions, for instance) are
bosons. The distinction is related to the spin of the par-
ticle: particles of integer spin are bosons, whereas parti-
cles of half-integer spin are fermions. (This “connection
between spin and statistics” can be proved using rela-
tivistic quantum mechanics, but in the nonrelativistic
theory it is simply an empirical fact.)

Suppose we have two particles, one in state ψa(x)
and the other in state ψb(x). If the particles are dis-
tinguishable (an electron and a proton, say) and the
first is in state ψa, then the composite wave function
is ψ(x1, x2) = ψa(x1)ψb(x2). But if they are identi-
cal bosons (two pions, say), we must use the symmetric
combination,

ψ(x1, x2) = 1√
2
[ψa(x1)ψb(x2)+ψa(x2)ψb(x1)],

and for identical fermions (two electrons, say),

ψ(x1, x2) = 1√
2
[ψa(x1)ψb(x2)−ψa(x2)ψb(x1)].

(The normalization factor 1/
√

2 assumes that ψa and
ψb are orthonormal.)

For example, we might calculate the expectation
value of the square of the separation distance between
the two particles. If they are distinguishable, then

〈(x1 − x2)2〉 = 〈x2〉a + 〈x2〉b − 2〈x〉a〈x〉b ≡ Δ2,

where 〈x〉a is the expectation value of x for a parti-
cle in the state ψa, and so on. If, however, the parti-
cles are identical bosons, then there is an extra term
〈(x1 −x2)2〉 = Δ2 − 2|〈x〉ab|2, and if they are identical
fermions, then 〈(x1 − x2)2〉 = Δ2 + 2|〈x〉ab|2, where

〈x〉ab ≡
∫
xψa(x)∗ψb(x)dx.

Thus bosons tend to be closer together, and fermions
farther apart, than distinguishable particles in the
same two states. It is as if there were an attractive
force between identical bosons and a repulsive force
between identical fermions. We call these exchange
forces, though there is no actual force involved—it is
just an artifact of the (anti)symmetrization require-
ment. Exchange forces are responsible for ferromag-
netism, and they contribute to covalent bonding. (If you
include spin, it is the total wave function that must
be antisymmetrized; if the spin part is antisymmetric,
then the position wave function must actually be sym-
metric (for fermions), and the exchange force is attrac-
tive. Covalent bonding occurs when shared electrons
cluster in the region between two nuclei, tending to pull
them together.)

The (anti)symmetrization requirement gives rise to
very different statistical mechanics for bosons and
fermions. In particular, two identical fermions cannot
occupy the same state, since if ψa = ψb the com-
posite wave function ψ(x1, x2) vanishes. This is the
famous Pauli exclusion principle. There is no such rule
for bosons, and at extremely low temperatures iden-
tical bosons tend to congregate in the ground state,
forming a Bose–Einstein condensate. In a large sample
at (absolute) temperature T , the most probable number
of particles in a (one-particle) state with energy E is

n(E) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e−(E−μ)/kT , Maxwell–Boltzmann,

1
e(E−μ)/kT + 1

, Fermi–Dirac,

1
e(E−μ)/kT − 1

, Bose–Einstein.

Here, k = 1.3807 × 10−23 J K−1 is Boltzmann’s con-
stant, and μ is the chemical potential—it is a function
of temperature and depends on the nature of the parti-
cles. The Maxwell–Boltzmann distribution (the classical
result) applies to distinguishable particles, the Fermi–
Dirac distribution is for identical fermions, and the
Bose–Einstein distribution is for identical bosons.

The Pauli principle is crucial in accounting for the
periodic table of the elements. Atoms are labeled by
their atomic number Z , the number of protons in the
nucleus, which is also the number of electrons in orbit
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(the number of neutrons distinguishes different iso-
topes). Since the nucleus remains essentially at rest,
only the behavior of the electrons is at issue in atomic
physics. Hydrogen has one electron, helium has two
(and two protons in the nucleus), lithium three, and so
on. Ordinarily, each electron will settle into the lowest-
energy accessible state. But the Pauli principle forbids
any given state from being occupied by more than one
electron, so they fill up the allowed states in succes-
sion, and this means that the outermost (valence) elec-
trons (which are responsible for chemical behavior) are
differently situated for different elements.

The Hamiltonian for an atom with atomic number Z
is

Ĥ =
Z∑
j=1

{
− �2

2m
∇2
j −

1
4πε0

Ze2

rj

}
+ e2

8πε0

Z∑
k≠j

1
|rj − rk|

,

where rj is the position of the jth electron, rj = |rj|,
and ∇2

j is the Laplacian with respect to rj . The term
in curly brackets represents the kinetic and potential
energy of the jth electron in the electric field of the
nucleus, and the other term is the potential energy
associated with the mutual repulsion of the electrons.
(A tiny relativistic correction and magnetic coupling
between the spin of the electron and the orbital motion
account for fine structure, while an even smaller mag-
netic coupling between the spin of the electron and the
spin of the nucleus leads to hyperfine structure.)

If we ignore the electron–electron repulsion alto-
gether, we simply have Z independent electrons, each
in the field of a nucleus of charge Ze; we simply copy
the results for hydrogen, replacing e2 by Ze2. The first
two electrons would occupy the orbital, n = 1, l = 0,
m = 0, the next eight fill out the n = 2 orbitals, and
so on. This simple scheme explains the first two rows
of the periodic table (up through neon). One would
anticipate a third row of eighteen, but after argon
the electron–electron repulsion finally catches up, and
potassium skips to n = 4, l = 0 for the next electron,
in preference to n = 3, l = 2. The details get com-
plicated and are handled by sophisticated approxima-
tion schemes (hydrogen is the only atom for which the
Schrödinger equation can be solved analytically).

The addition of angular momenta is an interesting
problem in quantum mechanics. Suppose I want to
combine |l1m1〉 with |l2m2〉; what is the resulting com-
bined state, |lm〉? For instance, the electron in a hydro-
gen atom has orbital angular momentum and spin
angular momentum; what is its total angular momen-
tum? (I will use l as the generic letter for the angular

momentum quantum number—it could be orbital, or
spin, or total, as the case may be.) Because L = L1 +L2,
the z components add: m = m1 +m2. But the total
angular momentum quantum number l depends on the
relative orientation of L1 and L2, and it can range from
|l1 − l2| (roughly speaking, when they are antiparallel)
to l1 + l2 (parallel), in integer steps:

l = −|l1 − l2|,−|l1 − l2| + 1, . . . , l1 + l2 − 1, l1 + l2.
Specifically,

|l1m1〉|l2m2〉 =
l1+l2∑

l=|l1−l2|
Cl1l2lm1m2m|lm〉,

where Cl1l2lm1m2m are the so-called Clebsch–Gordan coeffi-
cients, which are tabulated in many handbooks. Mathe-
matically, what we are doing is decomposing the direct
product of two irreducible representations of SU(2)
(the covering group for SO(3), the rotation group in
three dimensions) into a direct sum of irreducible
representations. For instance,

|2 1〉| 1
2

1
2 〉 =

√
4
5 |

5
2

3
2 〉 −

√
1
5 |

3
2

3
2 〉.

If you had a hydrogen atom in the state Y 2
1 , and the

electron had spin up (ms = 1
2 ), the probability is 4

5 that
a measurement of the total l would return the value 5

2
and 1

5 that it would yield 3
2 (a measurement ofm would

be certain to give 3
2 ). The Clebsch–Gordan coefficients

work the other way, too. If I have a system in the angular
momentum state |lm〉, composed of two particles with
l1 and l2, and I want to know the possible values ofm1

and m2, I would use

|lm〉 =
l1∑

m1=−l1

l2∑
m2=−l2

Cl1l2lm1m2m|l1m1〉|l2m2〉,

where the sum is over all combinations of m1 and m2

such that m1 +m2 =m.

6 Implications, Applications, Extensions

In quantum mechanics the state of a system is repre-
sented by a (normalized) vector (|s〉) in Hilbert space;
observables are represented by (self-adjoint) operators
acting on vectors in this space. The theory rests on
three pillars: the Schrödinger equation, which in its
most general form tells you how the state vector |s〉
evolves in time,

i�
∂
∂t

|s〉 = Ĥ|s〉; (17)

the statistical interpretation, which tells you how |s〉
determines the outcome of a measurement; and the
(anti)symmetrization requirement, which tells you how
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to construct |s〉 for a collection of identical particles.
Although the calculational procedures are unambigu-
ous and the results are in spectacular agreement with
experiment, the physical interpretation of quantum
mechanics (the story we tell ourselves about what we
are doing) has always been controversial. Some of the
major issues are listed below.

Indeterminacy. Einstein argued—most persuasively in
the famous EPR (Einstein–Podolsky–Rosen) para-
dox—that quantum indeterminacy means the theory
is incomplete; other information (so-called hidden
variables) must supplement the state vector to pro-
vide a full description of physical reality. By contrast,
Bohr’s Copenhagen interpretation holds that systems
simply do not have definite properties (such as posi-
tion or angular momentum) prior to measurement.

Nonlocality. The EPR argument is predicated on an
assumption of locality : no influence can propagate
faster than light. But in quantum mechanics, two par-
ticles can be entangled such that a measurement on
one determines the state of the other and, if they are
far apart, then that “influence” (the collapse of the
wave function) is instantaneous. In 1964 John Bell
proved that no local deterministic (hidden-variable)
theory can be compatible with quantum mechanics.
In subsequent experiments the quantum mechani-
cal predictions were sustained. Evidently, nonlocality
is a fact of nature, though the “influences” in ques-
tion are not strictly causal—they produce no effects
that can be discerned by examining the second par-
ticle alone. (A causal nonlocal influence would be
incompatible with special relativity.)

Measurement. It has never been clear what consti-
tutes a “measurement,” as the word is used in the
statistical interpretation. Why does a measurement
force the system (which previously did not possess
a determinate value of the observable in question)
to “take a stand,” and how does it collapse the wave
function? Does “measurement” mean something peo-
ple in white coats do in the laboratory, or can it
occur in a forest, when no one is looking? Does mea-
surement require the leaving of a permanent record
or the interaction of a microscopic system with a
macroscopic device? Does it involve the intervention
of human consciousness? Or does it perhaps split
reality into many worlds? After nearly a century of
debate, there is no consensus on these questions.

Decoherence. If an electron can have an indeterminate
position, what about a baseball? Could a baseball be

in a linear combination of Seattle and San Francisco

(until, I guess, the batters swing, and there is a home

run in Seattle and nothing at all in San Francisco)?

There is something absurd about the very idea of a

macroscopic object being in two places at once (or an

animal—in Schrödinger’s famous cat paradox—being

both alive and dead). Why do macroscopic objects

obey the familiar classical laws, while microscopic

objects are subject to the bizarre rules of quantum

mechanics? Presumably if you could put a baseball

into a state that stretched from Seattle to San Fran-

cisco, its wave function would very rapidly decohere

into a state localized at some specific place. By what

mechanism? Maybe multiple interactions with ran-

dom impinging particles (photons left over from the

Big Bang, perhaps) constitute a succession of “mea-

surements” and collapse the wave function. But the

details remain frustratingly elusive.

I have mentioned two kinds of solutions to the

Schrödinger equation, for time-independent potentials:

(normalizable) bound states, at discrete negative ener-

gies, and (nonnormalizable) scattering states, at a con-

tinuum of positive energies. There is a third important

case, which occurs for periodic potentials, V(x + a) =
V(x), as in a crystal lattice. For these the spectrum

forms bands, with continua of allowed energies sepa-

rated by forbidden gaps. This band structure is crucial

in accounting for the behavior of solids and underlies

most of modern electronics.

Very few quantum problems can be solved exactly,

so a number of powerful approximation methods have

been developed. Here are some examples.

The variational principle. The lowest eigenvalue of a

Hamiltonian Ĥ is less than or equal to the expectation

value of Ĥ in any normalized state |s〉:
E0 � 〈s|Ĥ|s〉. (18)

To get an upper bound on the ground-state energy of

a system, then, you simply pick any (normalized) vec-

tor |s〉 and calculate 〈s|Ĥ|s〉 in that state. Ordinarily,

you will get a tighter bound if your “trial state” bears

some resemblance to the actual ground state. In a

typical application the trial state carries a number of

adjustable parameters, which are then chosen so as

to minimize 〈Ĥ〉. The binding energy of helium, for

example, has been calculated in this way and is con-

sistent with the measured value to better than eight

significant digits.
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Time-independent perturbation theory. Suppose you
know the eigenstates {|n〉} and eigenvalues {En} of
some (time-independent) Hamiltonian H. Now you
perturb that Hamiltonian slightly, H → H + H′. The
resulting change in the nth eigenvalue is approxi-
mately equal to the expectation value of Ĥ′ in the
unperturbed state |n〉:

Δ(En) ≈ 〈n|Ĥ′|n〉. (19)

For example, the fine structure of hydrogen can be
calculated very accurately in this way, starting with
the wave functions in (14).

Time-dependent perturbation theory. Again, suppose
you know the eigenstates and eigenvalues of some
time-independent Hamiltonian, and now you (briefly)
turn on a small time-dependent perturbation, H′(t).
What is the transition rate (probability per unit time)
to go from state |n〉 to state |m〉? The answer is given
by

Rn→m = 2π
�

|H′
mn|2ρ(Em),

where H′
mn ≡ 〈m|Ĥ′|n〉 is the so-called matrix

element for the transition, and ρ is the density of
states—the number of states per unit energy. Fermi
called this the golden rule. It is used, for example, to
calculate the lifetime of an excited state.

In two important respects quantum mechanics is
obviously not the end of the story. First of all, the
Schrödinger equation as it stands is inconsistent with
special relativity—as a differential equation it is sec-
ond order in x but first order in t, whereas relativ-
ity requires that they be treated on an equal footing.
Dirac introduced the eponymous relativistic equation
for particles of spin 1

2 (the dirac equation [III.9]) and
others followed (Klein–Gordon for spin 0, Proca for
spin 1, and so on). Second, while the particles have been
treated quantum mechanically, the fields have not. In
the hydrogen atom, for example, the electric potential
energy was taken from classical electrostatics. In a fully
consistent theory the fields, too, must be quantized.
The quantum of the electromagnetic field is the pho-
ton, but although I have used this word once or twice, it
has no place in quantum mechanics; it belongs instead
to quantum field theory (specifically quantum electro-
dynamics). In the standard model of elementary par-
ticles, all known interactions save gravity are success-
fully handled by relativistic quantum field theory. But a
fully consistent union of quantum mechanics and gen-

eral relativity [IV.40] (Einstein’s theory of gravity)
still does not exist.
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IV.24 Random-Matrix Theory
Jonathan Peter Keating

1 Introduction

Linear algebra and the analysis of systems of linear
equations play a central role in applied mathemat-
ics; for example, quantum mechanics [IV.23] is a lin-
ear wave theory in which observables are represented
by linear operators; linear models are fundamental in
electromagnetism, acoustics, and water waves; and lin-
earization is important in stability analysis. When a
linear system is intrinsically complex, either by virtue
of external stochastic forcing or because of an under-
lying, persistent self-generated instability, it is natu-
ral to model it statistically by assuming that the ele-
ments of the matrices that appear in its mathematical
description are in some sense random. This is simi-
lar, philosophically, to the way in which statistical fea-
tures of long trajectories in complex dynamical sys-
tems are modeled statistically via notions of ergodic-
ity and mixing. An example is when classical dynamics
is modeled by statistical mechanics, that is, where one
deduces statistical properties of the solutions of sys-
tems of equations, in this case Newton’s equations of
motion, by analyzing ensembles of similar trajectories
and invoking notions of ergodicity (that time averages
equal ensemble averages in the appropriate limit).

This is one significant motivation for exploring the
properties of random matrices. There are, however,
many others: linear algebra and probabilistic models
both play a foundational role in mathematics, and
it is therefore not surprising that they combine in
a wide range of applications, including mathematical
biology, financial mathematics, high-energy physics,
condensed matter physics, numerical analysis, neuro-
science, statistics, and wireless communications.

In many of the examples listed above, one has a sys-
tem of linear equations that can be written in matrix
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form. One might then be interested in the eigenvalues
or eigenvectors of the matrix in question, if it is square.
For example, one might want to know the range of
the spectrum, its density within that range, and the
nature of fluctuations/correlations in the positions of
the eigenvalues. Alternatively, one might want an esti-
mate of the condition number of the matrix or the
values taken by its characteristic polynomial.

If the matrix possesses no special features—that is,
if its entries do not obey simple rules—it is natural to
consider whether it behaves like one that is a “typical”
member of some appropriate class of matrices. This
again motivates the study of random matrices, that is,
matrices whose entries are random variables.

The basic formulation of random-matrix theory is
that one has a space of matrices X endowed with
a probability measure P(X). This is termed a matrix
ensemble. We shall here focus on square matrices of
dimensionN . One can then seek to determine the prob-
ability distribution of the eigenvalues and eigenvectors,
and of other related quantities of interest. The motiva-
tion is that in many cases one can prove that spectral
averages for a given matrix coincide, with probability
1, with ensemble averages, when N → ∞.

The following are examples of such matrix ensem-
bles.

• Let X be an N × N matrix with real or complex-
valued entries Xmn satisfying Xmn = X̄nm (so the
matrix is either real symmetric or complex Hermi-
tian). Take the entries Xnm, n < m, to be inde-
pendent zero-mean real or complex-valued ran-
dom variables, and the entries Xnn to be indepen-
dent, identically distributed, centered real-valued
random variables, so P(X) factorizes as P(X) =∏
m�n Pmn(Xmn). This defines the ensemble of

Wigner random matrices.
• Let X be anN×N real symmetric matrix. When the

probability measure is invariant under all orthog-
onal transformations of X, i.e., when P(OXOT) =
P(X) for all orthogonal (OOT = I) matricesO, then
the ensemble is called orthogonal invariant.

• LetX be anN×N complex Hermitian matrix. When
the probability measure is invariant under all uni-
tary transformations of X, i.e., when P(UXU†) =
P(X) for all unitary (UU† = I) matrices U , then the
ensemble is called unitary invariant.

• The Gaussian orthogonal ensemble (GOE) is the
(unique) orthogonal invariant ensemble of Wigner
random matrices. It has P(X) ∝ exp(− 1

4 TrX2).

Similarly, the Gaussian unitary ensemble (GUE) is
the (unique) unitary invariant ensemble of Wigner
random matrices. It has P(X)∝ exp(− 1

2 TrX2).
• The most general class of random N × N matri-

ces corresponds to taking the matrix elements
Xmn to be real or complex-valued independent
identically distributed random variables with, for
example, zero mean and unit variance. When these
random variables have a Gaussian distribution,
the matrices form what is known as the Ginibre
ensemble.

• The circular ensembles correspond to N × N uni-
tary matrices with probability measures that are
invariant under all orthogonal (COE) or unitary
(CUE) transformations. Matrices in the COE are
unitary and symmetric. Alternatively, one can con-
sider ensembles corresponding to the Haar mea-
sure on the classical compact groups (i.e., the mea-
sure that is invariant under the group action):
for example, the orthogonal group O(N), com-
prising N ×N orthogonal matrices, or the unitary
group U(N), which coincides with the CUE, or the
symplectic group Sp(2N).

• Let X be an N × k matrix, each row of which is
drawn independently from a k-variate normal dis-
tribution with zero mean. The Wishart ensemble
corresponds to the matrices XTX.

These are far from being the only examples that
are important—one can also define random matri-
ces whose elements are quaternionic, or which have
additional structure (i.e., invariance under additional
symmetries)—but they will suffice to illustrate a num-
ber of general questions and themes.

For any of the above ensembles of random matrices,
one can first ask where the eigenvalues typically lie,
and what their mean density is. In ensembles where the
eigenvalues are real, for example, how many can one
expect to find in a given interval on average? One can,
in particular, ask whether there is a limiting density
when the matrix size tends to infinity.

Second, one can seek to understand fluctuations
about the mean in the eigenvalue distribution. For
example, in an interval of length such that the expected
number of eigenvalues is k, what is the distribution of
the actual numbers in the interval for different matrices
in the ensemble? Again, is there a limiting distribution
when the matrix size tends to infinity? Or, similarly,
how do the gaps between adjacent eigenvalues fluctu-
ate around their mean? How, if at all, are eigenvalues
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–10 10

Figure 1 The spectrum of a randomly chosen complex
Hermitian (GUE) matrix of dimension N = 20.

correlated on the scale of their mean spacing? How
are other functions over the ensemble distributed? For
example, the values of the characteristic polynomials
of the matrices, their traces, their condition numbers,
the sizes of the largest and smallest eigenvalues?

Third, how do the answers to these questions depend
on the particular choice of probability measure intrin-
sic to the definition of a given ensemble, and on the
symmetries (if any) of the matrices involved? If they
depend on the choice of the probability measure, then
how do they? Is there a class of probability measures
for which they can be said to be universal in an appro-
priate limit? Are there choices of probability measure
that are in some sense exactly solvable?

Fourth, given answers to questions such as these,
how can they be used to shed light on applications?

Our aim here is to give an introductory overview of
some of these issues.

In order to motivate and illustrate the theory, it may
be helpful to anticipate it with the results of some
numerical computations. Figure 1 shows the spectrum
of a complex Hermitian matrix of dimension N = 20,
picked at random from the GUE by generating normal
random variables to fill the independent matrix entries.
One sees that the spectrum is denser at the center than
at the edges and that the eigenvalues do not often lie
close to each other.

To illustrate these points further, figure 2 shows the
spectral measure (i.e., the local eigenvalue density; see
equation (1) below) of a GUE matrix of dimension N =
500 000, with the eigenvalues divided by

√
N . Figure 3

shows a similar plot with data averaged over the spec-
tra of 2×106 matrices withN = 500. One sees that after
dividing by

√
N these spectra appear to lie between −2

and +2, that the picture for an individual matrix is very
similar (indeed, on the scale used, figure 2 is indistin-
guishable from figure 3) to that of an average over a
large number of matrices, and that the eigenvalue den-
sity appears to have a simple form that is well described
by the result of an analytical random-matrix calculation
(represented by curves) to be explained later. Similarly,
figures 4 and 5 show the probability densities of the
spacings between adjacent eigenvalues, further scaled
to have unit mean separation (see below), for individ-
ual GOE and GUE matrices of dimension N = 500 000
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Figure 2 The spectral measure (i.e., eigenvalue density (see
(1))) of a GUE matrix of dimension N = 500 000, with the
eigenvalues divided by

√
N (crosses). The curve is a predic-

tion of random-matrix theory, which is described later in
the text.
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Figure 3 The average of the spectral measures of 2 × 106

GUE matrices with dimensionN = 500, with the eigenvalues
divided by

√
N (crosses). The curve is a prediction of ran-

dom-matrix theory, which is described later in the text. Note
that, on the scale shown, these data look identical to those
in figure 2 despite the fact that they are in fact different (see
section 7).

and separately averaged over GOE and GUE matrices
of dimension N = 500, respectively. One again sees
a marked similarity between the behavior of individ-
ual matrices and that of ensemble averages. In both
the GOE and GUE examples, the probability density
vanishes in the limit of small spacings; that is, the
eigenvalues behave as if they repel each other. Note
that the degree of the repulsion differs between the
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Figure 4 The probability density of the spacings between
adjacent eigenvalues for the GUE spectrum represented in
figure 2 (asterisks, black line) (when these eigenvalues are
scaled to have unit mean spacing), and the corresponding
distribution for a GOE matrix of the same dimension (dia-
monds, gray line). The two curves represent the correspond-
ing random-matrix formulas, which are described later in
the text.

two ensembles. Once more, these figures also show the
results of analytical random-matrix calculations to be
explained later.

2 History

The origins of random-matrix theory go back to work
on multivariate statistics by Wishart, who introduced
the Wishart ensemble in 1928 in his calculation of
the maximum likelihood estimator for the covariance
matrix of the multivariate normal distribution. Wishart
worked at the Rothamsted Experimental Station, an
agricultural research facility.

Many of the most significant developments in the
field were stimulated by ideas of Wigner in the 1950s
that related to nuclear physics. Wigner was interested
in modeling the statistical distribution of the energy
levels of heavy nuclei. He introduced the Wigner ensem-
ble and the invariant Gaussian ensembles; calculated
the mean eigenvalue density in these cases; and started
to investigate spectral correlations, particularly the dis-
tribution of spacings between adjacent eigenvalues. In
focusing on heavy nuclei, Wigner had in mind applica-
tions to many-body quantum systems, that is, systems
with a large number of degrees of freedom.

In the 1960s Wigner’s program was developed into
a systematic area of mathematical physics by Dyson,
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Figure 5 The probability density of the spacings between
adjacent eigenvalues, averaged over the GUE spectra repre-
sented in figure 3 (asterisks, black line) (when these eigen-
values are scaled to have unit mean spacing), and the corre-
sponding distribution for 2×106 GOE matrices with dimen-
sion N = 500 (diamonds, gray line). The two curves repre-
sent the corresponding random-matrix formulas, which are
described later in the text. Note that, on the scale shown,
these data look identical to those in figure 4, despite the
fact that they are in fact different (again see section 7).

Gaudin, and Mehta, who developed techniques for cal-

culating eigenvalue statistics in the Gaussian and circu-

lar ensembles, and Marčenko and Pastur, who extended

the analysis to the Wishart ensemble.

The idea of applying random-matrix theory to sys-

tems with a small number of degrees of freedom, in

which complexity arises due to the internal dynamics,

arose in the field of quantum chaos in the late 1970s

and early 1980s in the work of Berry, Bohigas, and their

coworkers. Here, the philosophy is that, when the clas-

sical dynamics of a system is chaotic, the quantum

dynamics may manifest that in the semiclassical limit

(i.e., in the limit as the de Broglie wavelength tends

to zero) by the corresponding matrix elements behav-

ing like random variables. This same philosophy imme-

diately generalizes, mutatis mutandis, to other wave

theories such as optics, acoustics, and so on.

The years since 1990 have seen a rapid devel-

opment of interest in connections between random-

matrix theory and, among other subjects, quantum

field theory, high-energy physics, condensed matter

physics, lasers, biology, finance, growth models, wire-

less communication, and number theory. There has

also been considerable progress in proving universality
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and establishing links with the theory of integrable
systems.

3 Eigenvalue Density

In the case of matrix ensembles in which the eigen-
values are real (e.g., Hermitian or real symmetric matri-
ces), one can ask how many lie in a given interval. Let us
consider first the case of N ×N Wigner random matri-
ces X. It turns out that when the matrix elements have
finite second moment, the eigenvalues λNi (X) are, with
extremely high probability, of the order of

√
N . This

fact is illustrated in figures 2 and 3. Hence, defining
the spectral measure by

ΛN(z;X) = 1
N

N∑
n=1

δ
(
z − λ

N
i (X)√
N

)
, (1)

where δ(x) is the Dirac delta function, the proportion
of eigenvalues (normalized by

√
N) lying in the interval

[a, b] is

1
N

#{n : λNi (X) ∈
√
N[a,b]} =

∫ b
a
ΛN(z;X)dz.

As N → ∞, ΛN converges, in the distributional sense,
to a limiting function of z. Specifically, ΛN converges
weakly to the semicircle law σ given by

dσ(z) = 1
2π

√
4 − z2 dz

when −2 � z � 2, and by 0 when |z| > 2.

This was first established for convergence in prob-
ability by Wigner in 1955 under the condition that all
the moments of the matrix elements are finite. How-
ever, it has subsequently been refined so that conver-
gence holds almost surely and under the condition that
the matrix elements have finite second moment. The
semicircle law is the curve plotted in figures 2 and 3.

In the case of general Wigner matrices, one can estab-
lish the semicircle law by considering moments of
traces of powers of X. In the special cases of the GOE
and the GUE, one can also use techniques that rely on
the invariance properties of the measure (see below) to
obtain precise estimates for the rate of convergence.
In the case of the other invariant ensembles, one can
also establish a limiting density, but typically this is
not semicircular; it may be calculated from the specific
form of the probability.

For the Wishart ensemble and its generalizations,
which play a major role in many applications, the ana-
logue of the Wigner semicircle law is known as the
Marčenko–Pastur law.

For the circular ensembles and matrices from the
classical compact groups, the analogue of the semicir-
cle law is that in the large matrix limit, the eigenvalues
become uniformly dense on the unit circle (on which
they are constrained to lie by unitarity).

In the case of non-Hermitian matrices, one can sim-
ilarly calculate the density of eigenvalues in the com-
plex plane. For example, in the Ginibre ensemble, the
eigenvalues λNi (X), when divided by

√
N , have a limit-

ing density that is given by the uniform measure on the
unit disk.

4 Joint Eigenvalue Distribution

A more refined question about the eigenvalues λNi (X)
of a random matrix X than that of their limiting den-
sity relates to the probability that they all lie in some
given set S in the complex plane or, when they are con-
strained to be real, on the real line. For definiteness,
we will focus here on the latter case. Essentially, the
issue is then to calculate the probability that the first
eigenvalue lies in the interval (x1, x1 + dx1), the sec-
ond in the interval (x2, x2 +dx2), the third in the inter-
val (x3, x3 + dx3), etc. In general, this probability is
hard to derive in a useful form. For the invariant ensem-
bles, however, it can be computed. The idea is that the
probability measure defined in terms of the matrix ele-
ments can be reexpressed in terms of the eigenvalues
and the eigenvectors. In the invariant ensembles, the
dependence on the eigenvectors may be straightfor-
wardly integrated out, leaving just the dependence on
the eigenvalues. The result is proportional to the prod-
uct of a Vandermonde determinant factor |det(V)|β,
with Vij = xj−1

i and therefore

|det(V)|β =
∏

1�i<j�N
|xj − xi|β,

and a factor w(x1, . . . , xN) coming from the precise
form of the probability measure associated with the
matrices. Here, β = 1 for orthogonal invariant ensem-
bles (e.g., the GOE) and β = 2 for unitary invariant
ensembles (e.g., the GUE). (β = 4 for quaternionic matri-
ces.) The Vandermonde factor comes from the Jaco-
bian associated with the change of variables from the
matrix elements to the eigenvalues. For the Gauss-
ian ensembles the weight factor is w(x1, . . . , xN) =
exp(− 1

4β
∑N
n=1 x2

n). In the case of the Ginibre ensem-
ble one has a similar result, but the eigenvalues are
generally complex. For the circular ensembles, in which
the eigenvalues lie on the unit circle, the Vandermonde
factor takes the form

∏
1�i<j�N |eiθj − eiθi |β and the
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weight factor w is a constant. The joint eigenvalue dis-
tribution for the Wishart ensemble has a similar struc-
ture, but it also reflects the fact that the eigenvalues are
nonnegative.

Perhaps the most significant consequence of the
structure of the joint eigenvalue distribution functions
outlined in the previous paragraph is that the eigen-
values of random matrices behave as if they repel each
other. This follows from the Vandermonde factors,
which vanish as any two eigenvalues approach each
other, so the probability of having a pair of eigenvalues
in close vicinity vanishes as their separation is reduced.
Importantly, the rate of vanishing depends only on the
symmetry of the matrix ensemble (via the value of β)
and not on the detailed form of the probability mea-
sure (which determines the multiplying weight factor).
By way of contrast, independent random numbers, for
which β = 0, do not share this behavior.

A key feature of the formulas for the joint eigenvalue
distribution functions for the invariant ensembles is
that they have a determinantal structure. This is the
starting point for the analysis of the statistical distri-
bution of the eigenvalues. The essential idea is that, by
forming linear combinations of the rows and columns
of V , one can generate polynomials in the variables
xn that are orthogonal [II.29] with respect to the
(ensemble-dependent) weightw. This often allows inte-
grals involving the joint eigenvalue distribution func-
tions to be computed, either exactly or asymptotically.
In the case of the GUE, this goes through straight-
forwardly for any matrix size N (the polynomials in
this case being the classical Hermite polynomials). The
GOE requires more sophisticated analysis, but again
the theory can be developed for any matrix size. In
both cases the semicircle law can be obtained via this
approach by integrating over all but one of the vari-
ables in the joint eigenvalue distribution function. The
CUE and COE can also be analyzed in this way. In the
case of more general invariant ensembles, the orthog-
onal polynomials that arise are nonclassical, and exact
calculations for a finite matrix size are difficult. How-
ever, the large-N asymptotics can be evaluated by an
application of the steepest-descent analysis for the
Riemann–Hilbert problem.

5 Eigenvalue Statistics

One theme that has been central to random-matrix
theory has been to seek statistical measures that,
unlike the full joint eigenvalue distribution, have a well-
defined limit as N → ∞. In order to compare different

ensembles, and different parts of the spectra for a given
ensemble, it is natural to rescale (or unfold) the eigen-
values to have unit-mean nearest-neighbor spacing. If
we denote the mean eigenvalue density by ρ(λ) (e.g., in
the case of the Gaussian ensembles this would be the
semicircle law for the range −2

√
N � λ � 2

√
N), then

the scaled eigenvalues λ̃Ni (X) are given by

λ̃Ni (X) = N
∫ λNi (X)
−∞

ρ(λ)dλ.

One can then seek to calculate the probability distri-
bution of the spacings between adjacent scaled eigen-
values, correlations between pairs (or more generally
n-tuples) of eigenvalues, and more exotic measures of
the eigenvalue distribution.

For the invariant ensembles, one can compute the
eigenvalue statistics from the joint eigenvalue distribu-
tion function using the method of orthogonal polyno-
mials. For example, the correlation function for pairs of
scaled eigenvalues in the bulk of the spectrum (i.e., far
from edges, such as ±2 in the case of the GOE and GUE)
may be computed by integrating over all but two of the
variables. The result encapsulates the eigenvalue repul-
sion discussed above, i.e., that the probability of find-
ing pairs of eigenvalues close together vanishes with
their separation, in a way determined by the symmetry
of the ensemble. Higher correlation functions, involv-
ing n-tuples of scaled eigenvalues, may be computed
in the same way.

Significantly, all correlation functions may be ex-
pressed in determinantal form. From the correlation
functions one can then deduce, via a combinatorial cal-
culation, the probability that nearest-neighbor eigen-
values in the bulk of the spectrum have a given spac-
ing. The result may be expressed either as a Fred-
holm determinant or as a solution of a painlevé

equation [III.24]. The probability of finding nearest-
neighbor scaled eigenvalues a distance s apart vanishes
like sβ, where β = 1 for orthogonal invariant ensem-
bles (e.g., the GOE) and β = 2 for unitary invariant
ensembles (e.g., the GUE). This is in contrast to the
spacings between uncorrelated random numbers (i.e.,
generated by a Poisson process and unfolded like the
eigenvalues), for which the corresponding probability
is e−s , and so increases as s → 0. The GOE and GUE
spacing distributions are plotted in figures 4 and 5.

From the correlation functions one can also char-
acterize spectral fluctuations over longer ranges. For
example, in a given interval of length L one expects
to find, on average, L scaled (i.e., unfolded) eigen-
values. For each matrix the actual number will fluctuate
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around L. For random matrices the variance of these
fluctuations is proportional to logL as L → ∞, while
for uncorrelated random numbers the variance is L.
The much smaller variance in the random-matrix case
demonstrates a distinctive rigidity in the spectrum.

In the case of the Gaussian ensembles, the spectral
statistics can be computed explicitly for any size of
matrix. The formulas simplify considerably in the large-
matrix limit. The expressions that emerge in that limit
are universal for invariant ensembles of the same sym-
metry type; that is, they do not depend on the specific
probability weighting (unlike for the mean density, the
dependence on which is counterbalanced by unfolding
the spectrum).

This universality extends beyond the invariant en-
sembles to Wigner random matrices, which, in the
large-matrix limit, have the same spectral statistics as
the invariant ensembles, independently of the specific
choice of distribution of the matrix elements. In this
case the method of orthogonal polynomials is not avail-
able, and to establish the result one proceeds indirectly,
by showing that the spectral statistics of a Wigner
matrix are sufficiently close to those of some GOE/GUE
matrix.

Proving universality for the invariant and Wigner
ensembles has been one of the most significant devel-
opments of the past two decades. Another important
development is the determination of the statistics of
eigenvalues at a spectral edge. For example, one can
determine the distribution of the largest eigenvalue of
a GOE/GUE matrix. Typically, this will lie close to the
upper limit of the range in which the semicircle law
applies. The issue then is to establish the scale and
nature of the fluctuations around this point. This prob-
lem was solved by Tracey and Widom, who showed that
the distribution in question is also given in terms of the
solution of a Painlevé equation.

6 Characteristic Polynomials

An alternative way of representing spectral statistics is
via the value distribution of the characteristic polyno-
mials of random matrices. For example, if X denotes an
N×N unitary matrix, its characteristic polynomial may
be denoted p(s;X) = det(Is − X). The eigenvalues of
X are the zeros of this polynomial and so, by unitarity,
they lie on the unit circle in the complex s-plane. On
the unit circle one can determine the moments of, for
example, |p(s;X)|, with respect to an average over X
in the CUE, by representing p(s;X) as a product over

the eigenvalues and then integrating over these using

the joint eigenvalue distribution. Remarkably, the mul-

tiple integrals in question can be evaluated exactly by

relating them to an integral computed by Selberg. From

these moments one can prove that the values of the

real and imaginary parts of logp(s;X), when divided by

( 1
2 logN)1/2, are independent and normally distributed

(with mean 0 and variance 1) in the limit asN → ∞. Sim-

ilar results hold for other ensembles of random matri-

ces. The analysis of the value distribution of charac-

teristic polynomials has been central to applications of

random-matrix theory to number theory.

7 Ergodicity

The primary strategy in random-matrix calculations is

to fix a point in the (scaled/unfolded) spectrum and

average with respect to an ensemble. That is, one cal-

culates average properties for a class of matrices. Cru-

cially, however, in many cases of interest it can be

proved that this averaging procedure is ergodic in the

limit of large matrix size. That is, for a typical large

matrix, the difference between the fluctuation statis-

tics obtained by averaging over its spectrum and those

calculated from the ensemble average vanishes in the

limit as N → ∞. To be more specific, if one considers

sequences of matrices of increasing size, the probabil-

ity of encountering a sequence for which spectral aver-

ages do not converge to the ensemble average vanishes

as N → ∞. In this sense, the ensemble averages one

computes describe the properties of typical individual

large matrices.

8 Connections

There are many significant connections between ran-

dom-matrix theory and other areas of applied mathe-

matics. I briefly note the following examples.

First, the fact that some ensembles are exactly solv-

able using orthogonal polynomials, and that the results

can be expressed in determinantal form and are related

to Fredholm theory and Painlevé transcendents, is

indicative of deep underlying connections with the

theory of integrable systems. Much of the theory for

this has been developed in the last twenty years.

The powerful techniques associated with integrable

systems, such as the inverse scattering method and

Riemann–Hilbert methods, have played a central role

in the modern development of the subject.
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Second, writing the Vandermonde factor in the joint
eigenvalue distribution as∏

1�i<j�N
|xj − xi|β = exp

(
β

∑
1�i<j�N

log |xj − xi|
)
,

one sees that it takes the form of a Boltzmann weight
associated with a one-dimensional gas of particles with
positions xi, interacting via the Coulomb potential∑

1�i<j�N log |xj − xi|, at a temperature proportional
to β−1. This Coulomb gas analogy allows one to cal-
culate many spectral properties using methods from
equilibrium statistical mechanics. The connection is
reinforced by an important idea due to Dyson: one
can interpret the xi as positions of particles undergo-
ing Brownian motion. They therefore satisfy stochas-
tic partial differential equations, the precise forms of
which (in particular, the conditioning on the solutions)
depend on the ensemble in question. This picture has
been further refined by relating the motion of the eigen-
values to nonintersecting random walks, allowing many
detailed properties of the spectrum to be determined
using techniques from probability theory.

Other important connections—to free probability
theory, between products of random matrices and
Anderson localization of waves in random media, to
random growth models, to enumerative geometry and
topology, and to random permutations, for example—
lie outside the scope of this article.

9 Applications

As mentioned in the introduction, random-matrix the-
ory has applications in virtually every area where matri-
ces play a role, and in many others too. I outline below
a few representative examples.

9.1 Condition Numbers

condition numbers [IV.10 §1] are of fundamental sig-
nificance in characterizing the stability of numerical
computations involving linear algebra. The question of
determining the condition number of a random matrix
was raised by von Neumann and Goldstine, and refined
by Smale, in the context of characterizing the typical
size of the condition number. For example, consider an
N × N matrix X with elements from a standard nor-
mal distribution. The 2-norm condition number κX is
the square root of the ratio of the largest eigenvalue
of the (Wishart) matrix XTX to its smallest eigenvalue.
In this context the question was resolved by Edelman
in 1988, who determined the distribution of the largest

and smallest eigenvalues of XTX from the joint eigen-
value distribution for the Wishart ensemble. The result
is that the expected value of logκX increases like logN
when N → ∞ and that the distribution of κX/N has a
limit when N → ∞ that can be written explicitly. The
analysis extends to rectangular matrices.

9.2 Analysis of Large Data Sets

One of the canonical problems of the analysis of
time series is that of determining correlations from a
finite data set (see, for example, portfolio theory

[V.10 §2.2]). Consider the situation of N fluctuating
quantities sampled at T points in time. Let us denote
these quantities by qtn, with 1 � n � N and 1 � t � T .
For example, these might be N stocks sampled on each
of T days, or N physiological variables measured at T
separate times. A key goal is to approximate any corre-
lations underlying the dynamics from the finite sample
of data available. Defining Xtn = qtn/

√
T , so that

Eij =
1
T

T∑
t=1

qtiq
t
j = (XTX)ij,

the question is how well the empirical correlation
matrix Eij represents any genuine underlying correla-
tions. One might anticipate that the empirical correla-
tions will be representative when N is fixed and as T
grows. However, in many applications, N may not be
small compared with T . This is particularly the case in
financial data, in data from social science experiments,
and in biological data. In this case it is natural to use
random Wishart matrices to establish the typical differ-
ence between the limit r = N/T → 0 and when r ≈ 1.
The Marčenko–Pastur law is a key tool as it describes
the density of eigenvalues as a function of r . An impor-
tant feature of this law is that, like the semicircle law,
it is characterized by having edges. Thus the (Tracey–
Widom) distribution of the largest eigenvalue near to
the (soft) edge at the upper end of the spectrum and
the corresponding distribution for the smallest eigen-
value (near to the hard edge at 0, associated with the
nonnegativity of the eigenvalues) play central roles.

Applications to financial data often require one to
consider random matrices where the distribution of the
matrix elements is highly non-Gaussian, e.g., those pos-
sessing heavy tails, and where the matrix elements may
by correlated. These remain major challenges.

9.3 Quantum Chaos

Wigner’s contributions in the 1950s were motivated
by the need to understand the quantum spectra of
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heavy atomic nuclei. This is a many-body problem in
which the nucleons interact strongly with each other.
The quantum Hamiltonian (i.e., the matrix whose eigen-
values are the energy levels) may thus be expected to be
a complex object. Wigner’s insight was to realize that
statistical properties of the spectrum could be modeled
by those of random matrices and that these could be
determined by averaging over ensembles of matrices.
This resembles the methodology of classical statistical
mechanics, where one models statistical properties of
solutions of the equations of motion for many interact-
ing particles by averaging over all possible states or tra-
jectories, subject to conservation of energy, etc., with
each state/trajectory given its Boltzmann weight.

The same philosophy also underpins the applications
of random-matrix theory to condensed matter physics.
There, one often encounters the problem of an electron
moving in a disordered medium, that is, in a medium
where the forces behave like a random function of posi-
tion. In this case, too, it is natural to model the quantum
Hamiltonian by a random matrix.

One of the key ideas of chaos theory is that one does
not need many interacting particles or random forces
to generate complex dynamics. Instead, this can be (and
typically is) found in systems with a small number of
degrees of freedom where the dynamics is not max-
imally constrained by the symmetries but where the
forces acting may, nevertheless, be simple. In such sys-
tems, typical long trajectories may also be ergodic, in
that their statistical properties coincide with averages
of ensembles of appropriately weighted trajectories
and consequently with phase-space averages. Examples
include the three-body problem [VI.16] and billiards
(i.e., a freely moving particle making specular reflec-
tions at boundaries) in domains that are neither rectan-
gular nor elliptical (more generally, in which the dynam-
ics is not integrable). In the 1970s and 1980s it was sug-
gested that the quantum eigenvalue statistics in such
systems should, on the scale of the mean level spacing,
be modeled by random-matrix theory. Specifically, this
should hold in quantum systems whose classical limit
is chaotic, in the semiclassical limit as Planck’s constant
� → 0, or, physically, in the limit of vanishing de Broglie
wavelength. For example, in the case of billiard sys-
tems it should hold for the high-lying eigenvalues of
the Laplacian with appropriate boundary conditions.

The idea that random-matrix theory should, in the
semiclassical limit, describe quantum spectral statis-
tics in classically chaotic systems has its origins in work
of Berry and Tabor in 1977 (whose primary focus was

on classically integrable systems, for which the energy

levels are generically believed to have Poisson statistics,

but who also speculated on chaotic systems) and was

developed into a precise conjecture by Bohigas, Gian-

noni, and Schmit in 1984. It has been verified numeri-

cally in a very wide range of systems and is believed

to hold generically (it can be subverted by the pres-

ence of symmetries). A related conjecture, due to Berry

in 1977, is that the eigenfunctions behave like linear

superpositions of randomly directed plane waves in

the semiclassical limit and so exhibit the statistical fea-

tures of Gaussian random functions. Taken together,

these conjectures underpin the statistical modeling of

quantum chaotic systems. However, neither has been

proved mathematically in any system, and achieving

this remains one of the outstanding open problems in

the field.

While we may not have a proof of the random-

matrix conjecture for quantum chaotic systems, it is

supported by a highly sophisticated and subtle heu-

ristic semiclassical analysis based on a relationship

between quantum spectra and classical periodic orbits.

This relationship emerges from a saddle-point evalu-

ation, valid in the semiclassical limit, of the Feynman

path integral representation of the energy-dependent

Green function in terms of a sum over all possible paths

weighted by eiS(path)/�, where S denotes the action. The

saddle-point condition picks out those paths for which

the action is stationary, that is, the classical trajecto-

ries. As first shown by Gutzwiller, a further applica-

tion of the saddle-point method in evaluating the trace

of the Green function, which determines the spectrum,

selects out the periodic (i.e., self-retracing) orbits. Sta-

tistical properties of the quantum spectrum are thus

linked semiclassically to statistical properties of the

classical periodic orbits and hence to the chaotic nature

of the classical dynamics. It was first demonstrated

in this way by Hannay and Ozorio de Almeida, and

later in more generality by Berry, that ergodicity of the

classical dynamics governs some key features of the

pair correlation function of the quantum spectrum and

that these coincide with the corresponding features of

the random-matrix results. This approach has subse-

quently been refined by a number of researchers, par-

ticularly Bogomolny and Keating, who extended it to

all the main key features, and Sieber and Richter, who

introduced the seminal idea of including pairs of orbits

that experience a close encounter, which turn out to

make a significant contribution.
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To gain complete agreement with random-matrix

expressions using semiclassical periodic orbit formu-

las requires either the use of sophisticated resumma-

tion techniques introduced by Berry and Keating, which

relate long orbits to shorter ones, or a knowledge of

the correlations between the actions of distinct pairs of

long orbits. These correlations are not known a priori,

but they can be shown to be equivalent to the random-

matrix conjecture. In this sense, as shown by Argaman

et al., the random-matrix conjecture for quantum spec-

tra leads, remarkably, to an important prediction relat-

ing to the classical dynamics in chaotic systems. It is

a major open problem to verify this prediction using

classical mechanics.

Another key theme in quantum chaos has been the

analysis of open chaotic systems; that is, scattering

systems in which the interactions generate exponen-

tial instability in the dynamics. If the system is weakly

open, in the sense that trajectories are trapped for a

long time before escaping, quantum statistical proper-

ties (e.g., of the scattering resonances) can be modeled

by random matrices that are close to being Hermitian.

In chaotic systems that are strongly open, the semi-

classical analysis is much less developed and remains

a major challenge. The semiclassical theory of quan-

tum chaotic scattering was developed by Smilansky and

coworkers.

It is worth emphasizing that the ideas concerning

quantum chaos outlined here apply in general to all

complex wave problems and so have applications to

the statistical analysis of optical, acoustic, and vibra-

tional systems, as well as to essentially quantum phe-

nomena (e.g., to lasers, superconductors, the motion of

electrons in atomic, molecular, and solid-state systems,

nuclei, etc.).

Further Reading

Among the suggestions for further reading below,

Mehta’s book is the classic text on random-matrix

theory; the book edited by Akemann, Baik, and Di Fran-

cesco contains excellent review articles covering much

of the material included in this article (and more) and is

an ideal first point of contact with the subject; Porter’s

book contains reprints of many of the important early

physics papers in the subject; Haake’s book is a useful

introduction to quantum chaos; and the book edited

by Wright and Weaver contains review articles aimed

at applications to linear acoustics and vibration.
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IV.25 Kinetic Theory
Cédric Villani and Clément Mouhot

1 The Birth of Kinetic Theory

Modern physics can be traced back to Newton and
the advent of differential equations to substantiate the
laws of classical mechanics. In the following centuries
this was followed by more comprehensive theories of
physical phenomena in the surrounding world: elec-
tric and magnetic forces were captured by the theory
of electromagnetism (Ampère, Faraday, Maxwell); large
velocities were handled by the theory of relativity
(Lorentz, Poincaré, Minkowski, Einstein); small-scale
particle physics could be taken care of by quantum
mechanics (Planck, Einstein, Bohr, Heisenberg, Born,
Jordan, Pauli, Fermi, Schrödinger, Dirac, de Broglie,
Bose); and so on.
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However, all of these theories are classically devised
to study one physical system (a planet, a ship, a motor,
a battery, an electron, a spaceship, etc.) or a small num-
ber of systems (planets in the solar system, electrons
in a molecule, etc.). In many situations, though, one
needs to deal with an assembly made up of elements so
numerous that their individual tracking is neither use-
ful nor possible: galaxies made up of hundreds of bil-
lions of stars, fluids made of more than 1020 molecules,
crowds made of thousands of individuals, etc. Tak-
ing such large numbers into account leads to new
effective laws of physics, requiring different models
and concepts. This passage from microscopic rules to
macroscopic laws is the founding principle of statisti-
cal physics. All branches of physics (classical, quantum,
relativistic, etc.) can be studied from the point of view
of statistical physics, in both stationary and dynamical
perspectives. Classical mechanics was, naturally, one of
the first laboratories for statistical physics, and thus in
the nineteenth century kinetic theory was born.

Before we describe the key concepts of kinetic theory,
let us recall the basic notion of phase space, which
should be thought of as the space of all possible states
occurring in a mathematical model of some physical
system. If one studies a deterministic system obeying
an evolution equation, then the phase space is, in prin-
ciple, the “smallest” space in which the equation deter-
mines a unique “well-behaved” solution. For instance,
the evolution of a classical point particle is governed by
a second-order differential equation (Newton’s law); so
the position of the particle is not sufficient to predict
its future positions, but the pair (position, velocity) is
sufficient to predict future positions and velocities. The
phase space of a classical particle is therefore made up
of positions and velocities. On the other hand, if the
physical system is, for instance, a rigid body with a cer-
tain shape, then the phase space should also include
extra parameters related to the orientation of the body.

The main idea in kinetic theory is to replace a huge
number of objects, whose physical states are com-
pletely described by points in a certain phase space and
whose properties are otherwise identical, by a statistical
distribution over that phase space. In particular, a large
crowd of classical point particles will be described by
a statistical distribution on the space of positions and
velocities.

In retrospect, the conceptual leap from Newtonian
mechanics to kinetic theory was quite significant: the
new formalism involved a set of invisible variables,
namely, the velocities of particles, that are inaccessible

to observation. It was even counterintuitive; for in-
stance, kinetic theory replaces the model of a fluid at
rest (zero velocity) by a huge number of particles mov-
ing in all directions with great speed. This increase in
complexity was not easy to justify, since at the time
there was no way to measure any of these velocities—it
is still barely possible today. This fundamental role of
velocities accounts for the name kinetic theory.

With kinetic theory came the distinction between
three scales: the macroscopic scale of phenomena that
are accessible to observation, the microscopic scale of
molecules and infinitesimal constituents, and an inter-
mediate scale that is loosely defined and is often called
mesoscopic. This is the scale of phenomena that are
not accessible to macroscopic observation but already
involve a large number of particles, so that statistical
effects are significant.

With only a little stretch of the imagination, one can
liken the principles of kinetic theory to those of cer-
tain contemporary models of theoretical physics, such
as string theory, in which a set of hypothetical hidden
variables is also taken into account (here we put aside
any debates about the value of, and the possibility of
validating, string theory).

The basic scheme of kinetic theory leaves room for
obvious variations. If there are several species, one can
consider several statistical distributions. (Think of air,
which is mainly made up of a mixture of two gases; the
two species have different properties, but within each
species the molecules can be considered as identical.) If
the position and velocity are not sufficient to describe
the state of one object, one can enlarge the phase space.
(In the case of air, one might wish to keep track of the
orientation of a molecule of nitrogen or oxygen.)

Kinetic theory was first discussed by Daniel Bernoulli
in the eighteenth century. The notions of mean free
path and mean free time—which are the typical dis-
tance and typical time, respectively, that a particle can
travel without hitting another particle—were studied
by various authors (Herapath, Waterston, Joule, König,
Clausius) between 1820 and 1860. At the same time,
the very important notion of cross section emerged; this
measures the likelihood of interaction between two par-
ticles, and it can be interpreted as an effective colli-
sion surface. The field as we know it, though, was really
founded by Maxwell in a celebrated paper of 1867.

This theory was strongly influenced by two major ear-
lier scientific developments. The first was the rise of
thermodynamics throughout the eighteenth and nine-
teenth centuries. The laws governing exchanges of
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energy and variations of heat, density, pressure, and
temperature did not seem to rely on fundamental equa-
tions and were discovered through a slow and confus-
ing process; it was therefore desirable to grasp some
more fundamental laws that would underlie thermo-
dynamics. The second influence was the development
of statistics, especially in the field of social sciences,
with the empirical discovery by Galton and Quetelet
of the omnipresence of simple statistical laws derived
from probability theory—one prime example being the
recognition that fluctuations in the size of individu-
als was essentially governed by Gaussian distributions.
Both of these influences guided Bernoulli (whose father
was one of the founders of probability theory), but
by the time of Maxwell they had become much more
mature.

In those days, the atomistic nature of matter was still
largely hypothetical, and kinetic theory could be con-
sidered a thought experiment. Maxwell discussed the
problem of the derivation of macroscopic laws from
microscopic physics. He worked in a dilute regime to
neglect collisions involving more than two bodies, and
he assumed a clear separation between the inhomo-
geneity scale (a mesoscopic concept) and the interac-
tion scale (at microscopic level). He then computed the
effect of collisions on the distribution function via the
solution of a classical scattering problem. In this way he
came up with an evolution equation, equivalent to what
we now call the Boltzmann equation. The unknown is a
density function f(t, x, v), standing for the density of
particles at time t in the phase space (x,v) (equipped
with the reference Liouville measure dx dv); and the
equation, in modern notation, is

∂f
∂t

+ v · ∇xf + F(t, x) · ∇vf = Q(f , f ). (1)

Here, the left-hand side describes the evolution of f
under the action of the force F(t, x), while the action of
elastic collisions is described by the nonlinear operator
Q on the right-hand side:

Q(f , f ) =
∫

R3

∫
S2
B̃(v − v∗,ω)
× (f (t, x, v′)f (t, x, v′

∗)
− f(t, x, v)f(t, x, v∗))dv∗ dω.

(2)

Note that this operator is localized in t andx, it is quad-
ratic, and it has the structure of a tensor product with
respect to f(t, x, ·). The velocities v′ and v′∗ should be
thought of as the velocities of a pair of particles before
collision, while v and v∗ are the velocities after that

collision; the formulas are

v′ = v − 〈v − v∗,ω〉ω, v′
∗ = v∗ + 〈v − v∗,ω〉ω.

When one computes (v,v∗) from (v′, v′∗) (or does the
reverse), conservation laws are not enough to yield the
result, with only four scalar conservation laws for six
degrees of freedom. The unit vector ω ∈ S2 removes
this ambiguity; in the case of colliding hard spheres,
it can be thought of as the direction of the line joining
the centers of the two particles. The kernel B̃(v−v∗,ω)
describes the relative frequency of vectors ω, depend-
ing on the relative impact velocity v − v∗; it depends
on only the modulus |v − v∗| and the deflection angle
θ between v − v∗ and v′ − v′∗. Maxwell computed it
for hard spheres (B̃ ∼ |v − v∗| sinθ) and for inverse
power forces. In the latter case, the kernel factorizes
as the product of |v − v∗|γ with a function b̃(θ);
Maxwell showed that, if the force is repulsive, propor-
tional to r−s (r being the interparticle distance), then
γ = (s−5)/(s−1) and b̃(θ) � θ−(1+ν) as θ → 0, where
ν = 2/(s−1). In particular, the kernel is usually nonin-
tegrable as a function of the angular variable: this is a
general feature of long-range interactions and is nowa-
days called the “noncutoff property.” Maxwell further
noticed that the inverse power s = 5 leads to simplified
formulas, which could lend themselves to more explicit
computations.

Maxwell went on to discuss possible boundary con-
ditions. Particles arriving at a point x in the boundary
with velocity v may be assumed to acquire a new veloc-
ity Rxv , determined either by the model of specular
reflection (Rxv = v − 2v · nxnx , where nx is the unit
ingoing normal vector at x) or by the model of bounce-
back reflection (Rxv = −v). Either way, the boundary
condition reads f(x,Rxv) = f(x,v). In more sophisti-
cated models, particles are assumed to be absorbed by
the boundary and reemitted at a given rate, given, say,
by a Gaussian distribution whose dispersion is dictated
by the temperature of the wall, say:

f(x,v) = ρ−(x)Mw(v), v ·nx > 0,

where

ρ−(x) =
∫
v·nx<0

f(x,v)|v ·nx|dv,

Mw(v) = e−|v|2/(2Tw)

2πT 2
w

.

Maxwell, understanding that the boundary behavior of
a gas was a very complex matter, also considered com-
binations of the above models; these are nowadays
called Maxwell conditions. In order to find the stationary
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solutions, that is, time-independent solutions of (2), he
identified certain particular hydrodynamic solutions,
which make the collision contribution vanish. These are
Gaussian distributions with a scalar covariance:

f(v) = ρe−|v−u|2/2T

(2πT)3/2
,

where the parameters ρ > 0, u ∈ R3, and T > 0 can be
identified, respectively, as the density, mean velocity,
and temperature of the fluid. These parameters can be
fixed throughout the whole domain (providing, in this
case, an equilibrium distribution) or they can depend
on the position x and time t; in both cases, collisions
will have no effect. It was remarkable that Maxwell
could recover in this way the Gaussian distributions
that already played a central role in probability theory;
in the context of kinetic theory, these distributions are
thus called Maxwellian.

Maxwell went further and made the connection with
classical fluid mechanics [IV.28], in which the equa-
tions are expressed in terms of ρ, u, and T . He
suggested that one could go from the kinetic equa-
tions to hydrodynamic equations in certain regimes
and therefore make some predictions about hydro-
dynamic behavior from kinetic theory. Let us give,
for instance, two counterintuitive effects that Maxwell
guessed through kinetic formalism. One is that the vis-
cosity of a low-density fluid hardly depends on density.
Another is the paradoxical “thermal creep effect”: a gas
that has a temperature gradient parallel to a fixed wall
will have a tendency to flow from cold to hot near the
wall.

A few years after Maxwell’s masterpiece was pub-
lished, Boltzmann rewrote and deepened the theory,
completing the foundations of modern physical kinetic
theory.

2 Boltzmann’s Entropy and
Collisional Relaxation

The word “entropy” was coined by Clausius to desig-
nate a certain quantity associated with the tendency
to relax or achieve equilibrium. The properties of
entropy in relation to exchanges of heat and energy
were established empirically; in particular, the formula
for infinitesimal variation of entropy was determined:
dS = δQ/T (variation in entropy is proportional to
the exchanged heat divided by the temperature). In
this vein came the well-known second law of thermo-
dynamics, which states that entropy can never decrease
in an isolated system. Even though there were rules
to compute the entropy of an equilibrium system, the

interpretation of that quantity remained somewhat elu-
sive, and the second law was considered more or less
as an axiom.

That changed radically with Boltzmann’s contribu-
tion to the field (1872–77). In one of the most dramatic
events in the history of statistical physics, Boltzmann
introduced the following breakthroughs.

• A general mathematical definition of entropy: it
is the logarithm of the volume of microscopic
states that are compatible with the (observable)
macrostate. This is the celebrated Boltzmann for-
mula:

S = k logW, (3)

where k is Boltzmann’s constant (notation intro-
duced by Planck, who was the first to estimate its
value) andW stands for the volume of microscopic
states. Here, the volume may be computed with
some natural measure on the phase space, which
may be discrete or continuous, depending on the
situation.

• A practical formula for computing the entropy
of a kinetic system: if f(x,v) is the distribu-
tion function, then S = −

∫∫
f log f dx dv . This

is derived from Boltzmann’s formula (3) through
a discretization procedure; it can also be seen
as an infinite-dimensional analogue of Liouville’s
volume measure.

• A theorem showing that the entropy of a gas that
obeys the equations discovered by Maxwell can
never decrease.

More precisely, Boltzmann’s H theorem states that
for a rarefied gas modeled by a kinetic distribution
f(t, x, v), governed by the Boltzmann equation with
appropriate boundary conditions, the functional H =
−S satisfies (i) dH/dt � 0 and (ii) dH/dt = 0 if and
only if f(t, x, v) is a Maxwellian distribution with pos-
sibly variable parameters ρ, u, T . Such a distribution
can be called hydrodynamic, since it depends on only
hydrodynamical quantities.

In fact, an exact formula can be given for the entropy
production: for, say, specular reflection,

dS
dt

=
∫
D(f(t, x, ·))dx,

D(f) = 1
4

∫∫
R3×R3

∫
S2
B̃(v − v∗,ω)
× (f (v′)f (v′

∗)− f(v)f(v∗))

× log
f(v′)f (v′∗)
f (v)f(v∗)

dv dv∗ dω.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4)
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Establishing this expression was one of Boltzmann’s
motivations for rewriting Maxwell’s kinetic equation
(expressed in some sort of weak formulation) in the
modern form (1).

The H theorem implies, in particular, that station-
ary states have to be hydrodynamic at all times; Boltz-
mann showed that in the absence of special symme-
tries this forces the distribution to be spatially homo-
geneous. This homogeneous Maxwellian is the only
equilibrium state, and in this case the entropy coin-
cides with Clausius’s entropy. Boltzmann’s beautiful
proof was a giant conceptual leap. First, it provided
a general definition of entropy, covering nonequilib-
rium situations: entropy in the Boltzmann theory can
be considered as the typical uncertainty that remains
in the state of a random particle taken in the sys-
tem. Boltzmann then showed that the second law of
thermodynamics could be considered as a logical con-
sequence of fundamental postulates instead of simply
being accepted as a God-given fact. He also showed
that equilibrium thermodynamics could in principle
follow from nonequilibrium dynamics, and he iden-
tified entropy increase, together with a scale separa-
tion, as the major factors behind the emergence of
hydrodynamics.

Still, the most dramatic consequence of Boltzmann’s
work was the discovery of the irreversibility contained
in (1), even though that model was derived from New-
ton’s reversible equations of motion. This emergence of
irreversibility in the many-particle limit would trigger
a heated controversy involving preeminent scientists
such as Poincaré, Loschmidt, and Zermelo; it is still con-
sidered as the classical explanation of the irreversibility
of time at the macroscopic level of description, in spite
of the reversibility of the full-scale evolution.

Entropy increase in the Boltzmann equation shows
that particle configurations, loosely speaking, always
evolve from unlikely to likely, from exceptional to typ-
ical. Information is therefore continuously lost (the
gas may have started in a very interesting, exceptional
configuration, but it soon becomes quite uninterest-
ing). Actually, the information is gradually transferred
from the macroscopic observable degrees of freedom
to the microscopic invisible ones. This loss of informa-
tion can be related to the separation of scales inherent
in the derivation of the Boltzmann equation: at each
encounter between particles, the parameters of the col-
lision (say, the orientation of the colliding pair) are
invisible because they occur on a scale much finer than
the spatial scale, so collisions are treated as perfectly

localized and the impact parameter is treated proba-
bilistically. The inexorable increase in entropy can also
be attributed to the huge numbers involved in the com-
putation of probability: N = 1020 is a large number,
but when one enumerates possible configurations, this
number appears in a combinatorial way, leading to
numbers such as 21020

, which are so large that they defy
any human attempts to grasp them.

After being imported into mathematics, entropy was
extraordinarily successful in helping to solve problems,
both related and unrelated to kinetic theory. It was
rediscovered by Shannon when he was building the
theory of communication, and it still plays a central
role in information theory [IV.36]. It is the basis
of Sanov’s formula in the theory of large deviations
for empirical measures. It was a key concept behind
Nash’s proof of the celebrated de Giorgi–Nash theorem
of continuity of solutions of nonsmooth divergence
parabolic equations. It lies at the core of the theory
of logarithmic Sobolev inequalities, introduced by Nel-
son and Gross as an infinite-dimensional replacement
for Sobolev inequalities. It was one of the key technical
tools in the theory of probabilistic hydrodynamic limits
that was initiated by Varadhan and his colleagues and
students; the role of entropy in hydrodynamical lim-
its was further reinforced with Yau’s relative entropy
method. It was an important tool in the DiPerna–
Lions theory of weak solutions of the Boltzmann equa-
tion. Much further away from physics, entropy was
adapted by Voiculescu in the context of free probabil-
ity to help solve elusive problems from the theory of
von Neumann algebras.

One of the reasons for the ubiquity of entropy is its
extensivity property,

S(f ⊗ g) = S(f)+ S(g),
which is natural from the physical point of view
(information associated with two independent vari-
ables should add up) and implies an additive depend-
ence on dimension, eventually leading to dimension-
independent inequalities.

Nowadays, entropy is still actively being used to
develop new tools and techniques. A few recent works
in which it has played a crucial role are the infinite-
dimensional interpolation inequalities of Otto and Vil-
lani, the amazing solution of the Poincaré conjecture
by Perelman, the theory of synthetic Ricci curvature
bounds by Lott, Sturm, and Villani, and the solution
of Kac’s problem of propagation of chaos for the spa-
tially homogeneous Boltzmann equation by Mischler
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and Mouhot (after preliminary work by Carlen, Villani,

and others).

3 Landau Damping and
Collisionless Relaxation

For the first forty years after its birth, kinetic theory

mostly focused on the effect of collisions, which are

brutal encounters between particles. A notable devel-

opment, starting with Lorentz in 1905, was the intro-

duction of transport equations to describe the motion

of particles wandering in an array of scattering obsta-

cles, such as beams of electrons or neutrons in metals.

The resulting linear collisional equations would later

be found to have considerable importance in nuclear

physics.

However, around that time it was also realized that,

in various cases, the collective effect of particles on

each other is more important than collisions and leads

to a rich variety of behaviors. This was the beginning

of mean-field (noncollisional) theory.

Mean-field theory was first introduced in galactic

dynamics. In 1915 Jeans discussed the use of the Boltz-

mann equation to model the evolution of galaxies over

millions or billions of years, with each star considered

as a particle. He came to the conclusion that, as a first

approximation, collisions can be dropped and one can

model the interaction by letting each particle feel a

force field that is the resultant of all other particles.

The story was then repeated in plasma physics, which

is primarily governed by the Coulomb interactions

between electrons. For such interactions the collision

kernel can be computed explicitly but leads to a diverg-

ing collision operator. In 1936 Landau remedied this

situation by replacing the Boltzmann operator by an

integro-differential collision operator:

QL(f , f ) = logΛ
2πΛ

∇v

×
(∫

R3
a(v − v∗)[f (v∗)∇f(v)

− f(v)∇f(v∗)]dv∗
)
, (5)

where Λ (the plasma parameter) is a large constant and

whereaij(z) = (δij−zizj/|z|2)/|z|. But in 1938 Vlasov

pointed out that the effect of collisions can also be

disregarded (except in long-time analysis), so the dis-

tribution of electrons is mainly subject to the force

generated by electrons, coupled with the electrostatic

equations of Maxwell.

Be it for galaxies or for plasmas, in both situations
the basic evolution equation is

∂f
∂t

+ v · ∇xf + F[f] · ∇vf = 0,

F[f ](t, x) = −
∫∫
Ω×R3

f(t,y,w)∇W(x −y)dy dw,

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(6)

whereΩ is the position domain andW is the interaction
potential, which is assumed to be even. This equation,
which comes with various admissible boundary condi-
tions, is usually called the Vlasov equation, although
the collisionless Boltzmann equation might be a his-
torically more appropriate name. The most important
cases are when W is the fundamental solution of the
poisson equation [III.18] −ΔW = δ (Coulomb inter-
actions, positive type) or ΔW = δ (Newton interac-
tion, negative type). Here, the notion of “type,” com-
ing from harmonic analysis, refers to the sign of the
Fourier transform of the fundamental solution. These
cases give rise to the so-called Vlasov–Poisson equation.

With collisions absent, the most striking features of
the Boltzmann equation disappear; thus, (6) does not
possess any meaningful Lyapunov functional, except
that its solutions satisfy the conservation of energy,

E = 1
2

∫∫∫∫
f(x,v)f(y,w)W(x −y)dx dy dv dw

+
∫∫
f(x,v)

|v|2
2

dx dv,

and conservation of all nonlinear functions of the den-
sity

∫∫
C(f)dx dv . In particular, the entropy is con-

stant.
Another way in which (6) contrasts with (1) is that

it has a surprisingly large collection of steady states;
in the absence of an external field or boundaries,
this includes, in particular, homogeneous distributions
f 0(v) but also many inhomogeneous periodic station-
ary solutions.

All of this seems to oppose the idea that solutions of
(6) should display definite long-time behavior. It there-
fore came as a huge surprise when, in 1946, Landau
showed that the linearized analysis of (6) for Coulomb
interactions led to the exponential decay of pertur-
bations for a large class of equilibria and perturba-
tions (e.g., if both the equilibrium and the perturba-
tion are analytic distributions, and if the equilibrium
has only one maximum in dimension 1 or depends
only on |v| in dimension 3). This effect has been
dubbed Landau damping. Because it seemed to find
irreversibility where everything looked reversible, it
was probably as striking to contemporary physicists
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as Boltzmann’s discovery of the collisional increase of

kinetic entropy, even though its physical impact was

much more restricted than that of the H theorem.

In contrast with Boltzmann’s H theorem, which is

genuinely nonlinear, Landau damping was based on a

linearized computation. Landau’s results were refined

and extended by a number of physicists, including

O’Neil, Penrose, Backus, Maslov, Fedoryuk, and others.

When experiments became accessible, Landau’s com-

putations were verified with a good degree of accu-

racy, and Landau damping became one of the corner-

stones of modern classical plasma physics. It was later

exported to galactic dynamics by Lynden-Bell.

Having been discovered by mathematical computa-

tion, Landau damping has led to considerable specula-

tion about its driving mechanism, and a number of mis-

leading ideas have been generated. The most convinc-

ing interpretation is that collisionless transport phe-

nomena involve a mixing of the distribution function

via very fast kinetic oscillations, which in the stable

case have a tendency to wipe out inhomogeneities.

Even though the collisional and collisionless analy-

ses are both idealizations, they constitute the basis of

most of our current understanding of kinetic theory.

They can also interact with each other: for exam-

ple, the tendency to homogenize faster than expected

can enhance the impact of diffusion or collision on

relaxation phenomena.

At the same time as all this analysis was being devel-

oped, mean-field analysis started to be applied to a

number of situations outside kinetic theory, in both

equilibrium and nonequilibrium systems. In particular,

in a famous discussion of turbulence, Onsager stud-

ied the incompressible two-dimensional Euler equation

in vorticity form as a mean-field system of “vortices,”

presenting many similarities with collisionless kinetic

theory.

4 Driving Problems

The development of kinetic theory, and Boltzmann’s

very influential book, quickly attracted the attention of

mathematicians, starting with Hilbert, who formulated

his sixth problem (related to items (I) and (IV) in the

list below) under the inspiration of Boltzmann. Hilbert

himself did some early mathematical study of the Boltz-

mann equation, as did Carleman in the 1930s and then

Grad and Kac in the 1950s. These works focused on

Boltzmann’s collision operator.

As the theory of partial differential equations (PDEs)

was making progress, the effects of the tricky operator

v · ∇x in the equation started to be analyzed, both in

the case when the operator stands on its own and when

it is coupled with other typical operators appearing in

statistical evolution equations. This can be traced back

to Kolmogorov’s work on the fundamental solution of

the kinetic Fokker–Planck equation.

It took longer for the Vlasov (collisionless) theory to

make its way into mathematics; this task was under-

taken only at the end of the 1970s in Russia with the

work of Arsen’ev and Dobrushin. Soon after, Braun,

Hepp, and Neunzert followed in the Western world.

A number of problems emerged from these works, at

the interface between mathematics and physics; they

have been driving the field for decades and they trig-

gered far-reaching developments. For the most part,

these problems fall into five general themes, all of

which are related to each other.

(I) Derivation from first-law principles. Starting from

fundamental equations such as Newton’s laws or

certain simple diffusive microscopic models, derive

kinetic statistical equations. To derive collisional

equations one is often led to justify, directly or

indirectly, Boltzmann’s chaos assumption: that pre-

collisional configurations are uncorrelated. Chaos

assumptions also play an important role in noncol-

lisional models and more generally in the deriva-

tion of any deterministic equation on the distribution

function.

(II) The Cauchy problem and qualitative analysis.

Starting from an initial datum that satisfies certain

assumptions about smoothness and decay at large

velocities, prove that the solution is well behaved,

make precise the way in which it solves the kinetic

equation, and establish whether bounds of smooth-

ness, large-velocity decay, and strict positivity are

preserved in time. Is there regularization, or at least

decay of the amplitude of singularities? In many sit-

uations, a lack of understanding of the Cauchy prob-

lem precludes progress in the derivation problem.

(III) Long-time behavior. Starting close to some equi-

librium, does the solution remain close to the equi-

librium for all times (orbital stability)? Does it con-

verge to the equilibrium or to some other equilibrium

(dynamical stability)? Starting far from equilibrium,

does it converge to some equilibrium, and can one
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identify that equilibrium? Are there mixing proper-
ties (e.g., oscillations developing in time and leading
to some weak convergence mechanism)?

(IV) Relationships with other models. Can one re-
place, in suitable asymptotic regimes, the kinetic
equations with reduced models, such as compress-
ible or incompressible hydrodynamic equations (in
the hydrodynamic limit, that is when the mean free
path becomes negligible with respect to the spatial
scale), or boundary-layer equations (when one looks
very close to an interface)? Can one couple kinetic
models with other models? Or reduce the descrip-
tion by using a multiscale analysis? Can one use
the kinetic equations to retrieve observable proper-
ties of fluids, such as thermodynamic laws of pres-
sure, viscosity dependencies, or phase-transition dia-
grams? An important limitation of Boltzmann’s clas-
sical theory is that it covers only perfect fluids, that
is, those with a pressure law that is proportional to
the product of the density and the temperature.

(V) Numerical simulation. Can one devise numerical
methods that are fast and accurate? Ones that are
particulary suitable to predict the value of a given
quantity? Ones that satisfy given constraints? Can
one prove that these schemes converge to the solu-
tions of the corresponding kinetic equations? The lat-
ter problem may be strongly related to the derivation
problem because a number of schemes are based on
particle simulations. It is also obviously related to the
analysis of the Cauchy problem.

In view of their archetypical nature and the role
they play in fundamental issues such as the arrow of
time, the basic equations of kinetic theory have aroused
interest among theoretical physicists, going far beyond
the range of application of these models.

We will describe some of these problems in more
detail after discussing the models more precisely.

5 The Many Models of Kinetic Theory

Initially, kinetic theory was devised to model rar-
efied gas dynamics (the Boltzmann equation), galactic
dynamics (the mean-field model with Newton interac-
tion), and ideal plasma dynamics (the mean-field model
with Coulomb interactions). All three domains of appli-
cation are important; for instance, the Boltzmann equa-
tion is crucial in high-altitude aerodynamics, since the
upper atmosphere is not dense enough for the laws of
hydrodynamics to apply satisfactorily. More recently,

Boltzmann equations have been found to be useful in
the modeling of nanofluids.

The kinetic formalism is versatile, and its range
of application has been widened considerably beyond
these situations. The many resulting variants of the
basic equations can be grouped into several categories.

(1) Classical models with an interaction kernel derived
from various molecular interactions or modified from
those that come from the laws of classical physics.
In particular, since Grad’s work on the properties of
the linearized Boltzmann operator, one often truncates
small deviation angles to ensure the angular integra-
bility of the collision kernel. Under this assumption of
angular cutoff, the collision operator can be split into
two parts:

Q(f , f ) = Q+(f , f )−Q−(f , f )

=
∫∫
B̃(v − v∗,ω)f(t, x, v′)f (t, x, v′

∗)dv∗ dω

−
∫∫
B̃(v − v∗,ω)f(t, x, v)f(t, x, v∗)dv∗ dω,

which are called the gain and loss parts of the operator,
respectively. By contrast, a kernel that is nonintegrable
in the angular variable is called “noncutoff.” This ker-
nel corresponds to long-range interactions. Moreover,
the interaction is called hard if the corresponding col-
lision kernel is proportional to a positive power of the
relative velocity, and it is called soft if the kernel is
proportional to a negative power of the relative veloc-
ity. In between these extremes lies the Maxwellian case,
where the kernel does not depend on the relative veloc-
ity. Hard, Maxwellian, and soft potentials often enjoy
distinctive properties. A particular case is that of hard
spheres, in which the kernel is simply proportional to
|〈v − v∗,ω〉|.

(2) Models obtained from large particle systems by
putting emphasis on various interactions according to
physical conditions (density, strength of interaction,
etc.). Popular and versatile models in this category are
the Fokker–Planck equations, which date back to the
1930s and describe the evolution of a crowd of par-
ticles undergoing stochastic diffusion and determinis-
tic drift. Systematic derivation of statistical models for
particle systems goes back to Bogolyubov. It is espe-
cially in the field of plasma physics that this approach
has led to a large number of variants. The Balescu–
Lenard and Vlasov–Fokker–Planck–Landau equations
are among the best known of these models; they incor-
porate both mean-field and collisional interactions,
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with collision operators that behave like nonlinear dif-
fusions in velocity space while bearing a resemblance
to the integral and bilinear structure of the Boltzmann
operator (recall (5)). These models try to reduce the
great variety of processes that go on in plasmas to
tractable equations.

(3) Linear models describing the interaction of a parti-
cle system with a given (deterministic or random) envi-
ronment. Important examples that fall into this cat-
egory include the linear Boltzmann equation, which
describes the scattering of particles by a cloud of ran-
domly located obstacles; the archetypal kinetic equa-
tion of Fokker–Planck type (studied by Kolmogorov),

∂tf + v · ∇xf −Δvf = 0; (7)

and the equations of electron transport, which are use-
ful in neutronics and in semiconductor theory. More
generally, we can also include a variety of equations
describing combinations of transport, scattering, dif-
fusion, and so on.

(4) Spatially homogeneous models, in which one stud-
ies solutions that do not depend on the position vari-
able, only on the kinetic variable. The most impor-
tant of the resulting models is the spatially homoge-
neous Boltzmann equation ∂tf = Q(f , f ), the study of
which is very well developed; this equation allows the
understanding of fine properties of the collision oper-
ator. Additional structure can be achieved by restrict-
ing the setting even further, e.g., by considering only
Maxwellian interactions, in which the collision kernel
B̃(v − v∗,ω) depends on only the deflection angle
θ. The dimension can also be reduced, leading for
instance to Kac’s one-dimensional caricature of a Boltz-
mann gas, in which velocities are one dimensional
and the conservation of energy has been kept but the
conservation of momentum has been dropped.

(5) Linearized equations, obtained by looking at first-
order perturbations. For the Boltzmann equation near a
homogeneous Maxwellian M = M(v), the linearization
is

∂th+ v · ∇xh = Q(h,M)+Q(M,h),
which is often further transformed by conjugation with
a multiplication operator. For the Vlasov equation near
a homogeneous equilibrium f 0 = f 0(v), this is

∂th+ v · ∇xh+ F[h] · ∇vf 0 = 0.

In both cases, spectral properties depend strongly on
the interaction potential and have been the object of
numerous studies. Many variants of these archetypal
models are available.

(6) Delocalized models, in which particles are allowed
to have a nonnegligible interaction range. While this
procedure is logically inconsistent with the many-
particle limit, it does produce some useful equations,
such as the Povzner equation and, especially, the
Enskog equation, which is used in the description of
granular matter.

(7) Models incorporating different physical laws: inelas-
ticity (replacing the energy conservation by a dissipa-
tion law; this approach is especially important in the
modeling of granular matter), quantum physics (either
by modeling quantum phenomena in the interaction
terms, thus leading to Boltzmann–Bose or Boltzmann–
Fermi models for bosons or fermions collisions, or by
keeping a classical description of collisions but incor-
porating quantum effects in the computation of the
cross section), relativity (either by incorporating the
geometry of special relativity into the laws of inter-
action, or by coupling a kinetic equation to the con-
stitutive equations of general relativity), and so on.
In relation to relativity it should be noted that the
Einstein equations of general relativity cannot “stand
on their own” unless one studies the vacuum: these
equations need to be coupled to an evolution equa-
tion for matter, satisfying certain conditions. Since the
pioneering works of Choquet–Bruhat on the Cauchy
problem in general relativity, the Vlasov equation has
been studied in this context, giving rise to the so-called
Vlasov–Einstein model.

(8) Coagulation–fragmentation models incorporating
crude modeling of chemical reactions, drop formation
from molecules via larger and larger gatherings, gela-
tion problems, etc. The Smoluchowski equation is one
of the most popular models in this respect.

(9) Discrete velocity models and lattice models, devised
to simplify the geometry of collisions and the phase
space, e.g., for numerical simulations.

(10) Models appearing in various other physical con-
texts, such as interactions between waves in models of
weak turbulence. Another example here is the collision-
less kinetic equation that is obtained by application of
the Wigner transform to the Schrödinger equation.

(11) Kinetic equations in interaction with other physical
phenomena: coupling of radiative transfer and hydro-
dynamics (in astrophysics or nuclear physics), of par-
ticles and hydrodynamic fluids (e.g., in sprays), and
so on.
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(12) Phenomenological models for various interaction
phenomena that are difficult to classify or evade pre-
cise physical modeling: crowds, traffic, disease trans-
mission, sexual reproduction, etc.

6 The Many Mathematical
Faces of Kinetic Theory

Modern kinetic theory enjoys an enviable position in
the mathematical landscape: standing on top of it, the
curious observer can view most of the regions of analy-
sis, as well as significant territories of probability and
geometry. In the past thirty years this theory has inter-
acted with many other fields and displayed a number
of sophisticated developments. In the same period, it
has moved from being a rather minority field to being
one that is center stage.

Some of the particular features of kinetic theory
that differentiate it from other areas of mathematical
physics are

• the presence of two variables (position and veloc-
ity);

• the omnipresence of large velocities, which cannot
be truncated in the model;

• the degeneracy of most equations in the spatial
variable;

• the intricate geometry of collisions;
• the fact that kinetic theory is at a cross-point

between several areas of modeling; and
• the interplay of deterministic and chaotic behav-

ior.

With these things in mind, here are some of the main
mathematical tools and trends in kinetic theory.

Spectral theory. The linearized Boltzmann equation
was one of the first model cases of study for integro-
differential operators. Some of the important notions
here are spectral gap estimates, the Fredholm alter-
native, self-adjointness, the localization of the essen-
tial spectrum, compact perturbations, compactness
of the resolvent, accretivity, etc.

Nonlinear analysis of the Cauchy problem. Tools
involve a priori estimates (starting with mass, energy,
and entropy controls), the Cauchy–Kowalevskaya
theorem (especially in the short-time derivation of
the Boltzmann equation, or in early theories of the
Vlasov–Poisson equation), Kolmogorov–Nash–Moser
perturbation techniques, the Moser scheme (espe-
cially for the spatially homogeneous Boltzmann

equation for long-range interactions, which has dis-
sipative features), weak compactness theorems (par-
ticularly in the DiPerna–Lions theory of weak solu-
tions), Sobolev trace theorems, and weighted func-
tional spaces of Lebesgue, Sobolev, analytic, and
Gevrey type. Bilinear and trilinear estimates with a
strong input from harmonic analysis have recently
been developed for the study of long-range interac-
tions, in which the collision operator behaves more
or less like a nonlinear fractional derivation. This
list must also include both the nonlinear changes of
variables used by DiPerna and Lions in their notion
of “renormalized” solutions, and the “gliding” regu-
larity analysis (regularity obtained after composing
the function with a transport equation) used for the
study of fast oscillations of the Vlasov equation in
large time, etc.

Harmonic analysis. Fourier analysis, either in the po-
sition variable or the velocity variable, has played
a crucial role in various parts of kinetic theory,
most notably in the analysis of the spatially homo-
geneous Boltzmann equation with Maxwellian inter-
actions (for which the Fourier transform of the col-
lision operator is particularly simple and tractable),
in the long-time perturbative analysis of the nonlin-
ear Vlasov equation (Landau damping being analyzed
mode by mode), in the regularity of the gain part of
the Boltzmann operator (which is more regular, by a
fractional amount, than the density function), and in
velocity-averaging estimates. The latter are intended
to answer the following type of question. Given an
equation like v · ∇xf = g, with certain regularity
information on f and g, show that, if a smooth test
function ϕ is given, then

∫
f(x,v)ϕ(v)dv enjoys

more regularity than can be predicted solely from the
regularity of f . This point of view has been extremely
fruitful in modern studies of the Cauchy problem and
is based mainly on Fourier or X-ray transforms.

Entropic inequalities. The analysis of the long-time
behavior of collisional kinetic equations naturally
leads to the study of inequalities relating Boltz-
mann’s entropy to its rate of production. Kac and
McKean were the first to address these issues from
a mathematical point of view, and they made the
connection with information-theoretical inequalities,
involving Fisher information, for example. A central
topic in the field came to be known as Cercignani’s
conjecture: is it true that, under certain conditions
of normalization or regularity, the entropy produc-
tion (4) satisfies the functional inequality D(f) �
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K[S(M) − S(f)], where M is a Maxwellian distri-

bution? This problem, which is the entropic vari-

ant of a spectral gap inequality, has led to unex-

pected and rich developments related to logarithmic

Sobolev inequalities and to the Shannon–Stam and

Blachman–Stam inequalities.

Semigroup arguments. At the end of the 1990s, semi-

group arguments made their way into kinetic theory,

either through the use of auxiliary diffusion equa-

tions or via the second variation method introduced

by Bakry and Émery in their study of logarithmic

Sobolev inequalities. The ideas of Bakry and Émery

were adapted in the context of PDEs by Toscani,

Arnold, Markowich, and others; a large body of works

followed on the entropic analysis of the convergence

to equilibrium after a long time, for both linear and

nonlinear models in kinetic theory, especially those

of Fokker–Planck type. Some of the key concepts

are the Γ2 calculus, curvature-dimension inequali-

ties, and dissipation of entropy production (i.e., the

second time-derivative of the entropy).

Specific techniques for degenerate operators. Kol-

mogorov in the 1950s and Hörmander in the 1960s

founded the theory of hypoellipticity, according to

which certain degenerate operators, like −v·∇x+Δv ,

generate a regularizing semigroup. This situation,

which occurs frequently in linear-dissipation kinetic

models, is often treated by commutator estimates.

The more recent theory of hypocoercivity deals with

the time decay of semigroups generated by degen-

erate operators, typically of the form T + Λ, where

Λ is coercive in some appropriate subspace and T
is skew-symmetric. Paradigmatic examples are −v ·
∇x+Δv−v·∇v in L2(M dx dv) and −v·∇x+ΠM−Id

in L2(M dx dv), whereM is a Gaussian andΠM is the

orthogonal projection on constant functions.

Qualitative studies of solutions. The Vlasov equation

is of hyperbolic type, but the Boltzmann equation is

of mixed hyperbolic/parabolic type in some sense; a

number of works and techniques have been devoted

to the study of the qualitative behavior of solu-

tions, including regularization, propagation, or decay

of singularities (often studied in Sobolev spaces),

wave patterns (in connection with systems of con-

servation laws and compressible Navier–Stokes equa-

tions), harmonic analysis, pseudodifferential opera-

tors, Littlewood–Paley analysis, the Radon transform,

quantitative uncertainty principles, the self-similar

ansatz, concentration analysis, and so on.

Singular limits. These limits, in which a term of the
equation is enhanced by a diverging coefficient, are
studied via ansatzes, expansions, spectral theory,
ergodic theory, etc. They appear in particular in con-
nection with (a) inviscid or viscous hydrodynamic
limits, in which the Knudsen number (the ratio of
the mean free path to the typical length) goes to 0,
typically leading to an enhanced collision opera-
tor, ε−1Q(f , f ); (b) the homogenization of transport
models, typically leading to an enhanced transport
term, ε−1v · ∇x or ε−1F · ∇v ; (c) high-frequency
semiclassical limits of Schrödinger equations, via the
Wigner transform; (d) small mass ratio limits, e.g.,
in plasmas, where electrons are much lighter than
nuclei.

Differential geometry. Curved phase spaces appear
naturally in relativistic kinetic theory, either through
the rules of collisions between particles or because
the system is considered in a Lorentzian ambient
space.

Calculus of variations. When stability is not ensured
by a Lyapunov functional such as the entropy, sta-
bility issues can be very tricky. Convexity properties
can then be crucial in studying the dynamic stabil-
ity of particular equilibria that are energy minimiz-
ers. This approach, introduced into hydrodynamics
in the 1960s, was systematically used from the 1980s
on in the study of the Vlasov–Poisson equation, with
the help of notions of concentration–compactness,
rearrangement, etc.

Many-particle techniques. The quest for a rigorous
foundation for the Boltzmann and Vlasov equa-
tions from particle systems has led to the analysis
of many-particle systems, obeying the fundamental
laws of classical or quantum mechanics, in the limit
where the number N of particles diverges to infin-
ity. The microscopic equations then depend on all
positions and velocities, say (x1, v1), . . . , (xN,vN).
The problem can be formulated in terms of the likely
behavior of the empirical distribution, say, μ̂N =
N−1

∑N
i=1 δ(xi,vi), or in terms of the limit behavior of

the first-particle marginal of an N-particle distribu-
tion fN , satisfying the N-particle Liouville equation

∂tfN +
∑
vi ·∇xifN −

∑
i≠j

∇W(xi −xj) ·∇vifN = 0,

in various asymptotic regimes where time, space,
mass, and the strength of interaction may be re-
scaled. Popular scalings are the Boltzmann–Grad
limit, pioneered by Grad, Cercignani, and Lanford,
which led to the nonlinear Boltzmann equation, and
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the mean-field limit, established by Braun, Hepp,
Dobrushin, and Neunzert for smooth interactions,
which led to the Vlasov equation. Famous variants are
the probabilistic approach of Kac, in which the deter-
ministic Newton equations are replaced by a phe-
nomenological, stochastic microscopic model, and
the derivation of the linear Boltzmann equation (for
a so-called Knudsen gas) pioneered by Gallavotti. Key
concepts in this field are notions of molecular chaos
(asymptotic independence of particles, i.e., low corre-
lations), perturbative series, particle histories, func-
tional inequalities in infinite dimension, quantitative
laws of large numbers, central limit theorems, and
orthogonal polynomials. For quantum particle sys-
tems, density matrices and Wigner transforms play a
crucial role.

Numerical analysis. The simultaneous presence of
very diverse terms in the equations, the high-dimen-
sional phase space, the complexity of collisions,
the presence of large velocities and small densi-
ties, and the difficulty of accurate experiments have
all made numerical simulation of kinetic models a
challenging area. Transport phenomena are most
often simulated with the help of the methods of
characteristics, that is, following particles in phase
space; but the reconstruction of the density from
one time step to the next leads to many subtleties,
since the number of particles used in the simula-
tion is always much smaller than the actual num-
ber of particles and since particle trajectories do
not preserve grids or other discretizations of the
phase space. Collisional phenomena are tricky to
compute and were initially handled by stochastic
methods, based on particle systems obeying more or
less realistic interaction rules. These schemes were
founded by Bird in the 1960s and remained dom-
inant for more than forty years. It is only in the
last decade that the progress of algorithms and com-
puter power have made more accurate determinis-
tic methods competitive in cost, at least in certain
situations. Keywords in this area are the splitting
method, Monte Carlo simulation, consistency analy-
sis, Lagrangian and semi-Lagrangian methods, spec-
tral analysis, the Fourier transform, the fast Fourier
transform algorithm, finite elements, lattice simula-
tion, conservative schemes, adaptive grids, etc. Spe-
cific methods were developed by Cheng and Knorr,
Sone, Aoki, Babovsky, Neunzert, Wagner, Degond,
Bobylev, Rjasanow, Sonnendrücker, Pareschi, Filbet,
and many others in aeronautics, in astrophysics,

in plasma physics—there is an enormous amount

of literature and it is barely touched upon in this

article.

Let us conclude our list with two subjects that were

partly motivated by kinetic theory but where the main

impact was made in other parts of mathematics.

Ordinary differential equations (ODEs) with rough

coefficients. The classical theory of ODEs, say ẋ =
ξ(t, x), requires continuity of ξ for the local exis-

tence of a flow, and Lipschitz regularity of ξ for

local uniqueness and continuous dependence. This

requirement of Lipschitz regularity is often a strong

restriction in applications to PDEs, especially when ξ
depends on the solution and its regularity is a pri-

ori unknown. As a by-product of their studies of

the Cauchy problem in kinetic theory, DiPerna and

Lions came up with a theory of ODEs that provides

local existence and uniqueness for almost every ini-

tial data, under a more lenient assumption of Sobolev

regularity (e.g., ξ ∈ W1,1
loc , divξ ∈ L∞, and some

growth condition at infinity). The original proof was

based on the analysis of the transport equation ∂tf +
ξ · ∇f = 0 and the renormalization technique; more

recently, the theory was refined by Ambrosio, de Lel-

lis, and others to include the limit case of bounded

variation regularity and to provide alternative, tra-

jectorial proofs. This theory has been used in var-

ious types of PDEs, such as hyperbolic systems of

conservation laws.

Optimal transport and metric geometry. In the 1970s

it was shown by Tanaka that the spatially homo-

geneous Boltzmann equation with Maxwellian inter-

actions is contracting for the Wasserstein (optimal

transport) distance

W2(μ, ν) =
(

inf
π∈Π(μ,ν)

∫
Rd×Rd

|v−v∗|2 dπ(v,v∗)
)1/2

,

where μ and ν are two probability measures on Rd,

and the infimum is over all joint probability mea-

sures π(dv dv∗) with marginals μ and ν . After a

period in which these connections sank more or less

into oblivion, the links between optimal transport

and kinetic equations were renewed in the 1990s and

led to various uniqueness and stability results. Later,

the interplay between optimal transport and Boltz-

mann’s entropy played a key role in the theory of

nonsmooth Ricci curvature.
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7 Landmarks

A list of fifty striking works, arranged chronologically,
appears below. These works have punctuated progress
in kinetic theory and have become classical references.
Some of these works have opened up a new field of
research, while others have closed an existing one;
some are gathered together if they are very close in
terms of subject matter. The dates that are given are
those of publication, which sometimes came a few
years after the actual work was carried out.

This list is not intended to convey overall importance,
and the selection is partly a personal matter. It is biased
in favor of theoretical issues and does not do justice to
some subjects that are of great importance in industrial
applications, such as neutron transport or coagulation–
fragmentation. Similarly, it does not even touch on the
enormous and inventive body of work that has been
undertaken in the field of numerical simulations.

The list also partly reflects the history of mathe-
matical kinetic theory: at first, it was quite a minority
subject, with rare contributions; but a few centers of
wider study emerged after World War II (New York (at
the Courant Institute), Osaka/Kyôtô, Göteborg, Rome,
Moscow, and Zürich). In the 1980s and 1990s, the study
of nonlinear problems started to flourish, with the
French and Italian schools taking the lead, and the com-
munity became quite organized; at the same time, new
research groups were emerging, most notably in Ger-
many, the United States, Austria, Spain, Taiwan, and
Canada. The past twenty years have been character-
ized by a growing and fruitful interplay between kinetic
theory and other mathematical fields, by an emphasis
on quantitative results and constructive methods, and
by renewed study of the linearized and perturbative
settings.

(1) Hilbert (1912). The first study of the linearized
Boltzmann operator and the first formal expansion of
the solution of the Boltzmann equation in powers of
the (small) Knudsen number near the hydrodynamic
regime.

(2) Chapman and Enskog (1917). Systematic formulas
for deriving macroscopic transport coefficients from
microscopic interactions and for perturbative expan-
sion near the hydrodynamic regime (as an alternative
to Hilbert’s work).

(3) Carleman (1932). The first solution of the nonlinear
Cauchy problem for the spatially homogeneous Boltz-
mann equation, for hard spheres; this included a qual-

itative study of the lower bound for the density and a
study of the convergence to equilibrium.

(4) Kolmogorov (1934). Computation of the fundamen-
tal solution of the kinetic Fokker–Planck equation ∂tf+
v · ∇xf = Δvf , displaying (hypoelliptic) regularity
properties.

(5) Grad (1949). A thirteen-moment system describing
a high-order approximation to the hydrodynamic limit
of the Boltzmann equation.

(6) Kac (1954). The probabilistic foundation of kinetic
theory through a phenomenological stochastic many-
particle model of the spatially homogeneous Boltz-
mann equation; this led to conjectures on quantitative
relaxation rates.

(7) Backus (1960), Penrose (1960). A mathematical treat-
ment of linear Landau damping, discovered by Landau
in 1946, with sharp criteria for stability; statement of
the nonlinear damping problem.

(8) Carleman (1949, 1957), Grad (1963–65). The mod-
ern spectral theory of the linearized Boltzmann equa-
tion with cutoff, for hard interactions, in the homoge-
neous and inhomogeneous settings.

(9) McKean (1965). Probabilistic study of Kac’s cari-
cature of the Boltzmann equation through molecular
chaos, Fisher information estimates, and the quantita-
tive central limit theorem for Maxwell interactions.

(10) Bird (1966). The first numerical scheme for the
stochastic simulation of the Boltzmann equation; an
alternative scheme was later introduced by Nanbu
(1983).

(11) Hörmander (1967). General criteria for the hypoel-
lipticity of degenerate diffusion equations, including a
precursor to velocity-averaging lemmas.

(12) Gallavotti (1969). Derivation of the linear Boltz-
mann equation from the Lorentz gas through averag-
ing over a random environment. Many developments,
by Pulvirenti, Desvillettes, and others, followed from
this work.

(13) Arkeryd (1972). The Cauchy problem for the spa-
tially homogeneous Boltzmann equation with hard
potentials, in weighted L1 spaces, including weak com-
pactness properties in L1.

(14) Tanaka (1973). Contraction properties of the spa-
tially homogeneous Boltzmann equation with Maxwell
kernel in the Wasserstein W2 distance.

(15) Lanford (1974). Short-time derivation of the Boltz-
mann equation from deterministic Newton laws.
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(16) Ukai (1974). Perturbative solutions of the full
inhomogeneous Boltzmann equation, based on the
spectral theory of the linearized equation.

(17) Bobylev (1976–88). Systematic study of the spa-
tially homogeneous Boltzmann equation with Maxwell
interactions via the Fourier transform.

(18) Braun and Hepp (1977), Dobrushin (1979), Neun-
zert (1984). A rigorous mean-field limit for the Vlasov
equation with smooth interactions.

(19) Sznitman (1984). Propagation of chaos and a prob-
abilistic derivation of the spatially homogeneous Boltz-
mann equation with hard spheres.

(20) Golse, Perthame, and Sentis (1985). The start of
the systematic study of velocity-averaging lemmas in
Sobolev spaces, which had been independently intro-
duced by Agoshkov (1984) shortly before.

(21) Glassey and Strauss (1986). The Cauchy prob-
lem for the relativistic Vlasov–Maxwell equation, con-
ditional to a conjectured property of compact support.

(22) Bony (1987). A new Lyapunov functional for the
discrete-velocity inhomogeneous Boltzmann equation
in one space dimension; this was the starting point
for various Lyapunov functionals for the Boltzmann
equation in one space dimension.

(23) DiPerna and Lions (1989). The existence and sta-
bility of weak solutions (“renormalized solutions”) in
the large, for the nonlinear inhomogeneous Boltzmann
equation.

(24) Bardos, Golse, and Levermore (1991). A systematic
program for the proof of hydrodynamic limits of weak
solutions, in particular in the incompressible regime;
this program would take twenty years to complete.

(25) Lions and Perthame (1991), Pfaffelmoser (1992).
The first proofs of existence and uniqueness of classi-
cal solutions for the three-dimensional Vlasov–Poisson
equation, by two different approaches.

(26) Desvillettes (1989), Carlen and Carvalho (1992,
1994). The first lower bounds on the instantaneous
rate of entropy production in the Boltzmann equation
through the quantitative H theorem and information
theory.

(27) Desvillettes (1993). Refined moment estimates for
the spatially homogeneous Boltzmann equation; in par-
ticular, their immediate appearance in the case of hard
potentials.

(28) Lions (1994). The regularity of the gain term of the
Boltzmann collision operator, which is shown to have

the structure of a singular integral operator, gaining
up to one derivative in three dimensions for smooth
kernels.

(29) Desvillettes (1995). The first evidence of regulariza-
tion due to long-range interactions in the Boltzmann
equation on a spatially homogeneous caricature; the
start of a long series of works on such regularization
effects.

(30) Gérard, Markowich, Mauser, and Poupaud (1997),
Lions and Paul (1993). The systematic study of high-
frequency limits through the Wigner transform, with
applications to quantum kinetic theory.

(31) Erdös and Yau (1998). Derivation of the linear quan-
tum Boltzmann equation, in the weak coupling limit,
for the Wigner distribution of a quantum particle in a
random environment.

(32) Mischler and Wennberg (1999), Lu (1999). Optimal
conditions for the well-posedness of the Cauchy prob-
lem of the spatially homogeneous Boltzmann equation
with hard interaction and cutoff.

(33) Carlen, Gabetta, and Toscani (1999). Optimal rates
of convergence to equilibrium for the spatially homo-
geneous Boltzmann equation with Maxwell interaction
and angular cutoff (the removal of the cutoff was later
obtained in subsequent works involving Wennberg,
Dolera, and Regazzini).

(34) Toscani and Villani (1999), Villani (2003). Sharp
entropy production bounds for the Boltzmann equa-
tion, solving, or nearly solving (depending on assump-
tions), Cercignani’s conjecture; this work was based
on semigroup methods, information theory, and the
Landau equation.

(35) Guo (2002). The first of a series of works using
energy methods to work out robust perturbative the-
ories of the Boltzmann equation and other kinetic
models.

(36) Carlen, Carvalho, and Loss (2003), Maslen (2003).
Determination of the L2 spectral gap for Kac’s ran-
dom walk in arbitrarily large dimension, after a uniform
lower bound was established by Janvresse.

(37) Carlen and Lu (2003). Examples of arbitrarily slow
convergence to equilibrium for the Boltzmann equation
with Maxwell interactions.

(38) Bobylev, Gamba, and Panferov (2004), Gamba, Pan-
ferov, and Villani (2004). Moment estimates and the
Cauchy problem for the inelastic spatially homoge-
neous Boltzmann equation with hard interactions.
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(39) Alexandre and Villani (2004). Weak solutions for
the spatially inhomogeneous Boltzmann equation with-
out cutoff, and the asymptotic regime of predominantly
grazing collisions in the spatially inhomogeneous case.
This came after much progress in the understanding
of grazing collisions by Alexandre, Desvillettes, Villani,
and Wennberg.

(40) Liu and Yu (2004). The first works on pointwise
stability and the Green function in Boltzmann theory,
and in kinetic shock wave analysis (motivated by an
earlier work of Caflisch), by analogy with systems of
conservation laws; the start of a long series of works.

(41) Golse and Saint-Raymond (2004). A rigorous proof
of the incompressible hydrodynamic limit for weak
solutions of the Boltzmann equation; this came after
works by Golse, Levermore, Masmoudi, and others.

(42) Desvillettes and Villani (2005). Quantitative con-
vergence to equilibrium for the Boltzmann equation,
far from equilibrium, by entropy methods, under a
conjectural condition of regularity bounds.

(43) Baranger and Mouhot (2005), Mouhot (2006), Gual-
dani, Mischler, and Mouhot (2013). Optimal rates of con-
vergence for the Boltzmann equation (homogeneous
and inhomogeneous), coupling quantitative spectral
analysis to entropy methods, conditional on regularity.

(44) Mischler and Mouhot (2006). A proof of Haff’s law
of decay of temperature and self-similar stability in the
theory of granular (inelastic) gases.

(45) Villani (2009). General criteria for hypocoercivity,
in both linear and nonlinear situations.

(46) Gressman and Strain (2011), Alexandre, Morimoto,
Ukai, Xu, and Yang (2011). Construction of smooth
solutions for the noncutoff spatially homogeneous
Boltzmann equation, for potentials that are hard or not
too soft.

(47) Lemou, Méhats, and Raphaël (2011). Orbital sta-
bility of spherical monotone equilibria of the gravita-
tional Vlasov–Poisson equation; the culmination of a
long series of works on the stability of the Vlasov–
Poisson equation by Antonov, Wolansky, Strauss, Guo,
Rein, and others.

(48) Mouhot and Villani (2011). A proof of Landau
damping for the nonlinear Vlasov equation, near sta-
ble homogeneous equilibria, in analytic or Gevrey regu-
larity, via phase mixing and gliding regularity; this was
later adapted by Bedrossian and Masmoudi to inviscid
damping near Couette flow.

(49) Mischler and Mouhot (2013). Significant progress
on Kac’s program: relaxation estimates for particle sys-
tems, quantitative and uniform in the number of parti-
cles, in the limit of the spatially homogeneous Boltz-
mann equation, using quantitative chaos properties
and entropic estimates.

(50) Escobedo and Velázquez (2013). A rigorous proof of
blow-up (Bose–Einstein condensation) for the quantum
spatially homogeneous Boltzmann–Bose equation.

8 Challenges

While kinetic theory has come a tremendous distance,
the field is still driven, among other motivations, by the
ambition to understand certain famous, monstrously
difficult problems. A list of some of these problem
follows below, gathered together under a few main
themes.

8.1 The Cauchy Problem, Regularity, Singularities,

and Finite-Time Qualitative Behavior

The most important and annoying open problems in
this list are certainly the related questions of the reg-
ularity and well-posedness of the Boltzmann equation
when no perturbative or spatial homogeneity assump-
tions are imposed. Parallels could be drawn between
this and the Millennium Prize Problem on the incom-
pressible Navier–Stokes equation in three dimensions.
For collisionless kinetic equations, even if the Cauchy
problem for the Vlasov–Poisson equations has been
tamed, other Herculean tasks concerning more intri-
cate models remain. The Cauchy problems for the
Vlasov–Maxwell and Vlasov–Einstein equations are of
particular interest. Actually, for these two equations
even the perturbative theory is far from well under-
stood. In a completely different direction, the stability
of homogeneous solutions remains almost untouched
in the theory of the inhomogeneous inelastic Boltz-
mann equation; the annoying issue here is that nobody
has been able to prove that clustering is possible, which
is well accepted in physics. Finally, much remains to be
understood about very soft interactions (when the col-
lision kernel behaves like a large negative power of the
relative velocity).

8.2 Long-Time Behavior

The entropic relaxation for the Boltzmann equation
now seems quite well understood without boundaries,
with robust estimates and recipes applying far from
equilibrium as well as optimal decay from quantitative
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linearized arguments. Collisionless relaxation in Vlasov
theory, on the other hand, is understood only near
a stable homogeneous equilibrium, and the stability
of inhomogeneous stationary solutions, such as so-
called BGK waves (named after Bernstein, Greene, and
Kruskal), remains a famous open problem. The math-
ematical theory of instability phenomena is also wide
open. The study of the long-time behavior of “typical”
data, e.g., via a statistical approach, is untouched.

A long-term goal is the combination of entropic and
mixing effects in the study of convergence, e.g., for
the so-called Vlasov–Poisson–Fokker–Planck equations,
which combine mean-field mixing and hypoelliptic dif-
fusion.

For dissipative equations with nonreversible station-
ary states, corresponding to nonlocal cancelations in
the equation, long-time study is in its infancy. For non-
linear models, even when the existence of equilibria is
proven, there is generally no Lyapunov-type approach
to the long-time behavior.

8.3 Meso–Macro Limits: Hydrodynamic Limits

Huge progress has been made in understanding the
hydrodynamic limit of Boltzmann equations since this
problem was expressed by Hilbert more than a century
ago. And yet many questions remain unanswered. The
incompressible limit is now rather well understood,
but this limit is quite specific, and one would like to
understand the more natural compressible limit better.
Examples of problems in this area include the long-time
stability of Boltzmann solutions near a smooth solu-
tion of compressible Navier–Stokes equations, and the
handling of shocks in the large.

As already mentioned, the hydrodynamic limit of the
Boltzmann equation leads only to perfect fluids, unless
the equations are modified in a phenomenological way.
To retrieve alternative pressure laws from basic prin-
ciples of classical mechanics, the most natural plan
is to go directly from the equations of microscopic
many-particle systems to hydrodynamic models, with-
out passing through the mesoscopic scale. This strat-
egy was first made precise in a program sketched by
Morrey in the 1950s that proved to be extraordinarily
difficult and is still largely open in spite of substantial
progress by Varadhan, Yau, Olla, and others.

8.4 Microscopic Derivation

The derivation of kinetic models from the laws of atom-
istic matter is also part of Hilbert’s sixth problem, and

it is an emblematic issue in both kinetic theory and
statistical physics.

In the collisional case, the most important open prob-
lem is certainly the validity of the Boltzmann–Grad
limit for hard spheres in large time (i.e., in time sig-
nificantly larger than the mean free time) and without
any assumption of very small mass. This problem prob-
ably includes an understanding of the regularity of the
inhomogeneous Boltzmann equation, so it can be con-
sidered a Holy Grail in the field. Another open problem
is the low-density limit in the case of long-range colli-
sional interactions; in this case, not even a short-time
result has been established.

In the collisionless case, the main open problem is the
rigorous justification of the mean-field limit in the case
of Coulomb and Newton interactions. The best results
so far were obtained by Hauray and Jabin around 2007,
but they still require smoothing or cutoff of the inter-
action at small scales. A further goal is the understand-
ing of the microscopic derivation of the many involved
models that appear in plasma physics, one instance
being the Balescu–Lenard equation (for which even the
short-time well-posedness is still unclear).

Finally, in the case of diffusive kinetic equations, one
of the most appealing open problems is the derivation
of the heat equation from a set of interacting oscilla-
tors, as studied, for instance, by Rey-Bellet. While pre-
liminary works have established, among other things,
the existence of relevant equilibria, the derivation of
the heat equation has been understood only in partic-
ular cases, with the help of hypoelliptic and hypocoer-
cive tools.

8.5 The Challenge of Boundary Conditions

Questions about the interaction of gases with bound-
aries or external forces were raised in the early days
of kinetic theory by both Maxwell and Boltzmann.
In the real world, most phenomena involving many-
particle systems include nontrivial geometries, bound-
ary effects, or external fields. But the Boltzmann and
Vlasov equations are still poorly understood in this
respect, in particular concerning the geometry-driven
asymptotic behavior. Even for the hypoelliptic kinetic
Fokker–Planck operators in a domain, there is no equiv-
alent to the huge body of work on the eigenvalue prob-
lem of the Laplace equation in a domain. The major-
ity of the results and challenges discussed above lend
themselves to boundary-driven formulations, which are
mostly open.
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Specific boundary-related problems raise beautiful
challenges: propagation of singularities according to
the shape of boundaries, ergodicity, relaxation to equi-
librium, and so on.

An even more ambitious goal is the understanding of
self-induced nontrivial geometry, as observed in partic-
ular in galactic dynamics, where the geometry of the
confinement is influenced by the gravitational mean
field of the system itself.
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IV.26 Continuum Mechanics
Richard D. James

1 What Is Continuum Mechanics?

Matter is composed of atoms. Atoms are composed
of protons, neutrons, and electrons. Protons and neu-
trons are composed of elementary particles. Every-
thing is discrete and, at the finest level, indivisible. It
is quite surprising, then, that continuum mechanics,
possibly the most successful theory of general use in
applied mathematics, does not explicitly recognize the
existence of atoms.

We will discuss the relationship between atoms and
continuum mechanics later, but the subject is indeed
used a lot; well over half the articles in this volume
directly use one or another special case of the basic
equations of continuum mechanics. Of course, these
cases exist as subjects in their own domains, and the
focus of these special cases may be on the beautiful
phenomena they describe, as one can see. However,
there is a structure that is common to all of them. From
the perspective of continuum mechanics, theories that
appear to be completely different become quite similar
when viewed from within this structure.

As such, continuum mechanics has the same advan-
tage as any other unifying theory of mathematics: by
knowing the structure, one can understand many spe-
cial cases by remembering only a few key concepts.
We can in fact go further: by knowing the structure,

one can more easily discover new special cases. This
activity usually takes the form of the discovery of new
mathematical theories for emerging materials.

Continuum mechanics usually gives rise to partial
differential equations (PDEs). In modern research there
is a healthy interaction between continuum mechanics
and PDEs. Although linearization of these equations is
possible and useful, the equations that arise are almost
always nonlinear, and continuum mechanics has per-
haps been the primary driving force behind the devel-
opment of methods for solving nonlinear PDEs. Other
subjects also give rise to PDEs, Maxwell’s equations in
electromagnetism, for example. But electromagnetism
describes the electric and magnetic fields between the
atoms, as well as macroscopic fields, and it is not usu-
ally considered a branch of continuum mechanics. On
the other hand, micromagnetics—the theory of mag-
netism that describes magnetic domains, the magneti-
zation of an iron bar by an applied field, and the writing
of a bit in magnetic recording—is a continuum theory.

The three pillars of continuum mechanics are kine-
matics, balance laws, and constitutive equations. The
central philosophy behind the subject is to separate
as much as possible the hypotheses that are satisfied
by all materials (or, realistically, large classes of mate-
rials) from those hypotheses that pertain to special
materials, like elastic solids, viscous fluids, or magnetic
materials.

Part of the reason continuum mechanics does not
explicitly recognize the presence of atoms is that
its main structure was described before the exis-
tence of atoms was accepted. The founder of con-
tinuum mechanics was Euler, and he conceived its
main assumptions in the period 1740–60, half a cen-
tury before Dalton’s vague inferences about atoms.
Other early contributors to continuum mechanics were
Cauchy and Kirchhoff, and also Hooke, Navier, Poisson,
Stokes, Maxwell, Saint-Venant, Kelvin, Gibbs, Duhem,
and others. There was a resurgence of interest in the
subject in the late 1940s and 1950s, coincident with
the rise of materials science and polymer chemistry,
as new solids and fluids emerged that were clearly not
described at all well by the then-known equations of
mechanics. This resurgence was led by Coleman, Erick-
sen, Noll, Oldroyd, Markovitz, Reiner, Rivlin, Serrin,
Toupin, and Truesdell (along with many others) and
was also synergistic with the emergence of numerical
analysis, scientific computation, and, as noted above,
materials science and PDEs. Today, there is a second
resurgence, and this is described below.
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2 Tensor Analysis

The conventional language of continuum mechanics is
tensor analysis. To begin, this language concerns vec-
tors. A vector in two or three dimensions is an arrow.
Picture an arrow pointing at the sun, based at the cen-
ter of Stonehenge, whose length is the intensity of light
at noon on January 1, 2000. Its physical significance
is clear, irrespective of how we describe it mathemat-
ically. If you ask four people to describe this arrow in
mathematical terms (without communicating with each
other), one person might give a list of three numbers
(a, b, c). Someone else might write numbers (d, e, f ).
Each will likely have chosen a different basis. Inspired
by the shape of Stonehenge, maybe someone will have
used a cylindrical polar coordinate system, with a list
(r , θ, z) denoting the standard polar coordinates of the
tip of the arrow with respect to that person’s choice
of basis. Someone else might simply say v. The pur-
pose of tensor analysis is to give precise rules that
relate (a, b, c) and its basis to (d, e, f ) and its basis.
The underlying principle is that everybody describes
the same arrow.

In continuum mechanics one often deals with vector
fields. These are familiar from weather maps. In fact,
continuum mechanics has a lot to say about the pat-
terns of vectors on those maps. To describe them quan-
titatively one needs a basis erected at each point on the
map. Of course, each of these bases could be the same
(up to their choice of origin); this case is called the nat-
ural basis of a Cartesian coordinate system. There are
ways of constructing “natural” bases associated with
other coordinate systems, i.e., systems of linearly inde-
pendent vectors, erected at each point, that are parallel
to the coordinate curves. Tensor analysis deals in an
automatic (though somewhat laborious) way with this
case too, giving laws for transforming lists (a, b, c) that
now depend on each point in R3 and a choice of basis
at each point to new lists for another field of bases on
R3. Common vector fields in continuum mechanics are
position, velocity, acceleration, vorticity, and traction.

Typically, the vector field on the weather map (the
velocity field) satisfies some equations of continuum
mechanics. In general, the set of equations satisfied by
those arrows is exceedingly complicated and actually
not fully known. That is because, to construct those
vector fields from measurements, there is a tremen-
dous amount of averaging going on, the winds are
decidedly turbulent, and the modeling of evaporation
and condensation as occurs in clouds is not fully

understood. Nevertheless, if one did know these equa-
tions precisely, no matter how complicated their forms
or the methods needed to solve them, they would have
the following property that is shared by all equations
of continuum mechanics: if the components of the vec-
tor field with respect to one coordinate system satisfy
these equations, and one changes the basis field, then
the form of the equations has to change in just the right
way to ensure that the components in the new basis
field automatically satisfy the new equations.

As a simple example, the arrows on the weather map
may approximately satisfy divv = 0. This is ∂v1/∂x1 +
∂v2/∂x2 = 0 expressed in the natural basis of a rectan-
gular Cartesian system. The same vector field (the same
arrows!) expressed in the natural (orthonormal) basis
of a polar coordinate system, (vr (r , θ), vθ(r , θ)), then
automatically satisfies “the equation divv = 0 in polar
coordinates,” namely, ∂(rvr )/∂r + ∂vθ/∂θ = 0. These
two PDEs describe the same property of the arrows on
the map.

The same ideas apply to linear transformations. The
analogue of an “arrow” for a linear transformation con-
sists of two pictures: a unit cube and a parallelepiped,
together with a rule that says which corner of the cube
goes to which corner of the parallelepiped. In short, a
linear transformation is a cube–parallelepiped rule. In
cases in which the linear transformation is not invert-
ible, the parallelepiped might degenerate; it might lie
in a plane, for example.

We can describe any linear transformation quanti-
tatively by introducing a basis, an orthonormal basis
aligned with the cube we have chosen, say. Let us say
that our rule says that the origin goes to itself (i.e.,
there is no translation). The vector associated with the
(1,0,0) corner of the cube is transformed by our rule to
a vector with components, say, (a, b, c). Similarly, say
(0,1,0) → (d, e, f ) and (0,0,1) → (g,h, i). The linear
transformation is then represented by a matrix

F =

⎛⎜⎜⎝
a d g
b e h
c f i

⎞⎟⎟⎠ .
Matrix multiplication of F on any vector (expressed in
the same basis) gives the components of the vector
in the parallelepiped to which it is deformed (in the
same basis). Just as for vectors, the important point is
that many people will find many different matrices by
choosing different bases, aligned with the cube or not
aligned with it, but they all have to describe the same
cube–parallelepiped rule.
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In continuum mechanics, linear transformations are
often called tensors. Continuum mechanics has many
tensors and, like vector fields, they can depend on
position (“tensor fields”). Typical examples are the
deformation gradient and stress tensor.

The bottom line? All these components and bases
and covariant components and Christoffel symbols at
the beginning of a continuum mechanics course can
be pretty daunting. Do they matter? Not really. The
equations must already have the property of invariance
under a change of coordinate system that was illus-
trated above through the example divv = 0. A vec-
tor is an arrow and a tensor is a cube–parallelepiped
rule. You can always just use one particular rectangular
Cartesian coordinate system, say, and its natural basis
field. In that particular system vectors are represented
by lists and tensors by matrices. A simpler and more
elegant approach is to think of a vector as an arrow and
write v. Vectors are combined with each other, and with
scalars, according to the rules of a vector space. If v(x),
x ∈ Ω ⊂ Rn, is a vector field, its gradient ∇v is a tensor
field. Every calculation, every computation, can be done
using only the abstract rules for derivatives and vec-
tor spaces. Some researchers in continuum mechanics
(myself, for example) do everyday calculations in this
way, never writing a component. In this article we will
write the equations of continuum mechanics in both an
abstract way and in a rectangular Cartesian coordinate
(RCC) system for convenience.

3 The Essential Structure of
Continuum Mechanics

3.1 Kinematics

Kinematics is the geometry of motion. In continuum
mechanics, which does not explicitly recognize the
presence of atoms, motions of bodies are represented
by functions. These are often assumed to be smooth,
though some of the most important branches of con-
tinuum mechanics involve the study of the singulari-
ties of motions. Motions are fundamental to continuum
mechanics because they can be studied independently
of the material from which the body is made.

There are two ways of describing motions: Eulerian
and Lagrangian. The terminology is standard but inac-
curate: Euler introduced the Lagrangian description,
while d’Alembert and Daniel Bernoulli introduced that
called Eulerian! The Lagrangian description of motion
is a natural generalization of the description of the

x

Ω

R
3

Ω

Time t

y (x ,t )

t = y (x ,t )

y : Ω × (0,∞)

Figure 1 The Lagrangian description of motion.

motions of individual particles. We name the parti-

cles 1, . . . , N and describe the motion of each particle

as a vector-valued function of time: y1(t), . . . ,yN(t),
t > 0, say. The vector y1(t∗) is the position vec-

tor of particle 1 at time t∗. Inching closer to contin-

uum mechanics, we could equally well use the notation

y(1, t), . . . ,y(N, t), t > 0, for the same thing, where

y : {1, . . . , N} × (0,∞) → R3. The Lagrangian descrip-

tion of motion in continuum mechanics allows the set

of “particles” to belong to an open subset of R3, so that

the motion is described by y : Ω × (0,∞) → R3, where

Ω ⊂ R3. In this form, y(x, t) is the position of the par-

ticle x at time t. One can think of “the particle x” as a

small lump of solid or fluid, but more about that later.

The choice of Ω is essentially arbitrary—it just serves

as a way to label particles—but people often choose it to

be the shape of the body at t = 0, i.e., y(Ω,0) = Ω. If a

motion does not depend on t, it is called a deformation.

A picture of the Lagrangian description of motion is

shown in figure 1. This description is particularly used

in solid mechanics, as boundary conditions are usually

idealized as the pushing or pulling of certain particles

on the boundary.

Assuming that the motion is sufficiently smooth, the

velocity is ẏ = ∂y/∂t. It has exactly the same interpre-

tation as in particle mechanics: ẏ(x, t) is the velocity

of the particle x at time t.
Motions in the Lagrangian description are always

assumed to be invertible. That is, the mapping y(·, t) :
Ω → R3 is invertible at each fixed t. The inverse,

y−1(y, t), y ∈ Ωt , is defined on the moving domain

Ωt = y(Ω, t). The failure of invertibility, i.e., the pos-

sibility that y(x1, t) = y(x2, t) for x1 �= x2, would be

interpreted as the interpenetration of matter.

Now, using invertibility, construct the function

v(y, t) = ẏ(y−1(y, t), t).



IV.26. Continuum Mechanics 449

In words, this is the velocity of the particle x =
y−1(y, t) at time t; that is, it is the velocity of the partic-
ular particle that happens to be at the location y at the
same time t. This is the Eulerian description of motion,
and v(y, t) is the Eulerian velocity field. An example of
an Eulerian velocity field is the arrows on the weather
map, so long as we can reasonably associate a partic-
ular time with the map, i.e., so long as the velocities
represented by the arrows were measured at the same
time. Sometimes one sees weather videos in which the
arrows change with time during a day, showing how the
winds are changing; this is a direct visualization of the
Eulerian velocity field. Above, we calculated the Eule-
rian description from the Lagrangian. The reverse can
be done by noting that, by the definition ofv(y, t) given
above, the Lagrangian description y(x, t) satisfies the
ordinary differential equation

ẏ(x, t) = v(y(x, t), t),
y(x,0) = x ∈ Ω,

⎫⎬⎭ (1)

where we have conveniently chosen Ω to be the shape
of the body at t = 0. This is an ordinary differential
equation in standard form, with x playing the role of a
parameter. An interesting feature of this ordinary dif-
ferential equation is that, even if the pattern of arrows
in three dimensions is quite simple—if, for example, v
is a low-order polynomial and has no explicit depend-
ence on t—the solutiony(x, t) can be exceedingly com-
plicated with highly intertwined orbits. (See the article
on dynamical systems [IV.20] for more on this.) Peo-
ple have developed this idea into a theory of the mixing
of substances, like fluids or granular materials.

Many critically important kinematical quantities are
calculated from the Eulerian or Lagrangian descrip-
tions. We mention a few that appear later in this article.
F = ∇y (or, in RCC, Fij = ∂yi/∂xj ) is the deformation
gradient. We can see directly from the abstract formula
for the gradient,

y(x + εz, t)−y(x, t) = ε∇y(x, t)z+ ◦(ε)
= εFz+ ◦(ε),

that y(·, t) deforms a tiny cube centered at x to a tiny
parallelepiped centered aty(x), these being scaled ver-
sions of the cube–parallelepiped rule associated with
the tensor F (scaled by ε). As a local statement of invert-
ibility it is always assumed in continuum mechanics
that the parallelepiped is oriented and has positive vol-
ume: detF > 0. In short, F describes local deformation.
F has the polar decompositions [IV.10 §2] F = RU =
VR, where R is the rotation tensor (RTR = I, detR = 1)

and the positive-definite symmetric tensors U and V
are the right and left stretch tensors, respectively. Again
using the formula for the gradient above, we can think
of the motion (at fixed time) as locally involving first
stretching of the tiny cube by U and then rigid rota-
tion by R to achieve the tiny parallelepiped associated
with F. If the edges of the cube happen to be oriented
along the eigenvectors of U , then this initial stretching
by U produces a rectangular solid rather then a general
parallelepiped, which is subsequently rotated by R. In
continuum mechanics people often associate with F a
sphere–ellipsoid rule rather than a cube–parallelepiped
rule. The resulting ellipsoid is called a strain ellipsoid.
Its principal axes are eigenvectors of the left stretch
tensor V .

From the Eulerian description we get other kinemat-
ical quantities more typically used in fluid mechanics.
G = ∇v (or, in RCC, Gij = ∂vi/∂yj ) is the velocity gra-
dient. Its symmetric part D = 1

2 (G + GT) (or, in RCC,
Dij = 1

2 (Gij + Gji) =
1
2 (∂vi/∂yj + ∂vj/∂yi)) is called

the stretching tensor or the strain-rate tensor. It plays
a central role in fluid mechanics. These tensors can
be given physical interpretations in terms of instant-
aneous stretching of a small cube in space, as above.
The key word here is “instantaneous” because the Eule-
rian description describes the velocity v(y, t) of a par-
ticle located at y at time t. A short time later, t + δ,
it is a different particle at y whose velocity is given by
v(y, t + δ).

3.2 Balance Laws

The balance laws of continuum mechanics express the
fundamental conservation laws of mass, momentum,
and energy. The reason these are so central to contin-
uum mechanics is that they can be stated in ways that
are independent of the constitution of the body, just as
Newton’s law fi =mÿi holds for a particle i of massm,
regardless of whether it models a steel ball or a droplet,
or whether the force fi is produced by water resistance
or air resistance.

The balance of mass is straightforward. We intro-
duce a positive mass density ρ0 : Ω → R on Ω with the
interpretation that∫

D
ρ0(x)dx,

or, in RCC,
∫∫∫

D
ρ0(x1, x2, x3)dx1 dx2 dx3, (2)

is the mass of D. Moving something around, or deform-
ing it, even severely, does not change its mass, at least
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in classical mechanics. Therefore, since y(D, t) con-
sists of the same particles as D, its mass at every time
t must also be given by (2). To state this law it is also
useful to introduce a mass density ρ(y, t), y ∈ Ωt ,
on the deformed region Ωt = y(Ω, t). This mass den-
sity changes with time because the material is gener-
ally compressed or expanded as it deforms. The bal-
ance of mass is the statement that the mass of D never
changes:∫

D
ρ0(x)dx =

∫
y(D,t)

ρ(y, t)dy

for all D ⊂ Ω, t > 0.

We see that the right-hand side is in exactly the right
form to use the motion itself as a change of variables,
y → x: ∫

D
ρ0(x)dx =

∫
y(D,t)

ρ(y, t)dy

=
∫
D
ρ(y(x, t), t)J dx, (3)

where J is the Jacobian of the transformation y → x;
that is, J = |detF| = detF, where F = ∇y is the defor-
mation gradient introduced above. Combining the left
and right of (3) we get∫

D
(ρ(y(x, t), t)J − ρ0(x))dx = 0, (4)

which must hold for all domains D ⊂ Ω and all t > 0,
say. Suppose that for each fixed t the integrand of (4)
is continuous on the open region Ω. Arguing by con-
tradiction, suppose that the integrand is nonzero, say
positive, when evaluated at some particularx0 ∈ Ω and
t0 > 0. We fix t = t0 and choose D to be a ball of radius
r centered at x0, with r sufficiently small that this ball
is contained in Ω and that the integrand is positive on
this ball. Then, of course, the integral must be positive,
contradicting (4). The conclusion is that the integrand
must be zero at all x0 ∈ Ω and all t > 0. This is the
local form of the balance of mass:

ρ(y(x, t), t)J(x, t) = ρ0(x),

or, briefly, ρJ = ρ0. (5)

The line of argument just presented, which is called
localization, is common in continuum mechanics. It per-
mits the passage from statements summarizing laws
satisfied “by all subregions” to differential equations.
The assumption of continuity of the integrand can be
considerably relaxed by using Lebesgue’s differentia-
tion theorem.

Careful differentiation of the statement in (5) with
respect to t, using the chain rule and the formula for

the differentiation of a determinant, yields

J
∂ρ
∂t

+ J∇yρ · ẏ + ρ ∂ det∇y
∂t

= J ∂ρ
∂t

+ J∇ρ · ẏ + ρJ∇y−T · ∇ẏ

= 0. (6)

If we now differentiate the fundamental relation (1)
between the Eulerian and Lagrangian descriptions with
respect to x, we see that the term ρJ∇y−T · ∇ẏ in (6)
can be simplified to ρJ divy v. Dividing the result by
J > 0 and replacing x by y−1(y, t) everywhere, we get
the Eulerian form of the balance of mass:

∂ρ
∂t

+∇ρ · v + ρ divv = ∂ρ
∂t

+ div(ρv) = 0,

or, in RCC,
∂ρ
∂t

+
3∑
i=1

∂(ρvi)
∂yi

= 0. (7)

The independent variables in (7) are y and t and (7)
holds on Ωt × (0,∞). One can see that it is critically
important in continuum mechanics to keep track of
independent and dependent variables and domains of
functions.

The condition divv = 0 mentioned earlier in the
context of weather maps can then be seen as a conse-
quence of the balance of mass in the Eulerian descrip-
tion together with the assumption that the density ρ
is a constant. Materials for which all motions have
constant density are called incompressible materials.

We will not repeat the arguments above for other
laws, but they follow a similar pattern of introducing
“densities,” using the motion as a change of variables,
localization, and passing between Eulerian and Lagran-
gian descriptions. For example, in the Lagrangian and
Eulerian forms the balance of linear momentum is
respectively given by

d
dt

∫
P
ρ0
∂y
∂t

dx = force on y(P, t),
d
dt

∫
y(P,t)

ρ
∂v
∂t

dy = force on y(P, t). (8)

In these two cases there are various useful expressions
for the “force on y(P, t).” We will focus on the form
typically used in the Eulerian description, and we will
omit so-called body forces:

force on y(P, t) =
∫
∂y(P,t)

t dA. (9)

The integrand t is called the traction. From this formula
one can see that it represents the force per unit area on
the boundary of the region y(P, t).
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In principle, the traction could depend on lots of
things. Certainly, it depends on the material and the
motion. It is likely to be generally different at different
points in Ωt . One could also imagine that it depends
on the surface S = ∂y(P, t) in some complicated way.
Fix t and fix a point y ∈ Ωt . Imagine lots of surfaces
passing through y. How are the tractions at y on these
different surfaces related?

It was a brilliant insight of Cauchy to see that for a
broad range of materials, both fluids and solids, the
traction at y has a particularly simple dependence on
the surface passing through y. Cauchy’s starting point
was a plausible expression for t with a rather gen-
eral dependence on S, from which he deduced, using
directly the balance of linear momentum in Eulerian
form, that the dependence of the traction on S is
through the unit normal only and that this dependence
is linear: t = Tn (or, in RCC, ti = ∑

j Tijnj ). The ten-
sor T is called the stress tensor. This part of continuum
mechanics is called the theory of stress. (See mechanics

of solids [IV.32 §2.3] for a helpful physical description
of stress.) People do sometimes worry about Cauchy’s
starting point, i.e., whether some kind of exotic mate-
rial might transmit forces across a surface in a more
general way than by having just a linear dependence of
the traction on the normal to the surface. But, gener-
ally, Cauchy’s conclusion has been found to be widely
applicable.

If we insert t = Tn into (9), then use the divergence
theorem in Eulerian form in (8), and finally localize, we
get the local form of the balance of linear momentum:

ρ
(
∂v
∂t

+ (∇v)v
)
= divT ,

or, in RCC, ρ
(
∂vi
∂t

+
3∑
j=1

∂vi
∂yj

vj
)
=

3∑
j=1

∂Tij
∂yj

. (10)

There are two more conservation laws: the balance
of rotational momentum and the balance of energy.
The former leads to the symmetry of the stress ten-
sor, T = TT (or, in RCC, Tij = Tji), and the latter is, in
its simplest local form,

ρ
(
∂e
∂t

+∇e · v
)
= −divq + tr(TD),

where e is the internal energy and q is the heat flux.

Finally, there is a formulation of the second law
of thermodynamics in continuum mechanics. It is
most commonly represented by the Clausius–Duhem
inequality. This inequality embodies in some way the
fundamental statements of the second law, such as

it is impossible for a body to undergo a cyclic pro-

cess that does work but emits no heat, which goes

back to Carnot. In continuum mechanics the Clausius–

Duhem inequality plays two important roles. The first

is restricting constitutive relations so that they do not

allow behavior as indicated by the italicized statement

above; for instance, the restricted relations do not per-

mit the existence of a cyclic energy conversion device

that produces electricity while completely immersed

in a container of hot water. Needless to say, the pre-

cise form of these restrictions is exceedingly impor-

tant these days. The other is as a restriction on pro-

cesses for given constitutive relations. The latter is best

represented by the theory of shock waves, where the

Clausius–Duhem inequality declares some shock wave

solutions to be “inadmissible.”

3.3 Constitutive Equations

Everything we have said so far holds for broad classes

of materials, both solids and fluids. Since each new

equation we have introduced has introduced at least

one new unknown function, none of the equations we

have written could be used to predict anything. There

have to be special equations that quantify the behavior

of special classes of materials. These are called constitu-

tive equations. Discovering a simple constitutive equa-

tion that, when combined with the balance laws, pro-

vides a good description of a material in a broad class

of motions is a big success in continuum mechanics.

Often, constitutive equations take the form of a for-

mula that relates the stress to the motion. Usually, this

formula contains some constants that actually spec-

ify the material. These material constants have to be

measured experimentally for each particular material

described by the constitutive equation, and continuum

mechanics has a lot to say about the design of these

experiments. An example of a constitutive relation is

that for the Navier–Stokes fluid, which is defined by

T = −pI + 2μ(D− 1
3 (trD)I),

or, in RCC, Tij = −pδij + 2μ
(
Dij − 1

3

(∑
k
Dkk

)
δij
)
,

(11)

where D is the stretching tensor introduced above, p
is the pressure, and μ > 0 is the viscosity. An impor-

tant related constitutive relation is the one for the

incompressible Navier–Stokes fluid, which is defined by

T = −pI + 2μD. (12)
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The absence of the last term of (11) in (12) is due to the

condition of incompressibility, which, as noted above,

gives divv = trD = 0. But also, p means something

different in (11) and (12). In the former it is usually

specified as a function of the density—given in the

simplest case by the ideal gas law—while in the lat-

ter it is treated as an independent function, unrelated

to the motion. In equations of motion for an incom-

pressible Navier–Stokes fluid, p(y) becomes one of the

unknowns, to be determined as part of the solution of

a problem. This treatment of p is a consequence of a

general theory of constrained materials in continuum

mechanics that includes incompressible materials but

also treats other kinds of constraints, such as a material

being inextensible in a certain direction.

If we substitute (12) into the balance of linear mo-

mentum (10), we get the famous Navier–Stokes equa-

tions: in RCC,

ρ
(
∂vi
∂t

+
3∑
j=1

∂vi
∂yj

vj
)
= − ∂p

∂yi
+ μ

∑
j=1

∂2vi
∂yj∂yj

,

∑
j

∂vj
∂yj

= 0.

These equations represent one of the profound suc-

cesses of continuum mechanics. Typically, one nondi-

mensionalizes the first equation by scaling space by -
and time by τ (these being a length and a time aris-

ing in a problem of interest) and dividing by the (con-

stant) density ρ, so that the resulting equation con-

tains a single nondimensional material constant, Re =
ρ(-/T)-/μ, the Reynolds number. With only one mate-

rial constant, Re, an enormous body of quantitative

observation on the behavior of liquids (and even gases

under some circumstances) can be understood with

remarkable precision.

This does not mean that any fluid behaves exactly

as predicted by the Navier–Stokes theory in all circum-

stances. Any fluid, if compressed enough, will become

a solid or, if subjected to a sufficiently strong elec-

tric field, a plasma. Electrons can be ripped off nuclei

and nuclei can be split, none of which is described

by the Navier–Stokes theory. What is prized in con-

tinuum mechanics is not the reductionist’s quest for

“truth” but the elegance that comes with discovering an

underlying simplicity that reveals many phenomena.

Alas, solids are not so simple, but much behavior can

be understood from a constitutive equation of the form

T = T̂ (F) = RT̂ (U)RT, (13)

where F = RU is the polar decomposition discussed
above. This constitutive equation describes a (nonlin-
ear) elastic material. T̂ (U), a symmetric tensor-valued
function of a symmetric tensor, can be pretty compli-
cated; in RCC, T̂ (U) is six functions, each of six vari-
ables. On the other hand, this constitutive relation cov-
ers an enormous range of behavior that would intu-
itively be considered “elastic”—as well as, incidentally,
some interesting behavior that would not be considered
elastic.

There are lots of ideas that are used to simplify
the constitutive relation (13) of elasticity. One of the
most powerful is symmetry. If one deforms a ball B
of rubber by a deformation y : B → R3, one gets a
certain stress field. If we know the constitutive rela-
tion, we get this stress field by using the formula
T (x) = R(x)T̃ (U(x))R(x)T, where ∇y = R(x)U(x)
is the polar decomposition at each x ∈ B. If we take
this ball of rubber, rotate it rigidly in any way, and,
after doing so, place it exactly in the region B, and
deform it again using y : B → R3, we will in general
get a different stress field. For example, if y : B → R3

primarily describes an extension in a certain direction,
say “up,” and we happen to rotate it so that a stiff
direction of the rubber ball is oriented up, then we
expect to have to exert larger forces to give it exactly
this same deformation. In fact, rubber and many other
materials are often well described by the assumption of
isotropy. This means that if one undertakes the exper-
iment described here, one gets exactly the same stress
field, and this condition holds regardless of the rota-
tion or subsequent deformation. The assumption of
isotropy is exploited by phrasing all the steps in this
paragraph in mathematical terms. The result is as fol-
lows: a nonlinear elastic material is isotropic if there
are three functions ϕ1(I, II, III), ϕ2(I, II, III), ϕ3(I, II, III)
such that

T =ϕ1I +ϕ2B+ϕ3B2, (14)

where B = V2 = FFT, and where I = trB, II = 1
2 (trB

2 −
(trB)2), and III = detB are the principal invariants of
B. At first, it may look like (14) is not a special case of
(13), but it is; notice that by using the polar decomposi-
tion, B = FFT = RU2RT. The form of (14) might suggest
that some kind of Taylor expansion is involved, but this
is not the case. The constitutive equation (14) holds
for arbitrarily large deformations of isotropic elastic
materials.

There is a set of general principles in continuum
mechanics that are used to simplify constitutive rela-
tions. Perhaps the most powerful, and controversial,
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of these is the principle of material frame indifference
(PMFI). We will not explain this principle in detail, but
we will note that the particular kinematics used in the
constitutive equations given here (notice the appear-
ance of D in the Navier–Stokes relation, rather than
simply ∇v, and the unexpected explicit dependence on
R on the right-hand side of the constitutive relation
(13) of elasticity) are a direct consequence of the PMFI.
Even Stokes, when deriving the Navier–Stokes equa-
tions (building on work of Navier, Cauchy, Poisson, and
Saint-Venant), did not begin with (12). Rather, he began
with the hypothesis that the stress is affine in the full
velocity gradient ∇v rather than in its symmetrization
D. He then argued in words (using what can be recog-
nized as a verbal, and less precise, form of the PMFI
than is now accepted) that the stress should actually
be affine in D = 1

2 (∇v + ∇vT). The ongoing contro-
versy surrounding the PMFI is not so much concerned
with its usefulness in continuum mechanics, which is
nearly universally accepted, but rather with the absence
of a direct experimental test of its validity (in the gen-
eral case) and its obscure relation with atomistic and
relativistic theories.

4 Phenomena

Even when it is restricted to the two constitutive rela-
tions given above, continuum mechanics explains a
diverse collection of phenomena. It often seems to have
applicability to materials on length or timescales that is
quite unexpected based on our current understanding.

It is hopeless to try to give a representative glimpse
of phenomena predicted by continuum mechanics. I
will instead give two examples of phenomena that have
been predicted as a direct result of research in the fun-
damentals. They are old examples, having emerged in
the 1950s during the resurgence of interest in contin-
uum mechanics that occurred in that period, but they
retain their vibrancy today.

Under ordinary conditions water is described well as
an incompressible Navier–Stokes fluid. Take a cup of
water and vertically insert a rotating rod (of, say, 1 cm
in diameter) spinning at a modest rotation rate (a few
revolutions per second, say). By making some symme-
try assumptions and undertaking some modest sim-
plifications, this problem can be solved. Even without
symmetry assumptions this problem can be solved to a
quantifiable level of accuracy by any of several numer-
ical methods that have been developed for the Navier–
Stokes equations. The answer is the expected one. As

Figure 2 The rod climbing of a viscoelastic fluid.

the water near the rod rotates, it is thrown outward.
This causes the surface of the water to distort, resisted
by the force of gravity, which tends to make the sur-
face flat, and by viscosity, which tends to smooth the
velocity field. At steady state the water level is slightly
depressed near the spinning rod.

Entirely different behavior is observed when the fluid
is viscoelastic. This subset of fluids includes many that
have long-chain polymer molecules in solution, from
paints to pancake batter. When one does the same
experiment described above with these fluids, the fluid
in fact climbs up the rod, as first demonstrated by Karl
Weissenberg during what must have been a memorable
meeting of the British Rheologists’ Club in 1946; see fig-
ure 2, which is a sketch based on one of Weissenberg’s
early demonstrations. With a small cup of liquid and a
strongly viscoelastic liquid, more than half the cup of
liquid can climb up the rod after a short time, defying
the force of gravity.1

There are many related examples; a solid cylinder
falling in a container of Navier–Stokes fluid will turn
so its axis becomes horizontal. In a viscoelastic fluid it
turns so its axis is vertical!

What force pushes the fluid up the rod, against grav-
ity? This question puzzled continuum mechanicians,
especially Markus Reiner, the founder of the science

1. Commenting on a draft of this article, Oliver Penrose asked, “Is
that why paints are so messy?”
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of rheology, and Ronald Rivlin. Their first hypothe-
sis was quite natural; guided by the developing prin-
ciples of continuum mechanics, particularly the then-
available form of PMFI, they theorized that a natural
generalization of the Navier–Stokes fluid,

T = −pI +α1D+α2D2 (15)

with α1, α2 functions of the principal invariants of the
stretching tensor D, would work for viscoelastic fluids.
In fact, the formal similarity between (14) and (15) is no
accident: the same mathematics is used, but the physi-
cal principles are different. For the former it is isotropy;
for the latter it is the PMFI.

It cannot be overestimated how natural (15) is. Not
only is it an obvious generalization of the Navier–Stokes
fluid, by including nonlinear terms inD, but it is in fact
the most general form of the relation T = f(D) that
is compatible with PMFI. Its only deficiency is that it
turned out to be wrong! The Reiner–Rivlin relation does
not describe Weissenberg’s observations well. It turned
out that the stress at time t in a viscoelastic fluid is
sensitive to its deformation at past times, longer ago
than is captured by the first time derivative in D. The
mathematical formulation of this idea was developed
by many researchers, and there were many twists and
turns along the way, including the observation by Pip-
kin and Tanner in 1969 that the standard method for
interpreting measurements of traction on the boundary
of the fluid was flawed, polluted by just those forces
that drive the viscoelastic fluid up the rod. The result
was that lots of measurements before that point were
incorrectly interpreted. Now, of course, there are better
constitutive relations, and the description of the “nor-
mal stresses” that drive the fluid up the rod are pretty
well understood, but the accurate description of the
behavior of viscoelastic fluids remains an active area
of research today.

Another simple but influential example concerns
the constitutive equation of isotropic elasticity (14).
Consider the following deformation in RCC:

y1(x1, x2, x3) = x1 + κx2,

y2(x1, x2, x3) = x2,

y3(x1, x2, x3) = x3.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (16)

This deformation is known as simple shear, and it is
represented in figure 3 using two different reference
configurations. One can think of the shearing of a rub-
ber block Ω aligned with this RCC basis, as shown in
figure 3(a). The constant κ is called the amount of shear.
The components of the tensor B in this same RCC basis

κ

x2

x1

T12

T22

T12

T11

(a)

(b)

y : Ω R
3

y : Ω R
3'

Ω

Ω'

1

Figure 3 Simple shear of a nonlinear elastic solid. The same
deformation is applied to two different reference configu-
rations, Ω and Ω′, both of which represent relaxed con-
figurations of a certain solid. The deformed configurations
have been translated so as to be easily visible. Typically,
T11 < 0 and T22 < 0 in real materials, in which case these
components of traction are compressive.

are

B = FFT =

⎛⎜⎜⎝
1 κ 0

0 1 0

0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0

κ 1 0

0 0 1

⎞⎟⎟⎠

=

⎛⎜⎜⎝
1 + κ2 κ 0

κ 1 0

0 0 1

⎞⎟⎟⎠ ,
and the principal invariants I, II, III are particular func-

tions of the amount of shear that are easily worked

out. The coefficients ϕ1, ϕ2, ϕ3 are then functions

of κ whose form depends on the material. Using the

constitutive equation (14), we can calculate the stress:

T =

⎛⎜⎜⎝
T11 T12 0

T21 T22 0

0 0 T33

⎞⎟⎟⎠ , (17)

where

T11 =ϕ1 + (1 + κ2)ϕ2 + (κ2 + (1 + κ2)2)ϕ3,

T12 = T21 = κϕ2 + (2κ + κ3)ϕ3,

T22 =ϕ1 +ϕ2 + (1 + κ2)ϕ3,

T33 =ϕ1 +ϕ2 +ϕ3.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(18)

The balance of linear momentum (10) is satisfied for

the motion (16) because the velocity is zero and, since

the stress is independent of position, divT = 0.
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A little study of (18) reveals that the stress compo-
nents T11, T22, and T12 are not independent. In fact, by
direct observation of (18),

T11 − T22 = κT12, (19)

which is a universal relation discovered by Rivlin
(1948). It is called universal because it holds for all
isotropic elastic materials. It contains no material con-
stants. It is not obvious.

It is illuminating to interpret the relation T11 −T22 =
κT12. For this purpose we use figure 3(b) and focus on
the choice of reference configuration Ω′, arranged so
that the deformed configuration is a rectangular solid.
(The stress in the deformed configurations y(Ω) and
y(Ω′) is the same, but it is easier to understand this
stress by calculating tractions on y(Ω′).) The compo-
nents of traction (force per unit area) needed to hold the
rubber block in the shape y(Ω′) are as shown. These
are obtained from the general formula discussed above:
t = Tn, with n chosen to be (1,0,0) and (0,1,0). On
the top surface there is a shear component of traction
T12, as expected. Perhaps not so obvious is the fact that
one generally needs a normal traction T22. T22 is usually
negative, and, at large shears, it can be quite significant.
Shearing a rectangular block of rubber horizontally typ-
ically causes it to expand in the vertical direction; only
by applying an appropriate compressive traction does
the height remain the same. These results would have
been surprising at the time they were derived, since
only the linear theory of elasticity was widely used at
that time, and the linear theory predicts that T22 = 0 for
an isotropic material. Rivlin’s relation (19) says, quite
unexpectedly, that the difference between the normal
tractions on the right and top faces is determined by
the shear traction and the amount of shear, and it
is independent of the (isotropic elastic) material being
sheared. It also shows that at least one of these normal
stresses, T11 or T22, is quite large, of the order of the
shear stress T12 at κ ≈ 1.

5 Current Research

Continuum mechanics is entering a new period of activ-
ity revolving around the main feature of matter that
it suppresses: atoms. This development is due to the
convergence of several factors.

One is that, following the successes of viscoelastic
fluids, nonlinear elastic materials, the theory of liquid
crystals, and several other similarly important exam-
ples, the discovery of broadly useful new constitutive

relations has slowed. It is not that continuum mechan-

ics has in any way lost its validity or applicability

(the workhorse constitutive equations of continuum

mechanics continue to find new and exciting applica-

tions) but the underlying theory has been less sugges-

tive of truly new directions.

It is certainly true that materials science is produc-

ing a dizzying array of new materials, with properties

that are not even named in any treatment of contin-

uum mechanics. Biology, too, is identifying new, often

highly heterogeneous materials, the critical properties

of which are not as yet described within continuum

mechanics. Increasingly, what matters in these subjects

is the presence of certain atoms, arranged on a lattice

in a particular way, or a specific biological molecule.

Alternatively, it could be a specific kind of defect in an

otherwise regular structure that produces the interest-

ing behavior. The biologist says, “I do not care so much

how a generic lump of soft matter deforms; I want to

know how matter containing this particular molecule,

critical to life itself, behaves.” This attitude certainly

turns the Navier–Stokes paradigm of “one Reynolds

number needed to predict all behavior in all motions”

on its head!

In 1929, following the spectacular discovery of quan-

tum mechanics, Dirac wrote:

The underlying physical laws necessary for the mathe-
matical theory of a large part of physics and the whole
of chemistry are thus completely known, and the dif-
ficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble.

Perhaps this was a bit optimistic, but it remains true

today that the laws needed at atomic scale to entirely

predict macroscopic behavior that should be under the

purview of continuum mechanics are known, and it is

essentially a mathematical problem to figure out what

are the macroscopic implications of atomic theory, with

all its wonderful specificity. This problem is called the

multiscale problem. Today, it is widely theorized that

the solution of this problem will involve the identifica-

tion of a certain number of length or timescales, with

separate theories on each scale and input to each theory

coming from the output of the one at the next lowest

scale. The author is skeptical.

The mathematical difficulties are easy to explain with

examples. Consider just a single atom of carbon, atomic

number 6, held at absolute zero temperature. To com-

pute its electronic structure with quantum mechanics,
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one needs to solve an equation for the wave function

ψ((x1, s1), . . . , (x6, s6)), si = ± 1
2 (the spins), describ-

ing the positions of the electrons probabilistically, and

depending on 3×6 = 18 independent spatial variables.

If we modestly discretize each such variable by ten

grid points, we obtain a mesh with 1018 grid points! Of

course, a single atom of carbon is open to the methods

of a simplified version of quantum mechanics called

density functional theory (DFT) as well as other meth-

ods, and DFT would be considered accurate in this case

for some purposes. But DFT has its own problems. Its

status as an approximation of quantum mechanics is

not understood beyond heuristics. And even for twenty

carbon atoms, disturbingly, DFT does not get the most

favorable geometries correct.

These observations may make it seem hopeless to

try to pass from full quantum mechanics to some kind

of useable version of quantum mechanics for many

atoms, never mind passing from quantum mechanics to

continuum mechanics. But there are other suggestions

of deep underlying simplicities in quantum mechanics

that are neither exploited nor understood. One example

is the so-called electron-to-atom (e/a) ratio. The impor-

tance of e/a was recognized long ago by Hume-Rothery,

and it was exploited in a particularly effective way in

magnetism by Slater and Pauling. For an alloy such as

CuxMnySnz consisting of x atoms of copper, y atoms

of manganese, and z atoms of tin, the e/a ratio is sim-

ply the valences of Cu, Mn, and Sn weighted by their

atomic fractions:

e
a

= x VCu +y VMn + zVSn

x +y + z ,

where VCu, VMn, VSn are, respectively, the numbers of

valance electrons of Cu, Mn, and Sn. When macroscopic

properties of materials are plotted against e/a, there

is often a remarkable collapse of data. Of course, e/a

is just one of the parameters that enters a quantum

mechanics calculation under the Born–Oppenheimer

approximation. Under this assumption the inputs to

the quantum mechanics calculation are the positions

and atomic numbers of the nuclei. Correlation with e/a

means that somehow the positions hardly matter! The

e/a ratio is often most successful in cases where the

underlying lattices are somewhat similar as the concen-

trations x, y , and z are varied. And it must be admit-

ted that the definition of valence itself is the result of

a (single-atom) quantum mechanics calculation. Never-

theless, changing x, y , and z is a change of order 1:

some neighbors of some atoms change from one ele-

ment to another. And the correlation often persists
if new elements are introduced and the chemical for-
mula gets very long. The properties that correlate with
e/a are some of the most difficult positive-temperature
properties to predict, like magnetization, or free energy
difference between two phases. As a modern exam-
ple, the Heusler family of alloys is currently perhaps
the most fertile area in materials science for discovery
of new alloys with applications in diverse areas, such
as microelectronics (especially “spintronics”), infor-
mation storage, biomedicine, actuation, refrigeration,
energy conversion, and energy storage. Most of the dis-
covery of new alloys for these applications is guided
simply by e/a; it is the main theoretical tool. Why is
e/a so important? What is the e/a dependence of a
constitutive equation of continuum mechanics?

A fundamental conceptual problem for multiscale
methods concerns time dependence. A standard ap-
proach at atomic level is to use the equations of molec-
ular dynamics, based on Newton’s laws of motion for
the nuclei, at positions y1(t), . . . ,yn(t): that is,

mi
d2yi
dt2

= fi(y1, . . . ,yn),

yi(0) = y0
i ,

dyi
dt
(0) = v0

i , i = 1, . . . , n.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(20)

The constants m1,m2, . . . ,mn are the corresponding
masses. The force fi on nucleus i depends on the posi-
tions of all the other nuclei, as reflected by the nota-
tion. This force could be given by quantum mechanics
for all the electrons as described above, parametrized
using the instantaneous nuclear positions. This is again
the Born–Oppenheimer approximation. Of course, we
would then have to do the very difficult quantum
mechanical calculations described above at each time
step, so in this case it would be essential to find sim-
plifications. One such simplification would be to find
accurate but simpler models of atomic forces. In any
case, molecular dynamics is considered a rather gen-
eral framework underlying continuum theories of many
materials.

A fundamental dilemma is that, regardless of the
atomic forces, the equations of molecular dynamics are
time reversible, while every accepted sufficiently gen-
eral model in continuum mechanics is time irreversible.
That is, if we define ȳi(t) = yi(−t) and change the sign
of v0, we see that ȳ1(t), . . . , ȳn(t) solves (20). If we do
the analogous change in, say, the Navier–Stokes equa-
tions, i.e., if we begin with a solution v(y, t), p(y, t)
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and define v̄(y, t) = −v(y,−t), p̄(y, t) = p(y,−t),
we see that v̄(y, t), p̄(y, t) satisfies the Navier–Stokes

equations if and only if the term multiplying the viscos-

ity is zero. That is, the form of solution is unaffected by

the viscosity of the material, a degenerate case indeed.

There is no widely accepted solution to this dilemma,

though many ideas have been suggested. From a math-

ematical viewpoint, it is certainly difficult to imagine

how any kind of rigorous averaging of the equations

of molecular dynamics would somehow deliver a time-

irreversible equation from a time-reversible one. And

this is not just a quirk of molecular dynamics: every

fundamental atomic-level equation of physics is dis-

sipation free and time reversible. A suggestion made

by Boltzmann that might in fact be consistent with a

mathematical treatment has been elaborated in a recent

article by Oliver Penrose. He says that flows seen in

nature do not correspond to solutions of the general

initial-value problem (20). Rather, any real flow corre-

sponds to special “prepared” initial data of the equa-

tions of molecular dynamics. Who does this prepara-

tion in nature? Penrose suggests that merely running a

dynamical system for some time could do this kind of

preparation. (Admittedly, time does not begin at t = 0

in (20).) He discusses a method of weighted averag-

ing, involving the initial conditions, that does intro-

duce irreversibility. Penrose’s suggestion is appealing

and will probably resonate with anyone who has done

molecular dynamics simulations. With almost any way

of choosing initial data short of running it through the

dynamical system, solutions of the equations of molec-

ular dynamics invariably begin with a transient that

would be regarded as unphysical from a macroscopic

point of view.

Balancing these fundamental difficulties, there seems

to be the possibility of tremendous simplification in

some cases. Let us illustrate how easy it is to con-

nect molecular dynamics with continuum theory by

presenting a very simple way to average the equa-

tions (20) of molecular dynamics. We use a method

of R. J. Hardy, which has been recently analyzed (and

extended), together with related approaches by Admal

and Tadmor. Letϕ : R3 → R be a simple averaging func-

tion; ϕ is smooth, nonnegative, has compact support

containing the origin, and has total integral equal to 1.

Consider a solutiony1(t), . . . ,yn(t), t > 0, of the equa-

tions of molecular dynamics (20). Recenter ϕ on each

instantaneous atomic position, multiply the equations

of molecular dynamics by ϕ, and sum over the atoms:

n∑
i=1

miÿi(t)ϕ(y −yi(t))

=
n∑
i=1

fi(y1(t), . . . ,yn(t))ϕ(y −yi(t)).

With this kind of spatial averaging it is natural to define
the density as ρ(y, t) =∑

miϕ(y−yi(t)) � 0. We can
also define the linear momentum p(y, t) by averaging
the linear momenta of the particles:

p(y, t) =
n∑
i=1

miẏi(t)ϕ(y −yi(t)). (21)

The Eulerian velocity is then defined wherever ρ > 0 by
v(y, t) = p(y, t)/ρ(y, t). Notice that we have already
avoided the tricky problem of averaging a product by
simply defining it away. That is, for the purposes of
averaging, the fundamental quantity is the momentum.
If, instead of the above, we had defined the density and
velocity first, in the obvious ways, then we would have
had the nasty problem of trying to express the aver-
age of a product in terms of the product of averages in
order to get the momentum. Based on this method of
averaging, the velocity of continuum mechanics is not
the average velocity of the particles (as is suggested
above and in most continuum mechanics books) but
rather it is the average momentum divided by the aver-
age density, which can be something quite different!
On the other hand, we do get a balance of mass exactly
as in continuum mechanics for free because by these
definitions

∂ρ
∂t

= ∂
∂t

n∑
i=1

miϕ(y −yi(t))

= −
n∑
i=1

mi∇ϕ(y −yi(t)) · ẏi(t)

= −divp = −div(ρv).

Continuing with our averaging, we bring the time
derivative out of the right-hand side of (21) and intro-
duce the definitions of velocity and density. We then
get

∂
∂t
(ρv)+ divy

n∑
i=1

mi(ẏi(t)⊗ ẏi(t))ϕ(y −yi(t))

=
n∑
i=1

fiϕ(y −yi(t)).

We rewrite the second term by replacing ẏ by ẏ − v
(which, incidentally, makes it insensitive to a Galilean
transformation), and then we compensate for this
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insertion. After a few elementary manipulations we

obtain

ρ
(
∂v
∂t

+∇vv
)

=
n∑
i=1

fiϕ − div
n∑
i=1

mi(ẏi − v)⊗ (ẏi − v)ϕ. (22)

This takes exactly the same form as the balance of

linear momentum (10) given above.

It is of course compelling to define divT to be equal

to the right-hand side of (22) and to solve for T to get an

atomistic definition of stress. But specification of the

divergence of a tensor is a rather weak restriction on

the tensor; in RCC, we can add the curl of a vector field

to each row of T , and the only restriction on these three

vector fields comes from the symmetry of the stress.

Various authors have implicitly made different choices

of these curls, but there is no general agreement on

which, if any, of the corresponding stresses ought to be

the stress of continuum mechanics. And, of course, this

may not be the best way to average. Averaging molecu-

lar dynamics to get anything that vaguely resembles a

constitutive equation is much less clear.

There are additional hopeful directions of research.

First, there is general mathematical experience with

asymptotics. Many examples show that when doing

asymptotics it is only certain quantities in the under-

lying theory that actually affect the asymptotic result.

Identification of these quantities can be the beginning

of a solution of the multiscale problem or the start

of a new branch of continuum mechanics. The circle

of ideas surrounding the Cauchy–Born rule, the quasi-

continuum method of Tadmor, Ortiz, and Phillips, and

the asymptotic methods of Blanc, Cances, Le Bris, and

Lions are successes in this direction but mainly so

far only in the static case. In light of these develop-

ments, one can almost imagine a finite-element method

in which the subroutine that appeals to the constitutive

relation is replaced by an efficient atomistic calculation.

Probabilistic approaches are also promising. These

recognize that the equations of molecular dynamics

are sufficiently irregular that they might be amenable

to a probabilistic treatment, as successfully under-

taken by statistical mechanics in the case of macro-

scopic equilibrium. Probability theory consists of an

arsenal of highly developed techniques once a proba-

bility measure is found, but it does not say much about

where to get the probability measure in the first place.

As a starting point, perhaps it is time to revisit the

kinetic theory of gases, the only truly nonequilibrium
statistical mechanics we have.
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IV.27 Pattern Formation
Arnd Scheel

1 Introduction

Patterns in nature fascinate observers and challenge
scientists. We are particularly intrigued when simple
systems generate complex patterns or when simple,
highly organized patterns emerge in complex systems.
Similarities in patterns across many fields suggest
underlying mechanisms that dictate universal rules for
pattern formation. We notice stripe and spot patterns
on animal coats, but also in convection patterns. Rotat-
ing spiral waves organize collective behavior in bacte-
rial motion, in chemical reaction, and on heart muscle
tissue. Beyond simple observation, regular patterns are
created in experiments, and a tremendous amount of
theory has helped to predict phenomena. In this article
we will discuss some of those phenomena and stress
universality across the sciences. We focus on dissipa-
tive, or damped driven, systems, where a free energy
is dissipated yet complex spatiotemporal behavior is
sustained far from thermodynamic equilibrium. Spe-
cific applications arise in, but are not limited to, biol-
ogy, chemistry, the social sciences, fluids, optics, and
material science.

Historically, much of the research on pattern for-
mation was motivated by fluid experiments, such as
those on Rayleigh–Bénard convection. When a station-
ary fluid is heated from below, heat conduction is
replaced by convective heat transport above a certain
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critical temperature gradient. Convective transport can
occur through convection cells, often arranged in typ-
ical hexagonal arrays, or through convection rolls that
form stripe patterns. Similar dichotomies were known
from animal coats, between zebras and leopards, or,
quite strikingly, in mutations of zebrafish (see figure 1).

Turing noticed in 1954 that the interplay of very sim-
ple mechanisms—diffusion and chemical reaction—can
be responsible for the emergence of patterns. His pre-
dictions were experimentally realized only in 1990 by
de Kepper and collaborators, who produced spot- and
stripe-like patterns similar to figure 1 in an open-flow
chemical reactor. Time-periodic rather than such spa-
tially periodic behavior was observed much earlier, by
Belousov, in the 1950s, and then rediscovered and pop-
ularized later by Zhabotinsky. They observed sustained
temporal oscillations in a chemical reaction. In addi-
tion, these temporal oscillations in the reaction could
cause complex spatial patterns. Yet much earlier than
this, in 1896, Liesegang observed regular ring patterns
when studying how electrolytes diffuse and precipitate
in a gel. It is worth mentioning that Liesegang’s pat-
terns and their characteristic scaling laws are poorly
understood even today, particularly when compared
with Belousov’s reaction or Turing-pattern formation.

In this discussion we have avoided the most basic
question: what is a pattern? In a system that is invari-
ant under translations in time and space, we naturally
expect unpatterned solutions, that is, solutions that
do not depend on time or space. We refer to such
solutions as spatiotemporally uniform states. In fact,
such uniform states “should be” the thermodynamic
equilibrium and hence should be observed in exper-
iments after initial temporal transients. A pattern is
the opposite: a solution that is not spatiotemporally
uniform. Narrowing this definition of a pattern fur-
ther, one might also want to rule out solutions that
are nonconstant in space and time only for an initial
temporal transient, or near boundaries of the spatial
domain. Note that in this characterization we started
with a system that does not depend explicitly on time or
space. This excludes patterns forced by external influ-
ences, such as masking or printing textures into sub-
strates, and narrows our view to what one might refer
to as self-organized patterns. Basic examples of spa-
tial, temporal, and spatiotemporal states are shown in
figure 3.

Explanations of patterns therefore often start with a
partial differential equation

∂tu = F(∂mx u, . . . , ∂xu,u),

(a) (b)

(c) (d)

Figure 1 Four different pigment patterns for the homo-
zygous zebrafish corresponding to different alleles of the
leopard gene.

for the dependent variables u ∈ RN , on an idealized
unbounded, translation-invariant, spatial domain x ∈
Rn, n = 1,2,3. Since F does not depend on time t or
space x explicitly, such systems typically support spa-
tiotemporally uniform states u(t,x) ≡ ū ∈ RN for all
times t ∈ R and in the entire spatial domain x ∈ Rn,
satisfying F(0, . . . ,0, ū) = 0. They may, however, also
accommodate solutions that depend on x and t, even
in the limit as t → ∞.

Prototypical examples are reaction–diffusion sys-
tems,

∂tu = DΔu+ f(u),
where Δ is the Laplacian, D a positive diffusion matrix
D+DT > 0, and f(u) denote the reaction kinetics. They
have been extensively studied as a prototype of pattern
formation, motivated largely by Turing’s observation
that simple reaction and diffusion may explain many of
the complex chemical and biological patterns that we
see, possibly even patterns such as those in figure 1.
Somewhat simpler (because it is scalar) is the Swift–
Hohenberg equation,

∂tu = −(Δ+ 1)2u+ μu−u3,

mimicking instabilities in Rayleigh–Bénard convection
or Turing-pattern formation. When considered on x ∈
Rn, there always exists a trivial translation-invariant
solution u(t,x) ≡ 0. For μ < 0, most initial conditions
u(0, x) converge to 0, while for μ > 0 there are station-
ary, spatially periodic solutions u(t,x) ∼ √μ cos(kx1)
with wave number k ∼ 1.

A major theme of research in pattern formation is
to describe, in this example and more generally, the
longtime behavior of solutions based on simple coher-
ent building blocks, such as spatially periodic patterns,
defects, or fronts.

2 Linear Predictions

A much-studied scenario for pattern formation lets the
spatiotemporally uniform state ū destabilize while a
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Figure 2 The dispersion relation for
Turing instabilities (Swift–Hohenberg).

parameter μ is increased. We illustrate this scenario in

the Swift–Hohenberg equation, where we can analyze

the linearization at ū = 0, ∂tu = Lu = [−(Δ+1)2+μ]u,

using the Laplace–Fourier transform: solutions of the

form eλt−ik·x exist when

d(λ, ik) = −(1 − |k|2)2 + μ − λ = 0,

an equation usually referred to as the dispersion rela-

tion.

Solving for λ = λ(k), one finds λ ∈ R and the

following regimes (see also figure 2):

μ < 0, λ(k) < 0 for all k (stable),

μ = 0, λ(k) = 0 for |k| = 1 (critical),

μ > 0, λ(k) > 0 for |k| ∼ 1 (unstable).

Now consider evolving an initial condition consisting of

a superposition of exponentials
∫
R2 û(k)eik·x dk under

the linear equation ∂tu = Lu for μ = 0. Given the expo-

nential decay eλt , λ < 0, for wave numbers |k| ≠ 1,

we expect that the solution is dominated by wave num-

bers |k| = 1 for large t,u(t,x) ∼
∫
|k|=1 û(k)eik·x dk. For

μ > 0 one still expects such wave numbers to dominate

the solution given the relative faster growth. In fact, one

often postulates that the linearly fastest-growing modes

(|k| = 1 for Swift–Hohenberg) will also be dominantly

observed in nonlinear systems.

Beyond the Swift–Hohenberg equation we are inter-

ested in dissipative systems, where most modes decay,

Reλ(k) < 0 for |k| large. We also focus on isotropic

systems, where u(t,x) is a solution precisely when

u(t, g ·x) is a solution for any g ∈ E(n), the Euclidean

group of translations, rotations, and reflections in Rn.

At criticality, we typically expect Reλ(k) = 0 at |k| = k∗
for some unique k∗ and λ(k) = iω∗. One can classify

such instabilities by focusing on a simple Fourier mode,

so that at criticality, u(t,x) ∼ ei(ω∗t−k∗x1) (see figure 3

for the resulting basic patterns).
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Figure 3 Linear patterns with (a) ω∗ = 0, k∗ ≠ 0 (spa-
tial pattern), (b) ω∗ ≠ 0, k∗ = 0 (temporal pattern), and
(c) ω∗, k∗ ≠ 0 (spatiotemporally periodic).

Linear predictions are, however, notoriously ambigu-
ous. At μ = 0 there are a plethora of bounded solutions
formed by arbitrary superposition of critical modes.
For instance, whenω∗, k∗ ≠ 0, we find traveling waves
ei(ωt−k·x) and standing waves ei(ωt−k·x)+ ei(ωt+k·x). In
the two-dimensional Turing case, summing modes kj
on an equilateral triangle gives hexagonal patterns, and
choosing four kjs on a square gives squares. Averag-
ing uniformly over all critical modes |k| = k∗ gives
Bessel functions, reminiscent of target patterns with
maxima on concentric circles with radii rj ∼ jk∗ (see
figure 5(c)). For μ > 0 there is also ambiguity in the
selected wave number. For instance, in the case k∗ = 0,
ω∗ ≠ 0, we may find wave trains and standing waves
of long wavelength |k| ≠ 0 in the linear prediction.
When we try to determine which patterns and wave
numbers will actually be observed for most initial con-
ditions, we therefore need to take nonlinearities into
consideration.

3 Symmetry

Given the ambiguity in the linear predictions, it is quite
surprising to find how many systems settle into simple
spatiotemporally periodic states, involving but a few
of the critical linearly unstable wave vectors k. Without
explaining why spatial periodicity is favored, one can
analyze systems that are invariant under the Euclid-
ean group by a priori restricting to spatially periodic
functions. In other words, we may restrict to functions
u(x) = u(x + pj), where the vectors pj generate a
lattice in Rn. Going back to the striking dichotomy
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between spots and stripes in figure 1, consider the
hexagonal lattice of width L > 0 generated by p1 =
L(1,0)T and p2 = L(√3/2,1/2)T, which allows for both
hexagons and stripes. The linear analysis of, say, the
Swift–Hohenberg equation then needs to be restricted
to wave vectors in the dual lattice, k · pj = 2π . For
k∗ ∼ 1, the choice L = 2π/k∗ allows for six critical
(Reλ = 0) wave vectors.

The dynamics of systems near equilibria with finitely
many critical eigenvalues in the linearization can in fact
be reduced to a set of ordinary differential equations
(ODEs). Such a reduction is exact in the vicinity of the
trivial equilibrium, where all solutions converge to a
finite-dimensional center manifold or escape the small
neighborhood. Both the center manifold and the vec-
tor field on the center manifold can be computed to
any order in the amplitude of the solutions and the
parameter μ. Typical equations on the center manifold
are

Ȧ1 =μA1+δĀ2Ā3−A1(|A1|2+κ(|A2|2+|A3|2)+ · · · ),
Ȧ2 =μA2+δĀ3Ā1−A2(|A2|2+κ(|A3|2+|A1|2)+ · · · ),
Ȧ3 =μA3+δĀ1Ā2−A3(|A3|2+κ(|A1|2+|A2|2)+ · · · )
with real parameters κ, δ. The invariance under com-
plex rotation A1  → eiτA1, reflections A1  → Ā1, A2  →
−Ā3, A3  → −Ā2, and cyclic permutation Aj  → Aj+1

is enforced by the Euclidean symmetry of the full sys-
tem. More precisely, translations and reflection in x1

as well as rotations by 2π/6 leave the lattice invari-
ant; they generate the isotropy group of the lattice
T�D6. The action of this group on the critical wave vec-
tors gives precisely the invariances of complex rotation,
reflection, and permutation.

We always find nontrivial equilibria with maximal
isotropy, that is, roughly speaking, equilibria that are
invariant under a symmetry group that is a maximal
subgroup of T � D6. In this case, these are stripes,
A2 = A3 = 0, A1 ∈ R, or hexagons, Ai = Aj ∈ R. Within
the reduced differential equation one can study the sta-
bility of these equilibria and predict whether stripes
or hexagons should be observed for parameter values
near an instability. Depending on the parameters κ, δ,
one calculates equilibria and determines their stabil-
ity within this reduced ODE. The fact that, typically,
either hexagon equilibria or stripe equilibria will be sta-
ble reflects the universal ubiquity of stripes and spot
patterns, as shown in figure 1.

As a second example, consider spatiotemporal insta-
bilities, ω∗, k∗ ≠ 0, x ∈ R. Restriction to periodic

functions yields reduced coupled-amplitude equations

for left- and right-traveling waves,

Ȧ+ = (μ + iω∗)A+ +A+(|A+|2 + κ|A−|2)+ · · · ,
Ȧ− = (μ + iω∗)A− +A−(|A−|2 + κ|A+|2)+ · · · ,

with complex parameter κ. Spatial translations act as

complex rotations A±  → e±iτA±, reflections act as

A±  → Ā∓. Maximal isotropy roughly corresponds to

traveling waves A− = 0, A+ ∼ eiωt or standing waves

A+ = A−. Again, reduction combined with a bifurcation

and symmetry analysis gives universal predictions for

the competition between standing and traveling waves.

The reduced equations on the center manifold are

often referred to as Landau equations, which describe

dynamics of dominant modes. Fourier modes that are

compatible with the lattice but decay exponentially for

the linearized problem can be shown to follow the tem-

poral evolution of neutral modes precisely. More pre-

cisely, all small solutions shadow solutions on the cen-

ter manifold with exponentially decaying error. In geo-

metric terms, this follows from the fact that the phase

space is foliated by a strong stable fibration of the

center manifold.

While the approach outlined here can discriminate

between systems that favor hexagons over stripes, or

traveling waves over standing ones, it cannot predict

wave numbers since the analysis is a priori restricted to

a set of functions with prescribed period. On the other

hand, a center manifold analysis cannot be performed

directly for the system posed on an unbounded (or very

large) domain since neutral linear Fourier modes are

not (well) separated from decaying modes.

We will look at three pattern-selection mechanisms

below. First, periodic patterns such as hexagons may

be unstable with respect to perturbations of the ini-

tial conditions. Our analysis in this section considered

perturbations with the same period. However, a pat-

tern might well be stable with respect to such coperi-

odic perturbations but unstable with respect to other

ones, e.g., localized perturbations, a phenomenon usu-

ally referred to as a sideband instability. Such sideband-

unstable patterns will typically not be observed in large

systems, thereby restricting the set of wave numbers

present in large systems. Second, initial conditions may

evolve into periodic patterns outside of small areas in

the domain where defects form. Such defects can have

a significant influence on the wave numbers observed

in the system. And finally, patterns are often cre-

ated through spatial growth processes. In mathematical
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terms, patterns in the wake of invasion fronts often
show distinguished, selected wavelengths.

Before we address these different mechanisms, we
will briefly review amplitude equations, which, beyond
the Landau equations, approximately describe, in a sim-
plified and universal fashion, the evolution of systems
near the onset of instability.

4 Modulation Equations

Center-manifold equations describe the long-term be-
havior of small-amplitude solutions exactly, for spa-
tially periodic patterns. In most cases, leading-order
approximations can be derived using scalings of ampli-
tude and time. In the one-dimensional Swift–Hohenberg
equation, the complex amplitude a(t) of the Fourier
mode eix solves an equation of the form ∂ta = μa −
3a|a|2 + · · · . Scaling a = μ1/2A, T = μt for μ > 0,
we find ∂TA = A − 3A|A|2 + O(μ). Equivalently, we
could substitute an ansatz μ1/2A(μt)eix together with
the complex conjugate (c.c.) into the Swift–Hohenberg
equation and find ∂TA = A − 3A|A|2 as a compatibil-
ity condition at order μ3/2 in the expansion. This latter
method can be generalized, allowing slow spatial varia-
tions of the amplitude, u(t,x) = μ1/2A(μt, μ1/2x)eix+
c.c. The scaling in x is induced by the quadratic tan-
gency in the linear relation, where λ = −4(k − 1)2 +
O((k− 1)3). An expansion now gives the compatibility
condition

∂TA = 4∂XXA+A− 3A|A|2.
This equation is known as the ginzburg–landau

equation [III.14]. It is a modulation equation, as it
describes spatial modulations of the amplitude of crit-
ical modes. While in the case of periodic boundary
conditions amplitude equations are the leading-order
approximation to an ODE that describes the long-term
dynamics of small solutions exactly, modulation equa-
tions give approximations to long-term dynamics, at
best. Such approximation properties typically rely on
some type of stability in the problem, following the
mantra of “consistency + stability ⇒ convergence.” It
is not known if there exists an exact reduced descrip-
tion of the long-term dynamics in terms of a single par-
tial differential equation, which would coincide with the
modulation equation at leading order.

For Hopf bifurcations, ω∗ ≠ 0, k∗ = 0, one substi-
tutes u(t,x) = μ1/2A(μt, μ1/2x)eiω∗t + c.c. and finds
the complex Ginzburg–Landau equation

∂TA = (1 + iα)ΔXA+A− (1 + iβ)A|A|2,

where the coefficient β is responsible for frequency
detuning of oscillations depending on the amplitude
(nonlinear dispersion), and the coefficient α mea-
sures frequency dependence on wave number (linear
dispersion).

When k∗ ≠ 0, in space dimension n > 1, this
approach is limited by the fact that there is a contin-
uum of critical modes |k| = k∗, while amplitudes Aj
can capture only bands near distinct wave numbers
kj . One can include modes with neighboring orienta-
tions, u(t,x) = A(μt, μ1/2x,μ1/4y)eik∗x + c.c., but the
resulting Newell–Whitehead–Segel equation

∂TA = −(∂X − i∂2
Y )

2A+A−A|A|2

poses several analytical challenges.
Both Landau equations on the center manifold and

modulation equations can also be interpreted as uni-
versal normal forms near the onset of instability, thus
explaining universality of patterns across the sciences
to some extent. In both cases one eliminates fast spa-
tiotemporal dependence via some effective averaging
procedure. For the Landau equations, averaging can be
more systematically understood in terms of normal-
form transformations that simplify the equations. In
particular, temporal oscillations can be exploited to
eliminate coefficients in the Taylor jet of the vector
field through polynomial coordinate changes, effec-
tively averaging the vector field over the fast oscilla-
tions. For modulation equations, this procedure is less
systematic, reminiscent of homogenization and effec-
tive medium theories. In that regard, modulation equa-
tions not only simplify the analysis but also provide
approximations that allow for effective simulations.

5 Stability

Most of our discussion so far has been motivated by the
presence of a trivial, spatiotemporally uniform state
that loses stability as a parameter μ is increased. While
this state still exists for μ > 0, it would not be observed
experimentally since small perturbations would grow
exponentially and drive the system toward a different
state. Restricting ourselves to periodic functions, we
found ODEs that show that small periodic perturba-
tions will result in spatially periodic, stable patterns.
In this analysis, however, stability is understood only
with respect to spatially coperiodic perturbations. More
realistically, we should ask for stability against spatially
random or, at least, spatially localized perturbations. In
the Swift–Hohenberg equation we would study initial
conditions u0(x) = uper(x) + v(x), with v(x) small,
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Figure 4 (a) The Bloch dispersion relation before and after
sideband instability. (b) The space-time diagram of Eckhaus
coarsening. Here and throughout, time is plotted vertically.

localized, and uper(x) a stationary, spatially periodic
pattern. To leading order, v(x) satisfies the linearized
equation at uper:

∂tv = −(∂2
x + 1)2v + μv − 3u2

per(x)v.

The operator on the right-hand side possesses spa-
tially periodic coefficients, and its properties can be
expressed in terms of Fourier–Bloch eigenfunctions,
eiγxvper(x), replacing the Fourier analysis near the
spatially homogeneous steady state. One finds eigen-
values λj(γ) that measure the temporal evolution
of quasiperiodic perturbations to the periodic state.
Translation of the pattern uper induces a neutral
response; technically, vper(x) = ∂xuper(x) and γ = 0
correspond to a zero eigenvalue, sometimes referred
to as a Goldstone mode. Varying γ, we can study
modulations of this translational mode and possible
instabilities.

The calculations are conceptually simpler in the
modulation equation, where periodic patterns can be
reduced to spatially constant states, such as A(X) ≡ 1
in the Ginzburg–Landau equation, so that the Bloch
wave analysis reduces to Fourier analysis. One finds,
for fixed μ, a band of wave numbers k where periodic
patterns are stable. Patterns outside of this band are
sideband unstable and typically cannot be observed in
large domains. The simplest type of instability is the
one-dimensional Eckhaus instability of stationary pat-
terns that arise in Turing instabilities k∗ ≠ 0, ω∗ = 0
(see figure 4).

Phenomenologically, perturbations of unstable pat-
terns grow and change the wave number by temporar-
ily introducing defects into the pattern. In two space
dimensions, rotational modes induce zigzag and skew-
varicose instabilities. Generally, in the parameter plane
spanned by wave number k and system parameter μ,

stable patterns often occupy a bounded region com-
monly referred to as the Busse balloon. More dramatic
instabilities occur in Hopf bifurcations, when αβ <
−1: the band of wave numbers corresponding to sta-
ble spatiotemporal patterns vanishes, and dynamics in
extended systems appear to sustain complex dynamics.

6 Defects

We care about imperfections or defects in periodic pat-
terns not only because they naturally arise in experi-
ments and simulations but also because they can play
a crucial role in selecting wave numbers and wave vec-
tors. Prominent examples are spiral waves in oscilla-
tory media, which act as effective wave sources and
select wave numbers and wave vectors in large parts of
the domain. Also, interfaces between patches of stripes
with different orientations tend to select wave num-
bers. In a similar vein, boundary conditions can select
the orientation of convection rolls in Rayleigh–Bénard
convection: typically, rolls orient themselves perpen-
dicularly to the boundary, but heated boundaries allow
for a parallel alignment.

When referring to defects we usually imply that the
deviation from perfect spatiotemporally periodic struc-
tures is in some sense localized, and the temporal
behavior is coherent, e.g., periodic in an appropriate
coordinate frame. Such solutions can sometimes be
found explicitly in amplitude equations; the Nozaki–
Bekki holes in the complex Ginzburg–Landau equations
are a prominent example. On the other hand, one would
like to approach existence, stability, or even interac-
tion of defects in a mathematically rigorous yet system-
atic fashion, similar to the treatment of spatially peri-
odic patterns. We have already mentioned that center-
manifold reductions are not available once we give up
the restriction to spatial periodicity. We can, however,
restrict to temporal periodicity, or even stationary solu-
tions, possibly propagating or rotating with a fixed
speed. Such solutions are amenable to an approach as
systematic and rigorous as for spatially periodic struc-
tures: one interchanges the roles of space and time
and studies spatial dynamics. We can, for instance,
find small stationary solutions to a reaction–diffusion
system

∂tu = D∂xxu+ f(u;μ), u ∈ RN,

by looking for small bounded solutions to the ODE

ux = v,
vx = −D−1f(u;μ).
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Figure 5 (a) Spirals, (b) grain boundaries, and (c) a target
pattern in the Swift–Hohenberg equation.

An x-independent equilibrium of the reaction–diffu-
sion system corresponds to an equilibrium of this ODE;
a spatially periodic pattern corresponds to a periodic
orbit. Close to a Turing instability, center-manifold
analysis and normal-form transformations reveal a
universal description of stationary patterns:

Ax = ikA+ B + · · · ,
Bx = ikB − μA+A|A|2 + · · · ,

which at leading order recovers stationary solutions to
the Ginzburg–Landau equation after passage to a coro-
tating frame (A, B)  → eikx(A, B) and scaling. Similar
constructions can find traveling waves u(x − ct) and
time-periodic traveling waves u(x − ct,ωt), u(ξ, τ) =
u(ξ, τ + 2π). In the latter case, the equation

uξ = v,
vξ = −D−1(f (u;μ)+ cv −ω∂τu)

is an ill-posed degenerate elliptic partial differential
equation. Nevertheless, center-manifold reduction and
normal-form techniques can be used here, too, to derive
universal ODEs for the shape of coherent defects. Even
more generally, we can use these methods to study
coherent structures for x = (x1, . . . , xn) ∈ Rn, pro-
vided that we impose periodic boundary conditions on
x2, . . . , xn while studying spatial dynamics in the x1-
coordinate. In this category one finds grain boundaries
and certain types of dislocations. Somewhat more sub-
tle reductions based on dynamics in the radial coor-
dinate have been used to study point defects such as
radially symmetric target patterns or spiral waves (see
figure 5).

While these methods have been very successful in
establishing existence and studying linearized stabil-
ity through the eigenvalue problem in many examples,
they fail to give a complete description in higher space
dimensions: properties of dislocations and disclina-
tions are not understood in this detailed fashion (see
figure 6).

The key analogy in this spatial-dynamics setting re-
lates defects and coherent structures to homoclinic and
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Figure 6 Dislocations and concave and convex
disclinations in the Swift–Hohenberg equation.

heteroclinic orbits, connecting equilibria or periodic
orbits. Pushing this analogy further, we can reinterpret
dynamical properties of heteroclinic orbits as proper-
ties of defects. One could now systematically reinter-
pret results in the literature and thereby effectively con-
struct a dictionary that translates between dynamical-
systems terminology in the spatial-dynamics descrip-
tion and properties of defects.

In oscillatory media (ω ≠ 0), defects can be classified
according to dimensions of unstable and stable man-
ifolds that intersect along a heteroclinic orbit in the
ill-posed spatial-dynamics description. The codimen-
sion of the intersection can be translated into group
velocities in the far field. Defects where group veloci-
ties point away from the defect (sources) correspond
to codimension-two heteroclinic orbits. Sinks, where
group velocities point toward the defect, correspond
to transverse intersections.

An illustrative example is a small localized inhomo-
geneity εg(x) in a system that otherwise sustains a
spatially homogeneous temporal oscillation. One finds
that for ε > 0, say, the inhomogeneity typically acts as
a wave source from which phase waves propagate into
the medium, while for ε < 0 waves travel toward the
inhomogeneity with speed 1/|x| for large distances x
from the inhomogeneity (see figure 7).

7 Fronts

The ability to describe in detail the fate of small random
perturbations of an unstable homogeneous equilibrium
in general pattern-forming systems such as the Swift–
Hohenberg equation seems elusive. Wave numbers can
vary continuously across the physical domain, while
embedded defects move and undergo slow coarsening
dynamics.

A more tractable situation arises when initial pertur-
bations are spatially localized and patterns emerge in
the wake of fronts as the instability spreads spatially.
Similar in spirit to the fastest-growing-mode analysis
that we described above, but quite different in the
details, one tries to predict patterns that arise in the
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wake of an invasion front using the linearization first.
For a linear system, the location of the leading edge
of an invasion front can be determined by testing for
pointwise stability in comoving frames: in a steady coor-
dinate frame, one typically sees exponential growth in a
finite window of observation, whereas in a frame mov-
ing with large speed, perturbations decay within such a
finite window. The smallest of all speeds c that outrun
perturbations in this sense gives us the linear spread-
ing speed. An observer traveling with the linear spread-
ing speed will see a marginally stable state in a finite
window of observation.

We can determine pointwise stability, that is, decay in
a finite window of observation, using the Laplace–Fou-
rier transform in a refined way as follows. The Laplace
transform reduces the evolution problem ∂tu = Lu
into a study of the resolvent (λ − L)−1, which in turn
can be analyzed using the Fourier transform. The key
difference between pointwise and overall (say, L2) sta-
bility analysis is that the resolvent is applied to spa-
tially localized initial conditions. In fact, the resolvent
can be represented as a convolution with a Green func-
tion Gλ(x) that is readily computable via the Fourier
transform. Boundedness of the resolvent as an oper-
ator typically requires integrability of the convolution
kernel. Convolving with localized initial conditions, we
can relax this condition, however, and merely require
pointwise (fixed-x) analyticity of Gλ(x) in λ. Equiva-
lently, we are allowed to shift the Fourier contour that
is used to calculate the convolution kernel off the real
k-axis into the complex plane. Obstructions to shifting
this contour—or, equivalently, pointwise singularities
of the convolution kernel—typically occur at branch
poles. These can be found by analyzing the complex
dispersion relation d(λ, ν) = 0, which is obtained from
the ansatzu ∼ eλt+νx . Rather than finding simple roots
for given Fourier mode ν = ik, one allows ν to be
complex and looks for double roots:

d(λ, ν) = 0, ∂νd(λ, ν) = 0.

Such double roots (with an additional pinching condi-
tion) typically give singularities of the pointwise Green
function and determine pointwise stability; we have
pointwise instability if and only if such a double root
is located in Reλ > 0.

In summary, pointwise stability is determined by
pinched double roots of the dispersion relation. Mar-
ginal stability in a frame moving with the linear spread-
ing speed c implies that such a double root is located
on the imaginary axis, λ = iω. This linear oscillation
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Figure 7 (a) Two sources and a sink and (b) an invasion
front creating an unstable pattern, followed by a turbulent
state, both in an oscillatory system ω∗ ≠ 0, k∗ = 0.

with frequencyω in a frame moving with speed c typi-
cally selects a resonant nonlinear pattern u(ω0t−kx)
such that ω =ω0 − kc.

For nonlinear systems there is ample experimental
and numerical evidence that the linear predictions are
often accurate, although convergence is usually slow,
O(t−1). Such convergence results have been estab-
lished mathematically only for order-preserving sys-
tems and in particular for scalar reaction–diffusion sys-
tems. For pattern-forming systems, which intrinsically
violate order preservation, existence and stability of
invasion fronts have been established near Turing-like
small-amplitude instabilities, in particular in the Swift–
Hohenberg equation and the Couette–Taylor problem.
In the complex Ginzburg–Landau equation, pattern-
forming fronts can be found as traveling waves, finding
connecting orbits in a three-dimensional ODE. Interest-
ingly, the linear wave number predicted by the double-
root criterion is typically nonzero, so invasion fronts
create traveling waves in their wake (see figure 7). It is
worth contrasting this with the linear fastest-growing-
mode analysis based on the Fourier transform, which
predicts spatially homogeneous oscillations. Since such
wave trains can be sideband unstable, the state in the
wake of the primary invasion front is subject to a sec-
ondary invasion, where a turbulent state typically takes
over.

Fronts also play an important role in biological
growth and crystal growth, as well as in phase-sepa-
ration processes. Model problems include the cahn–

hilliard equation [III.5], phase-field systems, and the
Keller–Segel model. Fronts are known to exist in only a
few cases. As for the situation in oscillatory media (fig-
ure 7), primary invasion fronts create unstable patterns
that are invaded by secondary fronts (see figure 8).

Invasion fronts also provide key building blocks
in spatial-growth or deposition processes. We can
often model pattern growth via systems in which an
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Figure 8 Space-time plots of two-stage front invasion in
the Keller–Segel model, with merging versus ripening in the
secondary front.

instability parameter μ is increased spatiotemporally
in the form μ ∼ − tanh(x − st), so that instability is
triggered externally in the region x < st. Liesegang’s
recurrent precipitation experiment falls into this cat-
egory, as we will now explain. An outer electrolyte A
diffuses into a gel that is saturated with an inner elec-
trolyte B (see figure 9). Both react, and the reaction
product accumulates until a supersaturation threshold
is reached and precipitation is initiated. The concentra-
tion of AB acts as an effective parameter that increases
in the wake of the reaction–diffusion front. The main
pattern-forming mechanism is the precipitation in the
wake of the front. Intuitively speaking, precipitation is
initiated only once the concentration locally exceeds a
supersaturation threshold. Since the solute, providing
the input to the precipitation process, can diffuse, it
will be depleted in a neighborhood of the region where
the process has been initiated, so that the supersatura-
tion threshold will next be reached at a finite distance
from where the first precipitate nucleated. More math-
ematically, precipitation can be understood as a simple
conversion of solute s into precipitate p,

∂ts = Δs − f(s, p),
∂tp = κΔp + f(s, p),

with conversion rate f and a small diffusion rate κ � 1
of the precipitate. The product AB feeds as a source
term into the equation for s, effectively increasing the
value of s until instability is triggered. Such instabili-
ties turn out to be pattern-forming sideband instabil-
ities, which in turn generate rhythmic oscillations in
the wake of the A–B reaction front. Wave numbers in
the wake of such triggered fronts are therefore a cen-
tral ingredient in the prediction of wave numbers in
Liesegang patterns.

To summarize, our excursion into pattern forma-
tion in the wake of fronts points toward a promis-
ing route to a more systematic understanding of wave

0 50 100 150 200 250
0

0.5

1.0

1.5

2.0

× 104

Figure 9 Space-time plots in numerical simulations
and experimental Liesegang patterns.

number and pattern selection, but many mathematical

challenges lie ahead of us.

8 More Patterns

The point of view taken here emphasizes universality,

mostly from the point of view of local bifurcations.

Many exciting phenomena can be observed in reaction–

diffusion systems in somewhat opposite parameter

regimes when chemical species react and diffuse on dis-

parate scales. Prototypical examples are the Gray–Scott

and Gierer–Meinhardt equations, but one could also

consider the FitzHugh–Nagumo, Hodgkin–Huxley, or

Field–Noyes models for excitable and oscillatory media.

Singular perturbation methods—both geometric meth-

ods inspired by dynamical systems and matched as-

ymptotic methods—have helped us to gain tremen-

dous insight into the complexity of spike and front

dynamics in such systems. The basic building blocks

here are scalar reaction–diffusion equations, where a

variety of tools allows for quite explicit characteriza-

tion of solutions and eigenvalue problems. The cou-

pling between fast and slow components changes the

interaction between spikes and fronts so that com-

plex arrangements of fronts and spikes that would be

unstable in scalar equations may form stable patterns

here.

Beyond the pattern-forming instabilities that we have

discussed in this article, more complex phenomena

arise when conserved quantities interact with pattern-

forming mechanisms. Examples include closed reac-

tion–diffusion systems, fluid instabilities with neu-

tral mean flow modes, and phase separation prob-

lems modeled by Cahn–Hilliard or phase-field equa-

tions. Conserved quantities can also be generated by

symmetry through Goldstone modes, so descriptions
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of flame front instabilities or sideband instabilities
usually involve coupling to conservation laws.

In a different direction, even simple systems such
as the Swift–Hohenberg equation or the complex Ginz-
burg–Landau equation support patterns that escape
our simplistic scheme based on periodic structures and
embedded defects. Examples are quasicrystal patterns
involving nonresonant spatial wave vectors and turbu-
lent states, in which coherence in patterns is visible
only after taking temporal averages.

Last but not least, patterns and coherent structures
arise in spatially extended Hamiltonian systems, such
as water-wave problems or nonlinear Schrödinger equa-
tions. Universal phenomena such as solitons, plane
waves, and sideband instabilities abound, and partial
descriptions of small-amplitude dynamics via universal
modulation equations are possible.
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IV.28 Fluid Dynamics
H. K. Moffatt

1 Introduction

Fluid dynamics is a subject that engages the attention
of mathematicians, physicists, engineers, meteorolo-
gists, oceanographers, geophysicists, astrophysicists,
and, increasingly, biologists in almost equal measure.
For mathematicians, the subject is the source of a wide
range of problems involving both linear and nonlinear
partial differential equations (PDEs). These equations
arise from real-world natural phenomena and therefore
provide serious motivation for exploring questions of
existence, uniqueness, and stability of solutions. The

nonlinear equations frequently involve one or more

small parameters, allowing the development of pertur-

bation techniques in their solution; thus, for example,

singular perturbation theory is a branch of mathemat-

ics that finds its origin in the boundary-layer theory

of fluid dynamics developed in the first half of the

twentieth century, the modern study of chaos (since

the 1960s) finds its origin in the (Lorenz) equations

describing thermal convection in the atmosphere, and

so on.

The word fluid covers liquids (such as water, oil,

honey, blood, and liquid metals, to name but a few),

gases (such as air, hydrogen, helium, carbon diox-

ide, and methane), plasma (i.e., fully ionized gas at

extremely high temperatures), and exotic fluids such as

liquid helium or Bose–Einstein condensates, which exist

only at temperatures near absolute zero. Even conven-

tional “solids” can behave like fluids if observed over a

very long timescale; for example, the rock-like medium

of the Earth’s mantle flows slowly on a timescale of

millions of years, and it is this that is responsible for

the movement of the tectonic plates that gives rise to

volcanic activity, earthquakes, and continental drift.

Fluid dynamics starts with the continuum approx-

imation, whereby the fluid is regarded as a medium

whose state can be expressed in terms of properties

that are continuous functions of position x = (x,y, z)
and time t. Chief among these properties are the den-

sity field ρ(x, t) and the velocity field u(x, t)within the

fluid domain. Thus the motion of individual molecules

is ignored, and only properties that are averaged over

at least millions of molecules are considered.

Fluid dynamics covers a vast range of phenomena on

all length scales, from microns (∼10−6 m) in biology

and nanoscale fluid dynamics to kiloparsecs (∼1021 m)

in the fluid dynamics of the interstellar medium. At all

these scales, the motion of the fluid medium is gov-

erned by the navier–stokes equations [III.23], which

are essentially derived from the principles of mass con-

servation and (Newtonian) momentum balance. In gen-

eral, these equations must be coupled with thermo-

dynamic equations of state and, when plasmas are con-

sidered, with Maxwell’s equations for the electromag-

netic field. In this article we shall, for simplicity, focus

on the idealization of a nonconducting, incompressible

fluid of constant density ρ, for which the Navier–Stokes

(NS) equations become

ρ
(
∂u
∂t

+ (u · ∇)u
)
= −∇p + μ∇2u+ f



468 IV. Areas of Applied Mathematics

and

∇ · u = 0,

where p(x, t) is the pressure field, μ is the viscosity
of the fluid, and f (x, t) is any external force per unit
mass (e.g., gravity) that acts upon the fluid.

The incompressibility condition calls for special com-
ment. In adopting this idealization, sound waves are
filtered from the more general equations of fluid
dynamics that take density variations into account.
The approximation is generally valid provided the fluid
velocities considered are small compared with the
speed of sound in the fluid (∼340 m s−1 in air and
∼1480 m s−1 in water, at normal temperatures and
pressures). Obviously, therefore, the incompressibility
condition cannot be adopted if problems of transonic
or supersonic flight are considered. For such prob-
lems, the coupling of fluid motion with thermodynamic
effects cannot be ignored.

In the rest of the article we first consider the kine-
matics of flow governed by this incompressibility con-
dition alone before turning to the dynamics of flow,
with particular reference to the limits of large and small
viscosity.

2 Kinematics of Flow

2.1 Streamlines and Particle Paths

Consider first the case of two-dimensional flows for
which u = (u(x,y, t), v(x,y, t),0). The incompress-
ibility condition becomes ∂u/∂x + ∂v/∂y = 0, and it
follows that there exists a stream function ψ(x,y, t)
such that

u = ∂ψ/∂y, v = −∂ψ/∂x.
Sinceu·∇ψ = 0, it follows thatu is everywhere parallel
to the curvesψ = const., which are therefore appropri-
ately described as the streamlines of the flow. Note that
ψ has physical dimension L2/T (length2/time).

A steady flow is one for which the velocity field
is independent of t, i.e., u = u(x) or, in the two-
dimensional case, ψ = ψ(x,y). In a steady flow, fluid
particles follow the streamlines, which do not change
with time. In a two-dimensional steady flow, initially
adjacent particles on neighboring streamlines generally
separate linearly in time due to the velocity gradient
normal to the streamlines. If we consider a small patch
of dye carried with the flow, then every pair of parti-
cles within the patch separates linearly in time, so the
whole patch is similarly stretched by the flow.

The situation is very different in an unsteady flow.
Now ψ = ψ(x,y, t) with ∂ψ/∂t �= 0, and the stream-
line pattern changes with time. The path x(t) of a fluid
particle released from a point x0 at time t = 0 is now
determined by the dynamical system

dx
dt

= ∂ψ
∂y
,

dy
dt

= −∂ψ
∂x
,

with initial condition x(0) = x0. This is a second-
order Hamiltonian system, in which the Hamiltonian is
just the stream function ψ. Initially adjacent particles
can now separate exponentially in time, a symptom of
chaotic behavior. This obviously has important implica-
tions for the rate of stirring of any dynamically passive
scalar contaminant in the flow.

In a fully three-dimensional flow, even in the steady
case the streamlines (and therefore the particle paths)
can diverge exponentially, a behavior conducive to the
rapid dispersion of any passive contaminant.

The flow u(x, t) (which is assumed to be smooth) de-
termines a time-dependent mapping X → x = x(X, t)
of the flow domain onto itself. Under the incompress-
ibility condition, this mapping is volume-preserving.
Since the volume element is given by d3x = |J|d3X,
where J is the Jacobian,

J = ∂(x1, x2, x3)
∂(X1, X2, X3)

,

it follows that in this case |J| = 1. At time t = 0,
the mapping is the identity x = X, with J = 1, so by
continuity, J = +1 for all t > 0. The mapping is a
volume-preserving diffeomorphism for all finite t.

2.2 Rate of Strain and Vorticity

In the neighborhood of any point (which may be cho-
sen to be the origin x = 0), the velocity field may be
expanded, provided it is sufficiently smooth, as a Taylor
series:

ui(x) = u0i + cijxj +O(|x|2),
where cij = ∂ui/∂xj|x=0. This tensor may be split
into a sum of symmetric and antisymmetric parts. The
symmetric part,

eij =
1
2

(
∂ui
∂xj

+ ∂ui
∂xj

)
,

is the rate-of-strain tensor. Note that eii = 0, by virtue
of incompressibility. Referred to its principal axes,
this symmetric tensor is diagonalized so that eijxj =
(αx,βy,γz), where (α,β, γ) (with α + β + γ = 0) are
the principal rates of strain.
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The antisymmetric part of cij is

ωij =
1
2

(
∂ui
∂xj

− ∂uj
∂xi

)
= − 1

2εijkωk,

where ω = ∇× u and ωijxj = 1
2ω× x, a “rigid-body”

rotation with angular velocity 1
2ω. The pseudovector

ω = ∇ × u, which can of course be defined at any
x, is the vorticity of the flow and is of the greatest
importance in the dynamical theory that follows.

In two dimensions, ω = (0,0,ω) with ω = −∇2ψ.
In this case, the linear flow cijxj may be expressed in
the form α(x,−y) + 1

2ω(−y,x), with corresponding
stream function ψ = αxy − 1

4ω(x
2 +y2). The stream-

lines ψ = const. are elliptic or hyperbolic according to
whether |2α/ω| > 1 or |2α/ω| < 1. In the special cases
2α = ±ω, the flow is a pure shear flow, with rectilinear
streamlines parallel to x = ±y , respectively.

3 The Navier–Stokes Equations

3.1 Stress Tensor and Pressure

The momentum balance equation may be written in a
very fundamental form due to Cauchy:

ρ
Dui
Dt

= ∂
∂xi

σij,

where σij is the stress tensor within the fluid, which
may include the stress associated with any conservative
force field of the form f = −∇V that acts on the fluid
(e.g., gravity with V = −ρg · x).

A Newtonian fluid, which is here assumed to be
incompressible, is one in which σij is related to the
rate-of-strain tensor eij through the linear isotropic
equation σij = −pδij + 2μeij , where p = − 1

3σii,
the pressure in the fluid. Substitution into the Cauchy
equation above leads immediately to the Navier–Stokes
equation, now in the form

Du
Dt

≡ ∂u
∂t

+ u · ∇u = − 1
ρ
∇p + ν∇2u,

where ν = μ/ρ is the kinematic viscosity of the fluid.
Note that ν has physical dimension L2/T (like ψ in
section 2.1).

3.2 The Reynolds Number

Suppose that a flow is characterized by a length scale
L (usually associated with the boundary geometry) and
a velocity scale U (e.g., the maximum velocity in the
fluid or on its boundary). Then, in order of magnitude,
|Du/Dt| ∼ U2/L and |∇2u| ∼ U/L2. Hence,

|Du/Dt|
ν|∇2u| ∼ UL

ν
.

The dimensionless number Re = UL/ν is the Reynolds
number of the flow. If Re � 1, then viscous forces
dominate over inertia forces, which are negligible in a
first approximation. If Re � 1, then inertia forces are
dominant; however, as we shall see later, viscous effects
always remain important near fluid boundaries, no mat-
ter how large Re may be; this is where boundary-layer
theory must be invoked.

3.3 The Vorticity Equation

It is obviously possible to eliminate the pressure field
by taking the curl of the NS equation. Using the vec-
tor identity u · ∇u = ∇(u2/2)− u ×ω, this yields the
vorticity equation

∂ω
∂t

= ∇× (u×ω)+ ν∇2ω.

The first term on the right-hand side describes trans-
port of the vorticity field by the velocity, while the sec-
ond describes diffusion of vorticity relative to the fluid.
This interpretation means that it is often helpful to
focus on vorticity rather than velocity in the analysis
of particular problems.

For two-dimensional flow we have seen that ω =
(0,0,−∇2ψ). The vorticity equation in this case re-
duces to a nonlinear equation for ψ:

∂
∂t
(∇2ψ)− ∂(ψ,∇

2ψ)
∂(x,y)

= ν∇4ψ,

where ∇4 = (∇2)2, the biharmonic operator.

3.4 Difficulties with the NS Equation

The nonlinearity of the NS equation represented by
the term u · ∇u presents a major difficulty for fun-
damental theory. This is not the only difficulty, how-
ever. The viscous term ν∇2u implies viscous dissipa-
tion of kinetic energy (to heat), and associated irre-
versibility in time. Furthermore, the influence of the
pressure-gradient term is nonlocal. To see this, take
the divergence of the equation, giving ∇2p = −s(x, t),
where s = ρ∇· [(u ·∇)u]. The solution of this Poisson
equation (in three dimensions) is

p(x, t) = 1
4π

∫
s(x′, t)
|x − x′| dV ′,

plus possible boundary contributions. Thus, p(x, t)
is influenced by values of s(x′, t), and therefore of
u(x′, t), at all points x′ in the fluid, and the conver-
gence of the integral for large |x − x′| is slow.

This combination of difficulties in relation to the NS
equations presents an enormous challenge; even the
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basic problem of proving regularity for all t > 0 of solu-
tions of the NS equations evolving from smooth initial
conditions remains unsolved at the present time. This
is one of the Clay Mathematics Institute’s Millennium
Prize Problems.

4 Some Exact NS Solutions

Exact solutions of the NS equations fall into two cate-
gories: trivial flows, for which the inertia forces either
vanish identically (as for steady rectilinear flow) or
are exactly compensated by a pressure gradient, and
self-similar flows, whose structure is to some extent
dictated by dimensional considerations.

4.1 Trivial Flows

Chief among these are

Poiseuille flow, driven by a constant pressure gradi-
ent G = −(∂p/∂x)i, where i = (1,0,0), in a two-
dimensional channel between rigid walls y = ±b, for
which the velocity field is u = (G/2μ)(b2 −y2)i; and

Couette flow, driven by motion of the boundaries y =
±b with velocities ±Vi, for which the velocity field is
u = (Vy/b)i.

These flows serve as prototypes when questions of
stability arise.

Similar flows exist for fluid contained in the annular
region between two concentric cylindersa < r < b. The
Poiseuille flow driven by pressure gradientG parallel to
the axis has velocity profile

u(r) = G
4μ

{
(b2 − r2)− (b2 − a2)

log(b/r)
log(b/a)

}
.

The Couette flow corresponding to rotation of the cylin-
ders with angular velocities Ω1, Ω2 has circulating
velocity (around the axis) v(r) = Ar+B/r , whereA and
B are determined from the boundary conditions v(a) =
Ω1a, v(b) = Ω2b. These two flows may be linearly
superposed, giving a flow with helical streamlines.

Slightly less trivial is the Burgers vortex, for which
the vorticity distribution is in the z-direction and has
the Gaussian form

ω(r) = Γ γ
4πν

exp
{
− γr

2

4ν

}
.

Here, Γ (= 2π
∫
ω(r)r dr) is the total strength of the

vortex, and γ (>0) is the rate-of-strain that must be
imposed to keep the vortex steady against the erosive
effect of viscous diffusion.

4.2 Self-Similar Flows

It will be sufficient to illustrate this type of flow by

a simple example: Jeffery–Hamel flow. Let (r , θ) be

plane polar coordinates, and suppose that fluid is con-

tained between two planes θ = ±α and is extracted

by a line sink Q at the origin; then, if u is the radial

velocity,
∫α
−α ur dθ = −Q for all r . Here, like ν , Q has

dimension L2/T , and we may define a Reynolds num-

ber Re = Q/ν . Furthermore, on dimensional grounds,

the stream function for the resulting flow must take

the form ψ = Qf(θ), where f is dimensionless. (The

velocity u = r−1∂ψ/∂θ is then purely radial.) Substitu-

tion into the equation for the stream function in plane

polar coordinates,

∂
∂t
(∇2ψ)− 1

r
∂(ψ,∇2ψ)
∂(r , θ)

= ν∇4ψ,

gives an ordinary differential equation (ODE) for f(θ),

f ′′′′ + 4f ′′ + Ref ′f ′′ = 0,

which may be integrated three times to give the velocity

profile r−1f ′(θ). What is important here is that, from

dimensional considerations alone, as described above,

the nonlinear PDE for ψ has been reduced to an ODE,

still nonlinear but nevertheless relatively easy to solve.

A second example is that of two-dimensional flow

toward a stagnation point on a plane boundary y = 0.

The flow far from the boundary is the uniform strain

flow for which ψ ∼ αxy , and conditions of imper-

meability and no-slip, ψ = ∂ψ/∂y = 0, are imposed

on y = 0. Here, dimensional analysis implies that

ψ = x(να)1/2f(η), where η = y(α/ν)1/2, and again

the PDE for ψ reduces to an ODE for f(η), which can

be easily solved numerically.

Further examples are

• the axisymmetric flow due to a concentrated point

force F applied at the origin, for which the veloc-

ity field is everywhere inversely proportional to

distance from the origin (the Squire–Landau jet );

and

• the von Karman flow due to the differential rota-

tion of two parallel discs about their axes.

In the latter case, the flow between the discs has heli-

cal streamlines. This flow has recently provided the

basis for the VKS (von Karman sodium) experiment

demonstrating dynamo action due to flow driven by

counterrotating propellers.
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5 Stokes Flow

When Re� 1, inertial forces are negligible, and the NS
equations simplify to the quasistatic Stokes equations

∂
∂xi

σij = 0, μ∇2u = ∇p, ∇ · u = 0.

5.1 Some General Results

Certain results concerning Stokes flows as governed by
these equations can be proved in a straightforward way.
First, the equations are now linear, so that if any two
solutions are known, then any linear combination of
them is also a solution. Second, if a function U(x) is
defined on a closed surface S bounding a volume V of
fluid, satisfying the condition

∫
S U(x) · ndS = 0, then

the solution of the Stokes equations in V correspond-
ing to the boundary condition u(x) = U(x) on S exists
and is unique. Moreover, the solution v(x) correspond-
ing to the boundary condition v(x) = −U(x) is sim-
ply v(x) = −u(x), i.e., reversal of the boundary condi-
tion reverses the flow everywhere. Thus, for example, a
small spherical patch of dye that is distorted by a flow
into a long thin filament can be restored to its origi-
nal spherical shape (apart from the effect of molecular
diffusion) by time-reversal of the motion of the fluid
boundary.

Next, there is a minimum dissipation theorem relating
to the class C of kinematically possible flows in a closed
volume V (i.e., flows satisfying merely ∇ · u = 0 in V
and the boundary condition u(x) = U(x) on S). Let
Φ =

∫
V σijeij dV be the rate of dissipation of kinetic

energy of any such flow. Then the unique Stokes flow
u(x) satisfying this boundary condition minimizes Φ
within the class C. This result clearly does not extend
to solutions of the NS equations (since these are within
the class C and have greater Φ than that of the unique
Stokes flow).

Finally, there is a reciprocity theorem that finds
important application in the following subsection: let
(u(1)i , σ

(1)
ij ) and (u(2)i , σ

(2)
ij ) be the velocity and stress

fields corresponding to two Stokes flows with different
boundary conditions u(1)i = U(1)i , u(2)i = U(2)i on the
surface S; then∫

S
σ(1)ij U

(2)
j ni dS =

∫
S
σ(2)ij U

(1)
j ni dS.

5.2 Flow Due to the Motion of a Particle

From a historic viewpoint, the most important problem
in this low-Reynolds-number regime is that solved by
Stokes himself in 1851: the flow due to the motion of

a rigid sphere through a viscous fluid. Here, we briefly
consider the principles governing the flow due to the
motion (translation plus rotation) of a rigid particle of
arbitrary geometry, the fluid being assumed to be at
rest at infinity. Let a = (3V/4π)1/3, where V is the vol-
ume of the particle. Attention is naturally focused on
the force F and torque G acting on the particle. The
instantaneous motion of the particle is determined by
the velocity U of its center of volume and its angular
velocity Ω, and the linearity of the Stokes equations
implies linear relations between {F, G} and {U ,Ω} of
the form

Fi = −μ(aAijUj + a2BijΩj),

Gi = −μ(a2CijUj + a3DijΩj),

where, by virtue of the above reciprocity theorem,

Aij = Aji, Dij = Dji, Cij = Bji.
These dimensionless tensor coefficients are deter-
mined solely by the shape of the particle. Any symme-
try imposes further constraints. If the particle is mirror
symmetric (invariant under reflection with respect to
its center of volume), then the (pseudo)tensor Cij must
vanish. If the particle has at least the symmetry of a
cube (i.e., is invariant under the group of rotations of a
cube), then Aij and Dij must be isotropic: Aij = αδij ,
Bij = βδij . The case of a sphere is classic; in this case,
as shown by Stokes, α = 6π , β = 8π .

Particles of helical shape are obviously not mirror
symmetric, and for these, Cij �= 0. This means that such
a particle freely sedimenting through a fluid must expe-
rience a torque and will therefore also rotate. Equally,
if such a particle rotates (through some internal mech-
anism), then it will experience a force causing it also
to translate. Microscopic organisms can propel them-
selves through a viscous environment by adopting a
swimming strategy that exploits this phenomenon.

6 Inviscid Vorticity Dynamics

In the formal Euler limit Re = ∞, it is tempting to sim-
ply set ν = 0 in the NS equation and in the vorticity
equation (section 3.3). Note, however, that, since ν mul-
tiplies the highest space derivative in these equations,
the order of the equations is reduced in so doing, and
it is not possible to satisfy the no-slip condition at rigid
fluid boundaries in this Euler limit. We shall consider
boundary effects in section 7; for the moment, we con-
sider the evolution of an isolated blob of vorticity far
from any fluid boundary. The vortex ring as visualized
by convected smoke is a well-known prototype. Vortex
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rings occur in a wide variety of circumstances, e.g., in

the gas emitted impulsively in volcanic eruptions, or in

the ocean, created by dolphins in the course of their

underwater antics.

6.1 Helmholtz’s Laws of Vortex Motion

The study of vorticity goes back to Hermann von Helm-

holtz (1858) and the subsequent work of P. G. Tait and

Lord Kelvin that this stimulated. Helmholtz recognized

that vortex lines are transported with the fluid and that

vortex tubes have constant strength in the course of

this motion. This means that, if the flow is such as to

stretch a vortex tube, then its cross section decreases

but the flux of vorticity along the tube (equivalent to the

circulation around it) is constant. Helmholtz also main-

tained that vortex lines must either be closed curves or

end on fluid boundaries, but it is now known that this is

incorrect; even for a localized blob of vorticity without

any obvious symmetry, a vortex line will in general wind

indefinitely, rather like a ball of wool, but in a chaotic

manner.

6.2 Conservation of Helicity

The fact that vortex lines move like material lines

within the fluid implies that any topological structure

of the vorticity field is conserved for all time. For exam-

ple, as recognized by Kelvin in 1867, if a vortex tube is

knotted on itself, then this knot persists for all time. Let

S be any closed surface moving with the fluid (a Lagran-

gian surface) on which ω · n = 0, a condition that per-

sists for all t. Then for each such surface containing a

volume V , we may define

H =
∫
V
u ·ωdV,

the helicity within V . This helicity is constant, as may

be proved directly from the Euler equations, and it is

known that this integral provides a measure of the link-

age of vortex lines within V . For example, if the vor-

ticity distribution consists of two linked vortex tubes

with (constant) circulations κ1 and κ2, and if V contains

just these two linked tubes, then H = ±2nκ1κ2, where

n is the Gauss linking number of the linkage, and the

sign is chosen according to whether the linkage is right-

or left-handed. This result provides a bridge between

the Euler equations of inviscid fluid mechanics and a

fundamental concept of topology.

6.3 The Biot–Savart Law

The relation inverse to ω = ∇ × u, ∇ · u = 0, is given
by the Biot–Savart law

u(x, t) = 1
4π

∫
ω(x′, t)× (x − x′)

|x − x′|3 dV ′,

which shows how the velocity at any point may be
instantaneously obtained from the vorticity distribu-
tion, a purely kinematic result. Knowing u(x, t), Eule-
rian fluid dynamics is now completely contained in the
statement that the vorticity field ω(x, t) is convected
by the velocity field u(x, t) that is induced in this way.

6.4 Vortex Ring Propagation

This consideration enabled Kelvin to calculate the
velocity of propagation of a vortex ring of circulation Γ
in the form

V ∼ Γ
4πR

{
log

(
8R
σ

)
− 1

4

}
,

where R is the radius of the ring and σ (�R) is the
radius of its cross section.

More generally, the velocity of a thin curved vor-
tex filament with parametric equation x = X(s, t) is
frequently assumed to be given by the local induc-
tion approximation in the compact normalized form
Xt = Xs ×Xss .

7 The Aerodynamics of Flight

Mastery of the aerodynamics of flight was arguably the
greatest engineering accomplishment of the twentieth
century. This mastery required an understanding of the
role played by viscosity in the immediate neighborhood
of an aircraft wing—in other words, of boundary-layer
theory, or what is known at a more sophisticated level
as the theory of matched asymptotic expansions.

7.1 The External Irrotational Flow

It is convenient to adopt a frame of reference fixed in
the aircraft; in this frame, the fluid velocity at infinity
is uniform, (−U,0,0), where U is the speed of flight.
In a steady two-dimensional flow, the vorticity equa-
tion reduces when ν = 0 to Dω/Dt = 0, so that vortic-
ity is constant on streamlines. The vorticity is zero on
every streamline that comes from far upstream; thus
∇ × u = 0; i.e., the flow is irrotational in the Euler
limit. The pressure in a steady irrotational flow is found
by integrating Euler’s equation, giving Bernoulli’s theo-
rem p = p0 − 1

2ρu
2, where p0 is a constant reference

pressure. Thus, where |u| is high, p is low, and vice
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versa. Aerodynamic lift on the wings results from lower
air speed (and thus higher pressure) on the lower sur-
face of the wings, a matter of some comfort for jet-age
travelers.

The classical theory of irrotational flow past a cir-
cular cylinder allows for a circulation κ, the flow due
to an apparent point vortex at the center of the cir-
cle. Given an airfoil cross section with a sharp trailing
edge, the exterior region can be conformally mapped
to the exterior of a circle. This provides a solution for
the irrotational flow past the airfoil, still including the
arbitrary circulation κ. There are two stagnation points
(where u = 0) on the airfoil surface: one on the lower
side and one on the upper side. The position of these
stagnation points varies with κ, and there is a unique
value of κ = κc that moves the upper stagnation point
exactly to the trailing edge; for this value, the airflow
leaves the trailing edge smoothly. The Kutta–Joukowski
hypothesis asserts that the critical value κc is actually
realized in practice. The lift per unit span of aircraft
wing is then evaluated as L = ρUκc. In order of magni-
tude, κc ∼ Ua sinα, where a is the streamwise extent
of the wing and α is the angle of attack (see figure 1);
so L ∼ ρaU2 sinα, independent of the value of ν . The
lift on the whole wing is therefore ρU2 times the area
of the wing projected on the flight direction.

If any lower value of κ is chosen, then air flows
round the sharp trailing edge T, at which point there
is a singularity of air velocity. The vorticity generated
by viscosity between T and the stagnation point S on
the upper side of the wing is convected downstream
into the wake, with a compensating increase in κ; this
process persists until the Kutta–Joukowski condition is
indeed satisfied (the stagnation point then suppressing
the singularity).

It remains to explain why, if the lift force on which
flight depends is independent of the very small value
of ν in air, the fact that ν �= 0 is nevertheless essential
for this lift to exist at all. This paradoxical role of weak
viscosity forces us to focus attention on the immediate
vicinity of the wing surface, i.e., the boundary layer.

7.2 The Boundary Layer

Let O be any point on the wing surface, and let Oxy be a
locally Cartesian coordinate system, with Ox tangential
to the boundary and Oy normal to it. The tangential
velocity increases from zero on the boundary to U(x)
(determined from irrotational theory) in the external
stream. In this thin layer, ∇2ψ ≈ ∂2ψ/∂y2 = ψyy , so

the steady vorticity equation simplifies to

−∂(ψ,ψyy)
∂(x,y)

= νψyyyy.

This integrates with respect to y to give

ψyψxy −ψxψyy = G(x)+ νψyyy,
or, in terms of the tangential and normal velocity
components u = ψy , v = −ψx ,

uux + vuy = G(x)+ νuyy.
Here, G(x) is the “constant of integration,” which may
be identified with the “−∂p/∂x” of the NS equation; it
turns out, therefore, that the pressure is independent
of the normal coordinate y ; in fact, since u ∼ U(x) for
large y , we must have G(x) = U(dU/dx). The external
pressure is impressed on the boundary layer. If G(x) >
0, the pressure gradient tends to accelerate the flow and
is described as favorable, while if G(x) < 0, it tends to
retard the flow and is described as adverse.

At this stage, dimensional analysis may be used to
great effect. First note that ν may be scaled out of
the above equation through defining ŷ = y/ν1/2, ψ̂ =
ψ/ν1/2, and note that y = O(ν1/2) when ŷ = O(1). We
now ask under what circumstances a similarity solution
of the form

ψ = (νxU(x))1/2f(η), with η = y
(
U(x)
νx

)1/2

is possible. It turns out that this requires that U(x) =
Axm (soG(x) =mA2x2m−1), for some constantsA,m,
and that f(η) then satisfies the equation

f ′′′ + 1
2 (m+ 1)ff ′′ +m(1 − f ′2) = 0,

with boundary conditions f(0) = f ′(0) = 0, f ′(∞) = 1,
the last of these coming from the required matching
to the external flow. For the particular value m = 0,
the equation is known as the Blasius equation, and it
describes the boundary layer on a flat plate aligned
with the stream, with zero pressure gradient. More
generally, it is known as the Falkner–Skan equation.

A well-behaved solution of the Falkner–Skan equa-
tion is one for which 0 < f ′ < 1 and f ′′ > 0 for all
positive η, i.e., one for which the tangential velocity
rises smoothly from zero on the boundary y = 0 to
its asymptotic value in the external stream. It is known
that such a solution exists for all positive m, and even
for mildly negative m in the range m > −0.09. How-
ever, no well-behaved solution exists for m < −0.09,
and the only solutions in this range of adverse pres-
sure gradient exhibit reversed flow (f ′ < 0) near the
wall. This suggests that a boundary layer cannot survive
against a strong adverse pressure gradient.
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Figure 1 Cross section of an aircraft wing (airfoil), and streamline of the irrotational flow relative to the wing in steady flight
at angle of incidence α. Additional circulation associated with viscous shedding of vorticity moves the stagnation point S
into coincidence with the trailing edge T, causing the flow to leave the trailing edge smoothly.

This conclusion is supported both by numerical solu-
tion of the full PDE for ψ and by observation of flow
past bluff (rather than streamlined) bodies, for which
the boundary layer is seen to separate from the bound-
ary, creating a substantial wake region in which the flow
recirculates with nonzero vorticity.

7.3 A Comment on Flow Separation

Boundary-layer separation at high Reynolds number is
one of the most difficult aspects of fluid mechanics,
and this has led to theoretical investigations of great
sophistication. Separation is responsible for the aero-
dynamic phenomenon of stall with consequential loss
of lift and increase of drag when an aircraft’s angle of
attack (the inclination of the wings to the oncoming
stream) increases beyond a critical value. Control of
separation is therefore crucial to maintenance of stable
flight.

We may note, however, that separation occurs even in
low-Reynolds-number situations. Consider, for exam-
ple, an oncoming shear flow (αy,0,0) over a rigid
boundary y = 0 that takes a sudden Gaussian dip in
the neighborhood of x = 0:

y = −y0e−(x/δ)
2
,

where y0 � δ. The Reynolds number can be taken to
be Re = αδ2/ν . When Re � 1, this flow separates at
some point x = xc = O(−δ), in the sense that a stream-
line detaches from the boundary at this point, with
reversed flow near the boundary immediately beyond
it. This type of low-Reynolds-number separation is
well documented. Now consider what happens as the
Reynolds number is continuously increased by reduc-
ing ν while keeping the geometry and the upstream
velocity constant. The separation will undoubtedly per-
sist, although the precise location of the separation

point xc may be expected to change slightly with
increasing Re.

An entirely different consideration, namely that of
flow instability, also arises with an increase in Re. We
now turn to this important branch of fluid dynamics.

8 Flow Instability

In consideration of the instabilities to which steady
flows may be subject, one may distinguish between fast
instabilities, i.e., those that are of purely inertial origin
and have growth rates that do not depend on viscosity,
and slow instabilities, which are essentially of viscous
origin and have growth rates that therefore tend to zero
as ν → 0, or equivalently as Re = UL/ν → ∞. Exam-
ples of fast instabilities are the Rayleigh–Taylor insta-
bility that occurs when a heavy layer of fluid lies over a
lighter layer, the centrifugal instability (leading to Tay-
lor vortices) that occurs in a fluid undergoing differen-
tial rotation when the circulation about the axis of rota-
tion decreases with radius, and the Kelvin–Helmholtz
instability that occurs in any region of rapid shearing
of a fluid. The best-known example of a slow instabil-
ity is the instability of pressure-driven Poiseuille flow
between parallel planes, which is associated with sub-
tle effects of viscosity in critical layers near the bound-
aries. The dynamo instability of magnetic fields in elec-
trically conducting fluids is usually also diffusive in ori-
gin (through magnetic diffusivity rather than viscosity)
and may therefore also be classed as a slow instability
(although exotic examples of fast dynamo instability
have also been identified).

8.1 The Kelvin–Helmholtz Instability

This may be idealized as the instability of a vortex
sheet located on the plane y = 0 in an inviscid fluid
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of infinite extent. The basic velocity field is then taken
to be U = (∓U,0,0) for y > 0 or y < 0, respec-
tively. We suppose that the vortex sheet is slightly
deformed to y = η(x, t) = η̂(t)eikx , where the real
part is understood. The associated perturbation veloc-
ity field is irrotational, and it is given by u = ∇φ1,2

for y > η and y < η, respectively. Incompressibility
implies that ∇2φ1,2 = 0, and the requirement that the
disturbance decays at y = ±∞ then leads to φ1,2 =
Φ1,2(t) exp(∓ky+ ikx). The sheet moves with the fluid,
according to Helmholtz; moreover, pressure is contin-
uous across it. These two conditions, when linearized
in the small perturbation quantities, lead to the ampli-
tude equation d2η̂/dt2 = 1

4k
2U2η̂. The vortex sheet is

therefore subject to an instability η ∼ exp eσt , where σ
is given by the dispersion relation σ = 1

2 |kU|. The phys-
ical interpretation of this instability is that the surface
vorticity on the sheet tends to concentrate at the inflec-
tion points where ηx > 0, ηxx = 0, and the induced
velocity then tends to amplify the perturbation of the
sheet.

A notable feature of this dispersion relation is that as
the wavelength λ = 2π/k of the disturbance decreases
to zero, its growth rate σ increases without limit.
This instability is therefore quite dramatic. As the dis-
turbance grows, nonlinear effects inevitably become
important. In the nonlinear regime, the vorticity con-
tinues to concentrate at the upward-sloping inflection
points, the distribution of vorticity on the sheet becom-
ing cusp-shaped at a finite time, beyond which it is
believed that spiral windup of the vortex sheet around
each such cuspidal singularity occurs.

The same type of Kelvin–Helmholtz instability occurs
for any parallel flow having an inflectional velocity pro-
file; it is ubiquitous in nature and is one of the main
mechanisms of transition from laminar to turbulent
flow.

8.2 Transient Instability

This is a very different type of instability, but it is also
a key ingredient in the process of transition to turbu-
lence for many flows. It is well illustrated with refer-
ence to plane Couette flow U = (αy,0,0) for |y| < b,
a flow that is known to be stable to conventional dis-
turbances of normal-mode type. Here, we consider the
central region of such a flow and neglect the influence
of the boundaries. In this region the flow is subject to
disturbances of the form

u = A(t)eik(t)·x , A(t) · k(t) = 0,

where k(t) = (k1, k2 − αk1t, k3). This type of dis-
turbance, whose wave vector k(t) is itself sheared by
the flow, is called a Kelvin mode. Substitution into the
NS equation and elimination of the pressure leads to
an exact solution for the amplitude A(t). This solu-
tion reveals that, when k2

1 � k2
2 + k2

3 and viscous
effects are negligible, the component A1(t) increases
linearly (rather than exponentially) for a long time. This
instability may be attributed to the term u · ∇U =
u2(dU/dy) in the NS equation, which corresponds
to persistent transport in the y-direction of the x-
component of mean momentum. This is the essence
of transient, as opposed to normal-mode, instability.
Transient instability is responsible for the emergence
of streamwise vortices in shear flows. These vortices
can themselves become prone to secondary instabilities,
almost inevitably leading to transition to turbulence.

8.3 Centrifugal Instability

Consider now the circular Couette flow between rotat-
ing cylinders, for which the velocity field takes the
form u = (0, v(r),0) in cylindrical polar coordinates
(r , θ, z). The radial pressure gradient required to bal-
ance the centripetal force is dp/dr = ρv2/r . For the
moment, neglect viscous effects. Suppose that a ring
of fluid of radius r expands to radius r1 = r + δr ,
its angular momentum remaining constant; its veloc-
ity then becomes v1 = rv(r)/r1. The centripetal force
acting on the ring will now be ρ(rv/r1)2, and if this
is greater than the local restoring pressure gradient
ρv2

1/r1, the ring will continue to expand. The condition
for instability is then |rv| > |r1v(r1)| or, equivalently,

d
dr

|rv(r)| < 0.

Thus, if the angular momentum (or, equivalently, the
circulation) decreases outward, then the flow is prone
to centrifugal instability (the Rayleigh criterion).

Such a flow is realized between coaxial cylinders,
when the inner cylinder (of radius a) rotates about its
axis with angular velocity Ω while the outer cylinder is
stationary. If the gap d between the cylinders is small
compared with a, then, as shown by G. I. Taylor in 1923,
when due account is taken of viscous effects, the crite-
rion for instability to axisymmetric disturbances of the
above kind becomes, to good approximation,

ad3Ω2

ν2
> 1708.

The dimensionless number Ta ≡ ad3Ω2/ν2 is known
as the Taylor number. The instability when Ta > 1708
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manifests itself as a sequence of axisymmetric Taylor
vortices of nearly square cross section and alternating
sign of azimuthal vorticity.

There is a close analogy between centrifugal instabil-
ity and the convective instability of a horizontal layer of
fluid of depth d, heated from below (Rayleigh–Bénard
convection). Here, the analogue of the Taylor number
is the Rayleigh number Ra = gβd3ΔT/νκ, where κ
is the thermal diffusivity of the fluid, β its coefficient
of thermal expansion, and ΔT the temperature dif-
ference between the bottom of the layer and the top.
The analogy is so close that the critical Rayleigh num-
ber for instability is also Ra = 1708. For Ra just a
little greater than 1708, a steady pattern of convec-
tion is established: either rolls with horizontal axes or
convective cells with hexagonal planform, the choice
being influenced by weak nonlinearity and other subtle
effects.
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IV.29 Magnetohydrodynamics
David W. Hughes

1 Introduction

Magnetohydrodynamics (MHD) is the study of the
motion of an electrically conducting fluid or plasma
in the presence of a magnetic field. It is employed
principally in relation to astrophysical and geophysical

magnetic fields, but there are also several important
terrestrial and industrial applications. On the grand
scale, magnetic fields are both ubiquitous and dynami-
cally significant; determining a theoretical understand-
ing of their behavior is therefore crucial to under-
standing the dynamics of star formation, the interstel-
lar medium, accretion disks, stellar atmospheres, and
stellar and planetary interiors. Figure 1 shows a high-
resolution image taken from space of the solar atmo-
sphere, revealing the scale and complexity of the mag-
netic field. The most ambitious terrestrial application
of MHD lies in the quest to harness energy from nuclear
fusion; controlling the confinement of fusion plasma in
tokamaks through the imposition of strong magnetic
fields poses a formidable theoretical and experimen-
tal challenge. In a rather different industrial direction,
MHD seeks to explain the complex turbulent motion
that arises via the regulation, by magnetic fields, of the
flow of liquid metals in casting and refining operations.

The origins of MHD might be traced to Larmor’s
short, but highly influential, 1919 paper entitled “How
could a rotating body such as the sun become a mag-
net?” in which it was postulated that the swirling
motions inside stars could maintain a magnetic field.
This was followed by the early theoretical development
of the subject in the 1930s and 1940s by pioneers such
as Alfvén, Cowling, Elsasser, and Hartmann. A century
earlier, in what might be regarded as a precursor to
MHD, Faraday had investigated the role of a moving
fluid conductor by attempting to measure the poten-
tial difference induced by the Thames flowing in the
Earth’s magnetic field.

The governing equations of MHD are derived from
combining the ideas of fluid dynamics with those of
electromagnetism. In spirit, though, it is closer to the
former. The “fluid” under consideration in MHD may
be truly a fluid, such as the liquid iron in the Earth’s
outer core, or, as in astrophysical contexts, it may be an
ionized gas or plasma. To a very good approximation,
collision-dominated plasmas, as found in stellar inte-
riors, can be treated as a single fluid, and their behav-
ior is therefore well described within MHD. However, in
other contexts, e.g., stellar atmospheres, a more com-
plex (multifluid) plasma description may sometimes be
required.

Magnetohydrodynamics extends fluid dynamics in
two significant ways: by the addition of a new equation,
the magnetic induction equation, and by the incorpora-
tion of the magnetic force, the Lorentz force, into the
momentum (navier–stokes) equation [III.23 §2]. The
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Figure 1 An extreme ultraviolet image of the sun’s atmo-
sphere, taken by the Solar Dynamics Observatory. Bright
regions are locations of intense magnetic activity. The
magnetic field emerges from the solar interior, forming
sunspots on the surface and arched structures (coronal
loops) in the solar atmosphere.

induction equation describes the influence of the veloc-
ity on the magnetic field; conversely, the Lorentz force
describes the back reaction of the magnetic field on the
velocity. Thus, the field and flow are linked in a com-
plex, nonlinear fashion. MHD therefore contains all of
the complexities and subtleties of (nonmagnetic) fluid
dynamics together with some unambiguously magnetic
novel phenomena.

2 The Magnetic Induction Equation

Magnetohydrodynamics is a nonrelativistic theory, val-
id for fluid velocities much less than the speed of light;
its starting point is, therefore, the set of “pre-Maxwell”
equations of electromagnetism, in which the displace-
ment current is neglected. The electric field E, magnetic
field B, and electric current J (real three-dimensional
vectors) then satisfy Ampère’s law, Faraday’s law, and
the divergence-free condition on the magnetic field. In
MKS units, these are expressed as

∇× B = μ0J,
∂B
∂t

= −∇× E, ∇ · B = 0,

where μ0 is the magnetic permeability. To obtain a
closed system of equations, one more relation (Ohm’s
law) is needed, linking E, B, and J. In MHD it is custom-
ary to adopt the simplest form of Ohm’s law, namely,

J′ = σE′, where the fields J′ and E′ are measured in
a frame of reference moving with a fluid element and
whereσ is the electrical conductivity. Relative to a fixed
reference frame, this becomes

J = σ(E + u× B),
where u is the fluid velocity. (Additional plasma pro-
cesses—such as an electron pressure gradient or the
Hall effect, which are not included in classical MHD—
can be incorporated via a generalized version of Ohm’s
law.) Eliminating E and J and, for simplicity, assuming
that the conductivity is uniform leads to the magnetic
induction equation:

∂B
∂t

= ∇× (u× B)+ η∇2B, (1)

where η = 1/(σμ0) is the magnetic diffusivity. In MHD
primacy is afforded to the magnetic field; the electric
field and current are secondary, but, if needed, they can
be evaluated from a knowledge of B. Similarly, Gauss’s
law relating the electric field to the electric charge plays
no explicit role in the above arguments; it simply pro-
vides a means of determining the charge once E has
been determined.

The induction equation describes the evolution of
the magnetic field subject to advection and diffusion. A
measure of the relative magnitude of these two terms is
given by the magnetic Reynolds number Rm = UL/η,
where U and L are representative velocity and length
scales. In astrophysical bodies, characterized by vast
length scales and high conductivities, Rm is invariably
large and often extremely so (in the solar convection
zone; for example, Rm ≈ 109 at depth and Rm ≈ 106

close to the surface; in the interstellar medium, Rm ≈
1017). On the other hand, for most industrial flows of
liquid metals, Rm is small (� 10−2).

On expanding the curl of the vector product, and
using ∇·B = 0, equation (1) can alternatively be written
as

DB
Dt

= B · ∇u− (∇ · u)B+ η∇2B,

where D/Dt ≡ ∂/∂t + u · ∇ denotes the Lagran-
gian or material derivative “following the fluid.” The
three terms on the right-hand side denote, respectively,
contributions to magnetic field evolution due to field
line stretching, the compressibility of the fluid, and
magnetic diffusion.

It is often helpful to decompose the (solenoidal)
magnetic field into poloidal and toroidal components:

B = BP + BT = ∇×∇× (Pr)+∇× (Tr),
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where P and T are scalar functions of position and r
is the position vector. For axisymmetric fields, BT is
azimuthal and BP meridional.

3 Perfectly Conducting Fluids

Motivated by the fact that Rm � 1 in astrophysics,
it is instructive to consider the idealized dynamics of
a perfectly conducting fluid (often referred to as ideal
MHD), for which Rm is formally infinite and, from (1),
B is described simply by

∂B
∂t

= ∇× (u× B) (2)

(though of course one always needs to exercise cau-
tion when dropping the term with the highest deriva-
tive). Here, we consider two important properties of the
magnetic field in a perfectly conducting fluid.

3.1 Flux Freezing

Equation (2) for the magnetic field B is formally iden-
tical to the vorticity equation of an inviscid fluid and,
as such, we may seek analogs of the helmholtz vor-

tex theorems [IV.28 §6.1]. The proofs go through unal-
tered, since they do not rely on the additional con-
straint that the vorticity is the curl of the velocity. Thus,
for any material surface Sm moving with the fluid it can
be shown that

D
Dt

∫
Sm

B · ndS = 0,

where n is the normal to the surface. In other words,
the flux through a surface moving with the fluid is
conserved. It is then straightforward to show that two
fluid elements initially on the same magnetic field line
will remain on that line for all subsequent times. This
is Alfvén’s famous result that the magnetic field lines
move with the fluid; this is often referred to as the field
lines being frozen into the fluid. One of the earliest
results of MHD—Ferraro’s 1937 law of isorotation—is a
particular case of flux freezing. It states that if the angu-
lar velocity Ω of a flow is constant on lines of poloidal
magnetic field (i.e., BP · ∇Ω = 0), then there is no ten-
dency to generate toroidal field through the pulling
out of poloidal field. Conversely, if BP · ∇Ω �= 0, then
toroidal field is “wound up” from a poloidal component
in a differentially rotating flow, an important consid-
eration given that most astrophysical bodies support
large-scale shearing motions.

A related result comes from combining the induc-
tion equation with the equation for the conservation

of mass to give

D
Dt

(
B
ρ

)
= B
ρ

· ∇u.

Thus B/ρ satisfies the same equation as a material line
element and, consequently, will increase or decrease
in magnitude in direct proportion to the stretching or
compression of such an element. One important con-
sequence is the amplification of the magnetic field dur-
ing the gravitational collapse of astronomical bodies.
When this is particularly dramatic, as in the formation
of a neutron star, in which the radius can decrease by
a factor of O(105), it leads to an immense (O(1010))
increase in the magnetic field strength.

3.2 Magnetic Helicity

Since the magnetic field B is solenoidal, it can be
expressed as B = ∇×A, where A is the magnetic vec-
tor potential. Then, by analogy with the helicity of

a fluid flow [IV.28 §6.2], the magnetic helicity of a
volume V bounded by a magnetic surface (i.e., one on
which B · n = 0) is defined as

H =
∫
V
A · BdV ;

H is invariant to gauge transformations A→ A+∇φ.

The magnetic helicity provides a measure of the link-
age of magnetic flux tubes. In a perfectly conducting
fluid, in which field lines are frozen to the fluid, we
would therefore expect this topological property to be
preserved for all times. This can indeed be proved
straightforwardly from a combination of the induc-
tion equation and the equation for the conservation
of mass. With finite diffusivity, H is no longer con-
served. It has, though, been conjectured that H is,
nonetheless, “approximately conserved” in high-Rm
fluids, and that in decaying MHD turbulence, magnetic
energy will decay, whereas magnetic helicity will, to a
first approximation, remain constant.

4 Kinematic Considerations

The interaction between the two processes of advec-
tion and diffusion, encapsulated by the induction equa-
tion, is brought out in the following simple important
examples, in which we shall suppose that the flow is
prescribed.

4.1 Stagnation Point Flow

The evolution of a unidirectional magnetic field, B =
(0, B(x, t),0), say, in the two-dimensional stagnation
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point flow u = λ(−x,y,0) is governed by the equation

∂B
∂t

− λx ∂B
∂x

= λB + η ∂
2B
∂x2

.

Magnetic field is brought in toward x = 0 by the
flow, but in a region of strong field gradients, it is
then subject to diffusion. A steady state is attained in
which these processes balance. Two solutions are of
particular interest, providing prototypical examples of
fundamental astrophysical processes.

For a magnetic field of one sign,

B(x) = Bmax exp(−λx2/2η),

affording the simplest model of the concentration of
field into a flux rope. If the total magnetic flux is
finite, and equal to B0L, say, then it accumulates into a
rope of widthO(Rm−1/2L) and maximum field strength
O(Rm1/2B0).

For a field that changes sign, vanishing at x = 0,

B(x) = E√
ηλ

exp(−x2λ/2η)
∫ x√λ/η

0
exp(s2/2)ds,

where E is the (constant) electric field in the z-direction.
This provides a simple description of a current sheet
formed by the annihilation of magnetic fields of oppo-
site sign. It is an important ingredient in the more com-
plex process of magnetic reconnection, in which mag-
netic energy is released rapidly through a change in the
topology of the field.

4.2 Flux Expulsion

In a swirling flow, a magnetic field is distorted and
amplified; its transverse scale of variation decreases,
leading to diffusion becoming important and the field
being annihilated, or expelled from the flow. An ex-
tremely complicated version of this process takes
place, for example, in the turbulent convection cells
observed at the solar surface. The underlying physics,
and in particular the timescale of expulsion, can,
though, be understood via the idealized example of a
single laminar eddy, with a field in the plane of the flow.
Consider the flow u = rΩ(r)eθ in plane polar coordin-
ates, with a field initially uniform of strength B0 and
parallel to the direction θ = 0. Expressing the magnetic
field as B = ∇×Aez and using the Fourier decomposi-
tion A = B0 Im(f (r , t)eiθ) gives the following equation
for f :

∂f
∂t

+ iΩ(r)f = η
(
∂2

∂r2
+ 1
r
∂
∂r

− 1
r2

)
f ,

with f(r ,0) = r . This has the asymptotic solution

f ∼ r exp(−iΩt − ηΩ′2t3/3);

significantly, flux expulsion occurs on an O(Rm1/3)
timescale, as first proposed by Weiss in 1966, much
faster than the O(Rm) diffusive (or Ohmic) timescale.

5 The Lorentz Force

The induction equation (1) describes the evolution of
the magnetic field B under the influence of a fluid veloc-
ity u. However, except when very weak, the magnetic
field is not passive, but itself exerts a force on the veloc-
ity, to be incorporated into the Navier–Stokes equation.
This is the Lorentz force, defined by

J × B = 1
μ0
(∇× B)× B, (3)

after substituting for the current from Ampère’s law.
(Under the assumptions of MHD, the electrostatic force
is negligible.) MHD is thus described by a coupled non-
linear system of partial differential equations. Note
that the Lorentz force has no influence on the motions
along magnetic field lines; these must result from other
forces such as gravity or pressure gradients.

5.1 Magnetic Pressure and Tension

The Lorentz force (3) may be decomposed as

J × B = −∇
(
B2

2μ0

)
+ 1
μ0
B · ∇B, (4)

where B denotes the magnitude of the magnetic field B.
The first term represents the gradient of magnetic pres-
sure, pm = B2/2μ0. The total pressure is then the sum
of the gas and magnetic pressures; the ratio of these,
p/pm, is known as the plasma-β. In gases, the ramifica-
tions of the magnetic pressure can be extremely impor-
tant. An isolated tube of magnetic flux, in total pressure
balance with a nonmagnetic atmosphere, will necessar-
ily have a reduced gas pressure. If the tube is also at the
same temperature as its surroundings, then, from the
perfect gas law, it will have a lower density. It will there-
fore rise, a phenomenon known as magnetic buoyancy.
As first proposed by Parker, this mechanism is believed
to be instrumental in bringing up magnetic flux tubes
from the interior of the sun to the solar surface and on
into the solar atmosphere (see figure 1).

Writing B = Bŝ, in terms of the unit vector ŝ along
the field, the second term in (4) can be decomposed as

B
μ0

d
ds
(Bŝ) = B

μ0

dB
ds
ŝ + B

2

μ0

dŝ
ds

= d
ds

(
B2

2μ0

)
ŝ + B

2

μ0

n̂
Rc
,
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where n̂ is the principal normal to the magnetic field
line and Rc is its radius of curvature. The first term
exactly opposes the component of the magnetic pres-
sure along field lines. The second represents the mag-
netic tension, showing that field lines, when bent, pos-
sess an elastic restoring force.

5.2 Force-Free Fields

In low-β plasmas, such as that of the solar corona, the
magnetic field is dominant. Static or, more accurately,
quasistatic magnetic structures can then be modeled as
possessing magnetic fields that are force free, i.e., the
Lorentz force vanishes. From (3) this implies that B and
J are parallel and hence that

∇× B = λB, (5)

where λ is a scalar, which may depend on position. Vec-
tor fields satisfying (5) are known as Beltrami fields. It
follows thatB·∇λ = 0, namely, that λ cannot vary along
an individual field line. The simplest case is when λ is a
constant; in a cylindrically symmetric system, for exam-
ple, this leads to a magnetic field with the following
components, expressed as Bessel functions:

Br = 0, Bθ = B0J1(λr), Bz = B0J0(λr).

5.3 Hartmann Flow

The influence of the magnetic tension is illustrated by
the flow of an electrically conducting fluid along a chan-
nel with a transverse magnetic field. Flows such as this,
which were first studied theoretically and experimen-
tally by Hartmann in the 1930s, have received consider-
able attention owing to their importance in liquid-metal
MHD. Suppose that an incompressible viscous fluid, of
density ρ and kinematic viscosity ν , is driven by a uni-
form pressure gradient in the x-direction between two
parallel planes at y = ±d with an imposed uniform
magnetic field B0ŷ. The flow u(y)x̂ vanishes on the
bounding planes and is fastest in the center of the chan-
nel; it thus pulls out the imposed field to generate a
component of field b(y)x̂. The field lines then possess
a magnetic tension, which acts to resist the motion. A
steady state is possible in which the stretching of the
field lines and their “slippage” due to diffusion are in
balance. The nondimensional steady-state momentum
and induction equations can be written concisely as

Ha
db
dy

+ d2u
dy2

= −1, Ha
du
dy

+ d2b
dy2

= 0,

where the Hartmann number Ha = dB0
√
σ/ρν . These

are to be solved subject to the no-slip boundary

condition (u = 0 at y = ±1) and a magnetic boundary
condition

± db
dy

+ 1
c
b = 0 at y = ±1,

where c = 0 corresponds to electrically insulating walls
and c → ∞ to perfectly conducting boundaries. The
resulting velocity is given by

u = 1
Ha

(
1 + c

c Ha+ tanhHa

)(
1 − cosh(Hay)

coshHa

)
.

For small Ha, the classical parabolic hydrodynamic
profile is recovered. ForHa� 1, the velocity is strongly
reduced; furthermore, the profile becomes flat across
the bulk of the channel, with exponential boundary
layers of width O(Ha−1).

6 Magnetohydrodynamic Waves

The interplay in MHD between the velocity and the mag-
netic field is brought out most vividly through the sup-
port of a variety of wave motions. Such waves, with
an extended range of spatial and temporal scales, are
revealed in spectacular movies of the magnetic field in
the solar atmosphere.

Most striking is the occurrence of what are known
as Alfvén waves. These can be analyzed in the sim-
plest system of ideal incompressible MHD. Consider
linear plane-wave perturbations, varying as exp(i(k ·
x −ωt)), to a homogeneous equilibrium state with a
uniform magnetic field B0. Combining the momentum
and induction equations yields the dispersion relation

ω2 = k2
‖V

2
A ,

where the Alfvén velocity VA = B0/
√μ0ρ, and k‖ is the

component of the wave vector parallel to the imposed
field. Alfvén waves, which are transverse, are driven
solely by the magnetic tension and are therefore, in
some sense, analogous to waves on a stretched string.

Compressible atmospheres support two additional
modes, known as magnetoacoustic waves, with disper-
sion relation

ω4 −ω2k2(V2
S + V2

A)+ k2
‖k

2V2
S V

2
A = 0,

where the speed of sound VS = √
γp/ρ. The two possi-

ble solutions for the modulus of the phase speed |ω/k|
are designated as fast and slow modes. The properties
of the phase and group velocities for the various MHD
waves are demonstrated most clearly by a polar dia-
gram, as shown in figure 2. The most significant differ-
ences are revealed by the group velocities: whereas for
the fast mode, energy is propagated in all directions,
for the slow mode, energy propagates in only a small
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B0

(a) (b)

B0

Figure 2 (a) Phase velocities and (b) group velocities for
the various MHD waves with an imposed magnetic field
as shown. Solid lines denote the fast and slow waves; the
Alfvén waves are denoted by the dashed lines in (a) and the
solid circles in (b). The ratio of Alfvén to sound speeds (or
the inverse ratio; the picture is unaltered) is 0.8.

range of angles around the direction of the imposed

field and for the Alfvén waves, energy is conveyed, at

speed VA, only in the direction of B0.

7 Dynamos

Dynamo theory—the study of the maintenance of mag-

netic fields—constitutes one of the most mathemati-

cally intriguing and physically significant areas of MHD.

Put starkly, there are just two possibilities for the

occurrence of any magnetic field observed in an astro-

physical body: either it is a slowly decaying “fossil

field,” trapped in the body at its formation, or, alterna-

tively, it is maintained by the inductive motions of the

plasma within the body. The latter process is known

as a magnetohydrodynamic dynamo. For the Earth

the issue is clear-cut. Paleomagnetism reveals that the

Earth’s field has persisted for O(109) years, whereas

its decay time (L2/η, where L is the length scale of the

conducting outer core and η its magnetic diffusivity) is

several orders of magnitude shorter:O(105) years. The

geomagnetic field cannot therefore be simply a decay-

ing fossil field; it must be maintained by some sort of

dynamo resulting from the flows of the liquid metal in

the outer core. The case for dynamo action in the sun

(and, by extension, similar stars) is rather different. The

Ohmic decay time for the solar field is long, O(109)
years, comparable with the lifetime of the sun itself,

and so on these grounds alone one cannot rule out a

primordial field explanation. However, the solar mag-

netic field exhibits variations on very short timescales,

with the entire field reversing every eleven years or so,

and it is extremely difficult to reconcile this behavior

with that of a slowly decaying relic field.

A full description of any natural MHD dynamo can
be obtained only through a solution of all the govern-
ing equations. That said, many of the most important
aspects of dynamo theory, and many of its subtleties,
can be captured via consideration of the induction
equation alone.

7.1 The Kinematic Dynamo Problem

The kinematic dynamo problem asks whether it is pos-
sible to find a velocity u(x, t) such that the magnetic
field B, governed solely by the induction equation, does
not decay. More formally, a flow u is said to act as a
kinematic dynamo if the magnetic energy,

M(t) = 1
2μ0

∫
all space

B2 dV,

does not tend to zero as t → ∞. For the simplest case of
steady flows u(x), the magnetic field varies as ept ; the
induction equation reduces to an eigenvalue problem
for p, with dynamo action if there exists an eigenvalue
with Re(p) > 0.

Although easily stated, the kinematic dynamo prob-
lem is rather more demanding to solve. Indeed, whereas
it is possible to prove rigorously a number of anti-
dynamo theorems, proving the positive result is less
straightforward.

7.2 Antidynamo Theorems

Antidynamo theorems address either the magnetic
field or the velocity. Those that address the former,
which are geometric in nature, reveal how certain types
of field cannot be generated by dynamo action. Those
that address the latter, which are concerned with either
the flow geometry or, alternatively, some property of
the flow, such as its amplitude or stretching capac-
ity, demonstrate that specific classes of velocity cannot
succeed as dynamos.

The most important result concerning the magnetic
field is Cowling’s theorem of 1933, which states that
a steady axisymmetric field cannot be maintained by
dynamo action. Cowling argued that such a magnetic
field must have a closed contour on which the poloidal
field BP vanishes and around which the BP-lines are
closed (an “O-type” neutral point); consideration of
Ohm’s law then shows that the induction effect cannot
overcome diffusion in the neighborhood of the neutral
point. It is important, however, to point out that non-
axisymmetric magnetic fields can be generated from
axisymmetric flows.



482 IV. Areas of Applied Mathematics

In terms of the geometrical properties of the velocity,
the most revealing antidynamo theorem is due to Zel-
dovich, who proved that a planar two-dimensional flow,
u = (u(x,y, z, t), v(x,y, z, t),0), say, is incapable of
dynamo action. The proof proceeds in two identical
steps. First, the z-component of the induction equation,

DBz
Dt

= η∇2Bz, (6)

reveals that there is no source term for Bz ; it therefore
follows that Bz → 0. Hence, only the field in the xy-
plane need be considered. On writing B = ∇× (Aẑ), A
then also satisfies equation (6), from which it follows
that B tends to zero. Thus, stretching of the field is not
in itself sufficient for dynamo action; lifting the field
out of the plane and folding it, constructively, is an
essential factor.

Bounds on flow properties necessary for dynamo
action may be obtained through consideration of the
evolution of the magnetic energy. Suppose that an
incompressible conducting fluid is contained in a vol-
ume V , external to which is an insulator. The scalar
product of equation (1) with B/μ0, after using the
divergence theorem and the boundary conditions, gives

d
dt

∫
V

B2

2μ0
dV =

∫
V
J · (u× B)dV − 1

σ

∫
V
J2 dV.

The second term on the right-hand side can be bounded
in terms of the magnetic energy using calculus of vari-
ations. The first can be bounded in terms of either the
maximum velocity or the maximum of the rate-of-strain
tensor. If V is a sphere, then the former method reveals
that dynamo action requires that Rm > π , where Rm
is based on the maximum fluid velocity; the latter gives
the bound R̃m > π2, where the magnetic Reynolds
number R̃m is now defined (unconventionally) using
the maximum of the rate-of-strain tensor.

Putting everything together, antidynamo theorems
reveal the essence of at least some of what is needed for
a successful dynamo; complexity (in the field and flow)
and sufficiently high Rm are vital ingredients. Conse-
quently, most demonstrations of dynamo action are the
result of numerical (i.e., computational) solution of the
induction equation for prescribed velocities.

7.3 Mean-Field MHD

One of the great advances in dynamo theory, pioneered
by Steenbeck, Krause, and Rädler in the 1960s, was to
seek a solution not for the magnetic field itself but for
its mean value 〈B〉, where the averaging operator 〈·〉
obeys the Reynolds rules; for example, this could be an

ensemble average or, more appropriately for isolated

bodies such as the Earth, an azimuthal average.

Averaging equation (1), and supposing for the mo-

ment that there is no mean flow, gives

∂〈B〉
∂t

= ∇× 〈u× b〉 + η∇2〈B〉,

where b is the fluctuating magnetic field. The term

E = 〈u × b〉, which lies at the very heart of the theory

and represents the essential difference between the

averaged and unaveraged induction equations, denotes

a mean electromotive force resulting from correlations

between the fluctuating velocity and the fluctuating

field. The system is closed through an argument relat-

ing b, and henceE, linearly to 〈B〉, and then postulating

an expansion

Ei = αij〈B〉j + βijk
∂〈B〉j
∂xk

+ · · · . (7)

In a kinematic theory, the tensors αij and βijk depend

only on the statistical properties of the flow and on

Rm. The first term (the “α-effect” of mean-field MHD)

provides a possible source of dynamo action; the sec-

ond generally represents an additional, turbulent diffu-

sion. From (7) it is immediately possible to make a very

strong statement. Since E is a polar vector, whereas

〈B〉 is axial, αij must be a pseudotensor, i.e., a ten-

sor that changes sign under a transformation from

right-handed to left-handed coordinates. It therefore

vanishes if the flow, on average, is reflectionally sym-

metric. Thus, for mean-field dynamo action through

the α-effect, the flow must possess “handedness,” the

simplest measure of this being the flow helicity 〈u ·
∇×u〉. Astrophysical flows, influenced by rotation, will

typically be helical.

A mean-field dynamo may be thought of as a means

of maintaining the “dynamo loop” between poloidal

and toroidal fields. Large-scale differential rotation is

a generic feature of astrophysical bodies and provides

a natural means of generating toroidal magnetic field

by stretching the poloidal component (often referred to

as theΩ-effect). Closing the loop by the regeneration of

poloidal field from toroidal, which is the less physically

transparent step, is then accomplished by the α-effect.

The combination of these processes is known as anαΩ-

dynamo. Alternatively, both elements of the cycle can

be achieved through the α-effect, without the need for

differential rotation (an α2-dynamo).

A model flow that has proved to be extremely influ-

ential in the development of dynamo theory is that
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introduced by G. O. Roberts in 1972, defined by

u =
(
∂ψ
∂y
,−∂ψ
∂x
,ψ
)
, with ψ = cosx + cosy. (8)

The flow is maximally helical (u parallel to ∇× u). For
z-independent flows, such as (8), the induction equa-
tion supports solutions of the form B(x,y, t)eikz ; for
any given wave number k, the problem then becomes
simpler, involving only two, rather than three, spatial
dimensions. In this geometry, a mean-field dynamo is
one in which the field has a long z wavelength (small k),
with averages taken over the xy-plane.

An exciting experimental challenge, taken up by a
number of groups worldwide, is to construct a labora-
tory MHD dynamo. One of the successes has been the
Karlsruhe dynamo, in which liquid sodium is pumped
through an array of helical pipes, thereby producing a
flow similar to that conceived by Roberts.

7.4 Fast Dynamos

As discussed earlier, the magnetic diffusion timescale
for astrophysical bodies is extremely long; it is thus of
interest to ask whether dynamo action can proceed on
a shorter, diffusion-independent timescale. The math-
ematical abstraction of the astrophysical problem, in
which Rm is large but finite, is to investigate kinematic
dynamo action in the limit asRm → ∞. To fix ideas, con-
sider a steady flow u(x) for which the magnetic field
assumes the form B(x)ept . A flow will act as a dynamo
if Re(p) > 0 for some value of Rm; it is said to act as a
fast dynamo if

lim
Rm→∞

Re(p) > 0;

otherwise, it is said to be slow.
An extremely important result is the derivation of an

upper bound for fast-dynamo growth, the growth rate
for steady or time-periodic flows being bounded above
by the topological entropy of the flow, htop. This is a
measure of the complexity of the flow and is closely
related to hline, the rate of stretching of material lines
(for two-dimensional flows, they are identical; for three-
dimensional flows, hline � htop). Since nonchaotic flows
have zero topological entropy, a simple consequence
is the following powerful anti-fast-dynamo theorem:
fast-dynamo action is not possible in an integrable flow.
Steady, two-dimensional flows, such as the Roberts
flow (8), are therefore guaranteed to act (at best) only as
slow dynamos. That said, it is of interest to see to what
extent the Roberts dynamo fails to be fast; the answer
turns out to be “not by much.” In a powerful asymp-
totic analysis, Soward proved that the growth rate as

Rm → ∞ is given by

p ∼ ln(lnRm)
lnRm

,

with its “slowness” attributed to the long time spent by
fluid elements in the neighborhood of the stagnation
point.

Given the difficulties, in general, in providing rig-
orous demonstrations of dynamo action, it is per-
haps not surprising that these are exacerbated for the
more restrictive class of fast dynamos. The numerical
approach is to consider dynamos at increasing values
of Rm, in the hope of reaching an asymptotic regime
in which the growth rate is positive and ceases to
vary with Rm. For three-dimensional flows, this has
so far proved inconclusive; the requisite computational
resources increase with Rm (in order to resolve finer-
scale structures), and no plausible Rm-independent
regime has yet been attained, even with today’s com-
puting facilities. Instead, the most convincing examples
of fast-dynamo action have come from time-dependent
modifications of the Roberts flow, allowing exploration
of the dynamo up to Rm = O(106), with the time
dependence circumventing the anti-fast-dynamo theo-
rem. Although clearly not a proof, the numerical evi-
dence is strong that such flows can act as fast dynamos.

8 Instabilities

Magnetic fields can play a significant role in modi-
fying classical hydrodynamic instabilities driven, for
example, by shear flows or by convection. They can,
though, also be the agent of instability. Here we con-
sider two such examples, each extremely important in
an astrophysical context.

8.1 Magnetic Buoyancy

In section 5.1 we discussed how magnetic pressure can
cause the rise of isolated tubes of magnetic flux, a man-
ifestation of a lack of equilibrium. But magnetic buoy-
ancy can also act as an instability mechanism, one that
is believed to be responsible for facilitating the breakup
of a large-scale field in the solar interior into the flux
tubes that subsequently rise to the surface.

Consider a static equilibrium atmosphere with a
homogenous horizontal magnetic field whose strength
varies with height z. For motions that do not bend the
magnetic field lines (interchange modes), the criterion
for instability can be derived from a fluid parcel argu-
ment, assuming that a displaced parcel conserves its
mass, magnetic flux, and specific entropy. It is then
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straightforward to show that a horizontal field B(z)x̂
is unstable to interchange disturbances if

−gV
2
A

V2
S

d
dz

ln
(
B
ρ

)
>
g
γ

d
dz

ln
(
p
ργ

)
= N2,

whereN is the buoyancy frequency. Significantly, insta-
bility can occur even in convectively stable atmo-
spheres (N2 > 0) provided that B/ρ falls off suf-
ficiently rapidly with height. Somewhat surprisingly,
three-dimensional modes, despite having to do work
against magnetic tension, are more readily destabi-
lized, requiring a sufficiently negative gradient only
of B (rather than B/ρ).

8.2 Magnetorotational Instability

A fundamental and long-standing problem in astro-
physics concerns the mechanism by which matter
accreting onto a massive central object (such as a
neutron star or black hole) loses its angular momen-
tum. Some sort of turbulent process is needed in
order to transport angular momentum outward as the
mass moves inward. From a purely hydrodynamic view-
point, a Keplerian flow, with angular velocity depend-
ing on radius as Ω ∼ r−3/2, is stable according to
rayleigh’s criterion [IV.28 §8.3], and thus there is
no obvious route to hydrodynamic turbulence. But the
picture is changed dramatically by the effect of a mag-
netic field, the significant astrophysical consequences
of which were first realized by Balbus and Hawley in
the 1990s. A new instability—the magnetorotational
instability—can then ensue provided that the angular
velocity decreases with radius, a less stringent crite-
rion than that for hydrodynamic flows, for which a
decrease of angular momentum is necessary. The non-
linear development of this instability may thus pro-
vide the turbulence required for angular momentum
transport.

It is of great physical interest to ask why a swirling
flow that is hydrodynamically stable can be destabi-
lized by the inclusion of a magnetic field. The crucial
factor is that the field can provide a means of relax-
ing the angular momentum constraint that underpins
the hydrodynamic result. As such, it turns out that
the underlying mechanism can then be explained by
mechanical, rather than fluid mechanical, arguments.
Suppose, as an analogy for fluid elements connected
by a magnetic field line, one considers two spacecraft
(m1 and m2) orbiting a central body, at different radii
(r1 < r2) and joined by a weak elastic tether. Since
the angular velocity is a decreasing function of radius,

Figure 3 Computational simulation of the breakup of a
magnetic layer, resulting from the nonlinear development
of magnetic buoyancy instabilities; the magnetic field is
pointing into the page. Such a process is of importance
in triggering the escape of magnetic field from the solar
interior.

the spacecraft at radius r1 will move ahead, stretching
the tether. In so doing, angular momentum is removed
from m1 and transferred to m2. The spacecraft then
readjust to orbits compatible with their new angu-
lar momenta; m1 moves inward, m2 outward. Since
dΩ/dr < 0, the difference in the angular velocity is
increased; a fortiori the process is repeated, leading
to an exponential separation of the spacecraft in time.
Note that this argument fails if the tether is sufficiently
strong, since in this case it acts to keep the spacecraft
together. Instability therefore occurs for weak elastic
coupling or, in the MHD context, for weak magnetic
fields.

9 Current State of Play

Fundamental questions remain unanswered in all as-
pects of MHD; it thus remains an extremely active
and exciting research area. The major theoretical dif-
ficulties, as with (nonmagnetic) hydrodynamics, arise
from two directions: the extreme values of the param-
eters of interest and the inherent nonlinearity of the
coupled equations (though it would be a mistake to
think that everything is understood in, for example, the
(kinematic) fast-dynamo problem).

Ever-increasing computing power has allowed inves-
tigation of the full MHD equations at moderately high
values (� 104) of the fluid and magnetic Reynolds num-
bers (as shown, for example, in figure 3), which has
in turn stimulated new theoretical understanding, par-
ticularly of nonlinear phenomena. A direct computa-
tional solution, i.e., of astrophysical or industrial flows
at the true parameter values, is not feasible; nor, even
if the current rate of increase in computing power
is maintained, will it be so in the foreseeable future.
Our understanding of MHD will therefore progress
through the interaction of theoretical, computational,
and experimental approaches.
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IV.30 Earth System Dynamics
Emily Shuckburgh

1 Introduction

Mathematics is fundamental to our understanding of
the Earth’s weather and climate. Over the last 200 years
or so, a mathematical description of the evolution of
the Earth system has been developed that allows pre-
dictions to be made concerning the weather and cli-
mate. This takes account of the fact that the atmo-
sphere and oceans are thin films of fluid on the spher-
ical Earth under the influence of (i) heating by solar
radiation, (ii) gravity, and (iii) the Earth’s rotation. The
mathematician Lewis Fry Richardson first proposed a
numerical scheme for forecasting the weather in 1922,
and this paved the way for modern numerical models
of the weather and climate.

The atmosphere varies on a range of timescales, from
less than an hour for an individual cloud to a week or
so for a weather system. The timescales of variabil-
ity in the ocean are typically longer: the ocean sur-
face layer, which is directly influenced by the atmo-
sphere, exhibits variability on diurnal, seasonal, and
interannual timescales, but the ocean interior varies
significantly only on decadal to centennial and longer
timescales. The different components of the Earth sys-
tem (the atmosphere, oceans, land, and ice) are closely
coupled. For example, roughly half of the carbon diox-
ide that is released into the atmosphere by human
activities each year is taken up by the oceans and the
land. Changes in atmospheric temperature impact the
ice, which in turn influences the evolution of both the

atmosphere and the ocean. Furthermore, changes in
sea-surface temperature can directly affect the atmo-
sphere and its weather systems. Each of these interac-
tions and feedbacks is more or less relevant on differ-
ent timescales. The climate is usually taken to mean
the state of the Earth system over years to decades or
longer. It is sometimes defined more precisely as the
probability distribution of the variable weather, tradi-
tionally taken over a thirty-year period. While aspects
of the weather are sensitive to initial conditions, as
famously demonstrated by Edward Lorenz in his semi-
nal work on chaos theory (see the lorenz equations

[III.20]), the statistics of the weather that define the
climate do not exhibit such sensitivity.

2 The Temperature of the Earth

Understanding what determines the temperature of
the surface of the Earth has been something that has
long fascinated mathematicians. In 1827 the mathe-
matician Joseph Fourier wrote an article on the sub-
ject, noting that he considered it to be one of the most
important and most difficult questions of all of natural
philosophy.

2.1 Solar Forcing

The atmosphere is continually bombarded by solar
photons at infrared, visible, and ultraviolet wave-
lengths. It is necessary to consider the passage through
the atmosphere of this incoming solar radiation to
determine the temperature of the surface of the Earth.
The air in the atmosphere is a mixture of different
gases: nitrogen (N2) and oxygen (O2) are the largest by
volume, but other gases including carbon dioxide (CO2),
water vapor (H2O), methane (CH4), nitrous oxide (N2O),
and ozone (O3) play significant roles in influencing the
passage of photons. Atmospheric water vapor is partic-
ularly important in this context. The amount of water
vapor is variable (typically about 0.5% by volume), being
strongly dependent on the temperature, and it is pri-
marily a consequence of evaporation from the ocean
(which covers some 70% of the surface of the Earth).

Some incoming solar photons are scattered back
to space by atmospheric gases or reflected back to
space by clouds or the Earth’s surface (with snow and
ice reflecting considerably more than darker surfaces);
some are absorbed by atmospheric gases or clouds,
leading to heating of parts of the atmosphere; and
some reach the Earth’s surface and heat it. Atmospheric
gases, clouds, and the Earth’s surface also emit and
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absorb infrared photons, leading to further heat trans-
fer between one region and another, or loss of heat to
space.

The amount of energy that the Earth receives from
the sun has varied over geological history, but at
present the incident solar flux, or power per unit area,
of solar energy is F = 1370 W m−2.

Given that the cross-sectional area of the Earth inter-
cepting the solar energy flux is πa2, where a is the
Earth’s radius (mean value a = 6370 km), the total solar
energy received per unit time is Fπa2 = 1.74×1017 W.
As noted above, not all of this radiation is absorbed
by the Earth; a significant fraction is directly reflected.
The ratio of the reflected to incident solar energy is
the albedo, α. Under present conditions of cloudiness,
snow, and ice cover, an average of about 30% of the
incoming solar radiation is reflected back to space with-
out being absorbed, i.e., α = 0.3. The surface of the
Earth has an area 4πa2. That means that per unit area,

final incoming power = 1
4 (1 −α)F,

which is approximately 240 W m−2.
In physics, a black body is an idealized object that

absorbs all radiation that falls on it. Because no light is
reflected or transmitted, the object appears black when
it is cold. However, a black body emits a temperature-
dependent spectrum of light. As noted above, the Earth
reflects much of the radiation that is incident upon it,
but for simplicity let us initially assume that it emits
radiation in the same temperature-dependent way as a
black body. In this case the emitted radiation is given by
the Stefan–Boltzmann law, which states that the power
emitted per unit area of a black body at absolute tem-
perature T is σT 4, where σ is the Stefan–Boltzmann
constant (σ = 5.67 × 10−8 W m−2 K−4). This power is
emitted in all directions from the surface of the Earth,
so that per unit area,

final outgoing power = σT 4
bb

if the Earth has a uniform surface temperature Tbb. This
defines the emission temperature under the assump-
tion that the Earth acts as a black body, which is the
temperature one would infer by looking back at the
Earth from space if a black body curve was fitted to
the measured spectrum of outgoing radiation.

Assuming that the Earth is in thermal equilibrium,
the incoming and outgoing power must balance. There-
fore, by equating the equations for the final incoming
power and the final outgoing power,

Tbb =
(
(1 −α)F

4σ

)1/4
.

Atmosphere

Space

Ground

Fs

swFs

Fa

Fa

Fg

lwFg

Figure 1 A simple model of the greenhouse effect. The
atmosphere is taken to be a shallow layer at temperature Ta

and the ground a black body at temperature Tg. The various
solar and thermal fluxes are shown (see text for details).

Substituting standard values for α, F , and σ gives

Tbb ≈ 255 K. This value is of the correct order of mag-

nitude but is more than 30 K lower than the observed

mean surface temperature of TE ≈ 288 K. The simplest

possible model of the climate system has therefore cap-

tured some of the key aspects, but it must have some

important missing ingredients.

2.2 The Greenhouse Effect

To refine the calculation of the temperature of the sur-

face of the Earth, the influence of atmospheric con-

stituents in emitting, absorbing, and scattering radia-

tion needs to be taken into consideration. This can be

achieved by assuming that the system has a layer of

atmosphere of uniform temperature Ta that transmits

a fraction τsw of incident solar (shortwave) radiation

and a fraction τlw of any incident terrestrial (longwave)

radiation while absorbing the remainder (see figure 1).

As noted above, the final incoming solar power per

unit area at the top of the atmosphere is Fs = 1
4 (1−α)F .

Under the revised model, a proportion τswFs reaches

the ground and the remainder is absorbed by the atmo-

sphere. Let us assume that the ground has a tempera-

ture Tg and that it emits as a black body. This gives an

upward flux of Fg = σT 4
g , of which a proportion τlwFg

reaches the top of the atmosphere, with the remainder

being absorbed by the atmosphere. The atmosphere is

not a black body, and instead, it emits radiation fol-

lowing Kirchhoff’s law, such that the emitted flux is
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Fa = (1 − τlw)σT 4
a both upward and downward, where

Ta is the temperature of the atmosphere.

Assuming that the system is in equilibrium, these

fluxes must balance. At the top of the atmosphere

we have Fs = Fa + τlwFg, and at the ground we have

Fg = Fa + τswFs. By eliminating Fa, and using the

Stefan–Boltzmann law for Tg, we find that

Tg =
(

1 + τsw

1 + τlw

(1 −α)F
4σ

)1/4
=
(

1 + τsw

1 + τlw

)1/4
Tbb.

Substituting reasonable values for the Earth’s present-

day atmosphere (τsw = 0.9 and τlw = 0.2) gives a sur-

face temperature of Tg ≈ 286 K, which is much closer

to the observed value of TE ≈ 288 K. Including an

atmosphere that allows greater transmission of short-

wave radiation than longwave radiation has had the

influence of increasing the surface temperature. This

is known as the greenhouse effect. The temperature of

the atmosphere Ta under this model is

Ta =
(

1 − τlwτsw

1 − τ2
lw

)1/4
Tbb,

which gives Ta ≈ 245 K.

The expression for Tg indicates that the temperature

of the surface of the Earth can change as a result of

changes to the solar flux (F ), changes to the albedo

(α), and/or changes to the transmission of radiation

through the atmosphere (τ). This provides a basic

explanation for the cycle of ice ages that has been

observed to occur on Earth every hundred thousand

years or so. Over long timescales, changes to the orbit

of the Earth around the sun occur that are associated

with the Milankovitch cycles. Resulting changes to the

annual global mean F are small, but changes to the

seasonal/latitudinal pattern of solar radiation reaching

the Earth lead to the ice sheets in the Northern Hemi-

sphere shrinking or growing, changing α. This then

modifies the temperature Tg, which further changes

the ice sheets. Additionally, changes in Tg can result

in changes that alter the balance of exchange of carbon

dioxide between the atmosphere and the land/ocean,

which changes the transmission value τ , modifying the

temperature still further.

3 Atmospheric Properties

We now turn our attention to the vertical variation in

temperature in the atmosphere. This is influenced by

radiative processes and by convection.

3.1 Radiation

To refine the model of the transfer of radiation through
the atmosphere further it is necessary to consider
the atmospheric properties in more detail. To a good
approximation, the atmosphere as a whole behaves as
a simple ideal gas, with each mole of gas obeying the
law pV = RgT , where p is the pressure, V is the vol-
ume of one mole, Rg is the universal gas constant, and
T is the absolute temperature. If M is the mass of one
mole, the density is ρ = M/V , and the ideal gas law
may be written as p/ρ = RT , where R = Rg/M is the
gas constant per unit mass. The value of R depends on
the composition of the sample of air. For dry air it is
R = 287 J kg−1 K−1.

Each portion of the atmosphere is approximately in
what is known as hydrostatic balance (usually valid
on scales greater than a few kilometers). This means
that the weight of the portion of atmosphere is sup-
ported by the difference in pressure between the lower
and upper surfaces, and that the following relation-
ship between density ρ and pressure p holds to a good
approximation:

gρ = −∂p
∂z
, (1)

where g = 9.81 m s−2 is the gravitational acceleration
and z is the height above the ground. The ideal gas law
can be used to replace ρ in this equation by p/RT .

The temperature in the lowest section of the atmo-
sphere, known as the troposphere, decreases with alti-
tude, from the surface value of about 288 K to about
217 K at its upper limit (about 10–15 km altitude).
In general, the temperature does not vary greatly in
the atmosphere. The mass-weighted mean temperature
is approximately 255 K, and over the first 100 km
in altitude the temperature varies by no more than
about ±15%. Approximating the atmospheric temper-
ature by T ≈ T0 = const. and using the ideal gas law,
(1) can be integrated to obtain p = p0e−gz/RT0 , where
p0 is the pressure at z = 0, which is approximately
1000 hPa. Therefore, at 5 km altitude the pressure is
about 500 hPa and at 10 km it is about 250 hPa. A simi-
lar expression can be derived for the density. Therefore,
gravity tends to produce a density stratification in the
atmosphere, which means that the atmosphere can be
considered from a dynamical perspective as a stratified
fluid on a rotating sphere.

As discussed above, certain gases in the atmosphere,
known as greenhouse gases, act to absorb radiation
of certain wavelengths. At the surface, the relatively
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high temperature and pressure mean that these gases
absorb radiation in broad bands around specific wave-
lengths. These bands are made up of many individ-
ual spectral lines. The individual lines are broadened
by collisions (pressure broadening), and this broad-
ening reduces in width with altitude as the pressure
decreases. If we consider the atmosphere to be made up
of many thin vertical layers, as radiation emitted from
the Earth’s surface moves up layer by layer through the
troposphere, some is stopped in each layer. Each layer
then emits radiation back toward the ground and up to
higher layers. However, due to the reduction in width of
the absorption lines with altitude, a level can be reached
at which the radiation is able to escape to space. In addi-
tion, because the amount of gas between a given alti-
tude and space decreases with increasing altitude, even
the line centers are more able to emit directly to space,
with increasing altitude. Adding more greenhouse gas
molecules means that the upper layers will absorb more
radiation and the altitude of the layer at which the radi-
ation escapes to space increases, and hence its temper-
ature decreases. Since colder layers do not radiate heat
as well, all the layers from this height to the surface
must warm to restore the incoming/outgoing radiation
balance.

It has become standard to assess the importance of
a factor (such as an increase in a greenhouse gas) as
a potential climate change mechanism in terms of its
radiative forcing, ΔF . This is a measure of the influ-
ence the factor has in altering the balance of incoming
and outgoing energy, and it is defined as the change
in net irradiance (i.e., the difference between incoming
and outgoing radiation) measured at the tropopause
(the upper boundary of the troposphere). For carbon
dioxide the radiative forcing is given to a good approx-
imation by the simple algebraic expressionΔF = 5.35×
lnC/C0 W m−2, where C is the concentration of carbon
dioxide and C0 is a reference preindustrial value, taken
to be 278 parts per million. For a doubling of carbon
dioxide values above preindustrial values, this gives a
radiative forcing of approximately 3.7 W m−2.

The climate sensitivity, λ, is defined to be the coef-
ficient of proportionality between the radiative forc-
ing, ΔF , and ΔT , the associated change in equilib-
rium surface temperature that occurs over multicen-
tury timescales, i.e., ΔT = λΔF . For the very simplest
climate model, we found that the emitted radiation per
unit area was F = σT 4

bb, from which we inferred a value
of Tbb ≈ 255 K. Approximating ΔF by ΔF ≈ ΔT dF/dT ,
the climate sensitivity in the absence of feedbacks is

then given by λ = (4σT 3
bb)

−1, or 0.26 K/(W m−2). Using
this to estimate the temperature increase at equilib-
rium due to a doubling of carbon dioxide (often called
the equilibrium climate sensitivity) gives ΔT ≈ 1 K.
In reality, feedbacks in the system (e.g., changes to
the albedo and the water vapor content of the atmo-
sphere) will influence the temperature change. Tak-
ing into account the feedbacks, the Intergovernmen-
tal Panel on Climate Change concluded in its Fifth
Assessment Report that this equilibrium climate sensi-
tivity probably lies in the range 1.5–4.5 K and that it is
extremely unlikely to be less than 1 K and very unlikely
to be greater than 6 K.1

3.2 Convection

In radiative equilibrium, the surface is warmer than
the overlying atmosphere. This state is unstable to
convective motions.

The first law of thermodynamics states that the
increase in internal energy of a system δU is equal to
the heat supplied plus the work done on the system.
This can be written as δU = TδS − pδV , where T is
the temperature, V is the volume, and S is the entropy
of the system. If Q is the amount of heat absorbed
by the system, δS = δQ/T . The specific heat capac-
ity, c, is the measure of the heat energy required to
increase the temperature of a unit quantity of air by
one unit. The specific heat of substances are typically
measured under constant pressure (cp). However, fluids
may instead be measured at constant volume (cV). Mea-
surements under constant pressure produce greater
values than those at constant volume because work
must be performed in the former. For an ideal gas,
cp = cV + R (for dry air, cp = 1005 J kg−1 K−1). Con-
sidering a unit mass of an ideal gas, for which V = 1/ρ,
it can be shown that U = cVT , and hence

δS = δQ
T

= cp
δT
T

− Rδp
p
. (2)

An adiabatic process is one in which heat is neither lost
nor gained, so δS = 0. In this case, (2) can be integrated
to give θ = T(p0/p)R/cp , if T = θ when p = p0. The
quantity θ, the potential temperature, is the tempera-
ture a portion of air would have if, starting from tem-
perature T and pressure p, it were compressed until its
pressure equaled p0.

1. Intergovernmental Panel on Climate Change reports are available
from www.ipcc.ch.

http://www.ipcc.ch
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From (2), the first law of thermodynamics can be
written as

dT
dt

= RT
cpp

dp
dt

+ 1
cp

dQ
dt
.

The first term on the right-hand side represents the rate
of change of temperature due to adiabatic expansion or
compression. In a typical weather system outside the
tropics, air parcels in the middle troposphere undergo
vertical displacements on the order of 100 hPa day−1.
Assuming that T ≈ 250 K, the resulting adiabatic tem-
perature change is about 15 K day−1. The second term
on the right-hand side is the diabatic heat sources
and sinks, which include absorption of solar radiation,
absorption and emittance of longwave radiation, and
latent heat release. In general, in the troposphere the
sum of diabatic terms is much smaller than the sum
of adiabatic ones, with the net radiative contribution
being small and the latent heat terms being compara-
ble in magnitude with the adiabatic term only in small
regions. For an adiabatically rising parcel of air, from
(2) the change in temperature is given by

−
(

dT
dz

)
parcel

= RT
cpp

(
dp
dz

)
parcel

= g
cp

≡ Γa

if the atmosphere is in hydrostatic balance (see (1)).
Here, Γa ≈ 10 K km−1 is known as the adiabatic lapse
rate.

The observed decrease of temperature with height,
the lapse rate Γ = −dT/dz, generally differs from the
adiabatic lapse rate. If the observed background tem-
perature falls more rapidly with height than the adia-
batic lapse rate, i.e., Γ > Γa, then an adiabatically ris-
ing parcel will be warmer than its surroundings and
will continue to rise. In this case, the atmosphere is
unstable. On the other hand, if Γ < Γa then the atmo-
sphere is stable. In general, the atmosphere is stable
to this dry convection, but it can be unstable in hot,
arid regions such as deserts. Convection carries heat
up and thus reduces the background lapse rate until
the dry adiabatic lapse rate is reached.

Considering the buoyancy forces on a parcel that
has been raised to a height δz above its equilibrium
position and applying Newton’s second law gives

ρ
d2

dt2
δz = −gδρ,

where δρ is the difference between the parcel density
and that of the environment. The pressures inside and
outside the parcel are the same, and so using the ideal
gas law this can be rewritten after some manipulation
as

d2

dt2
δz +N2δz = 0, N2 ≡ g

T
(Γa − Γ ).

For N2 < 0, Γ > Γa, the solutions are exponential in
time, and the atmosphere is unstable. For N2 > 0,
Γ < Γa, the motion is an oscillation with frequency N ,
and the atmosphere is stable. The quantity N2 is a use-
ful measure of atmospheric stratification and can be
written in terms of the potential temperature:

N2 = g
θ

dθ
dz
.

A region of the atmosphere is therefore statically sta-
ble if θ increases with height (dθ/dz > 0), and it is
statically unstable if it decreases with height.

Water vapor in the atmosphere plays an important
role in the dynamics of the troposphere since latent
heating and cooling can transfer heat from one location
to another and because it influences convection. As a
moist air parcel rises adiabatically, p falls, so T falls,
the water vapor condenses, and latent heat is released,
and hence the moist adiabatic lapse rate is less than for
dry air (and thus is more easily exceeded). Convective
processes in the atmosphere strongly influence the ver-
tical temperature structure in the troposphere. Simple
one-dimensional radiative equilibrium calculations pre-
dict that the temperature decreases sharply with height
at the lower boundary, implying convective instability.
Calculations including both radiative and convective
effects—adjusting the temperature gradient to neutral
stability where necessary, and taking into account the
effects of moisture—predict a less sharp decline in tem-
perature through the troposphere, in agreement with
observations.

For descriptive purposes, the atmosphere can be
divided into layers, defined by alternating negative and
positive vertical temperature gradients. In the tropo-
spheric layer from the ground up to about 10–15 km,
the temperature decreases with height and the tem-
perature structure is strongly influenced by convective
processes. The temperature then increases with height
to about 50 km in the stratosphere, where the tempera-
ture structure is determined predominantly by radia-
tive processes. After this the temperature decreases
again through the mesosphere.

4 Oceanic Properties

As noted above, the oceans are a key component of the
coupled climate system. To understand their role, it is
necessary to detail their properties and how they are
forced.

The oceans are stratified by density, with the dens-
est water near the seafloor and the least dense water
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near the surface. The density depends on tempera-
ture, salinity, and pressure in a complex and nonlin-
ear way, but temperature typically influences density
more than salinity in the parameter range of the open
ocean. In discussions of ocean dynamics, the buoyancy
b = −g(ρ − ρ∗)/ρ is often used, where ρ is the den-
sity of a parcel of water and ρ∗ is the density of the
background. Thus, if ρ < ρ∗ the parcel will be posi-
tively buoyant and will rise. Since the density does not
vary greatly in the ocean (by only a few percent), the
buoyancy can be written as b = −g(σ −σ∗)/ρ0, where
σ = ρ − ρ0 and ρ0 = 1000 kg m−3. The temperature
and salinity, and hence density, vary little with depth
over the surface layer of the ocean, typically 50–100 m,
known as the mixed layer. Below this is a layer, called
the thermocline, where the vertical gradients of temper-
ature and density are greatest; this varies in depth from
about 100 m to about 600 m. The waters of the thermo-
cline are warmer and saltier than the deep ocean below,
which is known as the abyss.

The forcing of the oceans is rather different to that
of the atmosphere. A significant fraction of solar radia-
tion passes through the atmosphere to heat the Earth’s
surface and drive atmospheric convection from below,
whereas in the ocean, convection is driven by buoy-
ancy loss from above as the ocean exchanges heat
and freshwater at the surface (including through brine
rejection in sea-ice formation). The heat flux at the
ocean surface has four components: sensible heat flux
(which depends on the wind speed and air/sea temper-
ature difference), latent heat flux (from evaporation/
precipitation), incoming shortwave radiation from the
sun, and longwave radiation from the atmosphere and
ocean. The net freshwater flux is given by evapora-
tion minus precipitation, including the influences of
river runoff and ice-formation processes. Winds blow-
ing over the ocean surface exert a stress on it and
directly drive ocean circulations, particularly in the
upper kilometer or so. The wind stress is typically
parametrized by τwind = ρacDu2

10, where ρa is the den-
sity of air, u10 is the wind speed at 10 m, and cD is a
drag coefficient (a function of wind speed, atmospheric
stability, and sea state). Below the surface, the winds,
the flow over seafloor topography, the tides, and other
processes indirectly influence the circulation.

5 Dynamics of the Atmosphere
and the Oceans

The mathematics of fluid dynamics governs the motion
of the atmosphere and the oceans. This framework

can be used to understand key features of the Earth’s
weather and climate and to predict future change.
Density stratification and the Earth’s rotation provide
strong constraints that organize the fluid flows.

5.1 Rotating Stratified Fluids

In studies of fluid dynamics it is useful to describe the
evolution of a parcel of fluid as it follows the flow. This
rate of change of a quantity is given by the Lagrangian
derivative, D/Dt, which is defined by

D
Dt

≡ ∂
∂t

+ u · ∇,
whereu is the velocity of the flow. When the wind blows
or the ocean currents flow, they carry properties, such
as heat and pollutants, with them. This is described by
the term u · ∇, which represents advection. There are
five key variables relevant to the equations of motion
for fluid flow: the velocity u = (u,v,w), the pressure
p, and the temperature T . Correspondingly, there are
five independent equations resulting from Newton’s
second law, conservation of mass, and the first law of
thermodynamics.

Newton’s second law states that in an inertial frame,

Du
Dt

= − 1
ρ
∇p + g∗ +F ,

where −(1/ρ)∇p is the pressure gradient force of rel-
evance for fluids, g∗ is the gravitational force, and F
is the sum of the frictional forces, all per unit mass.
To represent the weather and climate, it is natural to
describe the flow seen from the perspective of some-
one on the surface of the Earth, and thus we need to
consider the motion in the rotating frame of the Earth.
The angular rotation of the frame is given by the vector
Ω pointing in the direction of the axis of rotation, with
magnitude equal to the Earth’s angular rate of rotation
Ω = 7.27 × 10−5 s−1 (one revolution per day). New-
ton’s second law as described above holds in an iner-
tial frame of reference. When it is translated into the
rotating frame of reference, additional terms are intro-
duced that are specific to that frame. The flow veloc-
ities in the rotating and inertial frames are related by
uinertial = urotating+Ω×r, and the Lagrangian derivative
is given by(

Duin

Dt

)
in

=
(

Durot

Dt

)
rot

+ 2Ω× urot +Ω×Ω× r.

The additional terms are therefore 2Ω×urot, the Cori-
olis acceleration, andΩ×Ω×r, the centrifugal acceler-
ation. It is convenient to combine the centrifugal force
with the gravitational force in one term g = −gẑ =
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g∗ +Ω ×Ω × r, where ẑ represents a unit vector par-
allel to the local vertical. The gravity, g, defined in
this way is the gravity measured in the rotating frame,
g = 9.81 m s−2.

The thinness of the atmosphere/ocean enables a
local Cartesian coordinate system, which neglects the
Earth’s curvature, to be used for many problems. Tak-
ing the unit vectors x̂, ŷ, and ẑ to be eastward (zonal),
northward (meridional), and upward, respectively, the
rotation vector can be written in this coordinate basis
as Ω = (0,Ω cosφ,Ω sinφ) for latitude φ. The order
of magnitude of zonal velocities in the atmosphere is
|u| ∼ 10 m s−1 (less in the ocean), so Ωu � g. In
addition, in both the atmosphere and the ocean, ver-
tical velocities w, typically � 10−1 m s−1, are much
smaller than horizontal velocities. Hence, 2Ω × u can
be approximated by f ẑ × u, where f = 2Ω sinφ is the
Coriolis parameter. (In many instances it proves use-
ful to approximate the Coriolis parameter by its con-
stant value at a particular latitude f = f0 = 2Ω sinφ0

or by its Taylor expansion for small latitudinal depar-
tures from a particular latitude f = f0 + βy , where
β = df/dy ; the latter is known as the β-plane approxi-
mation.)

With these various conventions and approximations,
Newton’s second law in a rotating frame becomes

Du
Dt

+ 1
ρ
∇p − g + f ẑ× u = F . (3)

For some purposes it is useful to write the gravity term
as the gradient of a potential function Φ, known as
the geopotential, ∇Φ = −g. The geopotential Φ(z) at
a height z is the work required to raise a unit mass to
height z from mean sea level, Φ =

∫ z
0 g dz. The remain-

ing two equations are the conservation of mass (the
mass of a fixed volume can change only if ρ changes,
and this requires a mass flux into the volume),

Dρ
Dt

+ ρ∇ · u = 0, (4)

and the first law of thermodynamics (see (2)),

DQ
Dt

= cp
DT
Dt

− 1
ρ

Dp
Dt
. (5)

Here, DQ/Dt is the diabatic heating rate per unit
mass, which in the atmosphere is mostly due to latent
heating/cooling (condensation/evaporation) and radia-
tive heating/cooling. In the ocean, analogous equations
hold for temperature and salinity.

The equations of motion we have just derived are a
simplified form of the equations that are at the heart
of weather and climate models. Such models solve

numerically discretized versions of the equations of
motion, and computational constraints mean that there
is a limit to the scale of motion that can be directly
resolved. In the atmosphere, large-scale motion such
as weather systems (∼1000 km) are well captured, but
smaller-scale motion such as convective storm sys-
tems (∼1–100 km) generally need to be parametrized,
i.e., represented approximately in terms of the larger-
scale resolved variables. Similarly, in the ocean small-
scale processes are parametrized (indeed, the scales
of motion are typically ten times smaller in the ocean
than in the atmosphere, making the problem even more
challenging).

The forcing of an atmosphere-only model may in-
clude specified solar input, radiatively active gases,
sea-surface temperature, and sea ice. What is and is
not included in the model depends on whether the
processes are important over the timescale for which
the model is being used to project (hours to weeks
for weather models, decades to centuries for climate
models). For climate projections, coupled models

[IV.16 §5] are usually employed. In these, separate mod-
els of the atmosphere, ocean, ice, land, and some chemi-
cal cycles are linked together in such a way that changes
in one may influence another.

5.2 Circulation of the Atmosphere and Ocean

Tropical regions receive more incoming solar radiation
than polar regions because the solar beam is concen-
trated over a smaller area due to the spherical curva-
ture of the Earth. If the Earth were not rotating, the
atmospheric circulation would be driven by the pole-
to-equator temperature difference, with warm air ris-
ing in the tropical regions and sinking in the polar
regions. On the rotating Earth, as air moves away from
the equator in the upper troposphere, it gains an east-
ward (westerly) velocity component from the Coriolis
effect, as we will describe mathematically below. In the
tropics the Coriolis parameter f is small, but elsewhere
it has a significant influence. The overturning circula-
tion in the atmosphere is therefore confined to the trop-
ics: if it extended all the way to the poles, the west-
erly component arising from the Coriolis effect would
become infinite. Moist air rises near the equator and
dry air descends in the subtropical desert regions at
about 20–30◦. This overturning circulation is known
as the Hadley circulation. During the course of a year,
the pattern of solar forcing migrates: north in northern
summer, south in southern summer. The entire Hadley
circulation shifts seasonally following the solar forcing.
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Figure 2 Temperature (thin gray contours, interval 5 K)
and westerly winds (thick black contours, interval 5 m s−1;
zero wind, dotted line; easterly winds, dashed line) in the
troposphere. All quantities have been averaged in longi-
tude. Values are typical of the Northern Hemisphere winter.
Approximate altitude is also indicated.

In the upper troposphere, at the poleward extent of
the Hadley circulation (about 30◦), are the jet streams
of strong westerly flow (see figure 2). They are strongest
in winter, with average speeds of around 30 m s−1. The
equatorward return flow at the surface is weak. The
influence of friction together with the Coriolis effect
results in the northeasterly trade winds (i.e., winds
originating from the northeast) in the Northern Hemi-
sphere and the southeasterly trade winds in the South-
ern Hemisphere, as we will describe mathematically
below.

The westerly flow in the jet streams is hydrodynami-
cally unstable and can spontaneously break down into
vortical structures known as eddies, which manifest
themselves as traveling weather systems. Eddies play
a vital role in transporting heat, moisture, and chem-
ical species in the latitude/height plane. Observations
indicate that in the annual mean the tropical regions
emit less radiation back to space than they receive and
that the polar regions emit more radiation than they
receive. This implies that there must be a transport of
energy from the equator to the pole that takes places in
the atmosphere and/or the ocean. In the atmosphere,
heat is transported poleward through the tropics by
the Hadley circulation; at higher latitudes, eddies are
mainly responsible for the heat transport.

In the ocean there is an overturning circulation
that encompasses a system of surface and deep cur-
rents running through all basins. This circulation trans-
ports heat—and also salt, carbon, nutrients, and other
substances—around the globe and connects the sur-
face ocean and atmosphere with the huge reservoirs
of the deep ocean. As such, it is of critical impor-
tance to the global climate system. We have discussed
above the requirement for poleward heat transport in

the atmosphere and/or ocean to explain the observed
incoming/outgoing radiation profiles. Detailed calcula-
tions indicate that the atmosphere is responsible for
the bulk of the transport in the middle and high lat-
itudes, but the ocean makes up a considerable frac-
tion, particularly in the tropics. Heat is transported
poleward by the ocean in the overturning circulation if
waters moving poleward are compensated by equator-
ward flow at colder temperatures. In the Atlantic heat
transport is northward everywhere, but in the Pacific
the heat transport is directed poleward in both hemi-
spheres, while the Indian Ocean provides a poleward
transport in the Southern Hemisphere. The net heat
transport is poleward in each hemisphere.

The surface ocean currents are dominated by closed
circulation patterns known as gyres. In the Northern
Hemisphere there are gyres in the subtropics of the
Pacific and Atlantic, with eastward flow at midlatitudes
and westward flow at the equator. The current speed
at the interior of these gyres is �10 cm s−1, but at
the western edge there are strong poleward currents
(the Kuroshio in the Pacific and the Gulf Stream in
the Atlantic) with speeds �100 cm s−1. Ocean sur-
face waters are only dense enough to sink down to
the deep abyss at a few key locations: particularly in
the northern North Atlantic and around Antarctica.
Deep ocean convection occurs only in these cold high-
latitude regions, where the internal stratification is
small and surface density can increase through direct
cooling/evaporation or brine rejection in sea-ice for-
mation. Dense water formed in the North Atlantic
flows south as a deep western boundary current and
eventually enters the Southern Ocean, where it mixes
with other water masses. Ultimately, the deep water is
brought up to the surface by vertical mixing (tides and
winds are the primary sources of energy for this) and
by the overturning circulation in the Southern Ocean.
Hydrodynamic instabilities associated with the major
currents can generate eddies, which are ubiquitous
in the ocean. As in the atmosphere, these eddies are
responsible for heat transport and they play a cen-
tral role in driving the overturning circulation in the
Southern Ocean.

6 Dynamical Processes

To understand the behavior of different dynamical pro-
cesses in the atmosphere and the oceans, it is useful
to consider the relative magnitudes of the different
terms in the equation of motion (3). For this purpose
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we introduce the Rossby number Ro, which is the ratio
of acceleration terms to Coriolis terms. If U is a typical
velocity scale and L is a typical length scale,Ro = U/fL.

6.1 Ocean Surface Waves

For ocean waves crashing onshore, the influence of the
Earth’s rotation is small and so Ro is large and the Cori-
olis terms in (3) can be neglected. The wave motion
results when the water surface is displaced above its
equilibrium level and gravity acts to pull it downward.
An oscillatory motion results as the water overshoots
its equilibrium position in both vertical directions and
is restored by pressure from the surrounding water
mass in one direction and by gravity in the other.

For a fluid with uniform density ρ0, a free surface at
z = 0, and a bottom at z = −H, the equilibrium solu-
tion has zero velocity and the equilibrium pressure p∗
is given by integrating the hydrostatic balance equa-
tion (1): p∗(z) = −gρz, where ρ takes the value ρ0 in
the fluid and zero above it. A perturbation to this sys-
tem can be defined such that the perturbed position of
the free surface is given by z = η(x,y, t) and the per-
turbed pressure is given by p = p∗+p′. Neglecting the
Coriolis and frictional terms, (3) gives

Du
Dt

= − 1
ρ
∇p′.

Taking the x, y , and z derivatives of the components
of this equation and using the continuity equation (4)
results in laplace’s equation [III.18] for p′, ∇2p′ = 0.
The relevant boundary conditions are that

(i) there is no normal flow at the bottom (w = 0 at
z = −H), from which it follows that ∂p′/∂z must
vanish at z = −H by considering the z component
of (3);

(ii) a particle in the free surface z = η will remain in
it, i.e., D(z − η)/Dt = 0, which gives w = ∂η/∂t at
z = η for small perturbations; and

(iii) the pressure must vanish at the free surface, i.e.,
p′ = ρgη at z = η.

The two conditions at z = η can also be applied at z = 0
to good approximation.

A wavelike solution to this system can be sought that
is assumed to correspond to a displacement η of the
same form, where η̂ is the amplitude, k = (k, l) is the
wave number, and ω is the frequency. This takes the
form

p′ = Re η̂ exp(i(kx + ly −ωt)).

From Laplace’s equation, ∂2p′/∂z2 − κ2p′ = 0, where

κ2 = k2 + l2. Applying the first and third boundary

conditions, the solution is

p′ = ρgη̂ cos(kx + ly −ωt) coshκ(z +H)
coshκH

.

Using the z-component of (3) it can be shown that it is

possible for only the second boundary condition to be

met and the solution to be consistent with the assumed

form for η if

ω2 = gκ tanhκH.

This dispersion relation determines the frequencyω of

waves of a given wave number and hence also the phase

speed c =ω/κ.

In the shallow-water or longwave limit when κH � 1,

tanhκH → κH and hence c = √
gH. This means that

all long waves travel at the same speed. Earthquakes

on the sea floor can excite tsunamis [V.19]. These are

long waves with wavelengths up to hundreds of kilo-

meters on an ocean that is at most a few kilometers

deep. A tsunami therefore propagates at speed
√
gH ≈

200 m s−1 without dispersion, allowing its energy to

be maintained as it crosses a vast expanse of ocean.

The tsunami slows as it approaches the shore and the

water depth shallows, and its wavelength λ = 2πc/ω
decreases (ω is constant). For the same energy density,

the amplitude increases until nonlinear effects become

important and the wave breaks.

6.2 Midlatitude Weather Systems and Ocean Gyres

The midlatitudes are the regions between the tropics

and the polar regions. In these regions the typical veloc-

ity scales and length scales of weather systems are

U ∼ 10 m s−1 and L ∼ 106 m, and f ∼ 10−4 s−1;

hence Ro ∼ 0.1. In the ocean, in midlatitude gyres, the

typical scales are U ∼ 0.1 m s−1 and L ∼ 106 m, so

Ro ∼ 10−3. Therefore, in both cases, becauseRo is small

we can neglect the acceleration terms in (3) in favor of

the Coriolis terms. In addition, away from boundaries

the friction is negligible, so in the horizontal we have

f ẑ× u+ 1
ρ
∇p = 0.

This approximation is known as geostrophic balance.

It is a balance between the Coriolis force and the hori-

zontal pressure gradient force and is used to define the

geostrophic velocity ug given by

ug = (ug, vg) ≡
(−1
fρ

∂p
∂y
,

1
fρ
∂p
∂x

)
. (6)
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Figure 3 Counterclockwise (cyclonic) geostrophic flow
around a low-pressure center in the Northern Hemisphere.
The effect of the Coriolis force deflecting the flow is bal-
anced by the horizontal component of the pressure gradient
force, directed from high to low pressure.

Considering the vertical direction in (3), if friction Fz
and vertical acceleration Dw/Dt are small (as is gen-

erally true for large-scale atmospheric and oceanic

systems), then this reduces to the equation (1) for

hydrostatic balance introduced earlier.

Geostrophically balanced flow is normal to the pres-

sure gradient, i.e., along contours of constant pres-

sure. In the Northern (Southern) Hemisphere, motion

is therefore counterclockwise (clockwise) around the

center of low-pressure systems (see figure 3). Note also

that the speed depends on the magnitude of the pres-

sure gradient: it is stronger when the isobars are closer.

When the flow swirls counterclockwise in the Northern

Hemisphere or clockwise in the Southern Hemisphere,

it is called cyclonic flow (a hurricane is an example of

this); the opposite direction is called anticyclonic flow.

Geostrophic balance can be used to explain many fea-

tures that are observed in atmosphere and ocean flows.

In the atmosphere, because of the pole-to-equator tem-

perature gradient, there is a horizontal pressure gradi-

ent above the surface in the troposphere going from

warm tropical latitudes to cold polar latitudes. This

is in geostrophic balance with the Coriolis force asso-

ciated with the westerly flow of the midlatitude jet

streams (see figure 2). Instabilities of the jet streams

form eddies consisting of cyclonic geostrophic flow

around low-pressure systems (these are midlatitude

weather systems). In the ocean the sea surface is higher

in the warm subtropical gyre of the North Atlantic

than it is further north in the cool subpolar gyre,

resulting in a pressure gradient force directed north-

ward to geostrophically balance the southward Cori-

olis force associated with the eastward-flowing Gulf

Stream. Instabilities of the current generate eddies that

are manifested as geostrophic flow around anomalies

in sea-surface height.

Further analysis highlights the fact that rotation pro-
vides strong constraints on the flow. In the case where
ρ and f are constant, by taking the horizontal deriva-
tives of the geostrophic velocity it can be shown that it
is horizontally nondivergent. Taking the vertical deriva-
tive and using the hydrostatic balance equation gives
(∂ug/∂z, ∂vg/∂z) = 0. The equation for the conser-
vation of mass (4) can then be applied to show that
∂wg/∂z = 0. Hence, the geostrophic velocity does
not vary in the vertical and is two dimensional. Under
slightly more general conditions—namely for a slow,
steady, frictionless flow of a barotropic (i.e., density
depends only on pressure, so ρ = ρ(p)), incompress-
ible fluid—it can be shown that the horizontal and verti-
cal components of the velocity cannot vary in the direc-
tion of the rotation vectorΩ, and hence the flow is two
dimensional. This is known as the Taylor–Proudman
theorem. It means that vertical columns of fluid remain
vertical (they cannot be tilted or stretched).

In general, however, the density in the atmosphere
and the oceans does vary on pressure surfaces, as it
depends on temperature, for example. In this case the
fluid is said to be baroclinic. If the density can be
written as ρ = ρ0 + σ , where ρ0 is a constant refer-
ence density (usually taken to be 1000 kg m−3 for the
ocean) and σ � ρ0 (this is generally the case in the
ocean), then replacing ρ by ρ0 in the denominator of
the geostrophic velocity (6), taking ∂/∂z, and making
use of the equation for hydrostatic balance (1) gives(∂ug

∂z
,
∂vg

∂z

)
= g
fρ0

(
∂σ
∂y
,−∂σ
∂x

)
.

For the compressible atmosphere with larger density
variations, it is often useful to consider the relevant
equations with pressure as the vertical coordinate. This
can be done through the introduction of a log-pressure
coordinate defined as z̃ = −H ln(p/p0). Here, p0 is a
reference pressure (usually taken to be 1000 hPa) and
the quantity H = RT0/g, known as the scale height, is
the height over which the pressure falls by a factor of
e. If T0 = 250 K (a typical value for the troposphere)
then H ≈ 7.3 km. From (3), the horizontal momentum
equation in log-pressure in the case where friction can
be neglected can be written as

Du/Dt + f ẑ× u+∇Φ = 0,

where D/Dt = ∂/∂t+u·∇h+w̃∂/∂z̃ with∇h represent-
ing the horizontal gradient components and where Φ is
the geopotential. Additionally, the hydrostatic equation
can be written as

∂Φ/∂z̃ = RT/H.
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These equations can be used to show that(∂ug

∂z̃
,
∂vg

∂z̃

)
= R
fH

(
− ∂T
∂y
,
∂T
∂x

)
.

In both the atmosphere and the ocean the vertical gra-
dient in the geostrophic velocities is therefore related
to the horizontal density gradient. This is known as the
thermal wind relationship. As discussed before, there
is a pole-to-equator temperature gradient in the atmo-
sphere (f−1∂T/∂y < 0 in both hemispheres), which
implies ∂ug/∂z̃ > 0 and, hence, that with increasing
height the winds become more westerly in both hemi-
spheres. Consistent with this, strong jet streams are
observed in midlatitudes of both hemispheres in the
upper troposphere (see figure 2).

6.3 Ekman Layers and Wind-Driven Ocean

Circulation

Where frictional effects become important, such as
close to boundaries, geostrophic balance no longer
holds. For small Ro numbers, as found in the midlat-
itude atmosphere and oceans, the acceleration terms
in (3) can again be neglected in favor of the Coriolis
terms, and hence the horizontal velocity u is given by

f ẑ× u+ 1
ρ
∇p = F . (7)

The result is that friction introduces an ageostrophic
component of flow (high to low pressure), u = ug+uag.
This effect is important in the lower 1 km or so of the
atmosphere and the upper 100 m or so of the ocean.
The ageostrophic component explains, for example,
the meridional (north–south) component of the trade
winds.

The geostrophic flow is horizontally nondivergent
(except on planetary scales), but the ageostrophic flow
is not. Winds that deviate ageostrophically toward low-
pressure systems near the surface are convergent, and
through mass continuity there must be an associated
vertical velocity away from the surface. This is known
as Ekman pumping. In the atmosphere Ekman pump-
ing produces ascent, cooling, clouds, and sometimes
rain in low-pressure systems. In the ocean it is a key
component of the circulation in gyres.

The wind stress at the ocean surface gives rise to a
force per unit mass on a slab of ocean of

Fwind = 1
ρ0

∂τwind

∂z
,

where ρ0 is the density of the slab. This directly drives
ocean circulations close to the surface in the Ekman
layer. At the surface, z = 0, the stress is τ(0) =

τwind, and this decays over the depth δ ∼ 10–100 m
of the Ekman layer, so τ(−δ) = 0. The ageostrophic
component of motion, uag, is obtained by substitut-
ing the force arising from the wind into (7), giving
f ẑ × uag = (ρ0)−1∂τ/∂z. By integrating this equation
over the depth of the Ekman layer, it can be shown that
the lateral mass transport over the layer is given by

MEk ≡
∫ 0

−δ
ρ0uag dz = τwind × ẑ

f
. (8)

The mass transport in the Ekman layer is therefore
directed to the right (left) of the wind in the Northern
(Southern) Hemisphere. Further analysis indicates that,
in the Northern Hemisphere (directions are reversed in
the Southern Hemisphere), (i) the horizontal currents
at the surface are directed at 45◦ to the right of the
surface wind and (ii) the currents spiral in an anti-
cyclonic (clockwise) direction with depth through the
ocean, decaying exponentially in magnitude away from
the surface. Similar Ekman spirals exist at the bottom of
the ocean and the atmosphere, but the direction of the
flow is opposite. Winds at the surface are therefore 45◦

to the left of the winds in the lower troposphere above
the planetary boundary layer, which means that the cur-
rents at the sea surface are nearly in the direction of the
lower tropospheric winds.

In the anticyclonic subtropical gyres, Ekman trans-
port results in the flow converging horizontally toward
the center of the gyre. Mass conservation then implies
downwelling through Ekman pumping (see figure 4).
In the cyclonic subpolar gyres there is divergence and
Ekman suction. In the incompressible ocean, the verti-
cal velocityw is given by ∇h·uag+∂w/∂z = 0, since the
geostrophic flow is nondivergent. The vertical velocity
at the surface is zero, and so integrating this equation
over the Ekman layer gives a vertical velocity at the base
of the Ekman layer wEk of

wEk = 1
ρ0

∇h ·MEk = 1
ρ0
ẑ · ∇ ×

(
τwind

f

)
.

The Ekman pumping velocitywEk therefore depends on
the curl of τwind/f , which is largely set by variations in
the wind stress.

In the ocean interior, away from the surface or conti-
nental boundaries, friction is negligible, and to a good
approximation, the flow is in geostrophic balance. How-
ever, the flow does respond to the pattern of verti-
cal velocities imposed by the Ekman layer above. The
horizontal divergence of geostrophic flow is associated
with vertical stretching of water columns in the interior
because∇h·ug+∂w/∂z = 0 for an incompressible flow.
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Figure 4 Schematic indicating the Ekman and Sverdrup
transports (solid lines) and Ekman pumping (dashed lines)
associated with wind-driven ocean gyres.

From (6), the horizontal divergence of the geostrophic
velocity is ∇h · ug = −(β/f)vg, where β = df/dy .
Hence, the vertical and meridional (i.e., northward) cur-
rents are related by βvg = f∂w/∂z. There is therefore
expected to be an equatorward (poleward) component
to the horizontal velocity wherewEk < 0 (wEk > 0). This
means that in the subtropical gyres the interior flow
away from boundaries is equatorward (see figure 4).
The interior flow must be consistent with the sense of
the wind circulation, and so on the western side of the
ocean basin, where frictional effects at the continental
boundary mean geostrophy breaks down, there is a nar-
row return flow. In the subtropical gyres the wind puts
anticyclonic vorticity into the ocean, which is removed
by friction at the boundary as the flow returns poleward
on the western side.

The full depth-integrated flow V can be obtained
by considering the generic equation for the merid-
ional velocity v , obtained from the incompressibility
condition together with (7):

βv = f ∂w
∂z

+ 1
ρ0

∂
∂z

(∂τy
∂x

− ∂τx
∂y

)
.

Integrating this from the bottom of the ocean (z = −D,
w = 0, τ = 0) to the surface (z = 0, w = 0, τ = τwind)
gives

βV = 1
ρ0
ẑ · ∇ × τwind.

Known as Sverdrup balance, this relates the depth of
the integrated flow to the curl of the wind stress. It

dictates the sense of the motion in the subpolar and
subtropical gyres. In the Southern Ocean, which encir-
cles Antarctica, at vertical levels where no topogra-
phy exists to support east–west pressure gradients,
there can be no mean meridional geostrophic flow and
therefore the above Sverdrup approximation does not
apply.

6.4 Quasigeostrophic Flow and Baroclinic

Instability

For large-scale, low-frequency flows with small Ro
number, the velocity can be split into a geostrophic
part and an ageostrophic part, u = ug + uag, with
|uag|/|ug| ∼ O(Ro). In this case the momentum can
be approximated by the geostrophic value, and the rate
of change of momentum or temperature following hor-
izontal motion can be approximated by the rate of
change following the geostrophic flow. Thus, Du/Dt ≈
Dgug/Dt ≡ ∂ug/∂t+ug ·∇ug, and the remaining terms
of the momentum equation in log-pressure coordinates
give

Dgug

Dt
= −f0ẑ× uag − βy ẑ× ug,

where the β-plane approximation has been used.

The geostrophic velocity is nondivergent, and so
there exists a stream function ψ such that ug =
ẑ × ∇ψ. Comparison with the geopotential indicates
ψ = (Φ − Φ∗)/f0, with Φ∗(z̃) being a suitable refer-
ence geopotential profile. The continuity equation (4)
in log-pressure coordinates becomes

∂uag

∂x
+ ∂vag

∂y
+ 1
ρ∗
∂(ρ∗w̃)
∂z̃

= 0,

where ρ∗(z̃) = ρ0e−z̃/H . The potential temperature
θ is related to the temperature by θ = TΞ, where
Ξ = exp(Rz̃/Hcp). Using the hydrostatic balance
equation, it can be written as a reference profile,
θ∗(z̃) = (H/R)Ξ∂Φ∗/∂z̃, plus a disturbance, θ′ =
(H/R)f0Ξ∂ψ/∂z̃. The thermodynamic equation can
then be approximated by

Dgθ′

Dt
+ w̃ ∂θ∗

∂z̃
= 1
cp

DQ
Dt

exp(Rz̃/Hcp).

Together, these form the equations for quasigeostroph-
ic flow. When friction and diabatic heating are ne-
glected, these equations can be used to demonstrate
that the quantity q, the quasigeostrophic potential
vorticity given by

q = f0 + βy +∇2ψ+ 1
ρ∗

∂
∂z̃

(
ρ∗
f 2

0

N2

∂ψ
∂z̃

)
,
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is conserved following the flow: Dgq/Dt = 0. Here, N is
a buoyancy frequency given by

N2(z̃) = R
H

exp
(
− Rz̃
Hcp

)
∂θ∗
∂z̃
.

Baroclinic instability is responsible for the develop-
ment of eddies in the atmosphere and ocean. As noted
earlier, such eddies play a central role in global heat
transport. The instability is a common feature of flows
in the atmosphere and the oceans because a rotating
fluid adjusts to be in geostrophic balance, rather than
rest, and in this configuration the fluid has potential
energy that is available for conversion to other forms
by a redistribution of mass. For example, the vertical
shear of the westerly flow in the midlatitude jet streams
is in thermal wind balance with a horizontal temper-
ature gradient, and this provides available potential
energy for baroclinic instability. However, having avail-
able potential energy in the fluid is not sufficient for
instability since rotation tends to inhibit the release of
this potential energy.

A highly simplified description of the instability pro-
cess can be obtained by considering the evolution
of a parcel of air in an idealized background state
consistent with the typical mean state of the lower
atmosphere, i.e., one with sloping surfaces of constant
potential temperature in the height–latitude plane (see
figure 5). If a parcel of air moves upward in a wedge
between a sloping surface of constant potential tem-
perature and the horizontal, and is replaced by a simi-
lar parcel moving downward (as indicated in figure 5),
the warm air parcel (light gray) is then surrounded by
denser air and will continue to rise, and vice versa for
the cold air parcel (dark gray). The potential energy
is reduced since the heavier parcel has moved lower
and the lighter parcel has moved higher. The potential
energy released can be converted to kinetic energy of
eddying motions. This baroclinic instability process is
associated with a poleward and upward transport of
heat.

Analysis of idealized flows can provide an indication
of the typical properties of baroclinic instability. The
classic example, known as the Eady problem, considers
the simplest possible model that satisfies the neces-
sary conditions for instability. The density is treated as
a constant except where it is coupled with gravity in
the vertical momentum equation, and both the Cori-
olis parameter f and the buoyancy frequency N are
assumed to be constant. This is known as the Boussi-
nesq approximation. The model is set up with rigid lids
at z̃ = 0 and z̃ = H. The flow u is considered to be

Equator

H
ei

g
h

t

Pole

Warm, buoyant

Cold, dense

Figure 5 Schematic indicating parcel trajectories relative
to sloping surfaces of constant potential temperature (gray
lines) within a wedge of instability (filled region) for a
baroclinically unstable disturbance in a rotating frame.

a background mean field ū = (ū,0,0) with a constant
vertical shear, ∂ū/∂z̃ = Λ, plus a disturbance, u′.

With these conditions, ∂q̄/∂y = 0, which would
imply that the flow was stable if it were not for the
presence of the upper boundary. Linearizing the quasi-
geostrophic potential vorticity equation gives(

∂
∂t

+ ū ∂
∂x

)
q′ = 0.

The linearized form of the thermodynamic equation
gives (

∂
∂t

+ ū ∂
∂x

)
∂ψ′

∂z̃
− ∂ψ

′

∂x
∂ū
∂z̃

+ w̃ N
2

f0
= 0.

Vertical shear at the upper and lower boundaries
implies a temperature gradient in the y-direction (i.e.,
in the cross-flow direction) through thermal wind bal-
ance. The advection of temperature at the upper and
lower boundaries must therefore be taken into account.
First considering the lower boundary only, with ū = 0
the equations become

∇2ψ′ + f 2
0

N2

∂2ψ′

∂z̃2
= 0

and
∂
∂t

(
∂ψ′

∂z̃

)
−Λ∂ψ

′

∂x
= 0.

Looking for wavelike solutions of the form

ψ′ = Re ψ̂(z̃) exp(i(kx + ly +mz −ωt))
leads to a dispersion relation ω = kΠ/(l2 + k2)1/2,
where Π = Λf0/N . This gives an eastward phase speed
c = ω/k. A poleward displacement of an air parcel on
the lower boundary will induce a warm anomaly, which
will be associated with a cyclonic circulation. A neigh-
boring equatorward displacement will induce a cold
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anomaly and an anticyclonic circulation. Consideration
of the induced circulation pattern shows that the tem-
perature anomaly will propagate to the east. Consider-
ing the upper boundary only, ū = ΛH and this leads
to a dispersion relation ω = kΛH − kΠ/(l2 + k2)1/2.
This gives a westward phase speed relative to the flow.
These edge waves by themselves do not transport heat
and do not release any energy from the system. The
process of baroclinic instability in the Eady model relies
on the presence of the edge waves and, crucially, their
interaction.

For the full problem, one can find solutions to the lin-
earized quasigeostrophic potential vorticity equation
of the same wavelike form, with ψ̂(z̃) = A coshκz̃ +
B sinhκz̃, where κ2 = (l2+k2)N2/f 2

0 and the boundary
conditions define A and B. In this case the dispersion
relation is

ω = kΛH( 1
2 ±√

α), α = 1
4
− cothκH

κH
+ 1
κ2H2

.

If α < 0 the flow is unstable. Instability therefore
requires (l2 +k2) < k2

c ≈ 5.76/LR, where kc is a critical
wave number and LR = NH/f0 is the Rossby radius. So,
there are only certain horizontal scales of waves that
may grow exponentially, and the scale of these waves
will depend on the rotation rate, the depth of the layer,
and the static stability.

For a given zonal wave number k, the most unsta-
ble growing mode is that for which the meridional
wave number l is zero. The wave number for maxi-
mum growth is k ≈ 1.61/LR, corresponding to a wave-
length of Lmax = 2π/k ≈ 3.9LR and a growth rate
σ ≈ 0.31f0Λ/N . Applying typical order-of-magnitude
values for the atmosphere (H ∼ 10 km, U ∼ 10 m s−1,
and N ∼ 10−2 s−1) gives Lmax ≈ 4000 km and ω ≈
0.26 day−1. For the ocean, H ∼ 1 km, U ∼ 0.1 m s−1,
and N ∼ 10−2 s−1, giving Lmax ≈ 400 km and ω ≈
0.026 day−1. The atmospheric values are broadly con-
sistent with the observed spatial and growth rates of
midlatitude weather systems. In the ocean, the simple
scenario on which these values are based is not quan-
titatively applicable, but the values give a qualitative
sense of the scale and growth rate of instabilities in the
ocean relative to the atmosphere.

6.5 Rossby and Kelvin Waves

Wave-like motions frequently occur in the atmosphere
and oceans. One important class of waves is known as
Rossby waves. The Rossby wave is a potential vorticity-
conserving motion that owes its existence to an isen-
tropic gradient of potential vorticity.

In midlatitudes, taking the β-plane approximation
and considering a small-amplitude disturbance to a
uniform zonal background flow u = (U,0,0), one finds
a wavelike solution to the quasigeostrophic equations
with a dispersion relation

ωRossby = kU − βk
k2 + l2 + f 2

0m2/N2
,

where N has been assumed to be constant for simplic-
ity. The zonal phase speed of the waves c ≡ω/k always
satisfies U − c > 0, i.e., the wave crests and troughs
move westward with respect to the background flow.

The Coriolis parameter is much smaller in the tropics
than in the extratropics, and consequently the equato-
rialβ-plane approximation, in which f ≈ βy (whereβ =
2Ω), sinφ ≈ y , and cosφ ≈ 1, is used to explore the
dynamics. Eastward- and westward-propagating distur-
bances that are trapped about the equator (i.e., they
decay away from the equatorial region) are possible
solutions. Nondispersive waves that propagate east-
ward with phase speed cKelvin = √

gH (where H is
an equivalent depth) are known as equatorial Kelvin
waves. Typical phase speeds in the atmosphere are
cKelvin ≈ 20–80 m s−1, and in the ocean cKelvin ≈
0.5–3 m s−1. Another class of possible solutions is
equatorial Rossby waves, whose dispersion relation is

ωeqRossby = − βk
(k2 + (2n+ 1)β/cKelvin)

,

where n is a positive integer. For very long waves
(as the zonal wave number approaches zero), the
nondispersive phase speed is approximately ceqRossby =
−cKelvin/(2n+1). Hence, these equatorial Rossby waves
move in the opposite direction to the Kelvin waves (i.e.,
they propagate westward) and at reduced speed. For
n = 1 the speed is about a third that of a Kelvin wave,
meaning it would take approximately six months to
cross the Pacific Ocean basin.

7 Ocean–Atmosphere Coupling

The dynamics of the ocean and atmosphere in the trop-
ics are highly coupled. On interannual timescales, the
upper ocean responds to the past history of the wind
stress, and the atmospheric circulation is largely deter-
mined by the distribution of sea-surface temperatures
(SSTs).

The trade winds that converge on the equator sup-
ply water vapor to maintain convection. The convec-
tive heating produces large-scale midtropospheric tem-
perature perturbations and associated surface and
upper-level pressure perturbations, which maintain the
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low-level flow. The zonal mean of the vertical mass flux
associated with this intertropical convergence zone
constitutes the upward mass flux of the mean Hadley
circulation. There are strong longitudinal variations
associated with variations in the tropical SSTs mainly
due to the effects of the wind-driven ocean currents.
Overturning cells in the atmosphere along the equa-
tor are associated with diabatic heating over equatorial
Africa, Central and South America, and Indonesia. The
dominant cell is known as the Walker circulation and
is associated with low surface pressure in the western
Pacific and high surface pressure in the eastern Pacific,
resulting in a pressure gradient that drives mean sur-
face easterlies (the Coriolis force is negligible in this
region). The easterlies provide a moisture source for
the convection in the western Pacific in addition to that
provided by the high evaporation rates caused by the
warm SSTs there. The atmospheric circulation is closed
by descent over the cooler water to the east.

Given a westward wind stress τx across the Pacific,
assumed to be independent of x, equation (7) can
be used to show that βyv = −ρ−1

0 ∂τx/∂z, assum-
ing the response is also independent of longitude and
using the equatorial β-plane approximation. A west-
ward wind stress across the Pacific therefore gives
rise to poleward flows either side of the equator in
the oceanic Ekman layer, which by continuity drive
upwelling near the equator. In addition, since the Pacific
is bounded to the east and west, the westward wind
stress results in the ocean thermocline being deeper in
the west than the east. The cold deep water therefore
upwells close to the surface in the east, cooling the SSTs
there, whereas in the west the cold water does not reach
the surface and the SSTs remain warm.

The upwelled region is associated with a geostrophic
current in the direction of the winds, since in the limit
y → 0, (7) gives βu = −ρ−1

0 ∂2p/∂y by l’Hôpital’s rule.
The deepening of the thermocline causes the sea sur-
face to be higher in the west, assuming that flow below
the thermocline is weak. There is therefore an eastward
pressure gradient along the equator in the ocean sur-
face layers to a depth of a few hundred meters. Away
from the equator, below the surface, this is balanced by
an equatorward geostrophic flow. At the equator, where
f = 0, there is a subsurface current directly down
the pressure gradient (i.e., to the east): the Equatorial
Counter Current.

The east–west pressure gradient across the Pacific
undergoes irregular interannual variations with a peri-
od in the approximate range 2–7 years. This oscillation
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Figure 6 Schematic of typical atmosphere/ocean conditions
during (a) El Niño (negative SOI) and (b) La Niña (positive
SOI) conditions (see text for details).

in pressure, and its associated patterns of wind, tem-
perature, and precipitation, is called the Southern Oscil-
lation, an index of which (the Southern Oscillation Index
(SOI)) can be obtained by considering the pressure dif-
ference between Tahiti in the central Pacific and Dar-
win, Australia, in the western Pacific (see figure 6). The
negative phase of the SOI represents below-normal sea
level pressure (labeled “L” in the figure) at Tahiti and
above-normal sea level pressure (labeled “H”) at Dar-
win, and vice versa for the positive phase. SSTs in
the eastern Pacific are negatively correlated with the
SOI, i.e., the phase with warm SSTs (known as El Niño)
coincides with a negative SOI, and vice versa for the
phase with cold SSTs (known as La Niña). The entire
coupled atmosphere–ocean response is known as the
El Niño–Southern Oscillation (ENSO).

During an El Niño event, the region of warm SSTs
is shifted eastward from the Indonesian region and
with it the region of greatest convection and the associ-
ated atmospheric circulation pattern (see figure 6). The
resulting adjustment of the Walker circulation leads to
a weakening of the easterly trade winds, reinforcing the
eastward shift of the warm SSTs. The sea-surface slope
diminishes, raising sea levels in the east Pacific while
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lowering those in the west. Ekman-driven upwelling in

the ocean reduces, allowing SSTs to increase. The ocean

adjusts over the entire basin to a local anomaly in the

forcing in the western Pacific through the excitation

of internal waves in the upper ocean. We can explain

the subsequent evolution using the properties of ocean

waves derived in the previous section. An equatorial

Kelvin wave propagates rapidly to the east, reinforcing

the initial warm SST anomaly in a positive feedback,

and equatorial Rossby waves propagate slowly (with

group velocity about a third of the Kelvin wave) to the

west. As the Kelvin wave propagates east it deepens

the thermocline, relaxing the basin-wide slope. When

it hits the coast on the eastern side (after about two

months), its energy feeds westward Rossby waves and

poleward coastal Kelvin waves. On the western side,

when the Rossby waves hit the coast, some energy feeds

an eastward-propagating Kelvin wave, which raises the

thermocline back toward its original location, reducing

the initial SST anomaly and providing a negative feed-

back. The propagation times of the waves mean that the

negative feedback is lagged, resulting in a simple model

of a delayed oscillator, which provides an explanation

for the observed ENSO periodicity.

In the coupled system the ocean forces the atmo-

spheric circulation (through the response to changed

boundary conditions associated with the El Niño SST

fluctuations) and the atmosphere forces the oceanic

behavior (through the response to changed wind stress

distribution associated with the Southern Oscillation).

8 Outlook

Mathematics has played, and continues to play, a cen-

tral role in developing an understanding of the Earth

system. It has provided insight into many of the fun-

damental processes that make up the weather and

climate, and crucially it has also provided the nec-

essary framework underpinning the numerical mod-

els used in future prediction. Some of the key areas

of research in which mathematicians have a vital role

include developing the tools that allow observational

data to be assimilated into forecast models, applying

concepts from dynamical systems theory to the eval-

uation of past climate and modeling of future vari-

ability, exploiting a range of mathematical techniques

to develop novel model parameterizations for subgrid

processes, and using advanced statistical techniques

for data analysis.
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IV.31 Effective Medium Theories
Ross C. McPhedran

1 Introduction

Effective medium theories arise in a variety of forms
and in a wide variety of contexts in which one wants
to model properties of structured media in a simpli-
fied way. The basic idea is to take into account the
structure of the heterogeneous medium by calculating
an equivalent homogeneous “effective medium” and to
use the equivalent medium in further calculations. For
example, one might be considering an optical mate-
rial composed of two different components, the optical
properties of each of which is known, and one might
want to put the two components together in a struc-
tured material that behaves like a homogeneous mate-
rial with properties differing from those of each com-
ponent. Various of the effective medium theories that
have been devised are of use in this particular exam-
ple, which is one of the first technological examples
of its use. (In fact, for several thousand years metals
have been put into glass melts in ways designed to give
particular optical coloration effects.)

A wide class of effective medium treatments have
proved useful in the study of the transport properties
of composite materials. The basic governing relation
is Laplace’s equation, and the solution is expressed in
terms of a distribution of a field quantity, with its asso-
ciated flux. Using the language of one such property,
electrical conductivity, the field quantity is the electric
field and its flux is the current. The materials constitut-
ing the composite are specified by their conductivity,
and the effective medium equations give the effective
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conductivity of the composite. The basic equations are

j(x) = σ(x)e(x), ∇ · j = 0, ∇× e = 0. (1)

These vector fields may be real or complex, depending
on the particular transport problem under considera-
tion. If the electric field e is written as the gradient of
a potential function, the last equation in (1) reduces to
Laplace’s equation.

Table 1 gives seven instances of this problem, with
the equivalent terms for conductivity being given in the
last column.

The seven examples of transport coefficients are all
mathematically equivalent. However, different practi-
cal considerations result in particular effective medium
approaches being better suited to some contexts than
others. In particular, in optical applications of compos-
ite media involving metals mixed in with dielectrics, the
electric permittivity of the metal is complex, as is the
effective permittivity of the metal–dielectric composite.
This may make it more difficult to establish an accurate
effective permittivity formula in this case.

2 Conditions for Effective Medium Theories

Effective medium theories require a number of condi-
tions concerning the characteristics of the structured
medium to be modeled to be satisfied. The structured
medium has to be divided into regions of the com-
ponent materials that contain sufficient numbers of
atoms or molecules for bulk properties to be used for
those regions. It must also include a sufficiently large
number of regions to permit construction of effective
medium formulas that do not need to take into account
finite-size effects. Typically, the construction of equiv-
alent homogeneous regions will occur on a scale much
smaller than the size of the sample of the structured
medium but much larger than that of the regions of its
component parts or of its separated parts. (An impor-
tant class of composite media has a background con-
tinuous phase, sometimes called the matrix phase, into
which separated components of other materials are
inserted.)

The construction of appropriate effective medium
formulas for composite structures is called homoge-
nization. The process of homogenization has to take
into account the geometry of the composite: whether it
is two dimensional or three dimensional; whether it is
isotropic or anisotropic; whether the different materi-
als of which it is composed have similar spatial distri-
butions, or whether there is a matrix phase into which

the regions of other materials are inserted. The require-
ments on the effective medium formula in the prob-
lem under investigation also need to be understood. If
a high-accuracy model is needed, then precise details
of the geometry of the system will generally need to be
incorporated into the theory. On the other hand, it will
sometimes be enough to have upper and lower bounds
on the transport coefficient, in which case much more
general and simpler procedures will be adequate.

3 Effective Medium Formulas of
Maxwell Garnett Type

The early history of formulas based on the effective
electric permittivity of systems of particles character-
ized by the dipole moment they develop when placed
in an external field is complicated. It spans the period
from 1837 (when Faraday proposed a model for dielec-
tric materials based on metallic spheres placed in an
insulator) to 1904 (when J. C. Maxwell Garnett used for-
mulas of this type in design studies on colored glass).
Essentially similar formulas are given various names,
depending on the first investigator to use them in a
particular context, and the approximations inherent
in them are sometimes glossed over. One example of
the complexity of this history is that the formula put
forward by Maxwell Garnett was essentially equivalent
to one developed previously by his godfather, J. C.
Maxwell, so the formula is often, justifiably, written
Maxwell–Garnett.

What is generally called the Clausius–Mossotti for-
mula gives the effective electric permittivity (εeff) of a
set of polarizable inclusions placed in a three-dimen-
sional background material of electric permittivity εb:

εeff = εb

(
1 + Nα

1 −Nα/3
)
,

where N is the number of inclusions per unit volume,
and α is their polarizability. To arrive at the Maxwell
Garnett formula, we replace α by the polarizability of
a sphere of electric permittivity εp and radius a:

α = 4πa3
( εp − εb

εp + 2εb

)
.

Introducing the volume fraction f = 4πNa3/3, the
Maxwell Garnett result is

εeff = εb

[
1 + 3f(εp − εb)

3εb + (1 − f)(εp − εb)

]
. (2)

The Maxwell Garnett formula is asymmetric in the
variables εp and εb, since the former corresponds to
isolated particles and the latter to the continuous back-
ground phase. It is also a purely dipole formula, in that
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Table 1 Equivalent physical transport problems governed by Laplace’s equation.

Problem j e σ

Electrical conduction Electrical current j Electric field e Electric conductivity σ
Dielectrics Displacement field d Electric field e Electric permittivity ε
Magnetism Magnetic induction b Magnetic field h Magnetic permeability μ
Thermal conduction Heat current q Temperature gradient −∇T Thermal conductivity κ
Diffusion Particle current Concentration gradient −∇c Diffusivity D
Flow in porous media Weighted velocity ημv Pressure gradient ∇P Fluid permeability k
Antiplane elasticity Stress vector (τ13, τ23) Vertical displacement gradient ∇u3 Shear matrix μ

field expansions near the particles are limited to sin-
gle dipole terms. As the volume fraction increases, the
isolated particles come closer to each other, interact
more strongly, and the dipole approximation increas-
ingly becomes inaccurate. A consequence of it being
a dipole formula is that the Maxwell Garnett equation
has a single pole, located when the following equa-
tion for the permittivity ratio between particles and
background material is satisfied:(εp

εb

)
∞

= −
(

2 + f
1 − f

)
. (3)

This equation specifies what is termed the plasmon res-
onance and gives the condition for the optical effects
of the particles to be particularly strong; it is never sat-
isfied exactly by physical systems, but it can be approx-
imately satisfied. The other interesting case is when
εeff = 0; this occurs when(εp

εb

)
0
= −

(
2 − 2f
1 + 2f

)
.

In this case, the presence of the particles cannot be
detected by measurements of εeff. The plasmon reso-
nance occurs when the permittivity ratio is real, nega-
tive, and below −2, while the zero of εeff for the Maxwell
Garnett equation occurs when the permittivity ratio lies
between −2 and 0.

As an example of the optical application of the
Maxwell Garnett formula, in figure 1 we show the effec-
tive electric permittivity as a function of the wavelength
of spherical silver particles in a silica matrix, with the
silver occupying a small volume fraction (10%) of the
composite. The strong permittivity resonance of the
composite would occur for an ideal metal when εp/εb =
−2.33 for f = 0.10; for the composite shown, the res-
onant condition (3) is most closely satisfied when the
wavelength is around 0.40 μm, so the composite would
have a strong reflectance in the violet spectral region.
The closest approximation to εeff = 0 occurs just to the
short-wavelength side of this peak.

0.4 0.6 0.8 1.0
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0
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Figure 1 The real (solid) and imaginary (dashed) parts of
εeff, as a function of wavelength, for silver spheres occupy-
ing 10% by volume of a composite, in a background material
of silica. The electric permittivity of silver is a strong func-
tion of the wavelength, and experimental data is used both
for its permittivity and for that of silica.

Formulas can be developed that take into account

the effect of higher-order multipoles, not just dipoles,

assuming, for example, a specific regular arrangement

of spherical particles. They generally use a method due

to Lord Rayleigh published in 1892. Such formulas take

into account the arrangement of the particles using lat-

tice sums, one for each relevant spherical harmonic

term. They also have one resonance for each multipole

term, with the resonances tending to cluster around the

permittivity ratio of −2.

The two-dimensional case of arrays of cylindrical par-

ticles placed in a background material is also of impor-

tance, particularly in the study of photonic crystals and

metamaterials. The Maxwell Garnett formula based on

circular cylinders that is equivalent to equation (2) is

εeff(εb, εp;f) = εb

[εb + εp − f(εb − εp)
εb + εp + f(εb − εp)

]
.

This exactly satisfies an important duality relationship

due to J. B. Keller, true for cylinders of arbitrary cross

section:

εeff(εb, εp;f)εeff(εp, εb;f) = εbεf .
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The duality relationship does not have an equivalent in
three dimensions. It has important consequences for
the underlying structure of two-dimensional transport
problems, since it provides a link between zeros and
poles of the effective transport coefficient.

It should be noted that the Maxwell Garnett formula
(2) is exact for a specific geometry, given by the Hashin–
Shtrikman construction. The idea is to calculate the
value (ε0) of a background permittivity such that, if
the electric field in this medium is uniform, a sphere
of core permittivity εp and shell permittivity εb can be
inserted into the medium of permittivity ε0 without dis-
turbing the uniform field there. The core and shell radii
of the coated sphere must be such that the volume of
the core divided by that of the shell is f/(1 − f). The
value so calculated for ε0 turns out to be exactly that
given by (2). One can then continue to insert copies of
such coated spheres repeatedly into the background,
scaling them down when necessary so that all the vol-
ume corresponding to the material of permittivity ε0

eventually disappears. All stages of the construction
preserve the Maxwell Garnett (or Hashin–Shtrikman)
effective electric permittivity.

4 Effective Medium Formulas
of Bruggeman Type

As we have remarked, the Maxwell Garnett formula,
and related expressions, take one material in a com-
posite to extend infinitely while the second material
takes the form of separated inclusions. In 1935 Brugge-
man constructed an alternative form of theory that
placed both materials on the same footing, i.e., both
were assumed to have the same topology. The resul-
tant formula is called the Bruggeman symmetric effec-
tive medium formula; it may also be called the coherent
potential approximation, after a random alloy theory
from solid-state physics.

We consider an aggregate structure composed of
grains filling all space. The grains are of type 1 (vol-
ume fraction f1, electric permittivity ε1) or type 2 (vol-
ume fraction f2 = 1 − f1, electric permittivity ε2). The
effective permittivity of the composite will be denoted
εB. To obtain a formula for it, we pick a representative
sample of grains occupying a small volume fraction δ
of the granular composite. The grains in the sample
are assumed to be well separated from each other, and
they must be chosen so that the sample has the correct
volume fractions of each.

The derivation uses the self-consistency assumption
that the effective permittivity of the composite remains

equal to εB to first order in δ when we replace the

medium surrounding the representative grains by a

homogeneous effective medium with electric permit-

tivity εB. After this replacement has been made, we

treat the representative grains as a dilute suspension

of spherical grains embedded in the medium specified

by εB. Correct to first order, the effective permittivity

of the suspension is

εB

[
1 + δf1

3(ε1 − εB)
ε1 + 2εB

+ δf2
3(ε2 − εB)
ε2 + 2εB

]
,

giving the equation

f1
3(ε1 − εB)
ε1 + 2εB

+ f2
3(ε2 − εB)
ε2 + 2εB

= 0.

The result is a formula that is symmetric in the prop-

erties of the two types of grains:

εB = 1
4 [γ ± (γ2 + 8ε1ε2)1/2]. (4)

The choice of the plus or minus sign in (4) should be

made so that the imaginary part of εB has the same sign

as the common sign of the imaginary parts of ε1 and ε2.

The Bruggeman expression (4) has several features

that distinguish it from the Maxwell Garnett type of

theory. As remarked, it has no preferred topology for

the two media filling the composite. Rather than a res-

onant peak, it has a branch cut, arising when the switch

is made between the two alternatives in (4). It also has

a percolation threshold, which is manifest if we take

ε2 = 0 and ε1 real. Imposing the criterion that εB be

nonnegative if ε1 > 0, the result for this particular case

is

εB =
⎧⎨⎩(3f1 − 1)ε1/2 when f1 � 1

3 ,

0 when f1 < 1
3 .

This shows that in this case there is a percolation

threshold at f1 = 1
3 .

In figures 2 and 3 we show the results of the symmet-

ric Bruggeman theory for the silver–silica composite of

figure 1, but for two volume fractions: one below the

percolation threshold and the other above it. The per-

colation threshold is not sharply defined in the case

of complex electric permittivities, but there are clear

changes that occur as the volume fraction of silver

increases. For small metal volume fractions, the grains

do not get close enough together to create the sort

of current paths needed to form a strong imaginary

part of the effective permittivity. Above the percola-

tion threshold, the imaginary part gradually strength-

ens, dominating the real part above a volume fraction

of 60%.
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Figure 2 The real (solid) and imaginary (dashed) parts of
εeff, according to the Bruggeman formula, as a function
of wavelength for silver occupying 30% by volume of a
composite, with 70% of the composite volume being silica.
Experimental data is used both for the permittivity of silver
and for that of silica.
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Figure 3 As for figure 2, but now with a silver volume
fraction of 60%, above the percolation threshold.

5 The Bergman–Milton Bounds

Bounds on the effective transport coefficients of com-

posite materials are very useful in checking theoretical

results and deducing information from experimental

measurements. They can be particularly useful if they

are sharp, i.e., there is at least one physical geometry

for which the bounds are attained. In the following brief

discussion of bounds we will use the notation σ for the

conductivity problem, with σeff being the (real-valued)

effective conductivity of a composite made of materials

with two real conductivities σ1 and σ2 and volume frac-

tions f1 and f2. We will use the notation εeff for bounds

appropriate to the case where ε1 and ε2 are allowed to

be complex.

Taking σ1 > σ2, the Hashin–Shtrikman lower bound

for three-dimensional composites is

σeff � σ2

[
1 + 3f1(σ1 − σ2)

3σ2 + f2(σ1 − σ2)

]
. (5)

This bound is sharp, being attained by an assemblage

of coated spheres with phase 1 as the core and phase 2

as the coating. The corresponding upper bound is

σeff � σ1

[
1 − 3f2(σ1 − σ2)

3σ1 − f1(σ1 − σ2)

]
. (6)

This bound is attained by an assemblage of coated
spheres with phase 2 as the core and phase 1 as the
coating.

For the complex case, independent work by Bergman
and Milton enabled the derivation of tight bounds on
the effective permittivity εeff of two-phase composites
with known volume fractions. Instead of inequalities
such as those in (5) and (6), the complex value of εeff

is constrained to lie in a specific region in the complex
plane. The region is defined by straight lines and arcs of
circles. If volume fractions are unknown, the region is
defined to lie inside the area bounded by a straight line
(the arithmetic mean of ε1 and ε2 as f1 and f2 = 1−f1

vary) and a circle (defined by the harmonic average, i.e.,
the reciprocal of the arithmetic mean of the quantities
1/ε1 and 1/ε2 as f1 and f2 = 1− f1 vary). Knowing the
volume fractions f1 and f2, one can constrain εeff to lie
in a region between two arcs of circles defined by com-
mon endpoints and one extra point for each. The com-
mon endpoints correspond to the points on the outer
region boundaries for the specified values of f1 and f2.
The extra points correspond to the Hashin–Shtrikman
coated-sphere assemblages with phase 1 and phase 2
as the coating. If it is known that the composite is
isotropic, as well as having the specified volume frac-
tions, then a still-smaller region in the complex plane
can be defined.

This construction of bounds can be viewed as a recur-
sive process. At each stage one has a region in the com-
plex plane. As an extra piece of information about the
composite is specified, two points on the boundary of
the old region consistent with the new information are
selected, and a smaller region is constructed with these
new points on its boundary. It has been shown that as
more and more information is specified, the bounds
converge to a specific point: the exact complex per-
mittivity for the (by now) uniquely specified composite
material. The area in the complex plane between the
bounds shrinks rapidly as more information is added
if ε1 and ε2 are well away from the negative real axis.
However, if their ratio is close to the negative real axis,
the area shrinks much more slowly as information is
added.

The Bergman–Milton bounds can also be used in
the inverse problem for composites: given measured
data on effective transport properties of a compos-
ite medium, what can be said about the medium’s
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structure? In particular, one would like to be able to
infer geometrical information, principally the volume
fractions of the phases making up the composite. An
important example of such an inverse problem is in
geophysics and resource extraction, where it is of great
value to be able to infer, say, the volume fraction of oil
in a fluid-permeated sandstone structure using bore-
hole electrical tomography. Another example in envi-
ronmental science concerns the estimation of the ratio
of brine to pure ice in sea ice [V.17]; this is of value
when trying to deduce the melting–freezing history of
sea ice over several seasons.
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IV.32 Mechanics of Solids
L. B. Freund

1 Introduction

The builders of ancient machines and structures must
have been concerned with the strength and durability
of their creations. Presumably, the standards applied
had evolved over time through trial and error.

Early evidence of systematic scientific study of the
strength of materials appears in the work of Leonardo
da Vinci (1452–1519), who experimented with circu-
lar rods of various diameters in order to learn about
the features that influence tensile breaking strength. A

more systematic study of rods in tension, as well as

beams in bending, was undertaken by Galileo (1564–

1642). Among his conclusions were that the tensile

breaking force of a uniform rod does not depend on

its length but does depend proportionally on its cross-

sectional area and that rupture of a cantilever beam

loaded by a weight at its free end usually initiates on

the top side of the beam near the support. The idea of

the force applied to a solid object being related in a

characteristic way to the deformation induced by that

force was first stated for the linear elastic response of

a watch spring by Hooke (1635–1703) in the form of a

Latin anagram that, when unscrambled, reads “As the

extension, so the force.”

With the publication of the Principia by Newton

(1642–1727), an approach emerged whereby the study

of physical phenomena began with a statement of phys-

ical principles, with a view toward deducing the behav-

ior of the physical world on the basis of those princi-

ples by mathematical means. Leonhard Euler (1707–83)

and Daniel Bernoulli (1700–1782) developed the theory

of elastic beams in bending that bears their names;

Coulomb (1736–1806) put that theory into the form of

a one-dimensional structural theory that is in common

use today. Eventually, it was the great post-Renaissance

engineer and mathematician Cauchy (1789–1857) who

unified what was known at the time about stress, strain,

and linear elastic material behavior to devise a full

three-dimensional theory of the mechanics of a solid

continuum. In the 250 years since, a long list of types of

material behavior has evolved—theories for describing

geometrically nonlinear deformation have been devel-

oped, material inertial effects have been incorporated

into the quantitative description of the response of

a solid to various types of applied loads, and spe-

cial theories have been developed for solid configu-

rations that are very thin in one or two dimensions,

as for beams, plates, or shells. These contributions

have been accompanied by the development of an

array of mathematical and computational methodolo-

gies for solving boundary-value problems based on par-

tial differential equations believed to describe these

phenomena.

During the twentieth century, the mechanics of solids

grew into an applied science that now underlies much

of the practice of mechanical engineering and civil

engineering. It is also widely applied within mate-

rials science, planetary geophysics, and biophysics,

for example. The area includes a large and active
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experimental component, as well as a major computa-
tional component.

1.1 A Solid Material

The identification of matter filling some portion of
space as a solid is based on the recognition of a con-
stitutive property of that material; namely, any mate-
rial that can resist imposed forces of a measurable
magnitude that tend to shear the material, without evi-
dence of ongoing deformation, is a solid. Otherwise,
the material is a fluid. The separation of materials into
these categories is not perfect, in that some materials
behave as either fluid or solid depending on the rate of
deformation and/or on the temperature.

A solid body is some solid matter filling a region
of space. The constituent material has certain char-
acteristics relevant to mechanical phenomena: mass
per unit volume, resistance to deformation, and ulti-
mate strength, for example. Furthermore, any piece
of the solid that is removed from the whole exhibits
these same material characteristics, and these proper-
ties remain unaltered as the solid is repeatedly divided
into indefinitely smaller pieces. Although this contin-
uum point of view overlooks the discrete small-scale
structure of materials, it facilitates modeling and analy-
sis at a scale insensitive to that structure. For example,
suppose that a small volume of a material, say v(p),
bounded by a closed surface surrounding the particu-
lar point p in the solid has total mass m(v). Then the
mass density at point p is

ρ(p) = lim
v→0

m(v)
v(p)

. (1)

In general, this property of indefinite divisibility makes
it possible to define both material properties and
mechanical fields as continuous functions of position
throughout a solid. The identification of the differen-
tial equations governing these fields, together with the
solution of these equations subject to boundary con-
ditions representing external influences, is the essence
of solid mechanics.

1.2 A Conceptual Map

Before launching into the details of the subject, a con-
ceptual map of solid mechanics is provided as an
aid to understanding the relationships among various
ideas that are central to the subject (see figure 1).
Examination of the subject begins with the consider-
ation of three fundamental ideas. The first of these is
labeled displacement, a topic that encompasses rules

Displacement

Momentum
balance

Compatibility

Solid
mechanics

Stress StrainMaterial
behavior

Figure 1 A conceptual map of solid mechanics.

for locating material particles in the Euclidean space in

which we live and for representing changes in the posi-

tions of these particles. The next fundamental idea is

that of material strain, which is focused on the way

in which the deformation of a material is described

quantitatively in terms of the change in the length

of material line elements that join adjacent material

particles or the change in angle between two mate-

rial line elements emanating from the same material

particle.

The third principal idea, stress, brings mechanical

action into the picture. Generally, the concept of stress

provides the basis for describing the mechanical force

exerted by the material on one side of an interior sur-

face on the material on the other side of that surface.

At the displacement–strain intersection, determining

strain for any prescribed displacement distribution and

the more challenging issue of determining displace-

ment for a specified strain distribution are addressed.

The stress–strain intersection is where characterization

of the mechanical behavior of materials enters; many

types of stress–strain relationships can be postulated,

and experiment is always the final arbiter of ideas in

this domain. Finally, the physical principle of conser-

vation of momentum comes into play at the stress–

displacement intersection. The concepts incorporated

in these three intersection zones are the essential ingre-

dients in the solution of any mathematical problem in

the mechanics of solids, as suggested by their intersec-

tion at the center of the conceptual map. The next task
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is to describe the means by which these concepts are
given useful mathematical forms.

2 Fundamental Concepts

As it deforms, a solid body occupies a continuous
sequence of configurations. One of these configura-
tions is adopted as a reference configuration for pur-
poses of description; this is usually the configuration
at the start of a deformation process of interest but the
choice is arbitrary.

The positions of material points, changes in the posi-
tions of material points, and points in space are repre-
sented by vectors. For this purpose, a set of orthonor-
mal basis vectors ek, k = 1,2,3, is introduced.

Any mathematical quantity represented by a symbol
in boldface denotes a vector or tensor, with the pre-
cise meaning implied by context. As an aid in calcula-
tion, index notation is commonly adopted for compo-
nents of vectors and tensors. The implied range of any
index is 1–3, unless a note to the contrary is included;
repeated indices in an expression indicate an inner
product, with summation over their range implied. The
rules governing the use of index notation are clearly
summarized in Bower’s Applied Mechanics of Solids.

The terms material point, material line, and material
surface are used often in the sections that follow. It
should be understood from the outset that these terms
are to be interpreted literally. For example, a material
line, once defined, always coincides with the same set
of material points in the course of deformation.

2.1 Displacement

Every material point can be identified with the point in
space with which it coincides in the reference configu-
ration, and the position of the generic point is denoted
by the vector

x = x1e1 + x2e2 + x3e3 ≡ xkek. (2)

A set of basis vectors is shown in figure 2, which depicts
a simple deformation. The reference configuration of
the solid is a cube of edge length -0, and the point at
one of the vertices of the cube is identified by position
x. In (2), the repeated index is understood to represent
summation over the implied range of that index; this
summation convention is followed in all subsequent
mathematical expressions.

The shaded object in figure 2 represents a possi-
ble deformed configuration of the solid body that had
occupied the cubic region. The figure suggests that the

u

x

e3

e2

e1

� �0

Figure 2 A deformed configuration of a solid body
that was a cube in its reference configuration.

solid has been stretched in the 3-direction and has been
contracted in the 1- and 2-directions. Of particular note
is the position of the corner point that was identified
asx in the reference configuration; this particular point
has displaced to the position ξ = ξiei in the deformed
configuration. The displacement of this point is the vec-
tor difference between these positions. If the displace-
ment vector is denoted by u, then the displacement of
the corner point is

u = ξ− x � ui = ξi − xi. (3)

The displacement of any point in the reference
configuration of the solid, uniquely identified by its
coordinates x1, x2, x3 with respect to the underly-
ing reference frame, can be determined similarly. When
defined in this way, the quantityu(x1, x2, x3) ≡ u(x) is
seen to define a continuous vector field over the refer-
ence configuration of the solid that describes the com-
plete displacement field associated with a deformation.

2.2 Strain

Commonly, the displacement field u(x1, x2, x3) varies
from point to point throughout the reference configura-
tion of the solid body. Also, the length of a material line
element connecting any two adjacent material points
in the deformed configuration differs from the length
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of that line element in the reference configuration.
The concept of strain is introduced to systematically
quantify this difference.

Suppose that we focus on a generic material point
within the solid that is identified in the reference con-
figuration by its position xi (not necessarily the cor-
ner point illustrated in figure 2) and on a second mate-
rial point an infinitesimal distance away at position
xi + dxi. The length and orientation of the material
line joining these two points is defined by the vector
dxi. After deformation, these points have moved to
the positions ξi and ξi + dξi, respectively. The map-
ping of each line element dxi to dξi characterizes the
deformation at that material point.

Following deformation, the location of the endpoint
of the infinitesimal material line of interest is

ξi + dξi = xi + dxi +ui(x1 + dx1, . . . ). (4)

The displacement vector at this point is expanded in
a Taylor series at the point xi and only the first-order
terms in the increments dxi are retained. Then

ui(x1 + dx1, . . . ) ≈ ui(x1, . . . )+ ∂jui(x1, . . . )dxj,

where ∂jui denotes the matrix of components of the
displacement gradient tensor in the reference config-
uration. In view of (4), the deformed material line
element is

dξi = Fijdxj, Fij = δij + ∂jui, (5)

where δij is the identity matrix and Fij is the deforma-
tion gradient. Thus, the deformation gradient provides
a complete description of the deformation of the neigh-
borhood of a material point. Furthermore, the determi-
nant of the deformation gradient at a point in a defor-
mation field yields the ratio of the volume of a small
material element at that point to the volume of that
same material element in the reference configuration.

Suppose for the moment that the infinitesimal mate-
rial line element represented by dxi in the reference
configuration has length ds0 and direction miei, with
mkmk = 1, and that dξi dξi = ds2; recall that a
repeated index in an expression implies summation
over its range. Then, forming the inner product of each
side of (5)1 with itself and dividing by ds2

0 yields

ds2 − ds2
0

ds2
0

= 2Eijmimj, (6)

Eij = 1
2 (∂jui + ∂iuj + ∂iuk∂juk), (7)

where Eij is the symmetric matrix of components of
Lagrange strain.

To develop some sense of the geometrical character

of Eij , suppose that λ1 = ds/ds0: the stretch ratio of a

material line element that has direction m = e1 in the

reference configuration. Then (6) implies that

λ2
1 − 1 = 2E11. (8)

Similarly, for two infinitesimal material lines emanat-

ing from the same material point in the reference con-

figuration, it is possible to express the angle between

these two lines in the deformed configuration in terms

of the Lagrange strain. For example, consider the line

elements dxai = dsa0m
a
i and dxbi = dsb0m

b
i . For the case

when ma
jm

b
j = 0, the result is

λaλb cos( 1
2π − γab) = 2Eijma

i m
b
j , (9)

where γab is the reduction in angle between the lines,

called the shear strain, and λa and λb are the stretch

ratios of the line elements. For the particular case when

the a- and b-directions are the 1- and 2-directions

and when the stretch ratios are equal to 1, this result

reduces to sin(γ12) = 2E12 = 2E21.

2.2.1 Small Strain

Up to this point in the discussion of strain, no assump-

tion about the deformation has been invoked, other

than continuity of the displacement field. In particu-

lar, the expressions for stretch and rotation are valid

for deformations of arbitrary magnitude. These expres-

sions simplify considerably in cases for which the

deformation is “small” in some sense. Usually, the

strain is understood to be small if |∂iuj| � 1 for

each choice of the indices i and j. If the deformation

of a solid material is small, then the strain (7) can be

approximated by the small strain matrix

εij = 1
2 (∂jui + ∂iuj). (10)

The stretch ratio in the 1-direction is simply

ds
ds0

= 1 + ε11, (11)

and the expression for shear strain given in (9) becomes

γij = 2εij, i ≠ j. (12)

Deformations falling outside the range of small strains

are common, for example, when material line elements

are stretched to several times their initial lengths in

metal forming or when a thin compliant solid, such as

a plastic ruler, is bent into a U-shape for which material

line elements rotate by as much as π/2.
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2.2.2 An Example of Deformation

Suppose that the solid body depicted as a cube of edge
length -0 in figure 2 deforms into a rectangular par-
allelepiped with edge length - > -0 in the 3-direction
and with every plane section ξ3 = const. being one and
the same square shape. This is an example of a homoge-
neous deformation; that is, all initially cubic portions of
the solid with edges aligned with the coordinate direc-
tions deform into the same shape. Two consequences
of homogeneity are that the deformation gradient is
constant throughout the reference configuration and
that the displacement field is linear in x1, x2, and x3.
Finally, rigid body motions are ruled out by requiring
that the material line initially along x1 = x2 = 1

2-0

remains along that line and that the surface x3 = 0
remains in that plane. These features of the defor-
mation constrain the displacement field u(x) in the
reference configuration to be

u1(x1, x2, x3) = (λ− 1)(x1 − 1
2-0),

u2(x1, x2, x3) = (λ− 1)(x2 − 1
2-0),

u3(x1, x2, x3) = (λ3 − 1)x3,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (13)

where λ3 = -/-0 is the imposed stretch ratio in the 3-
direction and λ is the unknown stretch ratio in both the
1- and 2-directions.

What value of λ ensures that the deformation is
volume-preserving? This question can be addressed by
noting that the local value of the determinant of the
deformation gradient matrix is the ratio of the volume
of a certain infinitesimal material element in the cur-
rent configuration to the volume of that same material
element in the reference configuration. In the present
case, the deformation gradient is

F =

⎡⎢⎢⎣
λ 0 0

0 λ 0

0 0 λ3

⎤⎥⎥⎦ . (14)

The requirement that det(Fij) = 1 leads to the conclu-
sion that λ has the value

λ =
√
-0/-. (15)

2.3 Stress

The concept of stress provides the basis for quantifying
the transmission of mechanical force across a material
surface. Suppose that a solid body is in a state of equi-
librium under the action of applied forces. Consider
the resulting distributed force per unit area acting on a
smooth material surface that divides the solid into two

parts. Denote a unit vector normal to the surface at any
point by n.

Next, imagine that the portion of the solid into which
n is directed is removed. The force per unit area acting
on the exposed surface is a vector-valued function of
position, say t(n), where the notation implies that the
result depends not only on the location of that point on
the surface but also on the orientation of the surface
at that point; this vector quantity is commonly called
the traction or the stress vector. By considering smooth
surfaces for which n = ek for k = 1,2,3 successively,
we are led to an array of nine quantities at any material
point that can be expressed collectively as a matrix, say
σij . For example, traction on the surface with normal
vector e1 is written in component form as

t(e1) = σ11e1 + σ12e2 + σ13e3. (16)

The matrix σij represents the components of a tensor
σ at each point in the material called the stress ten-
sor. It relates the local normal vector directed outward
from an arbitrary material surface passing through
that point to the corresponding force per unit area
transmitted across that material surface according to

ti(n) = σijni. (17)

In order for the angular momentum of an infinitesi-
mal material element to be conserved, the stress matrix
must be symmetric; that is, σij = σji. The tensor char-
acter of stress is evident in (17), which identifies σij as
a linear operator that, when applied to a direction n at
a material point, yields the local traction transmitted
across a surface passing through that point with local
outward normal n.

It was tacitly assumed in the foregoing discussion
that stress is defined in a particular configuration of the
solid body. If the configuration is the current deformed
configuration, then stress is commonly called true
stress or Cauchy stress. In the reference configuration,
both the area and the orientation of any particular
material surface element may be different, leading to
a different but related description of stress called the
nominal stress. This issue must be addressed directly in
describing large deformation phenomena, but it may be
overlooked without significant error when deformation
is small.

The foregoing discussion has been based on trans-
mission of force across a material surface interior to
a solid body. The concept is also central to identify-
ing boundary conditions on stress in the formulation
of a boundary-value problem in solid mechanics. The
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Figure 3 Traction induced by applied tension
on an interior plane with normal n.

Cauchy relationship (17) can be used to infer boundary
conditions for components of stress from the known
imposed surface traction.

2.3.1 An Example of Stress and Traction

Recall that the solid block depicted in figure 2 has
undergone stretching in the 3-direction and equibiaxial
contraction in the 1- and 2-directions, so as to conserve
the volume of the material. This deformation is induced
by a traction distributed on each material plane perpen-
dicular to the 3-direction with a resultant force, say P ,
as illustrated in figure 3. The stretch ratio λ in the 1-
and 2-directions is given in terms of the stretch ratio in
the 3-direction, -/-0, in (15).

The traction t(e3) is necessarily distributed uni-
formly over any plane perpendicular to the 3-direction.
In particular, the traction t(e3) has a single component
in the 3-direction of magnitude σ33 = P-/-3

0. This is
the only nonzero component of true stress throughout
the block.

The state of stress is uniform throughout the block,
including everywhere on the interior plane with unit

normal vector n = sinαe1 + cosαe3. The traction act-

ing on this material surface is provided by the Cauchy

relation (17) as

t(n) = σ33 cosαe3. (18)

The component normal to the inclined surface is the

normal stress t · n = σ33 cos2α. The component tan-

gent to the surface is the shear stress t − (t · n)n with

magnitude σ33 sinα cosα.

3 Governing Equations

With reference to the map in figure 2, the next step is

to identify the equations comprising a boundary-value

problem in the mechanics of solids. These equations

provide a description of the response of the material

relating stress and strain, the governing physical pos-

tulate relating stress and motion, and the compatibility

equation relating strain and displacement. For a more

formal introduction to these equations, see the article

on continuum mechanics [IV.26].

3.1 Material Behavior

The variety of specific equations that have been adopt-

ed to describe the deformation of a material in re-

sponse to applied stress is enormous and growing,

driven by special applications, development of new

materials, and increasingly stringent demands on pre-

cision in the use of traditional materials. Nonetheless,

there are some basic requirements for any proposed

description of response to be admissible. Briefly stated,

the principal restrictions are that response must be

consistent with the laws of thermodynamics and that

the response must be independent of the frame of

reference assumed by the observer describing it. The

simple models for material behavior included here are

consistent with these restrictions.

If all aspects of material response of a solid are iden-

tical from point to point within the body, then the mate-

rial constituting that body is said to be homogeneous. If,

on the other hand, the response of a solid at any mate-

rial point due to an arbitrary but fixed state of stress

is invariant under certain rotations of the material,

with the state of stress unchanged, then the orthogonal

transformations relating these particular orientations

to the original orientation are collectively termed the

isotropy group. If the isotropy group includes all pos-

sible rotations, then the material is said to be isotropic

at that point; in common usage, a material is said to
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be isotropic if it is isotropic at each point. Both homo-

geneity and isotropy result in enormous simplification

when dealing with boundary-value problems for solid

bodies.

3.1.1 Linear Elastic Material

When used to describe material behavior, the term

elastic usually implies that the deformation due to an

applied stress cycle is reversible, repeatable, and inde-

pendent of the rate of application of stress. Here, we

also take it to imply that any material line will increase/

decrease in length when its temperature is increased/

decreased. Many elastic materials undergoing small

strain exhibit a strain response that is linear in the

applied stress or linear in the response to a temper-

ature change T . The dependence of strain on stress at

a material point in an isotropic linear elastic solid can

be expressed compactly as

εij =
1 + ν
E

σij −
ν
E
σkkδij +αTδij. (19)

The constant E > 0 is called Young’s modulus; it has

physical dimensions of force per unit area, and it is the

ratio of applied stress to induced strain in uniaxial ten-

sion of any stable elastic material. The dimensionless

constant ν is called Poisson’s ratio; it is the ratio of the

contractive strain transverse to the tensile axis in uni-

axial tension to the extensional strain along the tensile

axis; it has values in the range 0 < ν < 1
2 for homo-

geneous materials, but microstructures can be devised

for which −1 < ν < 1
2 . The constantα is called the coef-

ficient of thermal expansion; it is the extensional strain

of any material line element in the solid per degree

increase in temperature.

Together, these three constants represent a com-

plete description of the behavior of a homogeneous and

isotropic elastic material. Any other material constant

is necessarily representable in terms of all or some of

these. For example, consider the ratio of the magnitude

of an equitriaxial stress σ11 = σ22 = σ33 = σv to the

induced equitriaxial strain εv at constant temperature.

If the terms in (19) are each contracted over the indices

i and j with T = 0, it follows that

3εv = 1 − 2ν
E

3σv, (20)

where 3εv is the volume change to lowest order in

strain. Consequently, the bulk modulus of an isotropic

elastic material is expressible in terms of E and ν as

E/(1 − 2ν). It is evident that if ν = 1
2 , then any triaxial

state of stress induces no volume change whatsoever;
that is, the material is incompressible if ν = 1

2 .

Now suppose that the only nonzero component of
stress is a shear component, say σ12. Furthermore, sup-
pose that the corresponding strain component ε12 is
expressed in terms of the actual shear strain γ12 as
observed in (12). The form of (19) for this case then
shows that the elastic shear modulus is

μ = σ12

γ12
= E

2(1 + ν) . (21)

3.1.2 Elastic–Ideally Plastic Response

This terminology is applicable to the description of
deformation of polycrystalline metals in metal forming
or the plastic collapse of metal structures. The central
idea underlying this type of behavior is that the range
of stress values over which a material responds elasti-
cally is limited. For most metals, plastic deformation is
insensitive to mean normal stress; it is a response to
the total stress less the mean normal stress, called the
deviatoric stress, which is defined as

sij = σij − 1
3σkkδij. (22)

The limit of elastic behavior is expressed in the form
of a surface in stress space, usually called a yield
surface. An example of such a surface is

3
2 sijsij

⎧⎪⎪⎪⎨⎪⎪⎪⎩
< σ2

y , elastic response,

= σ2
y , plastic flow,

> σ2
y , inaccessible,

(23)

where σy > 0 is the yield stress or flow stress, usually
the magnitude of stress at which the elastic limit is
reached in a uniform bar subjected to uniaxial tension
or compression.

While the state of stress remains on the yield sur-
face, plastic deformation can proceed without change
in stress. This accounts for the phenomenon of plastic
collapse, whereby metal structures appear to fail catas-
trophically at a constant level of load. Perhaps the sim-
plest description of ongoing plastic flow assumes that
the strain rate is proportional to the stress rate, so that
the response is rate independent. In general, the cur-
rent strain at a material point in a plastically deforming
material depends on the entire history of strain at that
point.

3.2 Stress Equilibrium

In general, the state of stress varies from point to point
in a deforming solid, giving rise to local gradients in
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stress components. A gradient in stress across a small
material element implies an imbalance in the force or
moment on the element, so these gradients must be
related in order to ensure equilibrium. To see how
these gradients must be related, then, we begin by not-
ing that, in the absence of any other applied forces or
moments, the resultant of all surface tractions on the
bounding surface S of a solid occupying volume V must
be zero at equilibrium. When written as a surface inte-
gral, this requirement is ideally suited for application
of the divergence theorem, so that

0 =
∫
S
σijni dS =

∫
V
∂iσij dV. (24)

Next, we observe that not only is the entire solid sub-
ject to this requirement but so is every part of it. It fol-
lows that a spatially nonuniform distribution of Cauchy
stress σij must satisfy the three conditions

∂iσij = 0, j = 1,2,3, (25)

pointwise throughout the deformed configuration of
the solid. This requirement is called the stress equilib-
rium equation. Once again, if the deformation is locally
small, this condition can be imposed in the reference
configuration without significant error.

If the solid being considered were subjected to a grav-
itational or electrostatic field, for example, then the
left-hand side of the equilibrium equation (25) would
include a distributed body force per unit material vol-
ume to represent the influence of such a field. Similarly,
if the deformation of the material occurred at a rate
sufficient to induce inertial resistance of the material
to motion, the right-hand side of (25) would include a
term in the form of the local rate of change of material
momentum per unit volume.

3.3 Strain Compatibility

The notion of a strain compatibility requirement arises
from the fact that, for a spatially nonuniform deforma-
tion, there are three independent displacement compo-
nents at every point but six independent strain compo-
nents. Given any distribution of the three displacement
components, it is a straightforward matter to deter-
mine the corresponding strain distribution; see (7) or
(10), for example. On the other hand, given an arbi-
trary distribution of each of six independent compo-
nents of strain, it is not always possible to determine a
displacement field from which that strain distribution
can be deduced. The strain compatibility equations pro-
vide restrictions on the strain distribution, essentially
in the form of integrability conditions, which ensure

that three geometrically realizable components of dis-
placement can be determined from the six prescribed
components of strain.

The issue of strain compatibility is of central impor-
tance for the solution of boundary-value problems for-
mulated in terms of stress. When confronted with prob-
lems such as these, the strain distribution that corre-
sponds to the stress in question through a constitu-
tive relationship must be a realizable deformation in a
three-dimensional Euclidean space.

4 Global Formulations

In this section, methods that incorporate the local def-
initions of stress and deformation introduced above,
but that begin from a global physical postulate govern-
ing behavior, are briefly introduced.

4.1 The Principle of Virtual Work

The principle of virtual work provides a gateway to
understanding the deformation and failure of solid
bodies from a broader perspective. Here, the subject
will be briefly introduced in terms of how it applies to
deformations under a small amount of strain, but its
applicability extends to general deformation. Suppose
that a solid body occupying the region R of space, with
bounding surface S, is subjected to surface traction ti
on part of the bounding surface Sσ and to imposed
Su = S − Sσ . Let ε∗ij be an arbitrary distribution of
compatible strain arbitrary distribution of compatible
strain throughout R that is consistent with the condi-
tion that the corresponding displacement field satisfies
u∗
i = 0 on Su. The requirement∫

R
σijε∗ij dR =

∫
Sσ
tku∗

k dS (26)

for every admissible ε∗ij and u∗
i then ensures that the

stress distribution is an equilibrium distribution that is
consistent with the assigned boundary values of trac-
tion. The aspect of this statement that makes it remark-
able is that the stress field and the deformation field
incorporated in the statement are completely uncou-
pled; the inference is indeed independent of material
behavior.

For example, consideration of equilibrium of the
material throughout the solid could begin with the
requirement (26). Then, by exploiting the arbitrariness
of the kinematic field, one is led to the conclusion that
the stress field satisfies (25) pointwise throughout R
and is consistent with the imposed traction through
the Cauchy relation (17).
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As a route to another result central to the study of

elasticity boundary-value problems, suppose that the

stress distribution appearing on the left-hand side in

(26) is expressed in terms of the actual strain in R
via Hooke’s law (19) and that tk is the actual imposed

boundary traction on Sσ . In addition, suppose that

ε∗ij = δεij , a slight perturbation from the actual strain,

and that u∗
k = δuk, a slight perturbation from the

actual displacement on Sσ . In this case, the principle of

virtual work implies that a functional of deformation,

the potential energy

Φ[uk] = 1
2

∫
R
σijεij dR−

∫
S
tkuk dS, (27)

is stationary under arbitrary small variations in the

deformation δui that vanish on Su.

4.2 The Finite-Element Method

Many computational techniques have been found to be

useful in the field, but the one that has had the greatest

impact is the finite-element method. The origin of the

concepts underlying the method are thought to reside

in early efforts to find approximate solutions of elliptic

partial differential equations by enforcing these equa-

tions in the so-called weak sense, through variants of

the principle of virtual work.

In the mechanics of solids, the basic idea of the finite-

element method is to divide the domain of a continu-

ous solid body into a finite number of subdomains, or

elements. Within each element, particle displacement

or some other mechanical field is assumed to be repre-

sented by its values at a number of discrete points, or

nodes, on the boundary of the elements, and an inter-

polation scheme is adopted to extend the definition

throughout each element. A model of material behavior

is adopted, and the approximate deformation fields are

required to abide by the principle of virtual work for

arbitrary variations of the nodal displacements. This

requirement generates as many equations governing

the nodal values as there are nodes with unspecified

values, and these are solved numerically.

The method is ideally suited for implementation on a

digital computer. A great deal is understood about the

accuracy and convergence of numerical methods appli-

cable to broad problem classes, and computational

mechanics has assumed its place, along with analyti-

cal mechanics and experimental mechanics, among the

principal methodologies of the field.

L

P
b

b

Figure 4 An elastic–ideally plastic cantilever beam.

5 Selected Examples

This summary is concluded with brief descriptions
of results obtained by analyzing particular phenom-
ena. These provide some sense of its range and, at
the same time, introduce relatively simple results with
broad implications for understanding the mechanics of
solids.

5.1 Plastic Limit Load

The beam in figure 4 has length L and square b × b
cross section; it is composed of an elastic–ideally plas-
tic material with yield stress σy. Its left-hand end is
rigidly constrained, and its right-hand end is subjected
to a force of increasing magnitude P in a direction
transverse to the beam. The beam responds elastically
until P reaches a level sufficient to induce plastic defor-
mation at the section closest to the cantilevered end,
the section that bears the largest bending moment.
Plastic flow begins at the outermost portions of the
section, where the elastic stress is largest in magni-
tude. As P is increased further, plastic yielding spreads
inward from both the top and bottom of the section
until the two regions coalesce at the beam center plane.
The material can then “flow” with no further increase
in load; the prevailing load is the plastic limit load

PL = σyb3/4L. (28)

It is noteworthy that the value of the limit load is inde-
pendent of the details of the elastic deformation that
leads to collapse. This feature makes it possible to cal-
culate P based only on the dimensions and the know-
ledge that the cross section is fully plastic; thus, it is
possible to determine or estimate limit loads without
reference to intervening elastic deformation.

5.2 Stress Concentration at a Hole

The large linearly elastic plate of uniform thickness h
in figure 5 contains a central hole of radius a� h with
a traction-free edge. The plate is subjected to a uniform
remote traction of magnitude σ∞ along opposite edges.
At points in the plate much farther than a away from
the hole, the state of stress is σ11 = σ∞, with other
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a

x2

x1

Figure 5 Tension of an elastic plate with a hole.

P1

x2
x1

Figure 6 A simply supported elastic beam.

stress components equal to zero. This stress distribu-

tion is not consistent with the condition of zero traction

on the surface of the hole and, as a result, the stress

field is perturbed in the vicinity of the hole. Analysis of

this linear elastic boundary-value problem leads to the

result that the stress adjacent to the edge of the hole at

θ = 1
2π or 3

2π is σ11 = 3σ∞ with all other components

equal to zero, and at θ = 0 or π is σ22 = −σ∞ with

all other components equal to zero. The ratio of the

magnitude of the largest tensile stress component to

the magnitude of the applied stress is called the elastic

stress concentration factor, here equal to 3.

5.3 Elastic Reciprocity

Consider the simply supported beam illustrated in fig-

ure 6. Suppose a transverse force of magnitude P1 at an

arbitrary section at x1 induces a transverse deflection

δ2 at a second arbitrarily selected section at x2. In addi-

tion, suppose that a transverse force of magnitude P2 is

applied at the section x2 and that the resulting deflec-

tion at section x1 is δ1. The elastic reciprocal theorem

then states that

P1δ2 = P2δ1 (29)

for any pair of section locations. An interesting corol-

lary is that if any force P applied at section x1 induces

the deflection δ at section x2, then application of that

force P at section x2 induces the same deflection δ at

section x1.

R

t

Figure 7 Cross sections of tubes in torsion.

L

P
b × b

Figure 8 A simply supported column under axial load.

5.4 Torsion of a Hollow Elastic Tube

A hollow tube of elastic material is a common config-
uration. It is used to transmit torque along the axis of
the tube. The torsional stiffness of this configuration—
the ratio of the torque transmitted to the relative rota-
tion of cross sections a unit distance apart—depends
strongly on details of the shape of the cross section. To
illustrate this point, consider a tube like the one in fig-
ure 7 with a continuous circular cross section of mean
radius R and wall thickness t � R. The torsional stiff-
ness is 2πμR3t. Then, if the cross section is cut along
the length of the tube but is otherwise unchanged, an
estimate of the torsional stiffness leads to the result
2
3πμRt

3. By conversion of the initially closed section
to an open section of the same cross-sectional area, the
torsional stiffness is reduced by a factor of 1

3 (t/R)
2.

If R/t ≈ 10, then the factor is approximately 0.0033,
a dramatic reduction due only to a change from a
“closed” section to an “open” section.

5.5 Euler Buckling

Suppose that the straight elastic column in figure 8,
pinned at the left-hand end and constrained against
deflection at the right-hand end, is subjected to an
axial compressive load P . If the column is reasonably
straight, it will support the load by undergoing uni-
form compression to generate the appropriate stress
to resist the load. But what about the stability of the
configuration? Several criteria are available to assess
stability. For example, it might be assumed that the
load is never perfectly axial but, instead, has a slight
eccentricity. In this case, we seek to identify the lowest
value of P for which the transverse deflection will be
indefinitely large, no matter how small the eccentricity.
Alternatively, if the load is perfectly aligned, it might
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P

R

Figure 9 A rigid sphere indenting an elastic solid.

be assumed that the column is given a slight transverse
vibration. In this case, we identify the lowest value of P
at which the vibration amplitude becomes indefinitely
large, no matter how small the initial magnitude. Yet
another criterion of stability is based on energy com-
parisons, an idea drawn from thermodynamics. In this
case, the lowest value of P is sought for which the total
energy of the system decreases when the straight col-
umn is given a slight perturbation in shape. Application
of any of these criteria leads to the Euler buckling load

Pcr = π2Eb4/12L2 (30)

with simply supported end constraints.

5.6 Hertzian Elastic Contact

Consider a smooth, nominally rigid sphere of radius R
being pressed with force P into the plane surface of
an isotropic elastic solid, as in figure 9. Initially, when
P = 0, the sphere contacts the elastic solid at just one
point on its surface. As the magnitude of P is increased,
an area of contact between the sphere and the elastic
solid develops; this area is circular due to symmetry
and has radius a, say. Even though the elastic solid is
linear in its response, the radius a does not increase in
proportion to P . Instead, a increases in proportion to
P1/3; the increase is sublinear because, as P increases,
the contact area also increases, resulting in an apparent
stiffening of the response. The depth of penetration δ,
measured as displacement of the sphere from first con-
tact, also increases nonlinearly with increasing values
of P , with δ varying according to

δ =
[

3
4
(1 − ν2)P
E
√
R

]2/3
. (31)

Again, the nonlinearity in response derives from the
changing contact area, even though the material has a
linear stress–strain response. Hertz contact theory has

r

2a

Figure 10 Tensile loading of a cracked elastic plate.

been remarkably useful in the field due to the combi-
nation of its relative simplicity and its broad range of
applicability.

5.7 Elastic Crack

An elastic plate is subjected to a uniform remotely
applied tensile stress σ∞, as in figure 10. The plate is
uniform except for an interior line that is unable to
transmit traction from one side to the other, that is,
a crack. Based on the results observed above for the
case of a plate containing a hole within an otherwise
uniform stress field, we might ask about the nature of
the stress concentration in this case. Recognizing that
the region near the edge of the crack is essentially a
2π wedge, the configuration lends itself to separation
of variables in local polar coordinates. The dominant
feature in such a solution shows that the stress com-
ponents vary with position near the end of the crack
according to

σij ≈
K√
2πr

Aij(θ) as r → 0, (32)

where Aij(−θ) = Aij(θ) and K is an amplitude called
the elastic stress intensity factor. For the configuration
considered here, K = σ∞

√
πa. The stress singular-

ity should not be viewed literally. Instead, it is known
that a stress field of this form surrounds the nonlinear
crack edge region both in small laboratory samples and
in large structural components. It is this feature that
accounts for the wide use of elastic fracture mechanics
for characterizing structural integrity.

5.8 Tensile Instability

Deformation of the block illustrated in figure 2 was dis-
cussed in section 2.2.2, and the state of stress driving
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that deformation was considered in section 2.3.1. Sup-
pose now that the stretch ratio λ3 in the 3-direction is
related to the Cauchy stress σ33 acting on each mate-
rial plane perpendicular to the 3-direction according to
σ33 = A(λ3 − 1)1/n, where A > 0 is a material constant
and n > 1. Then, for any stretch λ3 > 1, the total force
acting on each cross section perpendicular to the 3-
direction is F(λ3) = σ33-2

0λ2. Incompressibility implies
that λ2 = λ−1

3 . Under these conditions, the slope of
the resulting force versus stretch relationship becomes
zero at a stretch ratio of λ3 = n/(n− 1), and it is neg-
ative for larger stretch ratios. The implication is that
the load-carrying capacity of the tensile bar has been
exhausted at that stretch ratio and, beyond that point,
deformation can proceed with no further increase in
load. This example illustrates the phenomenon of ten-
sile instability, which is often associated with the onset
of localized “necking” in a bar of ductile material under
tension.
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IV.33 Soft Matter
Randall D. Kamien

1 Introduction

What makes matter soft? It is easily deformed but,
consequently, it can easily self-assemble: sauce for the

goose… Maybe it should be called “robust.” Why is
this article called “Soft Matter,” then? Perhaps a better
term would be “la matière molle,” as used by Pierre-
Gilles de Gennes. Soft matter typically refers to sys-
tems where entropy dominates energetic effects. In the
case of hard materials, the energy scale is electronic.
Let us note some energy scales: room temperature,
around T = 300 K, corresponds to a thermal energy
(the product of temperature T and Boltzmann’s con-
stant kB (1.381×10−23 J K−1)) of 1

40 electron volts. Com-
pared with binding energies in atoms and molecules,
which are a few electron volts, the thermal energy is
tiny. Of course, the precise division between soft and
“hard” materials is more subtle, but this serves as a rule
of thumb. In this article we will touch on some of the
classic soft materials and discuss statistical mechani-
cal effects. Quantities like pressure, forces, and energy
are all to be considered Boltzmann-weighted statistical
averages. We will in turn consider point-like particles
(colloids), line-like objects (polymers), two-dimensional
sheets (membranes), and finally the three-dimensional
continuum theories of liquid crystals.

2 Colloids

Colloidal suspensions consist of microscopic particles,
the “colloids,” suspended in a fluid, often water. Ide-
alized, the colloids are taken to be absolutely rigid,
incompressible spheres that interact exclusively via
excluded volume; that is, their only interaction is that
they cannot overlap in space. For spheres of radius R,
this could be modeled as a pair potential U(r) tak-
ing the value 0 when r � 2R and ∞ when r < 2R.
At first glance, because the energy scale is infinite it
might seem like this is not a soft system. We define
the entropy of any collection of colloidal particles as
S = kB lnΩ, where Ω measures the volume of the con-
figuration space of the colloids. Because the energy of
any allowed finite-energy configuration remains 0, the
free energy, defined as F = E−TS, is entirely entropic.
Indeed, the problem of hard spheres reduces to a com-
binatorics problem: how many configurations ofN hard
spheres of radius R are possible at fixed volume V?

2.1 The Equation of State

The relation among pressure p, temperature T , and
density n = N/V is known as the equation of state.
In the case of point particles, the equation of state is
the famous ideal gas law, p = nkBT , where kB is Boltz-
mann’s constant defined above. The ideal gas law is
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accurate for point particles, but what happens for par-

ticles of finite radius? There is an expansion in powers

of the volume fraction φ = nv0, where v0 = 4
3πR

3 is

the volume per particle. Known as the virial expansion,

its first few terms are

p
nkBT

= 1 + 4φ+ 10φ2 + 18.36φ3

+ 28.22φ4 + 39.82φ5 + 53.34φ6 + · · · .
A simple but brilliant approximation to this is the

Carnahan–Starling formula:

p
nkBT

≈ 1 +φ+φ2 −φ3

(1 −φ)3
= 1 + 4φ+ 10φ2 + 18φ3

+ 28φ4 + 40φ5 + 54φ6 + · · · ,
which has integer coefficients that are remarkably close

to the hard-won virial coefficients. This is a highly com-

pact and highly accurate relation for low to modest

φ. Note, however, that the Carnahan–Starling formula

suggests that the pressure diverges at volume frac-

tion φ = 1. This is certainly not the case, though,

since the maximum packing fraction of hard spheres

is φ = π√
2/6 ≈ 0.74.

The virial expansion also explains a fluctuation-

induced force known as the depletion interaction. Trun-

cating at second order gives

p ≈ kBT(n+ 4v0n2) ≈ NkBT
V − 1

2 (8Nv0)
.

Comparing with the ideal gas law p = NkBT/V , we see

that the total volume of the system has been reduced

by 4Nv0, a measure of the excluded volume from the

other spheres. Note that a hard sphere of radius R
excludes a volume of radius 2R; a second sphere can-

not have its center anywhere in that volume and so

each isolated sphere occupies or creates an excluded

volume of 8v0. Generalizing this, Asakura and Oosawa

argued that two inclusions in a purely entropic fluid

will attract in order to decrease the excluded volume

or, equivalently, increase the free volume. Consider, for

instance, two marked spheres with volume v0 in the

colloidal solution. Since each sphere excludes a vol-

ume of 8v0, the free volume available to the remaining

spheres is reduced by 16v0 when the marked spheres

are far apart. However, if the two spheres are brought

together, their excluded volumes can overlap and it fol-

lows that the available volume will increase, reaching its

maximum when the two spheres touch, at which point

their excluded volume is 27
2 v0. The change in the ideal

gas law suggests a free energy of the form

F = −kBTN ln[(V − Ve)/N],

where Ve is the excluded volume.

If large spheres of radius RL are placed in a col-

loidal solution of small spheres of radius RS, then each

excludes a volume of 4
3π(RL +RS)3; when the two large

spheres touch, the extra free volume is 2
3πR

2
S (3RL +

2RS). For r = RL/RS � 1, this implies an entropic

free energy gain of 3
2kBTrφS and so the depletion

force is proportional to the volume fraction of small

colloids, φS.

2.2 Packing of Hard Spheres

At the other extreme, we have close-packed crystals,

in which spheres touch neighboring spheres. In two

dimensions, the triangular lattice, where each disk

touches six adjacent neighbors, has an area fraction of

π/
√

3. In three dimensions, the densest close packing

consists of layers of two-dimensionally close-packed

spheres stacked on top of each other, with the spheres

on one layer fitting into the pockets on the next layer.

Because there are two equivalent but different sets of

pockets, there are an infinite number of degenerate

close packings. It is standard to label the first layer

A and then label the second layer B or C to indi-

cate on which set of pockets the next layers sit. Thus,

for instance, the face-centered cubic (FCC) lattice is

ABCABCABC . . . , while the hexagonal close packed lat-

tice is ABABAB . . . . Both of these configurations have

volume fraction π/
√

18 ≈ 0.74, as does any other

sequence of packing. A random sequence of As, Bs,

and Cs could be called random close packed, but it

should not (see the next subsection). Away from this

close packing, for densities near φFCC = π/√18, Kirk-

wood introduced “free volume theory” to calculate the

equation of state. The volume fraction can be reduced

by increasing the volume of the sample or, completely

equivalently, by shrinking the spheres. Consider break-

ing space up into cells of equal volume, each of which

contains one lattice site through the Voronoi tessella-

tion. Because the spheres have been slightly shrunk,

they all have room to jiggle about in their cells. By con-

struction, if each sphere is rigorously kept inside its

cell, then there are no overlaps and there is no inter-

action energy. The entropic contribution is again just

the logarithm of the free volume, the volume available

to the center of each sphere. For the FCC lattice, the
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pressure is

p = − ∂F
∂V

∣∣∣∣
N,T

= nkBT
1 − (φ/φFCC)1/3

.

Note that this expression diverges at φ = φFCC, as
it must, since the lattice cannot be compressed any
further. This is in contrast to the low-volume-fraction
Carnahan–Starling formula that fails to capture close
packing. This is not a surprise, since it is known
that there is a discontinuous or first-order transition
between the hard-sphere fluid and solid at a volume
fraction around φ ≈ 1

2 . As a result, it is unreasonable
to hope that the analytic behavior of the fluid phase
should carry over to the solid phase.

2.3 Is There “Random Packing”?

Though it is ill-defined from a mathematical perspec-
tive, there is a notion of “random close packing.” Unlike
the random A, B, C stacking that one might consider
for the densest sphere packings, this notion of random
is associated with the densest fluid state, an arrange-
ment of spheres with no particular translational sym-
metry but that cannot be packed any more densely. This
is not precise, as local rearrangements can be made
to increase the density without apparently generating
long-range crystalline order. Despite this, numerous
experiments and numerical simulations have given a
value φRCP ≈ 0.64 ± 0.02 repeatedly and reliably; for
example, this corresponds to pouring marbles into a
bucket or packing sand together haphazardly. Why this
number is apparently universal and whether it can be
defined precisely remain open questions.

3 Polymers

Polymers are everywhere: from the plastics on which we
sit, that cocoon us in our cars and airplanes, and that we
eat as thickening agents, to proteins, ribonucleic acid,
and the all-important informatic deoxyribonucleic acid
(DNA) molecules. DNA, in particular, is a linear poly-
mer, without the branches and junctions that are com-
mon and often uncontrollable in synthetic polymers.
Biopolymers are, in general, much more uniform in
length and structure owing to the magnificent molec-
ular machinery of the cell. As a result, they are often
the subject of study not for their biological properties
but rather because of their purity.

3.1 Random Walks

How does one model a polymer? One can start with
a microscopic model with chemical bonds connecting

sections of molecule that are free or almost free to
rotate about the bond axis (for single bonds only!). How-
ever, the elasticity of long rods has a universal behavior
that allows us to avoid microscopic details. We consider
a simple bending energy written in terms of the unit
tangent vector t̂:

E = 1
2kBTLp

∫ s1
s0

(
dt̂(s)

ds

)2

ds,

where kBTLp is the bending modulus written in terms
of the temperature T and a length known as the per-
sistence length, Lp, which may be temperature depen-
dent. The probability of the tangent pointing along t̂1
at s1 given t̂ = t̂0 at s0 is given by the functional inte-
gral (with measure [dt̂] over all functions satisfying the
boundary conditions)

P(t̂1, s1; t̂0, s0) =
∫ t̂1
t̂0

exp{−E/(kBT)}[dt̂],

and it satisfies the diffusion equation on the sphere.
This probability distribution implies that the autocor-
relation function, or thermal average (denoted by 〈·〉),
is denoted by 〈t̂(s′) · t̂(s)〉 = e−|s′−s|/Lp , so that, at dis-
tances longer than the persistence length, the tangent
vectors are decorrelated. It is therefore only a matter
of length scale before a long linear object will behave
as if it is composed of independent “freely jointed” ele-
ments of length on the order of Lp. Indeed, integrat-
ing the tangent autocorrelation function, we find that
the mean-squared end-to-end displacement for a chain
of length L is 〈[R(L) − R(0)]2〉 = 2LpL for L � Lp.
2Lp is known as the Kuhn length, the length of each
independent element.

3.2 Self-Avoiding Walks and Flory Theory

Polymers differ from random walks in one critical and
consequential way: each element of the polymer chain,
a monomer, cannot occupy an already occupied region
of space. The polymer is a self-avoiding walk. There are
sophisticated methods in statistical mechanics based
on lattice models of polymers, where self-avoidance
translates into no more than single occupancy of any
site. However, a clever argument, due to Paul Flory,
allows us to estimate how the mean-squared end-to-
end displacement of the polymer chain scales with the
chain length, L. A measure of the size of the polymer in
three dimensions is the radius of gyration Rg, defined
through the average

R2
g = 1

L

∫ L
0
R2(-)d-.



IV.33. Soft Matter 519

Alternatively, the mean-squared displacement is six

times the radius of gyration squared,

〈[R(L)−R(0)]2〉 = 6R2
g ,

so both will scale in the same way. Both lengths govern

the hydrodynamics and light scattering of the polymer

chains.

For a chain of length L, the number of free “joints”

or monomers is N = L/(2Lp). The standard “phan-

tom random walk” or “Gaussian chain” has a Gaussian

probability distribution, P(R), and so the free energy

F = −kBT lnZ ∝ kBT(R2/(2N)−α(d− 1) lnR), where

α is a constant that depends on Lp and d is the dimen-

sionality of space. The logarithmic term arises from

the measure factor after integrating over the isotropic

probability distribution. This free energy is interesting

in its own right; in vector form,

F(R)∝ kBT |R|2/N,
so the ground state hasR = 0. Pulling the polymer away

from its ground state gives a restoring force −∇F ∝
−TR/N , a Hookean spring with a stiffness that scales

as T/N . The elasticity of rubber arises from entropy; a

heated rubber band shrinks because T grows.

To this free energy, Flory added a term to account

for self-avoidance. In a similar vein to the notion

of excluded volume and entropy loss, each time a

monomer overlaps with another monomer, their mutu-

al steric hindrance lowers the number of orientational

conformations, lowering the entropy and raising the

free energy. To model this entropic interaction, which

is proportional to kBT , we write the average monomer

density as ρ ∝ N/Rdg . Neglecting monomer–monomer

correlations, the number of near misses is ρN , so the

Flory free energy reads

F ∝ kBT
[ R2

g

2N
+ v N

2

Rdg
−α(d− 1) lnRg

]
,

where v > 0 is also some constant. Minimizing F by

varying Rg for fixed N gives

0 = Rg

N
− vd N2

Rd+1
g

− α(d− 1)
Rg

.

One might be concerned that the two arbitrary con-

stants v and α would make any prediction useless, but

in the long-polymer limitN → ∞, and it is only a matter

of balancing two of the three terms with each other. One

finds that Rg ∝ N3/(d+2) for d < 4 and that Rg ∝ N1/2

for d > 4. In the dimension d = 4, known as the upper

critical dimension, all terms contribute and the more

precise statistical mechanical models predict logarith-
mic corrections to the scaling behavior. The Flory expo-
nent νF = 3/(d+2) for d < 4 is known to be exact when
d = 2 and differs by a small amount from the more pre-
cise prediction ν ≈ 0.588 compared with νF = 0.6 when
d = 3.

Above four dimensions, Flory’s result agrees with the
standard random walk. To see this, note that a standard
random walk has a fractal or Hausdorff dimension of
2. In more than four dimensions, two two-dimensional
sets do not generically intersect and so one would
not expect any correction to the random-walk scaling.
Finally, though it may be tempting to view the large-N
limit as a saddle point in some sort of steepest-descent
calculation, there is not, at the current time, any known
systematic expansion for νF in inverse powers of N .

Note that this discussion presumes that the polymer
dissolves well in the surrounding solvent, known as a
theta solvent when this condition is met. On the other
hand, if the polymer self-attracts more strongly than it
dissolves, Rg ∼ L1/3. The transition from the swollen
state to the compact conformations is known as the
theta point.

3.3 Polymer Melts: Where Self Is Lost and

Self-Avoidance Vanishes

In solution, we may consider Np polymers at number
density n = Np/V = c/N , where c is the monomer
density. In the previous sections we considered single
polymers in solution. This is applicable whenever the
polymer volume fractionφ = n 4

3πR
3
g = c 4

3πR
3
g/N < 1,

that is, when it is in the regime in which the polymers do
not overlap. Because the monomers of different poly-
mers can commingle, it is possible to consider concen-
trations c > c∗ = 3N/(4πR3

g), the overlap concentra-
tion. It is essential to note that this concentration is
lower than would be expected from Gaussian chains
because of self-avoidance: c∗ ∼ φ∗ ∼ N1−3ν , where
Rg ∼ Nν . Fortunately, the c � c∗ regime is amenable
to scaling analysis.

The polymer melt regime corresponds to the com-
pletely incompressible limit where the volume fraction
φ = 1 everywhere. Note that this regime can be attained
through increasing either c or Rg; as a result, we can
also consider the less dense, semidilute regime in which
the volume fraction φ is both much smaller than 1
and much larger than φ∗ = c∗(2Lp)3. Consider a spe-
cific chain in this regime and pick a monomer on it. In
this regime we can define a correlation length scale or
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“mesh size” ξ that is roughly the distance over which
a single polymer segment does not interact with other
segments. Note that ξ cannot depend on the degree of
polymerization N for long polymers since the interac-
tion with some other chain might as well be an interac-
tion with a distant point of the same chain. By dimen-
sional analysis, ξ = Rgf(φ∗/φ) for some function
f(·). However, for φ∗/φ small, the N dependence in
Rg must be canceled by the N dependence in φ∗, and
so f(x) = xm must be a simple power law. As Rg ∼ Nν
and φ∗ ∼ N1−3ν , it follows that ν +m(1 − 3ν) = 0 or
m = −ν/(1 − 3ν).

Each of these correlation “blobs” has g monomers
of a single swollen polymer, and so ξ = (2Lp)gν

and thus the number of such blobs is b = N/g =
N/[(ξ/2Lp)]1/ν .

Since we have already accounted for chain–chain
interaction, a polymer in the semidilute regime can be
thought of as a string of b uncorrelated blobs with-
out self-avoidance, so that the radius of gyration in the
semidilute regime is

R(φ) = ξb1/2 ∼ ξ(2ν−1)/2νN1/2 ∼ N1/2φ−(2ν−1)/(3ν−1).

We see that in this regime the end-to-end distance of
the polymer scales as N1/2, though there is a remnant
volume fraction dependence. Physically, in a good sol-
vent, ν must be at least 1

2 since the phantom chain sets
a lower bound, and, if the original polymers were phan-
tom chains, ν = 1

2 and the φ dependence vanishes.
Note also that in the melt regime, where φ = 1, we
recover the random walk result. Typically, ν is taken
to be the Flory value of νF = 3

5 , which gives R(φ) a
φ−1/4 dependence. Again, this exponent is within a few
percent of more precise calculations.

The dynamics of chains in the dilute, semidilute, and
melt regimes continues to be an active area of research.

4 Membranes and Emulsions

So far we have discussed point-like objects (colloids)
and one-dimensional objects (polymers). It is natural
to move forward to the description of two-dimensional
objects. These take two forms in soft matter. First,
they exist as membranes such as the lipid bilayers in
cell walls, soap films and bubbles, and freely float-
ing polymerized sheets, ranging from highly ordered
ones, such as graphene, to highly disordered ones,
such as the spectrin networks of red blood cells. The
second, more abstract, notion of a two-dimensional
object is an interface. Emulsions are made by mixing

two incompatible fluids together, along with a surfac-
tant that allows them to mix on a supermolecular scale.
The interface between the “oil” phase and the “water”
phase, laden with surfactant, is also a surface. Unlike
its bilayer cousin, however, the two sides of this mem-
brane can be distinguished. This asymmetry can change
the structure of the ground states, as we will discuss
below.

4.1 The Young–Laplace Law

When we have lipid bilayers or surfactant monolayers
in equilibrium with their single molecules in solution,
there is a surface tension that acts as the chemical
potential for area. In soap films, for instance, the soap
molecules are in equilibrium between the surface and
the fluid. There is another limit for these films when the
individual molecules stretch, but we do not consider
this high-tension, nonlinear limit here.

Consider a vesicle or bubble with total volume V and
a constant surface tension γ. The variation of the free
energy at fixed volume is

dF = −Adγ − p dV.

Allowing the area to fluctuate gives the Gibbs free
energyG = F+γA, so dG = γ dA−p dV . In equilibrium,
dG = 0 and we have p = γ(dA/dV). How does the area
vary with the volume? This is just 2H, twice the mean
curvature. We are led to the Young–Laplace law,

p = 2γH = γ
(

1
R1

+ 1
R2

)
,

which relates the radii of curvature R1 and R2 to the
pressure difference between the inside and the outside
of the bubble. We have to be careful with signs, how-
ever. Recall that the relative signs of the radii of curva-
ture are fixed by geometry, but the overall sign is not.
To fix the sign we pick the outward normal to the sur-
face and measure with respect to that. Fortunately, this
also gives us a sense to measure the pressure differ-
ence between inside and outside. It follows that, if two
bubbles are in contact with each other, the one with
higher pressure bulges into the lower-pressure bubble,
which fortunately agrees with intuition. For spherical
bubbles this means that the smaller bubbles bulge into
the larger bubbles.

4.2 Helfrich–Canham Free Energy

The free energy we have used to derive the shape of
fluid membranes is not useful for studying local fluc-
tuations of the surface. Helfrich and Canham proposed
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the following free energy functional, quadratic in the
inverse radii of curvature:

F = 1
2

∫
(κH2 + κ̄K)dA,

where H is the mean curvature, K is the Gaussian cur-
vature, and κ and κ̄ are two independent bending mod-
uli. (If applicable, this functional can be supplemented
with a volume constraint.) In a one-component mem-
brane, we would expect these moduli to be constants
and, as a result, the second term,

∫
κ̄K dA, reduces to a

topological invariant for the membrane.
There are two interesting embellishments of this

energy. The first comes up whenever the two sides
of the interface are different, in the case of an oil–
water interface in an emulsion, for instance. Because
the asymmetry identifies an “inside” and an “outside,”
the ambiguity of the surface normal is no longer an
issue. As a result, the sign of H is physical and terms
linear in the mean curvature are allowed. Adding a con-
stant to the free energy, we can write the free energy
as

F ′ = 1
2

∫
[κ(H −H0)2 + κ̄K]dA,

whereH0 is the preferred mean curvature. This leads to
bent ground states and, in combination with boundary
conditions, can induce a variety of complex morpholo-
gies and can be used to rationalize phases of diblock
copolymers and lipid monolayers.

Finally, note that κ, κ̄, andH0 can vary over the mem-
brane, either due to quenched-in or slow-moving impu-
rities or because of composition variation in multicom-
ponent systems. The latter—phase separation within
a membrane and the subsequent localization of high
or low curvature—plays an important role in biological
processes such as budding and fusion.

4.3 Tethered Membranes

The membranes we have discussed are fluid, there is no
order within the membrane and the molecules are free
to flow. But a plastic sheet is not like this. The molecules
have been glued in place, often through polymeriza-
tion, and the connectivity and topology of the surface
elements are no longer free to vary as they are in the
liquid. As described in mechanics of solids [IV.32 §3],
elastic deformations are captured via the strain tensor
2uij = gij − δij , where gij is the induced metric of
the otherwise flat surface. Recall the standard elastic
energy in terms of uij , μ, and λ, known as the Lamé
constants,

Fel = 1
2

∫
{λ(uii)2 + 2μuijuij}dA.

However, adding this to the curvature energy is not as
straightforward as it may seem! Indeed, Gauss’s theo-
rem egregium relates the metric directly to the Gauss-
ian curvature: K = R1221g, where Rijkl is the Riemann
curvature tensor and g is the determinant of the metric.
In other words, Gaussian curvature requires in-plane
strain; bending and stretching are necessarily coupled.
To lowest order in uij ,

K = 2∂1∂2u12 − ∂2
1u22 − ∂2

2u11,

and so the elastic and curvature deformations are
coupled degrees of freedom.

5 Liquid Crystals

Is “liquid crystal” an oxymoron or simply an unfortu-
nate name? Neither! Though there are many ways to
characterize whether a material is liquid or solid, here
we will use an approach based on broken symmetries.
Recall that the gas and liquid phases join at their crit-
ical point in the phase diagram, so, from a symmetry
perspective, they are both the same, and we will term
them fluids. A fluid does not support static shear: if one
exerts a step shear strain on one surface of a fluid (arbi-
trarily slowly), there will be no strain on the opposing
surface. A crystal will support a step strain in all direc-
tions. Similarly, apply a finite rotation to the top surface
of a fluid and the bottom surface will not rotate along
with it, while crystals will support torques. Liquid crys-
tals are in between these two cases. Some can trans-
mit torques and not shear, some can transmit shear
but only in a reduced set of directions; all of them are
interesting.

5.1 Maier–Saupe Theory

Obviously, liquid crystals are of special interest be-
cause of their optical properties. They are typically
rod-like molecules with differing dielectric constants
ε‖ along the long direction and ε⊥ perpendicular to the
long direction; since it is only a direction, its length
and sign are arbitrary. We thus choose a unit vector n̂
defined up to sign to denote this direction. The dielec-
tric tensor εij is written as the sum of an isotropic part
and a traceless symmetric tensorQij = S(ninj − 1

3δij)
constructed from the directions n̂ with magnitude S:

εij =
ε‖ + 2ε⊥

3
δij + (ε‖ − ε⊥)Qij.

S, known as the Maier–Saupe order parameter, charac-
terizes the amount of anisotropic order. When S van-
ishes, the system is optically isotropic. Since Qij is a
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thermodynamic average over the directions να of the
individual molecules labeled by α, it follows thatQij =
〈νiνj − 1

3δij〉. Note that the average is over molecules
and fluctuations. Multiplying both sides by nkni and
taking the trace yields S = 3

2 〈(n̂·ν)2−
1
3 〉 = 〈P2(cosθ)〉,

where P2(·) is the second legendre polynomial [II.29]
and θ is the angle between the molecular direction να
and n̂. When S = 1 the long axis of every molecule is
always along n̂; when S = − 1

2 , the molecules are all
perpendicular to n̂, the so-called discotic phase.

The transition from the isotropic phase with S = 0
above T = Tc to an ordered phase S �= 0 below T = Tc

is modeled via Landau theory with free energy density

f = f0 + a(T − Tc)TrQ2 + bTrQ3 + c TrQ4

= f0 + 2
3a(T − Tc)S2 + 2

9bS
3 + 2

9cS
4.

Because in general TrQ3 �= 0, this indicates a discontin-
uous first-order phase transition between the nematic
and isotropic states.

Note that a 3 × 3 traceless symmetric tensor has five
independent components (three angles and two inde-
pendent eigenvalues), whereas only three parameters
appeared in the discussion above. In general,

Qij = S[ninj − 1
3δij]+W[mimj − 1

2 (δij −ninj)],
where m̂ is a unit vector perpendicular to n̂ andW mea-
sures the biaxial order. There are, at present, only a few
experimentally realized biaxial nematic phases, and we
therefore focus on the uniaxial nematic (W = 0) below.

5.2 Frank Free Energy

The Frank free energy is the basis for studying elastic
distortions of the nematic liquid crystal ground state.
Starting with the unit vector n̂, the director, and recall-
ing that it is defined up to sign, we require a free energy
invariant under n̂→ −n̂. It should be noted that reduc-
ing the description to a vector is not always possi-
ble and requires that the director field be orientable.
However, in orientable patches, we have the Frank free
energy Fnem[n̂] =

∫
fnem d3x, where fnem is the free

energy density:

fnem = 1
2{K1[n̂(∇ · n̂)]2 +K2[n̂ · (∇× n̂)]2

+K3[(n̂ · ∇)n̂]2

+ 2K24∇ · [(n̂ · ∇)n̂− n̂(∇ · n̂)]}.
The elastic constants K1, K2, K3, and K24 are known,
respectively, as the splay, twist, bend, and saddle-splay
moduli. Note that each term has a precise geometric
meaning: n̂(∇ · n̂) is twice the mean curvature vector

of a surface with unit normal n̂; n̂·(∇×n̂)measures the
deviation from the Frobenius integrability condition of
the director field; (n̂ · ∇)n̂ is the curvature of the inte-
gral lines of the director field; and finally, the saddle
splay is twice the negative of the Gaussian curvature
of a surface with unit normal n̂. The interpretations
for the splay and saddle-splay break down, of course,
whenever n̂ · (∇ × n̂) �= 0, though they still measure
elastic distortions. Note that the saddle-splay term is
a total derivative and will therefore not contribute to
the extremal equation for the director. However, it will
contribute at boundaries, including at the locations of
topological defects.

To study fluctuations around the ground state, for
instance when the director is uniform along the z-axis
n̂0 = ẑ, it is usual to expand n̂ = ẑ + δ1n. Note that δ1n
is a vector in the xy-plane, since deviations of the unit
director are necessarily orthogonal to ẑ. In this case,
the free energy in Fourier space

Fnem = 1
2

∫
(2π)−3δni(q)δnj(−q)Δij(q)d3q,

where Δij is

Δij = [K1q2
⊥ +K3q2

z]P
L
ij + [K2q2

⊥ +K3q2
z]P

T
ij ,

with PL
ij ≡ qiqj/q2⊥ and PL

ij = δij − PL
ij the longi-

tudinal and transverse projection operators, and with
1q⊥ ≡ qxx̂ + qyŷ .

5.3 Smectics

The geometric interpretation of the Frank free energy
becomes powerful in the smectic liquid crystal phase.
This phase occurs at lower temperatures or higher den-
sities than the nematic phase and, in addition to the
director order already present in the nematic, the smec-
tic has an additional one-dimensional, periodic, density
modulation. To represent this, we construct a density
field ρ = ρ0+ρ1 cos[2πφ(x)/a0], where ρ0 is the back-
ground density, ρ1 is the smectic order parameter, a0

is the lattice constant, andφ(x) is the phase of the one-
dimensional order. The ground state of the smectic has
φ = k̂ · x, where k̂ is a unit vector along the periodic
direction. When k̂‖n̂ this is known as the smectic A
phase, and when (k̂ · n̂)(k̂ × n̂) �= 0 it is known as the
smectic C phase. Many other embellishments of order
and periodicity are possible.

We may interpret this system as being composed
of layers, a distance a0 apart, lying at the level sets
of φ(x) = ma0 with m ∈ Z. Restricting our discus-
sion to the smectic A phase, the layer normal N̂ = n̂,
and we therefore write n̂ = ∇φ/|∇φ|. In this case
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n̂ · (∇ × n̂) = 0, and the terms in the Frank energy
enjoy their full geometrical interpretation. The free
energy vanishes identically for flat layers that are all
parallel to each other. These layers, however, need not
have a constant period; none of the terms in the Frank
energy set the spacing. The smectic A free energy den-
sity fsm = fc + fnem has an additional term, the com-
pression energy, that will vanish when |∇φ| = 1; for
instance, a term such as fsm = 1

2B(|∇φ|−1)2 will favor
equal spacing. Again, fluctuations around the ground
state φ = z can be studied by writing φ = z − u and
expanding to quadratic order inu and lowest nontrivial
order in derivatives:

Fsm = 1
2

∫
{B(∂zu)2 +K1(∇2

⊥u)2}d3x.

In this approximation, δn = −∇⊥u. It should be noted
that the nonlinear elasticity is essential for studying
large deformations and, more importantly, fluctuations
and topological defects.

5.4 Cholesterics

In some sense, cholesterics represent the opposite sit-
uation in which the nematic director is nowhere inte-
grable. To fnem we add f∗

nem = K2q0n̂ · (∇ × n̂). Note
that under spatial inversion, ∇ → −∇ and f∗

nem changes
sign. This term is therefore chiral and can only appear
if the constituent molecules are not invariant under
spatial inversion. The ground state of the cholesteric
has a pitch axis, P, perpendicular to all the molecules
and along which the molecular orientation rotates; for
example, n̂0 = (cosq0z, sinq0z,0) when P = ẑ. Since
the cholesteric has one-dimensional periodic order,
the fluctuations are described by a smectic-like energy
functional (Fsm above), with B and K1 replaced by com-
binations of the Frank constants and q0. Writing a gen-
eral deformation in terms of functions θ and φ as
n̂ = [sinθ cos(q0z + φ), sinθ sin(q0z + φ), cosθ], u
in the expression for Fsm is replaced by φ.
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IV.34 Control Theory
Anders Rantzer and
Karl Johan Åström

1 Introduction

Feedback refers to a situation where the output of a
dynamical system is connected to its input. For exam-
ple, a feedback loop is created if room temperature in
a building is measured and used to control the heat-
ing. Feedback is ubiquitous in nature as well as in engi-
neering. Our body uses feedback to control body tem-
perature, glucose levels, blood pressure, and countless
other quantities. Similarly, feedback loops are crucial in
all branches of engineering, such as the process indus-
try, power networks, vehicles, and communication sys-
tems.

Control theory is a branch of applied mathematics
devoted to analysis and synthesis of feedback systems.
A wide range of mathematics is used, and the purpose
of this article is to illustrate this. After some histor-
ical notes are given in section 2, we introduce some
basic control engineering problems in sections 3 and 4.
Section 5 illustrates how the theory of analytic func-
tions can be used to derive fundamental limitations
on achievable control performance. Multivariable con-
trol problems are discussed in section 6 using concepts
from linear algebra and functional analysis. The impor-
tant special case of linear quadratic control is pre-
sented in section 7, together with the idea of dynamic
programming. Extensions to nonlinear systems are dis-
cussed in section 8. Finally, section 9 describes some
current research challenges in the area of distributed
control.

2 A Brief History

The use of feedback control in engineering dates back
to at least the nineteenth century. A prime example is
the centrifugal governor—an essential component in
the Watt steam engine—the basic principles of which
were discussed by J. C. Maxwell in his 1868 paper “On
governors.” From this early period until World War II,
almost a hundred years later, control technology was
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developed independently in different branches of engi-
neering, such as the process industry, the aerospace
industry, and telecommunications.

It was not until the 1940s and 1950s, stimulated
by the war effort, that the scientific subject of control
theory was created and the main ideas were collected
into a common mathematical framework, emphasizing
a frequency-domain viewpoint of the subject. Several
important new ideas, such as the Nyquist criterion and
the Bode relations, came out of this process.

A second wave of progress, starting in the 1960s,
was stimulated by the space race and the introduc-
tion of computer technology. Theories for optimal con-
trol were created, with fundamental contributions by
L. P. Pontryagin and V. A. Yakubovich in Russia and
R. Bellman and R. Kalman in the United States. Unlike
earlier work, these new contributions to optimal con-
trol theory emphasized time-domain models in terms
of differential and difference equations.

Between 1980 and 2010 two key words came to dom-
inate the research arena: robustness and optimization.
The need to quantify the effects of uncertainty and
unmodeled dynamics led to new tools for robustness
analysis and H∞-optimal control synthesis. Further-
more, efficient new algorithms for convex optimization
are increasingly being used for the analysis, synthesis,
and implementation of modern control systems.

3 A Simple Case of Proportional Feedback

Many of the basic ideas of control theory can be under-
stood in the context of linear time-invariant systems.
The analysis of such system is considerably simpli-
fied by the fact that their input–output relationship is
completely characterized by the response to sinusoids.
A general frequency-domain representation with input
u(t) and output y(t) takes the form

Y(s) = P(s)U(s), (1)

where

Y(s) =
∫∞

0
e−sty(t)dt and U(s) =

∫∞

0
e−stu(t)dt.

The function P(s) is called the transfer function. In
steady state, a sinusoidal input u(t) = sinωt gives the
sinusoidal output

y(t) = |P(iω)| sin(ωt + arg P(iω)).

Of particular interest are complex numbers z and p
such that P(z) = 0 and P(p) = ∞. These are called
zeros and poles of P , respectively.

Next, consider a simple feedback control law u(t) =
k[r(t) − y(t)], where k is a constant and r is a refer-
ence value for the output, such that the input u is pro-
portional to the deviation between the output y and
its reference value r . The control law in the frequency
domain has the form

U(s) = k[R(s)− Y(s)]. (2)

Eliminating U from (1) and (2) gives Y(s) = T(s)R(s),
where

T(s) = kP(s)
1 + kP(s) .

In particular, we see that, if kP(s) is significantly bigger
than 1, then T(s) ≈ 1 and Y(s) ≈ R(s). Hence, at first
sight it may look like all that is needed to make the
output y(t) approximately follow the reference r(t) is
to apply the feedback law (2) with sufficiently large gain
k. There are, however, several complicating issues.

A central issue is stability. The input–output relation-
ship (1) is said to be stable if every bounded input gives
a bounded output. It turns out that in the represen-
tation U(s) =

∫∞
0 e−stu(t)dt, a bounded u(t) corre-

sponds to a U(s) that is bounded and analytic in the
right half-plane {s | Re s > 0}. Similarly, the input–
output relationship described by the transfer function
P(s) is stable if and only if P(s) is bounded and analytic
in the right half-plane.

To conclude, feedback interconnection of a stable
process Y(s) = P(s)U(s) with the controller U(s) =
k[R(s) − Y(s)] gives a stable closed-loop map from
the reference signal R to the output Y if and only if
kP(s)/(1 + kP(s)) is analytic and bounded in the right
half-plane. However, as we will see in the next sec-
tion, there are also degrees of stability and instabil-
ity. This will be quantified by considering the effects
of disturbances and measurement errors.

4 A More General Control Loop

We will now discuss a more general control structure
like the one illustrated in figure 1. The process is still
represented by a scalar transfer function P(s).

The controller consists of two transfer functions, the
feedback part C(s) and the feedforward part F(s). The
control objective is to keep the process output x close
to the reference signal r , in spite of a load disturbance
d. The measurement y is corrupted by noise n.

Several types of specifications are relevant:

(I) reduce the effects of load disturbances,
(II) control the effects of measurement noise,

(III) reduce sensitivity to process variations, and
(IV) make the output follow command signals.



IV.34. Control Theory 525

y

ΣΣ

–1
Σ

Controller

F (s)

n

xu ve

d

Process

r
C (s) P (s)

Figure 1 A control system with three external signals:
the reference value r(t), an input disturbance d(t), and a
measurement error n(t).

A useful synthesis approach is to first design C(s)
to meet specifications (I), (II), and (III), and then design

F(s) to deal with the response to reference changes,

(IV). However, the two steps are not completely inde-

pendent: a poor feedback design will also have a nega-

tive influence on the response to reference signals.

The following relations hold between the frequency-

domain descriptions of the closed-loop signals:

X(s) = PCF
1 + PC R(s)−

PC
1 + PC N(s)+

P
1 + PC D(s),

V(s) = CF
1 + PC R(s)−

C
1 + PC N(s)+

1
1 + PC D(s),

Y(s) = PCF
1 + PC R(s)+

1
1 + PC N(s)+

P
1 + PC D(s).

Note that the signals in the feedback loop are charac-

terized by six transfer functions:

P(s)C(s)F(s)
1 + P(s)C(s) ,

P(s)C(s)
1 + P(s)C(s) ,

P(s)
1 + P(s)C(s) ,

C(s)F(s)
1 + P(s)C(s) ,

C(s)
1 + P(s)C(s) ,

1
1 + P(s)C(s) .

To fully understand the properties of the closed-loop

system, it is necessary to look at all these transfer

functions. (In particular, they all have to be stable.) It

can be strongly misleading to show only properties of

a few input–output maps, e.g., a step response from

reference signal to process output.

The properties of the different transfer functions

can be illustrated in several ways, by time responses

or frequency responses. For a particular example,

in figures 2 and 3 we show first the six frequency

response amplitudes, and then the corresponding six

step responses.

It is worthwhile to compare the frequency plots and

the step responses and to relate their shapes to the

specifications (I)–(IV).
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Figure 2 Frequency response amplitudes for P(s) =
(s+1)−4 and C(s) = 0.8(0.5s−2+1)when TF = (0.5s+1)−4.
Here, the notation S = (1 + PC)−1 and T = PC(1 + PC)−1

is used.
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Figure 3 Step responses for P(s) = (s + 1)−4 and
C(s) = 0.8(0.5s−2 + 1) when TF = (0.5s + 1)−4.

(I) Disturbance rejection

Parts (c) and (f) of figure 2 show the effect of the dis-
turbance d in process output x and input v , respec-
tively. The resulting process error should not be too
large and should settle to zero quickly enough. Corre-
sponding step responses are shown in parts (c) and (f)
of figure 3.

(II) Suppression of measurement noise

Figure 2(b) shows good attenuation of measurement
noise above the “cutoff” frequency of 1 Hz (which
in this example is mainly an effect of the process
dynamics).

(III) Robustness to process variations

The robustness to process variations is determined
by the sensitivity function S = (1 + PC)−1 and the
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complementary sensitivity function T = PC(1 + PC)−1.
In fact, the closed-loop system remains stable as long
as the relative error in the process model is less than
|T |−1. Most process models are inaccurate at high fre-
quencies, so the complementary sensitivity function T
should be small for high frequencies.

(IV) Command response

Figure 3(a) shows how the process output x responds
to a step in r . Using the prefilter F(s), it is possible
to get a better step response here than in part (b). The
price to pay is that the corresponding response in the
control signal gets higher amplitude.

5 Fundamental Limitations

Clearly, the six transfer functions discussed in the pre-
vious section are not independent. In particular, the
following identity holds trivially:

S(iω)+ T(iω) = 1.

The first term describes the influence of load distur-
bances on process input. This should be small. The
second term describes robustness to model errors and
the influence of measurement noise. Ideally, this term
should also be small, so controller design involves a
trade-off between the two requirements. The essence
of the conflict is that disturbances cannot be rejected
unless measurements can be trusted. Usually, this is
resolved by frequency separation: measurement noise
is typically high-frequency dominant, so T(iω) should
be small at high frequencies. This makes it impossible
to remove the effects of fast load disturbances at high
frequencies, but we can still cancel them on a slower
timescale by making S(iω) ≈ 0 at low frequencies (see
figure 4).

A popular approach to control synthesis, known as
loop shaping, is to focus on the shape of the loop trans-
fer function and to keep modifying the controller C
until the desired shape of PC is obtained. However, a
seriously complicating factor in loop shaping is the sta-
bility requirement, which mathematically means that
all six of the transfer functions in section 4 need to be
analytic in the right half-plane. This restricts the pos-
sibility to shape the transfer functions. In particular,
Bode’s integral formula shows that the effort required
to make the sensitivity function S(iω) small is always
a trade-off between different frequency regions: if P(s),
C(s), and S(s) = (1 + P(s)C(s))−1 are stable and

Frequency
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u
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e

Disturbance rejection

Robustness

|PC |

Figure 4 Magnitude specifications on T and S can (approx-
imately) be interpreted as specifications on the loop trans-
fer function P(iω)C(iω), which should have small norm at
high frequencies and large norm at low frequencies.

s2P(s)C(s) is bounded, then it follows from cauchy’s

integral formula [IV.1 §7] for analytic functions that∫∞

0
log |S(iω)|dω = 0.

In the cases where there are unstable poles pi in
P(s)C(s), the integral formula changes into∫∞

0
log |S(iω)|dω = π

∑
i

Repi

(see figure 5). Hence, unstable process poles make it
harder to push down the sensitivity function! The faster
the unstable modes, the harder it is. This can be used as
an argument for why controllers with right half-plane
poles should generally be avoided.

To further illustrate fundamental limitations im-
posed by plant dynamics, we will discuss the dynamics
of a bicycle. A torque balance for the bicycle (figure 6)
can be modeled as

J
d2θ
dt2

=mg-θ + mV0-
b

(
V0β+ adβ

dt

)
.

The transfer function from steering angle β to tilt angle
θ is

P(s) = mV0-
b

as + V0

Js2 −mg- .

This system has an unstable pole p with time constant

p−1 =
√
J/mg- (≈0.5 seconds).

Moreover, the transfer function has a zero z with

z−1 = −a/V0 (≈0.05 seconds).

Riding the bicycle at normal speed, the zero is not
really an obstacle for control. However, if one tries to
ride the bicycle backward, V0 gets a negative sign and
the zero becomes unstable. Such zeros are sometimes



IV.34. Control Theory 527

Frequency

M
ag

n
it

u
d

e

Figure 5 The amplitude curve of the sensitivity function
always encloses the same area below the level |S| = 1 as
it does above it. This invariance is sometimes referred to
as the “water bed” effect: if the designer tries to push the
magnitude of the sensitivity function down at some point,
it will inevitably pop up somewhere else!

β

v

a

θ

b

(a) (b)

Figure 6 A schematic of a bicycle. (a) The top view and
(b) the rear view. The physical parameters have typical val-
ues as follows: mass m = 70 kg; rear-to-center distance
a = 0.3 m; height over ground - = 1.2 m; center-to-front
distance b = 0.7 m; moment of inertia J = 120 kg m2; speed
V0 = 5 m s−1; and acceleration of gravity g = 9.81 m s−2.

called “minimum-phase zeros,” and they further limit

the achievable control performance. In particular, rid-

ing the bicycle backward at slow speed (≈0.7 m s−1),

there is an unstable pole-zero cancelation, and the

bicycle becomes impossible to stabilize.

It is not hard to see that unstable open-loop dynamics

puts a fundamental constraint on the necessary speed
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Figure 7 The step response for a process with transfer func-
tion (1−s)/(s+1)2. The response is initially negative, which
is typical for processes with an unstable zero.

of control: the feedback loop must be faster than the
time constant of the fastest unstable pole.

Unstable zeros also give rise to fundamental limita-
tions. For a process with an unstable zero z, a step
input generally yields an output that initially goes in
the “wrong direction” (see figure 7). In fact, the defini-
tion of an unstable zero shows that the step response
y(t) must satisfy

0 =
∫∞

0
e−zty(t)dt,

so y(t) cannot have the same sign for all t.
Think of the bicycle again. Riding it backward, we

would operate with rear-wheel steering. Hence, when
turning left, the center of mass will initially move to
the right.

The delayed response due to an unstable zero gives
a fundamental limitation on the possible speed of con-
trol: the feedback loop cannot be faster than the time
constant of the slowest unstable zero. Similarly, the pres-
ence of time delays makes it impossible to achieve fast
control: the feedback loop cannot be faster than the time
delay.

Formal arguments about fundamental limitations
due to unstable poles and zeros can be obtained using
the theory of analytic functions. Recall that a controller
is stabilizing if and only if the closed-loop transfer
functions are analytic in the right half-plane.

If p is an unstable pole of P(s), then the comple-
mentary sensitivity function must satisfy T(p) = 1
regardless of the choice of controller C . The fact that
T has a hard constraint in the right half-plane also has
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Figure 8 Limitation from unstable pole. The comple-
mentary sensitivity function T(iω) = P(iω)C(iω)/(1 +
P(iω)C(iω)) should be small for high frequencies in order
to tolerate measurement noise and model errors. However,
if P(s) has an unstable pole p > 0, then no stabilizing con-
troller C can push |T(iω)| entirely below the curve above.
As a consequence, the unstable pole p gives a lower limit
on the bandwidth of the closed-loop system.

consequences on the imaginary axis. In particular, it fol-
lows from the maximum modulus theorem for analytic
functions that the specification

|T(iω)| < 2√
1 +ω2/p2

for all ω

is impossible to satisfy (see figure 8). This is a rigorous
mathematical statement of the heuristic idea that the
feedback loop needs to be at least as fast as the fastest
unstable pole.

Similarly, if z is an unstable zero of P(s), then
the sensitivity function must satisfy S(z) = 1 for
every stabilizing controller C . As a consequence, the
specification

|S(iω)| < 2√
1 + z2/ω2

for all ω

is impossible to satisfy (see figure 9).
The situation becomes even worse if there is both

an unstable pole p and an unstable zero z, especially
if they are close to each other. It follows from the
maximum modulus theorem that

max
ω∈R

|S(iω)| �
∣∣∣∣z + p
z − p

∣∣∣∣
for every stabilizing C . If S is very large, then the
same is true for T , since S + T ≡ 1. Hence, if z ≈ p,
then poor robustness to model errors and amplification
of measurement noise make the system impossible to
control.
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100

101

Frequency

Figure 9 Limitation from unstable zero. The sensitivity
function S(iω) = (1 + P(iω)C(iω))−1 should be small for
low frequencies in order to reject disturbances and fol-
low reference signals at least on a slow timescale. How-
ever, if P(z) = 0, z > 0, then no stabilizing controller C
can push the sensitivity function |S(iω)| entirely below the
curve above. As a consequence, the unstable zero z puts
an upper limit on the speed of disturbance rejection in the
closed-loop system.

6 Optimizing Multivariable Controllers

So far, we have only discussed systems with one input

and one output. However, all the previous results

have counterparts for multivariable systems, where

P(s) and C(s) are matrices. The main difference with

multivariable systems is that the number of relevant

input–output maps is large, and there is therefore a

stronger need to organize the variables and computa-

tions involved in control synthesis. It is common to use

a framework with four categories of variables (see fig-

ure 10). The controller is a map from the measurement

vector y to the input vector u. Usually, the controller

should be chosen such that the transfer matrix from

disturbances w to errors z becomes “small” in some

sense.

It turns out that all closed-loop transfer functions

from w to z that are achievable using a stabilizing

controller can be written in the Youla parametrization

form:

Pzw(s)− Pzu(s)Q(s)Pyw(s), (3)

where Pzw(s), Pzu(s), and Pyw(s) are stable transfer

matrices fixed by the process, and where every stable

Q(s) corresponds to a stabilizing controller.

The Youla parametrization is particularly simple

to derive for stable processes; let the multivariable
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Figure 10 A framework for optimization of multivariable
controllers. The vectorw contains external signals, such as
disturbances, measurement errors, and operator set points.
The vector z contains signals that should be kept small,
usually deviations between actual values and desired val-
ues. The controller is chosen to minimize the effect of w
on z.

feedback system be given by the equations[
z
y

]
=
[
Pzw(s) Pzu(s)
Pyw(s) Pyu(s)

][
w
u

]
, (4)

u = −C(s)y. (5)

Eliminating u and y gives (3), with

Q(s) = C(s)[I + Pyu(s)C(s)]−1.

Exploiting the stability of the process P , it is straight-
forward to verify that the closed-loop system is sta-
ble if and only if Q(s) is stable. In the more general
case of an unstable process, the Youla parametrization
can be derived by first applying a stabilizing prelimi-
nary feedback and then proceeding as above. Given the
Youla parametrization of all achievable transfer func-
tions from w to z, the control synthesis problem can
be formulated as the problem of selecting a Q(s) that
gives the desired properties of Pzw − PzuQPyw . Recall
that w is a vector of external signals, and we know
from section 4 that frequency separation of different
signals is often essential. A natural design approach is
therefore to select Q(s) to minimize

‖Wz(Pzw − PzuQPyw)Ww‖,
where Wz and Ww are frequency weights selected to
emphasize relevant frequencies for the different sig-
nals. This approach connects control theory to the
mathematical theory of functional analysis.

The choice of norm is important. The two most
common norms are the H2-norm

‖G‖H2 =
√

1
2π

∫∞

−∞
tr(G(iω)∗G(iω))dω

and the H∞-norm

‖G‖H∞ = max
ω
σ̄(G(iω)),

where σ̄ (·) denotes the largest singular value. Analytic
formulas can be given for the optimal Q(s) and the
corresponding controller C(s) for both the H2-norm
and the H∞-norm. Some key ideas of the theory will
be described in the next section.

7 Linear Quadratic Control

The frequency-domain viewpoint of control theory
described in earlier sections dominated control theory
before 1960 and has been of central importance ever
since. However, between 1960 and 1980 there was a
second wave of development, triggered by the introduc-
tion of computers for simulation and implementation.
Process models in state-space form, either differential
equations or difference equations, then started to play
a central role. With reference to figure 10, a state-space
model in continuous time can be expressed as follows:

Process

⎧⎪⎪⎨⎪⎪⎩
d
dt
x(t) = Ax(t)+ Bu(t)+wx(t),

y(t) = Cx(t)+wy(t).
Here, the control objective is stated in terms of the map
from w = (wx,wy) to z = (x,u). For example, in lin-
ear quadratic Gaussian optimal control, w is modeled
as Gaussian white noise and the control objective is to
minimize the variance expression

E(xTQx +uTRu),

where Q and R are symmetric positive-semidefinite
matrices. This is equivalent to the H2-norm minimiza-
tion discussed previously (see also figure 11).

It turns out that the optimal controller can be written
as a combination of two components:

Controller

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d
dt
x̂(t) = Ax̂(t)+ Bu(t)

+K[y(t)− Cx̂(t)],
u(t) = −Lx̂(t).

The first is a state estimator (also called an observer or
Kalman filter), which maintains a state estimate x̂(t)
based on measurements of y up to time t. The second
is a state feedback law u = −Lx̂, which uses x̂(t) as if
it were a measurement of the true state x(t) and takes
control action accordingly (see figure 12).

The main tuning parameters of the controller are the
matrices K and L. They can be determined indepen-
dently by solving two different optimization problems.
The state feedback gain L is determined by solving the
deterministic problem to compute

V∗(x0) = min
u

∫∞

0
(xTQx +uTRu)dt
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Figure 11 Linear quadratic Gaussian control aims to mini-
mize the output variance when the input has a given Gauss-
ian distribution. This diagram illustrates two different prob-
ability distributions for the paper thickness in a paper
machine. When the variance is small, a smaller mean value
can be used without increasing the risk of violating quality
requirements.

subject to ẋ = Ax + Bu, x(0) = x0. This problem
connects to classical calculus of variations [IV.6]
and can be conveniently solved using dynamic pro-
gramming, implying that the optimal cost V∗(x0)must
satisfy Bellman’s equation:

0 = min
u

(
xT

0Qx0 +uTRu︸ ︷︷ ︸
current cost

+ ∂V
∂x
(Ax0 + Bu)︸ ︷︷ ︸

reduction of future cost

)
. (6)

The solution is a quadratic function V∗(x0) = xT
0Sx0.

For linear dynamics and quadratic cost, Bellman’s equa-
tion reduces to the Riccati equation, which is solved for
S, and the accompanying optimal control lawu = −Lx0

gives the desired L.
The Kalman filter gain K is determined to minimize

the variance of the estimation error E|x̂ −x|2. It turns
out that this problem is the dual of the state feedback
problem and can also be solved by dynamic program-
ming. In this way, the linear quadratic Gaussian optimal
control problem was completely solved in the 1960s.
With the terminology of section 6, this provided a solu-
tion to the H2-norm optimization problem. Moreover,
the structure of the observer-based controller is impor-
tant regardless of optimality aspects, since it gives an
interpretation to all the controller states. This is useful
in, for example, diagnosis and fault detection.

In the 1980s it was proved that H∞-optimal con-
trollers can be derived in a way that is similar to the

Process
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State
feedback
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u  xy
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ˆ

Figure 12 The solution of the linear quadratic Gaussian
optimal control problem has a very clean structure, where
the controller has the same number of states as the process
model. Every controller state x̂k can be interpreted as an
estimate of the corresponding state xk in the process. The
optimal input is computed from the state estimates as if
they were measurements of the true state.

way in which linear quadratic Gaussian controllers are

derived. However, the previous minimization has to be

replaced by a dynamic game:

V∗(x0) = min
u

max
w

∫∞

0
(xTQx +uTRu− γ2wTw)dt.

The input u should therefore be selected to minimize

the cost under the assumption that the disturbance w
acts in the worst possible way. If V∗(x0) is finite, it

means that the resulting control law makes the H∞-

norm of the map fromw to z = (Q1/2x,R1/2u) smaller

than γ. The optimum is found by iteration over gamma.

In many control applications it is necessary to put

hard constraints on states and input variables. This

results in nonlinear controllers, which cannot be rep-

resented by a transfer matrix. Instead, it is common

to implement such controllers using model-predictive

control (MPC), solving constrained optimization prob-

lems repeatedly in real time: at every sampling time,

the state is measured and an optimal trajectory is com-

puted for a fixed time horizon into the future. The com-

puted trajectory determines the control action for the

next sampling interval. After this, the state is measured

again and a new trajectory is optimized. The method

is therefore also called receding-horizon control (see

figure 13).

MPC controllers have been used in the process indus-

try since the 1970s, but the development of theory and

supporting software has been most rapid during the

past fifteen years.

8 Nonlinear Control

A remarkable feature of feedback is that it tends to

reduce the effects of nonlinearities. In fact, one of the
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Figure 13 In MPC a finite-horizon optimal control prob-
lem is solved at every time step. The state is measured and
an optimal control sequence (dashed) is computed for a
fixed time horizon into the future. The computed trajectory
determines the control action (solid) for the next sampling
interval. After this, the state is measured again and a new
trajectory is optimized.

most important early success stories of feedback con-
trol was Black’s invention of the feedback amplifier in
1927. The invention made it possible to build telecom-
munication lines over long distances by reducing the
inevitable nonlinear distortion in the amplifiers.

For this reason, much of control theory has been
developed based on linear models. Even though nonlin-
ear effects are always present, they can often be ignored
in the design of feedback controllers, since they tend
to be attenuated by the feedback mechanism. Never-
theless, when high performance is required, nonlinear
effects need to be considered.1

The most straightforward approach to dealing with
nonlinearities is to ignore them at the design stage but
still take them into account in the verification of the
final solution. Usually, verification is done by extensive
simulations using nonlinear models of high accuracy.
However, it is also possible to do more formal analysis
using a nonlinear process model. We will next describe
some tools for this purpose.

The most well-known concept for the analysis of non-
linear systems is Lyapunov functions, i.e., nonnegative
functions of the state x that are decreasing along all
the trajectories of the system. The existence of such a
function proves stability of the nonlinear system. How-
ever, it is often desirable to also go beyond stability and
prove bounds on the input–output gain from distur-
bance w to error z. This can be done using the slightly
more general concept of storage functions. For example,

1. Black’s feedback amplifier traded power for reduced distortion.
However, modern efforts to build energy-efficient electronics are push-
ing researchers in the opposite direction: not to give away power
losses but instead to accept some level of nonlinear distortions.

to prove that the output integral
∫
|z|p dt is bounded by

the input integral
∫
|w|p dt along all trajectories start-

ing and ending at an equilibrium, it is sufficient to find
a storage function V(x) such that

d
dt
V(x(t)) � |w(t)|p − |z(t)|p

along all trajectories. Given V , the inequality can often
be verified algebraically for each t separately.

Lyapunov functions and storage functions can often
be interpreted as measures of energy content in the sys-
tem. A system is stable if the energy content decreases
along all trajectories. Similarly, if the input integral
measures the amount of energy that is injected into
the system through the input, and the output integral
measures how much energy is extracted through the
output, then the input–output gain can be at most 1.
Such interpretations are particularly useful when the
states of the system have physical meaning.

A common way to derive Lyapunov functions and
storage functions is via linearization. If a linear feed-
back law is designed based on a linearized process
model, it often comes together with a quadratic Lya-
punov function. For example, if it was obtained by
optimization of a quadratic criterion, then the optimal
cost defines a quadratic Lyapunov function. If an H∞-
optimal control law was obtained by solving a min–
max quadratic game, then the solution comes with
a corresponding quadratic storage function. In both
cases, the quadratic functions obtained in the linear
design can be used for verification of a closed-loop
system involving the nonlinear process. An alterna-
tive approach is to abandon the linear controllers and
instead use the quadratic Lyapunov/storage functions
as starting points for the design of nonlinear feedback
laws.

Nonlinear controllers can also be designed using
dynamic programming and Bellman’s equation. A com-
mon problem formulation is to associate every control
law u = μ(x) with a cost

Vμ(x0) =
∫∞

0
-(x(t),u(t))dt,

where ẋ = f(x,u), u = μ(x), and x(0) = x0, and
then to find the control law that gives the minimal cost
V∗(x0). The corresponding Bellman equation is gen-
erally very difficult to solve, but it can still be used to
derive approximatively optimal control laws. For exam-
ple, given a function V and a control law μ, if the
“Bellman inequalities”

-(x, μ(x))+∂V
∂x
f(x, μ(x)) � 0 � α-(x,u)+∂V

∂x
f(x,u)
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hold for all x, u, and for some α � 1, then μ approxi-
mates the optimal control law in the sense thatVμ(x) �
αV∗(x).

The statement is very general and widely applica-
ble. If α = 1, the inequalities reduce to the classi-
cal Bellman equation. Conversely, if α is big, then the
inequalities are easier to satisfy, but the control law is
likely to be further away from the optimum. The main
difficulty is, in general, to come up with good candi-
dates μ and V for which the Bellman inequalities can
be verified. Two main approaches have been discussed.
One is to use linearization, which gives solutions that
are also approximately optimal for the nonlinear prob-
lem. The second approach is to use MPC: the infinite-
horizon cost can be approximated by a finite-horizon
time-discrete cost, which can be optimized online. This
means that μ is defined implicitly in terms of solutions
to finite-dimensional optimization problems. The Bell-
man inequalities can then be used to form conclusions
about the performance of the MPC controller.

9 Ongoing Research: Distributed Control

A new trend in control theory has emerged in the
twenty-first century. The aim is to provide understand-
ing and methodology for the control of large-scale sys-
tems, such as the power grid, the Internet, and living
organisms. Classical control theory is insufficient for
several reasons.

• Control action is taken in many different locations,
but with only partial access to measurements and
process dynamics (see figure 14).

• Even if optimal distributed controllers are com-
putable, they are generally extremely complex to
implement.

• The design and functionality of control and com-
munication systems are increasingly intertwined
with complex software engineering.

All of these issues have been recognized and dis-
cussed for a long time. However, encouraging progress
has recently been made, leading to very stimulating
developments in control theory.

Dual decomposition is an old idea for the solution
of large-scale optimization problems. The idea is, for
example, applicable to the minimization of an objective
function with a large number of terms that are coupled
by relatively few shared variables. The method means
that the coupling between shared variables is removed
and is replaced by a penalty for disagreement. The

P
C

P

P
C

P

P

P

C

Figure 14 The term “distributed control” refers to a situ-
ation in which action is taken in many different locations
but with only partial access to measurements and pro-
cess dynamics. In the diagram, “P” denotes fixed process
dynamics, while “C” denotes controllers to be designed.

penalty is given by a price variable, also called a dual
variable or Lagrange multiplier, which is then updated
using a gradient algorithm.

Dual decomposition has the important advantage
that once the price variables are fixed, individual terms
of the objective function can be optimized indepen-
dently with access to only their own local variables. The
need for communication in MPC applications is signifi-
cant, since gradient updates of price variables requires
comparison of shared variables along the entire opti-
mization horizon. Nevertheless, the idea has shown
great promise for use in the control of large-scale
systems.

A second branch of research is devoted to problems
with limited communication capabilities in the con-
troller. It was already recognized by the 1960s that
such problem formulations often lead to highly com-
plex nonlinear controllers, even for very simple pro-
cesses. The reason for this is that there is an incen-
tive for the controller to use the process as a commu-
nication device. This incentive disappears as soon as
the controller has access to communication links that
are faster than the information transfer of the plant,
an assumption which is often reasonable with modern
technology. Hence, an interesting branch of research is
now the investigating of how to derive optimal (linear)
controllers when communication is limited but is faster
than the process.

A third research field is devoted to a particular class
of systems known as positive systems, or (in the nonlin-
ear context) monotone systems. Positive systems arise,
for example, in the study of transportation networks
and vehicle formations. Unlike general linear systems,
the positivity property makes it possible to do stability
analysis and control synthesis using linear Lyapunov
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functions rather than quadratic ones. This makes a dra-
matic difference for large-scale systems, since the num-
ber of optimization parameters then grows linearly
with the number of states and system components.
Moreover, verification of the final solution can be done
in a distributed way, where bounds on the input–output
gain can be checked component by component.

Altogether, these different directions of progress
(and others) show that control theory is still in a very
active phase of development, and an article like this
written ten years from now would probably include
important sections that go far beyond what has been
presented here.

Acknowledgments. The illustration in figure 11 is from
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IV.35 Signal Processing
John G. McWhirter and Ian Proudler

1 Introduction

Since the advent of integrated circuit technology and
the resulting exponential surge in the availability of
affordable, high-performance, digital computers, digi-
tal signal processing (DSP) has become an important
topic in applied mathematics. The purpose of this arti-
cle is to provide a simplistic overview of this topic
in order to illustrate where and why mathematics is
required.

Since most naturally occurring signals, such as elec-
tromagnetic waves, seismic disturbances, or acoustic

sounds, are continuous in nature, they must be sam-
pled and digitized prior to digital signal processing.
This is the role of an analog-to-digital converter, which
takes the output from a sensor such as an antenna
or a microphone and produces a sequence of uni-
formly sampled values x(n) (n = 0,1,2, . . . ) repre-
senting the measured signal at the corresponding time
instances tn.

Low-frequency signals are usually digitized directly,
resulting in a sequence of real numbers. High-fre-
quency signals of a sinusoidal nature are often repre-
sented in terms of their phase and amplitude relative to
a given high-frequency reference tone (pure sinusoid),
resulting in a signal of much lower frequency, whose
values are represented by complex numbers. This pro-
cess, generally referred to as down conversion, is par-
ticularly important for electromagnetic signals in radio
communications, for example.

The rate at which a signal is sampled depends on
its spectral content and, in particular, on the highest-
frequency component that it contains (possibly after
down conversion to a lower-frequency band). Assuming
that the highest frequency, measured in hertz (cycles
per second), is f , the signal must be sampled every
Δt seconds, where Δt � 1/(2f). This fundamental
rule was established by Shannon, and the correspond-
ing sampling frequency fs must satisfy fs � 2f (the
Nyquist rate). Having decided on (or been restricted to)
a sampling frequency fs, it is important that any sig-
nal to be digitized at this rate does not contain any
frequency components for which f > fs/2, since these
will be indistinguishable from their cyclic counterparts,
i.e., those with the same frequency modfs. This cyclic
wraparound in the frequency domain is referred to
as aliasing, and it can cause severe signal distortion.
To prevent this from occurring in practice, signals
must be strictly band limited before analog-to-digital
conversion.

In accordance with the discussion above, the input to
a DSP device is a sequence of signal values x(n), gen-
erally referred to as a time series, which may be pro-
cessed on a sample-by-sample basis or in convenient
blocks depending on the application.

2 Digital Finite Impulse Response Filtering

One of the most important tasks in DSP is the appli-
cation of a particular linear time-invariant (LTI) oper-
ator A that is defined in terms of its finite-length
response to a unit impulse [1,0, . . . ]. The impulse
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Figure 1 A finite impulse response filter structure based
on a tapped delay line, where z−1 denotes a unit delay.

response may be expressed as A ≡ [a0, a1, . . . , aL−1].
In response to a general open-ended input time series
x(n), n ∈ Z, it produces the output sequence y(n) =∑L−1
l=0 alx(n− l). In other words, it generates a convo-

lution of the input sequence with its impulse response.
In DSP, this type of operator is referred to as a finite
impulse response (FIR) filter. Elements al of the impulse
response are therefore regarded as filter coefficients,
the order of the filter being L−1. The reason for think-
ing of this LTI operator as a filter will become apparent
shortly.

A digital FIR filter may be implemented quite natu-
rally using a tapped delay line, as illustrated schemati-
cally in figure 1. The tapped delay line is assumed to be
filled with zeros initially. Sample x(0) arrives at time t0
and is multiplied by coefficient a0 to producey(0). The
sample x(0) is stored and moves one place along the
delay chain on the next clock cycle, where it is multi-
plied by coefficient a1. At the same time, the next sam-
ple x(1) arrives. It is multiplied by a0, and the product
a0x(1) is added to a1x(0), thus generating y(1). The
process continues on every clock cycle, even when the
tapped delay line is full, in which case one sample (the
oldest) is forgotten every time. In effect, the stored data
vector shifts one place to the right every sample time
and it is this property that will lead to a toeplitz data

matrix [I.2 §18], as discussed in section 8.

Let the input to the filter A take the form of a uni-
formly sampled sinusoid x(n) = eiωn, where, for con-
venience,ω = 2πf is the angular frequency in radians
per sample time. It follows that the output sequence
y(n) = ∑L−1

l=0 aleiω(n−l) can be written as y(n) =
A(ω)eiωn, where A(ω) = ∑L−1

l=0 ale−iωl is referred to
as the frequency response of the filter A. A(ω) is,
of course, the Fourier transform of the finite discrete

sequence of filter coefficients, and its inverse is given
by

al =
1

2π

∫∞

−∞
A(ω)eiωl.

By taking the Fourier transform of the filter output
sequence y(n) as defined above, it is easy to show that

Y(ω) =
L−1∑
l=0

al
∞∑

n=−∞
x(n− l)e−iωn

and, hence, by substitution of indices, that Y(ω) =
A(ω)X(ω). This is, of course, just a manifestation
of the fourier convolution theorem [II.19], which
states that the Fourier transform of a convolution is
simply the product of the Fourier transforms of the
individual sequences. Clearly, then, the effect of con-
volving a digital sequence with a chosen set of filter
coefficients is to modify the frequency content of the
signal by multiplying its spectral components by those
of the filter. For example, a low-pass filter is designed
to multiply the high-frequency components by zero
and the low-frequency components by one to a suit-
ably high degree of approximation. With an FIR filter of
the type outlined above, a large number of filter coeffi-
cients may be required to achieve the accuracy required
for low-pass, high-pass, or band-pass filters, so digital
filters often utilize infinite impulse response filters, as
discussed in section 5.

3 Discrete Fourier Transform and
Fast Fourier Transform

Section 2 introduced the Fourier transform of a finite
discrete sequence al as A(ω) = ∑L−1

l=0 ale−iωl, which
describes, for example, the frequency response of the
corresponding FIR filter. This is defined for any fre-
quency ω. However, due to the finite length of the
sequence, not all values of A(ω) are independent. In
fact, the entire response may be inferred from the
response at the L discrete frequency values ωn =
2πn/L (n = 0,1, . . . , L− 1), i.e., in terms of the discrete
Fourier transform (DFT) values

An ≡ A
(

2πn
L

)
=
L−1∑
l=0

alW−nl
L ,

where WL ≡ e2π i/L constitutes the Lth root of unity in
the complex number field. The original sequence al can
easily be recovered from these values (referred to as the
DFT coefficients) by means of the inverse DFT, which is
given by

al =
1
L

L−1∑
n=0

AnWnl
L (l = 0,1, . . . , L− 1).
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The inverse DFT can easily be proved by substituting
for An and noting that the geometric series sums to
Lδlm, where δlm denotes the Kronecker delta, which
takes the value unity when l =m and zero otherwise.

In section 2 it was pointed out that the Fourier
transform of the convolution of a discrete sequence
with a set of filter coefficients is equivalent to the
product of their individual Fourier transforms. A sim-
ilar result applies in the case of fixed-length discrete
sequences transformed using the DFT but the equiv-
alence involves a cyclic convolution. Let Hn and Xn
be the DFT coefficients corresponding to the finite-
length sequences hk and xk, and define Yn = HnXn
(n = 0,1, . . . , L− 1) so that

yl =
1
L

L−1∑
n=0

XnWln
L

L−1∑
k=0

hkW−kn
L .

Swapping the order of the two summations leads to

yl =
L−1∑
k=0

hk
L−1∑
n=0

XnW
n〈l−k〉L
L ,

where for any integer r , 〈r〉L denote r mod (L − 1).
Consequently, yl = ∑L−1

k=0 hkx〈l−k〉L , which takes the
form of a cyclic convolution. This proves to be a very
useful relationship, although, in order for it to apply
to a general (noncyclic) convolution, it is necessary to
use a technique such as zero padding, whereby the
input sequence of length M , say, is extended to length
2M − 1 by adding new zero elements so that the out-
put of the cyclic convolution contains, as a subse-
quence, the M terms of the original noncyclic convo-
lution. At first sight one might ask why one bothers
doing a finite-length convolution in this roundabout
manner. The answer, of course, lies in the ubiquitous
fast fourier transform [II.10] (FFT), which, for a
transform of length N , where N = 2n, requires only
O(nN) arithmetic operations as opposed to O(N2) for
the standard DFT. This reduction is so significant for
large values of N that in order to compute a convolu-
tion of lengthM , which would normally require O(M2)
arithmetic operations, it is well worth the overhead of
zero padding the sequence so that M → 2m, comput-
ing the FFT of both convolution sequences, multiply-
ing the resulting FFT coefficients pairwise, and comput-
ing the inverse FFT. In this context it should be noted
that the FFT is not just an efficient algorithm for trans-
forming to the frequency domain in the classical sense
but is also a very important “computing engine,” find-
ing application throughout the field of DSP and in the
practical application of LTI operators more generally.

4 The z-Transform

A fundamental and widely used mathematical tool in
DSP is the z-transform, which includes the Fourier
transform as a special case but has much broader rele-
vance. The z-transform of a time series x(n) is denoted
by X(z) and is defined as X(z) =∑∞

−∞ x(n)z−n, where
z ∈ C. If z is represented as z = reiθ , then it is evi-
dent that X(z) is equivalent to the Fourier transform
of the associated sequence x(n)r−n, which converges
provided

∑∞
−∞ |x(n)r−n| < ∞. In effect, the sequence

of values x(n) constitutes the coefficients of a Laurent
series expansion of X(z) about the origin in the com-
plex plane. Clearly, the z-transform of a sequence is
meaningful only at values of z for which the doubly
infinite sum converges. This defines the region of con-
vergence (ROC), which can be analyzed by splitting the
transform into the sum of its causal component, involv-
ing only the coefficients for which n � 0, and its anti-
causal component, involving only coefficients for which
n < 0. In general, the causal component converges at
values of z for which |z| is large enough, i.e., |z| > rc for
some value of rc. Conversely, the anticausal component
converges provided |z| is small enough, i.e., |z| < ra

for some value of ra. Provided rc < ra, the ROC consti-
tutes an annulus centered on the origin of the complex
plane. If the unit circle lies within the ROC, then the z-
transform evaluated on the unit circle is identical to the
Fourier transform. It is worth noting that the inverse
z-transform is given by

1
2π i

∮
C
X(z)zn−1 dz,

where C denotes a counterclockwise closed contour
within the ROC that encloses the origin. Its valid-
ity can be demonstrated using the cauchy integral

theorem [IV.1 §7], which states that

1
2π i

∮
C
zn−1 dz =

⎧⎨⎩1 if n = 0,

0 otherwise.

Note that the z-transform is a linear operator. Note also
that, if y(n) = x(n−m) for a fixed integerm, i.e., the
sequence y(n) is simply the sequence x(n) delayed
by m sample intervals, then Y(z) = z−mX(z). For this
reason, z−1 is generally referred to as the unit delay
operator. The final property noted here is particularly
useful and constitutes a generalization of the Fourier
convolution theorem noted earlier. It states that, if
two sequences y(n) and x(n) are related according
to y(n) = ∑L−1

l=0 alx(n− l), then Y(z) = A(z)X(z). In
other words, the z-transform of a discrete convolution
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Figure 2 A digital infinite impulse response filter composed
of two tapped delay lines. The second one filters the out-
put sequence and feeds the result back to be added to the
output of the first.

is the product of the individual z-transforms. Although
L can be infinitely large, we have chosen to express the
relationship here as it applies to an FIR filter with coef-
ficients al (l = 0,1, . . . , L − 1). For this reason, an FIR
filter is often represented for analytic purposes by its
z-transform, which (for causal filters) takes the form of
a polynomial in z−1.

5 Digital Infinite Impulse Response Filtering

FIR filters are represented mathematically by a finite
discrete convolution (LTI operator). Another important
class of digital filters involves a discrete LTI operator
with infinite impulse response. It has the form

y(n) =
L−1∑
l=0

alx(n− l)−
M−1∑
m=1

bmy(n−m).

The key point to note here is that the filter output
y(n) consists of the filtered input samples, as in an
FIR filter, as well as delayed values of the filter out-
put y(n), n ∈ N+, linearly combined using the coef-
ficient vector [b1, b2, . . . , bM−1]. Feeding the output of
the filter back in this recursive manner, as illustrated

in figure 2, leads to a filter whose response to a unit
impulse is no longer finite in duration. As a result,
the bounded-input bounded-output stability of these
infinite impulse response (IIR) filters is no longer guar-
anteed and careful analysis is required. The IIR fil-
ter equation incorporates two distinct FIR filters, one
applied to the input sequence and the other applied
to the output sequence, before it is fed back. In terms
of the associated z-transforms it may be expressed in
the form B(z)Y(z) = A(z)X(z) (where b0 = 1), so
Y(z) = T(z)X(z), where the overall transfer function
is given by the rational form T(z) = A(z)/B(z). The
zeros of the polynomial A(z) are referred to as the
zeros of the filter, while the zeros of B(z) are referred
to as the poles of the filter. The location of the poles in
the complex plane is a key property for characterizing
the ROC of T(z). Taken together, the location of the
poles and zeros plays an important role in determining
the characteristics of an IIR filter.

The design of a digital filter, either FIR or IIR,
intended to achieve specific objectives such as given
pass-band frequencies, stop-band frequencies, and roll-
off rates is now a well-established discipline. It is not
possible to design a filter of finite order so that it has
arbitrary properties. The approach therefore basically
amounts to curve fitting. Techniques such as least-
squares minimization, linear programming, minimax
optimization, and Chebyshev approximation can all be
used.

6 Correlation

So far in this article we have considered only deter-
ministic signals, whereas, in practice, most measured
signals are subject to random measurement noise and
other statistical fluctuations. In the simplest case these
can be modeled as an additive white Gaussian noise
process with zero mean, so the measured sequence
is described by y′(n) = y(n) + νn, where νn rep-
resents a random noise sequence whose values are
taken from a Gaussian distribution with E[νn] = 0 and
E[νiν∗

j ] = σ2δij . Throughout this article, E[·] denotes
the statistical expectation operator.

Correlation is another important procedure that
arises in DSP. The correlation between two open-ended
random time seriesx(k) andy(k) is given by Cxy(n) =
E[x(k)y∗(n + k)]/αxαy , where αx = E[|x(k)|2]1/2
and αy = E[|y(k)|2]1/2 are normalization factors here
assumed to equal unity. The correlation is a func-
tion of the relative shift in sample time between the
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two sequences and, making the usual assumptions
about ergodicity and wide-sense stationarity (station-
arity over a suitably long time interval), it is estimated
as cxy(n) = ∑K

k=−K x(k)y∗(n+ k), where the value
of K is set as large as necessary (or as large as possi-
ble in any practical situation). The specific case where
the sequence y(k) is identical to the sequence x(k)
yields the autocorrelation function Cxx(n) with its cor-
responding estimate cxx(n) = ∑K

k=−K x(k)x∗(n+ k).
The autocorrelation function is of particular interest
since the Wiener–Kinchene theorem states that the
Fourier transform of the autocorrelation function is
equivalent to the power spectral density of the sig-
nal, i.e., Cxx(ω) = |X(ω)|2, where X(ω) denotes the
Fourier transform of x(k). Assuming that the summa-
tion limits are infinite, this can easily be deduced as a
simple corollary of the Fourier convolution theorem.
The Wiener–Kinchene theorem is useful as there are
numerous situations in DSP where it is simpler, or more
convenient, to measure the autocorrelation function
than the spectrum of the underlying signal. Note, how-
ever, that the power spectral density does not provide
any phase information.

The case where an open-ended time series y(k) is
to be correlated with a finite sequence x(k) leads to
a correlation function estimate of the form cxy(n) =∑L−1
k=0 x(k)y∗(n+ k), where the number of sample val-

ues for each n is simply the length L of the finite
sequence. Even if the value of L is limited, this expres-
sion provides an unbiased estimator for the correla-
tion function and so is very useful in practice. For a
single instantiation of the sequence y(k), it can be
viewed as a measure of the similarity between the finite
sequence x(k) and a finite segment of the sequence
y(k) beginning at the nth sample. The value of n for
which this estimator takes its maximum value is of par-
ticular interest in the context of active radar and sonar.
In such systems, an electromagnetic or acoustic pulse
whose shape is described by the sequencex(k) is trans-
mitted by the antenna at sample time zero, say. After
propagating to a reflective object in its path, some of
the pulse energy returns to the antenna, delayed by its
two-way time of flight and much weaker due to prop-
agation losses. This much weaker pulse is also sub-
ject to electronic receiver noise and can be modeled as
y(n) = βx(n−m)+νn, where the round-trip delay ism
sample intervals and, as before, νn represents additive
white Gaussian noise. In this situation,

cxy(n) =
K−1∑
k=0

[x(k)x∗(n+ k−m)+ x(k)νn+k]

and, for a suitably designed pulse, the expected value of

cxy(n) will attain its maximum value for n =m. This

provides an estimate of the time of flight of the pulse,

and hence the distance to the corresponding reflector.

Computing the correlation function estimate for this

purpose is generally referred to as matched filtering.

The reason for this becomes clearer by rewriting the

estimator in the form cxy(n) =
∑K−1
k=0x(K−k−l)y(n+

K−1−k) and introducing the order-reversed sequence

x̄(k) = x(K + 1 − k) so that the estimator is given by∑K−1
k=0 x̄(k)y(n+K−1−k). This takes the form of a dis-

crete convolution corresponding to a digital FIR filter

with coefficients x̄(k). In effect, the correlation func-

tion can be estimated by computing a convolution with

the coefficients in reverse order.

7 Adaptive Filters

In the case of an adaptive filter, the coefficients are not

specified in advance but must be computed as a func-

tion of the input data with a view to achieving a partic-

ular objective such as maximizing the output signal-to-

noise ratio. This typically involves the minimization of

a suitable cost function involving the filter coefficients

(weight vector) and is sometimes implemented by feed-

ing the filter output back to form a simple “closed-loop”

control system.

Consider, for example, a signal estimation problem in

which a desired signal s(n) is subject to an unknown

filtering operation H(z) such that the signal received

is given by x(n) = ∑
hks(n− k)+ v(n), where v(n)

denotes an interference or noise signal uncorrelated

with s(n). With the aim of estimating the desired sig-

nal, the received signal is processed by an adaptive fil-

ter W(z) whose output is d(n) = ∑K−1
k=0wkx(n − k).

Assume that a noisy version of the desired signal

denoted by y(n) = s(n)+η(n) is also available, where

the noise η(n) is again uncorrelated with s(n). The

coefficients of the adaptive filter are chosen to ensure

that the reference signal y(n) and the output of the

adaptive filter d(n) are as close as possible in terms

of their mean squared error J = E[|e(n)|2], where

e(n) = y(n)− d(n). This approach works because, as

we shall see below, the solution involves correlations

between certain signals, and the two noise terms, being

uncorrelated, have no effect on the result. An adaptive

filter of this type is illustrated in figure 3.

Minimizing the cost function J with respect to each

of the adaptive filter coefficients (often referred to as
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Figure 3 Schematic of a basic adaptive filter. The difference
between the output signal d(n) and the reference signal
y(n) is used to compute an update to the weight vector
using a suitable adaptive algorithm.

weights) leads directly to the Wiener–Hopf equations

r(k) =
K−1∑
j=0

wjq(k− j) (j = 0,1, . . . , K − 1),

where

r(k) = E[y(n)x∗(n− k)], q(k) = E[x(n)x∗(n− k)]
denote the cross-correlation and auto-correlation func-
tions, respectively.

Because these equations take the form of convolu-
tions, the solution may be written formally in terms of
the corresponding z-transforms asW(z) = R(z)/Q(z).
However, this expression is of little benefit when it
comes to evaluating the filter weights in practice.
Instead, the Wiener–Hopf equations may be written in
the form Mw = r , where w = [w0,w1, . . . ,wK−1]
is the weight vector and M ∈ CK×K is termed the
covariance matrix, with individual elements given by
mij = q(i − j), and r ∈ CK is known as the cross-
correlation vector with elements given by ri = r(i).
This matrix equation may be solved using conventional
linear algebra techniques, ideally exploiting the fact
that the covariance matrix is of Toeplitz form.

Note that the Wiener–Hopf equations are formu-
lated in terms of the ideal ensemble-averaged cross-
correlation and auto-correlation components, which
are not known and would have to be estimated from
the data in any practical situation. It is generally more
appropriate to estimate the filter coefficients directly
from the data by defining a cost function (f(w | D),

say, where D denotes the data). One can then solve
w = arg minf(w | D). Various different cost func-
tions have been proposed. Some have the advantage
that a reference signal is not required (blind adap-
tive filtering). For the specific scenario that led to the
Wiener–Hopf equations, an appropriate cost function
would be f(w | D = [X,y]) = ‖Xw − y‖2, where
‖x‖2 = (x∗x)1/2, in which case w is the solution to
the linear system Xw = y .

However, note that, as in the signal estimation prob-
lem above, it is usually the case that y is a noisy copy
of the desired signal, i.e., y = s + η. Furthermore, as
discussed below, it can be advantageous to take more
measurements than the number of unknown filter coef-
ficients, in which case there are more equations than
unknowns and the matrix X is rectangular. Thus, in
general, there is no exact solution to the linear system
Xw = y and we have to turn to the least-squares

solution [IV.10 §7.1]. There are many approaches to
the least-squares solution of Xw = y , the appropriate
choice depending on the properties of X. If X∗X is of
full rank, then w is the unique solution to the linear
equations X∗Xw = X∗y , which are known as the nor-
mal equations, and w = (X∗X)−1X∗y is known as the
Wiener solution. Clearly, when X∗X is not of full rank
other methods have to be used to find the least-squares
solution.

The adaptive filter problem therefore requires find-
ing the solution to X∗Xw = X∗y , where, in the pres-
ence of noise, y = s + η. Here, s is the noise-free
signal. The Wiener solution can then be written w =
w0 + (X∗X)−1X∗η, where w0 is the noise-free least-
squares solution. Note that the ith element of X∗η
is
∑K
k=0x∗(k − i + 1)η(k), which is an ergodic esti-

mate of the cross-correlation between x(n− i+1) and
η(n). In the derivation of the Wiener–Hopf equations
above, ensemble-averaged correlations were used, so
E[x∗(n− i+ 1)η(n)] = 0 and w = w0. However, with
ergodic estimates this will not be the case as, in gen-
eral,

∑K
k=0 x∗(k−i+1)η(k) ≠ 0 for finite K. Clearly, the

larger the value ofK in the ergodic estimate, the smaller
the estimated cross-correlation will be. This is equiva-
lent to taking many measurements of a noisy quantity
and averaging to improve the accuracy of the resulting
estimate. This is why adaptive filtering problems often
have rectangular X matrices.

Given that, in the expression forw, X∗η ≠ 0 and it is
multiplied by (X∗X)−1, it is necessary to consider the
condition number [IV.10 §1] of the matrix X as well
as its rank. Inversion of an ill-conditioned matrix can
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amplify any noise that is present. Here, the noise (X∗η)
comes from the signals and not from roundoff effects.
Forming and solving the normal equations has the dis-
advantage that the 2-norm condition number of X∗X is
the square of that of X, which can cause the computed
normal equations solution to be less accurate than the
least-squares problem warrants in the presence of the
noise. In this context, one particularly useful approach
is to use the qr factorization [IV.10 §2] X = QR of
the matrix X, which allows the calculation ofw without
forming the covariance matrix X∗X and thus squaring
the condition number.

8 Implementation

A notable aspect of signal processing is the need to
have low-complexity algorithms. This is because sig-
nal processing is often to be found on equipment
that has limited computing power, such as battery-
powered devices. There is therefore great interest in
devising algorithms that require as little computation
as possible.

The most notable method for reducing the computa-
tion in a signal-processing algorithm is to calculate the
solution to one problem based on that of another, i.e.,
to use recursion. For adaptive filters the most widely
used method is a recursion in time: calculate the solu-
tion at time n from that at time n − 1. This leads to
the recursive least-squares (RLS) family of algorithms.
The oldest member of this family is derived from the
Wiener solution by means of the sherman–morrison–

woodbury formula [IV.10 §3]. This lemma expresses
the inverse of the matrix X∗X in terms of the inverse
of a smaller matrix. Specifically, the data matrix at time
n can be written X(n) = [XT (n − 1) x(n)]T and
it is possible to express (X∗(n)X(n))−1 in terms of
(X∗(n − 1)X(n − 1))−1 and rank-one terms involving
x(n). In fact, when substituted into the Wiener solu-
tion w(n) = (X∗(n)X(n))−1X∗(n)y(n), the resulting
formula can be simplified to an equation of the form
w(n) = w(n − 1) + g(y(n) − x∗(n)w(n − 1)). The
vector g is known as the Kalman gain vector and is
equal to (X∗(n)X(n))−1x(n). It specifies the direction
of the update from w(n − 1) to w(n). The advantage
of this formula is that it requires only O(N2) opera-
tions rather than theO(N3) required to invert anN ×N
matrix. Note that the last term in the update formula
can be seen as an a priori “fitting” error. This is a
classic recursive update formula that appears in many
iterative algorithms, such as the method of steepest

descent [IV.11 §4.1] in optimization and the jacobi

iteration [IV.10 §9] for linear systems.

An important signal-processing algorithm in this
class is the least-mean-squares (LMS) algorithm. The
LMS algorithm can be derived in several ways. The orig-
inal approach was statistical and was based on mini-
mizing the mean square error. Another approach is to
set the a posteriori fitting error y(n)− x∗(n)w(n) to
zero while minimizing the modulus of the change in
the weight vector |w(n)−w(n− 1)|. In any event, the
LMS update formula isw(n) = w(n−1)+x(n)(y(n)−
x∗(n)w(n− 1)). Note that this is the same as the RLS
update when the Kalman gain g = x(n), that is, when
X∗(n)X(n) = I. The LMS algorithm therefore behaves
like the RLS algorithm when the input signal x(n) is
a white noise process. When the input signal does not
have a white power spectral density, the LMS algorithm
is slower to converge than the RLS algorithm. This can
be shown to be related to the fact that x(n) is now
a poor estimate of the direction of steepest descent,
unlike the Kalman gain vector. Nevertheless, the LMS
algorithm is very simple to implement and has proved
to be very robust to violations of the assumptions that
were originally made in its derivation. In fact, the LMS
algorithm can be derived using minimax optimization,
where one minimizes the maximum possible error (for
a given class of system). Broadly speaking, the LMS algo-
rithm minimizes the energy of the a priori fitting errors
given the worst-case input noise. This can be shown to
be related to a concept known as the H∞-norm, which
is the L∞-norm applied in the frequency domain: given
a transfer function T(z), ‖T(z)‖H∞ = supω(|T(eiω)|).
As such, the LMS algorithm is a very useful tool. It
is worth noting that the QR factorization-based least-
squares algorithm family also includes time-recursive
versions, although these will not be discussed further
in this article.

Another approach to reducing the computational
load is to utilize any special structure in the problem.
In adaptive filtering the rows of the data matrix X are
formed from the delayed signal values x(n − l) that
appear in the convolution that defines the filter, i.e.,
y(n) = ∑L−1

l=0 alx(n − l). Each row of the data matrix
corresponds to a different value of n. Hence the data
matrix has a Toeplitz form. Thus, if Xp(n) is the data
matrix for a pth-order filter at time n, then

Xp(n) = [Xp−1(n), bp(n)] = [fp(n),Xp−1(n− 1)],

where bp(n) and fp(n) depend on the data. In fact,
fp(n) and bp(n) are related to specialized adaptive
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filtering problems known as forward and backward lin-
ear prediction, respectively. Here, the desired signal
y(n) is replaced by fp(n) or bp(n). This leads to a
rank-two update equation for the covariance matrix. It
is possible to incorporate time recursion with the order
recursion resulting in an algorithm with O(n) opera-
tions. Examples of this are the fast transversal filters
algorithm and the RLS lattice algorithm.

One issue with all of the recursive algorithms is
numerical stability [I.2 §23]. The recursion formulas
are valid only if all of the inputs are accurate. Inaccu-
rate input values and numerical roundoff errors lead to
errors in the output values that are then to be used as
inputs in the next iteration. This can lead to explosive
divergence of the algorithm. Because of the complex-
ity introduced by recursion, the numerical stability of
signal-processing algorithms is often explored through
computer simulation. There has been relatively little
theoretical work but it has led to some provably sta-
ble recursive algorithms as well as provably unstable
ones.

9 Channel Equalization

Adaptive filters find application in many situations,
such as echo cancelation, modern hearing aids, and
seismology, but most notably they are used in mod-
ern digital communications systems. Broadly speak-
ing there are two uses: system identification and sys-
tem inversion. In system identification, given a sys-
tem G(z) we seek to find a filter H(z) that minimizes
‖G(z)X(z) − H(z)X(z)‖ for some fixed signal X(z).
That is, for the given X(z), H(z) behaves like G(z). In
system inversion, we seek to find a filterH(z) that min-
imizes ‖H(z)G(z)X(z) − X(z)‖. That is, H(z) undoes
the effect of G(z). It is usual that the filter H(z) is to
be drawn from a given class of filters. Typically, the
class of FIR filters is used as this leads to tractable
algorithms, but see the discussion below on decision
feedback equalizers.

System identification is used to investigate a real-
world system by generating a model for it (the filter).
The properties of the model (the position of poles and
zeros, stability, etc.) can be used to infer the corre-
sponding properties of the system. An example of this
is system monitoring. If a set of models is generated
over time, changes in the system can be detected. Ide-
ally, deleterious changes can be detected before they
cause a catastrophic failure in the system.

System inversion is more common and is used where
the system G(z) is a physical phenomenon that has a

detrimental effect on the signal X(z) and we want to
mitigate this effect. The most common example of this
is the transmission of radio signals. The radio waves
can bounce off obstacles situated between the trans-
mitter and the receiver, resulting in the reception of
several signals each with different delays relative to
one another. As these signals are coherent, the resul-
tant summation can exhibit interference effects that
adversely affect the ability of the receiver to recover
the information in the radio signal. By incorporating an
adaptive filter in the receiver, the effects of the propa-
gation can be reduced. This is known as channel equal-
ization. There is an obvious problem with system inver-
sion: the systemG(z)may be ill-conditioned or, indeed,
it may not have an inverse. In such cases various reg-
ularization techniques can be used; e.g., replace the
least-squares problem w = arg min{‖Xw − y‖2} by a
constrained one: w = arg min{‖Xw −y‖2 : ‖w‖2 � τ}
for some threshold τ . In this case, however, the adap-
tive filter H(z) cannot completely mitigate the effects
of G(z).

A more practical issue is the accuracy with which
the system G(z) can be inverted. In general, G(z) can
have poles as well as zeros. Its inverse therefore also
has poles and zeros (see section 5). Note that even
if G(z) had only zeros, which is often the case in
practice, its inverse will have poles. This causes an
issue because most adaptive filter algorithms are based
on an FIR filter; i.e., they have only zeros. Although
some adaptive IIR filter algorithms have been devel-
oped, they have significant bounded-input bounded-
output stability issues. Here we are referring not to
numerical stability but to system stability. An IIR fil-
ter will be systematically unstable if it has poles out-
side of the unit circle. Most adaptive IIR filter algo-
rithms are unable to ensure that this does not hap-
pen. Although this is mathematically well understood,
it is very difficult to achieve in a signal-processing algo-
rithm (often the solution of simultaneous nonlinear
equations is required). Fortunately, it is possible to gen-
erate an FIR filter with a response that is arbitrarily
close to that of an IIR filter, provided the FIR filter has
sufficiently many coefficients. Thus, in practice, most
system-inversion algorithms will use an adaptive FIR
filter algorithm. A notable exception is, again, in the
case of the transmission of radio signals. Recall that
an IIR filter uses previous outputs y(n − i) to calcu-
late the current output y(n) (see section 5). It is clear
that trying to determine the filter coefficients ai and
bi is going to be difficult since we cannot calculate the
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previous outputs y(n−i) without already knowing the
filter coefficients. However, in a modern radio the sig-
nals are digital; that is, they take only discrete values,
for example ±1. Thus, if the filter coefficients ai and bi
are correct, then y(n) ∈ {±1}. When the coefficients
ai and bi are incorrect but close to the correct values,
the output of the filter y(n) will in general not be ±1
but we will find that y(n) is closer to one of the allow-
able values (i.e., ±1) than the other. If we denote the
closest allowable value by d(n), then we may assume
that y(n) = d(n) is the correct answer. Following this
procedure we can replace the feedback of the previ-
ous outputs y(n − i) by the “decisions” d(n − i), i.e.,
y(n) = ∑N

i=0 bix(n − i) +∑Mi=1 aid(n − i). The calcu-
lation of the filter coefficients ai and bi is then more
tractable. Furthermore, provided the filter coefficients
can be initialized sufficiently close to their correct val-
ues, any errors caused by incorrect “decisions” do not
seem to cause any problems. This type of adaptive IIR
filter is known as a decision-feedback equalizer.

The decision-feedback equalizer makes “hard” deci-
sions, in that d(n) ∈ {±1}. An alternative approach is
to make “soft” decisions. Here, d(n) = Q(y(n)), where
the function Q maps y(n) ∈ R to d(n) ∈ [−1,1] such
that the distance between d(n) and +1 or −1, as appro-
priate, is indicative of the “accuracy” of the decision.
A soft-decision-feedback equalizer usually works bet-
ter than a (hard-) decision-feedback equalizer. An obvi-
ous choice of the function Q is the likelihood func-

tion [V.11]. Here, one would have to make assump-
tions about the statistics of the transmitted signal and
the receiver noise. Let y(n) = b(n) + ε(n), where
b(n) ∈ [−1,1] is the correct value of the transmit-
ted signal and ε(n) ∈ R represents noise and resid-
ual errors from incorrect decisions and filter coefficient
values. An application of bayes’s theorem [V.11] then
gives P(b(n) | y(n)) ∝ P(y(n) | b(n)). The term
P(y(n) | b(n)) is easily calculated given the statis-
tics of ε(n) and is known as the likelihood function.
The use of statistical estimation techniques leads to
the field of Bayesian signal processing (see section 12).
This approach has led to very powerful algorithms such
as turbo equalization. Here, one attempts to estimate
the coefficients of an equalizer but it is done iteratively
using estimated probability density functions (pdfs) to
capture the likely statistics of the parameters.

10 Adaptive Beamforming (ABF)

Another important signal-processing operation is the
beamformer. Time-series filters (section 2) process a
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Figure 4 A schematic of an antenna array beamformer
where the elements are uniformly spaced along a straight
line. Each of the Y-shaped symbols denotes an individual
antenna. The received signals are weighted and combined
to produce the array output signal y(n).

single time series and can vary the frequency content of

the output signal. Whereas a filter performs a convolu-

tion, y(n) =∑N
i=0wix(n− i), a beamformer processes

separate signals, y(n) = ∑N
i=0wixi(n). The input sig-

nals xi(n) for a beamformer come from physically sep-

arate sensors, as illustrated in figure 4. A beamformer

can vary the content of its output signal according to

the direction of arrival of the input signals. To see this,

note that the signal picked up by each sensor from a

given source is just a delayed version of the source sig-

nal. The delay will just be the time it takes for the radio

frequency (RF) wave to travel from the source to the

sensor. A modulated RF wave at time n can be writ-

ten A(n)e−iωn, where A(n) is the signal amplitude and

ω is the angular frequency. The signal received at a

sensor is therefore A(n − d/c)e−iω(n−d/c), where d is

the distance from the source to the sensor and c is the

velocity of light in meters per sample time. If, to a good

approximation, A(n − d/c) = A(n), the RF signal is

called narrowband and the signal received by the sen-

sor is just a phase-shifted version of the source signal:

A(n)e−iωneiωd/c . The case when A(n−d/c) ≠ A(n) is

called broadband (see section 11).

In the narrowband case, the beamformer can apply

phase shifts to the signal from each sensor, via the
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wi, before summing them coherently. So, for example,
the beamformer could apply phase shifts that cancel
out the phase shifts caused by the relative propaga-
tion delays expected for a source in a given direction,
in which case any signal from that direction would be
summed constructively, leading to a large-amplitude
signal. Signals from other directions will tend to par-
tially cancel in the summation and could even sum to
zero. In fact, since the output of the beamformer is
the sum of N terms, it can be shown that there are
N − 1 directions for which the beamformer response is
exactly zero. These are known as the nulls of the beam-
former. Thus a beamformer can “filter” signals on the
basis of direction of arrival. Note that there is a require-
ment on the position of the sensors that is equivalent to
the Nyquist sampling criterion: the sensors need to be
close enough together to distinguish the highest spatial
frequency present, otherwise one gets spatial aliasing.

From the above it is clear that, for a signal from a
given direction, the vector of signals from the sensors
x(n) is proportional to a vector that is uniquely deter-
mined by the direction of arrival. This vector is known
as the steering vector a. The proportionality constant is
the instantaneous value of the transmitted signal s(n),
i.e., x(n) = s(n)a. A common architecture for a beam-
former has the sensors equidistant from each other
and in a straight line. This is known as a uniform lin-
ear array, and it is illustrated in figure 4. In this case,
the steering vectors look like sampled complex expo-
nentials: eind sin(θ)/λ, where n indexes the sensors, d
is the sensor separation, θ is the direction of arrival
of the signal, and λ is its wavelength. In such circum-
stances, the term d sin(θ)/λ is known as the spatial
frequency. Spatial frequency therefore has a sinusoidal
dependency on the direction of arrival of the signal.
In general, the steering vectors do not have this simple
structure, but references to “spatial frequency” can still
be found in the literature and, in general, beamformers
are often referred to as spatial filters. There has been
a lot of work on the design of fixed beamformers. As
might be expected, there is much commonality with the
design of fixed digital filters (see section 5). However,
the emphasis here is mostly on controlling the response
to the wanted signal (the main lobe) and on rejecting
unwanted signals (the side lobes).

Like an adaptive filter, an adaptive beamformer cal-
culates its coefficients (or “weights”) wi based on the
collected data. The mathematics is virtually identical
to that of an adaptive filter (i.e., the least-squares solu-
tion to Xw = y). Here, too, techniques such as time

recursion (see section 8) are used to reduce the com-
putation required, but the data matrix X is no longer
Toeplitz, so there are no “fast” ABF algorithms. Another
difference is the expected signal content. In an adap-
tive filter scenario one usually sees a significant (con-
tiguous) range of frequencies present in the signal. In
a beamforming application, one expects to see only a
few discrete directions of arrival present. This leads to
some algorithms that are specific to the beamforming
application.

In some situations, the spectrum of the data covari-
ance matrix X∗X will break into two distinct sets: a set
of large eigenvalues and a set of small ones. The large
eigenvalues, or, more specifically, the associated eigen-
vectors, correspond to a subspace that contains infor-
mation about the signals, while the small eigenvalues
correspond to noise. This allows, for example, the noise
to be rejected by means of an orthogonal projection of
the data onto the “signal” subspace. This technique is
in fact an example of principal-component analy-

sis [IV.17 §4] (PCA). In addition, by identifying those
steering vectors that are orthogonal to the “noise” sub-
space, estimates of the direction of arrival of the sig-
nals can be obtained. This is the basis of the MUSIC
direction-of-arrival estimation algorithm.

In the above example, the eigenvectors correspond-
ing to the largest eigenvalues span a subspace that
contains the signals. Note, however, that the eigenvec-
tors do not correspond to steering vectors and fur-
ther processing is required to separate the signals from
one another. A simple approach is to set up a con-
strained least-squares problem: w = arg min{‖Xw −
y‖ : w∗c = 1}. Here, c is chosen so that the response
of the beamformer to a signal from a given direction
is unity; i.e., for an input signal with steering vector a,
x = s(n)a, we want w∗x = s(n) so that w∗a = 1 and
hence c = a. By trying all directions of arrival (or at
least a finite set), the individual signals can be recov-
ered. This technique is known as minimum-variance
distortionless-response (MVDR) beamforming. Note that
an MVDR beamformer is a mixture of an adaptive beam-
former (the least-squares minimization) and a fixed
one (the constraint). It is often advantageous to extend
this concept and add further constraints to control
other features of the beampattern, e.g., a derivative con-
straint to control the width of the main lobe in the
desired “look direction.” One issue with MVDR beam-
forming is inaccuracies in the steering vectors either
due to practical issues (e.g., calibration measurements)
or due to the finite search set. If the steering vector is
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not accurate, then the least-squares minimization can
adjust the beampattern to remove the desired signal.
Various approaches to mitigating this effect have been
investigated, the gradient constraint mentioned above
being one of them.

An alternative, non-search-based, technique for re-
covering the signals is based on independent-compo-
nent analysis (ICA). This is an extension of PCA. If we
write X = SA, where S is a matrix of signal time series
and A is a matrix of steering vectors, it can be shown
that PCA results in a set of orthonormal basis vectors
Y = SQ, whereQ is a unitary matrix. If the signals S are
not Gaussian, then S can be recovered from Y by find-
ing a unitary transformation U that makes the columns
of YU statistically independent (U = QP , where P is a
permutation matrix). ICA is also known as blind signal
separation since the matrix of steering vectors A is not
known a priori.

11 Broadband ABF and Multichannel Filtering

We have seen that temporal filtering and spatial fil-
tering are useful practical operations. In some appli-
cations it is necessary to apply both forms of filter-
ing simultaneously, i.e., joint temporal and spatial fil-
tering. Examples of this are sonar, space-time adaptive
processing (STAP) radar, and multiple-input multiple-
output communications. The rationale for using both
forms of filtering is the need to control the frequency
content of the signal as well as its direction of arrival.
This technique is called broadband beamforming by
people familiar with conventional beamforming. This
is because beamforming relies on applying time delays
to the received signals. In conventional beamforming,
the signals have narrow bandwidths and time delays
are equivalent to phase shifts. When the signals are
broadband, interpolation filters are required to imple-
ment time delays that are not integer multiples of the
sample period (see section 1). Therefore, instead of
the beamformer output being y(n) = ∑N

i=0wixi(n),
the products wixi(n) are replaced by filters: y(n) =∑N
i=0

∑M
j=0wijxi(n − j). The oldest example of broad-

band ABF is found in passive sonar. Here, acous-
tic underwater signals are detected using arrays of
hydrophones. Those familiar with time series filtering
refer to joint temporal and spatial filtering as multi-
channel filtering. A multichannel filter is the same as
the (scalar-valued) filter outlined in section 7 but with
vector-valued time series instead.

Another example of broadband ABF is STAP radar,
which is effectively a combination of a phased-array

radar and a pulse-Doppler radar. As we have seen, the
former radar is able to separate the radar echoes based
on their direction of arrival. The latter can separate
the radar echoes based on the velocity of the reflector
(i.e., aircraft) by exploiting the Doppler effect. The radar
echo from a moving aircraft will be Doppler shifted
by virtue of its motion. This frequency shift can be
detected by sending out multiple radar pulses and pro-
cessing the resulting echoes as a time series. A fre-
quency filter can then separate the echoes based on the
velocity of the aircraft. One advantage of pulse-Doppler
radar is that the echo from a low-flying aircraft can be
separated from that due to reflectors on the ground
since either the latter will be stationary or it will be mov-
ing very slowly with respect to the aircraft. By combin-
ing ABF and pulse-Doppler processing, STAP radar can
separate the echoes based on both direction of arrival
and velocity. In effect, it creates a two-dimensional fil-
ter in a space with direction of arrival on one axis and
velocity on the other.

The standard approach to processing “space-time”
data is to use the FFT to transform the data into a
time–frequency space and then process each frequency
slice separately using standard spatial algorithms. This
has the advantage of computational efficiency as there
is a “dimensionality curse” associated with moving
from one dimension to two. The use of the FFT, which
is computationally efficient, being O(N logN), trans-
forms the two-dimensional problem to multiple one-
dimensional ones. However, strictly speaking, the one-
dimensional problems are not independent, and treat-
ing them as such incurs an approximation error. For-
tunately, this error tends to reduce as the order of the
FFT increases. An alternative approach to overcoming
the dimensionality curse is to attempt to exploit the
structure of the problem (see the discussion of fast
adaptive filters in section 8). In the case of ABF, the
data matrix is “block Toeplitz” rather than Toeplitz,
but a similar computational reduction can nevertheless
be obtained by exploiting related multichannel forward
and backward linear prediction problems.

A more recent approach to this problem involves a
generalization of matrix algorithms over the complex
field to related algorithms over the ring of polynomials.
In this context, a polynomial matrix (PM) A

¯
(z) ∈ C

¯
n×m

is simply an n ×m matrix whose elements are poly-
nomials over C. A

¯
(z) represents an n ×m FIR filter

and corresponds to its z-transform, except that it is
treated as a polynomial in the indeterminate variable
z−1 rather than a function of z to be evaluated at a
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point in the complex plane. The paraconjugate of a PM
A
¯
(z) ∈ C

¯
n×m is denoted by Ã

¯
(z) = A

¯
T
∗(1/z), where

the asterisk denotes complex conjugation of the poly-
nomial coefficients. A parasymmetric PMM

¯
(z) ∈ C

¯
n×n

is one that satisfies M
¯
(z) = M̃

¯
(z), while a paraunitary

PMH
¯
(z) ∈ C

¯
n×n (which corresponds to a multichannel

allpass filter) satisfies H
¯
(z)H̃

¯
(z) = H̃

¯
(z)H

¯
(z) = I. As

usual, I denotes the unit matrix.

Algorithms have recently been developed for approx-
imating the eigenvalue decomposition (EVD), the sin-

gular-value decomposition [II.32] (SVD), and the QR
decomposition of polynomial matrices. For example,
the EVD of a parasymmetric PM M

¯
(z) ∈ C

¯
n×n (this is

a polynomial eigenvalue decomposition (PEVD)) can be
computed as H

¯
(z)M

¯
(z)H̃

¯
(z) � D

¯
(z), where H

¯
(z) ∈

C
¯
n×n is paraunitary and D

¯
(z) ∈ C

¯
n×n is diagonal. The

exact decomposition does not exist for H
¯
(z) ∈ C

¯
n×n,

but the PM solution can lie arbitrarily close to a cor-
responding matrix of continuous functions for which
it does exist. The PEVD defined above is clearly a gen-
eralization of the conventional matrix EVD to which it
reduces for a PM of order zero. Just as the matrix EVD
(or SVD) plays a fundamental role in the separation of
signal and noise subspaces for narrowband ABF, so the
PEVD (or polynomial SVD) may be used in broadband
ABF. However, the range of potential applications for
PM decomposition techniques in general is very much
wider.

12 Bayesian Signal Processing/
Parameter Estimation

There are two main approaches to developing signal-
processing algorithms: deterministic and statistical.
The algorithms for adaptive filtering and ABF given
above are deterministic, in the sense that we obtain a
set of parameters (e.g., filter coefficients or beamformer
weights) by solving a least-squares minimization prob-
lem. These algorithms can, however, be seen as spe-
cial cases of more general parameter-estimation algo-
rithms. The filter coefficients and beamformer weights
can be seen as parameters that are to be estimated
from the received data. Furthermore, when these esti-
mated parameters are used in a filter or beamformer,
one obtains an estimate of some signal of interest. For
example, the MVDR beamformer recovers an estimate
of the signal at a given location.

In general, parameter estimation is seen as a statis-
tical estimation problem. The least-squares algorithms
result when one has a linear problem with Gaussian

noise. The most popular signal-processing approach
to parameter estimation is based on bayes’s theorem

[V.11]. If a variable x is dependent on a parameter θ,
then P(θ | x) ∝ P(x | θ)P(θ). The pdf P(x | θ) is
known, since it comes from the physics of the situation,
and it encodes the dependency that x has on θ. Thus,
on receipt of the measurement x, the a priori pdf P(θ)
can be updated to the a posteriori pdf P(θ | x) merely
by multiplying the former by P(x | θ) (known as the
likelihood function). However, such a product will gener-
ally not have a closed-form expression. An exception to
this rule is linear problems where the noise is Gaussian.
In this case all variables are Gaussian and closed-form
expressions for the means and variances are easy to
find. In general, however, the pdfs have be represented
in some computationally tractable form. One option
is to model an arbitrary pdf as the sum of Gaussians
(known as a Gaussian mixture). Another is to model
the pdf by a discrete probability distribution. The lat-
ter approach is known as particle filtering. These mod-
eling techniques are powerful as they allow nonlinear
and non-Gaussian problems to be tackled. However, as
with any modeling problem, there are issues to do with
parameter choice, e.g., the number of Gaussians in the
mixture, and the number of bins in the discrete-valued
distribution. A particularly important issue is loss of
resolution. Bayes’s theorem required us to multiply the
a priori pdf by the likelihood function. If the modeled
a priori pdf has a zero value for some value of the vari-
able, then the a posteriori pdf will also have a zero
value for this value. Techniques are therefore needed to
ensure that the modeled pdf has a zero value only when
this is justified by the data. Note that these modeling
approaches tend to require more computation than an
algorithm based on closed-form expressions.

An important signal-processing area that is related to
parameter estimation is detection theory. Here, we wish
to decide if an event has taken place based on an obser-
vation. An example of this is the detection of aircraft
using radar: the signal received by the radar could con-
sist of the echo from the aircraft plus noise or it could
just be noise. What is required is some optimal test that
can confirm the presence of the aircraft. Typically, the
radar signal is compared with a threshold. If the signal
exceeds the threshold, then the aircraft is said to have
been detected. Clearly, there could be false detection
(false positives) and missed detection (false negatives).
Detection theory uses statistical arguments to calculate
the threshold with given properties such as a constant
false alarm rate.
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13 Tracking

As mentioned in the previous section, adaptive filters

and beamformers can be seen as devices for estimating

unknown parameters. In this case, however, the param-

eters are constants. If the unknown parameters are time

varying, the problem is one of tracking.

Since the estimation of N parameters requires at

least N pieces of data, it is not possible to estimate

more than one arbitrary time-varying parameter from

a single time series. It is therefore conventional to

assume that the parameters evolve in a known man-

ner; for example, θ(n) = F(θ(n− 1) | Φ), where Φ are

(known) parameters of the function F . Given this model

for the time evolution of the parameter, it is then pos-

sible to formulate a parameter-estimation algorithm.

As with adaptive filtering and beamforming, one can

take a deterministic (i.e., least-squares) approach or a

Bayesian approach. In the former case one ends up with

the well-known Kalman filter, which is optimum for lin-

ear systems and Gaussian noise. In the latter case one

ends up with a more powerful algorithm but with the

computational issues mentioned above.
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IV.36 Information Theory
Sergio Verdú

1 “A Mathematical Theory of Communication”

Rarely does a scientific discipline owe its existence to
a single paper. Authored in 1948 by Claude Shannon
(1916–2001), “A mathematical theory of communica-
tion” is the Magna Carta of the information age and
information theory’s big bang. Using the tools of prob-
ability theory, it formulates the central optimization
problems in data compression and transmission, and
finds the best achievable performance in terms of the
statistical description of the information sources and
communication channels by way of information mea-
sures such as entropy and mutual information. After
a glimpse at the state of the art as it was in 1948, we
elaborate on the scope of Shannon’s masterpiece in the
rest of this section.

1.1 Communication Theory before the Big Bang

Motivated by the improvement in telegraphy trans-
mission rate that could be achieved by replacing the
Morse code by an optimum code, both Nyquist (1924)
and Hartley (1928) recognized the need for a measure
of information devoid of “psychological factors” and
put forward the logarithm of the number of choices
as a plausible alternative. Küpfmüller (1924), Nyquist
(1928), and Kotel’nikov (1933) studied the maximum
telegraph signaling speed sustainable by band-limited
linear systems at a time when Fourier analysis of sig-
nals was already a standard tool in communication
engineering. Inspired by the telegraph studies, Hart-
ley put forward the notion that the “capacity of a
system to carry information” is proportional to the
time–bandwidth product, a notion further elaborated
by Gabor (1946). However, those authors failed to grap-
ple with the random nature of both noise and the
information-carrying signals. At the same time, the idea
of using mathematics to design linear filters for com-
batting additive noise optimally had been put to use
by Kolmogorov (1941) and Wiener (1942) for minimum
mean-square error estimation and by North (1943) for
the detection of radar pulses.

Communication systems such as FM and PCM in the
1930s and spread spectrum in the 1940s had opened
up the practical possibility of using transmission band-
width as a design parameter that could be traded off for
reproduction fidelity and robustness against noise.
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1.2 The Medium

In the title of Shannon’s paper, “communication” refers
to

• communication across space, namely, informa-
tion-transmission systems like radio and televi-
sion broadcasting, telephone wires, coaxial cables,
optical fibers, microwave links, and wireless tele-
phony; and

• communication across time, namely, information-
storage systems, which typically employ magnetic
(tape and disks), optical (CD, DVD, and BD), and
semiconductor (volatile and flash) media.

Although, at some level, all transmission and storage
media involve physical continuously variable analog
quantities, it is useful to model certain media such
as optical disks, computer memory, or the Internet as
digital media that transmit or record digital signals
(zeros/ones or data packets) with a certain reliability
level.

1.3 The Message

The message to be stored or transmitted may be

• analog (such as sensor readings, audio, images,
video, or, in general, any message intended for the
human ear/eye) or

• digital (such as text, software, or data files).

An important difference between analog and digital
messages is that, since noise is unavoidable in both
sensing and transmission, it is impossible to recon-
struct exactly the original analog message from the
recorded or transmitted information. Lossy reproduc-
tion of analog messages is therefore inevitable. Even
when, as is increasingly the case, sensors of analog
signals output quantized information, it is often con-
ceptually advantageous to treat those signals as analog
messages.

1.4 The Coat of Arms

Shannon’s theory is a paragon of e pluribus unum.
Indeed, despite the myriad and diversity of commu-
nication systems encompassed by information theory,
its key ideas and principles are all embracing and are
applicable to any of them.

Reproduced from Shannon’s paper, figure 1 encom-
passes most cases (see section 9) of communication

Information
source

Message

Transmitter

Signal Received
signal

Receiver Destination

Message

Noise
source

Figure 1 A schematic of a general communication system
(this is figure 1 in “A mathematical theory of communica-
tion”).

across time or space between one sender and one
destination.

The purpose of the encoder (or transmitter, in fig-
ure 1) is to translate the message into a signal suit-
able for the transmission or storage medium. Con-
versely, the decoder (or receiver, in figure 1) converts
the received signal into an exact or approximate replica
of the original message.

The communication medium that connects the trans-
mitter to the receiver is referred to as the channel.
Several notable examples, classified according to the
various combinations of the nature of message and
medium, are listed below.

Analog message, analog medium. Radio broadcasting
and long-distance telephony were the primary appli-
cations of the first analog modulation systems, such
as AM, SSB, and FM, developed in the early twenti-
eth century. With messages intended for the ear/eye
and the radio frequency spectrum as the medium,
all current systems for radio and television (wireless)
broadcasting are also examples of this case. However,
in most modern systems (such as DAB and HDTV) the
transmitter and receiver perform an internal inter-
mediate conversion to digital, for reasons that are
discussed in section 4.

Analog message, digital medium. This classification
includes the audio compact disc, MP3, DVD, and
Voice over Internet Protocol (VoIP). So “digital audio”
or “digital video” refers to the medium rather than
the message.

Digital message, analog medium. The earliest exam-
ples of optical and electrical systems for the trans-
mission of digital information were the wired tele-
graph systems invented in the first half of the nine-
teenth century, while the second half of the cen-
tury saw the advent of Marconi’s wireless telegraph.
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Encoder Decoder
001011011101

Figure 2 A data-compression system.

Other examples developed prior to 1948 include tele-

type, fax, and spread spectrum. The last four decades

of the twentieth century saw the development of

increasingly fast general-purpose modems to trans-

mit bit streams through analog media such as the

voice-band telephone channel and radio frequency

bands. Currently, modems that use optical, DSL, and

CATV media to access the Internet are ubiquitous.

Digital message, digital medium. This classification

includes data storage in an optical disk or flash

memory.

Whether one is dealing with messages, channel

inputs, or channel outputs, Shannon recognized that

it is mathematically advantageous to view continuous-

time analog signals as living in a finite-dimensional vec-

tor space. The simplest example is a real-valued signal

of bandwidth B and (approximate) duration T , which

can be viewed as a point in the Euclidean space of

dimension 2BT . To that end, Shannon gave a particu-

larly crisp version of the sampling theorem, precursors

of which had been described by E. Whittaker (1915),

J. Whittaker (1929), and Kotelnikov (1933), who discov-

ered how to interpolate losslessly the sampled values

of band-limited functions.

Three special cases of figure 1, dealt with in each of

the next three sections, merit particular attention.

2 Lossless Compression

Although communication across time or space is al-

ways subject to errors or failures, it is useful to con-

sider the idealized special case of figure 1 shown in

figure 2, in which there is no channel and the input to

the decoder is a digital sequence equal to the encoder

output. This setup, also known as source coding, mod-

els the paradigm of compression in which the encoder

acts as the compressor and the decoder acts as the

decompressor. The task of the encoder is to remove

redundancy from the message, which can be recov-

ered exactly or approximately at the decoder from the

compressed data itself.

Lossless, or reversible, conversion is possible only if

the message is digital. Morse, Huffman, TIFF, and PDF

are examples of lossless compression systems, where

Encoder Decoder001011 001011Channel

Figure 3 A data-transmission system.

message redundancy (unequal likelihoods of the vari-
ous choices) is exploited to compact the data by assign-
ing shorter binary strings to more likely messages. As
we discuss more precisely in section 6, the goal is to
obtain a compression/decompression algorithm that
generates, on average, the shortest encoded version of
the message.

If the source is stationary, universal data compres-
sors exploit its redundancy without prior knowledge
of its probabilistic law. Found in every computer oper-
ating system (e.g., ZIP), the most widely used universal
data compressors were developed by Lempel and Ziv
between 1976 and 1978.

3 Lossy Compression

Depending on the nature of the message, we can dis-
tinguish two types of lossy compression.

Analog-to-digital. Early examples of analog-to-digital
coding (such as the vocoder and pulse-code modula-
tion (PCM)) were developed in the 1930s. The vocoder
was the precursor to the speech encoders used in cel-
lular telephony and in VoIP, while PCM remains in
widespread use in telephony and in the audio com-
pact disc. The conceptually simplest analog-to-digital
compressor, used in PCM, is the scalar quantizer,
which partitions the real line in 2k segments, each of
which is assigned a unique k-bit label. jpeg [VII.7 §5]
and MPEG are contemporary examples of lossy com-
pressors for images and audio/video, respectively.
Even if the inputs to those algorithms are finite-
precision numbers, their signal processing treats
them as real numbers.

Digital-to-digital. Even in the case of digital messages,
one may be willing to tolerate a certain loss of infor-
mation for the sake of economy of transmission
time or storage space (e.g., when emailing a digital
image or when transmitting the analog-to-digitally
compressed version of a sensor reading).

4 Data Transmission

Figure 3 depicts the paradigm, also known as channel
coding, in which the message input to the encoder is
incompressible or nonredundant, in the sense that it
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is chosen equiprobably from a finite set of alternatives
(such as fair coin flips or “pure” bits, i.e., independent
binary digits equally likely to be 0 or 1). The task of
the encoder is to add redundancy to the message in
order to protect it from channel noise and facilitate its
recovery by the decoder from the noisy channel out-
put. In general, this is done by assigning codewords to
each possible message, which are different enough to
be distinguishable at the decoder as long as the noise
is not too severe. For example, in the case of a digi-
tal medium the encoder may use an error-correcting
code that appends redundant bits to the binary mes-
sage string. In the case of an analog medium such as a
telephone channel, the codewords are continuous-time
waveforms. Based on the statistical knowledge of the
channel and the codebook (assignment of messages to
codewords) used by the encoder, the decoder makes an
intelligent guess about the transmitted message.

Remarkably, Shannon predicted the performance of
the best possible codes at a time when very few error-
correcting codes were known. Hamming, a coworker
at Bell Laboratories, had just invented his namesake
code (see applied combinatorics and graph theory

[IV.37 §4]) that appends three parity-check bits to every
block of four information bits in a way that makes all
sixteen codewords differ from each other in at least
three positions. Therefore, the decoder can correct any
single error affecting every encoded block of seven
bits.

5 Compression/Transmission

Figure 4 illustrates another special case of figure 1 in
which the transmitter consists of the source encoder,
or compressor, followed by the channel encoder, and
the receiver consists of the channel decoder followed
by the source decoder, or decompressor. This archi-
tecture capitalizes on the solutions found in the spe-
cial cases in sections 2, 3, and 4. To that end, in
the scheme shown in figure 4 the interfaces between
source and channel encoders, and between channel
and source decoders, are digital regardless of the mes-
sage or medium. Inspired by the teachings of informa-
tion theory, in which the bit emerges as the univer-
sal currency, the modular design in figure 4 is preva-
lent in most modern systems for the transmission
of analog messages through either digital or analog
media. It allows the source encoding/decoding system
to be tailored particularly to the message, disregarding
the nature of the channel. Analogously, it allows the

Source encoder

Channel encoder

Channel

Channel decoder

Source decoder

Figure 4 A separate compression/transmission system.

channel encoding/decoding system to be focused on
the reliable transmission of nonredundant bits by com-
batting the channel noise disregarding the nature of
the original message. In this setup, the source encoder
removes redundancy from the message in a way that
is tuned to the information source, while the channel
encoder adds redundancy in a way that is tuned to the
channel. Under widely applicable sufficient conditions,
such modular design is asymptotically optimal (in the
sense of section 6) in the limit in which the length of
the message goes to infinity and when both source and
channel operate in the ergodic regime.

6 Performance Measures

The basic performance measures depend on the type
of system under consideration.

Lossless compression. The compression rate (in bits
per symbol) is the ratio of encoded bits to the number
of symbols in the digital message.

Lossy compression. The quality of reproduction is
measured by a distortion function of the original and
reproduced signals, e.g., in the case of analog signals,
the mean-square error (energy of the difference sig-
nal), and in the case of binary messages, the bit error
rate. The rate (in bits per second, or per symbol) of
a lossy compression system is the ratio of encoded
bits to the duration of the message.

Data transmission. For a given channel and assuming
that the message is incompressible, the performance
of a data-transmission system is determined by the
rate and the error probability. The rate (in bits per
second, or per symbol) is the ratio of message dura-
tion to the time it takes to send it through the chan-
nel. Depending on the application, the reliability of
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the transmission is measured by the bit error rate or
by the probability that the entire message is decoded
correctly.

Joint compression/transmission. In the general case,
the rate is measured as in the data-transmission case,
with reliability measured either by a distortion mea-
sure or by the probability that the entire message is
decoded correctly, depending on the nature of the
message and the application.

7 Fundamental Limits

Instead of delving into the analysis and design of
specific transmission systems or codes, the essence
of Shannon’s mathematical theory is to explore the
best performance that an optimum encoder/decoder
system (simply referred to as the code) can achieve.
Information theory obtains fundamental limits with-
out actually deriving the optimal codes, which are
often unknown. For the three problems formulated by
Shannon, the fundamental limits are as follows.

Lossless compression: the minimum achievable com-
pression rate.

Lossy compression: the rate-distortion function, which
is the minimum compression rate achievable as a
function of the allowed average level of distortion.

Data transmission: the channel capacity, defined as
the maximum transmission rate compatible with van-
ishing error probability. Capacity is often given in
terms of channel parameters such as transmitted
power. Before Shannon’s paper, the common wisdom
was that vanishing error probability would necessar-
ily entail vanishing rate of information transmission.

The fundamental limits are very useful to the engi-
neer because they offer a comparison of the perfor-
mance of any given system with that ultimately achiev-
able. Although, in Shannon’s formulation, the growth of
computational complexity as a function of the message
size is not constrained in any way, decades of research
on the constructive side of compression and transmis-
sion have yielded algorithms that can approach the
Shannon limits with linear complexity. Often, informa-
tion theory leads to valuable engineering conclusions
that reveal that simple (or modular) solutions may per-
form at or near optimum levels. For example, as we
mentioned, there is no loss in achievable performance
if one follows the principle of separate compression/
transmission depicted in figure 4. Fundamental limits
can be, and often are, used to sidestep the need for

cumbersome analysis in order to debunk performance
claims made for a given system.

The fundamental limits turn out to depend crucially
on the duration of the message. Since Shannon’s 1948
paper, information theory has focused primarily, but
not exclusively, on the fundamental limits in the regime
of asymptotically long messages. By their very nature,
the fundamental limits for a given source or channel
are not technology dependent, and they do not become
obsolete with improvements in hardware/software. On
the contrary, technological advances pave the way
for the design of coding systems that approach the
ideal fundamental limits increasingly closely. Although
the optimum compression and transmission systems
are usually unknown, the methods of proof of the
fundamental limits often suggest features that near-
optimum practical communication systems ought to
have, thereby offering design guidelines to approach
the fundamental limits. Shannon’s original proof of his
channel coding theorem was one of the first nontrivial
instances of the probabilistic method, now widely used
in discrete mathematics; to show the existence of an
object that satisfies a certain property it is enough to
find a probability distribution on the set of all objects
such that those satisfying the property have nonzero
probability. In his proof, Shannon computed an upper
bound to the error probability averaged with respect
to an adequately chosen distribution on the set of all
codes; at least one code must have error probability not
exceeding the bound.

8 Information Measures

The fundamental performance limits turn out to be
given in terms of so-called information measures,
which have units such as bits. In this section we list
the three most important information measures.

Entropy: a measure of the randomness of a discrete
distribution PX defined on a finite or countably infi-
nite alphabet A, defined as

H(X) =
∑
a∈A

PX(a) log
(

1
PX(a)

)
.

In the limit as n → ∞, a stationary ergodic random
source (X1, . . . , Xn) can be losslessly encoded at its
entropy rate

lim
n→∞

1
n
H(X1, . . . , Xn),

a limit that is easy to compute in the case of Markov
chains. In the simplest case, asymptotically, n flips
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of a coin with bias p can be compressed losslessly at

any rate exceeding h(p) bits per coin flip with

h(p) = p log
1
p

+ (1 − p) log
(

1
1 − p

)
,

which is the entropy of the biased coin source. The

ubiquitous linear-time Lempel–Ziv universal data-

compression algorithms are able to achieve, asymp-

totically, the entropy rate of ergodic stationary

sources. Therefore, at least in the long run, univer-

sality incurs no penalty.

Relative entropy: a measure of the dissimilarity be-

tween two distributions P andQ defined on the same

measurable space (A,F), defined as

D(P‖Q) =
∫

log
(

dP
dQ

)
dP.

Relative entropy plays a central role not only in infor-

mation theory but also in the analysis of the ability to

discriminate between data models, and in particular

in large-deviation results, which explore the exponen-

tial decrease (in the number of observations) of the

probability of very unlikely events. Specifically, if n
independent data samples are generated with prob-

ability distribution Q, the probability that they will

appear to be generated from a distribution in some

class P behaves as

exp
(
−n inf

P∈P
D(P‖Q)

)
.

Relative entropy was introduced by Kullback and

Leibler in 1951 with the primary goal of extending

Shannon’s measure of information to nondiscrete

cases.

Mutual information: a measure of the dependence

between two (not necessarily discrete) random vari-

ables X and Y given by the relative entropy between

the joint measure and the product of the marginal

measures:

I(X;Y) = D(PXY‖PX × PY ).
Note that I(X;X) = H(X) if X is discrete.

For stationary channels that behave ergodically, the

channel capacity is given by

C = lim
n→∞

1
n

max I(X1, . . . , Xn;Y1, . . . , Yn),

where the maximum is over all joint distributions

of (X1, . . . , Xn), and (Y1, . . . , Yn) are the channel

responses to (X1, . . . , Xn). If the channel is stationary

memoryless, then the formula boils down to

C = max I(X;Y).

The capacity of a channel that erases a fraction δ of

the codeword symbols (drawn from an alphabet A)

is

C = (1 − δ) log |A|,

as long as the location of the erased symbols is

known to the decoder and the nonerased symbols

are received error free. In the case of a binary channel

that introduces errors independently with probabil-

ity δ, the capacity is given by

C = 1 − h(δ),

while in the case of a continuous-time additive Gauss-

ian noise channel with bandwidth B, transmission

power P , and noise strength N , the capacity is

C = B log
(

1 + P
BN

)
bits per second,

a formula that dispels the pre-1948 notion that the

information-carrying capacity of a communication

channel is proportional to its bandwidth and that is

reminiscent of the fact that in a cellular phone the

stronger the received signal the faster the download.

In lossy data compression of a stationary ergodic

source (X1, X2, . . . ), the rate compatible with a given

per-sample distortion level d under a distortion mea-

sure d : A2 → [0,∞] is given by

R(d) = lim
n→∞

1
n

min I(X1, . . . , Xn;Y1, . . . , Yn),

where the minimum is taken over the joint distribu-

tion of source Xn and reproduction Yn, with given

PXn , and such that

1
n

n∑
i=1

d(Xi, Yi) � d.

For stationary memoryless sources, just as for capac-

ity we obtain a “single-letter” expression R(d) =
min I(X;Y).

It should be emphasized that the central concern

of information theory is not the definition of infor-

mation measures but the theorems that use them to

describe the fundamental limits of compression and

transmission. However, it is rewarding that entropy,

mutual information, and relative information, as well

as other related measures, have found applications in

many fields beyond communication theory, including

probability theory, statistical inference, ergodic theory,

computer science, physics, economics, life sciences,

and linguistics.
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9 Beyond Figure 1

Work on the basic paradigm in figure 1 continues to
this day, not only to tackle source and channel models
inspired by new applications and technologies but in
furthering the basic understanding of the capabilities
of coding systems, particularly in the nonasymptotic
regime. However, in order to analyze models of interest
in practice, many different setups have been studied
since 1948 that go beyond the original. We list a few of
the ones that have received the most attention.

Feedback. A common feature of many communication
links is the availability of another communication
channel from receiver to transmitter. In what way
can knowledge of the channel output aid the trans-
mitter in a more efficient selection of codewords?
In 1956 Shannon showed that, in the absence of
channel memory, capacity does not increase even
if the encoder knows the channel output instanta-
neously and noiselessly. Nevertheless, feedback can
be quite useful to improve transmission rate in the
nonasymptotic regime and in the presence of channel
memory.

Separate compression of dependent sources of infor-
mation. Suppose that there is one decompressor that
receives the encoded versions of several sources pro-
duced by individual compressors. If, instead, a single
compressor had access to all the sources, it could
exploit the statistical dependence among them to
encode at a rate equal to the overall entropy. Sur-
prisingly, in 1973 Slepian and Wolf showed that even
in the completely decentralized setup the sum of
the encoded rates can be as low as in the central-
ized setting and still the decompressor is able to cor-
rectly decode with probability approaching 1. In the
lossy setting the corresponding problem is not yet
completely solved.

Multiple-access channel. If, as in the case of a cellular
wireless telephony system, a single receiver obtains
a signal with mutually interfering encoded streams
produced by several transmitters, there is a trade-off
among the achievable rates. The channel capacity is
no longer a scalar but a capacity region.

Interference channel. As in the case of a wired tele-
phone system subject to crosstalk, in this model
there is a receiver for each transmitter, and the signal
it receives not only contains the information trans-
mitted by the desired user but is contaminated by
the signals of all other users. It does not reduce to
a special case of the multiple-access setup because

each receiver is required to decode reliably only the
message of its desired user.

Broadcast channel. A single transmitter sends a code-
word, which is received by several geographically
separated receivers. Each receiver is therefore con-
nected to the transmitter by a different communica-
tion channel, but all those channels share the same
input. If the broadcaster intends to send different
messages to the various destinations, there is again
a trade-off among the achievable rates.

Relay channel. The receiver obtains both a signal from
the transmitter and a signal from a relay, which
itself is allowed to process the signal it receives from
the transmitter in any way it wants. In particular,
the relay need not be able to fully understand the
message sent by the transmitter.

Inspired by various information technologies, a num-
ber of information-theoretic problems have arisen that
go beyond issues of eliminating redundancy (for com-
pression) or adding redundancy (for transmission in
the presence of noise). Some examples follow.

Secrecy. Simultaneously with communication theory,
Shannon established the basic mathematical theory
of cryptography and showed that iron-clad privacy
requires that the length of the encryption key be
as long as that of the message. Most modern cryp-
tographic algorithms do not provide that level of
security; they rely on the fact that certain compu-
tational problems, such as integer factorization, are
believed to be inherently hard. A provable level of
security is available using an information-theoretic
approach pioneered by Wyner (1975), which guar-
antees that the eavesdropper obtains a negligible
amount of information about the message.

Random number generation for system simulation.

Random processes with prescribed distributions can
be generated by a deterministic algorithm driven by a
source of random bits. A key quantity that quantifies
the “complexity” of the generated random process is
the minimal rate of the source of random bits neces-
sary to accomplish the task. The resolvability of a sys-
tem is defined as the minimal randomness required
to generate any desired input so that the output dis-
tributions are approximated with arbitrary accuracy.
In 1993 Han and Verdú showed that the resolvability
of a system is equal to its channel capacity.

Minimum description length. In the 1960s Kolmogo-
rov and others took a nonprobabilistic approach to
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the compression of a message, which, like universal
lossless compression, uses no prior knowledge: the
algorithmic complexity of the message is the length
of the shortest program that will output the message.
Although this notion is useful only asymptotically,
it has important links with information theory and
has had an impact in statistical inference, primarily
through the minimum description length statistical
modeling principle put forward by Rissanen in 1978:
the message is compressed according to a certain
distribution, which is chosen from a predetermined
model class and is also communicated to the decom-
pressor. The distribution is chosen so that the sum
of the lengths of its description and the compressed
version of the message are minimized.

Inequalities and convex analysis. A principle satis-
fied by information measures is that processing can-
not increase either the dependence between input
and output as measured by mutual information or
the relative entropy between any pair of distribu-
tions governing the input of the processor. Mathe-
matically, the nonnegativity of relative entropy and
those data processing principles are translated into
convex inequalities, which have been used success-
fully in the rederivation of various inequalities, such
as those of Hadamard and Brunn–Minkowski, and in
the discovery of new inequalities.

Portfolio theory. One possible approach to portfolio

selection [V.10] (for a given number of stocks) is to
choose the log-optimal portfolio, which maximizes
the asymptotic appreciation growth rate. When their
distribution is known, a simplistic model of indepen-
dent identically distributed stock prices leads to lim-
iting results with a strong information-theoretic fla-
vor. Just as in data compression, under assumptions
of stationarity and ergodicity, it is possible to deal
with more realistic scenarios in which the distribu-
tion is not known a priori and the stock prices are
interdependent.

Identification. Suppose that the transmitter sends the
identity of an addressee to a multitude of possible
users. Each user is interested only in finding out
whether it is indeed the addressee or not. Allowing,
as usual, a certain error probability, this setup can
be captured as in figure 1, except that the decoder is
free to declare a list of several messages (addresses)
to be simultaneously “true.” Each user simply checks
whether its identity is in the list or not. How many
messages can be transmitted while guaranteeing van-
ishing probability of erroneous information? The

surprising answer found by Ahlswede and Dueck in
1989 is that the number of addresses grows dou-
bly exponentially with the number of channel uses.
Moreover, the second-order exponent is equal to the
channel capacity.

Finally, we mention the discipline of quantum infor-
mation theory, which deals with the counterparts of
the fundamental limits discussed above for quantum
mechanical models of sources and channels. Probabil-
ity measures, conditional probabilities, and bits trans-
late into density matrices, self-adjoint linear operators,
and qubits. The quantum channel coding theorem was
proved by Holevo in 1973, while the quantum source
coding theorem was proved by Schumacher in 1995.
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IV.37 Applied Combinatorics and
Graph Theory
Peter Winkler

1 Introduction

Combinatorics and graph theory are the cornerstones
of discrete mathematics, which has seen an explosion
of activity since the middle of the twentieth century.
The main reason for this explosion is the plethora of
applications in a world where digital (as opposed to
analog) computing has become the norm. Once consid-
ered more “recreational” than serious, combinatorics
and graph theory now boast many fundamental and
useful results, adding up to a cogent theory. Our objec-
tive here is to present the most elementary of these
results in a format useful to those who may run into
combinatorial problems in applications but have not
studied combinatorics or graph theory.

Accordingly, we will begin each section with a (not
necessarily serious, but representative) problem, intro-
ducing the basic techniques, algorithms, and theorems
of combinatorics and graph theory in response.

We will assume basic familiarity with mathematics
but none with computer science. Proofs, sometimes
informal, are included when they are useful and short.
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Algorithms will be discussed informally, with the term
“efficient” used for those that can be executed in time
bounded by a small-degree polynomial in the input
length.

2 Counting Possibilities

Most counting problems can be phrased as, “How
many ways are there to do X?” where X is some task,
either real or imaginary. If there are several alterna-
tive approaches, we may be able to make use of the
following rule.

The addition rule. If there are k different approaches
to the task, and the ith approach can be executed in ni
ways, then the total number of different ways to do the
task is the sum

∑k
i=1ni.

If, on the other hand, we can break up the task into
stages, we can use of the following alternative.

The multiplication rule. If the task involves k stages,
the ith of which can be done ni ways regardless of
choices made in previous stages, then the total number
of different ways to do the task is the product

∏k
i=1ni.

Sometimes it is easier to count the things that are
not wanted, in which case we can make use of the
subtraction rule.

The subtraction rule. If a setA consists of the elements
of C other than those of a subset B of C , then |A| =
|C| − |B|.

Overcounting can be useful, and when everything is
overcounted the same number of times, the following
rule is the remedy.

The division rule. If the number n is obtained when
every element of a set S is counted k times, then |S| =
n/k.

An arrangement, or ordering, of a set A of distin-
guishable objects is called a permutation of A; from
the multiplication rule, we see that, if |A| = n, then the
number of permutations of A is n!. If we want only to
select and order k of the elements of A, the number of
ways of doing so isn(n−1)(n−2) · · · (n−k+1), which
we can also write as n!/(n − k)!. (But note that calcu-
lating this number by computing n! and then dividing
by (n− k)! might be a mistake, as it involves numbers
that are unnecessarily large.)

Suppose we wish to select k of the n objects in A
but not to order them. We have then overcounted by

a factor of k!, so the number of so-called combinations
of k objects out of n is n!/(k!(n − k)!), which we call
“n choose k” and denote by

(
n
k

)
. These expressions

are called “binomial coefficients” on account of their
appearance in the formula

(x +y)n =
n∑
k=0

(
n
k

)
xkyn−k.

The binomial coefficients possess an astonishing
number of nice properties. You can easily verify, for
example, that(
n
k

)
=
(
n

n− k

)
and

(
n
k

)
=
(
n
k− 1

)
+
(
n− 1
k− 1

)
.

Note that logically (
n
0

)
=
(
n
n

)
= 1,

since there is just one way to select the empty set from
A and one way to pick the whole set A from itself. This
agrees with our formula if we stipulate that 0! = 1.

3 Finding a Stable Matching

Some readers will recall mass public weddings per-
formed by the Reverend Sun Myung Moon (1920–2012)
under the banner of the Unification Church. Let us
stretch our imaginations a bit and suppose that nmen
and n women wish to participate in such a ceremony
but have not actually agreed upon their precise mates
yet. Each submits a list of the n members of the oppo-
site sex in preference order; these 2n lists are submit-
ted to the church elders, who somehow determine a
matching, that is, a set of n man–woman pairs to be
married on the fateful day.

One might devise many reasonable criteria by which
such a matching could be chosen; a particularly desir-
able one, from the church’s point of view especially,
is that the matching be stable. This means that there
should not be any man–woman pair (say, Alice and Bill)
who are not to be married to each other in the ceremony
but who would rather be married to each other than
to the persons they are supposed to marry. Such an
Alice and Bill, whom we term an “unstable pair,” would
then be tempted to run away together and mess up the
ceremony.

Remarkably, regardless of the preference lists, a sta-
ble matching is guaranteed to exist; moreover, there
is an efficient algorithm to find one. Devised by David
Gale and Lloyd Shapley in 1962, the algorithm is one of
the most elegant in combinatorics and is widely used
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around the world, perhaps most famously in the annual
matching of medical-school graduates with internships
in the United States.

The algorithm proceeds as a series of mass propos-
als, from men to women, say. The game begins with
every man proposing to the highest-ranked woman on
his list; each woman accepts (perhaps temporarily) only
the highest ranking of the men who propose to her,
rejecting the others immediately.

In subsequent rounds, engaged men are idle, while
each unengaged man proposes to the highest-ranked
woman on his list who has not previously rejected him:
namely, the woman just beneath the one who rejected
him on the previous round. As before, each woman
then rejects all proposals other than her highest-ranked
proposing male. If she is unengaged or the latter is
higher ranked (on her list, of course) than her current
fiancé, she accepts the new proposal (again temporar-
ily) and dumps the old beau. A woman might remain
engaged to one man through many rounds but if, at
any time, she gets a proposal from a man she likes bet-
ter, she will unceremoniously dump her old beau and
sign up with the best new one. Her old beau will then
reenter the market at the next round, proposing to the
next woman on his preference list.

The algorithm terminates when every male (and thus
every female) is engaged; those final engagements con-
stitute the output matching.

Suppose, for example, that the preferences are as
shown in figure 1.

In the first round Alan proposes to Donna while Bob
and Charlie propose to Emily; Emily rejects Charlie,
while the other proposals are provisionally accepted. In
the next round Charlie proposes to his second choice,
Donna; Donna accepts, putting Alan back into bache-
lorhood. In the third round Alan proposes to Emily,
who accepts while ejecting Bob. In the fourth round Bob
proposes to Donna, but she is happy with Charlie. In
the fifth round Bob proposes to Flora and is accepted,
ending the process with Alan matched to Emily, Bob to
Flora, and Charlie to Donna.

As with any algorithm, you should be asking yourself:
does it always terminate, and, if so, does it necessarily
terminate in a solution to the problem?

Observe first that once a woman becomes engaged
(which happens as soon as she gets her first proposal),
she never becomes unengaged; she only “trades up.”
Men, on the other hand, are lowering their expecta-
tions as they accumulate rejections. But note that a
man cannot run out of prospects because, if he were
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Figure 1 Finding a stable matching.

rejected by every woman, all the women would have to
be engaged; an impossibility if he is not. During every
round, either the number of engaged men goes up or
at least one man is rejected and has his expectations
lowered. Thus, the algorithm must end after at most
n2 rounds of proposals.

Is the result a stable matching? Yes. Suppose for the
sake of reaching a contradiction that Alice and Bill are
an unstable pair: Alice is matched to Clint (say) but
prefers Bill, while Bill is matched to Dora and prefers
Alice. But then, to get engaged to Dora, Bill must at
some point have been rejected by Alice; at that time,
Alice must have had a fiancé she preferred to Bill. Since
she could only have traded up after that, she could not
have ended up with Clint.

Usually, in practice (e.g., with the medical-school
graduates and internships), no actual proposals are
made; preference lists are submitted and a computer
simulates the algorithm.

You might reasonably be asking: what happens if we
do not have two sexes but just some even number of
people who are to be paired up? In this version, often
called the “stable roommates problem,” each person
has a preference list involving all the other people. Alas,
for the roommates there may not be a stable matching;
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nor (as far as we know) is there an efficient algorithm
that is guaranteed to find a stable matching when one
exists. Too bad, because there is a nice new application:
organ transplants.

Getting a kidney transplant used to require finding
one person who was willing to donate a kidney and who
matched the kidney seeker in blood type (and possi-
bly other characteristics as well). Nowadays, multiple
transplants have made things much easier. Suppose
Alice is willing to donate a kidney to Bob, but their
blood types are incompatible. Meanwhile, elsewhere in
the world, Cassie needs a kidney and has found a will-
ing but poorly matched donor, Daniel. The point is that
Alice and Daniel may be a good match, likewise Bob
and Cassie. The four are brought together; by agree-
ment, and simultaneously (so no one can chicken out
between operations), Alice’s kidney goes to Cassie while
Daniel’s goes to Bob.

Finding such pairs obviously requires some central-
ized database. Ideally, the database is used to rank,
for each patient–donor pair such as Alice and Bob, all
other patient–donor pairs according to how well their
donor matches Bob. An algorithm that solves the stable
roommate problem could be very useful.

In practice, heuristic algorithms seem to do a good
job of finding exchangeable pairs. These days, larger
cycles of pairs are sometimes organized; also useful
are chains, sometimes quite long ones, catalyzed by a
single generous individual who is willing to donate a
kidney to the patient pool. For the kidney application
and much more, Alvin Roth and Lloyd Shapley won the
Nobel Memorial Prize in Economic Sciences in 2012.

There are many other consequences and generaliza-
tions of the stable marriage theorem; we mention just
one curious fact. In many cases there is more than one
stable solution, and of course the Gale–Shapley algo-
rithm (as presented here) finds just one. You might
think the algorithm is neutral between the sexes or even
favors women, but in fact it is not hard to show that
in it every man gets the best match that he can get in
any stable marriage, and every woman gets the worst
match that she could get in any stable marriage! In the
annual matching of medical-school graduates to intern-
ships, it used to be the case that the internships did the
proposing. Now it is the other way around.

4 Correcting Errors

Have you ever wondered why it is that, when you email
a multi-megabyte file to a friend or colleague, it almost
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Figure 2 A code that corrects one error.

always comes through with not a single error? Can it be
that the bits we send through air, wire, and fiber have
error probability less than one in a trillion?

The answer to that question is no: if we sent bits that
carefully, the Internet would be a lot slower than it is.
Errors do get made, but they are corrected. How?

We are going to consider only the alphabet {0,1},
although much of what we say below can be general-
ized to larger alphabets. An error-correcting code is a
set of sequences (“codewords”) of some given length
(say, n) that are used instead of sequences of a fixed
shorter length (say, k), with the idea that a small num-
ber of errors in a codeword can be rectified. Figure 2
shows an example with n = 7 and k = 4.

The code pictured above is called a Hamming(7,4)
code, and it has the following properties. First, there
are 16 = 24 codewords, one for each binary sequence
of length 4, as we see. The codewords have length 7.
To use the code, suppose the message we wish to send
is 110010100110. We break that up into “blocks” of
length 4: 1100 1010 0110. Each block is translated
into its corresponding codeword: 1100011 1010101
0110110, and the concatenation 110001110101010110
110 is transmitted.

At the other end, the received bit sequence is bro-
ken up into substrings of length 7, each of which is
then decoded to recover the original intended mes-
sage. Decoding is easy, with this particular code, when
there are no errors; the first four bits of each codeword
identify the message sequence.

The disadvantages of the scheme are obvious. It takes
work (well, computer work) to code and decode, and we
end up sending nearly twice as many bits as we need to.
The gain is that we can now correct errors: in particular,
as long as there is no more than one flipped bit in each
codeword, we can recover the exact original message.

To verify this, let us see how the code can be gen-
erated. First we label the seven codeword bit-positions
with the numbers from one to seven in binary. It does
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to create a Hamming(7,4) code.

not actually matter how the labels are assigned, but it

turns out to be convenient to let positions 5, 6, and 7

have labels 100, 010, and 001 (binary for 4, 2, and 1).

We give the first four places the labels 011, 101, 110,

and 111, respectively.

These labels will be treated not as binary numbers

but as binary “nimbers,” equivalently, as vectors in

the three-dimensional vector space {0,1}3 over a two-

element field. That means that nimbers are added with-

out carry; in other words, using the rules that 0+0 = 0,

1+0 = 0+1 = 1, and 1+1 = 0, each column of numbers

is added independently. For example, 011+101 = 110.

Addition is therefore the same as subtraction; in partic-

ular, adding any nimber to itself gives 000. Given any

seven-digit word, we compute its signature by adding,

as nimbers, the labels of the positions where a 1 is

found. Thus, for example, the signature of 0100100 is

101 + 100 = 001.

The position labeling and an addition table for three-

digit nimbers are shown in figure 3.

The codewords are exactly the seven-digit words with

signature 000. That makes the set of codewords a lin-

ear subspace of {0,1}7, which goes a long way to mak-

ing the code easy to deal with. Computing the code of

a given four-digit message is a snap because the first

four digits of the code are the same as those of the

message and the other three function as “check bits.”

If the labels of the first four positions sum to 110, say,

then the last three must be exactly 1, 1, 0.

The key property possessed by the set of codewords

is that any two codewords differ in at least three of the

seven positions. We know this because if two seven-
digit words differ in only two places, with labels abc
and def, then their signatures differ by abc−def, which
cannot be 000. They cannot, therefore, both be code-
words. (The argument is even easier if they differ in only
one position.) Thus, if a bit in a codeword is flipped,
it still differs in at least two places from all the other
codewords, so there is only one codeword it could have
come from. Determining that codeword is again easy:
if the signature of the received word is ghi ≠ 000, then
it must be the bit whose label is ghi that got flipped.

The Hamming codes are said to be “perfect one-error-
correcting codes,” meaning that every word of length
n is either a codeword or is one bit-flip away from a
unique codeword. Another way to think of it is that
(in the Hamming(7,4) code) each codeword has seven
neighbors, obtained by flipping one bit; together with
the codeword they make a “ball” of size 23, and these
24 balls then partition the whole space of seven-digit
words, whose size is of course 27.

There is in fact an even easier one-error-correcting
code than the Hamming(7,4) code, with n = 3 and
k = 1: just repeat each bit three times. If you receive
“110” you will know that the third bit was flipped, and
that the codeword should therefore have been “111”
and that the intent had been to send the bit “1”. More-
over, this code tolerates an error every three bits, while
the previous could handle only one error every seven
bits. But the simple code has a “rate” of 1/3, mean-
ing that it sends only one bit of information per three
bits transmitted; the Hamming(7,4) code has the better
rate 4/7.

In practice (e.g., on the Internet), codes with much
greater block length, that can correct several errors,
are used. Sophisticated error-correcting codes are also
used in transmitting information (e.g., pictures) back
to Earth from outer space. A simple kind of error-
correcting code is used in most bank account numbers,
to either detect errors or (as above) correct them.

Coding theory is a big subject with lots of linear alge-
bra as well as combinatorics in it; moreover, it is a
lively area of research, chockablock with theorems and
applications.

Note that the public often equates “codes” with
“secret codes,” but we are not talking about cryptog-
raphy here. Error correcting is often done “on top of”
cryptography in the following sense: a message is first
encrypted using a secret code (this might not result in
any lengthening), to create what is called cyphertext.
The cyphertext is then coded with an error-correcting
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code before it is sent. At the other end, it is decoded
to remove transmission errors and recover the correct
cyphertext; then the cyphertext is decrypted to get the
original message. Whew!

There is, nonetheless, an amusing direct application
of error-correcting codes to espionage. Suppose that
you are a spy in deep cover and your only means of
communication with your headquarters is as follows.
A local radio station transmits an unpredictable string
of seven bits every day, and you can flip any one of
those bits before they are broadcast. How many bits
of information can you transmit to headquarters that
way?

You can clearly transmit one bit by controlling the
parity of the string, that is, whether the string has an
even or an odd number of 1s. And you certainly can-
not communicate more than three bits because there
are only 8 = 23 actions you can take (change any of
the seven bits, or change none). But what good can
these choices do if your control does not know what
the original sequence was?

It is easy using our Hamming(7,4) code. To commu-
nicate the three-bit message abc, just make the signa-
ture of the broadcast abc. How do you know you can
do this? If the broadcast string was going to have sig-
nature def, compute the sum of abc and def as nimbers
to get (say) ghi, and change the bit with label ghi. If, by
chance, the broadcast string already had signature abc,
do not change anything. Your control only has to com-
pute the signature of what she hears on the radio in
order to get your message.

Note that if your message is 000, the strings your
control might get are exactly the Hamming(7,4) code-
words from figure 2.

5 Designing a Network

As the head of a new company, or perhaps the emperor
of a new country, you may need to design a commu-
nications or transportation network to connect your
offices or your cities. How can you do this as cheaply
as possible?

This and many other questions can be formulated
in terms of graph theory [II.16], in which objects or
places are abstracted as dots, any two of which may or
may not bear a particular relation to each other. Graph
theory is equally often thought of as a subfield and as a
sister field of combinatorics. Like combinatorics, it was
not highly regarded among “serious” mathematicians
(between 1850 and 1950, roughly) until its importance

in computer science emerged. The advent of the Inter-
net, which begs to be modeled as a graph, helped quite
a bit as well.

A graph G = 〈V,E〉 is a set (finite, for us) V of vertices
together with a collection E of two-element subsets of V
called edges. The reason for this nomenclature is that
the vertices and edges of a polyhedron constitute an
archetypal graph. The degree of a vertex is the num-
ber of edges containing it; a graph is regular if all its
vertices have the same degree. If {u,v} ∈ E, we write
u ∼ v and say that u is adjacent to v .

A path (of length k) in a graph is a sequence
v0, v1, . . . , vk of vertices such that vi ∼ vi+1 for each i,
0 � i < k. We require that the vi are all distinct except
that possibly v0 = vk, in which case the path is said
to be closed and the sequence v0, v1, . . . , vk−1 is said
to constitute a cycle. A nonclosed path is said to con-
nect its first and last vertices, and if any two vertices
in V can be so connected, G itself is connected. The set
of vertices adjacent to a given vertex v is called the
neighborhood of v and is denoted N(v).

A graph that has no more edges than it needs to be
connected is called a tree. A tree has no cycles (if it had
one, deleting one edge of the cycle could not possibly
destroy connectivity). It is easily verified that all of the
following are equivalent for a graph G with |V | = n:

(1) G is a tree;
(2) G is connected and has at most n− 1 edges;
(3) G is cycle-free and has at least n− 1 edges;
(4) between any two vertices of G is a unique path;
(5) either n = 1 or G has at least two vertices of

degree 1 (“leaves”), the deletion of any of which,
together with its incident edge, results in a tree.

A transportation network is a graph in which the ver-
tices represent terminals and edges represent direct
connections between pairs of nodes; communications
networks are modeled similarly. We can already deduce
that a network with n vertices that is “efficient” in the
sense that it has no more edges than it needs to be
connected is a tree with n − 1 edges. But which n − 1
edges? Suppose that the network is to be set up from
scratch, and for each pair {u,v} of nodes there is an
associated cost C(u,v) = C(v,u) of building an edge
between them. The cost of a tree is the sum of the cost
of its edges; is there a good way to find the cheapest
tree?

In fact, this could be one of the world’s easiest prob-
lems; there is no way to go wrong. You can simply start
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Figure 4 The sixteen trees on vertex set {a,b, c, d}.

by taking the cheapest edge, then the next cheapest
edge, etc., only making sure that no cycle is made; this
is a classic example of what is called a greedy algo-
rithm. Alternatively (although this takes longer), you
could imagine that you begin with all the edges (the
“complete graph” Kn), then eliminate edges, starting
from the most expensive. Here you must ensure that
you never disconnect the graph; if removing an edge
would do so, that edge is kept (for good).

6 Enumerating Trees

Suppose you belong to a special-interest group, and you
wish to set up a notification tree. The idea is this: as
soon as anyone obtains some information of interest
to the group (such as the time and place of the next
meeting), she notifies her neighbors on the tree, each
of whom notifies all of their neighbors other than the
one from whom she got the information, and so on.

How many ways are there to choose such a tree? Here
is an intuition test: if the group has, say, ten members,
would you guess that the number of possible trees is
less than a hundred million, or more?

Very importantly, the vertices of the trees we are
counting here are labeled, in this case by people. Thus,
for example, there are three possible trees if there are
only three group members (any of the three could be
the center vertex). A little more work will convince you
that there are sixteen trees with four labeled vertices,
shown in figure 4.

Beneath each tree you see a two-letter sequence
called the Prüfer code of that tree. The multiplication
rule tells us that there are 16 = 42 two-letter sequences
of symbols chosen from the set {a,b, c, d}, here, one
for each tree.

How is the Prüfer code determined? We find the
lowest-lettered leaf (that is, the leaf labeled by the ear-
liest letter in the alphabet) of the tree and delete it,
writing down not the label of the leaf but the label of
the vertex it was adjacent to. We then repeat this pro-
cess until only two vertices remain; thus, if the original
tree had n vertices, we will end up with a sequence of

n− 2 elements, possibly with some repetitions, from a
label set of size n.

The process is reversible. Suppose we have been
given a sequence x1, x2, . . . , xn−2 of n − 2 elements
from an ordered set of size n; we claim there is exactly
one way to reconstruct the labeled tree from which it
arose. Note that the missing labels must correspond to
the leaves of the tree; thus, the lowest missing label
(say, a) is attached to x1. We now cross out x1 from
the sequence and repeat; a no longer counts as a miss-
ing label, since it is taken care of. But now x1 will join
the list of missing labels, unless it appears again later
in the sequence.

When we reach the last entry of the sequence, we have
put in n − 1 edges that connect all the labels to make
our tree.

We have proved (albeit informally) that there is a
one-to-one correspondence between trees with vertices
labeled by a set of n elements and sequences of length
n − 2 of elements from that set. One consequence of
this is Cayley’s theorem (1854).

Theorem (Cayley’s theorem). The number of labeled
trees on n vertices is nn−2.

This means that the number of possible notification
trees for ten people is exactly a hundred million, so if
you guessed that it was smaller or larger, you lose.

Prüfer’s correspondence has other useful properties.
For example, we have already seen that leaves do not
appear in the code; more generally, the number of times
a label appears in the code is one less than its degree.
So, suppose that we want David (d), Eleanor (e), and
Fred (f ) to be leaves of our notification tree (because
they are not so reliable), while George (g) has degree 3.
Then our tree’s code will have no d, e, or f in it, but
two gs. There are

(
8
2

)
= 28 ways to decide which places

in the sequence to put the gs, and each of the other six
entries can be chosen 10−4 = 6 ways, so now there are
only 28 · 66 = 1 306 368 ways to make the tree.

7 Maximizing a Flow

Suppose you are running an oil supply company whose
pipelines constitute a graphG. Each edge e ofG is a pipe
with capacity c(e) (measured, perhaps, in gallons per
minute). You need to move a lot of oil from vertex s (the
“source”) to vertex t (the “tsink”); what’s the maximum
flow rate you can achieve in this task?

To define a “flow” abstractly we need to represent
each edge {u,v} by two arcs, (u,v) (thought of as an
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edge going from u to v) and (v,u). A flow is a function
f from the arcs to the nonnegative real numbers that
satisfies the following property.

For any vertex u other than s or t,
∑
v∼u f(v,u) =∑

v∼u f(u,v).

This condition says that the amount flowing into a
vertex is equal to the amount flowing out, except at the
source (where, normally, we only want stuff flowing out)
and the tsink (where stuff only flows in). The amount
leaving the source is then equal to the amount arriving
at the tsink, and we call that amount the magnitude of
the flow, denoted |f |.

A flow is valid if it respects capacities, that is, if
f(u,v) � c(u,v) for each arc (u,v). (Initially, the
capacity of each arc (u,v) is the capacity of the edge
{u,v} that gave birth to it.) Our object is to maximize
|f | subject to f being a valid flow.

The “max-flow problem” was formulated in the 1950s
by T. E. Harris (modeling Soviet rail traffic) and solved
by, among others, Lester Ford and Delbert Fulkerson
in 1955. Their algorithm and theorem are presented
below. Since that time, there have been many alterna-
tives, variations, and improvements, e.g., by Dinitz, by
Edmonds and Karp, and by Goldberg and Tarjan.

The Ford–Fulkerson algorithm proceeds by iteration
and theoretically might not terminate when the capac-
ities are not rational. If the capacities are integers, it
yields an integer flow that is maximal among all flows.
The idea of the algorithm is that given some flow fi, we
“subtract” it from the current graph Gi to create what
is called a residual network Gi+1, and then we look for
a flow on this that can be added to fi.

We can start with the zero flow and look for any path
in G0 = G from s to t. We can then send whatever is the
minimum capacity (say, c) of the arcs on the path from
s to t.

If a step of the path is from u to v , then in the resid-
ual graph G1 we must reduce the capacity of the arc
(u,v) by c. Equally importantly, we must increase the
capacity of the reverse arc (v,u) by c because we may
later wish to send stuff from v tou and, in so doing, we
get to cancel stuff sent from u to v as well as refill the
pipe in the other direction. So, in the residual graphs
the two arcs constituting a single edge will generally
have different capacities, one of which may be zero. (We
can have that in the original graph, too, if we want.)

At the next step we look for a path in G1 from s to t
involving arcs with positive capacity, and we repeat the
procedure. If we can find no such path, we are done.
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Figure 5 A maximum flow and a
minimum cut (value 9) are found.

How do we know there is no “positive” path? We can

check each vertex, starting with the neighbors of s and

then moving to their neighbors, etc., to see whether

flow can be sent there. Let S be the set of all vertices,

s itself included, to which we can still send material. If

S does not contain t, it means that no flow can be sent

out of S in our current residual graph.

Figure 5 shows four Ford–Fulkerson steps leading to

a total flow of value 9 and also to a “cut” (see below) of

the same value. The heavy black line in each residual

graph shows the chosen positive path.

When the algorithm terminates, after step k, say, the

sum f = f1 + f2 + · · · + fk of our flows is a maxi-

mum flow, and we can prove it. The reason we cannot

escape the set S of vertices that we can still ship to can

only be that f has used all the original arcs from S to

V \ S to full capacity, and no valid flow on G can do
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better than that. Any set of vertices containing s and

not t is called a cut ; the capacity of a cut is the sum

of the capacities of the arcs leaving it. No flow’s mag-

nitude can exceed the capacity of any cut; succinctly,

“max flow � min cut.” But when the Ford–Fulkerson

algorithm terminates, we have correctly deduced that

max flow = min cut. In fact, this is true whether the

algorithm terminates or not, but we will not complete

the proof here.

The point is that there are efficient algorithms

(linear programming [IV.11 §3] is one method) to

determine both the maximum flow and the minimum

cut in any s–t network. The fact that these quantities

are equal (which is itself a special case of linear pro-

gramming duality) is elementary but powerful; we will

see one of its myriad consequences in the next section.

8 Assigning Workers to Jobs

Suppose you are managing a business and have jobs to

fill, together with a pool of workers from which to fill

them. The difficulty is that each worker is qualified to

do only certain jobs. Can the positions be filled?

The problem seems similar to finding a stable match-

ing; we do want a matching, but here the criterion is

simply that each job is matched to a worker who is

qualified to do it. Clearly, such a matching might not

be available; for example, there might be a job no one

in the pool is qualified to do. How can we tell when all

the positions can be filled?

The situation is modeled nicely by what we call a

bipartite graph, one whose vertices can be split into

two parts (here, workers and jobs) in such a way that

all edges contain a vertex from each part. For this prob-

lem, let X be the set of jobs and Y the pool of workers;

we draw an edge from x ∈ X to y ∈ Y if job x can

be performed by worker y . A matching is a disjoint set

of edges. A complete matching (also called “a matching

that covers X”) is a disjoint set of edges that covers

every vertex in X, i.e., fills every job.

To find a complete matching, we clearly need |Y | �
|X|, and, as mentioned before, we need every x ∈ X to

have degree at least 1. In fact, we can generalize these

two requirements as follows. For any set of jobs A ⊂ X,

letN(A) be the set of workers who are qualified to do at

least one job in A. We then need |N(A)| � |A| to have

any chance of success. In words, then, in order for a

complete matching to be possible, we require that for

every set of k jobs, we need to have at least k workers

S Sx

N (Sx )

X
Y

GG H

s t

Figure 6 A bipartite graph and its corresponding network.

who are qualified to do one or more of the jobs in the

set.

That this set of criteria is sufficient is known as

Hall’s marriage theorem and is attributed to Philip Hall

(1935).

Theorem (Hall’s marriage theorem). Let G be a bipar-

tite graph with parts X and Y . A matching that covers

X is then possible if and only if for every subset A ⊂ X,

the neighborhood N(A) of A in Y has size at least the

size of A.

Proof. If there is a matching covering X, then any sub-

set A of X is matched to a set in Y of equal size, so A’s

neighborhood in Y must have been at least the size of

A.

What remains is to show that, if G does not have a

matching that covers X, then there must be a subset A
of X with |N(A)| < |A|. We do this by creating from G
an s–t network H, as follows. We add a source s adja-

cent to every vertex in X, and a tsink t adjacent to every

vertex in Y . All arcs from s to X, X to Y , and Y to t are

given capacity 1, all other arcs 0 (see figure 6).

If there is a complete matching M , we can use the

edges of M and the new edges to get a flow on H of

magnitude |X|. Otherwise, by the max-flow min-cut the-

orem, there is a cut S in H of capacity less than |X|;
let SX = S ∩ X, SY = S ∩ Y . The capacity of S is the

number of arcs flowing out of it, which are of three

types: edges from s to X \ SX , numbering |X| − |SX |;
edges from SX to Y \ SY , numbering, say, b; and edges

from SY to t, numbering |SY |. But b + |SY | is at least

the size of the neighborhood N(SX) of SX in G because

every such neighbor has an edge counted in |SY | if it

is in SY and an edge counted in b if it is not. Thus

|X| − |SX | + |N(SX)| < |X|, and therefore |N(SX)| <
|SX |, violating Hall’s condition.
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9 Distributing Frequencies

Suppose you are setting up wireless phone towers in
a developing country. Each tower communicates with
the cell phones in its range using one of a small set
of reserved frequencies. (Many cell phones can use the
same frequency; in one method, called “time-division
multiplexing,” the tower divides each millisecond into
parts and assigns one part to each active phone.) How
can the frequencies be assigned so that no two tow-
ers that are close enough to cause interference use the
same frequency?

We naturally model the towers by a graph G whose
vertices are the towers, two of which are adjacent if they
have a potential interference problem. We then need
to assign frequencies—think of them as colors—to the
vertices in such a way that no two adjacent vertices get
the same color. If we can get such a “proper” coloring
with k colors,G is said to be “k-colorable.” The smallest
k for whichG is k-colorable is the chromatic number of
G, denoted χ(G).

Bipartite graphs are 2-colorable, since we can use one
color for each part. But supposeG is given to us without
identifying parts; can we tell when it is 2-colorable?

The answer is yes; there is an efficient algorithm for
this. We may assume that G is connected (otherwise,
we execute the algorithm on each connected piece of
G). Pick any vertex v and color it red; then color all of
its neighbors blue. Now color all their neighbors red,
and so on until all the vertices of G are colored.

When will this fail? In order for two neighboring ver-
tices, say x and y , to get the same color, each must
be reachable from v by paths of the same parity (both
even length, or both odd). Let z be the closest point to x
and y that shares this property with v ; the paths from
z to x and to y , together with the edge from x to y ,
then form a cycle in G of odd length.

But if there is an odd cycle in G, it was never possible
to color G with two colors. The algorithm will there-
fore work whenever G is 2-colorable and will (quickly)
come a cropper otherwise. Moreover, we have derived
an equivalent condition for 2-colorability.

Theorem. A graph G has χ(G) � 2 if and only if G
contains no odd cycle.

Alas, the situation with larger numbers of colors is
apparently quite different; unless P = NP, there is
no efficient general algorithm for determining when
χ(G) � k for fixed k > 2.

However, there are efficient algorithms for a related
problem. Suppose the cell towers need to communicate

with each other, using a special set S of frequencies that
cause interference only when two messages at the same
frequency are both being transmitted, or both being
received, by the same tower.

Then, if |S| = k and some tower wants to transmit
messages to more than k other towers at the same time,
or to receive from more than k other towers at the same
time, it is out of luck. So each tower limits its objectives
accordingly, but does that mean that frequencies can be
assigned to messages in such a way that no interference
occurs?

Here, the graph we want (call it H) needs to have two
vertices for every tower, one for its role as a transmit-
ter, the other for its role as a receiver. We put an edge
between a transmitter node x and a receiver node y if
tower x wants to send a message to towery .H is there-
fore a bipartite graph, and we could properly color its
vertices with two colors if we wished.

However, it is not towers but messages that need fre-
quencies here; in other words, we need to color the
edges, not the vertices, of H, and we want no vertex
to be in two edges of the same color. Equivalently, we
want the set of edges that get any particular color to
constitute a matching. If we have a vertex (transmitter
or receiver) of degree d and if d exceeds the number k
of available colors, then as we have already noted, we
are stuck. Surprisingly, and very usefully, we can, if k
is at least the maximum degree, always assign colors
without a conflict.

Theorem. Let H be a bipartite graph all of whose ver-
tices have degree at most k. The edges of H can then
be colored from a palette of k colors in such a way that
no vertex is contained in two edges of the same color.

This theorem is often attributed to Dénes Kőnig
(1931), although there are closely related results, both
earlier and later, by others. To prove it, and indeed
to actually find such a coloring, it suffices to find a
matching that covers all the vertices of degree k; we
can do that using Hall’s marriage theorem or the max-
flow min-cut theorem. We then paint all the edges
in the matching with the kth color and then remove
those edges to get a graph of maximum degree at most
k− 1. Now we repeat the process until we are down to
degree 0, with all edges colored.

10 Avoiding Crossings

Suppose you want to build a one-layer microchip with
components connected as in a particular graph G. Can
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(a) (b)

Figure 7 Two drawings of the complete
graph on four vertices.

you do it? More abstractly, given G, can you draw it
in the plane so that no two edges cross? You might
choose to draw the graph K4 (four vertices, every pair
constituting an edge) as pictured in figure 7(a), but with
a little care you can redraw it as pictured in part (b), with
no crossings.

A graph drawn on the plane without crossings is
called a plane graph, and a graph that can be drawn
that way is said to be planar. (The edges of a plane
graph need not be straight line segments, although in
fact they can always be made so.)

The famous “four-color map theorem,” proved in
1976 by Ken Apel and Wolfgang Haken with computer
help, says that every planar graph is 4-colorable. The
connection between coloring the (contiguous) countries
on a map and graph coloring is as follows. Given a map,
we associate to every country a point in that country,
connecting two points in adjacent countries by an edge
that crosses their common border. Properly coloring
the vertices of this “dual” graph is equivalent to color-
ing the countries in such a way that no two countries
with a common border get the same color.

The four-color theorem may seem like a somewhat
frivolous result—after all, most cartographers have
plenty of colors and routinely use more than four—
but, in fact, it is a fundamental and important theorem
of graph theory. Planar graphs themselves constitute a
crucial class of graphs, one that we would be singling
out even if we did not live in space, had no use for
planes, and had no aversion to crossings.

Since the graph K5 requires five colors, it cannot be
planar, if you believe Apel and Haken. But let us see
this directly. Our primary tool is the Jordan curve the-
orem, which says that a simple closed curve in the
plane divides the plane into two connected regions
(the bounded region inside the curve, and the outside
region). Assume that K5 is drawn on the plane without
crossings, with vertices labeled 1–5. Note that K5 has(

5
2

)
= 10 edges. The five edges constituting the cycle

1∼2∼3∼4∼5∼1 make a closed curve, and therefore of
the five “noncycle” edges, either at least three must fall
inside the curve or at least three must fall outside.

Suppose there are three inside (we can turn the argu-
ment inside out to do the other case). We may assume
that one is the edge from 1 to 4 (say), but then only
one other noncycle edge (from 1 to 3) fails to cross
something, so we are stuck.

The complete bipartite graph K3,3, in which (say) ver-
tices 1, 2, and 3 are adjacent to 4, 5, and 6, is of course
2-colorable, but that does not make it planar. Indeed,
assuming it were, consideration of the simple closed
curve made by the edges of the cycle 1∼4∼2∼5∼3∼6∼1
would again lead to a contradiction.

Adding new vertices along the edges of K5 or K3,3,
thereby creating a “subdivision,” makes no difference
to the above proofs. The remarkable fact is that we have
now reached sufficient criteria. The following result,
usually known as Kuratowski’s theorem, was proved
by Kazimierz Kuratowski in 1930, as well as by others
around that time.

Theorem (Kuratowski’s theorem). A graphG is planar
if and only if it does not contain, as a subgraph, any
copy of K5 or K3,3, or any subdivision thereof.

We will not give a proof here, but we do note that
efficient algorithms exist to determine whether a given
graph G is planar and, if it is, to construct a drawing of
G with no crossings.

11 Delivering the Mail

Suppose you have signed up to be a postman and wish
to devise a route that will traverse every street in your
district exactly once. When is this possible? When it is,
how can you find such a route?

In the abstract, you are given a graph G and wish
to devise a walk (a sequence of vertices, not necessarily
distinct, any two consecutive vertices of which are adja-
cent) that traverses each edge exactly once. Perhaps you
would also like to start at a particular vertex s and end
at a particular vertex t, possibly the same one. Such a
walk is called an Eulerian tour or, if it starts and ends
at the same point, an Eulerian circuit.

Euler famously observed, in connection with the
problem of touring the Königsberg (now Kaliningrad)
bridges, that such a walk is not possible if G has more
than two vertices of odd degree. The reason for this is
simply that a vertex that is not the first or last must
be exited the same number of times it is entered, thus
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using up its edges in pairs. What Euler did not do is
prove that the possession of not more than two ver-
tices of odd degree, together with connectedness, is
sufficient as well as necessary for such a walk to exist.

Theorem. If G is a connected graph with no vertices of
odd degree, it has an Eulerian circuit.

Proof. Let P be a maximum-length walk traversing no
edge twice. We claim that it is an Eulerian circuit.

Note first that if P starts at u it must end there as
well, since u is the only place it could get stuck. Why?
To get stuck at a vertex v ≠ u, you must have run out
of edges containing v after using k of them to get to v
and k − 1 to escape from v , for some k. But v , like all
vertices of G, is supposed to have even degree.

If P is not an Eulerian tour, then because G is con-
nected there is an unused edge of G that connects a
vertex of P , say v , with some vertex w (that may or
may not be on P ). Make a new walk Q starting at w,
then traversing the edge {v,w} to v , then following P
forward to u, then following the first part of P from
u back to v . Q is longer than P (and is not even stuck
yet), so our contradiction has been reached.

If G is connected and has precisely two vertices of
odd degree, say x and y , we can connect them by an
edge to get a graph all of whose vertices have even
degree, and then we can use the theorem to find an
Eulerian circuit P . Tossing the new edge out of P gives
an Eulerian tour beginning at x and ending at y . The
new edge may duplicate an edge already present in G,
but the theorem and proof above work fine for “multi-
graphs,” which are allowed to have more than one edge
containing the same two vertices.

In fact, the theorem and its proof also work fine
for directed graphs, also called “digraphs,” with arcs
instead of edges that can be traversed only in one direc-
tion; some may even be loops from a vertex back to
itself. The necessary, and again sufficient, condition for
existence of an Eulerian circuit in a connected digraph
D is that the “indegree” (the number of arcs entering a
vertex) must be equal to the outdegree for every vertex
in D. Whether for graphs or digraphs, the proof above
implicitly contains one of many efficient algorithms for
actually generating Eulerian tours or circuits.

The Eulerian circuit theorem for digraphs has a nice
application to de Bruijn sequences. Suppose you have
written some software for a device that has k but-
tons and you wish to ascertain that no sequence of
n button pushes will disable the device. You could

separately enter all kn possible sequences, but it might
make sense to save time by making use of overlap. For
example, if there are just two buttons (labeled 0 and 1)
and n = 3, you could enter the sequence 0001011100,
which captures all eight length-three binary strings as
substrings. Such a sequence, which contains exactly
once each string of length n over an alphabet of size
k, is called a de Bruijn(k,n) sequence, thus named on
account of a 1946 paper by Nicolaas Govert de Bruijn.
The sequences themselves date back to antiquity; one
appears in Sanskrit prosody.

Typically, de Bruijn sequences are thought of as cir-
cular, so the above sequence might be shortened to
00010111 with the understanding that you are allowed
to go “around the corner” to get 110 and 100. Since
you cannot go around the corner in time, checking your
device requires that you append a copy of the first k−1
characters of a circular sequence to the end.

To see that de Bruijn(k,n) sequences exist for any
positive integers k andn, we create a digraphD(k,n) as
follows. The vertices of D(k,n) are all kn−1 sequences
of length k − 1 from our alphabet of size n. Arcs cor-
respond to sequences x1, . . . , xk of length n and run
from the vertex x1, . . . , xk−1 to the vertex x2, . . . , xk;
note that this will be a loop when all the xi happen to
be the same character.

The outdegree of every vertex in D(k,n) will be n,
since we can add a kth character in n ways, and sim-
ilarly the outdegrees will also all be n. To see that
D(k,n) is connected, let x be one of the alphabetic
characters, and observe that we can get from any ver-
tex to xxx · · ·x by repeatedly adding x to the end and
from xxx · · ·x to any vertex by adding that vertex’s
characters one by one.

Applying the theorem gives an Eulerian circuit in D,
exactly what is required for a de Bruijn(k,n) sequence.
In fact, it can be shown that there are k!k

n−1/kn Eule-
rian circuits in (k,n), and thus the same number of
de Bruijn sequences, considered as cycles. Pictured in
figure 8 is the digraph D(4,2), together with one of the
20 736 resulting de Bruijn(4,2) sequences.

It is a curiosity that, given any digraph, one can effi-
ciently compute the precise number of Eulerian cir-
cuits, while for ordinary (undirected) graphs, no one
knows an efficient algorithm that can even estimate
that number. (In many cases, algorithms that work
for digraphs work just as well for undirected graphs
because you can replace an edge by an arc in each direc-
tion, as we did above in section 7. But doing that here
would result in walks that traverse every edge twice.)
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Figure 8 The digraph D(4,2) and the de Bruijn
sequence arising from an Eulerian circuit.

We end this section, and indeed our whole discussion
of applied combinatorics and graph theory, with one
additional observation. Instead of the digraph D(k,n),
we could have created an undirected graph G(k,n)
whose vertices are all the sequences of length k, two
being connected if they overlap in a string of length
k−1. A de Bruijn(k,n) sequence would then constitute
a cycle inG(k,n) that hits every vertex (instead of every
edge) exactly once; such a cycle is called a Hamilton
circuit.

But computability with respect to Hamilton circuits
is startlingly different from the Eulerian case. Unless
P = NP, there is no efficient way to determine whether
an input graph has a Hamilton circuit or, if it does, to
find one. It is hard to say why, apart from noting that
in one case there is a theorem that provides an easy
algorithm while in the other case no known theorem
comes to the rescue. It seems that some combinatorial
tasks are easy, and some are hard; that is just the way
it is.

We have tried here to present some of the combina-
torial problems that are easy, once you know how to
do them. We hope that all your problems are similarly
straightforward, but if they are not, some (of the many)
books that will get you deeper into the above topics are
listed below.
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IV.38 Combinatorial Optimization
Jens Vygen

Combinatorial optimization problems arise in numer-
ous applications. In general, we look for an optimal ele-
ment of a finite set. However, this set is too large to be
enumerated; it is implicitly given by its combinatorial
structure. The goal is to develop efficient algorithms by
understanding and exploiting this structure.

1 Some Important Problems

First we give some classical examples. We refer to the
article on graph theory [II.16] for basic notation. In
a directed graph, we denote by δ+(X) and δ−(X) the
set of edges leaving and entering X, respectively; here,
X can be a vertex or a set of vertices. In an undirected
graph, δ(X) denotes the set of edges with exactly one
endpoint in X.

1.1 Spanning Trees

In this problem we are given a finite connected undi-
rected graph (V , E) (so V is the set of vertices and E the
set of edges) and weights on the edges, i.e., c(e) ∈ R
for all e ∈ E. The task is to find a set T ⊆ E such that
(V , T) is a (spanning) tree and

∑
e∈T c(e) is minimized.

(Recall that a tree is a connected graph without cycles.)

A set V of eight points in the Euclidean plane is
shown on the left of the figure below. Assuming that
(V , E) is the complete graph on these points (every pair
of vertices is connected by an edge) and c is the Euclid-
ean distance, the right-hand side shows an optimal
solution.

1.2 Maximum Flows

Given a finite directed graph (V , E), two vertices s, t ∈
V (source and sink), and capacities u(e) ∈ R�0 for all
e ∈ E, we look for an s–t flow f : E → R�0 with f(e) �
u(e) for all e ∈ E and f(δ−(v)) = f(δ+(v)) for all
v ∈ V \ {s, t} (flow conservation: the total incoming
flow equals the total outgoing flow at any vertex except
s and t). The goal is to maximize f(δ−(t))− f(δ+(t)),
i.e., the total amount of flow shipped from s to t. This
is called the value of f .
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The figure below illustrates this: the left-hand side
displays an instance, with the capacities shown next to
the edges, and the right-hand side shows an s–t flow of
value 7. This is not optimal.
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1.3 Matching

Given a finite undirected graph (V , E), find a matching
M ⊆ E that is as large as possible. (A matching is a set
of edges whose endpoints are all distinct.)

1.4 Knapsack

Given n ∈ N, positive integers ai, bi (the profit and
weight of item i, for i = 1, . . . , n), and B (the knapsack’s
capacity), find a subset I ⊆ {1, . . . , n} with

∑
i∈I bi � B

such that
∑
i∈I ai is as large as possible.

1.5 Traveling Salesman

Given a finite set X with metric d, find a bijection
π : {1, . . . , n} → X such that the length of the corre-
sponding tour,

n−1∑
i=1

d(π(i),π(i+ 1))+ d(π(n),π(1)),

is as small as possible.

1.6 Set Covering

Given a finite set U and subsets S1, . . . , Sn of U , find the
smallest collection of these subsets whose union is U ,
i.e., I ⊆ {1, . . . , n} with

⋃
i∈I Si = U and |I| (the number

of elements in the set I) minimized.

2 General Formulation and Goals

2.1 Instances and Solutions

These problems have many common features.
In each case there are infinitely many instances, each

of which can be described (up to renaming) by a finite
set of bits and in some cases by a finite set of real
numbers.

For each instance, there is a set of feasible solutions.
This set is finite in most cases. In the maximum-flow
problem it is actually infinite, but even here one can,

without loss of generality, restrict to a finite set of
solutions (see below).

Given an instance and a feasible solution, we can eas-
ily compute its value. For example, in the matching
problem, the instances are the finite undirected graphs;
for each instance G, the set of feasible solutions are
the matchings in G; and for each matching, its value is
simply its cardinality.

Even if the number of feasible solutions is finite, it
cannot be bounded by a polynomial in the instance
size (the number of bits that is needed to describe the
instance). For example, there are nn−2 trees (V , T) with
V = {1, . . . , n} (this is Cayley’s formula). Similarly, the
number of matchings on n vertices, of subsets of an n-
element set, and of permutations on n elements grow
exponentially in n. One cannot enumerate all of them
in reasonable time except for very small n.

Whenever an instance contains real numbers, we
assume that we can do elementary operations with
them, or we assume them to be rationals with binary
encoding.

2.2 Algorithms

The main goal of combinatorial optimization is to
devise efficient algorithms for solving such problems.

Efficient usually means in polynomial time, that is,
the number of elementary steps can be bounded by a
polynomial in the instance size. Of course, the faster
the better.

Solving a problem usually means always (i.e., for
every given instance) computing a feasible solution
with optimum value.

We give an example of an efficient algorithm solving
the spanning tree problem in section 3.

However, for np-hard [I.4 §4.1] problems (like the
last three examples in our list), an efficient algorithm
that solves the problem does not exist unless P = NP,
and consequently one is satisfied with less (see sec-
tion 5).

2.3 Other Goals

Besides developing algorithms and proving their cor-
rectness and efficiency, combinatorial optimization
(and related areas) also comprises other work:

• analyzing combinatorial structures, such as graphs,
matroids, polyhedra, hypergraphs;

• establishing relations between different combina-
torial optimization problems (reductions, equiva-
lence, bounds, relaxations);
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• proving properties of optimal (or near-optimal)
solutions;

• studying the complexity of problems and establish-
ing hardness results;

• implementing algorithms and analyzing their prac-
tical performance; and

• applying combinatorial optimization problems to
real-world problems.

3 The Greedy Algorithm

The spanning tree problem has a very simple solution:
the greedy algorithm does the job. We can start with the
empty set and successively pick a cheapest edge that
does not create a cycle until our subgraph is connected.
Formally,

(1) sort E = {e1, . . . , em} so that c(e1) � · · · � c(em),
(2) let T be the empty set, and
(3) for i = 1, . . . ,m do

• if (V , T ∪ {ei}) contains no cycle,
• then add ei to T .

In our example, the first four steps would add
the four shortest edges (shown on the left-hand side
below). Then the dotted edge is examined, but it is not
added as it would create a cycle. The right-hand side
shows the final output of the algorithm.

This algorithm can be easily implemented so that it
runs in O(nm) time, where n = |V | and m = |E|.
With a little more care, a running time of O(m logn)
can be obtained. This is therefore a polynomial-time
algorithm.

This algorithm computes a maximal set T such that
(V , T) contains no cycle. In other words, (V , T) is a tree.
It is not completely obvious that the output (V , T) is
always an optimal solution, i.e., a tree with minimum
weight. Let us give a nice and instructive proof of this
fact.

3.1 Proof of Correctness

Let (V , T∗) be an optimal tree, and choose T∗ so that
|T∗ ∩ T | is as large as possible. Suppose T∗ �= T .

All spanning trees have exactly |V | − 1 edges, imply-
ing that T∗ \ T �= ∅. Let j ∈ {1, . . . ,m} be the smallest
index with ej ∈ T∗ \ T .

Since the greedy algorithm did not add ej to T ,
there must be a cycle with edge set C ⊆ {ej} ∪ (T ∩
{e1, . . . , ej−1}) and ej ∈ C .
(V , T∗\{ej}) is not connected, so there is a setX ⊂ V

with δ(X) ∩ T∗ = {ej}. (Recall that δ(X) denotes the
set of edges with exactly one endpoint in X.)

Now |C ∩ δ(X)| is even (any cycle enters a set X the
same number of times that it leaves X), so it is at least
two. Let ei ∈ (C∩δ(X))\{ej}. Note that i < j and thus
c(ei) � c(ej).

Let T∗∗ := (T∗ \ {ej})∪{ei}. Then (V , T∗∗) is a tree
with c(T∗∗) = c(T∗) − c(ej) + c(ei) � c(T∗). So T∗∗

is also optimal. But T∗∗ has one more edge in common
with T (the edge ei) than T∗, contradicting the choice
of T∗.

3.2 Generalizations

In general (and for any of the other problems above),
no simple greedy algorithm will always find an optimal
solution.

The reason that the greedy approach works for span-
ning trees is that here the feasible solutions form the
bases of a matroid. Matroids are a well-understood
combinatorial structure that can in fact be character-
ized by the optimality of the greedy algorithm.

Generalizations such as optimization over the inter-
section of two matroids or minimization of submodu-
lar functions (given by an oracle) can also be solved in
polynomial time, with more complicated combinatorial
algorithms.

4 Duality and Min–Max Equations

The relationships between different problems can lead
to many important insights and algorithms. We give
some well-known examples.

4.1 The Max-Flow Min-Cut Theorem

We begin with the maximum-flow problem and its rela-
tion to s–t cuts. An s–t cut is the set of edges leaving
X (denoted by δ+(X)) for a set X ⊂ V with s ∈ X and
t ∉ X.

The total capacity of the edges in such an s–t cut,
denoted by u(δ+(X)), is an upper bound on the value
of any s–t flow f in (G,u). This is because this value
is precisely f(δ+(X))− f(δ−(X)) for every set X con-
taining s but not t, and 0 � f(e) � u(e) for all
e ∈ E.

The famous max-flow min-cut theorem says that the
upper bound is tight: the maximum value of an s–t flow
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equals the minimum capacity of an s–t cut. In other
words, if f is any s–t flow with maximum value, then
there is a set X ⊂ V with s ∈ X, t ∉ X, f(e) = u(e) for
all e ∈ δ+(X), and f(e) = 0 for all e ∈ δ−(X).

Indeed, if no such set exists, we can find a directed
path P from s to t in which each edge e = (v,w) is
either an edge of G with f(e) < u(e) or the reverse:
e′ := (w,v) is an edge ofGwith f(e′) > 0. (This follows
from letting X be the set of vertices that are reachable
from s along such paths.)

Such paths are called augmenting paths because
along such a path we can augment the flow by increas-
ing it on forward edges and decreasing it on back-
ward edges. Some flow algorithms (but generally not
the most efficient ones) start with the all-zero flow and
successively find an augmenting path.

The figure below shows how to augment the flow
shown in section 1.2 by one unit along the path a–c–b–
t (shown in bold on the left). The resulting flow, with
value 8 (shown on the right), is optimal, as is proved by
the s–t cut δ+({s, a, c}) = {(a, b), (c, t)} of capacity 8.
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The above relation also shows that for finding an
s–t cut with minimum capacity, it suffices to solve
the maximum-flow problem. This can also be used to
compute a minimum cut in an undirected graph or to
compute the connectivity of a given graph.

Any s–t flow can be decomposed into flows on s–t
paths, and possibly on cycles (but cyclic flow is redun-
dant as it does not contribute to the value). This decom-
position can be done greedily, and the list of paths
is then sufficient to recover the flow. This shows that
one can restrict to a finite number of feasible solutions
without loss of generality.

4.2 Disjoint Paths

If all capacities are integral (i.e., are integers), one can
find a maximum flow by always augmenting by 1 along
an augmenting path, until none exists anymore. This
is not a polynomial-time algorithm (because the num-
ber of iterations can grow exponentially in the instance
size), but it shows that in this case there is always an

optimal flow that is integral. An integral flow can be
decomposed into integral flows on paths (and possibly
cycles).

Hence, in the special case of unit capacities an inte-
gral flow can be regarded as a set of pairwise edge-
disjoint s–t paths. Therefore, the max-flow min-cut
theorem implies the following theorem, due to Karl
Menger. Let (V , E) be a directed graph and let s, t ∈ V .
Then the maximum number of paths from s to t that
are pairwise edge disjoint equals the minimum number
of edges in an s–t cut.

Other versions of Menger’s theorem exist, for in-
stance, for undirected graphs and for (internally) ver-
tex-disjoint paths.

In general, finding disjoint paths with prescribed
endpoints is difficult; for example, it is np-complete

[I.4 §4.1] to decide whether, in a given directed graph
with vertices s and t, there is a path P from s to t and a
pathQ from t to s such that P andQ are edge disjoint.

4.3 Linear Programming Duality

The maximum-flow problem (and also generalizations
like minimum-cost flows and multicommodity flows)
can be formulated as linear programs in a straightfor-
ward way.

Most other combinatorial optimization problems
involve binary decisions and can be formulated natu-
rally as (mixed-) integer linear programs. We give an
example for the matching problem.

The matching problem can be written as the integer
linear program

max{1 Tx : Ax � 1 , xe ∈ {0,1} ∀e ∈ E},
where A is the vertex-edge-incidence matrix of the
given graph G = (V , E), 1 = (1,1, . . . ,1)T denotes an
appropriate all-one vector (so 1 Tx is just an abbrevia-
tion of

∑
e∈E xe), and � is meant componentwise. The

feasible solutions to this integer linear program are
exactly the incidence vectors of matchings in G.

Solving integer linear programs is NP-hard in gen-
eral (see section 5.2), but linear programs (without inte-
grality constraints) can be solved in polynomial time
(see continuous optimization [IV.11 §3]). This is one
reason why it is often useful to consider the linear
relaxation, which here is

max{1 Tx : Ax � 1 , x � 0},
where 0 and 1 denote appropriate all-zero and all-one
vectors, respectively. The entries of x can now be any
real numbers between 0 and 1.
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The dual linear program (LP) is

min{yT1 : yTA � 1 , y � 0}.
By weak duality, every dual feasible vector y yields an

upper bound on the optimum. (Indeed, if x is the inci-

dence vector of a matchingM and y � 0 with yTA � 1 ,

then |M| = 1 Tx � yTAx � yT1 .)

If G is bipartite, it turns out that these two LPs actu-

ally have integral optimal solutions. The minimal inte-

gral feasible solutions of the dual LP are exactly the

incidence vectors of vertex covers (sets X ⊆ V such

that every edge has at least one endpoint in X).

In other words, in any bipartite graph G, the maxi-

mum size of a matching equals the minimum size of a

vertex cover. This is a theorem of Dénes Kőnig. It can

also be deduced from the max-flow min-cut theorem.

For general graphs, this is not the case, as, for exam-

ple, the triangle (the complete graph on three ver-

tices) shows. Nevertheless, the convex hull of incidence

vectors of matchings in general graphs can also be

described well; it is{
x : Ax � 1 , x � 0,

∑
e∈E[A]

xe �
⌊ |A|

2

⌋
∀A ⊆ V

}
,

where E[A] denotes the set of edges whose endpoints

both belong to A. This was shown by Jack Edmonds

in 1965, who also found a polynomial-time algorithm

for the matching problem. In contrast, the problem of

finding a minimum vertex cover in a given graph is

NP-hard.

5 Dealing with NP-Hard Problems

The other three problems mentioned in section 1 (knap-

sack, traveling salesman, and set covering) are NP-hard:

they have a polynomial-time algorithm if and only if

P = NP.

Since most researchers believe that P ≠ NP, they gave

up looking for polynomial-time algorithms for NP-hard

problems. Algorithms are sought with weaker proper-

ties, for example ones that

• solve interesting special cases in polynomial time;

• run in exponential time but faster than trivial enu-

meration;

• always compute a feasible solution whose value is

at most k times worse than the optimum (so-called

k-approximation algorithms (see section 5.1));

• are efficient or compute good solutions for most

instances, in some probabilistic model;

• are randomized (use random bits in their computa-
tion) and are expected to behave well; or

• run fast and produce good results in practice,
although there is no formal proof (heuristics).

5.1 Approximation Algorithms

From a theoretical point of view, the notion of approx-
imation algorithms has proved to be most fruitful. For
example, for the knapsack problem (section 1.4) there
is an algorithm that for any given instance and any
given number ε > 0 computes a solution at most
1 + ε times worse than the optimum, and whose run-
ning time is proportional to n2/ε. For the traveling

salesman problem [VI.18] (see section 1.5), there is a
3
2 -approximation algorithm.

For set covering (section 1.6) there is no constant-
factor approximation algorithm unless P = NP. But con-
sider the special case where we ask for a minimum ver-
tex cover in a given graphG; here, U is the edge set ofG
and Si = δ(vi) for i = 1, . . . , n, where V = {v1, . . . , vn}
is the vertex set of G. Here, we can use the above-
mentioned fact that the size of any matching in G is
a lower bound. Indeed, if we take any (inclusion-wise)
maximal matching M (e.g., one found by the greedy
algorithm), then the 2|M| endpoints of the edges in M
form a vertex cover. As |M| is a lower bound on the
optimum, this is a simple 2-approximation algorithm.

5.2 Integer Linear Optimization

Most classical combinatorial optimization problems
can be formulated as integer linear programs

min{cTx : Ax � b, x ∈ Zn}.
This includes all problems discussed in this chapter,
except the maximum-flow problem, which is in fact a
linear program. The variables are often restricted to 0
or 1. Sometimes, some variables are continuous, while
others are discrete:

min{cTx : Ax + By � d, x ∈ Rm, y ∈ Zn}.
Such problems are called mixed-integer linear pro-
grams.

Discrete optimization comprises combinatorial opti-
mization but also general (mixed-) integer optimization
problems with no special combinatorial structure.

For general (mixed-) integer linear optimization all
known algorithms have exponential worst-case run-
ning time. The most successful algorithms in prac-
tice use a combination of cutting planes and branch
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and bound (see sections 6.2 and 6.7). These are imple-
mented in advanced commercial software. Since many
practical problems (including almost all classical com-
binatorial optimization problems) can be described as
(mixed-) integer linear programs, such software is rou-
tinely used in practice to solve small and medium-sized
instances of such problems. However, combinatorial
algorithms that exploit the specific structure of the
given problem are normally superior and are often the
only choice for very large instances.

6 Techniques

Since good algorithms have to exploit the structure
of the problem, every problem requires different tech-
niques. Some techniques are quite general and can be
applied for a large variety of problems, but in many
cases they will not work well. Nevertheless, we list the
most important techniques that have been applied suc-
cessfully to several combinatorial optimization prob-
lems.

6.1 Reductions

Reducing an unknown problem to a known (and solved)
problem is of course the most important technique. To
prove hardness, one proceeds the other way round: we
reduce a problem that we know to be hard to a new
problem (that must then also be hard). If reductions
work in both ways, problems can actually be regarded
to be equivalent.

6.2 Enumeration Techniques

Some problems can be solved by skillful enumeration.
Dynamic programming is such a technique. It works
if optimal solutions arise from optimal solutions to
“smaller” problems by simple operations. dijkstra’s

shortest-path algorithm [VI.10] is a good example.
Many algorithms on trees use dynamic programming.

Branch and bound is another well-known enumera-
tion technique. Here, one enumerates only parts of a
decision tree because lower and upper bounds tell us
that the unvisited parts cannot contain a better solu-
tion. How well this works mainly depends on how good
the available bounds are.

6.3 Reducing or Decomposing the Instance

Often, an instance can be preprocessed by removing
irrelevant parts. In other cases one can compute a

smaller instance or an instance with a certain struc-
ture whose solution implies a solution of the original
instance.

Another well-known technique is divide and con-

quer [I.4 §3]. In some problems, instances can be
decomposed/partitioned into smaller instances whose
solutions can then be combined in some way.

6.4 Combinatorial or Algebraic Structures

If the instances have a certain structure (like planarity
or certain connectivity or sparsity properties of graphs,
cross-free set families, matroid structures, submodular
functions, etc.), this must usually be exploited.

Also, optimal solutions (of relaxations or the origi-
nal problem) often have a useful structure. Sometimes
(e.g., by sparsification or uncrossing techniques) such a
structure can be obtained even if it is not there to begin
with.

Many algorithms compute and use a combinatorial
structure as a main tool. This is often a graph struc-
ture, but sometimes an algebraic view can reveal cer-
tain properties. For instance, the Laplacian matrix of
a graph has many useful properties. Sometimes sim-
ple properties, like parity, can be extremely useful and
elegant.

6.5 Primal–Dual Relations

We discussed linear programming duality, a key tool for
many algorithms, above. Lagrangian duality can also
be useful for nonlinear problems, and sometimes other
kinds of duality, like planar duality or dual matroids,
are very useful.

6.6 Improvement Techniques

It is natural to start with some solution and iteratively
improve it. The greedy algorithm and finding augment-
ing paths can be considered as special cases. In general,
some way of measuring progress is needed so that the
algorithm will terminate.

The general principle of starting with any feasible
solution and iteratively improving it by small local
changes is called local search. Local-search heuristics
are often quite successful in practice, but in many cases
no reasonable performance guarantees can be given.

6.7 Relaxation and Rounding

Relaxations can arise combinatorially (by allowing solu-
tions that do not have a certain property that was orig-
inally required for feasible solutions) or by omitting
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integrality constraints of a description as an optimiza-

tion problem over variables in Rn.

Linear programming formulations can imply polyno-

mial-time algorithms even if they have exponentially

many variables or constraints (by the equivalence of

optimization and separation). Linear relaxations can

be strengthened by adding further linear constraints,

called cutting planes.

One can also consider nonlinear relaxations. In par-

ticular, semidefinite relaxations have been used for

some approximation algorithms.

Of course, after solving a relaxation, the originally

required property must be restored somehow. If a frac-

tional solution is made integral, this is often called

rounding. Note that rounding is used here in a gen-

eral sense (deriving an integral solution from a frac-

tional one), and not specifically meaning rounding to

the nearest integer. Sophisticated rounding algorithms

for various purposes have been developed.

6.8 Scaling and Rounding

Often, a problem becomes easier if the numbers in the

instance are small integers. This can be achieved by

scaling and rounding, of course at the cost of a loss

of accuracy. The knapsack problem (see section 1.4)

is a good example; the best algorithms use scaling

and rounding and then solve the rounded instance by

dynamic programming.

In some cases a solution of the rounded instance can

be used in subsequent iterations to obtain more accu-

rate, or even exact, solutions of the original instance

more quickly.

6.9 Geometric Techniques

The role that geometric techniques play is also becom-

ing more important. Describing (the convex hull of) fea-

sible solutions by a polyhedron is a standard technique.

Planar embeddings of graphs (if they exist) can often be

exploited in algorithms. Approximating a certain met-

ric space by a simpler one is an important technique in

the design of approximation algorithms.

6.10 Probabilistic Techniques

Sometimes, a probabilistic view makes problems much

easier. For example, a fractional solution can be viewed

as a convex combination of extreme points, or as a

probability distribution. Arguing over the expectation

of some random variables can lead to simple algo-
rithms and proofs. Many randomized algorithms can
be derandomized, but this often complicates matters.

Further Reading
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IV.39 Algebraic Geometry
Frank Sottile

Physical objects and constraints may be modeled by
polynomial equations and inequalities. For this reason,
algebraic geometry, the study of solutions to systems
of polynomial equations, is a tool for scientists and
engineers. Moreover, relations between concepts aris-
ing in science and engineering are often described by
polynomials. Whatever their source, once polynomials
enter the picture, notions from algebraic geometry—
its theoretical base, its trove of classical examples, and
its modern computational tools—may all be brought to
bear on the problem at hand.

As a part of applied mathematics, algebraic geometry
has two faces. One is an expanding list of recurring
techniques and examples that are common to many
applications, and the other consists of topics from
the applied sciences that involve polynomials. Link-
ing these two aspects are algorithms and software for
algebraic geometry.

1 Algebraic Geometry for Applications

We present here some concepts and objects that are
common in applications of algebraic geometry.

1.1 Varieties and Their Ideals

The fundamental object in algebraic geometry is a vari-
ety (or an affine variety), which is a set in the vector
space Cn (perhaps restricted to Rn for an application)
defined by polynomials,

V(S) := {x ∈ Cn | f(x) = 0 ∀f ∈ S},
where S ⊂ C[x] = C[x1, . . . , xn] is a set of poly-
nomials. Common geometric figures—points, lines,
planes, circles, conics, spheres, etc.—are all algebraic
varieties. Questions about everyday objects may there-
fore be treated with algebraic geometry.
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The real points of the line x + y − 1 = 0 are shown

on the left-hand side of the figure below:

y

x

x + y – 1 = 0
0
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1

Its complex points are the Argand plane C embedded

obliquely in C2.

We may compactify algebraic varieties by adding

points at infinity. This is done in projective space Pn,

which is the set of lines through the origin in Cn+1

(or RPn for Rn+1). This may be thought of as Cn with

a Pn−1 at infinity, giving directions of lines in Cn.

The projective line P1 is the Riemann sphere on the

right-hand side of the above figure.

Points of Pn are represented by (n + 1)-tuples of

homogeneous coordinates, where [x0, . . . , xn] = [λx0,
. . . , λxn] if λ ≠ 0 and at least one xi is nonzero. Pro-

jective varieties are subsets of Pn defined by homoge-

neous polynomials in x0, . . . , xn.

To a subset Z of a vector space we associate the set

of polynomials that vanish on Z :

I(Z) := {f ∈ C[x] | f(z) = 0 ∀z ∈ Z}.

Let f ,g,h ∈ C[x], with f , g vanishing on Z . Both f +g
and h·f then vanish on Z , which implies that I(Z) is an

ideal of the polynomial ring C[x1, . . . , xn]. Similarly, if

I is the ideal generated by a set S of polynomials, then

V(S) = V(I).
Both V and I reverse inclusions with S ⊂ I(V(S)) and

Z ⊂ V(I(Z)), with equality when Z is a variety. Thus we

have the correspondence

{ideals} V−−−→←−−−I {varieties}

linking algebra and geometry. By Hilbert’s Nullstellen-

satz, this correspondence is bijective when restricted to

radical ideals (fN ∈ I ⇒ f ∈ I). This allows ideas and

techniques to flow in both directions and is the source

of the power and depth of algebraic geometry.

The fundamental theorem of algebra asserts that a

nonconstant univariate polynomial has a complex root.

The Nullstellensatz is a multivariate version, for it is

equivalent to the statement that, if I � C[x] is a proper

ideal, then V(I) ≠∅.

It is essentially for this reason that algebraic geom-
etry works best over the complex numbers. Many appli-
cations require answers whose coordinates are real
numbers, so results from algebraic geometry are often
filtered through the lens of the real numbers when used
in applications. While this restriction to R poses signifi-
cant challenges for algebraic geometers, the generaliza-
tion from R to C and then on to projective space often
makes the problems easier to solve. The solution to this
useful algebraic relaxation is often helpful in treating
the original application.

1.2 Parametrization and Rationality

Varieties also occur as images of polynomial maps. For
example, the map t  → (t2 −1, t3 − t) = (x,y) has as its
image the plane cubic y2 = x3 + x2:

Given such a parametric representation of a variety
(or any other explicit description), the implicitization
problem asks for its ideal.

The converse problem is more subtle: can a given
variety be parametrized? Euclid and Diophantus dis-
covered the rational parametrization of the unit circle
x2 +y2 = 1, t  → (x,y), where

x = 2t
1 + t2 and y = 1 − t2

1 + t2 . (1)

This is the source of both Pythagorean triples and the
rationalizing substitution z = tan( 1

2θ) of integral cal-
culus. Homogenizing by setting t = a/b, (1) gives
an isomorphism between P1 (with coordinates [a, b])
and the unit circle. Translating and scaling gives an
isomorphism between P1 and any circle.

On the other hand, the cubic y2 = x3 − x (on the
left-hand side below) has no rational parametrization:

This is because the corresponding cubic in P2 is a curve
of genus one (an elliptic curve), which is a torus (see
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the right-hand side above), and there is no nonconstant
map from the Riemann sphere P1 to the torus. However,
(x,y)  → x sends the cubic curve to P1 and is a two-to-
one map except at the branch points {−1,0,1,∞}. In
fact, any curve with a two-to-one map to P1 having four
branch points has genus one.

A smooth biquadratic curve also has genus one. The
product P1 × P1 is a compactification of C2 that is dif-
ferent from P2. Suppose that C ⊂ P1 × P1 is defined
by an equation that is separately quadratic in the two
variables s and t,

a00 + a10s + a01t + · · · + a22s2t2 = 0,

where s and t are coordinates for the P1 factors. Ana-
lyzing the projection onto one P1 factor, one can show
that the map is two-to-one, except at four branch
points, and so C has genus one.

1.3 Toric Varieties

Varieties parametrized by monomials (toric varieties)
often arise in applications, and they may be completely
understood in terms of the geometry and combinator-
ics of the monomials.

Let C∗ be the nonzero complex numbers. An inte-
ger vector α = (a1, . . . , ad) ∈ Zd is the exponent vec-
tor of a Laurent monomial tα := ta1

1 · · · tadd , where
t = (t1, . . . , td) ∈ (C∗)d is a d-tuple of nonzero com-
plex numbers. Let A = {α0, . . . , αn} ⊂ Zd be a finite
set of integer vectors. The toric variety XA is then the
closure of the image of the map

ϕA : (C∗)d / t  −→ [tα0 , tα1 , . . . , tαn] ∈ Pn.

The toric variety XA has dimension equal to the dimen-
sion of the affine span of A, and it has an action of
(C∗)d (via the map ϕA) with a dense orbit (the image
of ϕA).

The implicitization problem for toric varieties is ele-
gantly solved. Assume that A lies on an affine hyper-
plane, so that there is a vector w ∈ Rd with w · αi =
w ·αj(≠ 0) for all i, j, where “·” is the dot product. For
v ∈ Rn+1, write Av for

∑
i αivi.

Theorem 1. The homogeneous ideal of XA is spanned
by binomials xu − xv , where Au = Av .

The assumption that we have w with w ·αi = w ·αj
for all i, j is mild. Given any A, if we append a new
(d + 1)th coordinate of 1 to each αi and set w =
(0, . . . ,0,1) ∈ Rd+1, then the assumption is satisfied
and we obtain the same projective variety XA.

Applications also use the tight relation between XA
and the convex hull ΔA of A, which is a polytope
with integer vertices. The points of XA with nonneg-
ative coordinates form its nonnegative part X+

A. This is
identified with ΔA through the algebraic moment map,
πA : Pn ��� Pd, which sends a point x to Ax. (The bro-
ken arrow means that the map is not defined every-
where.) By Birch’s theorem from statistics, πA maps
X+

A homeomorphically to ΔA.

There is a second homeomorphism βA : ΔA
∼−→ X+

A
given by polynomials. The polytope ΔA is defined by
linear inequalities,

ΔA := {x ∈ Rd | -F(x) � 0},
where F ranges over the codimension-one faces of ΔA
and -F(F) ≡ 0, with the coefficients of -F coprime
integers. For each α ∈ A, set

βα(x) :=
∏
F
-F (x)-F (α), (2)

which is nonnegative on ΔA. For x ∈ ΔA, set

βA(x) := [βα0(x), . . . , βαn(x)] ∈ X+
A.

While πA and βA are homeomorphisms between the
same spaces, they are typically not inverses.

A useful variant is to translate XA by a nonzero
weight, ω = (ω0, . . . ,ωn) ∈ (C∗)n+1,

XA,ω := {[ω0x0, . . . ,ωnxn] | x ∈ XA}.
This translated toric variety is spanned by binomials
ωvxu −ωuxv with Au = Av as in Theorem 1, and it
is parametrized by monomials via

ϕA,ω(t) = (ω0tα0 , . . . ,ωntαn).

When the weightsωi are positive real numbers, Birch’s
theorem holds, πA : X+

A,ω
∼−→ ΔA, and we have the

parametrization βA,ω : ΔA → X+
A,ω, where the compo-

nents of βA,ω are ωiβαi .

Example 2. When A consists of the standard unit
vectors (1,0, . . . ,0), . . . , (0, . . . ,0,1) in Rn+1, the toric
variety is the projective space Pn, and ϕA gives the
usual homogeneous coordinates [x0, . . . , xn] for Pn.
The nonnegative part of Pn is the convex hull of A,
which is the standard n-simplex, n, and πA = βA is
the identity map.

Example 3. Let A = {0,1, . . . , n} so that ΔA = [0, n],
and choose weightsωi =

(
n
i

)
. Then XA,ω is the closure

of the image of the map

t  →
[

1, nt,
(
n
2

)
t2, . . . , ntn−1, tn

]
∈ Pn,
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which is the (translated) moment curve. Its nonnegative

part X+
A,ω is the image of [0, n] under the map βA,ω

whose components are

βi(x) =
1
nn

(
n
i

)
xi(n− x)n−i.

Replacing x by ny gives the Bernstein polynomial

βi,n(y) =
(
n
i

)
yi(1 −y)n−i, (3)

and thus the moment curve is parametrized by the

Bernstein polynomials. Because of this, we call the

functions ωiβαi (2) generalized Bernstein polynomials.

The composition πA ◦ βA,ω(x) is

1
nn

n∑
i=0

i
(
n
i

)
xi(n− x)n−i

= nx
nn

n∑
i=1

(
n− 1
i− 1

)
xi−1(n− x)n−i = x,

as the last sum is (x+(n−x))n−1. Similarly, (1/n)πA◦
β(y) = y , where β is the parametrization by the Bern-

stein polynomials. The weightsωi =
(
n
i

)
are essentially

the unique weights for which πA ◦ βA,ω(x) = x.

Example 4. For positive integers m, n consider the

map ϕ : Cm × Cn → P(Cm×n) defined by

(x,y)  → [xiyj | i = 1, . . . ,m, j = 1, . . . , n].

Its image is the Segre variety, which is a toric variety,

as the map ϕ is ϕA, where A is

{ei + fj | i = 1, . . . ,m, j = 1, . . . , n} ⊂ Zm ⊕ Zn.

Here, {ei} and {fj} are the standard bases for Zm and

Zn, respectively.

If zij are the coordinates of Cm×n, then the Segre

variety is defined by the binomial equations

zijzkl − zilzkj =
∣∣∣∣∣zij zil
zkj zkl

∣∣∣∣∣ .
Identifying Cm×n with m × n matrices shows that the

Segre variety is the set of rank-one matrices.

Other common toric varieties include the Veronese

variety, where A is An,d := n d ∩ Zd+1, and the

Segre–Veronese variety, where A is Am,d×An,e. When

d = e = 1, A consists of the integer vectors in them×n
rectangle

A = {(i, j) | 0 � i �m, 0 � j � n}.

2 Algorithms for Algebraic Geometry

Mediating between theory and examples and facilitat-
ing applications are algorithms developed to study,
manipulate, and compute algebraic varieties. These
come in two types: exact symbolic methods and approx-
imate numerical methods.

2.1 Symbolic Algorithms

The words algebra and algorithm share an Arabic root,
but they are connected by more than just their his-
tory. When we write a polynomial—as a sum of mono-
mials, say, or as an expression such as a determi-
nant of polynomials—that symbolic representation is
an algorithm for evaluating the polynomial.

Expressions for polynomials lend themselves to algo-
rithmic manipulation. While these representations and
manipulations have their origin in antiquity, and meth-
ods such as Gröbner bases predate the computer age,
the rise of computers has elevated symbolic compu-
tation to a key tool for algebraic geometry and its
applications.

Euclid’s algorithm, Gaussian elimination, and Sylves-
ter’s resultants are important symbolic algorithms that
are supplemented by universal symbolic algorithms
based on Gröbner bases. They begin with a term order
≺, which is a well-ordering of all monomials that is
consistent with multiplication. For example, ≺ could
be the lexicographic order in which xu ≺ xv if the
first nonzero entry of the vector v −u is positive. A
term order organizes the algorithmic representation
and manipulation of polynomials, and it is the basis
for the termination of algorithms.

The initial term in≺f of a polynomial f is its term
cαxα with the ≺-largest monomial in f . The initial
ideal in≺I of an ideal I is the ideal generated by ini-
tial terms of polynomials in I. This monomial ideal is a
well-understood combinatorial object, and the passage
to an initial ideal preserves much information about I
and its variety.

A Gröbner basis for I is a finite set G ⊂ I of poly-
nomials whose initial terms generate in≺I. This set G
generates I and facilitates the transfer of information
from in≺I back to I. This information may typically
be extracted using linear algebra, so a Gröbner basis
essentially contains all the information about I and its
variety.

Consequently, a bottleneck in this approach to sym-
bolic computation is the computation of a Gröbner
basis (which has high complexity due in part to its
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information content). Gröbner basis calculation also

appears to be essentially serial; no efficient parallel

algorithm is known.

The subject began in 1965 when Buchberger gave

an algorithm to compute a Gröbner basis. Decades of

development, including sophisticated heuristics and

completely new algorithms, have led to reasonably effi-

cient implementations of Gröbner basis computation.

Many algorithms have been devised and implemented

to use a Gröbner basis to study a variety. All of this

is embedded in freely available software packages that

are revolutionizing the practice of algebraic geometry

and its applications.

2.2 Numerical Algebraic Geometry

While symbolic algorithms lie on the algebraic side

of algebraic geometry, numerical algorithms, which

compute and manipulate points on varieties, have a

strongly geometric flavor.

These numerical algorithms rest upon Newton’s

method for refining an approximate solution to a sys-

tem of polynomial equations. A system F = (f1, . . . , fn)
of polynomials in n variables is a map F : Cn →
Cn with solutions F−1(0). We focus on systems with

finitely many solutions. A Newton iteration is the map

NF : Cn → Cn, where

NF(x) = x −DF−1
x (F(x)),

with DFx the Jacobian matrix of partial derivatives of

F at x. If ξ ∈ F−1(0) is a solution to F with DFξ invert-

ible, then when x is sufficiently close to ξ, NF(x) is

closer still, in that it has twice as many digits in com-

mon with ξ as does x. Smale showed that “sufficiently

close” may be decided algorithmically, which can allow

the certification of output from numerical algorithms.

Newton iterations are used in numerical continu-

ation. For a polynomial system Ht depending on a

parameter t, the solutions H−1
t (0) for t ∈ [0,1] form a

collection of arcs. Given a point (xt, t) of some arc and

a step δt , a predictor is called to give a point (x′, t+δt)
that is near to the same arc. Newton iterations are then

used to refine this to a point (xt+δt , t + δt) on the arc.

This numerical continuation algorithm can be used to

trace arcs from t = 0 to t = 1.

We may use continuation to find all solutions to a sys-

tem F consisting of polynomials fi of degree d. Define

a new system Ht = (h1, . . . , hn) by

hi := tfi + (1 − t)(xdi − 1).

At t = 0, this is xdi − 1, whose solutions are the dth
roots of unity. When F is general, H−1

t (0) consists of
dn arcs connecting these known solutions at t = 0 to
the solutions of F−1(0) at t = 1. These may be found
by continuation.

While this Bézout homotopy illustrates the basic idea,
it has exponential complexity and may not be efficient.
In practice, other more elegant and efficient homotopy
algorithms are used for numerically solving systems of
polynomials.

These numerical methods underlie numerical alge-
braic geometry, which uses them to manipulate and
study algebraic varieties on a computer. The subject
began when Sommese, Verschelde, and Wampler intro-
duced its fundamental data structure of a witness
set, as well as algorithms to generate and manipulate
witness sets.

Suppose we have a variety V ⊂ Cn of dimension
n − d that is a component of the zero set F−1(0) of
d polynomials F = (f1, . . . , fd). A witness set for V con-
sists of a general affine subspace L ⊂ Cn of dimen-
sion d (given by d affine equations) and (approxima-
tions to) the points of V ∩ L. The points of V ∩ L may
be numerically continued as L moves to sample points
from V .

An advantage of numerical algebraic geometry is that
path tracking is inherently parallelizable, as each of the
arcs inH−1

t (0)may be tracked independently. This par-
allelism is one reason why numerical algebraic geom-
etry does not face the complexity affecting symbolic
methods. Another reason is that by computing approx-
imate solutions to equations, complete information
about a variety is never computed.

3 Algebraic Geometry in Applications

We illustrate some of the many ways in which algebraic
geometry arises in applications.

3.1 Kinematics

Kinematics is concerned with motions of linkages (rigid
bodies connected by movable joints). While its origins
were in the simple machines of antiquity, its impor-
tance grew with the age of steam and today it is fun-
damental to robotics [VI.14]. As the positions of a
linkage are solutions to a system of polynomial equa-
tions, kinematics has long been an area of application
of algebraic geometry.

An early challenge important to the development of
the steam engine was to find a linkage with a motion
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along a straight line. Watt discovered a linkage in 1784

that approximated straight line motion (tracing a curve

near a flex), and in 1864 Peaucellier gave the first link-

age with a true straight line motion (based on circle

inversion):

B

P

(When the bar B is rotated about its anchor point, the

point P traces a straight line.)

Cayley, Chebyshev, Darboux, Roberts, and others

made contributions to kinematics in the nineteenth

century. The French Academy of Sciences recognized

the importance of kinematics, posing the problem of

determining the nontrivial mechanisms with a motion

constrained to lie on a sphere for its 1904 Prix Vaillant,

which was awarded to Borel and Bricard for their partial

solutions.

The four-bar linkage consists of four bars in the plane

connected by rotational joints, with one bar fixed. A

triangle is erected on the coupler bar opposite the fixed

bar, and we wish to describe the coupler curve traced

by the apex of the triangle:

C

B

B'

To understand the motion of this linkage, note that if

we remove the coupler bar C, the bars B and B′ swing

freely, tracing two circles, each of which we parame-

terize by P1 as in (1). The coupler bar constrains the

endpoints of bars B and B′ to lie a fixed distance apart.

In the parameters s, t of the circles and if b, b′, c
are the lengths of the corresponding bars, the coupler

constraint gives the equation

c2 =
(
b

1 − s2

1 + s2
− b′ 1 − t2

1 + t2
)2

+
(
b

2s
1 + s2

− b′ 2t
1 + t2

)2

= b2 + b′2 − 2bb′
(1 − s2)(1 − t2)+ 4st
(1 + s2)(1 + t2) .

Clearing denominators gives a biquadratic equation in
the variety P1 × P1 that parametrizes the rotations of
bars B and B′. The coupler curve is therefore a genus-
one curve and is irrational. The real points of a genus-
one curve have either one or two components, which
corresponds to the linkage having one or two assembly
modes; to reach all points of a coupler curve with two
components requires disassembly of the mechanism.

Roberts and Chebyshev discovered that there are
three linkages (called Roberts cognates) with the same
coupler curve, and they may be constructed from one
another using straightedge and compass. The nine-
point path synthesis problem asks for the four-bar link-
ages whose coupler curve contains nine given points.
Morgan, Sommese, and Wampler used numerical con-
tinuation to solve the equations, finding 4326 distinct
linkages in 1442 triplets of Roberts cognates. Here is
one linkage that solves this problem for the indicated
nine points:

Such applications in kinematics drove the early devel-
opment of numerical algebraic geometry.

3.2 Geometric Modeling

Geometric modeling uses curves and surfaces to repre-
sent objects on a computer for use in industrial design,
manufacture, architecture, and entertainment. These
applications of computer-aided geometric design and
computer graphics are profoundly important to the
world economy.

Geometric modeling began around 1960 in the work
of de Casteljau at Citroën, who introduced what are
now called Bézier curves (they were popularized by
Bézier at Renault) for use in automobile manufacturing.

Bézier curves (along with their higher-dimensional
analogues rectangular tensor-product and triangular
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Bézier patches) are parametric curves (and surfaces)
that have become widely used for many reasons, includ-
ing ease of computation and the intuitive method to
control shape by manipulating control points. They
begin with Bernstein polynomials (3), which are non-
negative on [0,1]. Expanding 1n = (t+ (1− t))n shows
that

1 =
n∑
i=1

βi,n(t).

Given control points b0, . . . ,bn in R2 (or R3), we have
the Bézier curve

[0,1] / t  −→
n∑
i=0

biβi,n(t). (4)

Here are two cubic (n = 3) Bézier curves in R2:

b 0

b 1
b 2

b 3 b 0

b 2
b 1

b 3

By (4), a Bézier curve is the image of the nonnega-
tive part of the translated moment curve of example 3
under the map defined on projective space by

[x0, . . . , xn]  →
n∑
i=0

xibi.

On the standard simplex n, this is the canonical map
to the convex hull of the control points.

The tensor product patch of bidegree (m,n) has
basis functions

βi,m(s)βj,m(t)

for i = 0, . . . ,m and j = 0, . . . , n. These are functions
on the unit square. Control points

{bi,j | i = 0, . . . ,m, j = 0, . . . , n} ⊂ R3

determine the map

(s, t)  −→
∑
bijβi,m(s)βj,n(t),

whose image is a rectangular patch.

Bézier triangular patches of degree d have basis
functions

βi,j;d(s, t) =
d!

i!j!(d− i− j)! s
itj(1 − s − t)d−i−j

for 0 � i, j with i + j � d. Again, control points give
a map from the triangle with image a Bézier triangular
patch. Here are two surface patches:

These patches correspond to toric varieties, with ten-
sor product patches coming from Segre–Veronese sur-
faces and Bézier triangles from Veronese surfaces. The
basis functions are the generalized Bernstein polyno-
mials ωiβαi of section 1.3, and this explains their
shape as they are images of ΔA, which is a rectangle
for the Segre–Veronese surfaces and a triangle for the
Veronese surfaces.

An important question is to determine the intersec-
tion of two patches given parametrically as F(x) and
G(x) for x in some domain (a triangle or rectangle).
This is used for trimming the patches or drawing the
intersection curve. A common approach is to solve the
implicitization problem for G, giving a polynomial g
which vanishes on the patch G. Then g(F(x)) defines
the intersection in the domain of F . This application
has led to theoretical and practical advances in algebra
concerning resultants and syzygies.

3.3 Algebraic Statistics

Algebraic statistics applies tools from algebraic geom-
etry to questions of statistical inference. This is possi-
ble because many statistical models are (part of) alge-
braic varieties, or they have significant algebraic or
geometric structures.

Suppose that X is a discrete random variable with
n+ 1 possible states, 0, . . . , n (e.g., the number of tails
observed in n coin flips). If pi is the probability that X
takes value i,

pi := P(X = i),
then p0, . . . , pn are nonnegative and sum to 1. Thus p
lies in the standardn-simplex, n. Here are two views
of it when n = 2:

p 0

p 1

p 2 p 0

p 1

p 2

A statistical model M is a subset of n. If the point
(p0, . . . , pn) ∈ M , then we may think of X as being
explained by M .
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Example 5. Let X be a discrete random variable whose
states are the number of tails in n flips of a coin with a
probability t of landing on tails and 1 − t of heads. We
may calculate that

P(X = i) =
(
n
i

)
ti(1 − t)n−i,

which is the Bernstein polynomial βi,n (3) evaluated at
the parameter t. We call X a binomial random variable
or binomial distribution. The set of binomial distribu-
tions as t varies gives the translated moment curve of
example 3 parametrized by Bernstein polynomials. This
curve is the model for binomial distributions. Here is a
picture of this curve when n = 2:

p 0

p 1

p 2

Example 6. Suppose that we have discrete random
variables X and Y with m and n states, respectively.
Their joint distribution hasmn states (cells in a table or
a matrix) and lies in the simplex mn−1. The model of
independence consists of all distributions p ∈ mn−1

such that

P(X = i, Y = j) = P(X = i)P(Y = j). (5)

It is parametrized by m−1 × n−1 (probability sim-
plices for X and Y ), and (5) shows that it is the nonneg-
ative part of the Segre variety of example 4. The model
of independence therefore consists of those joint prob-
ability distributions that are rank-one matrices.

Other common statistical models called discrete
exponential families or toric models are also the non-
negative part X+

A,ω of some toric variety. For these, the
algebraic moment map πA : n → ΔA (or u  → Au) is
a sufficient statistic. For the model of independence, Au
is the vector of row and column sums of the table u.

Suppose that we have data from N independent
observations (or draws), each from the same distribu-
tion p(t) from a model M , and we wish to estimate the
parameter t best explaining the data. One method is to
maximize the likelihood (the probability of observing
the data given a parameter t). Suppose that the data are
represented by a vector u of counts, where ui is how
often state iwas observed in theN trials. The likelihood
function is

L(t|u) =
(
N
u

) n∏
i=0

pi(t)ui ,

where
(
N
u

)
is the multinomial coefficient.

Suppose thatM is the binomial distribution of exam-

ple 5. It suffices to maximize the logarithm of L(t | u),
which is

C +
n∑
i=0

ui(i log t + (n− i) log(1 − t)),

where C is a constant. By calculus, we have

0 = 1
t

n∑
i=0

iui +
1

1 − t
n∑
i=0

(n− i)ui.

Solving, we obtain that

t := 1
n

n∑
i=0

i
ui
N

(6)

maximizes the likelihood. If û := (u/N) ∈ n is the

point corresponding to our data, then (6) is the nor-

malized algebraic moment map (1/n)πA of example 3

applied to û. For a general toric model X+
A,ω ⊂ n,

and likelihood is maximized at the parameter t satisfy-

ing πA◦βA,ω(t) = πA(û). An algebraic formula exists

for the parameter that maximizes likelihood exactly

when πA and βA,ω are inverses.

Suppose that we have data u as a vector of counts

as before and a model M ⊂ n and we wish to test

the null hypothesis that the data u come from a dis-

tribution in M . Fisher’s exact test uses a score function
n → R� that is zero exactly on M and computes

how likely it is for data v to have a higher score than

u, when v is generated from the same probability dis-

tribution as u. This requires that we sample from the

probability distribution of such v .

For a toric model X+
A,ω, this is a probability distribu-

tion on the set of possible data with the same sufficient

statistics:

Fu := {v | Au = Av}.

For a parameter t, this distribution is

L(v | v ∈ Fu, t) =
(
N
v

)
ωvtAv∑

w∈Fu
(
N
w

)
ωwtAw

=
(
N
v

)
ωv∑

w∈Fu
(
N
w

)
ωw

, (7)

as Av = Aw for v,w ∈ F(u).
This sampling may be accomplished using a random

walk on the fiber Fu with stationary distribution (7).

This requires a connected graph on Fu. Remarkably,

any Gröbner basis for the ideal of the toric variety XA
gives such a graph.
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3.4 Tensor Rank

The fundamental invariant of an m × n matrix is its
rank. The set of all matrices of rank at most r is defined
by the vanishing of the determinants of all (r + 1) ×
(r+1) submatrices. From this perspective, the simplest
matrices are those of rank one, and the rank of a matrix
A is the minimal number of rank-one matrices that sum
to A.

An m × n matrix A is a linear map V2 = Cn → V1 =
Cm. If it has rank one, it is the composition

V2
v2−	 C

v1↪−→ V1

of a linear function v2 on V2 (v2 ∈ V∗
2 ) and an inclusion

given by 1  → v1 ∈ V1. Thus, A = v1 ⊗ v2 ∈ V1 ⊗ V∗
2 , as

this tensor space is naturally the space of linear maps
V2 → V1. A tensor of the form v1 ⊗ v2 has rank one,
and the set of rank-one tensors forms the Segre variety
of example 4.

singular value decomposition [II.32] writes a
matrix A as a sum of rank-one matrices of the form

A =
rank(A)∑
i=1

σiv1,i ⊗ v2,i, (8)

where {v1,i} and {v2,i} are orthonormal and σ1 �
· · · � σrank(A) > 0 are the singular values of A. Often,
only the relatively few terms of (8) with largest singu-
lar values are significant, and the rest are noise. Letting
Alr be the sum of terms with large singular values and
Anoise be the sum of the rest, then A is the sum of the
low-rank matrix Alr plus noise Anoise.

A k-way tensor (k-way table) is an element of the
tensor space V1 ⊗ · · · ⊗ Vk, where each Vi is a finite-
dimensional vector space. A rank-one tensor has the
form v1 ⊗ · · · ⊗ vk, where vi ∈ Vi. These form a
toric variety, and the rank of a tensor v is the minimal
number of rank-one tensors that sum to v .

The (closure of) the set of rank-r tensors is the r th
secant variety. When k = 2 (matrices), the set of deter-
minants of all (r + 1)× (r + 1) submatrices solves the
implicitization problem for the r th secant variety. For
k > 2 there is not yet a solution to the implicitization
problem for the r th secant variety.

Tensors are more complicated than matrices. Some
tensors of rank greater than r lie in the r th secant vari-
ety, and these may be approximated by low-rank (rank-
r ) tensors. Algorithms for tensor decomposition gener-
alize singular value decomposition. Their goal is often
an expression of the form v = vlr + vnoise for a tensor
v as the sum of a low-rank tensor vlr plus noise vnoise.

Some mixture models in algebraic statistics are
secant varieties. Consider an inhomogeneous popula-
tion in which the fraction θi obeys a probability dis-
tribution p(i) from a model M . The distribution of
data collected from this population then behaves in the
same was as the convex combination

θ1p(1) + θ2p(2) + · · · + θrp(r),
which is a point on the r th secant variety of M .

Theoretical and practical problems in complexity
may be reduced to knowing the rank of specific tensors.
Matrix multiplication gives a nice example of this.

Let A = (aij) and B = (bij) be 2 × 2 matrices. In the
usual multiplication algorithm, C = AB is

cij = ai1b1j + ai2b2j , i, j = 1,2. (9)

This involves eight multiplications. For n×nmatrices,
the algorithm uses n3 multiplications.

Strassen discovered an alternative that requires only
seven multiplications (see the formulas in algorithms

[I.4 §4]). IfA and B are 2k×2kmatrices with k×k blocks
aij and bij , then these formulas apply and enable the
computation of AB using 7k3 multiplications. Recur-
sive application of this idea enables the multiplication
of n×n matrices using only nlog2 7 � n2.81 multiplica-
tions. This method is used in practice to multiply large
matrices.

We interpret Strassen’s algorithm in terms of ten-
sor rank. The formula (9) for C = AB is a tensor
μ ∈ V ⊗ V∗ ⊗ V∗, where V = M2×2(C). Each multi-
plication is a rank-one tensor, and (9) exhibits μ as a
sum of eight rank-one tensors, so μ has rank at most
eight. Strassen’s algorithm shows that μ has rank at
most seven. We now know that the rank of any ten-
sor in V ⊗ V∗ ⊗ V∗ is at most seven, which shows how
Strassen’s algorithm could have been anticipated.

The fundamental open question about the complex-
ity of multiplying n × n matrices is to determine the
rank rn of the multiplication tensor. Currently, we
have bounds only for rn: we know that rn � o(n2),
as matrices have n2 entries, and improvements to
the idea behind Strassen’s algorithm show that rn <
O(n2.3728639).

3.5 The Hardy–Weinberg Equilibrium

We close with a simple application to Mendelian genet-
ics.

Suppose that a gene exists in a population in two
variants (alleles) a and b. Individuals will have one
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of three genotypes, aa, ab, or bb, and their distribu-
tion p = (paa,pab,pbb) is a point in the probability
2-simplex. A fundamental and originally controversial
question in the early days of Mendelian genetics was the
following: which distributions are possible in a popu-
lation at equilibrium? (Assuming no evolutionary pres-
sures, equidistribution of the alleles among the sexes,
etc.)

The proportions qa and qb of alleles a and b in the
population are

qa = paa + 1
2pab, qb = 1

2pab + pbb, (10)

and the assumption of equilibrium is equivalent to

paa = q2
a, pab = 2qaqb, pbb = q2

b. (11)

If

A =
(

2 1 0

0 1 2

)
,

with (
2

0

)
↔ aa,

(
1

1

)
↔ ab, and

(
0

2

)
↔ bb,

then (10) is (qa, qb) = 1
2πA(paa,pab,pbb), the nor-

malized algebraic moment map of examples 3 and 5
applied to (paa,pab,pbb). Similarly, the assignment
q → p of (11) is the parametrization β of the trans-
lated quadratic moment curve of example 3 given by
the Bernstein polynomials.

Since 1
2πA◦β(q) = q, the population is at equilibrium

if and only if the distribution (paa,pab,pbb) of alleles
lies on the translated quadratic moment curve, that is,
if and only if it is a point in the binomial distribution,
which we reproduce here:

p 0

p 1

p 2

This is called the Hardy–Weinberg equilibrium after its
two independent discoverers.

The Hardy in question is the great English mathe-
matician G. H. Hardy, who was known for his disdain
for applied mathematics, and this contribution came
early in his career, in 1908. He was later famous for his
work in number theory, a subject that he extolled for its
purity and uselessness. As we all now know, Hardy was
mistaken on this last point for number theory underlies
our modern digital world, from the security of financial
transactions via cryptography to using error-correcting

codes to ensure the integrity of digitally transmitted
documents, such as the one you have now finished
reading.
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IV.40 General Relativity and
Cosmology
George F. R. Ellis

General relativity theory is currently the best classi-
cal theory of gravity. It introduced a major new theme
into applied mathematics by treating geometry as a
dynamic variable, determined by the einstein field

equations [III.10] (EFEs). After outlining the basic con-
cepts and structure of the theory, I will illustrate its
nature by showing how the EFEs play out in two of its
main applications: the nature of black holes, and the
dynamical and observational properties of cosmology.

1 The Basic Structure: Physics in
a Dynamic Space-Time

General relativity extended special relativity (SR) by
introducing two related new concepts.

The first was that space-time could be dynamic. Not
only was it not flat—so consideration of coordinate
freedom became an essential part of the analysis—but
it curved in response to the matter that it contained,
via the EFEs (6). Consequently, as well as its dynam-
ics, the boundary of space-time needs careful consid-
eration, along with global causal relations and global
topology.

Second, gravity is not a force like any other known
force: it is inextricably entwined with inertia and can
be transformed to zero by a change of reference frame.
There is therefore no frame-independent gravitational
force as such. Rather, its essential nature is encoded
in space-time curvature, generating tidal forces and
relative motions.
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1.1 Riemannian Geometry and Physics

The geometry embodied in general relativity theory

is four-dimensional Riemannian geometry, determined

by a symmetric metric tensor gij(xk). The basic mathe-

matical tool needed to investigate this geometry is ten-

sor calculus. This generalizes vector calculus, where

vector fields are quantities whose components have

one free index, Xi(xm), to similar quantities whose

components have an arbitrary number of indices,

Ti···jk···l(x
m), some “up” and some “down,” where in

the case of general relativity theory the indices i, j, k
range over 0, 1, 2, 3 (there are four dimensions).

General coordinate transformations are allowed, so

physical relations are best described through tensor

equations relating tensors with the same kinds of

indices, e.g., Ti···jk···l(x
m) = Si···jk···l(x

m). When

one changes coordinates (denoted here by primed

and unprimed indices), tensors transform in a linear

way:

Ta
′b′
c′d′ = TabcdΛa

′
aΛ

b′
bΛ

c
c′Λ

d
d′ (1)

for suitable inverse transformation matricesΛb
′
b ,Λc

′
c ,

where we use the Einstein summation convention (i.e.,

repeated indices are summed over all index values).

This leads to the key feature that tensor equations

that are true in one coordinate system will be true in

any coordinate system. One can form linear combina-

tions, products, and contractions of tensors, all pre-

served under transformations (1). (More details of ten-

sors and their manipulations are described in tensors

and manifolds [II.33].) One can thereby define sym-

metries in the indices: they can be symmetric (denoted

by round brackets), antisymmetric (denoted by square

brackets), or trace free. Symmetries are preserved when

one changes coordinates, and they therefore define

physically meaningful aspects of variables.

1.1.1 Special Relativity Applies Locally at Each Point

The way in which SR applies near each point, with four

dimensions (one time, three space), is determined by

the metric tensor gab(xc) = gba(xc). This determines

distances along curves xa(λ) in space-time using the

fundamental relation

L =
∫ √

|ds2| =
∫ √∣∣∣∣gab dxa

dλ
dxb

dλ

∣∣∣∣dv,

where the infinitesimal squared distance “ds2” can be

positive or negative, as follows.

• ds2 < 0 means time-like curves (traced out by parti-
cles moving at less than the speed of light); in this
case, ds2 = −dτ2 < 0 determines proper time1 τ
along this curve, measured by perfect clocks.

• ds2 = 0 means null curves, representing motion at
the speed of light.

• ds2 > 0 means this is not a possible particle
path, as it implies motion at a speed greater than
the speed of light; in this case, ds2 = +dl2 > 0
determines spatial distance l along the curve.

To see how this metric geometry works, we choose Car-
tesian-like local coordinates

(x0, x1, x2, x3) = (t, x,y, z)
such that, at the point of interest,

gab = diag(−1,1,1,1),

with spatial distance given by dr2 = dx2 + dy2 + dz2.
Along a time-like curve

xa(λ) = (t(λ), x(λ),y(λ), z(λ))
moving at speed v = dr/dt relative to these coordin-
ates, we then have

dτ2 = −ds2 = dt2(1 − v2)�
dt
dτ

= 1√
1 − v2

,

the standard time-dilation factor of SR. Setting the
curve parameter λ to be τ , the 4-velocity is ua =
dxa/dτ ⇒ gabuaub = −1. Changing the coordin-
ates by a speed v in the x1-direction sets Λa

′
a =

coshβδa
′

0 δ0
a + sinhβδa

′
1 δ1

a and gives the standard
Lorentz transformation results for spatial distances
and time with sinhβ = v (see invariants and con-

servation laws [II.21] and tensors and manifolds

[II.33] for more on this area).
Space-time has one time dimension (represented by

g00 = −1) and three spatial dimensions (g11 = g22 =
g33 = 1). It unifies objects that are separately defined
in Newtonian theory as four-dimensional entities, and
it shows how they relate to each other when relative
motion takes place. For example, the electric and mag-
netic fields are unified in a skew tensor Fab = F[ab]
such that Ea = Fabub ,Ha = 1

2ηadefu
f Fde, where ηabcd

is the totally skew-symmetric volume tensor. The way
in which these fields relate to each other when relative
motion takes place follows from the tensor transfor-
mation law (1). The inverse metric gmn : gmngnk = δmk
is used to raise indices, Tab = gacgbdTbd, while gab
lowers them.

1. We use units such that the speed of light c = 1.
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1.1.2 Covariant Derivatives and Connections

A key question is: how does one define vectors to be
mutually parallel at points P and Q that are distant
from each other? In a curved space-time this ques-
tion has no absolute meaning; it can be defined only
in terms of parallel transport along a curve joining
the points. This is defined via a covariant derivative
operator (denoted by a semicolon) that acts on all ten-
sor fields and gives the covariant derivative along any
curve (denoted by δ), so that if dxa/dλ = Xa is the
tangent vector to the curve xa(λ), δYa/δλ := Ya;bXb
is the covariant derivative of a vector field Ya along
these curves, which vanishes if and only if Ya is parallel
transported along za(λ) (i.e., as Ya is translated along
the curve, it is kept parallel to its previous direction at
each infinitesimal step). It is determined by a geometric
structure called a connection Γ , which specifies which
vectors are parallel at neighboring points. Its compo-
nents Γ abc represent the a-component of the covariant
derivative of the c-basis vector in the direction of the
b-basis vector. Then, for a vector field Ya,

Ya;b = Ya,b + Γ abcY c, (2)

the first term Ya,b := ∂Ya/∂xb being the apparent
derivative relative to the basis vectors, and the second
term being due to the rate of change of the basis vectors
along the curve.

In particular, δXa/δλ := Xa;bX
b vanishes if and only

if the curve direction is parallel transported along itself;
its direction is unchanging, so it is a geodesic (the clos-
est one can get to a straight line in a curved space-
time). The associated curve parameter λ is defined up
to affine transformations λ′ = aλ + b (a, b constants)
and is therefore called an affine parameter. Geodesics
represent the motion of matter moving subject only
to the effects of gravity and inertia (time-like curves:
XaXa = −1) and the paths of light rays (null curves:
XaXa = 0).

The covariant derivative extends to arbitrary tensors
by assuming that

(a) the covariant derivative of a function is just the
partial derivative, f;c = f,c := ∂f/∂xc , and

(b) it is linear, obeys the Leibniz rule, and commutes
with contractions.

All local physical equations should be written in terms
of covariant derivatives, e.g., Maxwell’s equations in a
curved space-time take the form F[ab;c] = 0, Fab;b = Ja,
where Ja is the 4-current.

1.1.3 Christoffel Relations

The connection Γ is determined by assuming (i) that
it is torsion free, Γ abc = Γ acb , and (ii) that the met-
ric tensor is parallel propagated along arbitrary curves,
gab;c = 0, which means that magnitudes are preserved
under parallel propagation. Together these require-
ments determine the connection uniquely, linking par-
allelism to metric properties. The connection compo-
nents are given by the Christoffel relations

Γmab = 1
2g

mn(gan,b + gbn,a − gab,n). (3)

The connection is therefore defined by derivatives of
the metric.

This relation leads to the key result that geodesics
are extremal curves in space-time (i.e., path length is
maximized or minimized along them).

1.2 Space-Time Curvature and Field Equations

Covariant derivatives do not commute in general, lead-
ing to the concept of space-time curvature. For any
vector field Xa, the Ricci identity

Xa;bc −Xa;cb = RadbcXd (4)

determines this noncommutativity, where Radbc is the
Riemann curvature tensor with symmetries

Rabcd = R[ab][cd] = Rcdab, Ra[bcd] = 0.

This leads to holonomy : parallel transport of a vector
around a closed loop from a point P back to P causes a
change in the vector there (a rotation or Lorentz trans-
formation because parallel transfer preserves magni-
tudes).

The Ricci tensor and the Ricci scalar are the first and
second contractions of this tensor, defined by

Rbf = Rf aba ⇒ Rbf = Rfb, R = gbcRbf .
By (4) and (2), the Ricci tensor is given in terms of the
connection by

Rbf = Γ abf ,a − Γ aaf ,b + Γ ebf Γ aae − Γ eaf Γ abe.
On using the Christoffel relations (3), these are second-
order differential expressions in terms of the metric
tensor.

The curvature tensor obeys an important set of
integrability conditions, namely, the Bianchi identities

Rab[cd;e] = 0

(roughly, the curl of the curvature tensor vanishes),
implying the key divergence relations

(Rab − 1
2Rg

a
b);b = 0 (5)

on contracting twice.
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1.2.1 Field Equations

The matter present in space-time determines the space-
time curvature through the EFEs

Rab − 1
2Rgab +Λgab = κTab ⇒ Tab;b = 0, (6)

where Tab is the energy–momentum–stress tensor for
all matter present, κ is the gravitational constant, and
Λ is the cosmological constant. The implication in
(6) follows from the contracted Bianchi identities (5):
if the EFEs are satisfied, energy and momentum are
necessarily conserved.

Given suitable equations of state for the matter, these
equations determine the dynamical evolution of the
space-time, which through energy–momentum conser-
vation relations determines the evolution of the matter
in it. The commonly used model is Tab = (ρ+p)uaub+
pgab , characterizing a “perfect fluid” with energy den-
sity ρ and pressure p, which are related by an equation
of state p = p(ρ). If p = 0, we have the simplest case:
pressure-free matter (e.g., “cold dark matter”). What-
ever these relations may be, we usually require that var-
ious energy conditions hold (e.g., ρ > 0, (ρ + p) > 0)
and additionally demand that the isentropic speed of
sound cs = (p/ρ)s obeys 0 � cs � 1, as required for
local stability of matter (the lower bound) and causality
(the upper bound).

The field equations are second-order hyperbolic
equations for the metric tensor, with the matter ten-
sor as the source. A generally used convenient form
is given by the ADM formalism (as described by Anni-
nos), as used, for example, in numerical relativ-

ity [V.15 §2.3] (the ADM formalism is named for its
authors: Arnowitt, Deser, and Misner).

1.3 The Geodesic Deviation Equation and

Tidal Forces

The geodesic deviation equation (GDE) determines
the change in the deviation vectors (relative position
vectors) linking a congruence of time-like geodesics.
Consider the normalized tangent vector field Va :=
dxa(τ)/dτ for such a congruence xa(τ,w), with
curves labeled by parameter w. Then VaVa = −1,
δVa/δτ = Va;bV

b = 0. A deviation vector ηa :=
dxa(w)/dw can be thought of as linking pairs of neigh-
boring geodesics in the congruence; it commutes with
Va, so δηa/δτ = Va;bηb . Choosing the deviation vec-
tors to be orthogonal to va : ηaVa = 0, by (3) the GDE
takes the form

δ2ηa

δτ2
= −RabcdVbηcVd, (7)

showing how curvature causes relative acceleration of
matter, i.e., tidal forces.

In this equation, the Ricci tensor is determined point
by point through the EFEs, but this is only part of the
curvature tensor. The rest of the curvature is given by
the Weyl tensor, which is defined by

Cijkl := Rijkl + 1
2 (Rikgjl + Rjlgik − Rilgjk − Rjkgil)

− 1
6R(gikgjl − gilgjk), (8)

implying that it shares the symmetries of the Riemann
tensor but is also trace free: Cabad = 0. This tensor
represents the free gravitational field; that is, it is the
part of the curvature that is not determined pointwise,
thus enabling nonlocal effects such as tidal forces and
gravitational waves. As with the electromagnetic field,
it can be decomposed into electric and magnetic parts,
Eac = Cabcdubud, Hac = 1

2ηabefu
bCefcdu

d; through
the GDE, these fields affect the relative motion of mat-
ter, causing tidal effects. Because of the Bianchi iden-
tities, they obey Maxwell-like equations, resulting in a
wave equation underlying the existence of gravitational
waves.

1.4 Types of Solutions and Generic Properties

Although the EFEs are complicated nonlinear equations
for the metric tensor, numerous exact solutions are
known (and are described well in Stephani et al.’s book
Exact Solutions of Einstein’s Field Equations). These are
usually determined by imposing symmetries on the
metric, often reducing hyperbolic equations to ordinary
differential equations, and then solving for the free
metric functions. Symmetries are generated by Killing
vector fields ξa(xj); that is, vector fields that obey
Killing’s equation

ξa;b + ξb;a = 0

(the metric is dragged into itself invariantly along the
integral curves of the vector fields). They obey the rela-
tion ξb;cd = ξaRabcd, meaning that the initial data for
them at some point are ξa|0, (ξ[a;b])|0. They form a Lie
algebra generating the symmetry group of a space-time;
the isotropy group of a point P is generated by those
Killing vectors for which ξa|0 = 0 (they leave the point
fixed).

The most important symmetries in practice are
spherical symmetry and spatial homogeneity, which
form the bases of the following two sections of this arti-
cle, respectively. A space-time is stationary if it admits
a time-like Killing vector field and is static if this field
is additionally irrotational: ξ[a;bξc] = 0.
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As well as finding exact and approximate solutions
of the EFEs, one can find important generic relations
such as the Raychaudhuri equation. This equation
underlies generic singularity theorems. One can also
prove generic existence and uniqueness theorems for
vacuum- and matter-filled space-times. There has also
been huge progress in finding numerical solutions of
the EFEs, based on the ADM formalism.

2 The Schwarzschild Solution and Black Holes

To model the exterior field of the sun or of any spherical
star, we look for a solution that is a

(1) vacuum solution (i.e., Tab = 0), Rab = 0, so the cur-
vature is purely due to the Weyl tensor (this will be
a good approximation outside some radius rS rep-
resenting the surface of the central star in a solar
system); and

(2) a spherically symmetric solution, as is true to high
approximation in the solar system (here we ignore
the rotation of the sun as well as the gravitational
fields of the planets).

We choose coordinates for which the metric is

ds2 = −A(r , t)dt2 + B(r , t)dr2 + r2 dΩ2,

where dΩ2 = dθ2 + sin2 θ dφ2 is the metric of a unit
2-sphere. To work out the field equations, we must

(i) calculate the connection components determined
by this metric,

(ii) determine, from these, the Ricci tensor compo-
nents, and

(iii) set these components to zero, and solve forA(r , t),
B(r , t).

Using the boundary conditions of asymptotic flat-
ness, {r → ∞} ⇒ {A(r , t)→ 1, B(r , t)→ 1}, and deter-
mining an integration constant by comparing with the
Newtonian solution for a star of mass m (≡MG/c2 in
physical units), one gets

ds2 = −
(

1− 2m
r

)
dt2+

(
1− 2m

r

)−1

dr2+r2 dΩ2. (9)

This is the Schwarzschild solution. It is an exact solution
of the EFEs, valid for r > rS, where rS is the coordinate
radius of the surface of the central massive object; we
require that rS > 2m, where m is the Schwarzschild
radius of the object. This is the mass in geometrical
units. For the Earth m ≈ 8.8 mm, and for the sun m ≈
2.96 km.

A remarkable result is hidden in the analysis above:
A and B are in fact functions only of r . Consequently,
a spherically symmetric vacuum exterior solution is
necessarily static. This is Birkhoff’s theorem.

Overall, this shows that the Schwarzschild solution
is the valid exterior solution for every spherical object,
no matter how it is evolving. It can be static, col-
lapsing, expanding, pulsating; provided it is spheri-
cally symmetric, the exterior solution is always the
Schwarzschild solution! This expresses the fact that
general relativity does not allow monopole or dipole
gravitational radiation, so spherical pulsations cannot
radiate their mass away as energy.

The nature of particle orbits (time-like geodesics) fol-
lows from this metric, allowing circular orbits for any
radius greater than r = 3m. The metric also determines
the light ray paths: the radial null rays in the solution
(9) have ds2 = 0 = dθ2 = dφ2, giving

dt
dr

= ± 1
1 − 2m/r

� t = ±r∗ + const., (10)

where

dr∗ = dr
1 − 2m/r

� r∗ = r + 2m ln
(
r

2m
− 1

)
.

This is the equation of the local null cones, showing
how light is bent by this gravitational field. In addi-
tion, outgoing light experiences redshifting depending
on the radii re and r0, where the source and receiver are
located. The redshift zmeasured for an object emitting
light of wavelength λe that is observed with wavelength
λ0 is given by 1 + z := λ0/λe. Wavelength λ is related
to period Δτ by λ = cΔτ , with proper time τ along a
world line {r = const.} determined by the metric (9).
Because Δt0 = Δte follows from the null ray equation
(10), the redshift z is

1 + z := λ0

λe
= Δτ0

Δτe
=
(

1 − 2m/r0

1 − 2m/re

)1/2
. (11)

This is gravitational redshift, caused by the change in
potential energy as photons climb out of the potential
well due to the central mass.

2.1 The “Singularity” at r = 2m

Something goes wrong with the metric at r = 2m. What
happens there? The following all seem to be the case.

(1) Singular metric. The metric components are singu-
lar at r = 2m.

(2) Radial infall. Considering the radial infall of a test
object (with nonzero rest mass), the proper time
taken to fall from r = r0 > 2m to r = 2m is finite.
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However, the coordinate time is given by dt/dτ =
(1 − 2m/r0)1/2/(1 − 2m/r), which is infinite as r →
2m. This suggests that it never actually reaches that

radial value, whereas the object measures a finite

proper time for the trip.

(3) Infinite redshift. The redshift formula (11) shows

that z → ∞ as re → 2m.

(4) Unattainable surface. On radial null geodesics (10),

dt/dr → ±∞ as r → 2m. Accordingly, light rays from

the outside region (r > 2m) cannot reach the sur-

face r = 2m; rather, they become asymptotic to it as

they approach it. The same will hold true for time-like

geodesics.

(5) Geodesic incompleteness. These time-like and null

geodesics are incomplete; that is, they cannot be

extended to arbitrarily large values of their affine

parameter in the region 2m < r < ∞. In particu-

lar, for time-like geodesics the proper time along the

geodesics from r0 to 2m is finite. This shows that

the geodesic, moving inward as t increases, cannot

be extended to infinite values of its affine parameter

(namely, proper time).

(6) Nonstatic interior. Going to the interior part (0 <
r < 2m), the solution changes from being static

to being spatially homogeneous but evolving with

time. This is because the essential metric depend-

ence is still with the coordinate r , which has changed

from being a coordinate measuring spatial distances

to one measuring time changes. The nature of the

space-time symmetry therefore changes completely

for r < 2m.

(7) A physical singularity? To try to see if the singu-

larity at r = 2m is a physical singularity or a coor-

dinate singularity, we look at scalars (because they

are coordinate-independent quantities) constructed

from mathematical objects that describe the cur-

vature. Because the solution is a vacuum solution

(Rab = 0), both R = Raa and RabRab vanish. The

simplest nonzero scalar is the Kretschmann scalar

RabcdRabcd = 48m2/r6.

This is finite at r = 2m but diverges as r → 0.

This suggests (but does not prove) that r = 2m is

a coordinate singularity, that is, there is no problem

with the space-time but rather the coordinates break

down there, and so we can get rid of the singular-

ity by choosing different coordinates. We prove that

this supposition is correct by making extensions of

the solution across the surface r = 2m. One can do

r = 0

t = const.

r = 2m

v = const.

Radially falling
particle hits
singularity at r = 0

Accelerating
observer at
constant r-val

w = const.

t = const.

t = ∞

v

r

Figure 1 Radial null geodesics and local light cones in the
Schwarzschild solution in Eddington–Finkelstein coordin-
ates (reproduced from Hawking and Ellis (1973), with per-
mission).

this by attaching coordinates to either time-like or
null geodesics that cross this surface.

2.2 Schwarzschild Null Coordinates

Defining the coordinates v+, v− by v± = t ± r∗, then
dv± = dt±dr/(1−2m/r); the outgoing null geodesics
are {v+ = const.} and the ingoing ones are {v− =
const.}. We change to coordinates (v, r , θ,φ), where
v+ = v . The metric is then

ds2 = −
(

1 − 2m
r

)
dv2 + 2dv dr + r2 dΩ2. (12)

This is the Eddington–Finkelstein form of the metric.
The transformation has succeeded in getting rid of the
singularity at r = 2m. The coordinate transforma-
tion (which is singular at r = 2m) extends the orig-
inal space-time region (denoted region I) defined by
2m < r <∞ to a new region (denoted region II) defined
by 0 < r < 2m. It is an analytic extension across the
surface r = 2m of the outside region I to the inside
region II.

Plotting these local null cones and light rays in the
space with coordinates (t∗, r ), we get the Eddington–
Finkelstein diagram (figure 1). We can observe the
following features in the figure.

(1) The surfaces of constant r are vertical lines in this
diagram. The surfaces of constant t are nearly flat at
large distances but bend down and never cross the sur-
face r = 2m. In fact, t diverges at this surface; and it is
this bad behavior of the t-coordinate that is responsible
for the coordinate singularity at r = 2m. This is why
the coordinate time diverges for a freely falling particle
that crosses this surface.
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(2) The null cones tilt over, the inner ray always being
at 45◦ inward, but the outer one (pointing outward for
r > 2m) becomes vertical at r = 2m and points inward
for r < 2m. The surface r = 2m is therefore a null sur-
face (a light ray emitted outward at r = 2m stays at
that distance from the center forever). Because of this,
it is a trapping surface: particles that have fallen in and
crossed this surface from the outside region I to the
inside II can never get out again. Once in region II their
future is inevitably to be crushed by divergent tidal
forces near the singularity at r = 0.

(3) Conversely, r = 2m is an event horizon, hiding its
interior from the view of outside observers. If we con-
sider an observer who is static at r = r1 > 2m, her
world line is a vertical line in this diagram. Her past
light cone never reaches inside r = 2m, so no sig-
nal from that region can reach her. This space-time
may therefore reasonably be called a black hole, for no
radiation emitted by the inside region II can reach the
outside region I.

(4) If the outside observer drops a probe into the cen-
ter, then it crosses the event horizon r = 2m in a finite
proper time but takes an infinite coordinate time t to
get there because t diverges there. If it emits pulses
at regular intervals (say, every second), these will be
received by the outside observer at longer and longer
time intervals. If the probe crosses the event horizon
at 12:00 according to its internal clock and sends out a
radio signal at that time, the signal will never reach the
outside observer; it stays at r = 2m forever. Every sig-
nal sent before then will (eventually) reach the outside
observer and every signal sent afterward will fall into
the central singularity. The infinite slowing down of
the received signals as the probe approaches the event
horizon will result in the redshift in received signals
diverging as re → 2m.

This analysis shows convincingly that r = 2m is a
null surface (the event horizon) at which the original
coordinates go wrong; the space-time can be extended
across this null surface by a change to new coordin-
ates. However, there is a problem with what we have
so far: namely, the original solution is time symmetric.
The extension is not, as is obvious from the Eddington–
Finkelstein diagram.

2.2.1 The Time-Reversed Extension

We can make another similar Eddington–Finkelstein
extension in which we choose the other direction

of time for the extension by using the other null

coordinate.

To be more precise, upon changing from (t, r , θ,φ)
to coordinates (w, r , θ,φ), where v− = w, the metric

now takes the form

ds2 = −
(

1 − 2m
r

)
dw2 − 2dw dr + r2 dΩ2,

which is the time-reverse of (12). This is also an Edding-

ton–Finkelstein form of the metric, now extending the

original space-time region I, defined by 2m < r <∞, to

a further new region II′, defined by 0 < r < 2m. This

leads to a time-reversed Eddington–Finkelstein picture

of the local light cones. This time it is the ingoing null

geodesics that are badly behaved at r = 2m (the out-

going ones cross this surface with no trouble). The sur-

face r = 2m is again a null cone, but this time it rep-

resents the surrounding horizon of a white hole: sig-

nals can come out of it but not go into it. The exterior

observer can receive messages from region II′ but can

never send signals there. The surface r = 2m is now

the same as t = −∞. This divergence is the reason the

original metric went wrong at this surface.

How do we know that region II is different from

region II′? In the original metric, both the past and the

future inward-pointing radial null geodesics through

each event q in region I were incomplete. The first

extension completed the future-ingoing null geodesics

but not the past-ingoing ones; the second extension

completed the past-ingoing null geodesics but not the

future-ingoing ones.

2.3 Kruskal–Szekeres Coordinates

The question now is whether we can make both exten-

sions simultaneously. The time asymmetry of each

extension is because we used only one null coordinate

in each case. To obtain a time-symmetric extension, we

must use both null coordinates. Indeed, if we change

to coordinates (v,w,θ,φ), we obtain the double null

form of the metric:

ds2 = −
(

1 − 2m
r

)
dv dw + r2 dΩ2,

where 1
2 (v − w) = r + 2m ln((r/2m) − 1) defines

r(v,w) (both quantities being equal to r∗), and t =
1
2 (v + w). This is a time-symmetric double null form

but is singular at r = 2m. However, if we rescale the

null coordinates, we can attain what we want. Defin-

ing V = ev/4m, W = −e−w/4m, we obtain a new set of

double null coordinates for the Schwarzschild solution.
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Figure 2 The Kruskal diagram, representing the maximal
extension of the Schwarzschild solution in conformally flat
coordinates (reproduced from Hawking and Ellis (1973),
with permission).

The metric becomes

ds2 = −32m3

r
e−r/2m dV dW + r2 dΩ2.

This metric form is regular at r = 2m and gives us
the extension we want. The light cones are given by
V = const., W = const. It is convenient to define
the associated time and radial coordinates (t′, x′) by
x′ = 1

2 (V −W), t′ = 1
2 (V +W). These are the Kruskal–

Szekeres coordinates, giving the Kruskal diagram in fig-
ure 2, the complete time-symmetric extension of the
Schwarzschild solution with light rays at ±45◦.

It is important to remember that this is a cross sec-
tion of the full space-time; in fact, each point repre-
sents a 2-sphere of area 4πr2 of the full space-time
(we have suppressed the coordinates (θ,φ) in order to
draw this diagram). The whole solution is time symmet-
ric, as desired. The most important new feature is that
there is a new region I′ in addition to the three regions
I, II, and II′ already identified. Let us see why this is so.

The region I in this diagram corresponds to the
same region I in both the Eddington–Finkelstein dia-
grams. The region t′ > x′ (bounded on the left by
the line at −45◦ through the origin) corresponds to
the first extension to region II completing the future-
ingoing null geodesics. This part of the Kruskal dia-
gram corresponds point by point to the first Eddington–
Finkelstein diagram; in particular, the vertical null
geodesics at r = 2m correspond to the null geodesic
at +45◦ through the origin in the Kruskal diagram.
The region t′ < x′ (bounded on the left by the line
at +45◦ through the origin) corresponds to the sec-
ond extension to region II′, completing the past-ingoing
null geodesics (moving in the opposite direction to

the future-ingoing ones). This part of the Kruskal dia-
gram corresponds point by point to a time-reversed
Eddington–Finkelstein diagram.

Now consider a point in region II. The past-outgoing
(i.e., moving to the right) null geodesics cross r = 2m
to the asymptotically flat region I. The past-ingoing (i.e.,
moving to the left) null geodesics are completely sym-
metric with them; they must cross r = 2m to an asymp-
totically flat region I′ that is identical to region I. Simi-
larly, for points in II′, the outgoing future-directed null
geodesics cross r = 2m to region I, and the ingoing
future-directed null geodesics must cross r = 2m to
an identical region I′′. What is perhaps not immedi-
ately obvious is that this is the same region as I′. The
following features then arise.

(1) The surfaces of constant r are given by x′2 − t′2 =
const. and therefore correspond to the hyperbola at
constant distance from the origin in flat space-time.
They are space-like for 0 < r < 2m and time-like for
r > 2m (with two surfaces occurring for each value
of r ). There are two singularities at r = 0: one in the
past (t′ < 0) and one in the future (t′ > 0). The
surfaces r = 2m are the two intersecting null sur-
faces through the origin. The surfaces of constant t are
the straight lines through the origin. This coordinate
diverges at both surfaces r = 2m.

(2) The null surface segments {r = 2m, t′ > 0}
(obviously representing motion at the speed of light)
are trapping surfaces: particles that have fallen in and
crossed this surface from either outside region to the
inside region II can never get out again; they inevitably
fall into the future singularity at {r = 0, t′ > 0}, where
they are crushed by infinite tidal forces. Each of these
segments is also an event horizon, hiding its interior
from the view of outside observers. They bound the
black hole region II of the space-time, from which no
light or other radiation that is emitted can reach the
outside. The details of dropping in a probe from the
outside can be followed in this diagram, revealing again
the same effects as discussed above. Thus we have (vac-
uum) black holes, bounded by event horizons—from
which light cannot escape.

(3) There are two curvature singularities, each of which
has a space-like nature, one in the past and one in the
future. The complete solution has both a white hole and
a black hole singularity (the former emitting particles
and radiation into the space-time, the latter receiving
them).
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It is particularly important to note here that, unlike
in the electromagnetic or Newtonian gravity cases, we
do not find a singular time-like worldline at the center
of the Schwarzschild solution, which would represent a
particle generating the solution. Here, the strong grav-
itational field for r < 2m profoundly alters the nature
of the singularity from what we first expected.

(4) There is also an unexpected global topology, with
two asymptotically flat spaces back to back, joined by
a neck called a wormhole. To see this, consider the sur-
face {t′ = 0}; the area of the 4-spheres {r = const.},
which diverges as x′ → ∞, decreases to a minimum
value A∗ = 4π(2m2) at x′ = 0 and then diverges
again as x′ → −∞. However, one cannot communicate
between the two asymptotically flat regions through
the wormhole because only space-like curves can pass
through.

(5) The nature of the space-time symmetry changes
at the surfaces r = 2m: here, there is a transition
from a static to an evolving (Kantowski–Sachs) uni-
verse. The event horizon is therefore also a Killing hori-
zon, generated by null Killing vectors that continue to
be space-like on one side and time-like on the other.

(6) This solution is indeed the maximal extension of the
initial Schwarzschild space-time: all geodesics in it are
either complete (that is, they go to infinity) or they run
into one of the singularities where r = 0. Hence, no
further extensions are possible (all curves end up at a
singularity or at infinity).

2.4 Gravitational Collapse to Black Holes

I have dealt with the maximal Schwarzschild solution
at length because it is such a good example of general
relativity. The subtleties of coordinates and their limits,
the interpretation of time-like and null geodesics, and
the examination of global topology are all involved in
understanding all of this complex structure hidden in
the seemingly innocuous Schwarzschild metric (9). But
is it just a mathematical solution with no relevance to
the real universe? What is its relation to astrophysics?

Black holes play an important role in high-energy
astrophysics: they occur at the endpoint of the lifetime
of massive stars; they are at the center of many galax-
ies, where they are surrounded by accretion disks; and
they are the powerhouse for high-energy processes in
quasistellar objects. The collapse of a spherical object
to a black hole starts off in a regular space-time region
with no horizons; these develop as matter coalesces

and the gravitational field intensifies, causing future-
directed light rays to be trapped. There is no singularity
in the past, but one occurs in the future, hidden inside
the event horizon. There is no wormhole through to
another space-time region because the infalling matter
cuts it off.

Diagrams of the resulting space-times are given in
Hawking and Ellis (1973) and in Ellis and Williams
(2000). Rotation will complicate matters considerably
(we get a Kerr black hole instead of a Schwarzschild
solution). The role of black holes in astrophysics is
discussed in depth by Begelman and Rees (2009).

3 Cosmology

In the previous example the curvature was pure Weyl
curvature (because Rab = 0); space-time is unaffected
by matter properties because it is a vacuum solution. In
the next example there is, by contrast, pure Ricci cur-
vature; there is no free gravitational field (Cabcd = 0).
The evolution of space-time is determined by its matter
content.

Gravity governs the universe in the large. On a large
enough scale, the observed universe can be represented
well by a Robertson–Walker metric, which is spatially
homogeneous (no spatial point is preferred over any
other) and isotropic (no direction in the sky is preferred
over any other). Comoving coordinates can be chosen
so that the metric takes the form

ds2 = −dt2 + S2(t)dσ2, ua = δa0 (a = 0,1,2,3),
(13)

where S(t) is the time-dependent scale factor, and the
worldlines with tangent vector ua = dxa/dt represent
the histories of fundamental observers. The space sec-
tions {t = const.} are surfaces of homogeneity and
have maximal symmetry: they are 3-spaces of con-
stant curvature K = k/S2(t), where k is the sign of
K. The metric dσ2 is a 3-space of normalized constant
curvature k; coordinates (r , θ,φ) can be chosen such
that

dσ2 = dr2 + f 2(r)(dθ2 + sin2 θ dφ2), (14)

where f(r) = {sin r , r , sinh r} if k = {+1,0,−1},
respectively.

The metric is time-dependent, with distances be-
tween all fundamental observers scaling as S(t) and
the rate of expansion at time t characterized by the
Hubble parameter H(t) = Ṡ/S. To determine the met-
ric’s evolution in time, one applies the EFEs to the
metric (13), (14). Because of local isotropy, the matter
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tensor Tab necessarily takes a perfect fluid form rel-
ative to the preferred worldlines with tangent vector
ua. The integrability conditions (5) for the EFEs are the
energy–density conservation equations, which reduce to

Tab;b = 0 � ρ̇ + (ρ + p)3Ṡ/S = 0. (15)

This becomes determinate when a suitable equation of
state relates the pressure p to the energy density ρ.
Baryons have pb = 0 and radiation has pr = ρr/3, ρr =
aT 4

r , which by (15) implies that ρb ∝ S−3, ρr ∝ S−4,
Tr ∝ S−1. Radiation dominates at early times (the hot
big bang era), matter dominates at late times; at very
early times (the inflationary era), a scalar field may have
been dynamically dominant.

The scale factor S(t) generically obeys the Raychaud-
huri equation:

3S̈/S = − 1
2κ(ρ + 3p)+Λ, (16)

where κ is the gravitational constant and Λ the cos-
mological constant. This shows that the active gravita-
tional mass density of the matter and fields present is
ρgrav := ρ + 3p, summed over all matter present. For
ordinary matter this will be positive, so ordinary mat-
ter will tend to cause the universe to decelerate (S̈ < 0).
A positive cosmological constant on its own will cause
an accelerating expansion (S̈ > 0). When matter and a
cosmological constant are both present, either result
may occur depending on which effect is dominant. The
first integral of equations (15), (16) when Ṡ ≠ 0 is the
Friedmann equation:

Ṡ2

S2
= κρ

3
+ Λ

3
− k
S2
. (17)

Models with a Robertson–Walker geometry with met-
ric (13), (14) and dynamics governed by equations
(15), (16), (17) are called Friedmann–Lemaître (FL) uni-
verses.

The simplest solution is the Einstein–de Sitter uni-
verse, with flat spatial sections and baryonic matter
content, and no cosmological constant. We then have

{k = 0, p = 0, Λ = 0} ⇒ S(t) = t2/3.
The FL models are the standard models of modern

cosmology, and they are surprisingly effective in view
of their extreme geometrical simplicity. One of their
great strengths is their explanatory role in terms of
making explicit the way the local gravitational effect
of matter and radiation determines the evolution of
the universe as a whole, with this in turn forming
the dynamic background for local physics (includ-
ing determining the evolution of matter and radiation
themselves).

3.1 An Initial Singularity?

The universe is presently expanding; following it back
into the past, it was ever smaller. A key issue is whether
it had a beginning or not. The Raychaudhuri equation
(16) leads directly to the following result.

The Friedmann–Lemaître universe singularity theo-

rem. In an FL universe with Λ � 0 and ρ+3p > 0 at all
times, at any instant t0 when H0 ≡ (Ṡ/S)0 > 0, there
is a finite time t∗ such that S(t) → 0 as t → t∗, where
t0 − (1/H0) < t∗ < t0. If ρ + p > 0, the universe starts
at a space-time singularity there: {t → t∗} ⇒ {ρ → ∞}.

This is not merely a start to matter—it is a start to
space, to time, to physics itself. It is the most dramatic
event in the history of the universe; it is the start of the
existence of everything. The underlying physical fea-
ture is the nonlinear nature of the EFEs: going back into
the past, the more the universe contracts, the higher the
active gravitational density, causing it to contract even
more. The pressure p that one might have hoped would
help stave off the collapse makes it even worse because
p enters algebraically into the Raychaudhuri equation
(16) with the same sign as the energy density ρ.

This conclusion can, in principle, be avoided by intro-
ducing a cosmological constant, but in practice, this
cannot work because its value is too small. However,
energy-violating matter components such as a scalar
field can avoid this conclusion if they dominate at early
enough times. In the case of a single scalar field φ
with space-like surfaces of constant density, on choos-
ing ua orthogonal to these surfaces, the stress ten-
sor has a perfect fluid form with ρ = 1

2 φ̇
2 + V(φ),

p = 1
2 φ̇

2 − V(φ), and so ρ + 3p = 2φ̇2 − 2V(φ). The
slow-rolling case is φ̇2 � V(φ), leading to ρ + p =
2φ̇2 ≈ 0 ⇒ ρ + 3p � −2μ < 0. Quantum fields can in
principle therefore avoid the conclusion that there was
a start to the universe. The jury is still out as to whether
or not this was the case.

3.2 Observational Relations

To be good models of the real universe, cosmological
models must predict the right results for astronom-
ical observations. To determine light propagation in
a Robertson–Walker geometry, it suffices to consider
only radial null geodesics: {ds2 = 0, dθ = 0 = dφ} (by
the symmetries of the model, these are equivalent to
generic geodesics). From the Robertson–Walker metric
(13), we then find that for light emitted at time te and
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received at time t0, the comoving radial coordinate dis-
tance u(t0, te) := r0 − re between comoving emitters
and receivers is given by

u(t0, te) =
∫ t0
te

dt
S(t)

=
∫ S0

Se

dS
SṠ
, (18)

with Ṡ given by the Friedmann equation (17). The func-
tion u(t0, te) therefore encodes information on both
spatial curvature and the space-time matter content.

The key quantities related to cosmological obser-
vations are redshift, area distance (or apparent size),
and local volume, corresponding to some increment in
distance (determining number counts). From (18), the
cosmological redshift zc is given by

1 + zc = S(t0)
S(te)

. (19)

The same ratio of observed to emitted light holds for
all wavelengths, a key identifying property of redshift.

The apparent angular size α of an object at redshift
zc and of linear size l is given by

l/α = f(u)S(te) = f(u)(1 + z)S(t0). (20)

Measures of apparent sizes as functions of redshift will
therefore determine f(u) if the source physical size is
known. The flux of radiation F measured from a point
source of luminosity L emitting radiation isotropically
is given by the fraction of radiant energy emitted by the
source in a unit of time that is received by the telescope:

F = L
4π

1
f 2(u)S2(t0)(1 + z)2 (21)

(the two redshift factors account firstly for the time
dilation between observer and source, and secondly for
loss of energy due to redshifting of photons). Measures
of apparent luminositym as a function of redshift will
therefore also determine f(u) if the source intrinsic
luminosity is known.

The number of objects in a solid angle dΩ for a dis-
tance increment du (characterized by increments dz,
dm in the observable variables z and m) is given by

dN = n(te)S3(te)f (u)dudΩ, (22)

wheren(te) is the number density of objects at the time
of emission. The observed total number N of objects
measured in a survey is given by integrating from the
observer to the survey limit: in terms of the radial coor-
dinate re of the source (which can be related to red-
shifts or magnitudes), N =

∫ re
r0

dN . If the number of
objects is conserved, n(te) = n(t0)(1 + z)3, and we
find from (22) that

N(te) = n(t0)dΩ
∫ re

r0

f(u)du. (23)

A measure of numbers as a function of redshift or other

distance indicators will therefore determine the num-

ber density of objects, which is then related to their

mass and so to the energy density of these objects.

As f(u) is determined by the Friedmann equation,

the above equations enable us to determine observa-

tional relations between observable variables for any

specific cosmological model and therefore to observa-

tionally test the model.

3.3 Causal and Visual Horizons

A fundamental feature affecting the formation of struc-

ture and our observational situation is the limits that

arise because causal influences cannot propagate at

speeds greater than the speed of light. The region that

can causally influence us is therefore bounded by our

past null cone. Combined with the finite age of the uni-

verse, this leads to the existence of particle horizons

that limit the part of the universe with which we can

have had causal connection.

A particle horizon is, by definition, composed of the

limiting worldlines of the furthest matter that ever

intersects our past null cone. This is the limit of mat-

ter that we can have had any kind of causal contact

with since the start of the universe, which by (18) is

characterized by the comoving radial coordinate value

uph =
∫ t0

0

dt
S(t)

. (24)

The present physical distance to the matter constitut-

ing the horizon is

dph = S(t0)uph.

The key question is whether the integral (24) converges

or diverges as we go to the limit of the initial singularity

where S → 0. Horizons will exist in standard FL cosmolo-

gies for all ordinary matter and radiation because uph

will be finite in those cases; for example, in the Einstein–

de Sitter universe, uph = 3t1/30 , dph = 3t0. We will then

have seen only a fraction of what exists, unless we live

in a universe with spatially compact sections so small

that light has indeed had time to traverse the whole uni-

verse since its start; this will not be true for universes

with the standard simply connected topology.

Penrose’s powerful use of conformal methods gives a

very clear geometrical picture of the nature of horizons.

One switches to coordinates where the null cones are

at ±45◦; the initial singularity (the start of the universe)

is then represented as a boundary to space-time. If this
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Figure 3 Particle horizons in a world model (reproduced
from Hawking and Ellis (1973), with permission). “O” is the
observer (at the origin); the horizontal line at the bottom is
the start of the universe. Here and now is the event “P.”

is a space-like surface, then there exist galaxies beyond
our causal horizon; we can receive no signals from them
whatever (figure 3).

The importance of horizons is twofold: they under-
lie causal limitations that are relevant to the origin of
structure and uniformity, and they represent absolute
limits on what is testable in the universe. Many present-
day speculations about the superhorizon structure of
the universe (e.g., chaotic inflationary theory) are not
observationally testable because one can obtain no def-
inite information whatever about what lies beyond the
visual horizon. This is one of the major limits to be
taken into account in our attempts to test the veracity
of cosmological models.

3.4 Structure Formation

A large amount of work in cosmology is concerned
with structure formation: how galaxies come to exist
by gravitational attraction acting on primordial pertur-
bations. This raises a key technical issue, the choice
of perturbation gauge, which is best solved by using
a gauge-free perturbation formalism. When the pertur-
bations become nonlinear, numerical simulations are
needed to study the details of structure formation.

4 Issues

This article has emphasized the significance of geom-
etry and topology in general relativity theory: a fasci-
nating study of the interplay of geometry, analysis, and
physics. Further topics I have not mentioned include
how one derives the Newtonian limit of the general rela-
tivity equations; gravitational lensing; the emission and
detection of gravitational radiation; the key issue of the
nature of dark energy in cosmology, which has led to
the acceleration of the universe in recent times; and the
issue of dark matter—nonbaryonic matter that domi-
nates structure formation and the gravitational dynam-
ics of clusters of galaxies. A key requirement is to test
the EFEs in every possible way, to try alternative theo-
ries of gravitation to see if any of them work better than
Einstein’s theory. So far it has withstood these tests; it
is the best gravitational theory available.

Further Reading

Anninos, P. 2001. Computational cosmology: from the early
universe to the large scale structure. Living Reviews in
Relativity 4:2.

Begelman, M., and M. Rees. 2009. Gravity’s Fatal Attrac-
tion: Black Holes in the Universe. Cambridge: Cambridge
University Press.

D’Inverno, R. 1992. Introducing Einstein’s Relativity. Oxford:
Clarendon Press.

Ehlers, J. 1993. Contributions to the relativistic mechanics
of continuous media. General Relativity and Gravitation
(Golden Oldie) 25:1225–66 (originally published in 1961).

Ellis, G. F. R. 2009. Relativistic cosmology. General Rela-
tivity and Gravitation (Golden Oldie) 41:581 (originally
published in 1971).

Ellis, G. F. R., and R. M. Williams. 2000. Flat and Curved
Spacetimes. Oxford: Oxford University Press.

Hawking, S. W., and G. F. R. Ellis. 1973. The Large Scale Struc-
ture of Space-Time. Cambridge: Cambridge University
Press.

Maartens, R., and B. A. Bassett. 1998. Gravito-electromagne-
tism. Classical and Quantum Gravity 15:705.

Stephani, H., D. Kramer, M. MacCallum, and C. Hoense-
laers. 2003. Exact Solutions of Einstein’s Field Equations.
Cambridge: Cambridge University Press.



Part V

Modeling

V.1 The Mathematics of Adaptation
(Or the Ten Avatars of Vishnu)
David Krakauer and Daniel N.
Rockmore

1 Adaptation and Selection

In a celebrated letter to his sister and theologian
Simone Weil, dated March 1940, André Weil (writing
from a military prison in Paris) expounded on the pow-
erful yet transient role that analogy plays in math-
ematics as a precursor to unification. He does this
through another layer of analogy, that of the avatars
of Vishnu, each of which reveal different facets of
the deity. Weil had in mind various connections—yet
to be supported by theorem and proof—that he was
finding between problems in number theory and alge-
braic geometry, connections that today are encoded
in one of the grandest current efforts in mathemat-
ics: the pursuit of the Langlands program, a Vishnu of
mathematics. The value of analogy in pure mathemat-
ics in promoting identification of common foundations
extends into its dealing with physical reality (even this
aspect is evident in the Langlands program, realized
through recent connections made with quantum field
theory). This was already understood by Poincaré when
he wrote that “the mathematical facts worthy of being
studied are those which, by their analogy with other
facts, are capable of leading us to the knowledge of a
physical law.”

The pursuit of a “biological law” (or even agreement
on what would define one) is proving to be some-
thing of a challenge. But adaptation may be a con-
text that supports such an achievement. Loosely con-
strued, it is the collection of dynamics yielding evolved
or learned traits that contribute positively to survival
and propagation. Adaptation assumes a bewildering
array of “avatars,” spanning evolution by natural selec-
tion, reinforcement learning, Bayesian inference, and

supervised machine learning, of which neural networks
are perhaps the most explicitly adaptive. In all of
these instances adaptation implies some element of
(1) design or optimization, (2) differential selection or
success, and (3) historical correlation between evolved
trait and environment that grows stronger through
time. Each of these elements has inspired mathemat-
ical descriptions, and it is only in the past decade that
we have become aware that several fields concerned
with the formal analysis of adaptation are in fact deeply
analogous (an awareness that has been engendered by
mathematics) and that these analogies suggest a form
of unification that might be codified as a “biological
law.”

It is very difficult to discuss adaptation without
considering natural selection, and in many treatments
they are effectively synonymous. Stephen Jay Gould
bemoaned the ambiguity whereby the word adapta-
tion can be interpreted as both noun and verb. The
noun adaptation refers to the constellation of prop-
erties that confer some locally optimal character on
an agent, whereas the verb adaptation describes the
process by which agents adapt through time to their
environments. It is the latter active process that has
attracted the greater mathematical effort and includes
the often counterintuitive properties that are found in
population dynamics. Adaptation at equilibrium (the
noun form) simply requires that optimality be demon-
strated, often through variational techniques derived
from engineering. Examples include the optical prop-
erties of the lens, the excitability properties of neu-
ral membranes, and the kinematic properties of limbs
and joints. They all fall into this equilibrium class of
adaptive explanation and are as diverse in their mathe-
matical treatments as material constraints demand. In
this article, however, we focus on the genuinely novel
dynamical features of the adaptive process, the extraor-
dinary diversity of systems in which they continue to
be realized, and the associated mathematical ideas.
The context is generally one of populations evolving
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in distribution, and in this broad review we touch on

the techniques of information geometry, evolutionary

game theory, and mixtures of discrete dynamics and

probability theory.

2 Selection Systems

2.1 Continuous Selection for Diploid Species

A historically accurate place to start exploring adap-

tation is with the continuous selection equation for

diploid genomes from population genetics. In this set-

ting we are interested in the time evolution of the dis-

tribution of genomic structures in the population as

influenced by both endogenous and exogenous factors.

Consider a single coding site in a genome, which can

assume multiple, discrete genetic forms or alleles, Ai.
For a diploid organism (one whose genetic profile is

encoded in two copies of each gene), each site will be

represented by a pair of values (Ai,Aj). The time evo-

lution of a genome in terms of the frequency in the

population of the various alleles is determined by the

coefficients of its net growth rate in competition with a

population of genomes. This growth rate is set by the

so-called Malthusian fitness parameter.

Let us denote the frequency of allele i by xi ∈ [0,1]
and collect these frequencies in vector x, which then

has nonnegative elements that sum to 1.

Adaptive evolution proceeds according to

ẋi = xi((Mx)i − xTMx), (1)

whereM is the matrix of real-valued Malthusian param-

eters for the set of n genomes. A positive derivative

reflects an increasing frequency of an allele and is asso-

ciated with a higher than average value for a given type

in the M matrix. Rewritten, with mi(x) = (Mx)i, this

gives the so-called replicator equation

ẋi = xi(mi(x)− m̄(x)),
with m̄(x) = ∑

i ximi(x). This is a differential equa-

tion on the invariant simplex Sn whose points represent

all possible distribution of alleles, and it has deep cor-

respondences across a range of fields. We shall come

back to the importance of the replicator equation once

we have described a few more properties of the more

general selection equation.

The dynamics of (1) is determined by the proper-

ties of its stable equilibria. These are conventionally

analyzed through the (weighted) incidence matrix of

an undirected graph, which can serve as the matrix of

Malthusian parameters defined by

mij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if i and j are joined (i �= j),
0 if i and j are not joined,
1
2 if i = j.

Consider the subsimplex I ⊆ {1, . . . , k}. The barycen-
ter of the face Sn(I) is defined as p = (1/k, . . . ,1/k,
0, . . . ,0) (the average of extremal coordinates). The
mean fitness restricted to this face is

xTMx = 1 − 1
2

∑
i∈I
x2
i .

Over the set of possible frequency vectors (having only
positive entries with sum 1) this takes its maximal value
1 − (1/2k) at p, which shows that p is asymptotically
stable within Sn(I). If i ∉ I, then there is some j ∈ I
with mij = 0. Hence,

(Mp)j � pTMp.

Thus,p is not only saturated (maximal) but also asymp-
totically stable in Sn. Furthermore, for any system with
n− i alleles there are at most 2i stable equilibria.

In this context, adaptation is a description of the
changing frequencies of competing “species” or geno-
types whose stable fixed points are governed by the val-
ues of a Malthusian matrix. This matrix is assumed to
encode all of those factors that contribute to both mor-
tality and increased viability or replicative potential.

A natural way to think about the process of adapta-
tion is in terms of a flow on an appropriate manifold or
the setting of information geometry. This framework
was first introduced to population dynamics and the
study of adaptation by Shahshahani. It is most easily
treated for the symmetric case of the replicator equa-
tion. If we let ẋi =mi(x) = ∂V/∂xi be a Euclidean gra-
dient vector field on Rn, then the replicator equation is
a Shahshahani gradient on the interior of Sn with the
same potential function V . To be specific, the change
in V is equal to the variance of the values of mi(x) of
the replicator equation:

V̇ (x) =
n∑
i=1

xi(mi(x)− m̄(x))2.

This result is referred to as Fisher’s fundamental the-
orem of natural selection, wherein the change in the
potential—or, obversely, the increase in the mean popu-
lation fitness—is proportional to the variance in fitness.
Hence, populations will always increase their adapted-
ness assuming that there remains latent variability in a
population.
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2.2 Information and Adaptation: Game Dynamics

We have so far considered diploid population genet-
ics, but this framework can as easily be thought of as
describing haploid (single-genome, or “asexual,” speci-
ation) game dynamics. In this case the entries mij of
the Malthusian matrix M describe payoffs associated
with competition between an agent Ai and an agent Aj
that meet with a probability xixj . In the case of pay-
offs that are linear in the frequencies, the stable fixed
point of the dynamics is given by a distribution x̂ in
Sn. This is called an evolutionarily stable state (ESS) of
the replicator equation if x̂TMx̂ > xTMx in the local
neighborhood of x̂.

The ESS framework allows us to define an alternative
potential function, or Lyapunov function for adapta-
tion, through the use of information-theoretic concepts.
We will assume that we are dealing with vector quanti-
ties at steady state, and for frugality we will drop the
bold notation for vectors. One can think of the poten-
tial as “potential information” (a connection hinted at in
the Shahshahani connection mentioned above) through
use of divergence functions. In particular, let

V(x) =
∑
i
x̂i log x̂i −

∑
i
x̂i logxi. (2)

This is known as the relative entropy [IV.36 §8] or
Kullback–Leibler divergence between the two distribu-
tions and is also denoted as DKL(x̂‖x). Note that it is
not symmetric in the arguments.

In a statistical setting it is thought of as the infor-
mation that is lost when approximating x̂ with x, and
it quantifies in log units the additional information
required to perfectly match the “optimal,” “true,” or
desired distribution. Differentiating with respect to x
yields

V̇ (x) = −
∑
i
x̂i
ẋi
xi
.

Recall that the replicator equation has the form ẋi =
xi(mi(x) − m̄(x)), which upon substitution into the
energy function gives us

V̇ (x) = −
∑
i
x̂imi(x)+

∑
i
x̂im̄(x).

Since the dynamics are restricted to the simplex,∑
i x̂i = 1, and given the definition of the mean m̄(x),

we obtain

V̇ (x) = −(x̂TMx − xTMx) < 0

as long as the true distribution x̂ is an ESS. For an ESS,
the replicator equation will cause a system to adapt
toward the fitness function as encoded in x̂, and it

will do so by extracting all information present in the
“strategic environment” and storing this information in
the population of agents.

We can also make the connection to information
theory another way, through an identity with mutual
information:

I(X̂;X) = DKL(p(x̂, x)‖p(x̂)p(x)),
where DKL is defined as in (2). As populations evolve
they increase the information that they share with their
environments, moving away from statistical indepen-
dence.

One immediate value of an explicitly informational
approach is that it can accommodate adaptive dynam-
ics that do not reduce variance but tend to increase
it. For example, the rock–paper–scissors game has a
Nash equilibrium given by the uniform distribution
over strategies. Fisher’s fundamental theorem is vio-
lated because fitness is now determined by the popula-
tion composition of strategies, and not by an invariant
fitness landscape.

3 Evolution, Optimization,
and Natural Gradients

In the previous discussion we have focused on adap-
tation in biological systems. The form of the equa-
tions of motion has a natural basis in the interac-
tion between replication and competition. The adaptive
process was thought of as a variational, i.e., energy-
minimizing, dynamic that could be described in terms
of divergence measures on statistical manifolds. We
can, however, arrive at the same structures by consid-
ering nonlinear optimization. In this form, rather than
emphasize biological properties we emphasize a form
of hill-climbing algorithm suitable for dealing with non-
convex optimization or parameter estimation problems
based on the so-called natural gradient of information
geometry.

Standard gradient-based optimization assumes a
locally differentiable function with well-behaved first
and second derivatives and a search space that is
isotropic in the sense that any departure from the opti-
mum leads to an equivalent reduction in the gradient.
Discrete-time gradient descent therefore updates solu-
tions (which are still population frequencies in evolu-
tionary systems) X(t) through a recursive algorithm:

X(t + 1) = X(t)− k∇m(X(t)).
These methods work reasonably well for single-

peaked functions in Euclidean spaces. However, for
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many real-world problems, objective functions are
many-peaked, nonisotropic, and live in non-Euclidean
spaces. This broader setting means that gradient meth-
ods search space according to the Riemannian struc-
ture of probabilistic parameter spaces and employ the
Fisher metric as the natural measure of distance. This
provides information about the curvature of a statisti-
cal manifold and promotes more efficient adaptation to
the optimum along an appropriate geodesic.

The updating rule for natural gradients includes
additional geodesic information,

X(t + 1) = X(t)− kF−1
X (t)∇m(X(t)),

encoded in the Fisher metric tensor or Fisher informa-
tion matrix F. It is derived directly from the infinites-
imal Kullback–Leibler divergence (shown above to be
a suitable Lyapunov function for adaptation) between
probability distributions x and y :

DKL(x‖y) =
∫
x ln

(
x
y

)
dx.

This divergence is asymmetric. A true distance can be
defined locally. When we expand DKL to a second-order
Taylor polynomial,

DKL(x‖y) ≈
∫
x ln

[
1 +

(
y
x

− 1
)]

+ 1
2

∫
x
(
y
x

− 1
)2

,

we see that the first-order term tends to zero for y =
x(1 + ε). This leaves us with

DKL(x‖y) ≈ 1
2

∫
x
(
y
x

− 1
)2

.

Note that ln(y) − ln(x) = ln(1 + ε) ≈ ε, and that
ln(y) − ln(x) is simply the derivative of ln(x) in the
ε-direction, ∂ε lnx. Hence,

DKL(x‖y) ≈ 1
2

∫
x(ln(y)− ln(x))2 dx

≈ 1
2

∫
x(∂ε lnx)(∂ε lnx)dx.

We are interested in some finite distance between
proximate distributions induced by some ε-directional
perturbation, y = x(1 + viεi):

Fij(y) = 1
2

∫
y
∂ lny
∂εi

∂ lny
∂εj

dy.

By convention, using the definition of partial infor-
mation, q = − ln(y), the Fisher metric can be written
as an expectation value of a quadratic form:

Fij(y) = 1
2

∫
−∂

2q(y)
∂εi∂εj

y dy

= 1
2

〈
−∂

2q(y)
∂εi∂εj

8
,

where the expectation value of g(y) is

〈g(y)〉 =
∫
g(y)y dy.

Technically, the Fij(y) values are the elements of a
positive-definite matrix or Riemannian metric tensor.
This tensor captures the curvature of a manifold in
N-dimensional space. In Euclidean space this matrix
reduces to the identity matrix. Hence, any nonlinear
optimization that makes use of the true geometry of a
“fitness” function will respect the dynamics of the repli-
cator equation describing trajectories that minimize
distances on statistical manifolds.

Adaptive dynamics are, therefore, precisely those tra-
jectories on statistical manifolds that can be said to
be maximizing the extraction of information from the
environment.

4 Discrete and Stochastic Considerations

The logic of the continuous systems extends to the dis-
crete case, but the delays intrinsic to maps introduce
the possibility of periodic and chaotic behavior. The
discrete replicator equation, or replicator mapping, has
the form

xi(t + 1) = xi(t)+ xi(t)((Mx(t))i − x(t)TMx(t)).
Even the low-dimensional, two-player discrete game

exhibits a full range of complex dynamical behavior. If
we consider the parametrized payoff matrix

M =
[

1 S
T 0

]
,

we can capture a range of so-called evolutionary dilem-
mas including the “hawk–dove game” (T > 1, S > 0),
the “stag hunt game” (T < 1, S > 0), and the “pris-
oner’s dilemma” (T > 1, S < 0). As a general rule, small
or negative values of S and T induce periodic solu-
tions, whereas large values of S and T produce chaotic
solutions. In the constrained case where T = S = A,
systematically increasing the value of A leads to the
period-doubling route to chaos.

In population genetics, the game selection model is
typically written using the equivalent map

xi(t) = xi(t − 1)
∑
j mijxi(t − 1)∑

pq mpqxp(t − 1)px(t − 1)q
.

Discreteness is important for adaptation. These re-
sults illustrate some of the challenges of evolving reli-
able strategies when fitness is frequency dependent.
Deterministic chaos will severely limit the long-term
stability of a lineage.
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When models incorporate stochasticity, even greater
instability ensues. The deterministic results apply most
strongly in the limit of large populations overcoming
the phenomenon of “neutral drift.” If the difference in
fitness values or payoff values between strategies is less
thanO(1/N), then the dynamics are described by anN-
dimensional random walk with the frequencies 0 and 1
acting as absorbing states. In small populations, sam-
pling drift limits adaptation in the sense that we can
no longer assume that the dynamics will minimize an
appropriate energy function. The smaller the popula-
tion, the greater the variance in the Malthusian param-
eters or payoff differences required in order to increase
fitness. Stochasticity is treated formally in both the
“neutral” and “near-neutral” theories of evolution.

4.1 Innovation Dynamics

The systems considered in the previous sections do
not attempt to explain the “origin” of adaptations but
instead focus on the efficacy of selection in promoting
adaptation within an invariant population. In order to
explore the origin of adaptive novelty, we need to intro-
duce an intrinsic source of variability. In evolutionary
theory this is accomplished by means of mutation and
recombination operators. The natural extension of the
replication equation to include mutation leads to the
quasispecies equation

ẋi =
∑
j
qijmjxj − xim̄(x).

The operator Q is a doubly stochastic matrix of tran-
sition probabilities encoding mutations from a strain
Xj → Xi. Geometrically, this operator ensures that the
boundary of the simplex Sn is no longer invariant: tra-
jectories can flow from outside of the positive orthant
into Sn in such a way that new strains might emerge
from existing strains that were not present in the initial
population distribution.

In much the same way that neutral drift can eliminate
adaptation, excessive mutation can abrogate hill climb-
ing, replacing selection with diffusion over the simplex
defined by the mutation kernel Q. This is known as the
“error threshold.” If each strain is encoded by a binary
sequence of length L, then assuming a uniform error
rate in transmission across each string, the transition
probabilities can by written in binomial form as

qij = pdij (1 − p)L−dij ,
where dij is the Hamming distance between strains,
and p is the per bit per generation transition prob-
ability. For any choice of fitness function, the regime

p > 1/L will completely “flatten” the landscape, elimi-
nating adaptation altogether. This result serves to illus-
trate costs and benefits of mutational transformation.
If mutation is too low, there is a risk of extinction
arising from the inability to adapt to a novel environ-
ment, whereas if mutation is too high, there is a risk of
extinction arising from the complete loss of the adap-
tive capability through the dissipation of phylogenetic
memory.

Recombination is formally more cumbersome but
plays a role in modulating the rate of evolution within
a population of recombining strains. For low rates
of mutation, recombination tends to reduce popula-
tion variability, leading to increased stability. For high
rates of mutation that remain below the error thresh-
old, recombination can tip the population over the
error threshold and destabilize a population. Hence,
rather like mutation, recombination is a double-edged
adaptive sword.

5 Adaptation Is Algorithmic
Information Acquisition

We have shown how adaptation represented through a
symmetric form of the continuous selection equation
(the replicator equation) can be thought of as a nat-
ural gradient that minimizes a potential representing
information. Adaptive systems are precisely those that
extract information from their environments (taken to
include other agents) so as to minimize uncertainty.
This is made explicit through the fact that the KL diver-
gence between the joint distribution of a pair of ran-
dom variables and the product distribution of these
variables is equal to the mutual information between
these variables. Adaptation is therefore measured by
the degree of departure from independence of organ-
isms and their environments, or from each other. In
this framework, adaptation continues (driving up the
mutual information) until there is no further functional
information to be acquired and, thus, no latent depen-
dencies remaining to be discovered. This is unlikely to
occur in reality as environments are rarely static over
long intervals of time. The very general nature of adap-
tation suggests that it might manifest in a variety of
forms, and this is exactly what we find: adaptive dynam-
ics possesses a number of “avatars,” each of which
is a framework for obtaining information through the
iteration of a simple growth and culling process.

In this section we present a few of the mathematical
avatars of replicator dynamics in order to demonstrate
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that adaptation is a ubiquitous nonlinear optimiza-

tion procedure across a range of fields, many of which

appear to be unrelated. This reduction to a canonical

adaptive form constitutes evidence of functional equiv-

alence with respect to information extraction in the ser-

vice of increased prevalence, which should rightly be

thought of as adaptive evolution.

5.1 Bayesian Inference

In 1763, Bayes’s posthumous paper “An essay towards

solving a problem in the doctrine of changes” was pub-

lished in the Philosophical Transactions of the Royal

Society. The paper presented a novel method for cal-

culating probabilities with minimal or no knowledge of

an event and indicated how repeated experiments can

lead toward the confirmation of a conclusion.

bayes’s rule [V.11 §1] is the engine behind what

we now call Bayesian updating and, when appropri-

ately written, it is revealed to be a natural mathe-

matical encoding of adaptation. In other words, it is

an information-maximizing dynamic induced on the

simplex. In dynamical terms it is a discrete particle

system that through repeated iteration converges on

an effective estimate of a true underlying probability

distribution.

Whereas we think of adaptation in terms of the differ-

ential success of organisms, Bayesian updating treats

adaptation as the differential success of hypotheses.

The basic updating equation is

P(X)t = P(X)t−1
L(X)t−1

〈L〉t−1
,

with the change in the concentration of the probabil-

ity mass P(X) delivered around the highest likelihood

L(X) values:

ΔP(X)t = P(X)t−1
L(X)t−1

〈L〉t−1
− P(X)t−1

= P(X)t−1

(
L(X)t−1

〈L〉t−1
− 1

)
= P(X)t−1

〈L〉t−1
(L(Xt−1)− 〈L〉t−1).

Note that the evolution of the probability distribution

in continuous time reduces to the simplest form of the

differential replicator equation:

ẋ = 1
〈L〉x(Lx − 〈L〉).

Bayes therefore constructed an adaptive avatar avante

le lettre of Darwin’s theory. A method for estimating

the probability of a hypothesis through trial and error

is the prequel to the differential replication of natural

selection.

5.2 Imitation

In much the same way that Bayesian updating is an

avatar of adaptation, learning through imitation simi-

larly qualifies. Imitation is a cognitive strategy for arriv-

ing at a pattern of behavior based on sampling a pop-

ulation of model behaviors. After sufficient time has

elapsed, the most prevalent behavior will be the one

most frequently imitated.

Assume that each individual i varies in its strategy

choices si. Think of this as a vector specifying a mixed

strategy defining how individuals should interact. Inter-

actions between strategies si and sj give rise to pair-

wise payoffs or rewards rij . Reward information is used

to decide which strategy to adopt in subsequent inter-

actions. In particular, differences in payoffs lead to the

adoption of more successful strategies. The rate of imi-

tation leading strategy j to imitate a strategy i, sj → si,
can therefore be written in matrix form:

fij = [(Rg)i − (Rg)j]+,

where R is the matrix of rewards and g the vector

of genotypic or strategic frequencies. Notice that this

function is only nonzero in the positive half-space, so

lower payoff strategies are not imitated. The population

of players will evolve in time according to an imitation

learning dynamics that is easily seen to reduce to the

game dynamical form of the replicator equation:

ġi = gi
∑
j
(fij − fji)gj

= gi
∑
j
[(Rg)i − (Rg)j]gj

= gi[(Rg)i − gRg].

5.3 Reinforcement Learning

Skinner introduced the linear operator model of rein-

forcement to explain schedules of behavioral extinction

and acquisition, and this framework has been enor-

mously influential, giving rise to a very large class of

learning rules. Any behavior that is correct is rewarded,

while incorrect behavior is punished. Over time, rein-

forcement seeks to make correct behavior probable and

incorrect behavior improbable. Consider a set of behav-

iors Xi each associated with a probability xi. For each
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behavior there is a reward ri. The incremental change
in the probability of any action, with a learning rate
parameter α, can be written as

δxk = αri(δik − xk),
where δij is the kronecker delta [I.2 §2, table 3].
This gives the updated probability of behavior assum-
ing that a single action was performed. The average
change of behavior takes into account the probability
of an action xi:

Δxk =
∑
i
xiδxk.

Combining these two equations we deduce that

Δxk =
∑
i
xi[αri(δik − xk)]

= α
∑
i
xiriδik −αxk

∑
i
xiri

= αxkrk −αxk
∑
i
xiri.

The term
∑
i xiri is simply the mean reward, 〈r〉, and

the change in behavior in continuous time is given by
the simple replicator equation

ẋk = xk(rk − 〈r〉).
As with Bayesian updating and imitation learn-

ing, reinforcement learning is an algorithm for iter-
atively forming an accurate estimate of an underly-
ing probability distribution imposed through a learning
environment.

6 Final Remarks

In all that precedes we have focused on a very gen-
eral context of adaptation and the related mathemat-
ics. This was the most expansive framing of adaptation
as a form of optimization subject to the constraints
of probability. When presented in this way we observe
that adaptation is not unique to biology but is a ubiqui-
tous phenomenon in nature. One might go so far as to
assert that the property of adaptation is the defining
signature of life in the universe and that the mathe-
matics of adaptation represents a form of algorithmic
biological law.

Many have explored the mathematics of complex
adaptive systems, placing an emphasis on questions of
“emergence.” These are systems for which, as Nobel
laureate Phil Anderson famously wrote “more is dif-
ferent” or “the whole is greater than the sum of the
parts,” a descriptor that suggests the variety of nonlin-
ear phenomena they comprise. The formal relationship

between emergence and adaptive dynamics remains

somewhat unclear.

Familiar examples of such systems run the gamut

from Ising models to economies. They are often char-

acterized by hierarchical and multiscale structure as

well as hysteresis. They have generally emerged over

time and space, most through processes related to

those that we have discussed, namely feedback and

adaptation.

The mathematical framework presented above is a

necessary component in the analysis of all such sys-

tems, but not all consider the process of evolution

explicitly, or they prefer simulation approaches such

as agent-based models and genetic or evolutionary

programming. These involve the disciplines of pro-

gramming and consideration of more sophisticated

distributed algorithms.
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V.2 Sport
Nicola Parolini and Alfio Quarteroni

1 Introduction

The increasing importance of mathematical model-

ing is due to its improved ability to describe com-

plex phenomena, predict the behavior of those phe-

nomena, and, possibly, control their evolution. These

improvements have been made possible by theoretical

advances as well as advances in algorithms and com-

puter hardware. In recent years mathematical models

have received a lot of attention in the world of sport,

where any (legal) practice that can improve perfor-

mance is very welcome. By adopting appropriate math-

ematical models and efficient numerical methods for

their solution, the level of accuracy required for opti-

mizing the performance of an athlete or a team can be

guaranteed.

Computational fluid dynamics (CFD) is the branch of

computational mechanics that uses numerical meth-

ods to simulate problems that involve fluid flows. In

the past two decades, CFD has become a key design

tool for Formula 1 cars. However, F1 is not the only

sport in which mathematical/numerical modeling has

been applied. In this article we discuss the results of

three research projects—one concerning sailing, one

rowing, and one swimming—undertaken by the authors

in recent years, with the objective of highlighting the

role that mathematics and scientific computing can

play in these fields.

2 Model Identification

In every physical process, phenomena of different

types (mechanical, chemical, electrodynamical) act at

the same time and interact with each other. How-

ever, in a practical modeling approach it is often

possible to limit the analysis to a specific physical

aspect. In the case of fluid dynamics, a mathemati-

cal model based on continuous mechanics principles,

given by the Navier–Stokes equations, is usually ade-

quate. Even in this framework, further model identifica-

tion efforts are required. Indeed, specific flow regimes

(laminar/turbulent, compressible/incompressible, sin-

gle/multiphase) demand different specializations of

the original mathematical model. Moreover, a suit-

able definition of the limited space/time computational

domain and suitable choices for the initial and bound-
ary conditions are required to obtain a well-posed
mathematical problem.

The hydrodynamics of a boat (or a swimmer) is well
described by an incompressible, turbulent, two-phase
flow model. Denoting by Ω the three-dimensional com-
putational domain around the boat (or the swimmer)
that is occupied by either air or water, the navier–

stokes equations [III.23] read as follows. For allx ∈ Ω
and 0 < t < T ,

∂ρ
∂t

+∇ · (ρu) = 0, (1)

∂(ρu)
∂t

+∇ · (ρu⊗ u)−∇ · τ(u, p) = ρg, (2)

∇ · u = 0, (3)

where ρ is the (variable) density, u the velocity, p
the pressure, g = (0,0, g)T the gravitational acceler-
ation, and τ(u, p) = μ(∇u + ∇uT) − pI denotes the
stress tensor with μ indicating the (variable) viscos-
ity. Equation (1) prescribes mass conservation, equa-
tion (2) the balance of momentum, and equation (3)
the incompressibility constraint. As mentioned above,
equations (1)–(3) should be complemented with suit-
able initial and boundary conditions.

Different approaches are available to simulate the
free-surface dynamics of the water–air interface. In
interface tracking methods, the interface is explic-
itly reconstructed, while interface capturing techniques
usually identify the interface as an (implicitly defined)
isosurface of an auxiliary characteristic function. The
flow solutions in air and water should satisfy the
interface conditions

ua = uw,

τa(ua, pa) · n = τw(uw, pw) · n+ κσn,
which, respectively, enforce continuity of velocities and
equilibrium of forces on the interface. The surface ten-
sion contribution κσn, which depends on the coeffi-
cient σ , the local curvature κ, and the interface normal
n, is usually negligible in the applications considered
in this work.

For the simulation of turbulent flows, which are com-
monly encountered in hydrodynamics applications, a
turbulence model is usually adopted. These models
are able to include the main effect of the turbulent
nature of the flow without capturing all the space-
and timescales that characterize the flow. They usu-
ally result in an additional turbulent viscosity μT that is
added to the physical viscosity μ in the stress tensor τ.
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That is,

τ = (μ + μT)(∇u+∇uT)− pI.
The system of partial differential equations (1)–(3)

can be discretized using different numerical schemes.
For instance, the spatial discretization may be based
on finite-difference, finite-volume, or finite-element
methods. Here, the finite-volume method is considered.
The domain is subdivided into small control volumes
(forming a so-called computational grid) and the dif-
ferential equations (in their integral form) are imposed
locally on each control volume. In this way one can for-
mulate a discrete version of the problem (1)–(3) that,
at the end, leads to the solution of a (usually large)
linear system. The dimension of the linear system is
strictly related to the dimension of the computational
grid. In turn, the size of the grid usually depends on the
flow regime. In particular, with high-speed and multi-
phase flows with complex flow features (such as sep-
aration or laminar–turbulent transition), the size of
the computational grid can easily exceed several mil-
lion elements. The solution of the associated large lin-
ear system is carried out with state-of-the-art iterative
methods (for example, multigrid methods) on parallel
architectures.

Numerical models based on the discrete solution of
the Navier–Stokes equations usually guarantee that the
results come with a high level of accuracy, but this
comes at a high computational cost. This is partic-
ularly true when viscous (and turbulent) effects play
an important role in the simulated flows. In some
cases—when one is mostly interested in reconstruct-
ing the shape of the free surface around a boat,
for example—reduced-order models [II.26] based
on the Euler equations or even on potential flow
theory can be adopted. Reduced-order models are
often used for preliminary analysis or multiquery prob-
lems (arising, for example, in genetic optimization).
In other cases, the computational reduction strategy
may be based on a geometrical multiscale approach,
where the complete (and computationally expensive)
three-dimensional model is only used in a very lim-
ited portion of the original domain and is coupled
with spatial (two-dimensional/one-dimensional/zero-
dimensional) reduced models that account for the rest.
The correct identification of the most suitable model
for a specific problem should be based on a com-
promise between the level of accuracy achieved by
the model in estimating the objective function of the
analysis at hand and its computational cost.

3 Numerical Models for Fluid
Dynamics in Sport

3.1 The America’s Cup

The America’s Cup is a highly competitive sailing yacht
race in which even the smallest details in the design
of the boats’ different components can make a big dif-
ference to the final result. To analyze and optimize
a boat’s performance, the aerodynamic and hydro-
dynamic flow around the whole boat should be sim-
ulated, taking into account the variability of wind and
waves, and the presence of the opposing boat and its
maneuvering, as well as the interaction between fluids
(water and air) and the boat’s structural components
(its hull, appendages, sails, and mast).

The main objective for the designers is to select
shapes that minimize water resistance on the hull and
appendages and maximize the thrust produced by the
sails. Numerical models allow different situations to be
simulated, thus reducing the costs (in terms of both
time and money) of running experiments in a towing
tank or a wind tunnel.

To evaluate whether a new design idea is potentially
advantageous, a velocity prediction program is often
used to estimate the boat speed and attitude for a
range of prescribed wind conditions and sailing angles.
These numerical predictions are obtained by model-
ing the balance between the aerodynamic and hydro-
dynamic forces acting on the boat. The accuracy of
speed and attitude predictions relies on the accuracy of
the force estimation, which is usually computed by inte-
grating experimental measurements in a towing tank,
by analytical models, and by accurate CFD simulations.

In order to perform the latter, any new shape is
reproduced in a computer-aided design model (usu-
ally defined by several hundred nonuniform rational
B-spline (NURBS) surfaces for the whole boat). Based
on this geometry, a computational grid can be gener-
ated. This step is usually crucial for obtaining accu-
rate predictions. In particular, for free-surface hydro-
dynamic simulation it is often necessary to resort to
block-structured grids in order to capture the strong
gradients in the wall boundary layer (figure 1) and to
reconstruct the free-surface geometry accurately.

A detailed simulation of the complex flow around the
appendages (keel, bulb, and winglets) is displayed in
figure 2, where the typical recirculation associated with
the lift generated by the keel in upwind sailing can be
observed.
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Figure 1 Detail of the grid in the boundary layer.

Figure 2 Flow around the appendages in upwind sailing.

As mentioned, the air and water interact with the boat
and can change its configuration. In this respect, two
classes of problems can be considered:

• the rigid-body motion of the boat under the action
of the fluid forces;

• the fluid–structure interaction between the flexible
sails and the wind.

Different numerical schemes for the coupling between
the flow solution and a structural model have been
defined and are described in the following sections.
Notice that in both cases, the Navier–Stokes equa-
tions have to be reformulated in the so-called arbi-
trary Lagrangian–Eulerian (ALE) formulation to deal
with moving-domain problems.

3.1.1 Boat Dynamics

The attitude of the boat advancing in calm water or
on a wavy sea, as well as its dynamics, may strongly
influence its performance. For this reason, a numerical
tool for yacht design should be able to predict not only
the performance of the boat in a steady configuration
but also the boat’s motion and its interaction with the
flow field.

This can be achieved by coupling the flow solver with
a six-degrees-of-freedom dynamical system describing
the rigid-body motion of the boat. Consider an iner-
tial reference system (0, X, Y , Z), moving forward with
the mean boat speed, and a body-fixed reference sys-
tem (G, x,y, z), centered in the boat center of mass G,
which translates and rotates with the boat. The boat
dynamics is computed by integrating the equations
of variation of linear and angular momentum in the
inertial reference system, which are

mẌG = F,
TIT−1Ω̇+Ω× TIT−1Ω =MG,

with m denoting the boat mass; ẌG the linear accel-
eration; F the force acting on the boat; Ω̇ and Ω the
angular acceleration and velocity, respectively; andMG
the moment with respect to G acting on the boat. The
tensor of inertia I is computed in the body-fixed ref-
erence system, and the rotation matrix T between the
body-fixed and inertial reference systems is required to
write the problem in the inertial reference system.

The forces and moments acting on the boat are in this
case rather simple and include the flow force (FFlow) and
moment (MFlow) and the gravitational force:

F = FFlow +mg, MG =MFlow. (4)

Using this model it was possible to simulate the
dynamics of the boat in different conditions, analyzing
both calm water and wavy sea scenarios. In figure 3,
an example of the free-surface distribution of a hull
advancing in regular waves is shown.

3.1.2 Wind–Sails Interaction

Sails are flexible structures that deform under the
action of the wind. The pressure field acting on the sail
changes its geometry and this, in turn, alters the flow
field.

In mathematical terms, this problem can be defined
as a coupled system that comprises a fluid problem
F defined on the moving domain ΩF(t) surrounding
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Figure 3 Free-surface simulation in wavy conditions.

the sail, a structural problem S defined on the mov-
ing domain ΩS(t), and a mesh motion model M. The
structural model is usually based on a second-order
elastodynamic equation depending on the sail defor-
mation. Without entering into a detailed formulation
of the structural and mesh motion models, we focus
on the coupled nature of the problem.

In abstract form, the coupled problem can be formu-
lated as

F(u, p,w) = 0 in ΩF(t),

S(d) = 0 in ΩS(t),

M(η) = 0 in Ω0
F ,

u = ḋ on Γ (t),

σF(u, p)nF = σS(d)nS on Γ (t),

η = d on Γ 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)

where the three (fluid, structure, and mesh motion)
problems are coupled through three conditions over
the interface Γ (t) stating the continuity of velocity,
the equilibrium of forces, and the geometric continuity,
respectively. In (5), d is the structural displacement, η
the mesh displacement, and Ω0

F and Γ 0 denote a ref-
erence fluid domain and interface, respectively. The
fluid mesh motion velocity w, needed in the arbitrary
Lagrangian–Eulerian formulation of the Navier–Stokes
equations, depends on the mesh displacement η as
w = η̇.

For the solution of problem (5), different fluid–struc-
ture interaction schemes can be devised. In monolithic
schemes a global system is assembled and solved for
all the unknowns of the problem simultaneously. A dif-
ferent approach, usually preferred when one wants to
exploit already existing fluid and structural solvers, is

Figure 4 An example of a transient
fluid–structure interaction solution.

provided by partitioned schemes in which the fluid,
structure, and mesh motion problem are solved iter-
atively. For the case at hand, a strongly coupled parti-
tioned scheme has been devised and this scheme guar-
antees that at each time step equilibrium is reached
between the different subproblems. To compute the
solution at time tn+1, a subiteration between the three
subproblems is required. The structural solution is first
computed by solving

S(dn+1
k+1 ) = 0 in (ΩS)n+1

k ,

σS(d)n+1
k+1 (nS)n+1

k = σF(u, p)n+1
k (nF)n+1

k on Γ ,

followed by solution of the mesh motion update

M(ηn+1
k+1 ) = 0 in Ω0

F ,

ηn+1
k+1 = αdn+1

k+1 + (1 −α)dn+1
k on Γ 0,

and finally undertaking the flow solution

F(un+1
k+1 , p

n+1
k+1 ,w

n+1
k+1 ) = 0 in (ΩF)n+1

k+1 ,

un+1
k+1 = αḋn+1

k+1 + (1 −α)ḋn+1
k on Γ n+1

k+1 ,

where a relaxed value of the structure displacement at
the current iteration k+1 and the previous subiteration
k is used. The iteration over the index k is stopped when
a suitable convergence criterion is fulfilled.

Several fluid–structure interaction simulations of
sails have been carried out using this model, which
has proved its ability in predicting both steady fly-
ing shapes and sail dynamics under different trimming
conditions. An example of a transient fluid–structure
interaction simulation can be seen in figure 4, where the
shape of the sail at several time instants is displayed.
The flow pattern around mainsail and gennaker in a
downwind sail configuration is shown in figure 5.

3.2 Olympic Rowing

Can numerical models developed for the America’s Cup
be adopted in other hydrodynamics applications in
sport? Consider, for instance, the prediction of a row-
ing boat’s performance. In principle, the physical prob-
lem is very similar to one of those already described:
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Figure 5 Streamlines around mainsail and gennaker.

namely, a free-surface flow in a moving-domain frame-
work. What characterizes the rowing action, however,
is the motion of the rowers on board. Indeed, a men’s
quadruple scull weighs around 50 kg and has four
100 kg rowers on board who move with a cadence of
around 40 strokes per minute. This motion has a strong
effect on the global performance of the boat that should
be captured by the simulation tool.

To account for the motion of the rowers, the forces
and moments acting on the boat, which were simple
in the rigid-body dynamics of the sailing boat (see (4)),
become more involved in this case and should account
for the additional forces that the rowers exert on the
boat through the oars, the seats, and the footboards:

F =
n∑
j=1

Foj +
n∑
j=1

Fsj +
n∑
j=1

Ffj + FFlow +mg,

MG =
n∑
j=1

(Xoj −G)× Foj +
n∑
j=1

(Xsj −G)× Fsj

+
n∑
j=1

(Xfj −G)× Ffj +MFlow,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6)

where Foj , Fsj , and Ffj denote the forces exerted by
the jth rower on his/her oarlock, seat, and footboard,
respectively, and Xoj , Xsj , and Xfj are the correspond-
ing application points. To compute these additional
forcing terms it is necessary to reconstruct the kine-
matics of the rowers’ action. A schematic of the boat/
rowers/oars system is given in figure 6. An accurate
prediction of these forces is crucial for the performance
analysis of the system. These periodic forcing terms, in
fact, induce relevant secondary motions of the boat that

Fo1
Fo2

Fo3
Fo4

Fs1
Fs2

Fs3
Fs4

Ff1
Ff2

Ff3
Ff4

Figure 6 Sketch of the boat/rowers/oars system.

Figure 7 Free-surface flow around a rowing boat.

generate an additional wave radiation effect, increasing
the global energy dissipation of the system. Indeed, the
quality of a professional rower is evaluated not only by
the force he/she is able to express during the active
phase of the stroke but also on his/her ability to per-
form a well-balanced stroke cycle that minimizes the
secondary motions.

The hydrodynamic forcing terms FFlow and MFlow in
system (6) can be computed using either a complete
Navier–Stokes flow model or a reduced hydrodynamic
model based on a linear potential flow model. The for-
mer was used, for example, to investigate the perfor-
mance of different boat designs, simulating the free-
surface flow around them (see figure 7) and the rolling
stability of the system (see figure 8); using the latter
approach, full race simulations could be carried out in
(almost) real time.

3.3 Swimming

In recent years, competition swimming has been unset-
tled by the introduction of high-tech swimsuits. These
products resulted from scientific research on the devel-
opment of low-drag fabrics and new techniques of fab-
ric assembly. Thanks to the improved performance
guaranteed by these new swimsuits, in a couple of years
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Figure 8 Rolling motion of a rowing boat.

(2008–9) more than 130 swimming world records were
broken. In 2010 the International Swimming Federa-
tion (FINA) decided to ban the use of these products
in official competitions.

In this context, the authors have (in collaboration
with a leading swimsuit manufacturer) been involved in
a research activity to estimate the potential gain asso-
ciated with a new technique of fabric assembly based
on a thermo-bonding system in which all the standard
sewing was completely removed from the swimsuit sur-
face. This new swimsuit was approved by FINA before
the Beijing 2008 Olympic Games.

In order to quantify the advantages of removing the
sewing, its impact on the flow around the swimmer
needed to be analyzed. A complete simulation includ-
ing the geometrical details of the swimmer’s body as
well as the sewing on the swimsuit is unaffordable, due
to the different length scales involved (see figure 9).
Model reduction was therefore mandatory. At first, the
flow around the sewing was analyzed considering a
local computational domain limited to a small patch
of fabric surrounding the sewing.

The sewing geometry was reconstructed in detail
to generate a computer-aided design model. Based
on this geometry, an unstructured computational grid
was generated and the flow around the sewing was

Figure 9 Shear stress distribution over a
swimmer at different spatial scales.

Figure 10 Local flow around the
sewing at different incidences.

simulated considering different flow velocities and ori-
entations (see figure 10). The presence of the sewing
strongly affects the flow in its boundary layer, and this
results in an additional drag component.

Full-body simulations (see figure 11) were then car-
ried out to estimate, for all the sewing distributed over
the swimsuit, the local velocity and orientation, so that
the results of the small-scale simulation could be inte-
grated to obtain a global value of the drag component
associated with the presence of the sewing.

To move from an estimate of the drag reduction to
an estimate of the reduction in race time, a race model
was developed, based on the Newton law:

m
d2x(t)

dt2
= P(t)−D(t), x′(0) = 0, x(0) = 0,

wherem and x are the mass and position of the swim-
mer, respectively. The resistanceD(t) can be estimated
based on the results of the CFD simulation described
above, while the propulsion P(t) could also be com-
puted through ad hoc simulations of the stroke action
(see figure 12).



604 V. Modeling

Figure 11 Full-body simulation of
the flow around a swimmer.

Figure 12 Flow around the hand in a stroke simulation.

Table 1 Time gains in seconds for different freestyle races.

Gliding Length Race

50 m 0.011 0.073 0.073
100 m 0.011 0.077 0.154
200 m 0.012 0.083 0.332
400 m 0.013 0.087 0.696

Our analysis made it possible to quantify the poten-
tial gain in terms of race time associated with the new
swimsuit design, which is the most useful metric of the
performance improvement. The time gains for different
race lengths are reported in table 1, where the gains in

the gliding phase, over one length and over the whole

race, are specified. These relevant race time improve-

ments estimated by numerical simulations were con-

firmed by an experimental campaign carried out in

the University of Liège’s water tank by the biomechan-

ics research group of the University of Reims (France)

under the supervision of Redha Taiar.
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V.3 Inerters
Malcolm C. Smith

1 Introduction

A new ideal mechanical modeling element, coined the

“inerter,” was introduced by the author in 2002 as a

component that was needed for the solution of the

following mathematical question (although it is not

purely mathematical: it also touches on physics and

engineering).

[P] What is the most general linear passive mechanical
impedance function that can be realized physically?
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An analogy with electrical circuits suggested that a
solution ought to be straightforward. But this turned
out not to be the case, and a new mechanical modeling
element was needed. Embodiments of inerter devices
were built and tested at the University of Cambridge’s
engineering department. The technology was subse-
quently developed by a Formula 1 team, and the inerter
is now a standard component of many racing cars. The
story of this development from mathematical theory to
engineering practice is described below.

2 Network Analogies

There are two analogies between electrical and mechan-
ical networks that are in common use. The oldest
of these uses the correspondences force ↔ voltage
and velocity ↔ current. An alternative analogy, usu-
ally attributed to Firestone (1933), makes use of the
correspondences

force ↔ current,

velocity ↔ voltage,

mechanical ground ↔ electrical ground.

Although neither analogy can be said to be correct or
incorrect, the force–current analogy has certain advan-
tages. Firstly, from a topological point of view, network
graphs are identical in the electrical and mechanical
domains when the force–current analogy is used. This
means that any electrical network has a mechanical
analogue, and vice versa, whereas in the older force–
voltage analogy only networks with planar graphs have
an analogue in the other domain, since the dual graph
is involved in finding the analogue. Secondly, in the
force–current analogy, mechanical ground (namely, a
fixed point in an inertial frame) corresponds to elec-
trical ground (namely, a datum or reference voltage).
Thirdly, and more fundamentally, the force–current
analogy is underpinned by the notion of through and
across variables. A through variable (such as force or
current) involves a single measurement point and nor-
mally requires the system to be severed at that point
to make the measurement. In contrast, an across vari-
able (such as velocity or voltage) is the difference in an
absolute quantity between two points and can in princi-
ple be measured without breaking into the system. The
notion of through and across variables allows analo-
gies to be developed with other domains (e.g., acoustic,
thermal, fluid) in a systematic manner.

It is important to point out, since both force×velocity
and current × voltage have the units of power, that

both analogies are power preserving. Questions such as
[P] that relate to passivity (meaning no internal power
source) can therefore be correctly mapped from one
domain to another.

3 The Inerter

The standard correspondences between circuit ele-
ments in the force–current analogy are as follows:

spring ↔ inductor,

damper ↔ resistor,

mass ↔ capacitor.

A well-known fact, which is only rarely emphasized,
is that only five of the above six elements are gen-
uine two-terminal devices. For mechanical devices, the
terminals are the attachment points. Both the spring
and the damper have two independently movable ter-
minals. However, the mass element has only one attach-
ment point: the center of mass. Its behavior is described
by Newton’s second law, which involves the accelera-
tion of the mass relative to a fixed point in an inertial
frame. This gives rise to the interpretation that one ter-
minal of the mass is the ground and the other termi-
nal is the position of the center of mass itself; effec-
tively, that the mass is analogous to a grounded capac-
itor. This means that not every electrical circuit com-
prising inductors, capacitors, and resistors will have a
spring–mass–damper analogue.

There is a further problem regarding the mass ele-
ment in relation to [P]. Any mechanism that is con-
structed to realize a given impedance function is typ-
ically intended for connection between other masses,
and must therefore have a small mass in relation
to those. Any construction involving mass elements
would need to ensure that the total mass employed
could be kept as small as desired.

The above considerations were the motivation for the
following question posed in Smith (2002): is it possi-
ble to construct a two-terminal mechanical device with
the property that the equal and opposite force applied
at the terminals is proportional to the relative accel-
eration between them? It was shown that devices of
small mass could be constructed that approximate this
behavior. Accordingly, the proposal was made to define
an ideal modeling element as follows.

Definition 1. The (ideal) inerter is a mechanical two-
terminal device with the property that the equal and
opposite force applied at the terminals is proportional
to the relative acceleration between them. That is,
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FF

v1v2

Mechanical
network

Figure 1 A free-body diagram of a one-port (two-terminal)
mechanical element or network with force–velocity pair
(F, v), where v = v2 − v1.

Rack Pinions

Terminal 2 Terminal 1Gear Flywheel

Figure 2 Schematic of a mechanical model of an inerter
employing a rack, pinion, gears, and flywheel.

F = b(v̇2 − v̇1) in the notation of figure 1. The con-
stant of proportionality b is called the inertance and
has units of kilograms.

As is the case for any modeling element, a distinc-
tion needs to be made between the ideal element (as
defined above) and practical devices that approximate
it. The manner in which practical realizations deviate
from ideal behavior may determine whether a defini-
tion is sensible at all. In the case of the inerter, it has
already been noted that realizations are needed with
sufficiently small mass, independent of the inertance
b. Another requirement is that the “available travel”
(the relative displacement between the terminals) of
the device can be specified independently of the iner-
tance. One method of realization that can satisfy all
these requirements makes use of a plunger sliding in a
housing that drives a flywheel through a rack, pinion,
and gears (see figure 2).

The circuit symbols of the six basic electrical and
mechanical elements, with the inerter replacing the
mass, is shown in table 1. The symbol chosen for the
inerter represents a flywheel. The table also shows
the defining (differential) equation for each element as
well as the admittance function Y(s) = Z(s)−1, where
Z(s) is the impedance function. Taking Laplace trans-
forms of the defining equation, assuming zero initial

i

i

v

Electrical
network

Figure 3 A one-port electrical network.

conditions, the impedance for the electrical elements
is defined by Z(s) = î(s)/v̂(s), and similarly for the
mechanical elements.

4 Passivity and Electrical Network Synthesis

Let us consider the problem in the electrical domain
that is analogous to [P]. Figure 3 shows an electri-
cal network with two external terminals (a “one-port”)
across which there is a voltage v(t) and a correspond-
ing current flow i(t) through the network. The driving-
point impedance of the network is defined by Z(s) =
î(s)/v̂(s). The network is defined to be passive if it con-
tains no internal power source. More formally, we can
define the network to be passive if, for all admissible v
and i that are square integrable on (−∞, T ],∫ T

−∞
v(t)i(t)dt � 0.

In his seminal 1931 paper, Brune introduced the notion
of a positive-real function: for a rational function with
real coefficients, Z(s) is defined to be positive-real if
Z(s) is analytic and Re(Z(s)) � 0 whenever Re(s) > 0.
Equivalently, Z(s) is positive-real if and only if Z(s) is
analytic in Re(s) > 0, Re(Z(jω)) � 0 for allω at which
Z(jω) is finite,1 and any poles of Z(s) on the imagi-
nary axis or at infinity are simple and have a positive
residue. Brune showed that a necessary condition for
the network to be passive is that Z(s) is positive-real.

Brune also showed the converse: for any (rational)
positive-real function Z(s) a network can be con-
structed (synthesized) comprising resistors, capaci-
tors, inductors, and mutual inductances whose driving-
point impedance is equal to Z(s). In Brune’s construc-
tion, mutual inductances were required with a coupling
coefficient equal to 1, but that is difficult to achieve
in practice. This led to the question of whether cou-
pled coils (transformers) could be dispensed with alto-
gether. This was settled in the affirmative in a famous
1949 paper of Bott and Duffin.

1. In the electrical engineering convention, j = √−1.
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Table 1 Circuit symbols and correspondences with defining equations and admittance Y(s).

Mechanical Electrical

FF

v1v2

Y(s) = k
s

ii
v1v2

Y(s) = 1
Ls

dF
dt

= k(v2 − v1) Spring
di
dt

= 1
L
(v2 − v1) Inductor

FF

v1v2

Y(s) = c
ii

v1v2
Y(s) = 1

R

F = c(v2 − v1) Damper i = 1
R
(v2 − v1) Resistor

FF

v1v2

Y(s) = bs
ii

v1v2
Y(s) = Cs

F = bd(v2 − v1)
dt

Inerter i = C d(v2 − v1)
dt

Capacitor

The Bott–Duffin construction certainly settled an
important question in network synthesis. However, it
also raised further questions since the construction
appears, for some functions, to be rather lavish in
the number of elements used. For example, the con-
struction uses six energy storage elements for some
biquadratic functions (ratios of two quadratics) when
it might seem that two should suffice. The question of
minimality remained unresolved when interest in pas-
sive circuit synthesis started to decline in the late 1960s
due to the increasing prevalence of active circuits. Some
of these issues are now being revived because of appli-
cations in the mechanical domain, where efficiency of
realization is an important issue.

Let us now return to the problem [P] in the mechani-
cal domain. All the ingredients are now in place to pro-
vide a solution. Defining the mechanical driving-point
impedance by Z(s) = F̂(s)/v̂(s), using the theorem
of Bott and Duffin, the force–current analogy, and the
ideal inerter, we see that Z(s) can be realized as the
impedance of a passive mechanical network if and only
if Z(s) is positive-real.

5 Vehicle Suspensions

A simple model for studying vehicle suspensions is the
quarter-car vehicle model described by the equations

msz̈s = u− Fs,

muz̈u = −u+ kt(zr − zu),

wherems is the sprung mass,mu is the unsprung mass,
kt is the tire (vertical) spring stiffness, u is an active or
passive control force, Fs is a load disturbance input,
zr is the vertical displacement of the road input, and zs

and zu are the vertical displacements of the sprung and
unsprung masses. A conventional passive suspension
consists of a spring and a damper in parallel, which
means that u = ks(zu − zs) + cs(żu − żs), where ks

and cs are the spring and damper constants, respec-
tively. In the most general linear passive suspension,
û = Q(s)s(ẑu − ẑs), where Q(s) is a general positive-
real admittance function, as depicted in figure 4. After
a suitable positive-real admittance is found, circuit syn-
thesis techniques come into play to find a network of
springs, dampers, and inerters to realize Q(s). Alter-
natively, the parameters of simple circuits can be opti-
mized directly; for example, a spring, damper, and
inerter in parallel.

When designing an active or passive suspension
force law u, a number of different performance cri-
teria are relevant. Some of these criteria are related
to the response to road undulations and come under
the category of “ride” performance. A common (simple)
assumption is that zr is integrated white noise (Brown-
ian motion). A second set of criteria relate to “han-
dling” performance, which is the response to driver
inputs, such as braking, accelerating, or cornering. In
the quarter-car model these are sometimes approxi-
mated very crudely by the response to deterministic
loads Fs. Variables of relevance include z̈s (comfort)
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Figure 4 The quarter-car vehicle model.

and kt(zr − zu) (tire grip). Performance measures can
typically be improved by using a general linear pas-
sive suspension instead of a conventional spring and
damper.

As an interesting aside—and an illustration of the
force–current analogy—figure 5 shows the equivalent
electrical circuit for the quarter-car model. It is always
amusing to point out to vehicle dynamicists that the
electrical circuit highlights the interpretation that the
sprung mass and the unsprung mass are connected to
the ground, but … the tire is not: it is connected to the
road (here modeled as a velocity source)!

6 The Inerter in Formula 1 Racing

For racing cars, a very important performance measure
is “mechanical grip,” which refers to the tire load fluc-
tuations in response to unevenness of the road surface.
Increased grip corresponds to decreased fluctuations.
For stiffly sprung suspensions (invariably the case in
racing cars), mechanical grip can be improved by the
simple expedient of placing an inerter in parallel with
the conventional spring and damper.

The story of the development and use of the inerter in
Formula 1 racing has been recounted a number of times
in the popular press and in magazines. The inerter was
developed by McLaren Racing, under license from the
University of Cambridge and a cloak of confidentiality.

+
−

Fsmsmu

Q (s)zr

kt
−1

.

Figure 5 The equivalent electrical circuit
for the quarter-car model.

It was raced for the first time by Kimi Raikkonen
at the 2005 Spanish Grand Prix, where he achieved
McLaren’s first victory of the season. During develop-
ment, McLaren invented an internal decoy name for the
inerter (the “J-damper”) to make it difficult for person-
nel who might leave to join another team to make a con-
nection with the technical literature on the inerter that
was being published. This strategy succeeded in spec-
tacular fashion during the 2007 Formula 1 “spy scan-
dal,” when a drawing of the McLaren J-damper came
into the hands of the Renault engineering team. Renault
made an attempt to get the device banned (unsuccess-
fully) on an erroneous interpretation of the device.
The Fédération Internationale de l’Automobile World
Motor Sport Council convened in Monaco on Decem-
ber 6, 2007, to investigate a spying charge brought by
McLaren. The council found Renault to be in breach
of the sporting code but issued no penalty. In Para-
graph 8.7 of the World Motor Sport Council Decision,
the council reasoned that

the fact that Renault fundamentally misunderstood the
operation of the system suggests that the “J-damper”
drawing did not reveal to Renault enough about the
system for the championship to have been affected.

During the hearing, neither the World Motor Sport
Council nor McLaren made public what the J-damper
was. Thereafter, speculation increased on Web sites and
blogs about the function and purpose of the device.
Finally, the truth was discovered by Autosport mag-
azine, which revealed the Cambridge connection and
that the J-damper was an inerter. Soon afterward, the
University of Cambridge signed a licensing agreement
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Figure 6 A ballscrew inerter made in the University of
Cambridge engineering department in 2003, with flywheel
removed.

with Penske Racing Shocks to allow inerters to be sup-
plied to other customers within Formula 1 and else-
where. The use of inerters has now spread beyond
the Formula 1 grid to IndyCars and several other
motorsport formulas. A typical method of construction
makes use of a ballscrew, as shown in figure 6.
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V.4 Mathematical Biomechanics
Oliver E. Jensen

1 Physical Forces in Biology

Biological organisms must extract resources from their
environment in order to survive and reproduce. Ani-
mals need oxygen, water, and the chemical energy
stored in food. Plants require a supply of carbon diox-
ide, water, and light. Different species have developed

diverse mechanisms for harvesting these essential
nutrients. For example, tiny single-celled microorgan-
isms such as the bacterium Escherichia coli swim
along gradients of nutrient, whereas large multicellular
organisms such as humans have internal energy trans-
port systems of great geometric complexity. Mathemat-
ics has an important role to play in understanding the
relationship between the form and function of these
remarkable natural systems, and in explaining how
organisms have adapted to the physical constraints of
the world they inhabit.

A nutrient in molecular form can be taken up by an
organism by crossing a cell membrane, generally via
molecular diffusion. While diffusion over such short
distances is rapid, it is generally not an effective trans-
port mechanism over long distances because diffusion
time increases in proportion to the square of distance.
Organs performing gas exchange (such as lungs, gills,
or leaves) therefore exploit fluid flow (in which nutri-
ents are carried by a moving gas or liquid) for long-
distance transport, coupling this with an exchange sur-
face that presents a large area for short-range diffusion.
Similarly, most organisms that are larger than just a
few cells generate internal flows to distribute nutrients
around their bodies. The airways of our lungs, which
have a surface area nearly as large as a tennis court but
a volume of just a few liters, are therefore entwined
with an elaborate network of blood vessels, which can
deliver oxygen rapidly to other organs. In plants, light is
harvested by maximizing the exposure of leaves to the
rays of the sun, while nutrients generated through pho-
tosynthesis in leaves are carried to flowers and roots by
an extensive internal vascular system. Naturally, many
organisms will also move themselves to regions rich in
nutrients using strategies (swimming, flying, running,
etc.) that are appropriate to their environment.

Mathematical models of any of these systems allow
one to encode and quantify physical laws and con-
straints. This may be done simply at the level of kine-
matics or transport, i.e., understanding motion in time
and space or expressing conservation of mass; alterna-
tively, models may involve analysis of physical forces
through relationships such as Newton’s laws. Often,
mechanical models are coupled to descriptions of bio-
logical processes, such as cell signaling pathways, gene
regulatory networks, or transport of hormones, allow-
ing a quantitative “systems-level” description of a cell,
organ, or organism to be developed. Such approaches
can be essential to understand the full complexity of
biological control mechanisms. A wealth of theoretical
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developments from other areas of science and engi-
neering can be exploited in developing such models.
However, biomechanical problems can have a flavor of
their own, and they raise some particular mathematical
challenges.

These become clear through a comparison with a
“classical” field such as fluid mechanics. The governing
equations describing the motion of most fluids were
established in the first half of the nineteenth century
and are firmly grounded on Boltzmann’s kinetic theory.
The navier–stokes equations [III.23] are remarkable
for many reasons: they can describe fluid motions over
at least ten orders of magnitude (from submicron to
planetary scales); they apply equally well to distinct
phases of matter (liquids and gases); and in many sit-
uations it is sufficient to describe fluids with just a
handful of physical parameters (a density, a viscosity,
and possibly a bulk modulus), which can be reduced
to an even smaller number of parameters (a Reynolds
number, a Mach number) through nondimensional-

ization [II.9]. Fluid flows arising in very different sit-
uations can therefore have essentially identical mathe-
matical descriptions, often enabling experiments to be
performed at comfortable bench-top scales involving
nonintrusive measurements. While the field continues
to raise profound mathematical questions (such as the
origin and structure of turbulence [V.21]), the topic
as a whole is built on secure theoretical foundations.

It can therefore be disconcerting to face some of
the awkward realities of the biological world, where
features such as universality, scale independence, effi-
cient parametrization, and nonintrusive experimenta-
tion can be illusory. Some specific challenges are as
follows.

• Nature’s remarkable biodiversity is reflected by
a proliferation of different mathematical models,
which often have to be adapted to describe a spe-
cific organ, organism, or process. A model might
even be tailored to an individual, as is the case in
the growing field of personalized medicine. How-
ever, models can sometimes be connected by uni-
fying principles (such as the concept of natural
selection driving optimization of certain structural
features in a given environment).

• Biological materials are typically highly heteroge-
neous and have distinct levels of spatial and tem-
poral organization spanning many orders of magni-
tude (from molecules and cells up to whole popula-
tions of organisms), requiring different mathemat-

ical descriptions at each level of the hierarchy. For
example, the beating of our hearts over most of a
century relies on the cooperative action of numer-
ous molecular ion channels in heart muscle cells,
flickering open and shut within milliseconds.

• Experimental measurements of key parameters can
be exceptionally challenging, given that many bio-
logical materials function properly only in their
natural living environment. Biological data gath-
ered in vitro (for example, on tissue cultured in
a petri dish) can misrepresent the true in vivo
situation. Parameter uncertainty represents a pro-
found difficulty in developing genuinely predictive
computational (in silico) models.

• Biological processes do not generally operate in iso-
lation: they are coupled to numerous others, mon-
itoring and responding to their environment. For
example, plant and animal cells have a variety of
subcellular mechanisms of mechanotransduction,
whereby stimuli such as stress or strain have direct
biological consequences (such as protein produc-
tion or gene expression).

• Unlike the relatively passive structures that domi-
nate much of engineering science, biological mate-
rials generate forces (via osmotic pumps in plants,
or via molecular motors, driven by chemical en-
ergy stored in adenosine triphosphate; arrays of
motors can be organized to form powerful mus-
cles). Organisms change their form through growth
(the development of new tissues) or remodeling
(the turnover of existing tissues in response to a
changing environment). Examples of remodeling
include the manner in which our arteries gradually
harden as we age or the way a tree on a windswept
hillside slowly adopts a bent shape.

This brief survey presents a few examples illustrat-
ing different applications of biomechanical modeling,
all with a multiscale flavor. This is an endeavor that
draws together research from numerous disciplines
and should not be regarded as a purely mathematical
exercise. However, mathematics has a key role to play
in getting to grips with biological complexity.

2 Constitutive Modeling

Classical continuum mechanics is based on a num-
ber of simplifying assumptions. Under the so-called
continuum hypothesis, one considers a representative
volume element of material that is much larger than
the underlying microstructure but much smaller than
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the size of the object that is undergoing deformation.
The separation between the microscopic and macro-
scopic length scales allows the discrete nature of the
microstructure to be approximated by smoothly vary-
ing scalar, vector, or tensor fields; physical relation-
ships are then expressed by partial differential equa-
tions (PDEs) or integral equations at the macroscopic
level. While this is a very effective strategy for homo-
geneous materials (such as water or steel), for which
the granularity of the microstructure appears only at
molecular length scales, it is less obviously appropriate
for heterogeneous biological materials.

In describing a given material it is often necessary
to make a constitutive assumption: namely, a choice
over how to model the material properties, typically
expressed as a relationship between the tensor fields
describing stress, strain, and strain rate. This assump-
tion has to be tested against observation and may
require careful judgement that takes into account the
question that the model seeks to address, the quality of
available experimental data, and so on. Nevertheless, a
number of canonical model choices are available. The
material might be classified as elastic, viscous, visco-
elastic, viscoplastic, etc., depending, for example, on
whether deformations are reversible once any loading
is removed (as in the elastic case). One might then con-
sider whether a linear stress/strain/strain rate relation-
ship is sufficient (this is appealing because of the small
number of material parameters and the analytic and
computational tractability) or whether a more complex
nonlinear relationship is required.

The Chinese-American bioengineer Y. C. Fung has
been prominent among those pioneering the transla-
tion of continuum mechanics to biological materials,
particularly human tissues of interest in the biomedi-
cal area. As he and many others have shown, “off-the-
shelf” constitutive models can be usefully deployed to
describe materials such as tendon, bone, or soft tis-
sue. By fitting such models to experimental data, the
corresponding mechanical parameters (Young’s modu-
lus, viscosity, etc.) can be estimated, allowing predictive
models to be developed. However, in many cases stan-
dard models turn out to be inappropriate; we discuss
below the exotic properties of blood in small blood ves-
sels, where a description as a Newtonian homogeneous
fluid fails.

A particularly challenging area has been in character-
izing the mechanical properties of individual cells. Ani-
mal cells have a phospholipid membrane that encloses
a cytoplasm and a nucleus. The cytoplasm is a crowded

soup of organelles and proteins, among which the
components of the cytoskeleton (which includes fibers
(actin), rods (microtubules), and molecular motors
(myosin, dynein, etc.)) are of particular mechanical
importance. Processes such as cell motility and division
transcend any classical engineering description, and
instead biomechanical models have been developed
that take a “bottom-up” description of the evolving
microstructure (accounting, for example, for dynamic
actin polymerization and depolymerization). Among
animal cells, the red blood cell is relatively simple
in mechanical terms, because its properties are dom-
inated by its membrane, which can be described as a
passive structure that resists area changes, and which
has measurable resistance to in-plane shear and bend-
ing. Plant cells, too, are typically dominated mechan-
ically by the properties of their stiff cell walls rather
than their cytoskeleton.

The properties of a multicellular tissue will be deter-
mined by the collective properties of a population of
adherent cells. If the cells form a roughly periodic array,
then the asymptotic technique of homogenization

[II.17] can be used to derive a tissue-level description
(e.g., in terms of PDEs) by careful averaging of proper-
ties at the cell level. This multiscale method works well
for strictly periodic structures and can be applied (with
some care) to disordered arrays. However, when there
is sufficient heterogeneity at the microscale, the valid-
ity of a macroscale approximation (which assumes that
properties vary over distances that are very long com-
pared with individual cells) may become questionable.
A variety of computational methods (cell-center mod-
els, vertex-based models, cellular Potts models, etc.)
can instead be used to resolve the granular nature of
multicellular tissues.

3 Blood Flow

Despite significant medical advances over recent de-
cades, cardiovascular disease (heart attack, stroke, and
related conditions) remains a leading cause of death in
Europe and North America. There is therefore intense
interest in the pump and plumbing of our blood-supply
system and the mechanisms by which it fails. Mathe-
matical modeling has contributed significantly to this
effort.

Blood is a suspension of cells in plasma. The ma-
jority of cells are erythrocytes (red blood cells): small
highly deformable capsules containing hemoglobin.
These cells are efficient carriers of oxygen from lungs
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to tissues. While additional cells are present in blood,
many of which have important roles in fighting infec-
tion, the rheology of blood is determined primarily by
the collective properties of the red cells.

Red blood cells have a disk-like shape and a diame-
ter of only 8 microns but are present in very high con-
centrations (typically 45% by volume). In large blood
vessels, the suspension can therefore be well approxi-
mated as a homogeneous liquid, and a description as an
incompressible “Newtonian” fluid (that is, one charac-
terized by a constant viscosityμ and a constant density)
is effective. Poiseuille’s exact solution of the Navier–
Stokes equations describes steady flow along a uniform
pipe of radius a and length L, via

u(r) = a
2 − r2

4μ
Δp
L
, Q = πa

4Δp
8μL

, (1)

where u(r) is the axial velocity component, r is the
radial coordinate, and Δp is the pressure difference
between the inlet and the outlet of the pipe. Equa-
tion (1) shows that the axial flow rate Q (the volume of
fluid passing a fixed location per unit time) driven by
a fixed Δp is proportional to a4, implying that narrow
vessels present a very high flow resistance. The shear
stress (tangential force per unit area) exerted by the
flow on the pipe wall is −μu′(a) = 4μQ/πa3. While
Poiseuille himself had a keen interest in understanding
blood flow, few blood vessels are sufficiently long and
straight, or have sufficiently steady flow within them,
for his solution (1) to be directly relevant. For exam-
ple, coronary arteries, feeding oxygenated blood to the
muscle of the heart, have tortuous geometries and are
either embedded in, or sit upon, muscle that under-
goes vigorous periodic contractions. Vessel curvature,
torsion, branching, nonuniformity, wall deformation,
and spatial movement all lead to significant deviations
from (1).

This observation’s biomedical significance emerged
in the 1980s when it was first appreciated how the
endothelial cells that line blood vessels respond to
stresses arising from blood flow (and in particular the
shear stress, the component parallel to the vessel wall).
Through mechanotransduction, cells align themselves
with the flow direction; furthermore, regions of abnor-
mally low and oscillatory wall shear stress are sites at
which the arterial disease atherosclerosis tends to orig-
inate. In a coronary artery, this can be a precursor to a
stenosis (a blockage), which can in turn cause angina
and possibly an infarction (a heart attack). Since flow
patterns are intimately associated with vessel shape,
geometry becomes a direct risk factor for disease.

S S
A+ A+

A–A–

(a) (b)

(c) (d)

Figure 1 (a), (b) Streamlines of steady flow in an expanding
channel, mimicking flow past an obstruction in an artery;
the flow is from left to right. (a) The symmetric state S.
(b) One of two asymmetric statesA±, for which a large recir-
culation region exists on one or other wall. (c) S loses stabil-
ity to A± via a so-called pitchfork bifurcation [IV.21 §2]
as the flow strength increases (the dashed line indicates an
unstable solution). (d) A small geometric imperfection will
bias the system, preferentially connecting S to one of the
asymmetric states.

Arterial flows are characterized by moderately high
Reynolds numbers, implying that inertia dominates vis-
cosity (friction) but without normally undergoing tran-
sition to full turbulence. The associated solutions of
the Navier–Stokes equations nevertheless exhibit fea-
tures characteristic of a nonlinear system, such as
nonuniqueness and instability. Small changes in geom-
etry (or other external factors) can therefore lead to
large changes in the internal flow properties, as illus-
trated in figure 1. If modeling predictions are to help
clinical decision making, it therefore becomes neces-
sary to obtain detailed geometric information about an
individual’s arterial geometry, from X-ray tomography
or magnetic resonance imaging, and use this as a geo-
metric template on which to perform computational
fluid dynamics. Even then, the robustness of predic-
tions must be considered carefully given the natural
variability of input conditions and geometric parame-
ters, such as occurs between states of vigorous exercise
and sleep.

In smaller blood vessels, of diameters below a few
hundred microns, the discrete nature of the suspension
becomes important and the description of blood as a
Newtonian fluid breaks down. For practical purposes, a
continuum description may still be useful but a num-
ber of unusual features emerge. First, it is necessary to
consider the transport of red cells in addition to that of
the suspension as a whole. This requires a distinction
to be drawn between tube hematocrit HT (the volume
fraction of red cells in a tube flow) and discharge hema-
tocrit HD (the cross-sectionally averaged cell concen-
tration weighted by the axial flow speed u(r)). These
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quantities differ because cells move away from the ves-
sel wall into faster-moving parts of the flow through
hydrodynamic interactions that are influenced by cell
deformability. This has some important consequences
beyond increasingHD relative toHT: the peripheral cell-
free layer lubricates the core and lowers the effective
viscosity of the suspension (estimated experimentally
by measuring πa4Δp/8LQ, following (1)); and, at ves-
sel bifurcations, plasma rather than cells may be pref-
erentially drawn into side branches down which there
is a weak flow (so-called plasma skimming).

The reduction in effective viscosity is of great impor-
tance in ensuring that blood can pass through the
smallest capillaries without requiring enormous pres-
sure drops to push them through and without generat-
ing huge shear stresses on endothelial cells. Red cells
are sufficiently deformable that they can enter capillar-
ies as small as 3 microns in diameter. Effects such as
the dependence of effective viscosity on hematocrit and
tube diameter have been carefully measured empiri-
cally, but for many years these resisted a full theoretical
explanation. However, the problem of simulating the
motion of multiple deformable cells within a tube has
recently become computationally tractable, enabling
“bottom-up” predictions to be made of the properties
of whole blood starting from the properties of its com-
ponents. This is an important precursor to understand-
ing interactions with other cells, such as neutrophils
that adhere transiently to the walls of blood vessels as
part of the inflammatory response and platelets that
form aggregates during the clotting process following
a wound.

4 Tissue Growth

Growth of biological tissues takes a variety of forms.
Soft tissues, such as those in a developing animal
embryo, are formed of clumps or sheets of cells. The
cells can expand (by increasing their volume), divide
(duplicating genetic material in the cell nucleus and
introducing new cell boundaries), and reorganize (by
changing their neighbors). The process of proliferation
(increase of cell number) can be accompanied by dif-
ferentiation (in biological terminology, this describes
the specification of the cell’s type and that of its
progeny). These processes are often exquisitely con-
trolled in order that the embryo develops the right
organs in the right place at the right time. Growth is
therefore intrinsically coupled to a host of compet-
ing biological processes that “pattern” the developing

organism. In addition to biochemical signals, cells have
the capacity to respond to mechanical signals, enabling
growth-induced stresses to feed back on further devel-
opment. The growing organism is necessarily shaped
by the physical forces it experiences, as was famously
recognized a century ago by D’Arcy Thompson.

Even when fully grown, a biological organism oper-
ates in a state of homeostasis, with its tissues under-
going continual replacement and renewal. This is par-
ticularly striking in epithelia, the mucosal interface
between the body and the external environment. For
example, in the face of an onslaught of toxins, new
cells in the lining of the gut are continually produced
and removed. This rapid cell turnover predisposes such
tissues to mutations that may lead to cancer. Tissues
with structural properties, such as bone, muscle, or the
walls of blood vessels, also undergo turnover, but at
a slower rate and in a manner that responds to the
biomechanical environment. Remodeling of bone has
been described by Wolff’s “law” of 1872, whereby the
architecture of the trabecular matrix that constitutes
bone aligns with the principal axes of the local stress
tensor.

The structural rigidity of plant cells is provided pri-
marily by a stiff cell wall. The primary cell wall is made
of a pectin matrix, reinforced by fibers made of cel-
lulose. When the fibers are uniformly aligned within
the wall, it becomes mechanically anisotropic, being
stiff in the direction parallel to the fibers but relatively
soft in the perpendicular direction. A green plant is
able to support itself against gravity and wind stresses
by exploiting osmosis. By concentrating intracellular
solutes, the cells draw water into intracellular vacuoles,
pressurizing them (to levels comparable to a car tire)
and generating tensions in the stiff cell walls. Then, by
ensuring that cells adhere tightly to their neighbors, the
rigidity of individual cells is conferred on the tissue as a
whole. Even then, rapid growth is still possible. By reg-
ulated softening of cell walls, cells can elongate (in the
direction orthogonal to the embedded fibers), driven
by the high intracellular pressures. In order to grow to
large heights, or to survive hostile environments, plants
may develop a stiffer secondary cell wall, reinforced by
lignin. Growth of a woody structure (such as thicken-
ing of a tree trunk or branch) occurs near its periph-
ery in a thin layer beneath the bark known as the cam-
bium. A horizontal branch can remodel itself to sup-
port its increasing weight by laying down new mate-
rial known as reaction wood, either in tension within its
upper surface or in compression on its lower surface.



614 V. Modeling

These are manifestations of residual stress, a com-

mon feature of growing tissues. This is revealed when

a piece of tissue is excised. A segment of artery, sliced

axially along one wall, will spring open from an O-

shaped to a C-shaped cross section. Similarly, a trans-

verse slice across the stem of a green plant may cause

the inner tissues to swell more than the periphery. One

cause of such behavior is differential growth; for exam-

ple, the inner part of the stem seeks to elongate more

than the outer tissue. However, in the intact tissue,

such differences are hidden by the requirement that

the tissue remains continuous.

To model growth and residual stress at a continuum

level, a popular formulation involves decomposition of

the deformation gradient tensor F into the product

of two tensors as F = AG . (Here, the deformation is

described via the map X  → x, where X labels points

of the material in a reference configuration, while x
denotes the location of such points in space; F satis-

fies Fij = ∂xi/∂Xj .) Growth is prescribed through the

tensor G , which maps the reference configuration to

an intermediate state. This state may violate compati-

bility conditions (e.g., two different parts of the body

might map to the same location under G ). However, a

further deformation (A) is then required, mapping the

intermediate state to the final state that accommodates

both growth and the physical constraints placed on the

body. This deformation might then be chosen to satisfy

conditions of nonlinear elasticity. Growth that evolves

in time can then be described by allowing G to vary with

time.

While residual stress may be hard to observe or mea-

sure without an invasive procedure, differential growth

can often have a striking effect on the morphology of

growing structures, particularly when they are thin in

one or more directions. Elongated plant organs such

as roots or shoots display a variety of tropisms (bend-

ing or twisting responses arising from signals such as

light, gravity, or a nutrient). This can be achieved by

ensuring that the cells on one side of the organ elon-

gate slightly faster than those on the other, generating

a bend. This enables a root penetrating a hard soil to

navigate into the soft gaps between stones, as part of

a thigmotropic (touch-sensitive) response, for example.

While plant growth generally involves irreversible (vis-

cous) deformations of plant cell walls, reversible defor-

mations can also arise; in hygromorphic structures,

adjacent layers of material elongate or contract differ-

ently in response to changes in humidity. This allows

pine cones or pollen-bearing anthers to open or close
within minutes.

Sheet-like structures such as leaves provide dramatic
demonstrations of how nonuniform in-plane growth
can generate exotic shapes. For example, the folds at
the edge of a lettuce leaf can exhibit a cascade of
wrinkles: just as in a pleated curtain, crinkly short-
wavelength folds at the top give way to smoother
longer-wavelength folds at the bottom. Thin objects are
much easier to bend or twist than to stretch. Thus a
leaf that undergoes growth primarily near its edge will
tend to adopt configurations in which stretching is min-
imized, which is achieved through out-of-plane wrin-
kling. The separation of length scales in a thin sheet
(with thickness much less than width) allows the sheet
to be described using the Föppl–von Kármán equations
of shell theory (an eighth-order nonlinear PDE system),
modified to account for nonuniform growth. Instead of
the tensor G , the growth pattern at the edge of a leaf
can be prescribed through a non-Euclidean metric of
the form

ds2 = (1 + g(y))2 dx2 + dy2,

where x measures distance along the leaf edge in an
initially undeformed planar configuration, and y mea-
sures distance normal to the leaf edge, the leaf lying
in y � 0. Here, g(y) is assumed to be nonnegative
and to approach zero as y increases away from the
leaf edge at y = 0. The function g therefore defines
the Gaussian curvature K associated with the metric
(K ≈ −g′′(y) � 0, for small g); recall that, because
K ≠ 0, both principal curvatures of the surface must be
nonzero. However, from Gauss’s Theorema Egregium,
K is invariant when the surface undergoes isometric
deformations. The shape of a leaf, which may exhibit a
self-similar cascade of wrinkles, can therefore be inter-
preted as an embedding of the surface in three dimen-
sions in which there is no (or at least minimal) stretch-
ing. The out-of-plane deformation relieves the residual
stress that would accumulate were the leaf confined to
a plane.

5 Swimming Microorganisms

Single-celled microorganisms constitute a major pro-
portion of global biomass. They occupy diverse habi-
tats, from algae in deep oceans to acid-tolerant bacteria
in our stomachs. For such organisms, locomotion can
be essential in securing nutrients, given the limitations
of diffusion as a transport mechanism. For organisms
that are just a few microns in length, propulsion in a
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liquid environment is a battle against friction, inertia
being negligible at very small length scales (the rele-
vant reynolds number [IV.28 §3.2] is very small). This
demands specific swimming strategies. The cells are
equipped with protruding appendages (cilia or flagel-
lae). These may be driven in a wavelike fashion (such
as synchronized waves in arrays of beating cilia on the
alga Volvox), as a simple “breaststroke” (by a pair of
flagellae on the alga Chlamydomonas nivalis), or as a
helical propeller (Escherichia coli uses a bundle of flag-
ellae that are driven by rotary motors embedded in
its cell membrane). To generate a net forward motion,
the appendages must be driven in nonreversible paths.
This is a consequence of the linearity of the Stokes
equations (the Navier–Stokes equations without the
nonlinear inertial terms), from which it can be proved
that reversible boundary motions will generate cyclic
motion with no net drift.

The flagellar corkscrew of Escherichia coli satis-
fies this constraint admirably. However, the bacterium
must also be able to direct itself toward a nutrient. It
achieves this by interspersing “runs” with “tumbles,”
during which it reverses the rotation of one of the
motors driving the flagellar bundle. These uncoil and
the bacterium rotates to a new random orientation
prior to the next run. The bacterium can bias its motion
by prolonging the duration of runs in a favored direc-
tion. (Given the difficulty of measuring a spatial gra-
dient over a short body length, the microswimmers
are likely to measure concentration differences as they
move from one region to another.) Thus Escherichia
coli undertakes chemotaxis (seeking out a nutrient)
via a form of biased random walk [II.25]. Models
of such processes must often be based on empiri-
cal descriptions of observed biological behavior rather
than established physical principles.

Other species follow gradients in light (phototaxis)
or oxygen (oxytaxis). In a dense suspension of the
bacterium Bacillus subtilis beneath an air–liquid inter-
face, accumulation of bacteria in the oxygen-rich region
immediately beneath the interface will increase the
density of the suspension relative to deeper regions
of the liquid. The resulting heavy-over-light arrange-
ment is unstable and the excess weight of the cell-rich
liquid drives an instability in which dense plumes of
cells will fall downward. This continual overturning of
liquid is known as bioconvection and has many analo-
gies with thermal or solutal convection in a liquid. It is a
striking example of the generation of a large-scale pat-
tern via the collective motion of individual microscopic

swimmers. Mathematical models describing this pro-
cess can involve coupled advection–diffusion PDEs for
two scalar fields (the number of cells per unit volume
n(x, t) and the oxygen concentration c(x, t)) coupled
to the Navier–Stokes equation for the average fluid
velocity u(x, t), subject to the incompressibility con-
straint ∇ · u = 0. The cells are advected by the flow
and move chemotactically toward the oxygen or light
source; the buoyancy of the cells acts as a body force
on the fluid, driving convective motions.

Algae such as Chlamydomonas nivalis exhibit gyro-
taxis. These cells are bottom-heavy, and so experience
a gravitational torque that aligns them head up. Thus,
when they swim, propelled by their two flagellae, they
move upward on average. However, in a region of shear
(e.g., a vertical flow that varies horizontally), the cells
experience a viscous torque that will rotate them away
from the vertical. This leads to some striking phenom-
ena, such as accumulation at the center of a pipe in
a downward Poiseuille flow. Again, collective biocon-
vective phenomena can then emerge. In this case, con-
tinuum models track the mean swimming direction,
represented by a unit vector p(x, t). A Fokker–Planck
equation for the probability density Ω(x,p, t) (a dis-
tribution over position and orientation) can be used
to account for reorientation of cells by hydrodynamic
torques and rotational diffusion, which is coupled to
transport equations for n and u.

Escherichia coli propel themselves from the rear, with
the propulsive force being balanced by the resistive
drag toward the front of the body. When viewed from
afar, the generated flow can be approximated by that
of a force dipole (point forces directed in opposite out-
ward directions) in an arrangement known as a pusher
(figure 2). The two forces, pushing fluid away from
the body parallel to its axis, draw fluid inward from
the sides. In contrast, Chlamydomonas nivalis is pro-
pelled by flagellae at the front of the body, with the
drag arising behind. Viewed from afar, these are there-
fore pullers; the force dipole pushes fluid out sideways
from the body. In a straining flow that tends to ori-
ent the swimmer in a particular direction, pushers will
generate a flow that reinforces their orientation but
pullers will do the opposite. A suspension of pushers
is therefore more likely to exhibit large-scale collective
motion known as bacterial turbulence, driven by the
chemical energy that powers the swimming organisms.
This has motivated the development of model equa-
tions that draw on earlier studies of flocking behavior,
including extensions of the Navier–Stokes equations
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(a)

(b)

Figure 2 Two classes of swimming microorganisms: (a) a
pusher and (b) a puller. Short arrows show the force dipole,
solid arrows show the flow induced by swimming, and
dashed arrows show an external straining flow that orients
the swimmer.

that incorporate additional nonlinear and higher-order
terms that capture a variety of spatiotemporal patterns.

6 Coda

This brief summary of mathematical modeling in
biomechanics has necessarily been selective. The in-
creasingly vigorous engagement of mathematicians
with biologists, bioengineers, and biophysicists is yield-
ing significant advances in many underexplored areas,
generating novel mathematical questions alongside
new insights into biomechanical processes. Interac-
tions between mathematics and computation have been
necessary and effective, particularly in modeling the
interaction of diverse processes spanning disparate
length scales. However, major challenges remain in
learning how to cope with sparse data, natural variabil-
ity, and disorder—challenges that will require increas-
ing use of statistical and probabilistic approaches.
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V.5 Mathematical Physiology
Anita T. Layton

1 Introduction

Mathematics and physiology have enjoyed a long his-
tory of interaction. One aspect in which mathematics
has proved useful is in the search for general principles
in physiology, which involves organizing and describ-
ing the large amount of data available in more compre-
hensible ways. Mathematics is also helpful in the search
for emergent properties, that is, in the identification of
features of a collection of components that are not fea-
tures of the individual components that make up the
collection. This article considers a small selected set
of mathematical models in physiology, showing how
physiological problems can be formulated and stud-
ied mathematically and how such models give rise to
interesting and challenging mathematical questions.

2 Cellular Physiology

The cell is the basic structural and functional unit of a
living organism. Collectively, cells perform numerous
functions to sustain life. Those functions are accom-
plished through the biochemical reactions that take
place within the cell.

2.1 Biochemical Reactions

Chemical reactions are “governed” by the law of mass
action, which describes the rate at which chemicals
interact to form products. Suppose that two chemicals
A and B react to form C:

A + B
k−→ C.

The rate of formation of the product C is proportional
to the product of the concentrations of A and B, as well
as the rate constant k, i.e.,

d[C]
dt

= k[A][B]. (1)

For a reversible reaction

A + B
k+

k−

C,
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where k+ and k− denote the forward and reverse rate
constants of reaction, the rate of change of [A] is given
by

d[A]
dt

= k−[C]− k+[A][B].
If k− = 0, then the above reaction reduces to (1) with
k = k+ and d[A]/dt = −d[C]/dt (from the reaction,
the rate of consumption of A is equal to the rate of
production of C).

Some important biochemical reactions are catalyzed
by enzymes, many of which are proteins that help con-
vert substrates into products but themselves emerge
from the reactions unchanged. Consider the following
simple reaction scheme, where an enzyme E converts
a substrate A into the product B through a two-step
process:

A + E
k1

k−1

C
k2−−→ B + E.

First, E combines with A to form a complex C, which
then breaks down into the product B and releases E.
This model is known as Michaelis–Menten kinetics.

We will determine the reaction rate, given by the rate
at which the product is formed (i.e., d[B]/dt), by per-
forming an equilibrium approximation. Let us assume
that the substrate A is in instantaneous equilibrium
with the complex C; thus,

k1[A][E] = k−1[C]. (2)

Note that the total amount of enzyme is unchanged,
i.e., [E]+ [C] = E0, where E0 is a constant. Substituting
this relation into (2) and rearranging yields

[C] = E0[A]
Km + [A] ,

where Km = k−1/k1 is known as the Michaelis constant,
which is the substrate concentration at which the reac-
tion rate is half of its maximum. The overall reaction
rate is given by

d[B]
dt

= k2[C] = Vmax[A]
Km + [A] ,

where Vmax = k2E0 is the maximum reaction rate.
The above relation describes Michaelis–Menten kinet-
ics, which is one of the simplest and best-known mod-
els of enzyme kinetics, named after biochemist Leonor
Michaelis (1875–1949) and Canadian physician Maud
Menten (1879–1960). A sample reaction curve is shown
in figure 1.

2.2 Membrane Ion Channels

All animal cells are surrounded by a membrane com-
posed of a lipid bilayer with proteins embedded in it.

Vmax

Km

0 1 2 3 4 5
0

1

2

3

Concentration

R
at

e

Figure 1 An example Michaelis–Menten reaction rate curve,
showing reaction rate as a function of substrate concentra-
tion, with parameters Vmax = 3.5 and Km = 0.5.

Found on most cellular membranes are ion channels,
which are macromolecular pores that passively carry
specific ions across the membrane. One of the driv-
ing forces for transport is ionic concentration gradient.
Another is the transmembrane potential difference,
which is the difference in electrical potential between
the interior and exterior of the cell.

Ion channels are characterized by their current–
voltage relationship, the parameters of which depend
on the biophysical properties of the channel. The cur-
rent I across a population of N channels can be written
as

I = NPo(V , t)i(V , t),

where Po is the fraction of open channels at time t
(0 � Po � 1), and i is the current across a single
open channel. Note that the above expression assumes
that both are functions of the transmembrane poten-
tial difference V . Below we describe common models
for i(V , t) and, subsequently, for Po(V , t).

The two most common models of current–voltage
relationships are the modified form of Ohm’s law and
the Goldman–Hodgkin–Katz equation. The modified
Ohm’s law states that the flow of ions S across the
membrane is a linear function of the difference between
the membrane potential and the equilibrium (or Nernst)
potential E of the solute S. It can be written as

iS = gS(V − E),
where gS is the channel conductance, which is not nec-
essarily constant. Indeed, it can vary with concentra-
tion, voltage, or other factors.

As an example, the conductance of inward rectify-
ing potassium channels (Kir), which play an important
role in maintaining the resting membrane potential, is
a function of V . The activity of Kir channels is also
modulated by the extracellular K+ concentration (Ce

K).
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Experimentally, the Kir conductance is often found to
increase with the square root of Ce

K. Thus, the current
across a Kir channel, denoted by iKir, can be expressed
as

iKir = gKir(V − EK),

gKir =
g◦

Kir

√
Ce

K

1 + exp((V − VKir)/kKir)
,

where g◦
Kir is a constant, VKir is the half-activation

potential, and kKir is a slope. The dependence of gKir

on the membrane potential stems from the presence
of gating charges.

Other channels are better represented by the Gold-
man–Hodgkin–Katz current equation, which can be
obtained by integrating the Nernst–Planck equation
assuming a constant electric field across the mem-
brane. The Nernst–Planck equation gives the flux of ion
S when both concentration and electrical gradients are
present:

JS = −D
(
∇CS + zSF

RT
CS∇ψ

)
.

The first term corresponds to Fick’s law, a constitutive
equation that describes diffusion driven by a concen-
tration gradient; DS is the diffusivity of S. The second
term corresponds to diffusion due to the electric field;
the electric force exerted on a charged solute increases
linearly with the electric field (E = −∇ψ). To derive the
Goldman–Hodgkin–Katz equation for the simple one-
dimensional case, we assume that the electrical field is
constant across the membrane (i.e., dψ/dx = −V/Lm,
where Lm denotes the length of the membrane) and
obtain

JS = −DS

(
dCS

dx
− ξ
Lm
CS

)
,

where ξ = zSFVm/RT . Since JS is constant, the above
equation can be transformed into

dCS

dx
= ξ
Lm
CS − JS

DS

and then integrated to yield CS(x):

CS(x) = a exp
(
ξx
Lm

)
+ JSLm

ξDS
.

To determine the integration constant a and the
unknown JS, we use the two boundary conditions

CS(0) = a+ JSLm

ξDS
= C i

S,

CS(Lm) = a exp(ξ)+ JSLm

ξDS
= Ce

S ,

where C i
S and Ce

S denote the solute concentrations
on the two sides of the membrane. These boundary

conditions yield the Goldman–Hodgkin–Katz current
equation

a = C i
S − Ce

S

1 − exp(ξ)
,

JS = DS

Lm

zSFV
RT

Ce
S − C i

S exp(−zSFV/RT)
1 − exp(−zSFV/RT)

,

where the definition of ξ has been applied.

From the Goldman–Hodgkin–Katz equation one can
obtain the Nernst potential, which yields zero flux when
the transmembrane concentration gradient is nonzero,
by setting JS to zero and solving for V :

V = − RT
zSF

log
(C i

S

Ce
S

)
. (3)

As noted above, the current flowing across a popula-
tion of channels is proportional to the number of open
channels (NPo). In excitable tissues such as smooth
muscles, channels open in response to stimuli, such as
adenosine-5′-triphosphate (a nucleoside triphosphate
used in cells as a coenzyme, often called the “molec-
ular unit of currency” of intracellular energy transfer),
Ca2+ concentration, or voltage. The simplest channel
model assumes that the channel is either in the closed
state C or in the open state O,

C
α/β←→ O,

where α and β denote the rates of conversion from one
state to the other. If n is the fraction of channels in the
open state, then 1−n is the fraction of channels in the
closed state and we have

dn
dt

= α(1 −n)− βn = α− (α+ β)n.

The characteristic time of this equation is τ = 1/(α+β),
and the steady-state value of n is n∞ = α/(α+β). The
equation can be rewritten in terms of τ :

dn
dt

= n∞ −n
τ

.

In general, n∞ and τ are voltage or concentration
dependent, so the above equation cannot be solved ana-
lytically. Voltage-sensitive channels respond to electric
potential variations; their voltage sensors consist of
“gating” charges that move when V is altered, thereby
resulting in a conformational change. For these chan-
nels, n∞ can be described by a Boltzmann distribution:

n∞ = 1
1 + ko exp(bFV/RT)

,

where b is a constant related to the number of gating
charges on the channel and the distance over which
they move during a conformational change.
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3 Excitability

Membrane potential is used as a signal in cells such
as muscle cells and neurons. Some of these cells are
excitable. If a sufficiently strong current is applied,
the membrane potential goes through a large excur-
sion known as an action potential before eventually
returning to rest. We will study one example of cellular
excitability: the Morris–Lecar model.

The Morris–Lecar model is a two-dimensional “re-
duced” excitation model (reduced from the four-di-
mensional Hodgkin–Huxley model) that is applicable to
systems having two noninactivating voltage-sensitive
conductances. The model grew out of an experimen-
tal study of the excitability of the giant muscle fiber
of the huge Pacific barnacle, Balanus nubilus. Synaptic
depolarization of these muscle cells leads to the open-
ing of Ca2+ channels, allowing external Ca2+ ions to
enter deep into the cell interior to activate muscle con-
traction. The Morris–Lecar model describes this mem-
brane with two conductances, Ca2+ and K+, the inter-
play of which yields qualitative phase portrait changes
with small changes in experimental parameters, such
as the relative densities of Ca2+ and K+ channels or
the relative relaxation times of the conducting systems.
This simple model is capable of simulating the entire
panoply of (two-dimensional) oscillation phenomena
that have been observed experimentally. Parameter
maps in phase space can then be drawn to identify and
classify the parametric regions having different types
of stability.

The model equations describe the membrane poten-
tial (V ) and the fraction of open potassium channels
(n):

C
dV
dt

= −gL(V − VL)− gCam∞(V)(V − VCa)

− gKn(V − VK), (4)

dn
dt

= φn cosh
(
V − V3

2V4

)
(n∞(V)−n). (5)

The first term on the right-hand side of (4) is the leak
current, where VL denotes the associated Nernst rever-
sal potential. The second term is the calcium current,
where gCa is the maximum whole-cell membrane con-
ductance for the calcium current. This calcium cur-
rent arises from the voltage-operated calcium chan-
nels, wherem∞ represents the fraction of open channel
states at equilibrium. Based on experimental data, m∞
is described as a function of membrane potential v by

m∞(V) = 0.5
(

1 + tanh
(
V − V1

V2

))
,

Table 1 Model parameters used in the bifurcation study.

C 20 pF V1 −1.2 mV
gL 2 nS V2 18 mV
gCa 4 nS VK −85 mV
gK 8 nS v3 12
VL −60 mV v4 17
VCa 120 mV φn 0.06666667

where V1 is the voltage at which half of the channels are
open and V2 determines the spread of the distribution
of open calcium channels at steady state. For very neg-
ative V , tanh((V − V1)/V2) → −1 and m∞ → 0, which
implies that almost all calcium channels are closed. For
large (more positive) V , tanh((V − V1)/V2) → 1 and
m∞ → 1, which implies that most calcium channels are
now open.

The third term in (4), −gKn(V − VK), represents
the transmembrane potassium current induced by the
opening of potassium channels. In (5), n∞ denotes
the fraction of open K+ channel at steady state; this
fraction depends on the membrane potential V through

n∞(V) = 0.5
(

1 + tanh
(
V − V3

V4

))
,

which has a form similar to the equilibrium distribu-
tion of open Ca2+ channel states (m∞). The potential
V3 determines the voltage at which half of the potas-
sium channels are open; V4 and Ca4 are measures of the
spread of the distributions of n∞ and V3, respectively.
Note also that both the potassium current (which we
denote by IK = −gKn(V −VK)) and the calcium current
(denoted by ICa = −gCam∞(V)(V − VCa)) depend on
the membrane potential V , and both currents in turn
change the membrane potential. Parameters for this
model are given in table 1.

The model predicts drastically different behaviors
depending on the initial conditions. When the mem-
brane potential v is initialized to −20 mV and n is
initialized to 0, the voltage and the currents IK and
ICa decay to rest (see figure 2). Qualitatively different
behaviors are predicted with v(0) = −10 mV: the volt-
age rises substantially before decaying to rest (see fig-
ure 3(a)). To gain insight, one may consider the cur-
rents, which are shown in figure 3(b). The magnitude
of both currents increases before decaying to rest. An
interesting feature of this system is that the two cur-
rents go in opposite directions: IK is outward-directed
and thus hyperpolarizes the cell, whereas ICa is inward-
directed and depolarizes the cell. Because the calcium
channels are voltage gated, once the voltage crosses a
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Figure 2 Solution to the Morris–Lecar model with v initial-
ized to −20 mV: (a) voltage; (b) K+ and Ca2+ currents. The
voltage and current both decay to zero.

threshold there is a large inward-directed calcium cur-
rent. (This is therefore an example of an excitable cell.)
The current causes the voltage to increase, and eventu-
ally the current slows down and reaches its peak. The
large outward potassium current then comes into play,
repolarizing the cell.

To understand this threshold behavior for excitable
cells, one may study the nullclines of the system, which
are curves where dv/dt = 0 and dn/dt = 0. The null-
clines are depicted in figure 4. The first thing to note
is that the two nullclines intercept at three equilibrium
points. If the system is initialized at those v and n val-
ues, then the system will remain at equilibrium. The two
nullclines divide the v–n space into several regions,
in which v and n are increasing or decreasing. The
two previous simulations that produce qualitatively
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Figure 3 Solution to the Morris–Lecar model with v initial-
ized to −10 mV: (a) voltage; (b) K+ and Ca2+ currents. The
solution exhibits an initial bump (or crest) before decaying
to rest.

different behaviors correspond to initial v and n val-

ues that lie in different regions. With v(0) = −20 mV

and n(0) = 0 (indicated by the asterisk in figure 4),

the system lies in the region where dv/dt < 0 and

dn/dt > 0, so the voltage decays to rest (see figure 2(a)),

whereas the gating variable n, after an initial increase,

also decays to 0. With v(0) = −10 mV (indicated by the

open circle in figure 4), however, the system lies in the

region where dv/dt > 0 and dn/dt > 0, so the voltage

rises to a peak before decaying to rest (see figure 3(a)).

4 Kidneys

A group of cells that have similar function or structure

may join together to form tissues. A group of tissues
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Figure 4 The v- and n-nullclines divide the v–n space
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Figure 5 Schematic of a model glomerular capillary.

may then collectively form an organ. A collection of
organs then forms organ systems, an example of which
is the excretory system.

The kidneys are part of the excretory system. They
serve a number of essential regulatory roles. Be-
sides their well-known function as filters, removing
metabolic wastes and toxins from the blood and excret-
ing them through urine, the kidneys also serve other
essential functions. Through a number of regulatory
mechanisms, the kidneys help maintain the body’s
water balance, electrolyte balance, and acid–base bal-
ance. Additionally, the kidneys produce or activate hor-
mones that are involved in erythrogenesis, calcium
metabolism, and the regulation of blood flow.

4.1 Glomerular Filtration

The first step in the formation of urine is the filtration
of blood by glomerular capillaries. The filtrate is col-
lected into a Bowman’s capsule and subsequently flows
through the tubular system, where it undergoes major
changes in volume and composition.

To model the glomerular fluid filtration process,
the glomerular capillaries are idealized as a network
of identical, parallel capillaries with homogeneous

properties along their entire length. The capillaries are

represented as rigid cylinders of radius r and length L
(figure 5). Let P denote the plasma compartment and

let QP denote the volumetric rate of plasma flow in a

capillary. At a given position x along the capillary, a

portion of the flow can be reabsorbed into (or secreted

from) the surrounding medium via a transversal flux

across the capillary wall. Assuming that the capillaries

are rigid, there is no accumulation of fluid within the

plasma compartment. Thus, for a single capillary, the

conservation of fluid can be written as

dQP

dx
= −2πrJV,

where JV is the plasma volume flux, expressed as flow

per unit of capillary area and taken to be positive for

outward-directed flux. Fluid flow across a semiperme-

able membrane such as the capillary wall is driven by

the hydrostatic, oncotic, and osmotic pressure differ-

ences:

JV = Lp
(
ΔP −ΔΠ − RT

∑
S

σSΔCS

)
,

where Lp is the hydraulic conductivity of the mem-

brane; ΔP is the transmembrane difference in hydro-

static pressure; ΔΠ is the oncotic pressure, due to the

contribution of nonpenetrating solutes such as pro-

teins; R and T are the gas constant and absolute tem-

perature, respectively; σS is the osmotic reflective coef-

ficient of the membrane to solute S; and ΔCS is the

transmembrane concentration gradient (outside minus

inside) of solute S.

To apply the above equation, which was derived for

a single capillary, to one glomerulus, or to all the

glomeruli of one or two kidneys, one writes

dQP

dx
= −S

P

L
JV,

where SP denotes capillary surface area, L is the capil-

lary length, and the definition of plasma flow rate (QP)

must be adjusted accordingly.

To determine water flux JV, one needs to track the

concentrations of small solutes and protein. To that

end, consider the conservation of a solute S in plasma:

d(QPCP
S )

dx
= −2πrJS,

where JS is the plasma flux of species S, expressed as

a molar flow per unit of capillary area. Note that the

product QPCP
S gives the plasma flow rate of solute S, in

moles per unit time.
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The transmembrane flux of an uncharged solute is
given by the Kedem–Katchalsky equation

JS = JV(1 − σS)C̄S + PSΔCS,

where the first term represents the contribution from
advection and the second term that from diffusion. PS

is the permeability of the membrane to solute S, and C̄S

is an average membrane concentration, which in dilute
solutions is given by

C̄S = ΔCS

Δ lnCS
.

Some proteins such as albumin are highly concen-
trated in plasma and thus exert a significant oncotic
pressure, which opposes fluid filtration across the cap-
illary wall. In healthy kidneys the fraction of plasma
proteins that are filtered along the capillaries is negli-
gible. Thus, if CP

pr denotes the plasma concentration of
proteins, we have

d(QPCP
pr)

dx
= 0.

In summary, the set of equations that form the basis
of models of glomerular filtration consist of equations
that describe conservation of fluid and of solutes (small
solutes and proteins). The boundary conditions are
specified at the afferent end of the capillary:

QP(x = 0) = QA, CP
pr(x = 0) = CA

pr,

whereQA equals the afferent arteriolar plasma flow and
CA

pr equals the total protein concentration in the affer-
ent plasma. A similar boundary condition is imposed
for solute S.

4.2 Urinary Concentration

During water deprivation, the kidney of a mammal can
conserve water by producing urine that is more con-
centrated than blood plasma. This hypertonic urine
is produced when water is reabsorbed, in excess of
solutes, from the nephrons and into the renal vascu-
lature, thereby concentrating the tubular fluid, which
eventually emerges as urine. Here we will develop a
model of the concentrating mechanism in an impor-
tant segment of the renal tubular system, the loop of
Henle. The loop of Henle is a hairpin-like tubule that
lies mostly in the medulla and consists of a descending
limb and an ascending limb (see figure 6).

The model represents a loop with a descending limb
and an ascending limb. The two limbs are assumed to
be in direct contact with each other. We make the sim-
plifying assumption that the descending limb is water
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Figure 6 Countercurrent multiplication by NaCl transfer
from an ascending flow to a descending flow; the concen-
tration of the descending flow is progressively concentrated
by NaCl addition.

impermeable but infinitely permeable to solute. This

results in the conservation equations

∂
∂x
QDL(x) = 0,

∂
∂x
(QDL(x)CDL(x)) = −2πrDLJDL,s .

The notation is similar to the glomerular filtration

model, with the subscript “DL” denoting the descend-

ing limb.

We assume that the ascending limb is water imperme-

able, and that the solute is pumped out of the ascend-

ing limb at a fixed rate A. (A more realistic description

of this active transport would be the Michaelis–Menten

kinetics discussed in section 2.1. Simplistic, fixed-rate

active transport is assumed here to facilitate the analy-

sis.) Additionally, we assume that all of that solute goes

into the descending limb. Thus, 2πrDLJDL,s = −A and

2πrALJAL,s = A. The conservation equations for the

ascending limb (denoted “AL”) are

∂
∂x
QAL(x) = 0,

∂
∂x
(QAL(x)CAL(x)) = −A.

Because the descending and ascending limbs are as-

sumed to be contiguous, at the loop bend (x = L) we

have

QDL(L) = −QAL(L), CDL(L) = CAL(L).
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Finally, to complete the system, boundary conditions

are imposed at the entrance to the descending limb:

QDL(0) = Q0, CDL(0) = C0.

To determine CDL(x) and CAL(x), we note that, since

the entire loop is water impermeable, QDL(x) =
QAL(x) = Q0. Thus,

Q0
∂
∂x
CDL(x) = A,

which can be integrated to yield

CDL(x) = C0 +
(
A
Q0

)
x.

To compute CAL(x), we evaluate CDL at x = L and use

that as the initial condition for the ordinary differential

equation for CAL(x) to get

CAL(x) = CDL(L)−
(
A
Q0

)
(L− x) = CDL(x).

The simple model illustrates the principle of coun-

tercurrent multiplication, by which a transfer of solute

from one tubule to another (called a “single” effect) aug-

ments (“multiplies,” or reinforces) the axial osmolality

gradient in the parallel flow. Thus, a small transverse

osmolality gradient difference (a small single effect)

is multiplied into a much larger osmolality difference

along the axis of tubular flow. To summarize, the mode

predicts that the concentrations along both limbs are

the same at any given x, and that solute concentration

increases linearly along x. Thus, the longer the loop,

the higher the loop bend concentration.

Further Reading

Due to space constraints, this article focuses on cel-

lular transport and the kidneys. Mathematical models

of other aspects of the kidney can be found in Layton

and Edwards (2013). Mathematical models have been

formulated for other organ systems, including the cir-

culatory system, the digestive system, the endocrine

system, the lymphatic system, the muscular system,

the nervous system, the reproductive system, and the

respiratory system. For these models, see Keener and

Sneyd (2008).

Keener, J., and J. Sneyd. 2009. Mathematical Physiology, Vol-
ume I: Cellular Physiology and Mathematical Physiology;
Volume II: Systems Physiology. New York: Springer.

Layton, A., and A. Edwards. 2013. Mathematical Modeling of
Renal Physiology. New York: Springer.

V.6 Cardiac Modeling
Alexander V. Panfilov

1 The Heart, Waves, and Arrhythmias

The main physiological function of the heart is mechan-
ical: it pumps blood through the body. The pumping is
controlled by electrical excitation waves, which propa-
gate through the heart and initiate cardiac contraction.
Anatomically, the human heart consists of four cham-
bers. The two lower chambers, which are called ventri-
cles, have thick (1–1.5 cm) walls, and it is contraction
of the ventricles that pushes blood through the body.
The upper two chambers, called the atria, have thin
walls (about 0.3 cm thick). The atria collect the blood,
and their contraction delivers it to the ventricles. Under
normal conditions, excitation of the heart starts at the
sinoatrial node located in the right atrium (figure 1).
The cells in the sinoatrial node are oscillatory, and they
periodically initiate excitation waves. Thereafter, the
wave propagates through the two upper chambers of
the heart (the atria), causing atrial contraction. After
some delay at the atrioventricular (AV) node, the exci-
tation enters the ventricles and initiates the main event:
ventricular contraction.

Abnormal excitation of the heart results in cardiac
arrhythmias, which have various manifestations. They
might involve just one extra heartbeat initiated by a
wave from another location, or they could manifest
as an abnormally fast heart rate called tachycardia,
which can occur in the atria or the ventricles. In some
cases the excitation becomes spatially disorganized,
which results in failure of contraction. If this occurs in
the ventricles, cardiac arrest and sudden cardiac death
result. Prediction and management of cardiac arrhyth-
mias are therefore two of the greatest problems in mod-
ern cardiology. Sudden cardiac death due to arrhyth-
mias is one of the largest causes of death in the indus-
trialized world, accounting for approximately one in
every ten deaths. Cardiac arrhythmias have important
consequences in the pharmaceutical industry too: more
than half of all drug withdrawals in recent years have
been the result of the drugs in question potentiating
the onset of arrhythmias or causing other cardiac side
effects.

Mechanisms of the most dangerous cardiac arrhyth-
mias are directly related to wave propagation. The
properties of waves in the heart are quite different from
those of most other types of nonlinear waves, the main
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Sinoatrial node

Atria

AV node
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Figure 1 Schematic of the heart’s conduction pathway.

(a) (b) (c)

Refractory

Figure 2 Schematic of (a) a wave propagating around
an obstacle and (b), (c) spiral wave formation.

difference being the presence of refractoriness. After
excitation, a cardiac cell requires some time, called the
refractory period, to recover its properties. During that
refractory time it cannot be excited again, and vortices
may appear in the heart as a result. Let us consider a
wave propagating along an obstacle in cardiac tissue:
around veins or arteries entering the heart, for exam-
ple. If the travel time around the obstacle is longer than
the refractory period, a sustained rotation (figure 2(a))
will take place. Such rotation produces periodic excita-
tion of the heart with a frequency much faster than the
frequency of the sinus node, and tachycardia occurs as
a result.

It has also been shown that, because of refrac-
toriness, such rotations can also occur without any
anatomical obstacles. Refractory tissue is unexcitable,
and the wave can propagate around it as it would do
around anatomical obstacles (figure 2(b)). The only dif-
ference is that, as soon as the refractory period ends,
the wave can enter this region (figure 2(c)). The wave-
front therefore normally follows the refractory tail of
the wave closely, and the period of rotation is very
short. Such vortices are usually called spiral waves

(a) (b)

Figure 3 (a) Spiral wave and (b) complex excitation pattern
after the process of spiral breakup in an anatomical model
of human ventricles. (Figure created by I. V. Kazbanov and
A. V. Panfilov.)

because in large media they take the shape of rotating

spirals (figure 3(a)). Other interesting types of dynam-

ics include a breakup of spiral waves into complex

spatiotemporal chaos (figure 3(b)). If this occurs in

the heart, excitation becomes spatially disorganized,

resulting in failure of organized cardiac contraction

and sudden cardiac death.

Overall, we can say that the sources of abnormal exci-

tation of the heart are not located in a single region but

are the result of wave circulation involving millions of

cardiac cells. Thus, if we want to understand the mech-

anisms of cardiac arrhythmias, we need to know how

changes at the level of the individual building block

of the heart (i.e., the single cell) will manifest them-

selves at the whole-organ level. It is in answering pre-

cisely these questions that mathematical modeling can

be useful. Let us consider the main principles behind

cardiac models.

1.1 Modeling Cardiac Cells

In the resting state, there is a difference in the poten-

tial between the two sides of the membrane of about

−90 mV in cardiac cells. During excitation this volt-

age rapidly increases to about +10 mV before slowly

returning to its resting value (figure 4(a)). A typical

cardiac action potential is shown in figure 4. It has

a sharp upstroke that lasts only 1–2 ms and then a

repolarization phase of about 300 ms.

The voltage across the cardiac membrane changes as

a result of the complex time dynamics of ionic currents

through the membrane. The currents are conveyed by

selective ionic channels that are permeable to various

ions, the most important of which are Na+, K+, and

Ca2+. The process of excitation of the cardiac cell can
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Figure 4 (a) An action potential in the heart and (b) a
schematic representation of a cardiac cell. INa, ICa, etc.,
denote different types of ionic channels; arrows indicate
current direction.

be described by the following system:

Cm
dVm

dt
= −INa − IK − ICa + · · · , (1)

I∗ = G∗gα∗gβ• (Vm − V∗), (2)

dgi
dt

= g
∞
i (Vm)− gi
τi(Vm)

, i = ∗,•, (3)

where the first equation describes the changes in trans-
membrane voltage Vm = Vin − Vout as a result of the
dynamics of various ionic currents. Each of the cur-
rents typically depends on Vm and time. In most cases,
time dependency is given by an exponential relaxation
equation for gating variables gi. For example, a hypo-
thetical current I∗ that conveys ion “∗” and has a max-
imal conductivity of G∗ = const. is represented by
expression (2). The current is zero at Vm = V∗, where
V∗ is the so-called Nernst potential for ion “∗,” which
can be easily computed from the concentration of spe-
cific ions outside and inside the cardiac cell. The time
dynamics of this current are governed by two gating
variables g∗, g• raised to the powers α, β. The vari-
ables g∗, g• approach their voltage-dependent steady
state values g∞

i (Vm)with characteristic time τi(Vm) (3).
All the parameters and functions here are chosen to
fit experimentally measured properties of the specific
ionic current. Most of the ionic currents have one or
two gating variables, with α = β = 1.

The systems expressed by (1)–(3) are called detailed
ionic models as they describe in detail the underly-
ing biophysical mechanism of cardiac excitation and

are based on direct measurement of the properties
of cardiac cells. Such models may have from as few
as 4 to more than 100 equations and contain hun-
dreds of parameters. These models are mainly solved
numerically and can be applied to detailed studies
of drug actions, mutations, and other processes on
cardiac cells. Another class of cardiac models is low-
dimensional phenomenological models, which have
just two or three differential equations. These are
mainly used for generic studies of waves in the heart,
which can be numerical as well as analytical.

1.2 Tissue and Whole-Organ Models

Wave propagation is a result of the successive excita-
tion of cardiac cells, each of which is described by (1). In
cardiac tissue, the excitable cells are connected to each
other via resistors called gap junctions and equations
can be obtained by representing tissue as a resistive
network. One of the most widely used models involves
the monodomain equations:

Cm
∂Vm

∂t
= div(D∇Vm)− Iion, (4)

where D is the diffusion tensor. The idea behind this
equation is straightforward. The total current through
the membrane has not only an ionic current Iion

but also diffusive currents from the cell’s neighbors
(div(D∇Vm)). To understand why the diffusive current
has such a form, consider a hypothetical cell that takes
the form of a long cylinder. The current along the axis
of the cylinder is proportional to the gradient of the
voltage D∇Vm (Ohm’s law). The divergence of this cur-
rent is a membrane current, i.e., a current that goes
through the surface of the cylinder, and it therefore has
to be added to Iion. As cardiac tissue consists of fibers,
its resistance depends on the direction of these fibers,
and this is accounted for by the diffusivity (conductiv-
ity) tensor D. Recent studies have revealed that fibers
in the heart are organized in myocardial sheets, giv-
ing resistivity in three main directions: along the fibers,
across the fibers inside the sheets, and across the
sheets. The measured velocities of these three direc-
tions have the approximate ratio 1: 1

2 : 1
4 . The diffusive

matrix can be directly calculated from the orientations
of the fibers and the sheets. The main idea is that in a
coordinate system that is locally aligned with the fibers
and sheets, the matrix D is diagonal, with eigenvalues
accounting for unequal resistivity along given direc-
tions. In a global coordinate system, D can be found
by simple matrix transformation.
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Modeling of excitation in the whole heart mostly

involves finding a solution of (4) in the domain repre-

senting the heart shape. To solve this equation we will

also need to specify the anisotropy of the tissue at each

point (via the matrix D) and the types of cardiac cells

via models of cardiac cells (Iion). In addition, boundary

conditions also need to be imposed. Most of these data

are easy to obtain, and the shape of the heart can be

obtained from computerized tomography [IV.4 §8]

(CT) (see also [VII.19]) or magnetic resonance imag-

ing [VII.10 §4.1] (MRI) scanning procedures, which are

routinely used in clinical practice. However, obtaining

D is much more difficult. Currently, it can be measured

only on explanted hearts using direct histological mea-

surements or by means of diffusion tensor MRI, which

measures fiber directions by probing the diffusion rates

of water in the tissue.

2 Analytical Methods in Cardiac Modeling

When it comes to the analytical study of cardiac mod-

els, the possibilities are very limited. Most of the results

in this area deal with low-dimensional models, for

which the main properties of solutions can be stud-

ied in the phase plane of the system. Another impor-

tant direction of (semi)analytical research is the inves-

tigation of dynamical instabilities, which may result

in the generation of spiral waves and their decay into

complex turbulent patterns. One of the most interest-

ing results was obtained in studies of the so-called

alternans instability, which is simply an instability that

occurs as a result of a period-doubling bifurcation for

a one-dimensional discrete map describing a periodi-

cally forced cardiac cell. Such studies have predicted

the necessary conditions for onset of the instability

that leads to spiral breakup. These conditions were

connected to measurable characteristics of cardiac tis-

sue: the dependency of the duration of a cardiac pulse

and the period of stimulation of cardiac cells. This

hypothesis was tested not only in theoretical stud-

ies but also in experimental research, with the lat-

ter demonstrating that a decrease in the slope of the

dependency can prevent the onset of electrical turbu-

lence in the heart. Another recent development is a new

way of describing anisotropy in the heart as a Rieman-

nian manifold, whose metric is defined by the arrival

of excitation at a given point. This viewpoint allows

analytical equations to be obtained for wave veloc-

ity and spiral wave dynamics in two-dimensional and

three-dimensional anisotropic tissue via properties of
curvature tensors used in Riemannian geometry, such
as the Ricci curvature tensor.

3 Numerical Approaches

Numerical approaches are the most important tool
in cardiac modeling. The monodomain equations that
describe cardiac excitation belong to the class of
parabolic partial differential equations, and the numeri-
cal solution of these equations is straightforward. Most
often, the simulations of (4) were made using explicit
finite-difference methods, such as the Euler integration
scheme. Equation (5) gives an example of this approach
for the two-dimensional isotropic case, which updates
the value of the voltage at each point (i, j) on a two-
dimensional grid at time t + ht from the values of
variables at time t:

Vt+htij = Vtij − Itij

+ htD
Cm

Vti+1,j + Vti,j+1 + Vti−1,j + Vti,j+1 − 4Vtij
hs2

.

(5)

Here, hs and ht are the spatial and time integration
steps, and Iij gives the value of the ionic current at a
given point. Typical integration steps for cardiac mod-
els are hs ≈ 0.2 mm and ht ≈ 0.01 ms. Due to the
big difference in timescales for the upstroke and depo-
larization phases (figure 4), many attempts have been
made to develop algorithms that are adaptive in time
and/or space. For whole-heart simulations, a big chal-
lenge is the proper representation of boundary condi-
tions on domains of complex shape. To this end, as
well as explicit finite-difference methods, more com-
plex numerical methods (such as finite-volume or finite-
element methods) have been used. Note that for most
existing ionic models there is no longer any need to
copy equations from the original literature: most of the
models are present in Auckland University’s Cell ML
database (www.cellml.org).

4 Applications

Working with a whole-heart computer model is similar
to experimental or clinical work, with the researcher
having the same tools as experimentalists. For example,
as in a real experiment we can put electrodes onto the
virtual heart and initiate new waves just by adjusting
the voltage at given points.

Modeling can be applied to practically important
problems. For example, it turns out that most cardiac

http://www.cellml.org
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drugs are blockers of certain ionic channels. We can

model the effects of these drugs by changing the con-

ductance of the ionic channelsG∗ in (1) and then study-

ing how the changes affect the process of cardiac exci-

tation. Similarly, many forms of inherited cardiac dis-

ease occur as a result of a mutation in the gene-coding

ionic channels. For example, LQT1 syndrome is due to a

mutation that modifies (decreases) the potassium cur-

rent, while LQT3 syndrome is the result of a mutation

that modifies (increases) the sodium current.

Thus, if one modifies the properties of ionic chan-

nels to reproduce the effect of a given mutation, the

effect of this mutation on cell excitation and the onset

of arrhythmias can be studied. Furthermore, it is pos-

sible to study the onset of arrhythmias due to various

types of cardiac disease, such as ischemia or fibrosis,

by changing the parameters of the model and by intro-

ducing new types of cells. Compared with real experi-

mental research, modeling opens up many more possi-

bilities for modification of the heart’s properties, and

it can also be used to study three-dimensional wave

propagation in the heart.

There is a great deal of interest in applications that

elucidate the mechanisms of the formation of spiral

waves. Another important task is to understand and

identify instabilities (bifurcations) that are responsi-

ble for the deterioration of a single spiral wave into

spatiotemporal chaos.

Computational modeling also has potential applica-

tions in clinical interventions: cardiac resynchroniza-

tion therapy and cardiac ablation, for example. In resyn-

chronization therapy, several electrodes are placed on

a patient’s heart and a cardiologist then adjusts the

delays of excitation of these electrodes in order to

optimize the heart’s pumping function. As this proce-

dure is mainly used for patients who have suffered a

heart attack, their hearts have abnormal properties and

this procedure should thus be optimized on a patient-

specific basis. Anatomically accurate modeling is one

of the important tools needed for such optimization.

Cardiac ablation is a procedure used by cardiologists

to disrupt the pathological pathways along which the

wave circulates in the heart during an arrhythmia. Here,

too, modeling can help to identify such pathways and

guide cardiologists during ablation. Although direct

clinical applications of modeling are still under devel-

opment, it is widely believed that they will become

clinical tools during the next decade.
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V.7 Chemical Reactions
Martin Feinberg

1 Introduction

Chemical reactions underlie a vast spectrum of natu-
ral phenomena and, as a result, play an indispensable
role in many branches of science and engineering. An
understanding of atmospheric chemistry, cell biology,
or the efficient production of energy from fossil fuels
requires, in one way or another, a framework for think-
ing systematically about how chemical reactions serve
to convert certain molecules into others.

Chemical reactions can be studied at various concep-
tual levels. At a very fundamental level, for example,
one is concerned with ways in which chemical bonds
are broken and created within and between individual
molecules during the occurrence of a single chemical
reaction.

In this article our concerns will be different. In the
biological cell and in the atmosphere there are a large
number of distinct chemical species, and these are
involved in a great variety of chemical reactions. A par-
ticular species might be consumed in several reactions
and produced in several others. Thus, the reactions can
be intricately coupled, and, as a result, the dynamics of
the species population might be quite complex. It is this
dynamics that will be our focus.

2 Some Primitives

It will be useful to lay out some primitive ideas upon
which the mathematics of chemical reaction systems
can be built.
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2.1 Species

We begin by supposing that a chemical mixture we
might wish to study comprises a fixed set of chemical
species, which we will denote by A1,A2, . . . ,AN . Thus,
A1 might be carbon monoxide, A2 might be oxygen,
and so on. In applications, there is some judgment
required when selecting the species set, for one might
choose to ignore molecular entities that are deemed
inconsequential to the task at hand. At each place in
a mixture and at each instant, we associate with every
species AL a molar concentration cL. In rough terms, cL
is the local number of molecules of AL per unit volume,
divided by Avogadro’s number, approximately 6×1023.
In this way, with each place in the mixture and with
each instant we can associate a local composition vec-
tor c = [c1, c2, . . . , cN] in the standard vector space of
N-tuples, RN . The mathematics of chemical reactions
is, for the most part, aimed at a description of how
the composition vector varies with time and spatial
position.

2.2 Reactions

For the mixture under study we suppose that the vari-
ous species interact through the occurrence of a fixed
set of chemical reactions that constitute a reaction net-
work. The network is often displayed in a reaction
diagram such as the one shown below:

A1
α �� 2A2
β

��

A1 + A3

γ �� A4
δ

��

ε����
��

A2 + A5

ξ
������

(1)

The diagram is meant to suggest that a molecule
of A1 can decompose to form two molecules of A2,
that two molecules of A2 can combine to form one
molecule of A1, that a molecule of A1 can combine with
a molecule of A3 to form a molecule of A4, and so on.
(The Greek letters alongside the reaction arrows will
play a role in the next section.)

Here again, there is a need for some judgment about
which reactions to include. Certain reactions might be
deemed to occur so slowly as to be safely ignored for
the purposes of the analysis.

2.3 Reaction Rate Functions

The local occurrence rates of individual reactions are
presumed to be given by reaction rate functions—one

for each reaction in the network at hand—that indicate

how the individual reaction rates depend on the local

mixture composition vector and the local temperature.

Thus, in our example the function KA1→2A2(·, ·) tells us

how the local occurrence rate per unit volume of reac-

tion A1 → 2A2 depends on local mixture conditions; in

particular, KA1→2A2(c, T) is the local molar occurrence

rate per unit volume when the local composition vec-

tor is c and the local temperature is T . (Roughly speak-

ing, the local molar occurrence rate per unit volume is

the number of times the reaction occurs per unit time

per unit volume divided by Avogadro’s number.) Thus,

reaction rate functions take nonnegative values.

These functions are presumed, in general, to be

smooth and to have certain natural relationships with

the particular reactions they describe. For example, it

is often supposed—and we shall suppose here—that,

for a reaction such as A1 + A3 → A4, KA1+A3→A4(c, T)
takes a strictly positive value at composition c if and

only if both A1 and A3 are actually present—that is, if

and only if the composition vector c is such that both

c1 and c3 are positive.

A specification of a reaction rate function for each of

the reactions in a network is called a kinetics for the

network. By a kinetic system we will mean a reaction

network together with a kinetics.

2.3.1 Mass Action Kinetics

By a mass action kinetics for a reaction network we

mean a kinetics in which the individual reaction rate

functions have a special, and very natural, form.

For a reaction such as A1 → 2A2 it is generally sup-

posed that the local occurrence rate is simply propor-

tional to c1, the local concentration of A1; after all,

the more molecules of A1 there are locally, the more

occurrences of the reactions there will be. Thus, it is

presumed that KA1→2A2(c, T) ≡ α(T)c1, where α(T)
is called the (positive) rate constant for the reaction

A1 → 2A2.

For the reaction 2A2 → A1 the situation is differ-

ent. In this case, two molecules of A2 must meet if

the reaction is to proceed at all, and the probabil-

ity of such a meeting is taken to be proportional to

(c2)2. With this as motivation, the reaction rate func-

tion is presumed to have the form K2A2→A1(c, T) ≡
β(T)(c2)2, where, again, β(T) is the rate “constant”

for the reaction 2A2 → A1. Similarly, we would have

KA1+A3→A4(c, T) ≡ γ(T)c1c3, and so on.
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When the kinetics is mass action, it is common, as in
(1), to decorate the reaction diagram with symbols for
the various rate constants alongside the corresponding
reaction arrows.

2.3.2 Other Kinetics

Reaction networks deemed to describe chemistry at the
fine level of so-called elementary reactions are usu-
ally presumed to be governed by mass action kinet-
ics. Sometimes, however, coarser modeling is called
into play, and the “reactions” considered are actually
intelligent but nevertheless approximate descriptions
of what is actually happening. A model might speak in
terms of an “overall” reaction that describes, in effect,
the result of a sequence of more elementary chemical
events.

For example, a model might invoke an overall reac-
tion such as A1 → A2 that is, in reality, mediated by an
enzyme, present at very low concentration, that acts
through an elementary reaction sequence such as

A1 + E � A1E → A2E → A2 + E.

The idea here is that A1 binds reversibly to the enzyme
E to form A1E, whereupon the bound A1 is rapidly trans-
formed by the enzyme into A2. The newly formed A2

then unbinds, leaving behind naked enzyme, which is
then free to rework its magic.

This sequence of elementary steps is presumed to
be governed by mass action kinetics, which, through a
suitable approximation procedure, can be made to yield
a pseudokinetics for the pseudoreaction A1 → A2. Such
a kinetics might take a Michaelis–Menten form:

KA1→A2(c, T) ≡
k(T)c1

k′(T)+ c1
.

Although the (roughly constant) concentration of the
enzyme might influence, in a latent way, values of
the parameters (in particular k), the approximate rate
function for the pseudoreaction A1 → A2 is written
explicitly only in terms of the concentration of A1.

3 The Species-Formation-Rate
Function for a Kinetic System

Given a reaction network endowed with a kinetics, we
are in a position to calculate for each species its local
net molar production rate per unit volume when the
local composition vector is c and the local temperature
is T .

For our sample reaction network, let us focus for the
moment on species A1. Whenever the reaction A1 →

2A2 occurs, we lose one molecule of A1, and the local

occurrence rate per unit volume of that reaction is

KA1→2A2(c, T). Whenever the reaction 2A2 → A1 occurs

we gain a molecule of A1, and the local occurrence rate

per unit volume of that reaction is K2A2→A1(c, T). After

also taking into account the contributions of the reac-

tions A1+A3 → A4, A4 → A1+A3, and A2+A5 → A1+A3

to the production of species A1, we can calculate the net

molar production rate per unit volume of A1, denoted

r1(c, T), as follows:

r1(c, T) ≡ −KA1→2A2(c, T)+ K2A2→A1(c, T)

− KA1+A3→A4(c, T)+ KA4→A1+A3(c, T)

+ KA2+A5→A1+A3(c, T).

For species A2, we can proceed in the same way, but

we need to take cognizance of the fact that with each

occurrence of the reaction A1 → 2A2 there is a gain of

two molecules of A2, and with each occurrence of the

reverse reaction there is a loss of two molecules of A2.

Thus we write

r2(c, T) ≡ 2KA1→2A2(c, T)− 2K2A2→A1(c, T)

+ KA4→A2+A5(c, T)− KA2+A5→A1+A3(c, T).

In this way we can formulate, for a kinetic system

with N species, the N functions rL(·, ·), L = 1,2, . . . , N .

For each L, rL(·, ·) is just the sum, over all reactions, of

the individual reaction rate functions, each multiplied

by the net number of molecules of species AL produced

with each occurrence of the corresponding reaction.

For use later on, we shall find it convenient to form

the vectorial species-formation-rate function r(·, ·) for

a kinetic system, which is defined by

r(c, T) := [r1(c, T), r2(c, T), . . . , rN(c, T)] ∈ RN.

4 How Kinetic Systems Give
Rise to Differential Equations

There are various physicochemical settings in which

a kinetic system might exert itself, and there are cor-

responding differences in how the governing differ-

ential equations are formulated. In each setting, how-

ever, the presence of chemical reactions is manifested

through the species-formation-rate function for the

kinetic system at hand.

Our focus here will be almost entirely on what

chemical engineers call the spatially homogeneous
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(well-stirred) fixed-volume batch reactor, for that is the

setting in which chemical reactions exert themselves in

the most pristine way, uncomplicated by composition

changes resulting from bulk or diffusive transport of

matter.

4.1 The Homogeneous Batch Reactor

Imagine that a mixture fills a vessel of fixed volume V
and that the mixture is stirred so effectively that its

composition and temperature are always independent

of spatial position. Imagine also that heat can be added

to and removed from the vessel by an operator in any

desired way and that, in particular, the temperature

variation with time can be controlled to an exquisite

degree. One possibility is that the temperature can be

maintained at a fixed value for all time, in which case

the operation is isothermal.

We suppose that the chemistry is well-modeled, as

before, by a kinetic system with N species, A1,A2, . . . ,
AN . In this case, the spatially independent composition

vector at time t is c(t) = [c1(t), c2(t), . . . , cN(t)] ∈ RN .

In fact, our interest is in the temporal variation of the

mixture composition.

If we denote by nL(t) the number of moles of species

AL in the reactor at time t—that is, the number of

molecules of AL divided by Avogadro’s number—and

if we recall that rL(c(t), T(t)) is the net rate of produc-

tion per unit volume of AL due to the occurrence of all

reactions in the underlying reaction network, then we

can write ṅL(t) = VrL(c(t), T(t)). (An overdot always

indicates time differentiation.) Dividing by V , we get the

system of N scalar differential equations

ċL = rL(c(t), T(t)), L = 1,2, . . . , N, (2)

or, equivalently, the single vector equation

ċ(t) = r(c(t), T(t)). (3)

A possibility that we have not considered is that the

reactor is adiabatic, which is to say that the vessel is

perfectly insulated. In this case, energetic considera-

tions must be brought into play through an additional

differential equation for the temperature. In particular,

one must take account of the fact that the occurrence of

chemical reactions might, by itself, serve to transiently

raise or lower the mixture temperature.

It is instructive to write out the isothermal batch reac-

tor differential equations (2) for reaction network (1)

when the kinetics is mass action:

ċ1 = −αc1 + β(c2)2 − γc1c3 + δc4 + ξc2c5,

ċ2 = 2αc1 − 2β(c2)2 + εc4 − ξc2c5,

ċ3 = −γc1c3 + δc4 + ξc2c4,

ċ4 = γc1c3 − (δ+ ε)c4,

ċ5 = εc4 − ξc2c5.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4)

Note that this is a system of coupled polynomial dif-

ferential equations in five dependent variables and in

which six parameters (rate constants) appear.

Polynomial differential equations are notoriously dif-

ficult to study. In fact, one of David Hilbert’s famous

problems (the sixteenth) posed in 1900 at the Interna-

tional Congress of Mathematicians in Paris was about

polynomial differential equations in just two variables.

It remains unsolved.

4.2 A Few Words about Other Physicochemical

Settings

In the batch reactor, composition changes result solely

from the occurrence of chemical reactions. In other set-

tings, composition variations in time or in spatial posi-

tion might result from a coupling of reactions with bulk

or diffusive transport of matter.

A continuous-flow stirred-tank reactor is very much

like a batch reactor, but fresh mixture is added to the

reactor continuously at a fixed flow rate, while mix-

ture is simultaneously removed from the reactor at that

same flow rate. When the mixture density can be pre-

sumed to be independent of composition and temper-

ature, the governing vector differential equation takes

the form

ċ(t) = 1
θ
(cF − c(t))+ r(c(t), T(t)).

Here cF ∈ RN is the feed composition, and θ is the reac-

tor residence time, which is the reactor volume divided

by the volumetric flow rate.

In still other settings, there might be continuous vari-

ation in the composition not only in time but also in

spatial position. In such instances, mixtures are usually

modeled by systems of reaction–diffusion equations,

about which there is a large literature.

Finally, we note that certain systems open to trans-

port of matter are sometimes modeled as if they were

batch reactors by adding pseudoreactions of the form

0 → AL or AL → 0 to account for the supply and removal

of species AL.
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5 Seeing Things Geometrically

We have already pointed out that, even for a relatively
simple reaction network such as (1), the corresponding
differential equations can be difficult to study. What we
have not yet exploited, however, is the fact that these
equations bear an intimate structural relationship to
the reaction network from which they derive, a relation-
ship that imposes severe geometric constraints on the
way that composition trajectories can travel through
RN . An understanding of that geometry can help con-
siderably in studying the dynamics to which the equa-
tions give rise and in posing the right questions at the
outset.

To begin, we will need to make more mathematically
transparent the way in which the species-formation-
rate function r(·, ·) relates structurally to the under-
lying reaction network.

5.1 Complexes and Complex Vectors

By the complexes of a reaction network we mean the
objects that sit at the heads and tails of the reaction
arrows. Thus, for network (1) the complexes are A1,
2A2, A1 + A3, A4, and A2 + A5.

With each complex in an N-species network we can
associate a vector of RN in a natural way. This is best
explained in terms of our sample network (1), for which
N = 5: with the complex A1 we associate the complex
vector y1 := [1,0,0,0,0] ∈ R5; with 2A2 we associate
the vector y2 := [0,2,0,0,0]; with A1+A3 we associate
the vector y3 := [1,0,1,0,0]; with A4 we associate the
vectory4 := [0,0,0,1,0]; and with A2+A5 we associate
the vector y5 := [0,1,0,0,1].

5.2 Reactions and Reaction Vectors

Note that we have numbered the complexes in an arbi-
trary way. Hereafter, we write yi → yj (or sometimes
just i → j) to indicate the reaction whereby the ith
complex reacts to the jth complex.

In fact, we will associate with each reactionyi → yj in
a network the corresponding reaction vector yj −yi ∈
RN , with N again denoting the number of species. In
our example, the reaction vector corresponding to the
reaction A1 → 2A2 is [−1,2,0,0,0]. The reaction vector
corresponding to A2 +A5 → A1 +A3 is [1,−1,1,0,−1].
Note that the Lth component of the reaction vector for a
particular reaction is just the net number of molecules
of species AL produced with each occurrence of that
reaction.

5.3 The Species-Formation-Rate Function Revisited

Consider a kinetic system, for which we denote by R

the set of reactions and by {Ki→j(·, ·)}i→j∈R the cor-

responding set of reaction rate functions. We claim

that the (vector) species-formation-rate function can be

written in terms of the reaction vectors {yj−yi}i→j∈R

as

r(c, T) =
∑

i→j∈R

Ki→j(c, T)(yj −yi) (5)

for all c and T . To see that this is so, it helps to inspect

the component of (5) corresponding to species AL:

rL(c, T) =
∑

i→j∈R

Ki→j(c, T)(yjL −yiL). (6)

Recall how the species formation rate is calculated for

species AL: by summing, over all reactions, the individ-

ual reaction rate functions, each multiplied by the net

number of molecules of AL produced when the corre-

sponding reaction occurs once. This is precisely what

is done in (6).

5.4 What the Vector Formulation Tells Us

A glance at (5) indicates that, no matter what the local

mixture composition and temperature are, the species-

formation-rate vector is invariably a linear combination

(in fact, a nonnegative linear combination) of the reac-

tion vectors for the operative chemical reaction network.

This tells us that the species-formation-rate vector is

constrained to point only in certain directions in RN ; it

can point only along the linear subspace of RN spanned

by the reaction vectors.

This is called the stoichiometric subspace for the

reaction network, and we denote it by the symbol S:

S := span{yj −yi ∈ RN : yi → yj ∈ R}.

(Stoichiometry is the part of elementary chemistry

that takes account of conservation of various entities

(e.g., mass, charge, atoms of various kinds) that are

conserved even in the presence of change caused by

chemical reactions.)

We will have interest in the dimension of the stoi-

chiometric subspace. This is identical to the rank of the

network’s reaction vector set—that is, the number of

vectors in the largest linearly independent set that can

be formed from the network’s reaction vectors. This

number, denoted s, is called the rank of the network:

s := dimS = rank{yj −yi ∈ RN : yi → yj ∈ R}.
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In language we now have available, we can say that,
for any composition and temperature, r(c, T) is con-
strained to point only along the stoichiometric sub-
space. Provided that S is indeed smaller than RN (i.e.,
s < N), this has important dynamical implications.
We will examine these implications soon, but first we
should see that, for networks that respect conservation
of mass, S must be smaller than RN .

5.5 An Elementary Property of Mass-Conserving

Reaction Networks

Suppose that, for our sample network (1), M1,M2, . . . ,
M5 are the molecular weights of the five species A1,A2,
. . . ,A5. Although a chemical transformation takes place
when the reaction A1 → 2A2 occurs, we nevertheless
expect the reaction to conserve mass. That is, we expect
that the total molecular weight of molecules on the
reactant side of the arrow will be the same as the total
molecular weight of molecules on the product side.
More precisely, if the reaction does indeed respect mass
conservation, we expect that M1 = 2M2. Similarly, if
the reaction A1 + A3 → A4 is consistent with mass
conservation, then we should have M1 +M3 = M4.

More generally, if yi → yj is a reaction in a network
withN species, then the reaction will be consistent with
mass conservation only if

N∑
L=1

yiLML =
N∑
L=1

yjLML,

where, as in our example,M1,M2, . . . ,MN are the molec-
ular weights of the species. Letting M = [M1,M2, . . . ,
MN] be the vector of molecular weights, we can express
this condition in vector terms through the standard
scalar product in RN :

yi ·M = yj ·M.
If all reactions of the network respect mass conserva-
tion, then we have

(yj −yi) ·M = 0, ∀yi → yj ∈ R.

This is to say that M is orthogonal to each of the reac-
tion vectors and, therefore, to their span, whereupon S
is indeed smaller than RN .

5.6 The Batch Reactor Viewed Geometrically

It is in the batch reactor setting that we can see most
clearly the implications of the fact that the species-
formation-rate function takes values in the stoichio-
metric subspace for the underlying reaction network.

Recall that the governing vector differential equa-
tion is ċ(t) = r(c(t), T(t)). Here r(·, ·) is the species-
formation-rate function for the operative kinetic sys-
tem. For that system we will suppose that the stoichio-
metric subspace is smaller than RN . To be concrete, we
will also suppose that the temperature variation with
time is controlled by an external agent. (The temper-
ature might be maintained constant, but that is not
essential to what we will say.)

Our interest will be in understanding how the com-
position vector moves around the nonnegative orthant
of RN if an initial composition c(0) = c0 ∈ RN is speci-
fied. By means of the following analogy we can see why
the motion is very highly constrained by the reaction
network itself, no matter what the kinetics might be.

5.6.1 A Bug Analogy

Imagine that a friendly bug is sitting at the very top of
the doorknob in your bedroom. At time t = 0 the bug
begins flying around, and we are interested in predict-
ing where in your bedroom the bug will be a minute
later. (It is winter. The doors and windows are closed.
We are assuming that the bug suffers no violence.)
Without further information, it is hard to say anything
meaningful in advance about the bug’s position, even
qualitatively.

But suppose that, for some deep entomological rea-
son, the bug chooses to have its velocity vector always
point along your bedroom floor. Then it is intuitively
clear that, for all t � 0, the bug must be on the plane
parallel to the floor that passes through the top of the
doorknob. True, we do not know precisely where the
bug will be on that plane, but we do know a lot about
where he or she cannot be.

5.6.2 Stoichiometric Compatibility

For stoichiometric rather than entomological reasons,
the batch reactor behaves in essentially the same way.
Because r(·, ·) invariably takes values in S, the compo-
sition “velocity” ċ must always point along S. It is at
least intuitively clear, then, that for all t � 0, c(t)must
lie in the translate of S containing c0.

In figure 1 we depict schematically the situation for
a kinetic system based on a three-species network with
reactions A1 � A2 and A1 +A2 � A3. The stoichiomet-
ric subspace is two dimensional: it is a plane through
the origin that sits behind the nonnegative orthant,
R̄3+. We denote by c0 + S the translate of the stoichio-
metric subspace containing the initial composition c0.
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Figure 1 A stoichiometric compatibility class.

Thus, we expect the resulting composition trajectory

to reside entirely within the intersection of c0 + S with

R̄3+. That intersection appears as a shaded triangle in

figure 1.

The set of compositions within the triangle is an

example of what we shall call a stoichiometric compat-

ibility class. A composition outside the triangle is inac-

cessible from a composition within the triangle; the two

compositions are not stoichiometrically compatible.

More generally, for a reaction network with stoichio-

metric subspace S ⊂ RN we say that two compositions

c and c′ are stoichiometrically compatible if c′ − c is

a member of S. Thus, the set R̄N+ of all possible com-

positions can be partitioned into stoichiometric com-

patibility classes: that is, subsets of compositions that

are mutually stoichiometrically compatible. As with our

example, each of these is a convex set of the form

(c0 + S) ∩ R̄N+ for some vector c0 ∈ R̄N+ . A batch reac-

tor composition trajectory that begins within a given

stoichiometric compatibility class will never leave it.

6 A Little Chemical Reaction Network Theory

Although we have discovered, at least for the batch

reactor, that composition trajectories are severely con-

strained geometrically, the deepest questions are about

what might happen within the various stoichiometric

compatibility classes.

Indeed, when questions are posed about the capac-
ity of a given kinetic systems to admit, for exam-
ple, multiple equilibria, one is generally asking about
the possibility of two or more equilibria that are sto-
ichiometrically compatible with each other: that is,
that reside within the same stoichiometric compati-
bility class. Similarly, when one asks about the sta-
bility of a given equilibrium, one is generally inter-
ested in stability relative to initial conditions that are
stoichiometrically compatible with it.

If we think back to the mass action differential equa-
tions (4) that derived from our relatively simple net-
work example, it is easy to see that these questions can
be extremely difficult, and answers might depend on
parameter values (e.g., rate constants). Nevertheless, in
the early 1970s a body of theory began to emerge that,
especially in the mass action case, draws firm connec-
tions between qualitative properties of the differential
equations for a kinetic system and the structure of the
underlying network of chemical reactions. We need just
a little more vocabulary to state, as an important exam-
ple, an early reaction network theory result: the defi-
ciency zero theorem, due to F. Horn, R. Jackson, and
M. Feinberg.

6.1 Some More Vocabulary

It should be noted that, in our display of reaction net-
work (1), each complex was written just once, and then
arrows were drawn to indicate how the complexes are
connected by reactions. Formulated this way, the so-
called standard reaction diagram becomes a directed
graph, with the complexes serving as vertices and the
reaction arrows serving as directed edges. Note that
the diagram in (1) has two connected components: one
containing the complexes A1 and 2A2, and the other
containing the complexes A1 + A3, A4, and A2 + A5. In
the language of chemical reaction network theory the
(not necessarily strong) components of the standard
reaction diagram are called the linkage classes of the
network.

By a reversible reaction network a chemist usually
means one in which each reaction is accompanied by
its reverse. By a weakly reversible reaction network we
mean one for which, in the standard reaction diagram,
each reaction arrow is contained in a directed cycle.
Every reversible network is weakly reversible. Network
(1) is weakly reversible but not reversible.

The deficiency of a reaction network is a nonnega-
tive integer index with which reaction networks can be
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classified. It is defined by

deficiency := #complexes − #linkage classes − rank.

The deficiency is not a measure of a network’s size. A
deficiency zero network can have hundreds of species
and hundreds of reactions.

6.2 The Deficiency Zero Theorem

In what follows, it will be understood that we are con-
sidering the isothermal version of (3), ċ = r(c). When
we speak of a positive stoichiometric compatibility class
we mean a (nonempty) intersection of a translate of
the stoichiometric subspace with the strictly positive
orthant of RN (i.e., the interior of RN ).

It is well known that mass action systems can admit,
within a positive stoichiometric compatibility class,
unstable equilibria, multiple equilibria, and cyclic com-
position trajectories. The following theorem tells us
that we should not expect such phenomena when the
underlying reaction network has a deficiency of zero,
no matter how complicated it might be.

Theorem 1. For any reaction network of deficiency
zero the following statements hold true.

(i) If the network is not weakly reversible, then for
any kinetics, not necessarily mass action, the cor-
responding differential equations cannot admit an
equilibrium in which all species concentrations are
positive, nor can they admit a cyclic composition
trajectory that passes through a composition in
which all species concentrations are positive.

(ii) If the network is weakly reversible, then, when
the kinetics is mass action (but regardless of the
positive values the rate constants take), each pos-
itive stoichiometric compatibility class contains
precisely one equilibrium, and it is asymptotically
stable. Moreover, there is no nontrivial cyclic com-
position trajectory along which all species concen-
trations are positive.

Proof of the theorem is a little complicated. Its sec-
ond part involves a Lyapunov function suggested by
classical thermodynamics.

Recall the system of isothermal mass action differen-
tial equations (4) for our sample network (1). Without
the help of an overarching theory it would be difficult
to determine, even for specified values of the rate con-
stants, the presence, for example, of multiple stoichio-
metrically compatible positive equilibria or a positive
cyclic composition trajectory.

Note, however, that the network has five complexes,
two linkage classes, and rank three. Thus, its deficiency
is zero. Moreover, the network is weakly reversible. The
theorem tells us immediately that, regardless of the rate
constant values, the dynamics must be of the relatively
dull, stable kind that the theorem describes.

For an introduction to more recent and very dif-
ferent reaction network theory results, see the article
by Craciun et al., which is more graph-theoretical in
spirit and which has an emphasis on enzyme-driven
chemistry.
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V.8 Divergent Series: Taming the Tails
Michael V. Berry and Christopher J.
Howls

1 Introduction

By the seventeenth century, in the field that became
the theory of convergent series, it was beginning to
be understood how a sum of infinitely many terms
could be finite; this is now a fully developed and largely
standard element of every mathematician’s education.
Contrasting with those series, we have the theory of
series that do not converge, especially those in which
the terms first get smaller but then increase factorially:
this is the class of “asymptotic series,” encountered fre-
quently in applications, with which this article is mainly
concerned. Although now a vibrant area of research,
the development of the theory of divergent series has
been tortuous and has often been accompanied by con-
troversy. As a pedagogical device to explain the subtle

http://www.crnt.osu.edu/LecturesOnReactionNetworks
http://www.crnt.osu.edu/LecturesOnReactionNetworks
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concepts involved, we will focus on the contributions
of individuals and describe how the ideas developed
during several (overlapping) historical epochs, often
driven by applications (ranging from wave physics to
number theory). This article complements perturba-

tion theory and asymptotics [IV.5] elsewhere in this
volume.

2 The Classical Period

In 1747 the Reverend Thomas Bayes (better known for
his theorem in probability theory) sent a letter to Mr.
John Canton (a Fellow of the Royal Society); it was
published posthumously in 1763. Bayes demonstrated
that the series now known as Stirling’s expansion for
log(z!), “asserted by some eminent mathematicians,”
does not converge. Arguing from the recurrence rela-
tion relating successive terms of the series, he showed
that the coefficients “increase at a greater rate than
what can be compensated by an increase of the pow-
ers of z, though z represent a number ever so large.”
We would now say that this expansion of the facto-
rial function is a factorially divergent asymptotic series.
The explicit form of the series, written formally as an
equality, is

log(z!) = (z + 1
2 ) logz + log

√
2π − z

+ 1
2π2z

∞∑
r=0

(−1)r
ar

(2πz)2r
,

where

ar = (2r)!
∞∑
n=1

1
n2r+2

.

Bayes claimed that Stirling’s series “can never prop-
erly express any quantity at all” and the methods used
to obtain it “are not to be depended upon.”

Leonhard Euler, in extensive investigations of a wide
variety of divergent series beginning several years after
Bayes sent his letter, took the opposite view. He argued
that such series have a precise meaning, to be decoded
by suitable resummation techniques (several of which
he invented): “if we employ [the] definition … that … the
sum of a series is that quantity which generates the
series, all doubts with respect to divergent series vanish
and no further controversy remains.”

With the development of rigorous analysis in the
nineteenth century, Euler’s view, which as we will see
is the modern one, was sidelined and even derided. As
Niels Henrik Abel wrote in 1828: “Divergent series are
the invention of the devil, and it is shameful to base
on them any demonstration whatsoever.” Nevertheless,

divergent series, especially factorially divergent ones,
repeatedly arose in application. Toward the end of the
century they were embraced by Oliver Heaviside, who
used them in pioneering studies of radio-wave propa-
gation. He obtained reliable results using undisciplined
semiempirical arguments that were criticized by math-
ematicians, much to his disappointment: “It is not easy
to get up any enthusiasm after it has been artificially
cooled by the wet blanket of rigorists.”

3 The Neoclassical Period

In 1886 Henri Poincaré published a definition of asymp-
totic power series, involving a large parameter z, that
was both a culmination of previous work by analysts
and the foundation of much of the rigorous mathemat-
ics that followed. A series of the form

∑∞
n=0 an/zn is

defined as asymptotic by Poincaré if the error resulting
from truncation at the term n = N vanishes as K/zN+1

(K > 0) as |z| → ∞ in a certain sector of the complex z-
plane. In retrospect, Poincaré’s definition seems a retro-
grade step because, although it encompasses conver-
gent as well as divergent series in one theory, it fails
to address the distinctive features of divergent series
that ultimately lead to the correct interpretation that
can also cure their divergence.

It was George Stokes, in research inspired by physics
nearly four decades before Poincaré, who laid the foun-
dations of modern asymptotics. He tackled the problem
of approximating an integral devised by George Airy to
describe waves near caustics, the most familiar exam-
ple being the rainbow. This is what we now call the Airy
function Ai(z), defined by the oscillatory integral

Ai(z) ≡ 1
2π

∫∞

−∞
exp

(
i
3
t3 + izt

)
dt,

the rainbow-crossing variable being Rez (figure 1) and
the light intensity being Ai2(z). Stokes derived the
asymptotic expansion representing the Airy function
for z > 0 and showed that it is factorially divergent.
His innovation was to truncate this series not at a fixed
order N but at its smallest term (optimal truncation),
corresponding to an order N(z) that increases with z.
By studying the remainder left after optimal trunca-
tion, he showed that it is possible to achieve exponen-
tial accuracy (figure 1), far beyond the power-law accu-
racy envisaged in Poincaré’s definition. We will call such
optimal truncation superasymptotics.

Superasymptotics enabled Stokes to understand a
much deeper phenomenon—one that is fundamental to
the understanding of divergent series. In Ai(z), z > 0
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Figure 1 (a) The rainbow-crossing variable, along any line
transverse to the rainbow curve. (b) The Airy function.
(c) The error from truncating asymptotic series for Ai(z) at
the term n− 1, for z = 5.24148; optimal truncation occurs
at the nearest integer to F = 4z3/2/3, i.e., at n = 16.

corresponds to the dark side of the rainbow, where the

function decays exponentially; physically, this repre-

sents an evanescent wave. On the bright side z < 0, the

function oscillates trigonometrically, that is, as the sum

of two complex exponential contributions, each repre-

senting a wave; the interference of these waves gener-

ates the “supernumerary rainbows” (whose observation

was one of the phenomena earlier adduced by Thomas

Young in support of his view that light is a wave phe-

nomenon). One of these complex exponentials is the

continuation across z = 0 of the evanescent wave on

the dark side. But where does the other originate?

Stokes’s great discovery was that this second expo-

nential appears during continuation of Ai(z) in the

complex plane from positive to negative z, across what

Stokes line Im z

Re z

θ
120º

180º 0º

Figure 2 The complex plane of argument z (whose real part
is the z of figure 1) of Ai(z), showing the Stokes line at
argz = 120◦.

is now called a “Stokes line,” where the dark-side expo-

nential reaches its maximum size. Alternatively stated,

the small (subdominant) exponential appears when

maximally hidden behind the large (dominant) one. For

Ai(z) the Stokes line is argz = 120◦ (figure 2).

Stokes thought that the least term in the asymp-

totic series, representing the large exponential, con-

stituted an irreducible vagueness in the description

of Ai(z) in his superasymptotic scheme. By quanti-

tative analysis of the size of this least term, Stokes

concluded that only at maximal dominance could this

obscure the small exponential, which could then appear

without inconsistency. As we will explain later, Stokes

was wrong to claim that superasymptotics—optimal

truncation—represents the best approximation that

can be achieved within asymptotics. But his identifi-

cation of the Stokes line as the place where the small

exponential is born (figure 3) was correct. Moreover, he

also appreciated that the concept was not restricted to

Ai(z) but applies to a wide variety of functions aris-

ing from integrals, solutions of differential equations

and recurrence equations, etc., for which the associated

asymptotic series are factorially divergent.

This Stokes phenomenon, connecting different expo-

nentials representing the same function, is central to

our current understanding of such divergent series,

and it is the feature that distinguishes them most

sharply from convergent ones. In view of this semi-

nal contribution, it is ironic that George (“G. H.”) Hardy

makes no mention of the Stokes phenomenon in his

textbook Divergent Series. Nor does he exempt Stokes

from his devastating assessment of nineteenth-century

English mathematics: “there [has been] no first-rate

subject, except music, in which England has occupied

so consistently humiliating a position. And what have

been the peculiar characteristics of such English math-

ematics?… For the most part, amateurism, ignorance,

incompetence, and triviality.”
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Figure 3 Approximations to Ai(zeiθ) in the Argand plane,
(Re(Ai), Im(Ai)) for z = 1.31 . . . , i.e., F = 4z3/2/3 = 2,
plotted parametrically from θ = 0◦ (black circle) to
θ = 180◦ (black square). The curves are exact Ai (solid
black line), lowest-order asymptotics (no correction terms;
dotted black line), optimal truncation without the Stokes
jump (dot-dashed black line), optimal truncation including
the Stokes jump (dashed black line), and optimal trunca-
tion including the smoothed Stokes jump (solid gray line).
For this value of F , the optimally truncated sum contains
only two terms; on the scale shown, the Stokes jump would
be invisible for larger F . Note that without the Stokes jump
(solid and dotted black lines), the asymptotics must deviate
from the exact function beyond the Stokes line at θ = 120◦.

4 The Modern Period

Late in the nineteenth century, Jean-Gaston Darboux
showed that for a wide class of functions the high
derivatives diverge factorially. This would become an
important ingredient in later research, for the follow-
ing reason. Asymptotic expansions (particularly those
encountered in physics and applied mathematics) are
often based on local approximations: the steepest-
descent method for approximating integrals is based
on local expansion about a saddle point; the phase-
integral method for solving differential equations (e.g.,
the Wentzel–Kramers–Brillouin (WKB) approximation
to Schrödinger’s equation in quantum mechanics) is
based on local expansions of the coefficients; and so on.
Therefore, successive orders of approximation involve
successive derivatives, and the high orders, respon-
sible for the divergence of the series, involve high
derivatives.

Another major late-nineteenth-century ingredient of
our modern understanding was Émile Borel’s develop-
ment of a powerful summation method in which the
factorials causing the high orders to diverge are tamed
by replacing them with their integral representations.

Often this enables the series to be summed “under

the integral sign.” Underlying the method is the formal

equality

∞∑
r=0

ar
zr

=
∞∑
r=0

arr !
zr r !

=
∫∞

0
dt e−t

∞∑
r=0

ar
r !

(
t
z

)r
.

Reading this from right to left is instructive. Inter-

changing summation and integration shows why the

series on the left diverges if the ar increase factori-

ally (as in the cases we are considering): the integral

is over a semi-infinite range, yet the sum in the inte-

grand converges only for |t/z| < 1. Borel summation

effectively repairs an analytical transgression that may

have caused the divergence of the series. The power

of Borel summation is that, as was fully appreciated

only later, it can be analytically continued across Stokes

lines, where some other summation techniques (e.g.,

Padé approximants) fail.

Now we come to the central development in mod-

ern asymptotics. In a seminal and visionary advance,

motivated initially by mathematical difficulties in eval-

uating some integrals occurring in solid-state physics

and developed in a series of papers culminating in a

book published in 1973, Robert Dingle synthesized ear-

lier ideas into a comprehensive theory of factorially

divergent asymptotic series.

Dingle’s starting point was Euler’s insight that diver-

gent series are obtained by a sequence of precisely

specified mathematical operations on the integral or

differential equation defining the function being ap-

proximated, so the resulting series must represent the

function exactly, albeit in coded form, which it is the

task of asymptotics to decode. Next was the realiza-

tion that Darboux’s discovery that high derivatives

diverge factorially implies that the high orders of a

wide class of asymptotic series also diverge factorially.

This in turn means that the terms beyond Stokes’s opti-

mal truncation—representing the tails of such series

beyond superasymptotics—can all be Borel-summed in

the same way.

The next insight was Dingle’s most original contribu-

tion. Consider a function represented by several differ-

ent formal asymptotic series (e.g., those correspond-

ing to the two exponentials in Ai(z)), each represent-

ing the function differently in sectors of the complex

plane separated by Stokes lines. Since each series is

a formally complete representation of the function,

each must contain, coded into its high orders, informa-

tion about all the other series. Darboux’s factorials are
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therefore simply the first terms of asymptotic expan-

sions of each of the late terms of the original series.

Dingle appreciated that the natural variables implied by

Darboux’s theory are the differences between the var-

ious exponents; these are usually proportional to the

large asymptotic parameter. In the simplest case, where

there are only two exponentials, there is one such vari-

able, which Dingle called the singulant, denoted by F .

For the Airy function Ai(z), F = 4z3/2/3.

We display Dingle’s expression for the high orders for

an integral with two saddle points a and b, correspond-

ing to exponentials e−Fa and e−Fb with Fab = Fb−Fa and

series with terms T(a)r and T(b)r ; for r � 1, the terms

of the a series are related to those of the b series by

T(a)r = K (r − 1)!
Frab

(
T(b)0 + Fab

r − 1
T(b)1

+ F2
ab

(r − 1)(r − 2)
T (b)2 + · · ·

)
,

in which K is a constant. This shows that, although the

early terms T(a)0 , T (a)1 , T (a)2 , . . . of an asymptotic series

can rapidly get extremely complicated, the high orders

display a miraculous functional simplicity.

With Borel’s as the chosen summation method, Din-

gle’s late-terms formula enabled the divergent tails of

series to be summed in terms of certain terminant inte-

grals and then reexpanded to generate new asymp-

totic series that were exponentially small compared

with the starting series. He envisaged that “these ter-

minant expansions can themselves be closed with new

terminants; and so on, stage after stage.” Such resum-

mations, beyond superasymptotics, were later called

hyperasymptotics.

Dingle therefore envisaged a universal technique

for repeated resummation of factorially divergent se-

ries, to obtain successively more accurate exponential

improvements far beyond that achievable by Stokes’s

optimal truncation of the original series. The meaning

of universality is that although the early terms—the

ones that get successively smaller—can be very differ-

ent for different functions, the summation method for

the tails is always the same, involving terminant inte-

grals that are the same for a wide variety of functions.

The method automatically incorporates the Stokes phe-

nomenon. Although Dingle clearly envisaged the hyper-

asymptotic resummation scheme as described above,

he applied it only to the first stage; this was sufficient to

illustrate the high improvement in numerical accuracy

compared with optimal truncation.

0 60 120 180
0

0.5

1.0

M
u

lt
ip

li
er

F = 3

F = 10

ºθ

Stokes
line

Figure 4 The Stokes multiplier (solid lines) and er-
ror-function smoothing (dashed lines) for Ai(zeiθ), for
z = 1.717 . . . (i.e., F = 4z3/2/3 = 3) and z = 3.831 . . . (i.e.,
F = 4z3/2/3 = 10).

Like Stokes before him, Dingle presented his new

ideas not in the “lemma, theorem, proof” style famil-

iar to mathematicians but in the discursive manner

of a theoretical physicist, perhaps explaining why it

has taken several decades for the originality of his

approach to be widely appreciated and accepted. Mean-

while, his explicit relation, connecting the early and late

terms of different asymptotic series representing the

same function, was rediscovered independently by sev-

eral people. In particular, Jean Écalle coined the term

resurgence for the phenomenon, and in a sophisticated

and comprehensive framework applied it to a very wide

class of functions.

5 The Postmodern Period

One of the first steps beyond superasymptotics into

hyperasymptotics was an application of Dingle’s ideas

to give a detailed description of the Stokes phe-

nomenon. In 1988 one of us (Michael Berry) resummed

the divergent tail of the dominant series of the expan-

sion, near a Stokes line, of a wide class of functions,

including Ai(z). The analysis demonstrated that the

subdominant exponential did not change suddenly, as

had been thought; rather, it changed smoothly and,

moreover, in a universal manner. In terms of Dingle’s

singulant F , now defined as the difference between the

exponents of the dominant and subdominant exponen-

tials, the Stokes line corresponds to the positive real

axis in the complex F -plane; asymptotics corresponds

to ReF � 1; and the Stokes phenomenon corresponds

to crossing the Stokes line, that is ImF passing through

zero.
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The result of the resummation is that the change

in the coefficient of the small exponential—the Stokes

multiplier—is universal for all factorially divergent

series and it is proportional to

1
2

(
1 + Erf

(
ImF√
2 ReF

))
.

In the limit ReF → ∞ this becomes the unit step. For

ReF large but finite, the formula describes the smooth

change in the multiplier (figure 4) and makes precise

the description given by Stokes in 1902 after thinking

about divergent series for more than half a century:

The inferior term enters as it were into a mist, is hid-
den for a little from view, and comes out with its coef-
ficient changed. The range during which the inferior
term remains in a mist decreases indefinitely as the
[large parameter] increases indefinitely.

The smoothing shows that the “range” referred to by

Stokes (that is, the effective thickness of the Stokes line)

is of order
√

ReF .

Implementation of the full hyperasymptotic repeated

resummation scheme envisaged by Dingle has been car-

ried out in several ways. We (the present authors) inves-

tigated one-dimensional integrals with several saddle

points, each associated with an exponential and its

corresponding asymptotic series. With each “hyper-

series” truncated at its least term, this incorporated

all subdominant exponentials and all associated Stokes

phenomena; and the accuracy obtained far exceeded

superasymptotics (figure 5) but was nevertheless lim-

ited.

It was clear from the start that in many cases unlim-

ited accuracy could, in principle, be achieved with

hyperasymptotics by truncating the hyperseries not at

the smallest term but beyond it (although this intro-

duces numerical stability issues associated with the

cancelation of larger terms). This version of the hyper-

asymptotic program was carried out by Adri Olde

Daalhuis, who reworked the whole theory, introducing

mathematical rigor and effective algorithms for com-

puting Dingle’s terminant integrals and their multidi-

mensional generalizations, and applied the theory to

differential equations with arbitrary finite numbers of

transition points.

There has been an explosion of further develop-

ments. Écalle’s rigorous formal theory of resurgence

has been developed in several ways, based on the Borel

(effectively inverse-Laplace) transform. This converts

the factorially divergent series into a convergent one,
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Figure 5 The magnitude of terms in the first four stages
in the hyperasymptotic approximation to Ai(4.326 . . . ) =
4.496 . . .× 10−4, i.e., F = 4z3/2/3 = 12, normalized so that
the lowest approximation is unity. For the lowest approx-
imation, i.e., no correction terms, the fractional error is
ε ≈ 0.01; after stage 0 of hyperasymptotics, i.e., optimal
truncation of the series (superasymptotics), ε ≈ 3.6×10−7;
after stage 1, ε ≈ 1.3×10−11; after stage 2, ε ≈ 4.4×10−14;
after stage 3, ε ≈ 6.1 × 10−15. At each stage, the error is of
the same order as the first neglected term.

with the radius of convergence determined by singu-
larities on a Riemann sheet. These singularities are
responsible for the divergence of the original series,
and for integrals discussed above, they correspond to
the adjacent saddle points. In the Borel plane, com-
plex and microlocal analysis allows the resurgence link-
ages between asymptotic contributions to be uncov-
ered and exact remainder terms to be established.
Notable results include exponentially accurate rep-
resentations of quantum eigenvalues (R. Balian and
C. Bloch, A. Voros, F. Pham, E. Delabaere); this inspired
the work of the current authors on quantum eigen-
value counting functions, linking the divergence of the
series expansion of smoothed spectral functions to
oscillatory corrections involving the classical periodic
orbits.

T. Kawai and Y. Takei have extended “formally exact,”
exponentially accurate WKB analysis to several areas,
most notably to Painlevé equations. They have also
developed a theory of “virtual turning points” and “new
Stokes curves.” In the familiar WKB situation, with only
two wavelike asymptotic contributions, several Stokes
lines emerge from classical turning points, and (if they
are nondegenerate) they never cross. With three or
more asymptotic contributions, Stokes lines can cross
in the complex plane at points where the WKB solu-
tions are not singular. Local analysis shows that an
extra, active, “new Stokes line” sprouts from one side
only of this regular point; this can be shown to emerge
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from a distant virtual turning point, where, unexpect-

edly, the WKB solutions are not singular. This discovery

has been explained by C. J. Howls, P. Langman, and A. B.

Olde Daalhuis in terms of the Riemann sheet structure

of the Borel plane and linked hyperasymptotic expan-

sions, and independently by S. J. Chapman and D. B.

Mortimer in terms of matched asymptotics.

Groups led by S. J. Chapman and J. R. King have devel-

oped and applied the work of M. Kruskal and H. Segur to

a variety of nonlinear and partial differential equation

problems. This involves a local matched-asymptotic

analysis near the distant Borel singularities that gen-

erate the factorially divergent terms in the expansion

to identify the form of late terms, thereby allowing

for an optimal truncation and exponentially accurate

approach. Applications include selection problems in

viscous fluids, gravity–capillary solitary waves, oscil-

lating shock solutions in Kuramoto–Sivashinsky equa-

tions, elastic buckling, nonlinear instabilities in pat-

tern formation, ship wave modeling, and the seeking

of reflectionless hull profiles. Using a similar approach,

O. Costin and S. Tanveer have identified and quanti-

fied the effect of “daughter singularities” that are not

present in the initial data of partial differential equa-

tion problems but that are generated at infinitesimally

short times. In so doing, they have also found a formally

exact Borel representation for small-time solutions of

three-dimensional Navier–Stokes equations, offering a

promising tool to explore the global existence problem.

Additional applications include quantum transitions,

quantum spectra, the Riemann zeta function high on

the critical line, nonperturbative quantum field theory

and string theory, and even the philosophy of rep-

resenting physical theories describing phenomena at

different scales by singular relations.
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V.9 Financial Mathematics
René Carmona and Ronnie Sircar

The complexity, unpredictability, and evolving nature
of financial markets continue to provide an enor-
mous challenge to mathematicians, engineers, and
economists in identifying, analyzing, and quantifying
the issues and risks they pose. This has led to problems
in stochastic analysis, simulation, differential equa-
tions, statistics and big data, and stochastic control
and optimization (including dynamic game theory), all
of which are reflected in the core of financial mathe-
matics. Problems range from modeling a single risky
stock and the risks of derivative contracts written on
it, to understanding how intricate interactions between
financial institutions may bring down the whole finan-
cial edifice and in turn the global economy: the prob-
lem of systemic risk. At the same time, hitherto spe-
cialized markets, such as those in commodities (met-
als, agriculturals, and energy), have become more finan-
cialized, which has led to our need to understand how
financial reduced-form models combine with supply
and demand mechanisms.

In its early days, financial mathematics used to rest
on two pillars that could be characterized roughly as
derivatives pricing and portfolio selection [V.10].
In this article we outline its broadening into newer
topics including, among others, energy and commodi-
ties markets, systemic risk, dynamic game theory and
equilibrium, and understanding the impact of algorith-
mic and high-frequency trading. We also touch on the
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2008 financial crisis (and others) and the extent to
which such increasingly frequent tremors call for more
mathematics, not less, in understanding and regulating
financial markets and products.

1 The Pricing and Development of
Derivative Markets

Central to the development of quantitative finance, as
distinguished from classical economics, was the mod-
eling of uncertainty about future price fluctuations as
being phenomenological, rather than something that
could be accurately captured by models of fundamen-
tals, or demand and supply. The introduction of ran-
domness into models of (initially) stock prices took
off in the 1950s and 1960s, particularly in the work
of the economist Paul Samuelson at MIT, who adopted
the continuous-time Brownian motion based tools of
stochastic calculus that had been developed by physi-
cists and mathematicians such as Einstein in 1905;
Wiener in the 1920s; Lévy, Ornstein, and Uhlenbeck in
the 1930s; and Chandrasekhar in the 1940s. Samuel-
son, however, came to this mathematical machinery
not through physics but via a little-known doctoral dis-
sertation by Bachelier from 1900, which had formu-
lated Brownian motion, for the purpose of modeling
the Paris stock market, five years before Einstein’s land-
mark paper in physics (“On the motion of small parti-
cles suspended in a stationary liquid, as required by the
molecular kinetic theory of heat”). Combined with the
stochastic calculus developed by Itô in the early 1940s,
these kinds of models became, and still remain, central
to the analysis of a wide range of financial markets.

The Black–Scholes paradigm for equity derivatives
was originally introduced in the context of Samuelson’s
model, in which stocks evolve according to geometric
Brownian motions. If we consider a single stock for the
sake of exposition, one assumes that the value at time
t of one share is St , and St evolves according to the
stochastic differential equation

dSt = μSt dt + σSt dWt, (1)

with μ representing the expected growth rate, and σ >
0 the volatility. Here, (Wt)t�0 is a standard Brownian
motion. A contingent claim (or derivative security) on
this stock is defined by its payoff at a later date T , called
its maturity, and modeled as a random variable ξ whose
uncertain value will be revealed at time T . The typical
example is given by a European call option with matu-
rity T and strikeK, in which case the payoff to the buyer
of the option would be ξ = (ST −K)+, where we use the

notation x+ = max{x,0} for the positive part of the
real number x.

A desirable property of a model is to exclude arbi-
trage opportunities, namely, the possibility of making
money with no risk (often called a “free lunch”). If this
property holds, then the value of owning the claim
should be equal to the value of an investment in the
stock and a safe bank account that could be managed
by dynamic rebalancing into the same value as ξ at
maturity T . Such a replicating portfolio would repre-
sent a perfect hedge, mitigating the uncertainty in the
outcome of the option payoff ξ. The remarkable dis-
covery in the early 1970s of Fischer Black and Myron
Scholes, and independently by Robert Merton, was that
it was possible to identify such a perfect replicating
portfolio and compute the initial investment needed to
set it up by solving a linear partial differential equa-
tion (PDE) of parabolic type. They also provided formu-
las for the no-arbitrage prices of European call and put
options that are now known as Black–Scholes formulas.
Later, in two papers that both appeared in 1979, the
result was given its modern formulation, first by Cox,
Ross, and Rubinstein in a simpler discrete model and
then by Harrison and Kreps in more general settings.
Accordingly, if there are no arbitrage opportunities, the
prices of all traded securities (stocks, futures, options)
are given by computing the expectation of the present
value (i.e., the discounted value) of their future payoffs
but with respect to a “risk-neutral” probability measure
under which the growth rate μ in (1) is replaced by the
riskless interest rate of the bank account.

While pricing by expectation is one of the important
consequences of the original works of Black, Scholes,
and Merton, it would be misleading and unfair to
reduce their contribution to this aspect, even if it is
at the origin of a wave (in retrospect, it was clearly a
tsunami) of interest in derivatives and the explosion
of new and vibrant markets. Even though the origi-
nal rationale was based on a hedging argument aimed
at mitigating the uncertainties in the future outcomes
of the value of the stock underlying the option, pric-
ing, and especially pricing by expectation (whether the
expectations were computed by Monte Carlo simula-
tions or by PDEs provided by the Feynman–Kac for-
mula), became the main motivation for many research
programs.

1.1 Stochastic Volatility Models

It has long been recognized (even by Black and Scholes,
and many others, in the 1970s) that the lognormal
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distribution inherent in the geometric Brownian motion
model (1) is not reflected by historical stock price data
and that volatility is not constant over time. Market par-
ticipants were pricing options, even on a given day t, as
if the volatility parameter σ depended upon the strike
K and the time to maturity T − t of the option.

To this day, two extensions of the model (1) have
been used with great success to account for these styl-
ized facts observed in empirical market data. They
both involve replacing the volatility parameter by a
stochastic process, so they can be viewed as stochas-
tic volatility models. The first extension is to replace
(1) by

dSt = μSt dt + σtSt dWt, (2)

where the volatility parameter σ is replaced by the
value at time t of a stochastic process (σt)t�0 whose
time evolution could be (for example) of the form

dσt = λ(σ̄ − σt)dt + γ√σt dW̃t (3)

for some constants γ (known as volvol), σ̄ (the mean
reversion level), and λ (the rate of mean reversion) and
where (W̃t)t�0 is another Brownian motion that is typ-
ically negatively correlated with (Wt)t�0 to capture the
fact that, when volatility rises, prices usually decline.
Stochastic volatility models of this type have been (and
are still) very popular.

Having two sources of random shocks (whether or
not they are independent) creates some headaches for
the quants, as the no-arbitrage prices are now plenti-
ful, and in the face of the nonuniqueness of derivative
prices, tricky calibration issues have to be resolved.
So rather than dealing with the incompleteness of
these stochastic volatility models, a more minimalist
approach was proposed to capture the empirical prop-
erties of the option prices while at the same time
keeping only one single source of shocks and, hence,
retaining the completeness of the model. These mod-
els go under the name of local volatility models. They
are based on dynamics given by Markovian stochastic
differential equations of the form

dSt = μSt dt + σ(t, St)dWt,

where (t, s) ↪→ σ(t, s) is a deterministic function, which
can be computed from option prices using what is
known as Dupire’s formula in lieu of the geometric
Brownian motion equation (1). The other stochastic
volatility models are also the subject of active research.

According to the Black–Scholes theory, prices of con-
tingent claims appear as risk-adjusted expectations of
the discounted cash flows triggered by the settlement

of the claims. In the case of contingent claims with
European exercises, the random variable giving the pay-
off is often given by a function of an underlying Markov
process at the time of maturity of the claim. Using
the Feynman–Kac formula, these types of expectations
appear as solutions of PDEs of parabolic type, show-
ing that prices can be computed by solving PDEs. The
classical machinery of the numerical analysis of linear
PDEs is the cornerstone of most of the pricers of contin-
gent claims in low dimensions. However, the increasing
size of the baskets of instruments underlying deriva-
tive contracts and the complexity of the exercise con-
tingencies have limited the efficacy of the PDE solvers
because of the high dimensionality. This is one of the
main reasons for the increasing popularity of Monte
Carlo methods. Combined with regression ideas, they
provide robust algorithms capable of pricing options
(especially options with American exercises) on large
portfolios while avoiding the curse of dimensional-

ity [I.3 §2] that plagues traditional PDE methods. More-
over, the ease with which one can often generate Monte
Carlo scenarios for the sole purpose of backtesting has
added to the popularity of these random simulation
methods.

1.2 Bond Pricing and Fixed-Income Markets

The early and mid-1990s saw growth in the bond
markets (a sudden increase in the traded volumes in
Treasury, municipal, sovereign, corporate, and other
bonds), and the fixed-income desks of many investment
banks and other financial institutions became major
sources of profit. The academic financial mathematics
community took notice, and a burst of research into
mathematical models for fixed-income instruments fol-
lowed.

Parametric and nonparametric models for the term
structure of interest rates (yield curves describing the
evolution of forward interest rates as a function of the
maturity tenors of the bonds) were successfully devel-
oped from classical data-analysis procedures. While
spline smoothing was often used, principal compo-
nent analysis of the yield data clearly points to a
small number of easily identified factors, and least-
squares regressions can be used to identify the term
structure in parameterized families of curves success-
fully. Despite the fact that infinite-dimensional func-
tional analysis and stochastic PDEs were brought to
bear in order to describe the data, model calibration
ended up being easier than in the case of the equity
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markets, where the nonlinear correspondence between
option prices and the implied volatility surface cre-
ates challenges that, to this day, still remain mostly
unsolved.

The development of fixed-income markets was very
rapid, and the complexity of interest rate deriva-
tives (swaps, swaptions, floortions, captions, etc.) moti-
vated the scaling-up of mathematical models from
the mere analysis of one-dimensional stochastic dif-
ferential equations to the study of infinite-dimen-
sional stochastic systems and stochastic PDEs. Current
research in financial mathematics is geared toward the
inclusion of jumps in these models and the understand-
ing of the impact of these jumps on calibration, pricing,
and hedging procedures.

1.3 Default Models and Credit Derivative Markets

Buying a bond is just making a loan; issuing a bond is
nothing but borrowing money. While the debt of the
U.S. government is still regarded by most as default
free, sovereign bonds and most corporate bonds carry a
significant risk associated with the nonnegligible prob-
ability that the issuer may not be able to make good
on his debt and may default by the time the principal
of the loan is to be returned. Unsurprisingly, models of
default were first successfully included in the pricing
of corporate bonds.

Structural models of default based on the fundamen-
tals of a firm and the competing roles of its assets
and liabilities were first introduced by Merton in 1974.
Their popularity was due to a rationale that was solidly
grounded on fundamental financial principles and data
reporting. However, murky data and a lack of trans-
parency have plagued the use of these models for the
purpose of pricing corporate bonds and their deriva-
tives.

On the other hand, reduced-form models based on
stochastic models for the intensity of arrival of the
time of default have gained in popularity because of
the versatility of the intensity-based models and the
simplicity and robustness of the calibration from credit
default swap (CDS) data. Indeed, one of the many rea-
sons for the success of reduced-form models is readily
available data. Quotes of the spreads on CDSs for most
corporations are easy to get, and the fact that they are
plentiful contrasts with the scarcity of corporate bond
quotes, which are few and far between. In fact, because
the CDS market exploded in the early to mid-2000s,
gauging the creditworthiness of a company is easily

read off the CDS spreads instead of the bond spread
(the difference between the interest paid on a riskless
government bond and a corporate bond).

A CDS is a form of insurance against the default of
a corporation, say X. Such a CDS contract involves two
counterparties, say Y and Z, the latter receiving a reg-
ular premium payment from Y as long as X does not
default and paying a lump sum to Y in the case of
default of X before the maturity of the CDS contract.
The existence of a CDS contract between Y and Z there-
fore seems natural if the financial health of one of these
two counterparties depends upon the survival of X and
the other counterparty is willing to take the opposite
side of the transaction. However, neither of the coun-
terparties Y or Z who are gambling on the possibility
of a serious credit event concerning X (both having dif-
ferent views on the likelihood of default) need to have
any financial interest, direct or indirect, in X. In other
words, two agents can enter into a deal involving a third
entity just as a pure bet on the creditworthiness of this
third entity. While originally designed as a credit insur-
ance, CDSs ended up increasing the overall risk in the
system through the multiplication of private bets. As
they spread like uncontrolled brush fires, they created
an intricate network of complex dependencies between
institutions, making it practically impossible to trace
the sources of the risks.

1.4 Securitization

Investment is a risky business, and the risks of large
portfolios of defaultable instruments (corporate bonds,
loans, mortgages, CDSs) were clearly a major source
of fear, at least until the spectacular growth of secu-
ritization in recent years. A financial institution bun-
dles together a large number of such defaultable instru-
ments, slices the portfolio according to the different lev-
els of default risk, forming a small number of tranches
(say five), keeps the riskiest one (called the “equity
tranche”), and sells the remaining tranches (known as
mezzanine or senior tranches) to trusting investors
as an investment far safer than the original portfolio
itself. These instruments are called collateralized debt
obligations (CDOs). Pooling risks and tranching them
as reinsurance contracts to pass on to investors with
differing risk profiles is natural, and it has been the
basis of insurance markets for dozens of years at least.
But, unlike insurance products, CDOs were not regu-
lated. They enjoyed tremendous success for most of
the 2000s; credit desks multiplied, and academics and
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mathematicians tried to understand how practitioners
were pricing them. Needless to say, no effort was made
at hedging the risk exposure as not only was it not
understood but there was no reason to worry since it
seemed that we could only make money in this game!
Attempts at understanding their risk structure intensi-
fied after the serious warnings of 2004 and 2005, but
they did not come early enough to seriously impact
the onset of the financial crisis, which was most cer-
tainly triggered, or at least exacerbated by, the hous-
ing freeze and the ensuing collapse of the huge market
in mortgage-backed securities (MBSs), which are com-
plex CDOs on pools of mortgages. Parts II and III of
the report of the Financial Crisis Inquiry Commission
are an enlightening read for the connections between
CDOs and the credit crisis.

The overuse of credit derivatives, particularly in the
mortgage arena, contributed massively to the finan-
cial crisis. While the May 2005 ripple in the corpo-
rate CDO market served as an early warning of worse
things to come, its lessons were largely ignored as the
risks abated. The attraction of unfunded returns on
default protection proved too great, and the culture
of unbounded bonus-based compensation for traders
led to excessive risk taking that jeopardized numerous
long-standing and once fiscally conservative financial
institutions.

In the midst of the crisis, some questioned the role
that quantitative models played in motivating or jus-
tifying these trades. A Wall Street Journal article from
2005 highlights the practice of playing CDO tranches
off against each other to form a dubious hedge. In some
sense this was “quantified” using the Gaussian copula
(and similar) models (particularly implied correlations
and their successor, so-called base correlations). These
models were developed in-house by quants hired by
and answering to traders. The raison d’etre for these
models was twofold: simplicity and speed. Unfortu-
nately, the short cut used to achieve these goals was
rather drastic, capturing a complex dependence struc-
ture among hundreds of correlated risks using a sin-
gle correlation parameter. Many (surviving) banks have
since restructured their quant/modeling teams so that
they now report directly to management instead of to
traders.

Numerous media outlets and commentators have
blamed the crisis on financial models, and called for less
quantification of risk. This spirit is distilled in Warren
Buffet’s “beware of geeks bearing formulas” comment.
Indeed, the caveat about the use of models to justify a

posteriori “foolproof” hedges is warranted. But this cri-
sis, like past crises, only highlights the need for more
mathematics and for quantitatively trained people at
the highest level, not least at ratings and regulatory
agencies.

The real damage was done in the highly unquantified
market for MBSs. Here the notions of independence and
diversification through tranching were taken to ludi-
crous extremes. The MBS desks at major banks were
relatively free of quants and quantitative analysis com-
pared with the corporate CDO desks, even though the
MBS books were many times larger. The excuse given
was that these products were AAA and therefore, like
U.S. government bonds, did not need any risk analy-
sis. As it turned out, this was a mass delusion willingly
played into by banks, hedge funds, and the like. The
quantitative analysis performed by the ratings agen-
cies tested outcomes on only a handful of scenarios, in
which, typically, the worst-case scenario was that U.S.
house prices would appreciate at the rate of 0.0%. The
rest is history.

2 Portfolio Selection and Investment Theory

A second central foundational pillar underlying mod-
ern financial mathematics research is the problem of
optimal investment in uncertain market conditions.
Typically, optimality is with respect to the expected
utility of portfolio value, where utility is measured by
a concave increasing utility function, as introduced by
von Neumann and Morgenstern in the 1940s. A major
breakthrough in applying continuous-time stochastic
models to this problem came with the work of Robert
Merton that was published in 1969 and 1971. In these
works Merton derived optimal strategies when stock
prices have constant expected returns and volatilities
and when the utility function has a specific conve-
nient form. This remains among the few examples of
explicit solutions to fully nonlinear Hamilton–Jacobi–
Bellman (HJB) PDEs motivated by stochastic control
applications.

To explain the basic analysis, suppose an investor has
a choice between investing his capital in a single risky
stock (or a market index such as the S&P 500) or in
a riskless bank account. The stock price S is uncertain
and is modeled as a geometric Brownian motion (1). The
choice (or control) for the investor is therefore over πt ,
the dollar amount to hold in the stock at time t, with his
remaining wealth deposited in the bank, earning inter-
est at the constant rate r . If Xt denotes the portfolio
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value at time t, and if we assume that the portfolio is
self-financing in the sense that no other monies flow in
or out, then

dXt = πt dSt
St

+ r(Xt −πt)dt

is the equation governing his portfolio time evolution.
We will take r = 0 for simplicity of exposition, and so,
from (1),

dXt = μπt dt + σπt dWt.

Increasing the stock holding π increases the growth
rate of X while also increasing its volatility. The
investor is assumed to have a smooth terminal utility
function U(x) on R+ that satisfies the “usual condi-
tions” (the Inada conditions and asymptotic elasticity)

U ′(0+) = ∞, U ′(∞) = 0, lim
x→∞x

U ′(x)
U(x)

< 1,

and he wants to maximize E{U(XT )}, his expected
utility of wealth at a fixed time horizon T . To apply
dynamic programming principles, it is standard to
define the value function as

V(t, x) = sup
π

E{U(XT ) | Xt = x},

where the supremum is taken over admissible strate-
gies that satisfy E{

∫ T
0 π

2
t dt} < ∞. Then V(t, x) is the

solution of the HJB PDE problem

Vt − 1
2λ

2 V2
x

Vxx
= 0, V(T ,x) = U(x),

where λ := μ/σ is known as the Sharpe ratio. Given the
value function V , the optimal stock holding is given by

π∗
t = − μ

σ2

Vx
Vxx

(t,Xt).

Remarkably, Merton discovered an explicit solution
when the utility is a power function:

U(x) = x1−γ

1 − γ , γ > 0, γ ≠ 1.

Here, γ measures the concavity of the utility function
and is known as the constant of relative risk aversion.
With this choice,

V(t, x) = x1−γ

1 − γ exp
(

1
2λ

2
(

1 − γ
γ

)
(T − t)

)
,

and, more importantly,

π∗
t = μ

σ2γ
Xt.

That is, the optimal strategy is to hold the fixed frac-
tion μ/(σ2γ) of current wealth in the stock and the
rest in the bank. As the stock price rises, this strategy
says to sell some stock so that the fraction of the port-
folio comprised of the risky asset remains the same.

This fixed-mix result generalizes to multiple securities
as long as they are also assumed to be (correlated)
geometric Brownian motions.

Since Merton’s work, the basic problem has been
generalized in many directions. In particular, devel-
opments in duality theory (or the martingale method)
led to a revolution in thinking as to how these prob-
lems should be studied in abstract settings, culminat-
ing in very general results in the context of semimartin-
gale models of incomplete markets. One of the most
challenging problems was to extend the theory in the
presence of transaction costs, as this required the fine
analysis of singular stochastic control problems.

Optimal investment still generates challenging re-
search problems as models evolve to try to incor-
porate realistic features such as uncertain volatility
or random jumps in prices using modern technology
such as forward–backward stochastic differential equa-
tions, asymptotic approximations for fully nonlinear
HJB PDEs, and related numerical methods.

Early portfolio optimization was achieved through
the well-known Markowitz linear quadratic optimiza-
tion problems based on the analysis of the mean vec-
tor and the covariance matrix. The use of increas-
ingly large portfolios and the introduction of exchange-
traded fund (ETF) tracking indexes (S&P 500, Russell
2000, etc.) created the need for more efficient estima-
tion methods for large covariance matrices, typically
using sparsity and robustness arguments. This prob-
lem has been the major impetus behind a significant
proportion of the big data research in statistics.

3 Growing Research Areas

3.1 Systemic Risk

The mathematical theory of risk measures, like value at
risk, expected shortfall, or maximum drawdown, was
introduced to help policy makers and portfolio man-
agers quantify risk and define unambiguously a form
of capital requirement to preserve solvency. It enjoyed
immediate success among the mathematicians work-
ing on financial applications. However, their dynami-
cal analogues did not enjoy the same popular support,
mostly because of their complexity and the challenges
in attempting to aggregate firm-level risks into system
behavior.

Research on systemic risk began in earnest after the
September 11 attacks in 2001. The financial crisis of
2008 subsequently brought counterparty risk and the



646 V. Modeling

propagation of defaults to the forefront. The analy-
sis of large complex systems in which all the entities
behave rationally at the individual level but which pro-
duce calamities at the aggregate level is a very exciting
challenge for mathematicians, who are now developing
models for what some economists have called rational
irrationality.

3.2 Energy and the New Commodity Markets

As for the models of defaults used in fixed-income
markets, and subsequently in credit markets, mod-
els for commodities can, roughly speaking, be divided
into two distinct categories: reduced-form models and
structural models.

Commodities are physical in nature and are over-
whelmingly traded on a forward basis, namely, for
future delivery. So, as with fixed-income markets, a
snapshot of the state of a market is best provided by
a term structure of forwards of varying maturities. But
unlike the forward rates, forward prices are actually
prices of traded commodities, and as a consequence
they should be modeled as martingales (pure fluctua-
tion processes with no trend or bias). Despite this fun-
damental difference, the first models for commodities
were borrowed (at least in spirit) from the models devel-
oped by sophisticated researchers in fixed-income mar-
kets. However, the shortcomings of these ad hoc trans-
plants are now recognized, and fundamental research
in this area now focuses on structural models that are
more in line with equilibrium arguments and the eco-
nomic rationale of supply and demand. A case in point
is the pricing of electricity contracts: figure 1 shows
the time evolution of electric power spot prices in a
recently deregulated market. Clearly, none of the math-
ematical models used for equities, currencies, or inter-
est rates can be calibrated to be consistent with these
data, and structural models involving the factors that
drive demand (like weather) and supply (like means
of production) need to be used to give a reasonable
account of the spikes.

Electricity production is one of the major sources of
greenhouse gas emissions, and various forms of market
mechanisms have been touted to control these harm-
ful externalities. Most notable is the implementation of
the Kyoto protocol in the form of mandatory cap-and-
trade for CO2 allowance certificates by the European
Union. While policy issues are still muddying the final
form that the control of CO2 emissions will take in the
United States, cap-and-trade schemes already exist in
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Figure 1 Historical daily prices of electricity from
the PJM market in the northeastern United States.

the northeast of the country (the Regional Greenhouse
Gas Initiative) and, more recently, in California, giving a
new impetus to theoretical research into these markets.

The proliferation of commodity indexes and the dra-
matic increase in investors gaining commodity expo-
sure through ETFs that track indexes have changed the
landscape of the commodity markets and increased
the correlations between commodities and equity, and
the correlations among commodities included in the
same indexes. Figure 2 illustrates this striking change
in correlations. These changes are difficult to explain
if one relies solely on the fundamentals of these mar-
kets. They seem to be part of a phenomenon, known
as financialization of the commodity markets, that has
been taking place over the last ten years and that is now
being investigated by a growing number of economists,
econometricians, and mathematicians. Also of great
interest to theoretical research is the fact that financial
institutions, including hedge funds, endowment funds,
and pension funds, have realized that the road to suc-
cess in the commodity markets was more often than
not to rely on managing portfolios that included both
physical and financial assets. Once more, this combi-
nation raises new issues that are not addressed by tra-
ditional financial mathematics or financial engineering.
Finally, the physical nature of energy production led to
the introduction of new financial markets in areas such
as weather, freight, and emissions, the design, regula-
tion, and investigation of which pose new mathematical
challenges.

3.3 High-Frequency Trading

In the last few years, the notion of a single publicly
known price at which transactions can happen in arbi-
trary sizes has been challenged. The existence and
the importance of liquidity frictions and price impact
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Figure 2 Instantaneous dependence (β) of the Goldman
Sachs Total Return Commodity Index on S&P 500 returns.

due to the size and frequency of trades are recog-
nized as the source of many of the financial indus-
try’s most spectacular failures (Long-Term Capital Man-
agement, Amaranth, Lehman Brothers, etc.), prompting
new research into applications of stochastic optimiza-
tion to optimal execution and predatory trading, for
example.

Another important driver in the change of direction
in quantitative finance research is the growing role of
algorithmic and high-frequency trading. Indeed, it is
commonly accepted that between 60% and 70% of trad-
ing is electronic nowadays. Market makers and brokers
are now mostly electronic, and while they are claimed to
be liquidity providers (the jury is still out on that one),
occurrences like the flash crash of May 6, 2010, and
computer glitches like those which took down Knight
Capital, have raised serious concerns. Research into
the development of limit order book models and their
impact on trading is clearly one of the emerging topics
in quantitative finance research.

3.4 Back to Basics: Stochastic Equilibrium and

Stochastic Games

More recently, these tools have been adapted to prob-
lems involving multiple “agents” optimizing for them-
selves but interacting with each other through a mar-
ket. These problems involve analyzing and computing
an equilibrium, which may come from a market clearing
condition, for example, or in enforcing the strong com-
petition of a Nash equilibrium. There has been much
recent progress in stochastic differential games. We
mention, for example, recent works of Lasry and Lions,
who consider mean-field games in which there are a
large number of players and competition is felt only
through an average of one’s competitors, with each
player’s impact on the average being negligible.

Problems arising from price impact, stability, liq-
uidity, and the formation of bubbles remain of vital
interest and have produced very interesting mathe-
matics along the way. Not long after the 1987 crash
there was much concern about the extent to which
the large drop was caused or exacerbated by program
traders whose computers were automatically hedging
options positions, causing them to sell mechanically
when prices went down, pushing them down further.
In a continuous-time framework, this type of feedback
model of price impact was initiated in the late 1990s,
and since then there have been many influential stud-
ies of situations in which an investor is not simply a
“price taker” and where large stock positions are sold
off in pieces to avoid large price-depressing trades: the
epitome of an optimal execution algorithm.

Further Reading

The books by Fouque et al. and Gatheral describe recent
research taking place with stochastic volatility mod-
els. A textbook reference for Monte Carlo methods
for financial problems is the book by Glasserman. For
more on infinite-dimensional interest rate models, see,
for example, the recent textbooks by Carmona and
Tehranchi, and by Filipovic. Merton’s classic works on
portfolio optimization are reprinted in his 1992 col-
lection. The recent handbook edited by Fouque and
Langsam provides many viewpoints on the analysis of
systemic risk. For further reading on energy and com-
modities markets, see the recent survey by Carmona
and Coulon and the book by Swindle. The recent book
by Lehalle and Laruelle discusses market microstruc-
ture in the context of high-frequency trading. A recent
survey of work on asset price bubbles (and subsequent
crashes) can be found in the survey article by Protter.
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V.10 Portfolio Theory
Thomas J. Brennan, Andrew W. Lo,
and Tri-Dung Nguyen

1 Basic Mean–Variance Analysis

Pioneered by the Nobel Prize–winning economist Harry
Markowitz over half a century ago, portfolio theory is
one of the oldest branches of modern financial eco-
nomics. It addresses the fundamental question faced by
an investor: how should money best be allocated across
a number of possible investment choices? That is, what
collection or portfolio of financial assets should be cho-
sen? In this article, we describe the fundamentals of
portfolio theory and methods for its practical imple-
mentation. We focus on a fixed time horizon for invest-
ment, which we generally take to be a year, but the
period may be as short as days or as long as several
years. We summarize many important innovations over
the past several decades, including techniques for bet-
ter understanding how financial prices behave, robust
methods for estimating input parameters, Bayesian
methods, and resampling techniques.

A portfolio is a collection of financial securities, often
called assets, and the return to an asset or a portfolio
is the uncertain incremental percentage financial gain
or loss that results from holding the asset or portfolio
over a particular time horizon. If the price of an asset i
at date t is denoted pit , then its return ri,t+1 between
t and t + 1 is defined as

ri,t+1 ≡ pi,t+1 + di,t+1

pit
− 1, (1)

where di,t+1 denotes any cash payouts made by asset i
between t and t + 1, such as a dividend payment. The
return on a portfolio of assets is defined in a similar
manner.

Markowitz’s seminal idea was to choose an optimal

portfolio using two key features of the distribution of

a portfolio’s return: its mean and variance. For any tar-

get level of variance, an allocation yielding the greatest

mean (or expected) return should be chosen. Similarly,

for any target level of expected return, an allocation

yielding the lowest possible level of variance should be

chosen. So far, this does not allow a unique portfolio to

be selected since either the target variance or the tar-

get mean needs to be specified in advance. However,

this does already allow us to sketch a curve in mean–

variance space corresponding to the characteristics of

the portfolios that are efficient inasmuch as they sat-

isfy Markowitz’s requirements. This curve is known as

the mean–variance efficient frontier (see figure 1 for an

example).

Variance is often replaced by its square root, stan-

dard deviation, resulting in an equivalent curve of effi-

cient portfolios in the space defined by mean and stan-

dard deviation. We refer to this latter curve as the

efficient frontier.

Consider a collection of n financial assets that are

available as investment choices and let them be indexed

by i = 1, . . . , n, with ri denoting the return of asset i
over the applicable investment horizon (we suppress

the time subscript t to simplify notation). An initial

investment of one dollar in i thus yields 1+ri dollars at

the end of the period of the investment. The expected

return of i is μi =
∑
s ri(s)ps , and the covariance of the

returns of i and j is σi,j =
∑
s(ri(s)−μi)(rj(s)−μj)ps .

Here we assume that the returns have finite distribu-

tions and that all the different possible sets of returns

r = (r1, . . . , rn) are indexed by the parameter s, with

rs = (r1(s), . . . , rn(s)). The probability of state s is

denoted by ps . We write μ = [μi]i and Σ = [σi,j]i,j . All

vectors denote column vectors unless stated otherwise.

An allocation of funds among the assets can be

thought of as a vector ω = [ωi]i of weights, with ωi
representing the proportion of available funds invested

in asset i. The weights are subject to the constraint

etω = 1, where e is a vector of all 1s. This is necessary

so that exactly 100% of the available funds are invested.

In the general case, weights are permitted to be nega-

tive, with the interpretation that these correspond to

short sales of those assets. A short sale is a specific

financial transaction in which an investor can sell a

security that he does not own by borrowing it from a

third party, such as a broker, with the promise to return

it at a later date. Short sales allow investors who expect
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Figure 1 Efficient frontier for the collection of eight assets
with characteristics described in table 1. The dashed line is
the constrained frontier that does not allow negative asset
weights in portfolios. For each individual asset the standard
deviation and expected return are indicated on the graph.

an asset’s price to decline to benefit from this expecta-

tion. When less generality is desired, more constraints

can be added, such as the restriction that ωi � 0 for

all i, implying that no short sales are allowed.

A portfolio formed with the weight vector ω has

expected return μTω and variance ωTΣω. Thus, to

determine the efficient frontier, we need to solve the

minimization problem

minωTΣω such that μTω = μpeTω = 1 (2)

for each value of the portfolio expected return μp. The

solution weight vectorω∗ will be the optimal portfolio

corresponding to the target expected return μp.

Figure 1 illustrates the efficient frontier for the set

of eight assets with expected returns, standard devia-

tions, and correlations listed in table 1. In the figure,

as well as in what follows, we generally restrict our

attention to the “upper branch” of the efficient fron-

tier, meaning that we do not include portfolios on the

frontier that have returns lower than the return of the

global minimum-variance portfolio. For any such port-

folios, a higher level of return is possible for the same

amount of risk.

1.1 Analytical Solutions

We can find an exact analytic solution to the problem

(2). The method of lagrange multipliers [I.3 §10] is

applicable, and its use in this context was pioneered by

Table 1 Expected returns, standard deviations, and corre-
lations for a collection of eight assets. The asset numbers
correspond to the named assets in figure 1. The values are
annualized versions of the statistics appearing in Michaud
(1998) and reflect historical data from 1978 through 1995.
(ER, expected return; SD, standard deviation.)

Correlations
ER SD ︷ ︸︸ ︷
(%) (%) 1 2 3 4 5 6 7 8

1 11.64 19.05 1.00 0.41 0.30 0.25 0.58 0.71 0.26 0.33
2 17.52 24.35 1.00 0.62 0.42 0.54 0.44 0.22 0.26
3 13.32 21.55 1.00 0.35 0.48 0.34 0.27 0.28
4 17.52 24.39 1.00 0.40 0.22 0.14 0.16
5 16.44 20.82 1.00 0.56 0.25 0.29
6 15.48 14.90 1.00 0.36 0.42
7 9.96 6.96 1.00 0.92
8 10.20 5.40 1.00

Merton. The appropriate Lagrangian is

L =ωTΣω+ λ1(μTω− μp)+ λ2(eTω− 1). (3)

A calculation setting the gradient of L equal to zero
shows that the solution to the minimization problem
is

ω∗ = μpC − B
D

Σ−1μ+ A− μpB
D

Σ−1e, (4)

where A = μTΣ−1μ, B = μTΣ−1e, C = eTΣ−1e, and
D = AC − B2.

The optimal weight of (4) combined with the formula
for the variance of the portfolio, namelyωTΣω, allows
us to calculate the minimum variance possible for a
given level of expected return μp. Specifically, we have

(ω∗)TΣω∗ =
Cμ2

p − 2Bμp +A
D

. (5)

The minimum variance is thus simply a quadratic func-
tion of the level of expected return. Moreover, we can
use (5) to see that the global minimum variance is 1/C
and occurs at the return level μp = B/C . The efficient
frontier can therefore be generated as the set of points

F =
{
(σ , μ) : σ =

√
Cμ2 − 2Bμ +A√

D
μ � B

C

}
=
{
(σ , μ) : μ = B

C
+
√
D(Cσ2 − 1)

C
σ � 1√

C

}
. (6)

1.2 Inequality Constraints

It is often desirable to add further constraints to the
optimization problem presented in (2). For example, it
may be required that the weight of a particular asset
be exactly 10%, that all elements of ω be positive, or
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that no one element of ω be greater than 50%. These
constrained portfolio selection problems do not gener-
ally have simple closed-form solutions. Instead, numer-
ical methods must be employed to compute optimal
portfolios.

To the extent that more constraints are stated in
the form of equalities, the Lagrange multiplier for-
mula in (3) can be extended to have additional appro-
priate terms. If some of the constraints are inequal-
ities, then the method of Lagrange multipliers can
be extended using the karush–kuhn–tucker condi-

tions [IV.11 §2].

In practice, computer software packages are used to
calculate frontiers with constraints beyond the basic
requirement that eTω = 1. In figure 1, we illustrate a
portion of the efficient frontier, as well as an example
of a constrained frontier, for the collection of assets
with characteristics described in table 1. We computed
the points on the efficient frontier analytically, but
those on the constrained frontier were computed using
quadratic programming software.

1.3 Finding the “Best” Portfolio

We have not yet introduced a way to choose one “best”
portfolio for an investor from among all those on the
efficient frontier. To do so, we need to know something
about the investor’s value function, i.e., how he ranks
different combinations of risk and return. In this sec-
tion, we describe several commonly used methods for
an investor to rank different risk–return profiles. We
will refer to these ranking methodologies in subsequent
sections.

The Minimum-Variance Portfolio

In an extreme case, for an investor who cares only about
risk and not at all about expected return, the port-
folio with the lowest level of risk should be chosen.
As we saw in section 1.1, this minimum value corre-
sponds to a variance of 1/C or a standard deviation
of 1/

√
C and is displayed in figure 2. The correspond-

ing set of weights can also be easily derived by solving
the Lagrange multiplier problem corresponding to the
Lagrangian L = ωTΣω + λ1(eTω − 1). The resulting
portfolio weight is seen to be ωmin = (1/C)Σ−1e.

Standard Value Functions

More realistically, an investor may assign higher value
to portfolios with higher expected return and lower

value to those with higher risk. A commonly used
simple value function along these lines is

Vγ(σp, μp) = μp − 1
2γσ

2
p . (7)

In this case, the value of a portfolio with parameters μp

and σp is a linear function of expected return (μp) and
variance (σ2

p ), and γ is an investor-specific parameter
indicating the investor’s tolerance for risk. This value
function is most appropriate when μp and σp are rela-
tively small, as may happen when the investment time
horizon is short. For longer time periods, more complex
functions are generally needed. These value functions
are often derived from more primitive assumptions
about an investor’s utility for wealth, U(W). By set-
ting W = W0ωTr, where W0 is initial wealth, the value
function V is given by E[U(W0ωTr)] according to the
axioms of Von Neumann and Morgenstern’s expected
utility theory.

For the special case of the value function defined in
(7), we can find the unconstrained optimal portfolio
weights ωV and determine the corresponding highest
achievable value using an appropriate Lagrangian. We
find that

ωV = 1
γ
Σ−1μ+ γ − B

γC
Σ−1e.

The expected return and risk at this point of optimal
value are

μp = B
C

+ D
γC

and σp = 1
γ

√
D + γ2

C
.

Sharpe Ratio

An investor may also look at the reward-to-variability
ratio represented by a portfolio, i.e., the expected
excess return he receives from the portfolio divided by
the risk the portfolio represents. This ratio is referred
to as the Sharpe ratio and can be written as

S(σp, μp) =
μp − rf

σp
,

where σp and μp are the risk and expected return of
the portfolio, respectively, and where rf is the risk-free
rate that the investor would receive if he did not invest
in the portfolio. By subtracting the risk-free rate, we are
measuring the incremental reward in excess of the risk-
free rate that the investor receives by investing in the
portfolio.

Using the characterization of points on the efficient
frontier given in (6), we can calculate the optimal Sharpe
ratio and corresponding portfolio weights. Specifically,
we can express σp, and hence S, as a function of μp,
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Figure 2 Optimal points on the efficient frontier for the
collection of eight assets with characteristics described in
table 1. The maximum Sharpe ratio is computed assuming a
risk-free rate of rf = 6.96%, consistent with Michaud (1998),
and the maximum value is calculated using a tolerance for
risk of γ = 4.

and we then maximize S as a univariate function of μp

and find that

Smax =
√
Cr2

f − 2Brf +A
for values of rf less than the return of the minimum-
variance portfolio (see figure 2). The portfolio weights
are given by (4), with

μp = A− Brf

B − Crf
,

namely

ωSharpe = 1
B − Crf

Σ−1(μ− rfe).

1.4 Connections to the Capital Asset Pricing Model

(CAPM)

The mean–variance framework developed by Mark-
owitz was fundamental to the development of the
CAPM. In the 1950s and 1960s, Tobin, Sharpe, and
Lintner derived the equilibrium implications under the
assumption that all investors held efficient portfolios,
and this led to the capital market line, the line con-
necting the risk-free rate on the expected-return axis
with the tangency portfolio on the efficient frontier in
mean–standard deviation space, which is the same as
the optimal Sharpe ratio portfolio derived above. Under
the assumptions of the model, all investors hold a com-
bination of positions in this tangency portfolio and the
risk-free asset.

In the CAPM, aggregate positions in the risk-free
asset net to zero, and the tangency portfolio repre-
sents the aggregate position in risky assets across all
investors. Accordingly, this portfolio is referred to as
the market portfolio. In the CAPM world, the expected
return, μi, for a particular asset i can be expressed in
terms of the expected return and risk of the market
portfolio, as well as the covariance of the asset with
the market portfolio. The precise relationship is

μi = rf + βi(μmkt − rf),

where μmkt is the expected return of the market port-
folio; βi = cov(ri, rmkt)/σ2

mkt; ri and rmkt represent the
returns on asset i and the market portfolio, respec-
tively; and σmkt represents the standard deviation of
the market portfolio. The return ri can be written as

ri = rf + βi(rmkt − rf)+ εi,
where εi is a stochastic variable that is uncorrelated
with rmkt and has zero mean. The risk represented by
the εi is known as idiosyncratic risk. In matrix notation,
the expected return vector and the covariance matrix
of asset returns under the CAPM assumptions are thus

μCAPM = rfe + β(μmkt − rf),

ΣCAPM = σ2
mktββ

T +Ωε,

⎫⎬⎭ (8)

where β is the vector of β values for the assets, and
whereΩε is the covariance matrix for the idiosyncratic
risk.

Efficiency of the Market Portfolio

The importance of the mean–variance efficiency of the
market portfolio was recognized early on by many
authors and led to a series of debates on the testable
implications of the CAPM. Markowitz has argued that
empirical deviations from the CAPM are not surprising
in light of the counterfactual assumptions on which
the CAPM is based. In particular, he observes that:
“When one clearly unrealistic assumption of the CAPM
is replaced by a real-world version, some of the dra-
matic CAPM conclusions no longer follow.” An exam-
ple is the fact that unlimited borrowing and lending at
identical interest rates is not possible in practice, and
this limitation implies that the market portfolio need
not be mean–variance efficient in equilibrium.

Impossible Frontiers

If an efficient frontier contains no portfolio with all
positive weights, it is incompatible with the CAPM
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and is defined to be impossible because, by defini-
tion, the market portfolio must have a positive weight
for each asset, where the weight is proportional to
the market capitalization of that asset. Brennan and
Lo have demonstrated that, as the number of assets
grows large, all efficient frontiers are almost surely
impossible for a randomly drawn (with respect to Haar
measure) covariance matrix. This result explains the
near-universal disdain with which professional port-
folio managers regard standard mean–variance opti-
mization techniques: the vast majority of them are con-
strained to hold long-only portfolios, and hence an
impossible frontier is, in fact, literally impossible for
them to implement.

2 Techniques for Practical Implementation

In practice, we generally do not know the exact nature
of the distributions of returns for the assets we can
invest in. In fact, we do not even know the exact val-
ues of the inputs required for mean–variance optimiza-
tion, i.e., μ and Σ. Instead, we must find ways to esti-
mate these quantities and then use the estimates when
carrying out optimizations.

In this section we discuss several methods for the
practical determination of optimal portfolios. In sec-
tion 2.1 we describe the simple approach of using his-
torical data to compute unbiased statistics under the
assumption that asset returns follow a stable distribu-
tion over time. In section 2.2 we detail several meth-
ods for reducing noise, with a focus on estimating the
covariance matrix, Σ, including methods that incorpo-
rate theoretical predictions for the structure of Σ. In
section 2.3 we describe Bayesian methods that allow
for better estimation of μ, as well as Σ, and that also
allow for incorporation of investor beliefs and theoret-
ical models for the nature of asset returns. In sec-
tion 2.4 we survey improved and more robust methods
for selecting optimal portfolios.

2.1 Unbiased Estimators Using Historical Data

If we assume that each period’s data represent an inde-
pendent draw from a stable process governing asset
returns, we can treat the observed historical returns as
a sample from which we can estimate the desired statis-
tics μ and Σ. For T observations of historical returns,
unbiased estimators of μ and Σ are

μ̂i =
1
T

T∑
t=1

rit, Σ̂ = 1
T − 1

HTH, (9)

where rit is the observation of the return on i in period
t, and H = [(rit − μ̂i)]it is a T ×nmatrix. An unbiased
estimator of Σ−1 is Σ̃−1, with

Σ̃ = T − 1
T −n− 2

Σ̂.

The estimator Σ̃ may be more appropriate than Σ̂ when
the object of interest is Σ−1 instead of Σ, as in the
formulas for the values A, B, and C in (4).

2.2 Covariance Matrix Estimation

Unbiased estimates suffer from estimation error; we
describe several techniques designed to provide bet-
ter estimates, with a particular focus on the covariance
matrix, Σ. These include methods for the reduction of
noise as well as for the incorporation of theoretical
results regarding the structure of Σ.

Factor Analysis

The returns of the n available assets will generally not
be independent. In fact, the returns may be driven in
large part by a small number of common factors. If
this is the case, the covariance matrix, Σ, is less com-
plex and estimators taking this into account may be
expected to contain less noise. It may also be assumed
that the common factors determine the risk-free vec-
tor, μ, but for expositional purposes we allow μ to
remain fully general and focus solely on reducing the
complexity of Σ.

The return vector for the n assets takes the form

r = μ+ VTΛ+ ε,
where μ is a vector of constants; Λ is a stochastic vec-
tor of nf factors; V is a constant nf ×n matrix of fac-
tor loadings; and ε is a stochastic vector of residual
returns for the n assets, each having zero mean. The
factors represented by Λ are generally thought of as
historically observable aggregate market variables, and
various economic models give rise to factor structures
for asset returns. For example, the CAPM yields a fac-
tor model with nf = 1 in which the single factor is the
market-value-weighted average of all asset returns.

Because we allow μ to remain completely general, the
factors represented by the elements of Λ may each be
assumed to have zero mean. This assumption involves
no loss of generality because an adjustment to μ can be
made, if necessary, to ensure that the expected returns
of the factors are zero. In addition to having zero mean,
it is often assumed that Λ follows a multivariate nor-
mal distribution with covariance matrix ΣΛ. The vector
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of residual returns ε is also assumed to follow a multi-
variate normal distribution, with covariance matrix Σε,
and to be independent of Λ. These normality assump-
tions do result in loss of generality of the distribu-
tion of returns, but they greatly simplify the analysis
to follow. Indeed, under these assumptions r follows a
multivariate normal distribution, with

r = μ+ VTΛ+ ε ∼ N (μ,VTΣΛV +Σε).
We use the notation N (·, ·) to denote a multivariate
normal distribution with mean specified by the first
argument and covariance matrix specified by the sec-
ond argument.

An estimator Σ̂Λ of the covariance matrix of the
factors can be found using historical data for factor
returns with a methodology similar to that described in
section 2.1. Estimators for the matrix of factor loadings
V̂ and the covariance matrix of the error terms Σ̂ε can
be obtained using historical data and asset-by-asset lin-
ear regressions. The regression for the ith asset yields
estimators both for the nf elements in the ith column
of V and for the variance of the ith element of ε, as
well as for the ith element of μ. An estimator for the
full covariance matrix is, therefore,

Σ̂factor = V̂TΣ̂ΛV̂ + Σ̂ε.

Covariance Shrinkage

To reduce the estimation error of the covariance matrix,
Σ̂, one can take a weighted average of Σ̂ and a known
covariance matrix F, a process known as shrinking the
covariance matrix Σ̂ toward the target matrix F. The
resulting revised estimator for the covariance matrix is

Σ̂LW = αF + (1 −α)Σ̂.
This is a special case of Bayesian shrinkage estimators
in which F plays the role of a prior and the posterior is
given by Σ̂LW (see section 2.3). There are various possi-
bilities for the choice of F, but the basic motivation is
to select an F that has a known structure that is a plau-
sible alternative to Σ̂. In this way, the shrinkage process
effectively reduces estimation error while still keeping
a portion of the characteristics of the unbiased estima-
tor Σ̂. One possible choice for F is the CAPM covari-
ance matrix, ΣCAPM, described in (8), with the assump-
tion that the covariance matrixΩε for the idiosyncratic
return components is diagonal.

To determine the appropriate α for the shrinkage
procedure, Ledoit and Wolf, who first applied shrink-
age estimation to covariance-matrix estimation, derive

a consistent estimator for α that minimizes the norm:

‖(αF + (1 −α)Σ̂)−Σ‖2,

where ‖M‖2 is defined to be the sum of the squares of
all the entries of a matrix M.

Random-Matrix Theory

Simple estimators for Σ based upon historical data
become less reliable as the ratio of observation periods
to assets (q = T/n) decreases. In the extreme case in
which q < 1, the estimator in (9) is degenerate because
the rank ofH is less thann. Laloux, Cizeau, Potters, and
Bouchaud have addressed the problem of noisy estima-
tion when q is not much larger than 1 by arguing that
Σ̂ should behave like a random matrix in such cases.
To the extent that it exhibits behavior other than that
of a random matrix, there should be actual informa-
tion present, and this insight leads to a procedure for
purging the matrix of its random noise.

Let Hr be a T ×n matrix with elements indepen-
dently drawn from a normal random distribution with
mean zero and standard deviation σr. The matrixMr =
HT

r Hr follows a Wishart distribution, and as T → ∞,
n → ∞, and the ratio q = T/n remains constant,
the eigenvalues of Mr asymptotically all lie within an
interval [λ−, λ+], where

λ± = σ2
r (1 + 1/q ± 2

√
1/q).

If a matrix has, with only a few exceptions, eigen-
values that lie in this range, then it may be argued that
the outliers correspond to the information content of
the matrix while the other eigenvalues correspond to
random noise.

Instead of focusing on the estimated covariance
matrix Σ̂ directly, it is more convenient to consider the
corresponding correlation matrix Ĉ because random-

matrix theory [IV.24] is most easily applied to cases
in which all variances are equal. Ĉ is defined by its
entries Ĉi,j = Σ̂i,j/

√
Σ̂i,iΣ̂j,j and is itself a covariance

matrix for the returns of n assets but with each return
rescaled so it has unit variance.

Let Ĉ = Q̂L̂Q̂T be an eigendecomposition of Ĉ
with the eigenvalues on the diagonal of L̂ and the
corresponding eigenvectors in the columns of Q̂. We
compare the distribution of the eigenvalues λ̂i to the
theoretical distribution predicted for a random matrix
Mr = HT

r Hr, where the elements of Hr are drawn
independently from a normal distribution with unit
variance. The eigenvalues may be separated into two
groups by using a suitable method, e.g., by specifying
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a threshold, cRM > 1, such that any eigenvalue larger
than cRMλ+ is deemed to convey information, with the
rest deemed to be random noise.

The correlation matrix can be cleaned by replacing
eigenvalues corresponding to noise with the average of
such eigenvalues and leaving the other eigenvalues as
they are. This set of cleaned eigenvalues can be used to
create a cleaned covariance matrix in two steps. First,
define C̃ to be Q̂L̃Q̂T, where L̃ is the diagonal matrix
with diagonal entries equal to the cleaned eigenvalues.
Second, define the cleaned covariance matrix by

Σ̂RM = [C̃ij(Σ̂iiΣ̂jj)1/2]i,j .
This covariance matrix can now be used along with μ̂
as a basis for portfolio optimization.

It is important to underscore that the approach for
cleaning a covariance matrix using the theory of ran-
dom matrices is most appropriate when the value of
q = T/n is not much larger than 1.

Nearest Correlation Matrix

A problem that is related to the estimation of a covari-
ance matrix is that of computing a correlation matrix
that is closest in some metric to a given matrix. This
problem arises routinely in applications of portfolio
optimization in which financial analysts wish to impose
their priors by altering various entries of the correla-
tion matrix to conform to their beliefs, e.g., that the
correlation between stock A and stock B is 0. Arbitrary
changes to elements of a bona fide correlation matrix
can easily violate positive-semidefiniteness, implying
negative variances for certain portfolios. Nonpositive-
semidefiniteness can also arise if elements of the cor-
relation matrix are estimated individually rather than
via a matrix estimator.

Under the Frobenius norm, a unique solution to the
nearest correlation matrix (NCM) problem exists, and
Higham has shown that it can be computed via an
alternating projections algorithm that projects onto
the space of matrices with unit diagonal and the cone
of symmetric positive-semidefinite matrices. Although
this algorithm is guaranteed to converge, it does so
at a linear rate, which can be slow for large matrices.
Using the dual of the NCM problem, it is possible to
achieve global quadratic convergence by applying New-
ton’s method, as shown by Qi and Sun. The NCM prob-
lem has also been extended to the case where the true
correlation matrix is assumed to have a k-factor struc-
ture, where k is much less than the dimension of the
correlation matrix.

Finding a Possible Frontier

It is possible to modify a covariance matrix so that the
corresponding efficient frontier is possible, rather than
impossible, in the sense described in section 1.4. The
tangency portfolio of the CAPM should satisfy ωmkt =
(1/(B − Crf))Σ−1(μ − rfe), up to scaling by a positive
constant. If this equality does not hold, then an adjust-
ment to Σ can be made to restore the equality. This
approach was introduced by Brennan and Lo and is
related to the Black–Litterman method of asset alloca-
tion with prior information, which is described further
in section 2.3.

Brennan and Lo’s covariance matrix, Σposs, has the
desired property that ωmkt = (1/(B − Crf))Σ−1

poss(μ −
rfe), and it is constructed to be the matrix requir-
ing the least amount of change to the original covari-
ance matrix Σ. Specifically, the nature of their pro-
posed change alters Σ−1 only with respect to the one-
dimensional vector space spanned by μ − rfe, and the
product of Σ−1 with any vector orthogonal to μ−rfe is
unaffected. Brennan and Lo argue that this covariance
matrix should be used by those whose best estimate of
the covariance matrix is otherwise Σ but who also have
a strong conviction that the CAPM must hold and that
μ and ωmkt are, in fact, the correct expected returns
and market weights.

2.3 Bayesian Methods

Estimators for the risk-free vector, μ, are often con-
sidered particularly problematic because of their large
estimation errors. To improve the estimation of μ,
as well as Σ, techniques applying bayes’s theorem

[V.11 §1] have been proposed. The basic idea is that
an investor specifies certain prior information about
the nature of asset returns, updates this prior with
additional information and observations, and finally
obtains a posterior distribution for r. Improved esti-
mates for μ and Σ are then recovered from this pos-
terior distribution. In general, there is no restriction
on the nature of the possible prior or additional infor-
mation used in Bayesian methods. For the purposes of
our discussion, we will restrict attention to the simple
assumption that asset returns follow a normal distri-
bution, so that r ∼ N (μ,Σ). The values of μ and Σ are
unknown a priori, but the additional information and
Bayesian updating procedure will allow estimates for
these parameters to be made.

The additional information used throughout our dis-
cussion consists of a list of m separate pieces of
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information, each specifying a probability distribution
for the value of a linear transformation of μ. For each
j = 1, . . . ,m, the applicable transformation is specified
by a kj ×n matrix Pj , and the jth piece of informa-
tion is the assumption that Pjμ ∼ N (Qj ,Sj) for some
kj -dimensional vectorQj and some kj × kj covariance
matrix Sj . This information specifies that the transfor-
mation of μ given by Pjμ is normally distributed with
meanQj and covariance matrix Sj . The value of kj may
vary with j.

With the prior and additional information in hand, we
can apply Bayes’s theorem for continuous distributions
to obtain a posterior distribution for asset returns. The
procedure is to evaluate the integral with respect to μ
of the probability density for r, with unknown values
of μ and Σ, multiplied by the product of all the prob-
ability densities corresponding to the additional infor-
mation. The result is a posterior distribution for r that
is normally distributed with mean and covariance given
by

μpost =
( m∑
j=1

PT
j S

−1
j Pj

)−1 m∑
j=1

PT
j S

−1
j Qj (10)

and

Σpost = Σ
(
In −

(
In +

m∑
j=1

PT
j S

−1
j PjΣ

)−1)−1

,

where In denotes the n×n identity matrix. Note that
the expression for Σpost still involves the unknown
covariance matrix Σ. Additional information can be
assumed about Σ, and a further Bayesian posterior dis-
tribution can be calculated to eliminate the dependence
on Σ. However, for our purposes we will simply replace
Σ with the unbiased estimator Σ̂ derived from histor-
ical returns, as discussed in section 2.1. A shortcut of
this sort is typical in many applications of Bayesian
analysis because elimination of Σ generally involves
more complicated integrals.

There is an alternate derivation for the expression of
μpost from (10): μpost is the value of μ that minimizes
the function

F(μ) =
m∑
j=1

‖Pjμ−Qj‖2
S−1
j
,

where we have used the notation ‖v‖2
W = vTWv. That

is, μpost is the point most “compatible” with the con-
straints Pjμ = Qj , with the uncertainty around each
constraint specified by Sj . To see that μpost indeed min-
imizes F , compute the gradient of F and solve for
the value of μ that makes the gradient equal to 0. The

resulting formula is the same as the formula for μpost

in (10).

The Grand Mean

Bayesian techniques can be used to determine a poste-
rior mean and covariance matrix based on a combina-
tion of historical information and information about a
grand mean, an n-dimensional vector with all compo-
nents equal to some real number η. The assumption is
that asset returns will ultimately tend toward a com-
mon average value and, by incorporating this tendency
into a Bayesian analysis, it may be possible to obtain
better values for μpost and Σpost.

Jorion uses a total of m = T + 1 pieces of additional
information to update the prior that r is normally dis-
tributed, where T is the sample size of the available
return data. The first T items are based on the his-
torical data observations and are of the form μ = rj
for 1 � j � T , where rj is the jth observed return,
with uncertainty Σ, the historical covariance matrix.
The final item has the form μ = ηe, the vector with
all elements equal to the common grand mean, with
uncertainty specified by (1/λ)Σ for a suitable λ > 0.

The appropriate value of λ is estimated as

λ̂ = n+ 2

(μ̂− η0e)TΣ̃−1(μ̂− η0e)
,

where η0 is an estimate for the expected return of the
minimum-risk portfolio. After performing the neces-
sary Bayesian updating, Jorion finds estimators for the
expected return and covariance that depend only on
historical data, namely

μ̂J = T
T + λ μ̂+ λ

T + λη0e,

Σ̂J =
(

1 + 1
T + λ

)
Σ̃ + λ

T(T + 1 + λ)
(

eeT

eTΣ̃−1e

)
.

The values μ̂J and Σ̂J tend toward μ̂ and Σ̃ as T → ∞,
but for smaller values of T there are “correction” terms
that take on a greater weight.

Market Equilibrium and Investor Beliefs

One can approach portfolio optimization by starting
from a neutral market-implied set of expected returns
and allowing investors to overlay their views to inform
and modify these values. This method avoids the well-
known difficulty of correctly predicting future returns
from historical data and also provides a mechanism
through which investors can express views different
from those implied by history or the market.
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A Bayesian technique along these lines was devel-
oped by Black and Litterman, who started with the
usual prior that the distribution of r is normally dis-
tributed but assumed that the mean and covariance
matrix are unknown. This prior is then updated with
two types of additional information. The first is that
the value of μ has a distribution centered at μmkt,
the expected return vector implied by the market, dis-
cussed further below. The second is information pro-
vided by the investor regarding his beliefs about the
distribution of μ. Using all this additional information,
a posterior normal distribution for r is computed.

To determine the expected return vector implied by
the market, assume that the CAPM holds and that the
tangency portfolio is given by ωmkt = (1/γ)Σ−1(μ −
rfe), where γ is a constant that can be interpreted as
the level of investor risk tolerance. Because the port-
folio of market weights is easily observed, it is useful
to rewrite this formula as an expression for μ and to
define this to be the value of μ implied by the mar-
ket, namely μmkt = rfe + γΣωmkt. The value γ can be
estimated using historical data as the level of risk tol-
erance that is compatible with the risk in the market
portfolio and the excess return to the market portfolio
over the risk-free rate. Black and Litterman assume that
the uncertainty around μmkt is τΣ, where τ is a small
positive number. The uncertainty is therefore assumed
to be proportional to the covariance matrix for returns,
but small. The exact value of τ should be chosen in such
a way as to reflect the uncertainty in the mean esti-
mator μmkt. The value of τ should generally be close
to zero to reflect the idea that the uncertainty in the
market-implied mean return vector should not be very
large.

The second step of Black and Litterman’s method
is the incorporation of specified investor beliefs. An
investor is allowed to express a number of views of the
form

pk,1μ1 + · · · + pk,nμn = qk + εk,
where k = 1, . . . , K runs through the list of views
expressed. The quantity εk represents a normally dis-
tributed random variable with zero mean, reflecting the
uncertainty in the kth investor belief. The pk,i and qk
are real numbers, and μi represents the expected return
for the ith asset. This set of beliefs can be written
compactly in matrix form as

Pinvμ =Qinv + εinv, (11)

where Pinv = [pk,i]k,i is a K ×n matrix, Qinv = [qk]k
is a K-dimensional vector, and εinv is a multivariate

normal random variable with zero mean and diagonal
covariance matrix Ωinv.

To combine the investor beliefs of (11) with the
market-implied returns and determine a posterior
distribution for r, one can follow the methodology
described at the start of section 2.3 with m = 2 pieces
of information. To incorporate market-implied returns,
they set P1 = In, Q1 = μmkt, and S1 = τΣ. To incorpo-
rate investor beliefs, they set P2 = Pinv, Q2 =Qinv, and
S2 = Ωinv. They then find that the posterior mean is

μBL = ((τΣ)−1 + PT
invΩ

−1
invPinv)−1

× ((τΣ)−1μmkt + PT
invΩ

−1
invQinv).

This is the expected value of r that is most consis-
tent (subject to the specified levels of uncertainty) with
both the expected returns implied by the market and
investor beliefs.

2.4 Other Approaches and Metrics

It is possible to extend the basic framework of mean–
variance optimization by using measures of risk and
reward other than the mean vector, μ, and the covari-
ance matrix, Σ. It is also possible to find additional
ways to implement the basic mean–variance frame-
work beyond the methods already described. In the
remainder of this section we describe a few of these
approaches.

One-Sided Risk Measures

Some of the most common alternative measures of
portfolio risk are “one sided,” in that they focus on
downside risk rather than symmetric risk around an
expected return. Examples include value at risk (VaR)
and shortfall risk. To measure VaR, an investor must
specify a threshold 0 < θ < 1. The VaR is an amount
such that the probability that portfolio losses will equal
or exceed such an amount is exactly equal to θ. Thus,
an investor knows that with probability 1−θ losses will
not exceed the VaR level. To measure shortfall risk, an
investor must specify a benchmark, b, relative to which
performance can be measured. The shortfall risk is the
probability that the portfolio return will fall below b
multiplied by the average amount by which the port-
folio return falls below b conditional on being below
b. The shortfall risk thus provides an investor with an
expected value of downside exposure.

By replacing variance with a one-sided measure in
choosing optimal portfolios, an investor is able to
control his worst-case scenarios to within a certain
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confidence threshold (for VaR) or his average loss below
a benchmark (for shortfall risk). A difficulty with using
these measures, however, is that they do not yield
closed-form expressions and they are less intuitive.
Also, from a computational perspective, nonlinear opti-
mization will generally be necessary to find optimal
portfolios with respect to these measures, which is far
less efficient than the linear and quadratic program-
ming algorithms applicable to standard mean–variance
optimization problems. Nonetheless, despite the addi-
tional computational complexity, it is possible to opti-
mize relative to these alternative measures of risk,
and doing so may be desirable for investors with pref-
erences or asset-return dynamics that are especially
asymmetric.

Resampling the Efficient Frontier

A technique known as resampling (which is closely
related to the bootstrap technique in statistics) can be
used to determine portfolio weights. The idea is to
smooth out errors arising from uncertainty in estima-
tors for μ and Σ by generating a large number of alter-
native possibilities for these values from a single data
set, constructing a resampled efficient frontier in each
alternative case, and then averaging all of the alterna-
tives to find an average resampled frontier. Optimal
portfolios are then selected from among the points on
the average resampled frontier.

To construct a resampled frontier, Michaud gener-
ates a hypothetical alternative history of realized asset
returns. These are chosen from a multivariate normal
distribution with mean and covariance equal to the
unbiased estimates μ̂ and Σ̂, determined based on the
true history. The alternative history is then used to cal-
culate portfolios on a resampled efficient frontier. This
process is repeated a large number of times, with the
alternative history being chosen independently each
time. The number of portfolios computed on the fron-
tier is fixed across all resamplings. In addition, an upper
bound for possible returns on the resampled frontiers
can be specified in order to limit the returns on all port-
folios considered to a finite range. This limit may be
taken to be the largest element in μ̂, for example.

The individual portfolios on the resampled frontiers
are averaged together to form an average resampled
frontier. All these frontiers are discrete, rather than
continuous, but if the number of portfolios computed
is large, a close approximation to a continuous fron-
tier is obtained. We calculate expected returns and

standard deviations for each portfolio on the aver-
age resampled frontier using estimates for mean and
return such as μ̂ and Σ̂. These values allow us to deter-
mine which portfolio is optimal under a specified met-
ric, such as minimum risk, maximum utility, or maxi-
mum Sharpe ratio. Alternatively, we could compute the
optimal portfolio along each resampled frontier and
average the results. The answer in this situation is gen-
erally not the same as the optimal portfolio on the aver-
age resampled frontier, but it is generally computation-
ally much easier because it avoids the need to compute
all points on the frontier for each resampling.

Ordering of Returns

Mean–variance portfolio optimization can be extended
by allowing an investor to specify less information
about asset returns than is encompassed by complete
knowledge of the vector μ of expected returns. For
example, an investor may specify a list of inequalities
and interrelationships that will hold for elements of
the return vector r. This type of information leads to
a much larger set of “efficient” portfolios than mean–
variance optimization, and it is thus more complicated
to select a single optimal portfolio from among all
the efficient ones. Almgren and Chriss resolve this
difficulty by introducing a methodology for ranking
portfolios in light of the information specified by the
investor. They also cast their methodology in a manner
that makes it computationally feasible to determine an
optimal portfolio.
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V.11 Bayesian Inference in Applied
Mathematics
Desmond J. Higham

1 Use of Bayes’s Theorem

Deterministic models can be used to represent a huge

variety of physical systems. Applied mathematicians

are traditionally schooled in a framework where a

given mathematical model is presented, or developed,

with known values for all input data, such as prob-

lem domain, initial conditions, boundary conditions,

and model parameters. Our task is then to analyze

properties of the solution by whatever means we have

at our disposal, for example, finding the exact solu-

tion, developing approximations under asymptotic lim-

its, or applying computational methods. However, even

when a deterministic model is appropriate, there are

many realistic scenarios where uncertainty arises and

it becomes beneficial to employ tools from statistics.

Here are four illustrative examples.

(1) A partial differential equation describes the spread

of a pollutant after an environmental disaster. How-

ever, the initial location and quantity of the pol-

lutant can only be estimated. What is our uncer-

tainty in the pollutant level after one week, given

the uncertainty in the initial data? This is a problem-

sensitivity or conditioning question.

(2) A pair of dice are rolled on a table. It is not prac-

tical to measure the initial location and velocity of

the dice and then solve their equations of motion

until they come to a halt. Instead, we can model

each die independently as a random variable that

is equally likely to take the value 1,2, . . . ,6. Here,

we are introducing randomness as a convenient

modeling approximation.

(3) A large chemical reaction network is represented by
a system of ordinary differential equations. How-
ever, the value of one reaction rate constant is
not currently known and is too tricky to measure
directly from a laboratory experiment. In this case,
we would like to infer a value for the unknown rate
constant using whatever data is available about the
full system. This is a parameter-fitting, or model-
calibration, problem, where the key question is
what parameter value causes the model to best
fit the data or, from a statistical inference per-
spective: for each possible choice of the parameter
value, what is my degree of belief that this choice
is correct?

(4) Biologists have two competing, and incompatible,
theories for the mechanism by which signals are
passed through a transduction network. These lead
to two different deterministic mathematical mod-
els, each having one or more unknown modeling
parameters. Given some experimental data, repre-
senting outputs from the network, which of the
two models is most likely to be correct? This is a
model-comparison problem.

Questions of this type, where models based on mech-
anistic laws of motion meet real data, lie at the intersec-
tion between applied mathematics and applied statis-
tics. In recent years the term uncertainty quantifi-

cation [II.34] has been coined to describe this field,
although the phrase also has many other connotations.

A powerful tool for statistical inference, and hence
for uncertainty quantification, is Bayes’s theorem (also
commonly referred to as Bayes’ theorem), which allows
us to update our beliefs according to data. The theorem
is named after the Reverend Thomas Bayes (1701–61),
a British mathematician and Presbyterian minister.

Considering item (3) from the list above, let γ denote
the unknown problem parameter in our model and let
Y denote observational data consisting of a time series
of chemical species levels. Bayes’s theorem may then
be written

P(γ | Y) = P(Y | γ)P(γ)
P(Y)

.

Here, P(γ | Y), known as the posterior distribution,
answers our question. It quantifies the probability of
the model parameter γ given the data Y . On the right-
hand side we have P(Y | γ), known as the likelihood,
quantifying the probability of the data Y arising given
the model parameter γ. This value is available to us,
since we have access to the mathematical model. Also



V.11. Bayesian Inference in Applied Mathematics 659

appearing on the right-hand side is the prior distribu-

tion, P(γ). This factor quantifies our original degree of

belief in the parameter value γ, before we see any data.

The denominator P(Y) does not depend on the value

of the model parameter γ, so we have the proportion-

ality relationship

P(γ | Y)∝ P(Y | γ)P(γ).

In words, the posterior is proportional to the product

of the likelihood and the prior.

2 Example

To illustrate these ideas we consider the very simple

production and decay system

∅ 1−→ X,
X

γ−→ ∅.

The first reaction indicates that a species X is created

at a constant, unit rate. Conversely, the second reaction

tells us that X also degrades at a rate proportional to

its current level, with rate constant γ. The correspond-

ing mass action ordinary differential equation for the

abundance of X at time t is given by

dx(t)
dt

= 1 − γx(t),

with solution

x(t) = 1
γ

+
(
γx(0)− 1

γ

)
e−γt.

Suppose that our data takes the form Y = {tj, yj}Dj=1,

where yj denotes the observed level of x(t) at time tj .
Our aim is to use this data to infer the unknown rate

constant, γ. To emphasize that γ is not known, we will

also write the solution as xγ(t).
To define a likelihood, we must impose some as-

sumptions. The simplest choice is to suppose that the

data contains experimental measurement errors that

are independent across time points and normally dis-

tributed about the “exact” value, with a common stan-

dard deviation, σ . This leads to a likelihood function

of the form

P(Y | γ) =
D∏
j=1

1√
2πσ2

exp
(
− (yj − xγ(tj))

2

2σ2

)
.

In words, the right-hand side quantifies the probability

of the data Y arising given that the rate constant is γ.
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Figure 1 (a) The solid curve shows the underlying exact
solution, and the circles indicate the synthetic data gener-
ated by adding Gaussian noise. (b) The posterior distribu-
tion for the model parameter, γ, whose “correct” value is
known by construction to be γ = 2.

Figure 1(a) uses a solid line to plot the solution when
x(0) = 1 and γ = 2. To generate some synthetic data,
we take the solution x(tj) at the time points t1 = 0.1,
t2 = 0.2, . . . , t6 = 0.6 and add independent normally
distributed noise with mean zero and standard devia-
tion σ = 0.05. These data points are shown as circles.
Figure 1(b) plots the resulting posterior distribution for
the rate constant γ. Here, we have used the known val-
ues x(0) = 1 and σ = 0.05 and taken the prior to be
uniform over [1,3]; that is, P(γ) = 1

2 for 1 � γ � 3 and
P(γ) = 0 otherwise. Because we generated the data our-
selves, we are able to judge this result. We see that the
inference procedure has assigned nontrivial weight to
the “correct” value of γ = 2 but it assigns more weight
to slightly higher values of γ, with a peak at around
2.18. Intuitively, this mismatch has arisen because, by
chance, the two noisiest data points, at t = 0.2 and
t = 0.5, are both below the true solution, encourag-
ing the decay rate to be overestimated. Of course, the
inference would become more accurate if we were to
increase the number of data points (or reduce the noise
level).

It is slightly more realistic to consider the case where
the standard deviation, σ , for the experimental noise is
not known. Conceptually, this presents no added diffi-
culty, since Bayes’s theorem holds when there are mul-
tiple variables to be inferred. Figure 2 shows the result-
ing posterior when we regard σ as a second unknown
parameter, with a uniform prior over 0.01 � σ � 0.1.
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Figure 2 The posterior distribution for the experiment in
figure 1 when both the model parameter, γ, and the experi-
mental noise level, σ , are regarded as unknowns. Here, the
“correct” values are known by construction to be γ = 2 and
σ = 0.05.

In this very simple setting, with an assumption of
independent Gaussian noise, the posterior distribu-
tion is, after taking logarithms, effectively a least-
squares measure of the mismatch between model
and data. With a uniform prior, optimizing this least-
squares objective function corresponds to computing
a maximum-likelihood estimate: a point where the pos-
terior is largest. More generally, using a nonuniform
prior corresponds to adding a penalty term to the
least-squares objective function, which is a standard
approach in nonlinear optimization for constraining
the solution to lie in a predetermined domain. However,
a key philosophical difference between a least-squares
best fit and the full computation of a Bayesian poste-
rior is that in the latter case we are concerned with
all possible parameter values and wish to know which
regions of parameter space support likely values, even
if they are not globally optimal. Moreover, the posterior
gives access to higher levels of inference. For example,
we may sample parameter values from the posterior
and run the model forward in order to build up a dis-
tribution for the output. Figure 3 illustrates this idea:
in part (a) we show solution curves arising from five
independent samples of γ from the posterior in fig-
ure 1, so values where the posterior is larger are more
likely to be chosen; in part (b) we show a histogram
of the X level at t = 1 based on 10 000 samples of
γ from the posterior. Knowledge of the full posterior
distribution also allows us to compute integrals over
parameter space, with more weight attributed to the
more likely values. With this approach, given compet-
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Figure 3 (a) As in figure 1, the solid curve shows the under-
lying exact solution and the circles indicate the synthetic
data generated by adding Gaussian noise. Five output solu-
tions are shown as dashed curves, where the rate constant,
γ, has been sampled from the posterior shown in figure 1(b).
(b) A histogram for the predicted level of species X at the
future time t = 1, based on 10 000 samples of γ from the
posterior. The “correct” value is known to be x(1) = 0.568.

ing models we may use so-called Bayes factors in order

to judge systematically which one best describes the

data.

3 Challenges

The growing popularity of Bayesian inference can be

attributed, at least in part, to the availability of increas-

ing computing power and better-quality/more abun-

dant data sets. Generic challenges in the field include

the following.

Priors. A fundamental tenet of Bayesian inference is

that we must quantify our inherent beliefs at the out-

set. This allows expert opinions to be incorporated

into the process but, of course, also places a burden

on the researcher and introduces a level of subjectiv-

ity. Even the use of uniform priors, as an indication

of no inherent preferences, is problematic; for exam-

ple, being indifferent about γ, and hence imposing a

uniform prior, is not equivalent to being indifferent

about γ2.

Identifiability. The task of inferring model parame-

ters may be inherently ill-defined. For example, there

may be insufficient data or, more fundamentally,

model parameters may be very highly correlated. In

a dynamical system, for instance, increasing a decay
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rate may have a very similar effect to decreasing a
production rate, making it difficult to uncover a pre-
cise value for each, that is, causing the posterior to
have a flat, elongated peak in that direction.

High dimension. Many models in applied mathemat-
ics involve a large number of parameters. Moving
from the simple two-parameter example in figure 2
into very high dimensions poses significant chal-
lenges in terms of both exploring the parameter
space and visualizing the results. Progress in this
area is largely based on the use of Markov chain
Monte Carlo algorithms, where a markov chain

[II.25] is constructed whose equilibrium distribution
matches the desired posterior, allowing approximate
samples to be computed via long-time path simula-
tion. Here, the applied mathematics/applied statis-
tics interface comes back into focus, with many
Markov chain Monte Carlo notions having counter-
parts in the fields of optimization and numerical time
stepping.

In the applied mathematics setting, a further issue of
fundamental importance is the construction of a suit-
able likelihood function. As we saw in our simple exam-
ple, a deterministic model does not sit well with the
notion of likelihood, that is, the probability of seeing
this data, given the model parameters. With a determin-
istic model, we either recover the data exactly or we do
not recover it at all. To get around the issue we took the
commonly used step of placing all the blame on the
data—assuming that the mismatch is caused entirely
by measurement error. This step clearly ignores the
fundamental truth that mathematical models are based
on idealizations and can never reflect all aspects of a
physical system.

At first sight, this issue seems to disappear if we
begin with a stochastic model; for example, the sim-
ple production and decay system used in our tests
could be cast as a discrete-state birth and death pro-
cess, or a continuous-state stochastic differential equa-
tion. In either case, we are not forced to assume that
the data–model mismatch is driven solely by experi-
mental error. Given the model parameters, by construc-
tion a stochastic model assigns a probability to any
observed data, and hence we have an automatic like-
lihood. However, although stochastic modeling offers a
seamless transition to a likelihood function, it clearly
does not overcome objections that the model itself is
a source of error. Overall, the systematic incorporation
of uncertainties arising from modeling, discretization,

and experimental observation remains a high-profile
challenge.
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V.12 A Symmetric Framework with
Many Applications
Gilbert Strang

1 Introduction

This article describes one of the structures on which
applied mathematics is built. It has a discrete form,
expressed by matrix equations, and a continuous form,
expressed by differential equations. The matrices are
symmetric and the differential equations are self-
adjoint. These properties appear naturally when there
is an underlying minimum principle.

The important fact about this structure is that it
is truly useful (and extremely widespread). Problems
from mechanics, physics, economics, and more fit into
this framework. The temptation to overwhelm the
reader with a list of applications is almost irresistible.
Instead, we go directly to the KKT matrix, which shows
the form that all of these applications share:

M =
[
C−1 A
AT 0

]
m rows

n rows

C is square, symmetric, and positive-definite (and so
is C−1). A is rectangular with n independent columns
(n � m). The block matrix M is then symmetric and
invertible—but certainly not positive-definite. This is a
saddle-point matrix.

The firstm pivots are positive, coming from C−1. The
elimination steps multiply the first block row by ATC
and subtract from the second block row to produce
zeros below C−1:[

I 0

−ATC I

][
C−1 A
AT 0

]
=
[
C−1 A

0 −ATCA

]
.

Elimination has produced the ATCA matrix that is
fundamental to so many problems in computational
science. This n×n matrix appears in equation (2), and
it is the focus of section 3.

The Schur complement −ATCA in the last block is
negative-definite, so the last n pivots of M will all be
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negative. ThenMmust havem positive eigenvalues and

n negative eigenvalues (pivots and eigenvalues have

the same signs for symmetric matrices). A graph of the

quadratic,

Q(w,u) = 1
2w

TC−1w +uTATw

= 1
2

[
w1 · · ·wm u1 · · ·un

][C−1 A
AT 0

][
w
u

]
,

would go upward in m eigenvector directions and

downward in the (orthogonal) n eigenvector directions.

The saddle point is at (w,u) = (0,0).

1.1 Constrained Least Squares

Let us see how these matrices appear in a broad class

of optimization problems. The minimum principle is

quadratic with linear constraints:

minimize F(w) = 1
2w

TC−1w −wTb

subject to ATw = f .

The n constraints ATw = f lead to n Lagrange mul-

tipliers u1, . . . , un. Lagrange’s beautiful idea was to

build the constraints (using the multipliers) into the

function L:

L(w,u) = 1
2w

TC−1w −wTb +uT(ATw − f).

The optimal w and u are found at a stationary point

(not a minimum!) of L. The coefficient matrix is M :

∂L
∂w

= 0 → C−1w +Au = b,
∂L
∂u

= 0 → ATw = f .

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1)

Examples show convincingly that when the variables

w1, . . . ,wm have physical meaning (that is, when they

are currents in circuit theory, stresses in mechanics,

velocity in fluids, momentum in physics), the dual vari-

ables u1, . . . , un have meaning too. These Lagrange

multipliers represent the forces needed to impose the

constraints ATw = f (they are voltages in circuit

theory, displacements in mechanics, pressure in fluids,

position in physics).

The ws and us are dual unknowns. The fundamen-

tal theorem of optimization is the minimax or duality

theorem. A minimization over w (the primal problem)

connects to a maximization over u (the dual problem).

The first is a minimax of L(w,u), the second is the

maximin—and they are equal.

2 Numerical Optimization/Finite Elements

These two big subjects are not usually combined. The
finite-element method [II.12] is an approach (a suc-
cessful one) to solving differential equations. opti-

mization [IV.11] is generally seen in a different world.
But both subjects present us with the same choices,
precisely because equation (1) is central to both. Here
are three options for computing u and w.

(i) The mixed method for finite elements and the
primal-dual method for optimization solve for u
and w together. We work with M .

(ii) The stress method (or nullspace method) finds the
best w among all candidates that satisfy the con-
straints ATw = f . If wp is one particular solu-
tion, we add any solution of ATw = 0 (Kirchhoff’s
current law). We therefore need a basis for the
nullspace of AT.

(iii) The displacement method eliminates w = C(b −
Au) from equation (1) and solves for u. Multiply
the first row by ATC and subtract from the second
row, and then reverse all signs to work with ATCA:

ATCAu = ATCb − f . (2)

Equation (2) is a central problem of scientific com-
puting. The matrixATCA is symmetric positive-definite
(sign reversal produced a minimization). K = ATCA is
the stiffness matrix in finite elements. It is the graph
Laplacian matrix that appears everywhere in applied
mathematics. In statistics and linear regression, we
have the weighted normal equations.

For solid mechanics, this ATCA approach is the
nearly universal choice. For fluid mechanics, with pres-
sures and velocities, the mixed method is often pre-
ferred. This mathematical contest is reflected in bat-
tles between software packages: variations of spice

for electronic circuits and of finite-element codes like
nastran, femlab, and abaqus.

An excellent reference for the numerical solution of
saddle-point problems is the survey by Benzi et al.
(2005). For fluid problems and mixed methods (with
preconditioning), Elman et al. (2014) is outstanding.

3 The Framework

Here is the key sentence from Strang (1988): “I believe
that this ATCA pattern is the central framework for
problems of equilibrium … continuous and discrete,
linear and nonlinear, equations and variational princi-
ples.”ATCA is the system matrix or stiffness matrix that
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contains the geometry in A, the material properties in
C , and the physical laws in AT. The problems that we
need to solve are

ATCAu = f , ATCAx = λx,
du
dt

= −ATCAu,
d2u
dt2

= −ATCAu.

The mathematical model produces ATCA. The compu-
tational problem then deals with that matrix. We build
up the equations in three steps (A and C and AT). Then
we attack the equations numerically and analytically.

The continuous model has functions F instead of vec-
tors f , and derivatives A = d/dx and A = gradient
instead of matrices. But ATCA is still present:

Continuous linear ODE:

− d
dx

(
c(x)

du
dx

)
= F(x), A = d

dx
.

Continuous linear partial differential equation:

−div(c gradu) = F(x,y).
Continuous nonlinear partial differential equation:

div
(

gradu√
1 + |gradu|2

)
= 0.

When A is d/dx, its transpose is −d/dx. The diagonal
matrix C , which multiplies every component of a vec-
tor Au, is replaced by c(x), which multiplies du/dx at
every point.

The partial differential equations with A = grad and
AT = −div involve partial derivatives:

A = gradient =
[
∂/∂x
∂/∂y

]
,

AT = −divergence =
[
− ∂
∂x

− ∂
∂y

]
.

BetweenAT andA comes C , often linear but not always.
We will write e for Au:

the three-step framework,
e = Au, w = Ce, F = ATw,

potential u(x,y) A−−→ gradient e(x,y)
C−−→ flow w(x,y) AT

−−→ source F(x,y).

For flow in a network, A and AT express Kirchhoff’s
voltage and current laws and w = Ce is Ohm’s law:

voltages u→ voltage drops e
→ currents w → sources F.

A, C , and AT are matrices or differential operators.
They combine into a positive-definite stiffness matrix

K = ATCA. Positive-definite matrices are associated

with minimum principles for the total energy in the

system:

E(u) = 1
2u

TKu−uTF = 1
2 (Au)

TC(Au)−uTF.

The minimum of E(u) occurs whereKu = F . We have

recovered ATCAu = F . When C is a matrix multiplica-

tion, the energy E(u) is quadratic and its derivative is

linear. WhenC is nonlinear,CAu is reallyC(Au). In this

case, complicated by nonlinearity, minimum principles

are often most natural.

4 Nonlinear Equations and
Minimum Principles

When the material properties are nonlinear, w = Ce
becomes w = C(e). At any point on that curve, the

tangent gives the local linearization Δw ≈ C′(e)Δe. A

linear to nonlinear example is the step from Newton’s

law,

F =ma = d
dt

(
m

du
dt

)
,

to Einstein’s law. For relativity the mass m is not

constant. The momentum is not a linear function:

Newton’s momentum p =mv,

Einstein’s momentum p(v) = m0v√
1 − v2/c2

.

Returning from p,m, v tow, c, e, we want the equa-

tionw = C(e) to appear in the derivative of the energy.

The energy is, therefore, an integral:

energy =
∫
C(e)de,

linear case
∫
cede = 1

2ce
2.

The reverse direction uses the variable w. In the linear

case we simply divide: e = w/c. In the nonlinear case

w = C(e) is monotonic, and e = w/c changes to the

inverse function e = C−1(w). When we want the energy

as a function of w, we integrate as before:

energy =
∫
C−1(w)dw,

linear case
∫
w
c

dw = 1
2
w2

c
.

These two functions F∗(e) and F(w), the integrals of

inverse functions C(e) and C−1(w), are related by the

Legendre–Fenchel transform.
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5 The Graph Laplacian Matrices:
ATA and ATCA

If we plan to offer one example in greater detail, the
graph Laplacian must be our choice. Graphs are the
dominant model in discrete applied mathematics.

Start with n nodes. Connect them withm undirected
edges (a complete graph would have all 1

2n(n − 1)
edges; a spanning tree would have n− 1 edges and no
loops). The figure below shows n = 4 and m = 5. We
may imagine that each edge leaves from its lower num-
bered node, indicated by −1 in the edge–node incidence
matrix A:

1

1

2

2

33

4

4

5

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0

−1 0 1 0

0 −1 1 0

−1 0 0 1

0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

edge 1

2

3

4

5

The n columns are not independent. A is a “difference
matrix.” All differences between pairs of us are zero
when the voltages u1, u2, u3, u4 are equal:

A

⎡⎢⎢⎢⎢⎣
u1

u2

u3

u4

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u2 −u1

u3 −u1

u3 −u2

u4 −u1

u4 −u2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

Au = 0 for u = (c, c, c, c).
With the vector (1,1,1,1) in the nullspace, the sum of
the four columns is the zero column. The rank of A
is 3. For every connected graph the rank is n− 1, and
the one-dimensional nullspace contains the constant
vectors uc = (c, . . . , c).

Since these vectors have Auc = 0, they also have
ATCAuc = 0. The Laplacian ATA and the weighted
Laplacian matrix ATCA will be positive semidefinite but
not positive-definite. Each row will sum to zero. When
we fix one voltage at zero and remove it from the set
of n unknown us, this removes a column of A and row

of AT to leave reduced Laplacians of size n− 1. Then

ATA and ATCA are positive-definite.

For networks, C is an m ×m diagonal matrix that

comes from Ohm’s law wi = ciei. The numbers

c1, . . . , cm on the diagonal are positive (so C is positive-

definite, which is the property we need).

Matrix multiplication produces ATA (and then we

identify the pattern):

ATA =

⎡⎢⎢⎢⎢⎣
3 −1 −1 −1

−1 3 −1 −1

−1 −1 2 0

−1 −1 0 2

⎤⎥⎥⎥⎥⎦ .

The diagonal entries are the degrees of the nodes: the

number of adjacent edges. The off-diagonal entry in the

j, k position is −1 if an edge connects nodes j and k.

The zero entries in the 3, 4 and 4, 3 positions reflect

the nonexistence of an edge between those nodes.

It is useful to separate the unweighted LaplacianATA
into D − W . The diagonal matrix D = diag(3,3,3,2)
shows the degrees of the nodes. The off-diagonal

matrix W is the adjacency matrix, with Wjk = 1 when

nodes j and k are connected.

Finally, we compute ATCA. Why not multiply matri-

ces as columns times rows instead of always rows times

columns? Column 1 ofAT multiplies row 1 ofCA (which

is just c1 times row 1 of A). So the first piece of ATCA
comes entirely from edge 1 in the network, connecting

nodes 1 and 2:[
−1 1 0 0

]T
c1

[
−1 1 0 0

]

=

⎡⎢⎢⎢⎢⎣
c1 −c1 0 0

−c1 c1 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦ .

This is the element stiffness matrix for edge 1. Each

edge iwill produce such a matrix, full size but with only

four nonzeros. For the edge connecting nodes j and k,

the only nonzeros will be in those rows and columns.

The product ATCA then assembles (adds) these five

element matrices containing c1, . . . , c5. They overlap

only on the main diagonal, to produce D −W :

D = diag

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
c1 + c2 + c4

c1 + c3 + c5

c2 + c3

c4 + c5

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ ,
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W =

⎡⎢⎢⎢⎢⎣
0 c1 c2 c4

c1 0 c3 c5

c2 c3 0 0

c4 c5 0 0

⎤⎥⎥⎥⎥⎦ .
The weighted adjacency matrix W contains the ci

(previously all 1s). The weighted degree matrixD shows

the edges touching each node. More simply, the diag-

onal D ensures that every row of ATCA adds to zero.

The smallest eigenvalue is then λ1 = 0.

The next eigenvalue, λ2, plays an important role

in applications. Its eigenvector x2 will be orthogo-

nal (since ATCA is symmetric) to the first eigenvec-

tor x1 = (1,1,1,1). Separating positive and negative

components of this Fiedler eigenvector x2 is a use-

ful way to cluster the nodes. More heavily weighted

edges lie within the two clusters than between them.

When a graph comes to us with no clear structure or

interpretation, clustering is an important step toward

understanding.

So we end with modern applications of the same

graph Laplacian that is at the heart of network theory

and mass–spring systems. The fundamental construc-

tions of electronics and mechanics—the laws of Ohm

and Kirchhoff and Hooke—produce the saddle-point

matrix M in equation (1) before elimination removes

the ws (currents and stresses). From that elimination

the graph Laplacian matrix appears!

ATCA expresses a structure that is fundamental for

all graphs and networks: in engineering, in statistics

(where C−1 is the covariance matrix), in science, and in

mathematics.
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V.13 Granular Flows
Joe D. Goddard

1 Introduction

Granular materials represent a major object of human
activities: as measured in tons, the first material
manipulated on Earth is water; the second is granular
matter. . . . This may show up in very different forms:
rice, corn, powders for construction.. . . In our suppos-
edly modern age, we are extraordinarily clumsy with
granular systems.

P. G. de Gennes, “From Rice to Snow,”
Nishina Memorial Lecture 2008

This quote by a French Nobel laureate is familiar to

many in the field of granular mechanics and reflects a

long-standing scientific fascination and practical inter-

est. This state of affairs is acknowledged by many oth-

ers and summarized in the articles listed in the list of

further reading at the end of the article.

As a general definition, we understand by granu-

lar medium a particle assembly dominated by pair-

wise nearest-neighbor interactions and usually limited

to particles larger than 1 micrometer in diameter, for

which the direct mechanical effects of van der Waals

and ordinary thermal (“Brownian”) forces are negligi-

ble. This includes a large class of materials, such as

cereal grains, pharmaceutical tablets and capsules, geo-

materials such as sand, and the masses of rock and ice

in planetary rings.

Most of this article is concerned either with dry gran-

ular materials in which there are negligible effects of air

or other gases in the interstitial space, or with granular

materials that are completely saturated by an intersti-

tial liquid. In this case, liquid surface tension at “cap-

illary necks” between grains, as in the wet sand of

sand castles, or related forms of cohesion are largely

negligible.

There are several important and interrelated aspects

of granular mechanics:

(i) experiment and industrial or geotechnical applica-

tions;

(ii) analytical and computational micromechanics (dy-

namics at the grain level);

(iii) homogenization (“upscaling” or “coarse graining”)

to obtain smoothed continuum models from the

Newtonian mechanics of discrete grains;
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(iv) mathematical classification and solution of the con-
tinuum field equations for granular flow; and

(v) development of continuum models (“constitutive
equations”) for stress-deformation behavior.

This article focuses on item (v), since the study of
most of the preceding items either depends on it
or is strongly motivated by it. The following discus-
sion of (iv) sets the stage for the subsequent coverage
of (v).

2 Field Equations and Constitutive Equations

By field equations we mean the partial differential equa-
tions (PDEs) (with time t and spatial position x =̂ [xi]
as independent variables) that represent the contin-
uum-level mass and linear momentum balances gov-
erning the density ρ(x, t), the velocity v(x, t) =̂ [vi],
and the symmetric stress tensor T (x, t) =̂ [τij] for any
material :

ρ̇ = −ρ∇ · v and ρv̇ = ∇ · T . (1)

The indices refer to components in Cartesian coordin-
ates, and the notation “=̂ [·]” indicates components
of vectors and tensors in those coordinates. Written
out, (1) becomes ∂tρ + ∂j(ρvj) = 0 and ∂t(ρvi) =
∂j(τij − ρvivj) for i = 1,2,3, where ẇ = ∂tw +vj∂jw
for any quantityw, sums from j = 1 to 3 are taken over
terms with repeated indices, ∂iw = ∂w/∂xi, ∂tw =
∂w/∂t, and the product rule has been used. For more
information on (1), see continuum mechanics [IV.26].

There are ten dependent variables (ρ, vi, and τij =
τji) but only four equations in (1). In order to “close”
them (to make them soluble), we need six more equa-
tions. For example, the closure representing the consti-
tutive equations for an incompressible Newtonian fluid
(see navier–stokes equations [III.23]) is

T ′ = 2ηD′ and ρ = const., (2)

where η is a coefficient of shear viscosity andD denotes
the rate of deformation, also a symmetric second-rank
tensor, D = sym∇v =̂ 1

2 [∂ivj + ∂jvi], where “sym”
denotes the symmetric part of a second-rank tensor.
The prime denotes the deviator (“traceless” or “shear-
ing” part) X′ = X − 1

3 (trX)I or X′
ij = Xij − 1

3Xkkδij ,
where δij are the components of the identity I.

For rheologically more complicated (“complex”) flu-
ids, such as viscoelastic liquids, the stress at a mate-
rial point may depend on the entire past history of
the velocity gradient ∇v at that point. Viscoelasticity is
exemplified by the simplest form of the Maxwell fluid,

giving the rate of change of T ′ as a linear function of

D′ and T ′:

T̊ ′ = 2μD′ − λT ′ = λ(2ηD′ − T ′), (3)

where X̊ = Ẋ+sym(XW),XW =̂ [XikWkj],W is the skew

part of the velocity gradient, W =̂ 1
2 [∂ivj − ∂jvi], λ is

the relaxation rate or inverse of the relaxation time,

and μ is the elastic modulus. In this model, μ can be

identified with the elastic shear modulus G, which is

discussed below.

According to (3), which was proposed in a slightly dif-

ferent form by James Clerk Maxwell in 1867, the coeffi-

cient of viscosity and the elastic modulus are connected

by η = μ/λ, and a material responds elastically on a

timescale λ−1 with viscosity and viscous dissipation

arising from relaxing elastic stress.

One obtains from (3) elastic-solid or viscous-fluid

behavior in the respective limits λ → 0 or λ → ∞. This

is illustrated by the quintessential viscoelastic mate-

rial “silly putty,” which bounces elastically but under-

goes viscous flow in slow deformations. Rheologists

employ a Deborah number of the form γ̇/λ to distin-

guish between rapid solid-like deformations and slow

fluid-like deformations.

The superposed “◦” in (3) denotes a Jaumann deriva-

tive, which gives the time rate of change in a frame

translating with a material point and rotating with

the local material spin. The Jaumann derivative is the

simplest objective time derivative that embodies the

principle of material frame indifference. This principle,

which is not a fundamental law of mechanics, is tan-

tamount to the assumption that arbitrary rigid-body

rotations superimposed on a given motion of a mate-

rial merely rotate stresses in the same way. Stated

more generally, accelerations of a body relative to an

inertial (“Newtonian”) frame do not affect the stress–

deformation behavior. The principle is already reflected

in the simpler constitutive equation (2), where only the

symmetric part of ∇v is allowed.

While frame-indifference is a safe assumption for

most molecular materials, which are dominated at the

molecular level by random thermal motion, it could

conceivably break down for granular flows, where ran-

dom granular motions are comparable to those asso-

ciated with macroscopic shearing. Nevertheless, the

assumption will be adopted in the constitutive models

considered here.

Note that, for a fixed material particle x◦, (3) repre-

sents a set of five simultaneous ordinary differential
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equations, which we call Lagrangian ordinary differ-
ential equations (LODEs). In the Eulerian or spatial
description, they must be combined with (1) to pro-
vide nine equations in the nine dependent variables,
p = − 1

3 trT , v, and T ′, governing the velocity field of
the Maxwell fluid. Solving the problem, subject to vari-
ous initial and boundary conditions, is no easy task and
usually requires advanced numerical methods.

We identify below a broad class of plausible consti-
tutive equations, which basically amount to general-
izations of (3). They include the so-called hypoplastic
models for granular plasticity. It turns out that all of
these can be obtained from elastic and inelastic poten-
tials, which are familiar in classical theories of elasto-
plasticity. The above models can be enlarged to include
models of visco-elastoplasticity that are broadly appli-
cable to all the prominent regimes of granular flow. Fol-
lowing the brief review in the following section of phe-
nomenology and flow regimes, a systematic outline of
the genesis of such models will be presented.

This article does not deal with the rather large body
of literature on numerical methods, neither the direct
simulation of micromechanics by the distinct element
method (DEM) nor solution of the continuum field equa-
tions based on finite-element methods (FEMs) or related
techniques.

3 Phenomenological Aspects

We consider here the important physical parameters
and dimensionless groups that characterize the various
regimes of granular mechanics and flows. The review
article of Forterre and Pouliquen that appears in the
further reading section at the end of this article pro-
vides more quantitative comparisons for fairly simple
shearing flows.

3.1 Key Parameters and Dimensionless Groups

Apart from various dimensionless parameters describ-
ing grain shape, the most prominent physical param-
eters for noncohesive granular media are grain elas-
tic (shear) modulus Gs, intrinsic grain density ρs, rep-
resentative grain diameter d, intergranular (Coulomb)
contact-friction coefficient μs or macroscopic counter-
part μC, and confining pressure ps. These parame-
ters define the key dimensionless groups that serve
to delineate various regimes of granular flow: namely,
an elasticity number, an inertia number, and a viscosity
number, given, respectively, by

E = Gs/ps, I = γ̇d
√
ρs/ps, H = ηsγ̇/ps,

and involving γ̇, a representative value of the shear rate
|D′|. We will also refer briefly below to a Knudsen num-
ber based on the ratio of microscopic to macroscopic
length scales.

Note that I is the analogue of the Deborah number
mentioned above, but it now involves a relaxation rate
that represents the competition between grain iner-
tia and Coulomb friction, μCps. The quantity I2 repre-
sents the ratio of representative granular kinetic energy
ρsd2γ̇2 to frictional confinement.

The transition from a fluid-saturated granular medi-
um to a dense fluid–particle suspension occurs when
the viscosity number H ≈ 1, where viscous and fric-
tional contact forces are comparable.

In the case of fluid–particle suspensions, it is cus-
tomary to identify I2/H as the “Stokes number” or the
“Bagnold number” (after a pioneer in granular flow),
representing the magnitude of grain-inertial forces to
viscous forces.

In the following sections we focus our attention on
dry granular media, including only a very brief mention
of fluid–particle systems.

3.2 Granular Flow Regimes

Although granular materials are devoid of intrinsic
thermal motion at the grain level, they nevertheless
exhibit states that resemble the solid, liquid, and
gaseous states of molecular systems. All these granular
states may coexist in the same flow field as the analogs
of “multiphase flow.” There are several open questions
as to the proper matching of solid-like immobile states
with the rapidly sheared states, but there is not enough
space in this brief article to address them here.

With τ denoting a representative shear stress and γ
a representative shear strain relative to a rest state (in
which τ/ps = 0 and I = 0), the various flow regimes are
shown in the qualitative and highly simplified sketch
in figure 1 and in table 1. In the figure, the dimension-
less ratio τ/ps is represented as a function of a single
dimensionless variable representing an interpolating
form:

X ∼ μCEγ/(Eγ + μC)+ I2. (4)

(A compound representation, closer to the constitu-
tive models considered below and illustrated in fig-
ure 5, is τ/ps = μC + I2, with γE = (τ/ps)E, of which
the first represents a Coulomb–Bagnold interpolation
found in certain constitutive models and where γE is
elastic deformation at any stress state.)

Figure 1 fails to capture the strong nonlinearity and
history dependence of granular plasticity in regime Ib:
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τ/ps

I II III
Ia

Ib

X

μC

Figure 1 Schematic of granular-flow regimes.

Table 1 The granular-flow regimes shown in figure 1
(the last column gives the scaling of the stress τ).

I Quasi-static: (Hertz–Coulomb)
elastoplastic “solid”

Ia (Hertz) elastic Gsγ
Ib (Coulomb) elastoplastic μC

II Dense-rapid: viscoplastic psf(I)
“liquid”

III Rarified-rapid: (Bagnold) ρsd2γ̇2

viscous “granular gas”

a matter that is addressed by the constitutive models
discussed below.

Like the liquid states of molecular systems, dense
rapid flow, represented as a general dimensionless
function f(I) in table 1, may be the most poorly under-
stood regime of granular mechanics. It involves impor-
tant phenomena such as the fascinating granular size
segregation. There is some evidence that this regime
may involve an additional dependence on E for soft
granular materials.

3.2.1 The Elastic Regime

The geometry of contact between quasispherical lin-
ear (Hookean) elastic particles should lead to nonlinear
elasticity of a granular mass at low confining pressures
ps and to an interesting scaling of elastic moduli and
elastic wave speeds with pressure.

Based upon Hertzian contact mechanics, a rough
“mean-field” estimate of the continuum shear mod-
ulus G in terms of grain shear modulus Gs is given
by G/Gs ∼ E−1/3, which indicates a 1

3 -power depend-
ence on pressure. For example, with ps ∼ 100 kPa and
Gs ∼ 100 GPa (a rather stiff geomaterial), one finds

E ∼ 106 and G ∼ 10−2Gs, amounting to a huge reduc-
tion of global stiffness due to relatively soft Hertzian
contact.

In principle, we should replace Gs by G in table 1 and
(4), and E = Gs/ps by G/ps = E−2/3. In so doing, we
obtain an estimate of the limiting elastic strain for the
onset of Coulomb slip (with μC ∼ 1) to be γE ∼ E−2/3 ∼
10−4, given the above numerical value. Although crude,
this provides a reasonable estimate of the small elastic
range of stiff geomaterials such as sand.

3.2.2 The Elastoplastic Regime

Because of its venerable history, dating back to the clas-
sical works of Coulomb, Rankine, and others in the
eighteenth and nineteenth centuries, and its enduring
relevance to geomechanics, the field of elastoplastic-
ity is the most thoroughly studied area of granular
mechanics. Here we touch on a few salient phenom-
ena, and the theoretical issues surrounding them, by
way of background for the discussion of constitutive
modeling that follows.

Figure 2 shows the results of Wolfgang Ehlers’s two-
dimensional DEM simulations of a quasistatic hop-
per discharge and a biaxial compression test, both of
which illustrate a well-known localization of deforma-
tion into shear bands. A hallmark of granular plastic-
ity, this localized slip (or “failure”) may be implicated
in dynamic “arching,” with large transient stresses on
bounding surfaces such as hopper walls or structural
retaining walls. Similar phenomena are implicated in
large-scale landslides.

Figure 3 shows the development of shear bands in a
standard experimental quasistatic compression test on
a sand column surrounded by a thin elastic membrane.
The literature abounds with many interesting experi-
mental observations and numerical simulations (see,
for example, the book by Tejchman that appears in the
further reading below).

The occurrence of shear bands can be viewed mathe-
matically as material bifurcation and instability arising
from loss of convexity in the underlying constitutive
equations, accompanied by a change of type in the PDEs
involved in the field equations. We recall that similar
changes of type, e.g., from elliptic PDEs to hyperbolic
PDEs, are associated with phenomena such as the gas
dynamic transition from subsonic to supersonic flows
with formation of thin “shocks.”

To help understand the elastoplastic instability, fig-
ure 4 presents a qualitative sketch of the typical stress–
strain/dilatancy behavior in the axial compression of
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(a)

(b)

Figure 2 DEM simulations: (a) shear bands in slow hopper
flow and (b) shear bands in axial compression. (Courtesy of
Wolfgang Ehlers, University of Stuttgart.)

dense and loose sands, with σ denoting compressive
stress, ε compressive strain, and εV = log(V/V0) vol-
umetric strain (where a volume V0 has been deformed
into V ). While no numerical scales are shown on the
axes, the peak stress and the change of εV from negative
(contraction) to positive (dilation) typically occur at

(a)

(b)

Figure 3 Experimental axial compression of a dry Hos-
tun sand specimen: (a) before compression and (b) after
compression. (Courtesy of Wolfgang Ehlers.)

strains of a few percent (ε ∼ 0.01–0.05) for dense
sands.

Although it is tempting to regard the initial growth of
σ with ε as elastic in nature, the elastic regime is repre-
sented by much smaller strains (corresponding to the
estimates of order 10−4 given above), corresponding to
a nearly vertical unloading from any point on the σ–ε
curve. It is therefore much more plausible that the ini-
tial stress growth represents an almost completely dissi-
pative plastic “hardening” associated with compaction
(εV < 0) accompanied by growth of contact number
density nc and contact anisotropy, whereas the max-
imum in stress can be attributed to the subsequent
decrease in nc that accompanies dilation (εV > 0).

As will be discussed below, one can rationalize the
formation of shear bands as the result of “strain soft-
ening” or unstable “wrong-way” behavior (a decrease
of incremental force with incremental displacement)
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0
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εV
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Figure 4 Schematic of triaxial stress/dilatation–strain
curves for initially dense (solid curves) and loose (dashed
curves) sands.

following the peak stress. According to certain analy-
ses, this can arise as a purely dissipative process asso-
ciated with the decrease of plastic stress, whereas oth-
ers hypothesize that it may be the result of a peculiar
quasielastic response.

Whatever the precise nature of the material instabil-
ity, it generally calls for multipolar or “higher-gradient”
constitutive models involving an intrinsic material
length scale. Hence, to our list of important dimension-
less parameters we must now add a Knudsen number
K, as discussed below. Here, it suffices to say that a
material length scale - is necessary to regularize field
equations in order to avoid sharp discontinuities in
strain rate by assigning finite thickness to zones of
strain localization. Such a scale, clearly evident in the
DEM simulations and experiments of figures 2 and 3,
cannot be predicted with the nonpolar models that
constitute the main subject of this article.

3.2.3 Springs and Slide Blocks

Setting aside length-scale effects, the simple mechani-
cal model in figure 5 provides a useful intuitive view
of the continuum model considered below. There,
the applied force T ′ is the analogue of continuum-
mechanical shear stress, and the rate of extension of
the device represents deviatoric deformation rate D′.

The serrated slide block at the top of figure 5
is a modification of the standard flat plastic slide
block, where sliding stress τ represents a pressure-
independent yield stress, or a frictional slide block
with τ/ps = μC representing the (Amontons–Coulomb)
coefficient of sliding friction. The serrated version rep-
resents the granular “interlocking” model of Taylor

ps

μC

μP μE

μE
~

ηB

T'

Figure 5 Slide block/spring/dashpot
analogue of visco-elastoplasticity.

(1948) or the “sawtooth” model of Rowe (1962) based
on the concept of granular dilatancy introduced in
1885 by Osborne Reynolds (who is also renowned for
his work in various fields of fluid mechanics). Accord-
ing to Reynolds, the shearing resistance of a gran-
ular medium is partly due to volumetric expansion
against the confining pressure. Thus, if the sawtooth
angle vanishes, then one obtains a standard model of
plasticity, with resistance due solely to yield stress or
pressure-dependent friction.

At the point of sliding instability in the model, where
the maximum volume expansion occurs, part of the
stored volumetric energy must be dissipated by sub-
sequent collapse and collisional impact. This may be
assumed to occur on extremely short timescales, giving
rise to an apparent sliding friction coefficient μC even if
there is no sliding friction between grains (μs = 0). This
rapid energy dissipation is emblematic of tribological
and plastic-flow processes, where, owing to topological
roughness and instability in the small, stored energy is
thermalized on negligibly small timescales giving rise
to rate-independent forces in the large.

As a second special feature of the model, the spring
with constant μ̃E converts plastic deformation into
“frozen elastic energy” and also provides an elemen-
tary model of plastic work hardening. This elastic ele-
ment is intended to illustrate the fact that some of
the stored elastic energy can never be entirely recov-
ered solely by the mechanical action of T ′, which leads
to history effects and associated complications in the
thermodynamic theories of plasticity.

3.2.4 Viscoplasticity

For rapid granular flow, the viscous dashpot with (Bag-
nold) viscosity ηB (see figure 5) adds a rate-dependent
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force associated with granular kinetic energy and col-
lisional dissipation. This leads to a form of Bingham
plasticity that is discussed below and is described by
certain rheological models, providing a rough interpo-
lation between regimes I and III in figure 1. The viscous
dashpot can also represent the effects of interstitial flu-
ids. Note that removal of the plastic slide block gives
the Maxwell model of viscoelasticity (3) whenever the
spring and dashpot are linear.

Apart from presenting constitutive models that en-
compass those currently employed, we do not deal
directly with the numerous issues and challenges in
modeling the dense-rapid flow regime.

4 Constitutive Models

Inevitably, constitutive models for granular flow are
complicated because of the wide range of phenomenol-
ogy observed. We use a class of models that relate
Cauchy stress T to deformation rate D, often referred
to as the Eulerian description. In particular, we focus on
a class of generalized hypoplastic models, based on a
stress-space description that allows for nonlinear func-
tions of stress. Although the approximation of linear
elasticity is suitable for many granular materials, par-
ticularly stiff geomaterials, the nonlinear theory may
find application in the field of soft granular materials
such as pharmaceutical capsules and clayey soils.

4.1 Hypoplasticity

Let us start with an isotropic nonlinearly elastic mate-
rial. This is one for which the stress T and the finite
(Eulerian) strain tensor E = 1

2 (FF
T − I) are connected

by isotropic relations of the form

T = (E) or E = −1(T ). (5)

Here, F = ∂x/∂x◦, where x◦ and x(x◦) denote the ref-
erence position and current placement, respectively,
of material points. Hyperelasticity (or “Green elastic-
ity”) is based on the thermodynamic consistency con-
dition that the functions in (5) be derivable from
elastic potentials. Truesdell’s hypoelasticity—a gener-
alization of elasticity that allows for a more general
rate-independent but path-dependent relation between
stress and strain—is represented by the LODE

T̊ = μE(T ) : D, (6)

where μE is the fourth-rank hypoelastic modulus. With
suitable integrability conditions on this modulus, it is
possible to show that (6) implies an elastic relation of
the form (5).

To obtain visco-elastoplasticity from (6), we adapt
the first fundamental postulate of incremental plas-
ticity: that the deformation rate can be decomposed
into elastic and inelastic (or “plastico-viscous”) parts,
D = DE + DP. Then replace D in the relations above
by DE = D − DP and provide a constitutive equation
for DP.

As the second fundamental postulate, we assume
that the elastic stress T conjugate to DE is identical
to the inelastic stress conjugate to DP, which follows
from an assumption of internal equilibrium of the type
suggested by the simple model in figure 5.

Finally, as the third fundamental postulate, we as-
sume that the system is strongly dissipative such that
T and DP are related by dual inelastic potentials. Vis-
coelasticity follows and yields a nonlinear form of the
Maxwell fluid (3).

Plasticity, as defined by rate-independent stress, rep-
resents a singular exception to the above: the mag-
nitude |DP| becomes indeterminate. The assumption
of overall independence of rate and history implies a
relation of the form

|DP| = |D|ϑ(T , D̂),
where D̂ = D/|D| and |D| =

√
DijDij , and, hence, a

generalized form of isotropic hypoplasticity,

T̊ = μH(T , D̂) : D, (7)

with a formula for μH in terms of the “inelastic clock”
function ϑ. In the standard theory of hypoplasticity,
ϑ(T , D̂) is independent of D̂, there is no distinction
between elastic and plastic deformation rates, and the
constitutive equation reduces to (7) with hypoplastic
modulus taking the form

μH = μE(T )−K(T )⊗ D̂, (8)

where A ⊗ B =̂ [AijBkl]. Such models are popular with
many in the granular mechanics community (particu-
larly those interested in geomechanics), mainly because
they do not rely directly on the concept of a yield
surface or inelastic potentials (whence the qualifier
“hypo”), although they do involve limit states where
Jaumann stress rate vanishes asymptotically under the
action of a constant deformation rate D. This asymp-
totic state may be identified with the so-called critical
state of soil mechanics, where granular dilatancy van-
ishes and the granular material essentially flows like an
incompressible liquid.

The problem with the general form (8) is that
it is exceedingly difficult to establish mathematical
restrictions that will guarantee its thermodynamic
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admissibility, e.g., such that steady periodic cycles of
deformation do not give positive work output. By con-
trast, models built up from elastic and dissipative
potentials are much more likely to be satisfactory in
that regard.

The treatise by Kolymbas that appears in the further
reading provides an excellent overview and history of
hypoplastic modeling.

4.2 Anisotropy, Internal Variables, and Parametric

Hypoplasticity

Initially isotropic granular masses exhibit flow-induced
anisotropy, particularly in flow that is quasistatic
elastoplastic, since the grain kinetic energy or “temper-
ature” is insufficient to randomize granular microstruc-
ture. This anisotropy is often modeled by an assumed
dependence of elastic and inelastic potentials, and
associated moduli, on a symmetric second-rank fabric
tensor,A =̂ [Aij], which is subject to a rate-independent
evolution equation of the form

Å = α(T , D̂,A) : D.

This represent a special case of the “isotropic exten-
sion” of anisotropic constitutive relations, where the
anisotropic dependence on stress T or strain E is
achieved by the introduction of a set of “structural ten-
sors,” consisting in the simplest case of a set of second-
rank tensors and vectors. The structural tensors rep-
resent in turn a special case of a set X of evolution-
ary internal variables consisting of scalars, vectors, and
second-order tensors.

At present, the origins of the evolution equations are
unclear, although there may be a possibility of obtain-
ing them from a generalized balance of internal forces
derived on elastic and inelastic potentials that depend
on the internal variables or their rate of change.

Whatever the origin of their evolution equations, it is
easy to see that one can enlarge the set of dependent
variables from T to {T ,X} with the evolution equa-
tions leading to parametric hypoplasticity defined by
a generalization of (7). This gives a set of LODEs that
describe the effects of initial anisotropy, density, or vol-
ume fraction, etc., represented as initial conditions, and
their subsequent evolution under flow. This formula-
tion includes most of the current nonpolar models of
the evolutionary plasticity of granular media.

4.3 Multipolar Effects

In a system that is strongly inhomogeneous, such as
the shear field associated with shear bands, we expect

to encounter departures from the response of a clas-
sical simple (nonpolar) material having no intrinsic
length scale. The situation is generally characterized
by nonnegligible magnitudes of a Knudsen number
K = -/L, where - is a characteristic microscale and L
is a characteristic macroscale.

In the case of elastoplasticity, various empirical mod-
els suggest taking - to be about five to ten times the
median grain diameter: a scale that is most plausi-
bly associated with the length of the ubiquitous force
chains in static granular assemblies. These are chain-
like structures in which the contact forces are larger
than the mean force, and it is now generally accepted
that they represent the microscopic force network that
supports granular shear stress and rapidly reorganize
under a change of directional loading. The microme-
chanics determining the length of force chains is still
poorly understood.

Whatever the physical origins, a microscopic length
scale serves as a parameter in various enhanced contin-
uum models, including various micropolar and higher-
gradient models, all of which represent a form of weak
nonlocality referred to by the blanket term multipo-
lar. Perhaps the simplest is the Cosserat model, often
referred to as micropolar. This model owes its origins
to a highly influential treatise on structured continua
by the Cosserat brothers, Eugène and François, which
was celebrated internationally in 2009 on the occasion
of the centenary of its original publication. Tejchman’s
book provides a comprehensive summary of a fairly
general form of Cosserat hypoplasticity.

4.3.1 Particle Migration and Size Segregation

Another fascinating aspect of granular mechanics is
the shear-driven separation or “unmixing” of large par-
ticles from an initially uniform mixture of large and
small particles. Various models of particle migration in
fluid–particle suspensions or size segregation in gran-
ular media involve diffusion-like terms that suggest
multipolar effects. While some models involve gravita-
tionally driven sedimentation opposed by diffusional
remixing, other models involve a direct effect of gradi-
ents in shearing akin to those found in fluid–particle
suspensions.

It may be significant that many granular size-segrega-
tion effects are associated with dense flow in thin lay-
ers, which again suggests that Knudsen-number or mul-
tipolar effects are likely. Whatever the origins of parti-
cle migration, it can probably be treated as a strictly dis-
sipative process, implying that it can be represented as
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a generalized velocity in a dissipation potential, thus
suggesting a convenient way of formulating properly
invariant constitutive relations.

4.3.2 Relevance to Material Instability

There is a bewildering variety of instabilities in granu-
lar flow. These range from the shear-banding instabili-
ties in quasistatic flow discussed above to gravitational
layering in moderately dense rapid flow and clustering
instabilities in granular gases.

The author advocates a distinction between mate-
rial or constitutive instability, representing the instabil-
ity of homogeneous states in the absence of boundary
influences, and the dynamical or geometric instability
that occurs in materially stable media, such as elastic
buckling and inertial instability of viscous flows. With
this distinction, it is easier to assess the importance of
multipolar and other effects.

Past studies reveal multipolar effects on elastoplastic
instability, not only on post-bifurcation features such
as the width of shear bands but also on the mate-
rial instability itself. This represents an interesting and
challenging area for further research based on the para-
metric viscoelastic or hypoplastic models of the type
discussed above. The general question is whether and
how the length scales that lend dimensions to subse-
quent patterned states enter into the initial instability
leading to those patterns.

Further Reading

Forterre, Y., and O. Pouliquen. 2008. Flows of dense granular
media. Annual Review of Fluid Mechanics 40:1–24.

Goddard, J. 2014. Continuum modeling of granular media.
Applied Mechanics Reviews 66(5):050801.

Kolymbas, D. 2000. Introduction to Hypoplasticity. Rotter-
dam: A. A. Balkema.

Lubarda, V. A. 2002. Elastoplasticity Theory. Boca Raton, FL:
CRC Press.

Ottino, J. M., and D. V. Khakhar. 2000. Mixing and seg-
regation of granular materials. Annual Review of Fluid
Mechanics 32:55–91.

Rao, K., and P. Nott. 2008. An Introduction to Granular Flow.
Cambridge: Cambridge University Press.

Tejchman, J. 2008. Shear Localization in Granular Bodies
with Micro-Polar Hypoplasticity. Berlin: Springer.

V.14 Modern Optics
Miguel A. Alonso

1 Introduction

Since ancient times, optics has been inextricably linked
to geometry and other branches of mathematics. Euclid

himself wrote the earliest known treatise on optics,
in which he postulated the laws of perspective. Simi-
larly, Hero of Alexandria formulated perhaps the earli-
est variational principle when he observed that a light
ray traveling between two points with an intermediate
reflection by a mirror corresponds to the shortest such
path. The parallel development of optics and geom-
etry continued in the Arabic world with the likes of
Ibn-Sahl and Ibn al-Haytham (also known as Alhazen).
More recently, modern vector calculus was inspired by
the studies of Gibbs and Heaviside in electromagnetic
theory.

Modern optics is ubiquitous in contemporary science
and technology. It provides direct tests for fundamen-
tal physics and is the basis of applications including
telecommunications, data storage, integrated circuit
manufacture, astronomy, environmental monitoring,
and medical diagnosis and therapy. Optics and pho-
tonics incorporate many mathematical methods cov-
ered by typical undergraduate curricula in mathemat-
ics, physics, and engineering. Topics such as linear alge-
bra, Fourier theory, separation of variables, and the
theory of analytic functions acquire meanings that are
palpably physical and, by the very nature of the topic,
visual. This article is an overview of the mathematical
techniques involved in the study of light, emphasiz-
ing free-space propagation and some simple photonic
devices.

2 Free-Space Propagation

Consider first the simple case of light propagating
through free space. It is well known that maxwell’s

equations [III.22] for the electromagnetic field can be
combined into a vector wave equation whose solutions
include waves that travel at a speed given by a com-
bination of the free-space electric permittivity and the
magnetic permeability. Maxwell, aware of the numeri-
cal similarity of this combination with recent measure-
ments of the speed of light, corrected the equations of
electricity and magnetism in such a way that they could
be combined into an equation that also described the
phenomenon of light.

As well as explaining the speed of light, Maxwell’s
equations also explain the fact that light is a trans-
verse wave: for an extended wave with fairly uniform
intensity, the electric field (and magnetic field, which
we do not consider further) is a vector whose direction
is perpendicular to the wave’s direction of propagation.
For simplicity, however, we ignore the vector nature of
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the electric field and consider a scalar wave that satis-
fies a similar wave equation (this may be a component
of the vector field). We make the further simplifying
assumption that at every spatial point, the dependence
of the field on time t is a sinusoidal wave with fixed
angular frequency ω. Since our eyes translate tempo-
ral frequency into color, such fields are referred to as
monochromatic. A real monochromatic field E(r, t) can
be defined as

E(r, t) = A(r) cos[Φ(r)−ωt],
where A is called the amplitude and Φ the phase, both
being real functions of position r = (x,y, z). The inten-
sity of light at each point is given by I ≡ A2. The optical
wave can therefore be written as

E(r, t) = Re{U(r)e−iωt},
where Re denotes the real part and U(r) = A(r)eiΦ(r)

is a complex function of r, independent of t. The wave
equation then reduces to the Helmholtz equation

∇2U(r)+ k2U(r) = 0, (1)

with wave number k ≡ ω/c = 2π/λ, with c the speed
of light in vacuum and λ the wavelength.

2.1 Modes of Free Space

In many practical problems in optics one seeks to
model the field’s propagation away from a given initial
plane where it is known. For this purpose, one of the
Cartesian axes, by convention the z-axis, is singled out
as a propagation parameter. Suppose that we are inter-
ested in modeling only the field for z � 0 and that the
field’s source is located within the half-space z < 0, so
within our region of interest light travels with increas-
ing z. Planes of constant z are referred to as transverse
planes. This allows us to introduce the concept of an
optical mode. In this context, a mode is a field whose
dependence on z is separable. The simplest mode is
a plane wave, for which the amplitude is completely
uniform:

UPW(r;u) = eiku·r ,

where u = (ux,uy,uz) is a unit vector that specifies
the wave’s propagation direction. Since we assume for-
ward propagation in z, plane waves for which uz < 0
are not allowed, so uz can be expressed as a function
of ux and uy , i.e.,

uz(ux,uy) =
√

1 −u2
x −u2

y . (2)

This in fact allows solutions where u2
x + u2

y > 1, for
which uz is purely imaginary. In this case, one must

choose the branch of the square root that is positive
imaginary, so that the field remains bounded for z > 0
and UPW decays exponentially under propagation in z.
Such waves are called evanescent waves, and they play
an important role in fields close to interfaces.

Forward-propagating plane-wave modes, together
with forward-decaying evanescent modes, form a com-
plete set over the initial transverse plane. Fields prop-
agating toward larger values of z can therefore be
expressed as a linear superposition of these waves:

U(r) =
∫∫
Ũ(ux,uy)eiku·r dux duy, (3)

where we assume that integrals are over all real num-
bers unless otherwise specified. Ũ is a function known
as the angular spectrum that determines the amplitude
of each plane wave. Note that the angular spectrum
is easily determined from the known field at z = 0,
since at this initial plane (3) takes the form of a Fourier
superposition, which can be easily inverted:

Ũ(ux,uy) =
(
k

2π

)2 ∫∫
U(x,y,0)e−ik(xux+yuy) dx dy.

This gives the key result that the two-dimensional spa-
tial Fourier transform of a known monochromatic field
at some initial plane gives access to the amplitudes of
the plane waves that compose such a field.

This description of optical propagation can be sum-
marized in terms of Fourier transforms, i.e.,

U(x,y, z) = F̂−1[eikzuz(ux,uy)F̂U(x,y,0)],

where

F̂g =
(
k

2π

)2 ∫∫
g(x,y)e−ik(xux+yuy) dx dy,

F̂−1g̃ =
∫∫
g̃(ux,uy)eik(xux+yuy) dux duy.

Free propagation can thus be modeled by suitable
Fourier transformations of the known two-dimensional
initial field via the propagation transfer function eikzuz .
This is not surprising, as it is well known that systems
that are both linear and translation invariant in x and
y can be modeled by a transfer function. Free space is
also translation invariant in z, and hence propagations
over consecutive intervals must equal the single prop-
agation over the total distance. In such systems, the
transfer function must be an exponential whose expo-
nent is proportional to z, so the product of the trans-
fer functions for various distances equals the transfer
function for their sum.

The transfer function depends on the directional
parameters ux and uy only through the combination
u2
x + u2

y ≡ u2⊥. Therefore, linear superpositions of
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plane waves for which u2⊥ is fixed preserve their trans-
verse functional form and are therefore also modes that
could be more useful in particular situations. A natu-
ral choice for cylindrical light beams is the mode set
labeled by polar coordinatesu⊥,ϕ in the Fourier plane,
so ux = u⊥ cosϕ and uy = u⊥ sinϕ, for which the
transfer function is eikz(1−u2⊥)1/2 . Alternative complete
families of modes result from combining mode fami-
lies with different dependence on the azimuth ϕ. For
instance, the angular spectrum may be expanded as a
Fourier series in this angle,

Ũ(u⊥ cosϕ,u⊥ sinϕ) =
∑
m

Ūm(u⊥)
2π im

eimϕ,

where the sum is over all integers. The plane-wave
superposition is then replaced by

U(r) =
∑
m

∫∞

0
Ūm(u⊥)Jm(ku⊥ρ)ei(mφ+kuzz) du⊥,

where Jm(t) are bessel functions [III.2] of the first
kind, and ρ =

√
x2 +y2 and φ = arctan(x,y) are

polar coordinates in the spatial transverse plane. The
functions Jm(ku⊥ρ)ei(mφ+kuzz) are a new set of com-
plete orthogonal modes, known as Bessel beams. (When
u⊥ > 1, uz = (1 − u2⊥)1/2 is purely imaginary, so the
corresponding Bessel beam is evanescent.) Unlike plane
waves, Bessel beams have a nonuniform intensity distri-
bution over transverse planes, taking maximum values
near a ring of radius |m|/ku⊥. Furthermore, form ≠ 0,
these modes have anmth-order phase vortex on the z-
axis. That is, on the line x = y = 0 the amplitude is
zero and the phase varies by 2πm asφ increases from
0 to 2π . Optical phase vortices have been the focus
of significant attention recently; among other reasons,
this is because they endow beams with angular momen-
tum. For example, a beam with a phase vortex along its
axis is capable of making a small particle spin. Modeling
such transfer of angular momentum, however, requires
knowledge of the theory of light–matter interaction,
which is not discussed here.

Plane waves and Bessel beams are only two of an infi-
nite range of possible modes, those whose transverse
profiles are separable in Cartesian and polar coordin-
ates, respectively. Other separable families include so-
called Mathieu and parabolic beams (separable in ellip-
tic and parabolic cylindrical coordinates, respectively),
and there are also numerous nonseparable families.
Notice that for all of these modes, the integral of the
intensity over the transverse plane diverges, imply-
ing that they are not physically realizable fields in a
strict sense, as they would require an infinite amount

of power. However, appropriate continuous superpo-

sitions of them are square integrable over transverse

planes and they are therefore physical. Furthermore,

finite-power approximations to individual modes are

achievable and useful for a range of applications.

2.2 Paraxial Approximation

Light beams often have strong directionality, in the

sense that they can be expressed as superpositions

of plane waves that all travel within a narrow angu-

lar range with respect to a central direction, conve-

niently the z-axis of the angular spectrum decompo-

sition. In this case Ũ differs significantly from zero

only for |ux|, |uy | � 1. Therefore, from (2), uz ≈
1 − (u2

x + u2
y)/2, so that the plane-wave expansion

becomes

U ≈
∫∫
Ũ exp[ik[z +uxx +uyy

− 1
2z(u

2
x +u2

y)]]dux duy. (4)

Of course, since an approximation was performed, the

superposition in this expression is no longer a solution

of the Helmholtz equation. In fact,Up ≡ Ue−ikz is a gen-

eral solution to the so-called paraxial wave equation,

written here as

i
k
∂Up

∂z
= − 1

2k2
∇2

⊥Up, (5)

where ∇2⊥ ≡ ∂2/∂x2 + ∂2/∂y2. This equation has the

same mathematical form as the Schrödinger equation

that determines the time evolution of a wave function

in quantum mechanics [IV.23], with zero potential

and z as the time propagation parameter. The similarity

between the paraxial and Schrödinger equations sug-

gests that the latter is also an approximation of a more

precise equation under some limit. Solutions of the

Schrödinger equation are approximations to solutions

of relativistic quantum mechanical equations, such as

the dirac equation [III.9], when all velocities involved

are small compared with c. In other words, nonrela-

tivistic wave functions are “paraxial” around the time

axis, since they are composed of plane-wave compo-

nents forming small angles with respect to the time axis

(scaled by c to have spatial units) in space-time.

Substituting Ũ as a Fourier transform into (4) leads

to an alternative expression for paraxial field propaga-

tion in the form of a convolution, known as the Fresnel

diffraction formula,

U(r) =
∫∫
U(x′, y′,0)K(x − x′, y −y′, z)dx′ dy′,
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where the Fresnel propagator K is proportional to the
paraxial approximation to a spherical wave:

K(x,y, z) = 1
iλz

exp
(

ik
(
z + x

2 +y2

2z

))
.

This description is related to Huygens’s interpretation
of wave propagation: each point along a transverse
plane can be regarded as a secondary wave whose
amplitude and phase of emission are determined by the
field at that point. This interpretation can be extended
to quantum mechanics via the Schrödinger equation,
where it is the basis of Feynman’s path integral formu-
lation.

The paraxial approximation allows the closed-form
calculation of several types of fields. For example,
let the initial field be a Gaussian function of x and
y with height U0 and width w0, i.e., UG(x,y,0) =
U0e−(x

2+y2)/2w2
0 . The propagated paraxial field is

UG(r) = U0

1 + iz/zR
exp

(
ik
[
z − x2 +y2

2w2
0 (1 + iz/zR)

])
,

where zR = kw2
0 is known as the Rayleigh range. The

beam’s intensity remains Gaussian under propagation,
broadening away from the waist plane z = 0:

|UG(r)|2 = |U0|2
w2

0

w2(z)
exp

(
−x

2 +y2

w2(z)

)
,

where w(z) = w0(1 + z2/z2
R)1/2. UG is a good approx-

imation to the beams generated by standard continu-
ous-wave lasers, such as laser pointers. This is because,
within the paraxial approximation, they are modes of
three-dimensional resonant laser cavities with slightly
concave, partially reflecting surfaces resembling a seg-
ment of a sphere. The light is transmitted out of the cav-
ity through one of these surfaces after many reflections
while keeping the same transverse profile.

There is an interesting relation between Gaussian
beams and the Fresnel propagator: in the limit of
smallw0, UG becomes this propagator, i.e., the paraxial
counterpart to a diverging spherical wave:

K(x,y, z) = lim
w0→0

UG(r)
2πw2

0U0
.

Conversely, a Gaussian beam of arbitrary widthw0 can
be expressed as proportional to a spherical wave that
has been displaced in z by an imaginary distance zR =
kw2

0 :

UG(r) = U0λzRe−kzRK(x,y, z − izR).

There are families of fields that, like Gaussian beams,
are modes of cavities with curved mirrors. While these
are not strictly speaking modes of free space, their

intensity profile is preserved upon propagation, with
width proportional tow(z) defined above, and a corre-
sponding longitudinal attenuation proportional to the
inverse square of this factor. One such family is the so-
called Hermite–Gaussian beams, where the initial field
is the product of a Gaussian and appropriately scaled
hermite polynomials [II.29] Hn of different orders in
x and y :

UHG
m,n(r) =

[
w0

w(z)

(
1 + i

z
zR

)]m+n

×Hm
[
x

w(z)

]
Hn
[
y
w(z)

]
UG(r)

for m,n = 0,1, . . . . Similarly, Laguerre–Gaussian
beams are defined as

ULG
-,p(r) =

[
w0

w(z)

(
1 + i

z
zR

)]2p+|-|

× ρ|-|ei-φL(|-|)p

[
ρ2

w2(z)

]
UG(r)

for integer - and p = 0,1, . . . , and where L(-)p is an
associated laguerre polynomial [II.29]. Like Bessel
beams, Laguerre–Gaussian beams with - �= 0 have
an -th-order phase vortex at the z-axis and there-
fore carry orbital angular momentum. For fixed z,
the Hermite–Gaussian beams are separable in two-
dimensional Cartesian coordinates, while the Laguerre–
Gaussian beams are separable in polar coordinates
(and Gaussian beams are separable in each). A third
family, known as the Ince–Gaussian beams, is separa-
ble in elliptical coordinates. With appropriate constant
prefactors, each of these families is orthonormal in
any plane of constant z. Therefore, any paraxial field
can be expressed as a discrete linear superposition of
Hermite–Gaussian or Laguerre–Gaussian beams as

U(r) =
∞∑

m,n=0

am,nUHG
m,n =

∞∑
p=0

∞∑
-=−∞

bm,nULG
-,p,

where am,n and b-,p are appropriate coefficients.

2.3 Connection with Ray Optics

Maxwell’s equations give a description of light as an
electromagnetic wave. However, the older and sim-
pler ray model is often closer to our experience-based
intuition and is sufficient for many practical purposes
including the design of simple imaging systems. To
properly understand the connection between the ray
and wave models, one must delve into the theory of
asymptotics [II.1]. In this section, however, we give a
simplified version of the connection for basic optical
systems in the paraxial approximation.
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In the ray model, optical power travels along mutu-
ally independent lines called rays, which are straight
for propagation through homogeneous media such as
free space. A ray crossing a plane of constant z is
labeled by its intersection r⊥ = (x,y), together with
its direction, specified by the transverse part of its
direction vector, u⊥ = (ux,uy). These define the ray
state vector v ≡ (r⊥,u⊥). In the paraxial approxima-
tion and for simple systems, v evolves under propaga-
tion according to simple rules. Under free propagation
between two planes of constant z separated by a dis-
tance d, the ray direction is constant while the trans-
verse position changes by approximately du⊥. In this
case, v → F(d) · v under free propagation, determined
by the 4 × 4 matrix

F(d) =
(

1 d1

O 1

)
,

with 1 andO being the 2×2 identity and zero matrices,
respectively. Similarly, propagation across a thin lens
with focal distance f does not affect r⊥ but does change
the ray’s direction in proportion to r⊥, so that the effect
of the lens on the ray follows the linear relation v →
L(f ) · v, with

L(f ) =
(

1 O
−1/f 1

)
.

Other basic optical elements are also described by
matrices that multiply the state vector. When a ray
propagates along a series of elements, the state vector
must be multiplied by the corresponding succession of
matrices, so the complete system is characterized by a
single matrix S given by the product of the matrices for
the corresponding elements. This matrix is generally
written in terms of its four 2 × 2 submatrices as

S =
(
A B
C D

)
,

and in the literature it is somewhat clumsily referred
to as an ABCD matrix.

A related description of propagation exists in the
wave domain. It can be shown that the propagation of
the wave field is given by the so-called Collins formula:

U(r) =
∫∫
U(x′, y′,0)KC(x′, y′;x,y)dx′ dy′,

where the Collins propagator is

KC = e
1
2 ik(r′⊥·B−1A·r′⊥−2r′⊥·B−1·r⊥+r⊥·DB−1·r⊥)

iλ
√

det(B)
.

That is, for simple paraxial systems, the same matri-
ces that describe the propagation of rays also describe

the propagation of waves. For free propagation, S =
F(z), and the Collins propagator reduces to the Fresnel
propagator.

2.4 Phase Retrieval

When measuring light, CCD arrays and photographic
film detect only a field’s intensity I = |U|2, so all infor-
mation about the phase is lost. However, many applica-
tions require accurate knowledge of the phase, which
contains most of the information about the source
that generated the field and the medium it traveled
through. For example, in astronomical and ophthalmic
measurements it is important to determine phase fluc-
tuations caused by the atmosphere or the eye’s imper-
fections for their real-time correction through adaptive
elements.

Several methods have been developed to retrieve the
phase based only on the intensity. For example, know-
ing the intensity at two nearby planes of constant z
is nearly equivalent to knowing the intensity and its
derivative in z. By writing Up = √

IeiΦ and taking the
real part of (5) times −ie−iΦ , one finds the so-called
transport-of-intensity equation:

∂I
∂z

+∇⊥ · (I∇⊥Φ) = 0.

Therefore, knowledge of I and its z derivative over a
plane of constant z allows, in principle, the solution for
Φ(x,y) at that plane, provided appropriate boundary
conditions are used.

In other situations, the intensity is known at two dis-
tant planes, between which there might be some optical
elements. (In some cases, the intensity is known at one
plane and only certain restrictions are known at the
second, e.g., the support of the field.) Several strategies
exist for estimating the phase in these cases, the best-
known one being the Gerchberg–Saxton iterative algo-
rithm. The form of the propagator between the planes
(such as the Fresnel or Collins propagator) is assumed,
then an initial field estimate at plane 1 is proposed
whose amplitude is the square root of the known inten-
sity and whose phase is an ansatz. This field estimate
is then propagated numerically to plane 2, where the
resulting intensity typically does not match the known
one. A corrected estimate is then proposed by replacing
the amplitude with the square root of the known inten-
sity (or enforcing the known restrictions) while leaving
the phase unchanged. This corrected estimate is then
propagated back to plane 1, where the same amplitude
replacement procedure is applied. Usually, after several
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such iterations, the estimate converges to the correct
field, giving access to the phase. However, there can
be issues with convergence as well as with uniqueness
of the solution, depending on the system’s propagator.
For example, this approach would not be able to resolve
the sign of - of the propagating Laguerre–Gauss field
introduced above.

3 Guided Waves

The great success of photonic technology stems in large
part from the convenience of using light for transmit-
ting and/or processing information. The basis of such
technology is the ability to guide light through specially
designed channels whose transverse dimensions can be
of the order of the light’s wavelength.

3.1 Waveguides and Optical Fibers

The propagation of monochromatic light through a
medium is determined approximately by a modified
version of the Helmholtz equation (1):

∇2U(r)+ k2n2(r)U(r) = 0,

where n(r) is known as the refractive index, which can
vary with position. The real part of the refractive index,
nr, determines the speed at which the field’s wave-
fronts travel at that point in the medium, according to
c/nr. On the other hand, the imaginary part, ni , deter-
mines the rate of absorption of light by the material:
after propagation by a distance d in a homogeneous
medium, the amplitude is damped by a factor e−knid.

In order to understand light guiding, we consider
a medium in which n depends only on the trans-
verse variables x, y . By using the paraxial approxima-
tion, one finds a modified version of the paraxial wave
equation (5),

i
kn0

∂Up

∂z
= − 1

2k2n2
0

∇2
⊥Up + n

2
0 −n2(x,y)

2n0
Up,

where Up ≡ Ue−ikn0z with n0 = n(0,0). We simplify
further by settingn as purely real and by assuming that
it takes its largest value along the line x = y = 0, away
from which it decreases monotonically as transverse
distance increases. In this case, the paraxial wave equa-
tion is analogous to Schrödinger’s equation for a quan-
tum particle in a two-dimensional attractive potential,
and therefore it accepts solutions that are concentrated
within a region surrounding the z-axis. To see this,
consider the case of a slab of transparent material
with refractive index n0 restricted to |x| � a, sur-
rounded by a transparent medium of refractive index

n1(< n0). Note that this structure is independent of
y . The paraxial wave equation then accepts separable
solutions Up = f(x)e−ikn0δz , where δ is a real con-
stant to be determined. Let Δ ≡ n0 − n1 � 1, so that
n2

0 − n2
1 ≈ 2n0Δ. Symmetric solutions for f can be

found to approximately have the form

f(x) =
⎧⎨⎩f0 cos(kn0

√
2δx), |x| � a,

f1 exp[−kn0
√

2(Δ− δ)|x|], |x| > a,
where δ and the constant amplitudes f0 and f1 must
be chosen so that f(x) and its derivative are contin-
uous. It is easy to find that this condition leads to a
transcendental equation for δ:

tan(kn0

√
2δa) =

√
Δ− δ
δ

. (6)

This equation has a finite, discrete set of solutions for
δ, restricted to the range (0, Δ). Therefore, only a finite
set of even solutions for f exist where the field is con-
fined exponentially to the central slab. Odd solutions
also exist where, for |x| � a, f is proportional to a sine
rather than a cosine and the tangent in (6) is replaced
by minus a cotangent. These even and odd solutions
correspond to the modes of the waveguide, each of
which preserves its transverse profile while accumu-
lating a phase eikn0(1−δ)z under propagation in z. (In
more physical models, n0 and n1 have small imaginary
parts that cause a small amount of absorption.) Differ-
ent modes accumulate different phases under propa-
gation (given their different δ values) since they prop-
agate at different speeds. This effect, known as modal
dispersion, can pose a problem for applications in data
transmission, since multiple replicas of a signal arrive
at different times at the end of the transmission line,
scrambling the transmitted message. This problem can
be avoided by using waveguides with sufficiently small
width a and/or index mismatch Δ for only one mode
to exist.

Now consider an optical fiber, where the refrac-
tive index depends only on ρ, the radial distance
from the z-axis. So-called step-index fibers are com-
posed of a cylindrical core of radius a with refrac-
tive index n0 surrounded by a cladding with refrac-
tive index n1 < n0. Solutions of the relevant paraxial
wave equation are similar to those for the slab. Using
solutions (modes) separated in cylindrical coordinates
Up = f(ρ)eimφe−ikn0δz , one finds that, for ρ � a, the
solutions for f are proportional to Bessel functions
Jm(kn0

√
2δρ) while for ρ > a they are modified Bessel

functions Im[kn0
√

2(Δ− δ)ρ], which decay rapidly as
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ρ increases. The conditions of continuity and smooth-
ness of f at ρ = a lead once more to a transcendental
equation (now involving Bessel functions) that restricts
the allowed values of δ. Again, for small enough a
and Δ, only one mode is guided, and the structure is
referred to as a single-mode fiber, free of modal disper-
sion. For some applications, though, it is convenient
to use multimode fibers accepting many modes. Note
that the modes for which m �= 0 carry orbital angular
momentum.

3.2 Surface Plasmons

Guided modes can also be localized around a single
interface between two media provided that one of them
is a metal. The refractive index of a metal, due to the
presence of free electrons, is dominated by its imagi-
nary part, explaining why these materials are opaque.
To understand the resulting modes, known as surface
plasmons, we need to consider the vector character of
the field. These vector mode solutions are exponen-
tially localized near the interface between a metal and
a transparent material, chosen to be the x = 0 plane,

E(r) =
⎧⎨⎩ae−γ0xeiβz, x > 0,

beγ1xeiβz, x < 0,

where the constant vectorsa andb have zeroy compo-
nents for reasons that will soon become apparent. Let
the refractive index of the transparent material (x > 0)
and the metal (x < 0) be n0 and n1 = iν , respec-
tively. In both media, E satisfies the Helmholtz equa-
tion (∇2 + k2n2)E = 0 and the divergence condition
∇ · E = 0, leading to the constraints γ2

0 = β2 − k2n2
0,

γ2
1 = β2 + k2ν2, axγ0 = iazβ, and bxγ1 = −ibzβ.

Different boundary conditions apply to field compo-
nents that are tangent and normal to the interface: the
tangent component must be continuous, as must be
the longitudinal one times the square of the refractive
index (for media with negligible magnetic response).
This results in the relations az = bz and n2

0ax =
−ν2bx , which in combination with the four constraints
found earlier give

γ0

n2
0

= γ1

ν2
= β
n0ν

= k√
ν2 −n2

0

.

That is, for surface plasmons to exist, the imaginary
part of the metal’s refractive index must be larger than
the real part of the transparent medium’s refractive
index, and hence the exponential localization within
the metal is faster.

Surface plasmons are also supported by curved inter-
faces such as the surfaces of wires or particles. They
are the basis for many modern photonic devices like
sensors (given the strong dependence of their behavior
on shape, frequency, and material properties) and field
enhancement techniques used in microscopy and solar
cells.

4 Time Dependence and Causality

The ideas described so far rely on the assumption
that the field is monochromatic, so that the tempo-
ral dependence is accounted for simply through a fac-
tor e−iωt . While this assumption is useful when mod-
eling light emitted by highly coherent continuous-wave
lasers, it is an idealization as it implies that the field
presents this behavior for all times. Fields with more
general time dependence require a superposition of
temporal frequencies:

E(r; t) =
∫∞

0
U(r;ω)e−iωt dω.

Note that this choice of Fourier superposition extends
only over positive ω, which implies that E is a com-
plex function. While the physical field represented by
E corresponds to its real part, it is convenient to keep
the imaginary part for several reasons. One is that the
effective spectral support (the range in ω where U
takes on significant values) is reduced by at least half
if negative frequencies are excluded, which is advan-
tageous for, say, sampling purposes. The second and
more important reason is that this complex represen-
tation allows us to preserve the concept of phase, which
is very useful as it is often connected to physical param-
eters in the problem. This complex field representa-
tion, known as the analytic signal representation, can
be obtained from the real field by Fourier transform-
ing, removing the negative-frequency components and
doubling the positive-frequency ones, and then inverse
Fourier transforming. Equivalently, one can simply add
to the real field its temporal Hilbert transform times
the imaginary unit i.

The optical properties of a material or system depend
on the field’s frequency, and can also be represented
by complex functions of ω. These properties include
the refractive index n(ω) or the propagation transfer
functions eiβ(ω)z for guided modes in waveguides (with
β =ωn0(1−δ)/c) or plasmons. Such properties appear
in products with the field, so that in the time domain
they appear in convolutions with the field:

F̂−1[g̃(ω)U(ω)] =
∫
E(t′)g(t − t′)dt′,
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where g̃ denotes any such quantity. The integral in
t′ can be interpreted as the superposition of medium
responses g (that depend on the time delay t − t′) at
the “present” t due to external field stimuli E at all
“past times” t′. However, from physical considerations
the medium cannot predict the future, so the integral
should only extend over t′ ∈ (−∞, t], which can be
enforced if g(τ) = 0 for all τ < 0. This implies that
g̃(ω) must be analytic over the upper half complex
ω-plane, all singularities being at complex frequencies
with negative imaginary part. The locations of these sin-
gularities are directly related to physical properties of
the medium; the real part usually corresponds to a res-
onant frequency, while the imaginary part is related to
the resonance’s width. Given these properties, it can
easily be shown through standard residue theory that
one can calculate (via Hilbert transformation) the imag-
inary part of g̃ given the knowledge of the correspond-
ing real part for all real frequencies, and vice versa.
Consider the case of the refractive index of a material.
We can measure nr(ω) for a sufficiently wide range in
ω by measuring refraction angles at an interface and
using Snell’s law. Similarly, we can measure ni(ω) by
measuring light absorption for the same range of fre-
quencies. The analytic relation reveals that these two
physical aspects of wave propagation that appear to
be completely separate are in fact intimately linked, to
the point that in theory only one of the measurements
is needed to predict the results of the other.

5 Concluding Remarks

The brief overview of mathematical aspects of optics
and photonics given here is by no means comprehen-
sive. Optics is an extremely broad discipline encom-
passing pure science and engineering, and as such the
range of mathematics used in its study is immense. It
is the author’s hope that this brief overview will moti-
vate the reader to explore the vast literature in this
field.
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V.15 Numerical Relativity
Ian Hawke

1 The Size of the Problem

There is a beautiful simplicity in einstein’s field

equations [III.10] (EFEs),

Gab = 8πGTab, (1)

relating the curvature of space-time, encoded in the
Einstein tensor Gab , to the matter content, encoded
in the stress–energy tensor Tab . When expanded as
equations determining the space-time metric gab , the
EFEs are a complex system of coupled partial differ-
ential equations, which are analytically tractable only
in situations with a high degree of symmetry or if one
solves them perturbatively. For many mathematically
and physically interesting cases—such as the evolution
of the very early universe or the formation, evolution,
and merger of black holes—the fully nonlinear EFEs
must be tackled; this requires a numerical approach.
The aim of this approach is to construct, from given
initial data, the space-time metric gab and the matter
variables that form the stress–energy tensor Tab over
as much of the space-time as possible.

At first glance, we could take the partial differen-
tial equations for gab and solve them using standard
numerical methods such as those based on finite

differences [IV.13 §3]. However, numerical calcula-
tions require specific coordinate systems and cannot
cope with the infinities associated with singularities,
whether real or due to purely coordinate effects. The
fundamental steps of numerical relativity are, there-
fore, to first transform the EFEs (1) into a form suit-
able for numerical calculation, then to choose a suitable
coordinate system that covers as much of the space-
time as possible while avoiding singularities, and finally
to interpret the results.

2 Formulating the Equations

Our first task is to break the coordinate-free nature of
the EFEs and introduce “time” and “space” coordinates.
This will allow us to write the EFEs in a form reminis-
cent of the wave equation [III.31] and therefore suit-
able for numerical evolution. Even before discussing
explicit choices of coordinates, significant mathemat-
ical questions arise; while the motivation of this sec-
tion is to prepare the ground for numerical work,
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nothing numerical will occur until we explicitly choose
coordinates in section 3.

2.1 The 3 + 1 Decomposition

There are many ways of splitting the space-time that
are suitable for numerical evolution. The standard
approach starts by introducing a coordinate time t, a
scalar field on space-time. The four-dimensional space-
time is then foliated into three-dimensional “slices,”
where on each slice t is constant. We must restrict t
so that each slice is space-like. The line element thus
takes the form

ds2 = gabdxa dxb

= (−α2 + βiβi)dt2 + 2βi dt dxi + γij dxi dxj.

The three-dimensional metric γij measures proper dis-
tances within the slice of constant t ≡ dx0, and here
the spatial indices i, j, . . . = 1,2,3, while the space-
time indices a,b, . . . = 0,1,2,3. Relativistic index nota-
tion, as used in general relativity and cosmology

[IV.40] and tensors and manifolds [II.33], is used
throughout. The lapse function α measures the proper
time τ between neighboring slices: dτ = αdt. The
shift vector βi measures the relative velocity between
observers moving perpendicular (usually called nor-
mal) to the slices and the lines of constant spatial
coordinates, xit+dt = xit−βi dt. All of the new functions
that we have introduced, {α,βi, γij}, are themselves
functions of the coordinates (t, xi).

The coordinate freedom is contained within the lapse
and shift. The full metric is determined from the field
equations (1), which must be rewritten to determine the
spatial metric γij .

2.2 A Slice Embedded in Space-Time

The intrinsic curvature of the slice can be found from
the spatial metric γij in the same way as the full space-
time curvature is found from the space-time metric.
The remaining information about the space-time cur-
vature, necessary to describe the full space-time at
a point, is contained in the extrinsic curvature that
describes how the three-dimensional slice is embedded
in the four-dimensional space-time.

We require two key vectors. The first is the vector nor-
mal to the slice, na = (−α,0). The second is the time
vector ta = αna + βa, which is tangent to the lines of
constant spatial coordinates. The projection operator
Pab = δab + nanb acts on any tensor to project it into

the slice. For example, Pab t
b = βa, as the piece normal

to the slice is “projected away.” The extrinsic curvature

Kab = −Pca∇cnb = −(∇anb +nanc∇cnb)
measures how na changes within the slice, where ∇a
is the covariant derivative.

By defining the spatial (three-dimensional) covariant
derivative Di = Pai ∇a, the definition of the extrinsic
curvature can be used to show that

∂tγij = −2αKij + Diβj + Djβi. (2)

So if the extrinsic curvature is known, we can solve for
the spatial metric.

2.3 The ADM Equations

The field equations (1) can be projected in two ways:
either normal to the slice using na or into the slice
using Pai . Projections including na give

(3)R +K2 −KijKij = 16πnanbTab := 16πρ, (3)

Dj(Kij − γijK) = −8πPianbTab := 8πji. (4)

The 3-Ricci scalar (3)R is determined from the Riemann
curvature tensor of the spatial metric γij , and K = Kii
is the trace of the extrinsic curvature. These constraint
equations do not involve time derivatives and are inde-
pendent of the coordinate gauge functions α, βi. They
constrain the admissible solutions inside a slice based
on its geometry and the matter sources.

Projecting the field equations purely into the slice
gives an evolution equation for the extrinsic curvature,
which can be written as

∂tKij = βk∂kKij +Kki∂jβk +Kkj∂iβk − DiDjα

+α[3Rij +KKij − 2KikKkj ]

+ 4πα[γij(S − ρ)− 2Sij]. (5)

Here we have defined the projected stress term Sab :=
PcaP

d
b Tcd. The equations (2) and (5) (which, when com-

bined with a choice of coordinate gauge, determine the
evolution of the space-time) are typically referred to
as the ADM equations (after Arnowitt, Deser, and Mis-
ner) in the numerical relativity literature. However, this
system is mathematically not equivalent to the origi-
nal system derived by Arnowitt, Deser, and Misner. The
difference is the addition of a term proportional to the
Hamiltonian constraint (3), so the solutions should be
physically equivalent.

This highlights a theme of research in numerical rel-
ativity over the past twenty years: the search for “bet-
ter” formulations of the equations, either by changing
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variables or by adding multiples of the constraint equa-
tions (which should, for physical solutions, vanish).
One mathematical problem is finding criteria for the
system of equations that ensure accurate and reliable
numerical evolutions.

2.4 Hyperbolicity

Two key criteria have been considered in numerical rel-
ativity, both borrowed from general numerical analy-
sis. First, the system of equations should be well-posed :
solutions to the system should depend continuously on
the initial data. Formally, we define this to mean that
solutions u(t, x) must in some norm ‖ · ‖ satisfy

‖u(t, x)‖ � Cekt‖u(0, x)‖, (6)

where the constants C , k must be independent of the
initial data. The state vectoru, which for the ADM equa-
tions is u = (α,βj, γij, Kij)T, should not be confused
with a space-time vector. An example system that is not
well-posed is

∂t

(
u1

u2

)
=
(

1 1

0 1

)
∂x

(
u1

u2

)

=⇒
(
u1

u2

)
=
(

ikAt + B
A

)
eik(t+x),

where A, B are constants and i = √−1. As the solution
for u1 grows as tekt , the bound (6) does not hold. Sys-
tems of this form are particularly relevant for the ADM
equations.

A closely related concept is that of hyperbolicity. For
systems of the form

∂tu+Mi∂iu = s(u),
we can analyze the system solely from the set of
matrices Mi. Specifically, choosing an arbitrary direc-
tion specified by a unit vector ni, the principal symbol
P(ni) := Mini is a matrix determining the hyperbolic-
ity of the system. If P has real eigenvalues and a com-
plete set of eigenvectors, the system is strongly hyper-
bolic ; if its eigenvectors are not complete, the system
is weakly hyperbolic. If the eigenvalues are not real, the
system is not hyperbolic.

The central result is that only strongly hyperbolic
systems are well-posed. The original ADM equations
are not hyperbolic. The standard ADM equations in
section 2.3 are weakly hyperbolic in general (in low-
dimensional cases such as spherical symmetry, the sys-
tem may become strongly hyperbolic). Therefore, nei-
ther system is useful for large simulations without
symmetries.

2.5 Current Formulations

As the standard ADM equations are unsuitable for
numerical evolution, considerable effort has been put
into finding better formulations. There have been two
approaches: the first, more experimental, approach
started from the ADM equations and attempted to find
the minimal set of modifications that lead to an accept-
able formulation; the second approach starts from
the mathematical requirements of well-posedness and
hyperbolicity and systematically constructs acceptable
formulations. The two most widely used formulations
are as follows.

2.5.1 BSSNOK

The BSSNOK formulation originates from a modifica-
tion of the ADM equations introduced by Nakamura,
Oohara, and Kojima in 1987, which was then modi-
fied by Shibata and Nakamura and systematically stud-
ied by Baumgarte and Shapiro. It introduces a num-
ber of new auxiliary variables with constraints result-
ing from their definition. It is written in terms of the
conformal metric γ̃ij , which is the rescaling γ̃ij :=
e−4φγij such that γ̃ij has unit determinant. The evo-
lution equation for the conformal metric now depends
on the conformal traceless extrinsic curvature Ãij =
e−4φ[Kij − 1

3γijK]. Finally, the contracted Christof-
fel symbols of the conformal metric Γ̃ i := γ̃jkΓ̃ ijk =
−∂jγ̃ij are used, leading to a formulation containing
the seventeen equations

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎝

γ̃ij
φ
Ãij
K
Γ̃ i

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2αÃij

− 1
6αK

e−4φHij +α(KÃij − 2ÃikÃkj )

−DiDiα+α(ÃijÃij + 1
3K

2)

γ̃jk∂j∂kβi + 1
3 γ̃

ij∂j∂kβk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ matter terms, (7)

whereHij is the trace-free part of −DiDjα+αRij . Note
that the constraints (3), (4) have been used to elimi-
nate certain terms, and d/dt = ∂t −Lβ, where Lv is the
Lie derivative giving the change of the quantity along
integral curves of v, which obeys, for example,

Lvφ = vc∇cφ,
Lvwa = vc∇cwa −wc∇cva,
Lvwa = vc∇cwa +wc∇avc,
LvTab = vc∇cTab + Tcb∇avc + Tac∇bvc.
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The motivations for introducing these new variables

include

• better control over coordinate conditions, as dis-

cussed in section 3, and

• the fact that all second derivative terms in (7)

appear as simple scalar Laplace operators.

Empirically, the key step was using the momentum

constraint (4) in the reformulation of the evolution

equation for the Γ̃ i. It was only considerably after its

introduction that the BSSNOK system was shown to be

strongly hyperbolic.

2.5.2 The Generalized Harmonic Formalism

The generalized harmonic formalism starts from the

original proof, by Choquet-Bruhat, that the EFEs are

well-posed. That used a specific coordinate system

(harmonic coordinates defined by d’Alembert’s equa-

tion 0 = �xc =: ∇b∇bxc ) to show that the EFEs (1)

could be rewritten such that the principal part resem-

bled the simple wave equation. Mathematical require-

ments such as well-posedness are therefore straight-

forward to prove.

For numerical evolution, relying on a specific choice

of coordinates is frequently a bad idea, as will be seen

later. Instead, the generalized harmonic formulation

relies on a set of arbitrary functions Hc = �xc , which

allow the EFEs (1) to be written as

1
2g

cdgab,cd + gcd(,agb)d,c
+H(a,b) −HdΓ dab + Γ cbdΓ dac = −8π(Tab − 1

2gabT).

Again the principal part of the system can be related to

the wave equation and, provided suitable equations are

given to evolve the arbitrary functions Hc , the system

is manifestly hyperbolic. The arbitrary functionsHc do

not play exactly the same role as the gauge functions

(α,βi) do in standard formulations such as BSSNOK

but instead determine their evolution, as expressing the

definition of the Hc functions in 3 + 1 terms gives

(∂t − βk∂k)
(
α
βi

)
=
(

−α(Ht − βkHk +αK)
αgij[α(Hj + gklΓjkl)− ∂jα]

)
.

It is expected that for every coordinate choice there will

be a suitable choice of functions Hc , and vice versa, so

the standard approach within the field is to consider

the gauge functions (α,βi).

3 The Choice of Coordinates

In the 3 + 1 picture we are free to choose the gauge
(α,βi) as we wish. However, to be suitable for numer-
ical evolution, the gauge must satisfy some additional
criteria. In particular, the choice of gauge must avoid
the formation of coordinate singularities (as illus-
trated by standard Schwarzschild coordinates) and
avoid reaching physical singularities, as the represen-
tation of the infinities involved in these singularities is
problematic in numerical calculations. In addition, the
conditions must be well well-behaved mathematically,
retaining the well-posedness of the system. Ideally, the
conditions should also easy to implement numerically,
respect underlying symmetries of the space-time, and
not complicate the analysis of the results. Clearly this
is a difficult list of criteria to meet!

The slicing condition, specifying the lapse function
α, has been the focus of most work in this area. As the
lapse describes the relation between one slice and the
next, while the shift βi “merely” describes how the 3-
coordinates are arranged on the slice, it is clear that the
lapse determines whether the slice intersects with the
physical singularity. To discuss the effect of the gauge
it is useful to borrow the idea of an Eulerian observer
from fluid dynamics: an idealized observer who stays
at a fixed spatial coordinate location. A useful quantity
in analyzing slicing conditions is the acceleration ac

of the Eulerian observers nc given by ac := nb∇bnc .
Expressing this in terms of the gauge, we obtain

at = βk∂k log(α), ai = ∂i log(α),

where at = a0 is the “time” component of the acceler-
ation, illustrating the problems that would arise from
coordinate singularities. We also note that the defini-
tion of the extrinsic curvature implies

∇cnc = −K,
illustrating the potentially catastrophic growth (or col-
lapse) of the volume elements (given by nc ) should the
extrinsic curvature diverge.

3.1 Geodesic Slicing

The simplest slicing condition is to set α ≡ 1; each slice
is equally spaced in coordinate time. This geodesic slic-
ing condition means that the acceleration of the Eule-
rian observers vanishes; they are in free fall. This is
catastrophically bad for two reasons.

First, the standard calculation for a particle freely
falling into a (Schwarzschild) black hole shows that it
reaches the singularity within a time t = πM , where M
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is the black hole mass. The geodesic slicing condition
will not therefore avoid physical singularities.

Second, considering the evolution equations for the
extrinsic curvature (and simplifying such that βi ≡ 0)
we find, for geodesic slicing, that

∂tK = KijKij + 4π(ρ + S).
Assuming the strong energy condition, the right-hand
side is strictly positive and hence K increases with-
out bound, meaning the volume elements nc collapse
to zero. This indicates that a coordinate singularity is
inevitable when the extrinsic curvature is nontrivial.

3.2 Maximal Slicing

To avoid the “focusing” problem suffered by geodesic
slicing, we could insist that the volume elements
remain constant, i.e., K = 0 = ∂tK. This condition,
known as maximal slicing, satisfies

D2α = α[KijKij + 4π(ρ + S)].
The “maximal” part of the name comes from the proof
that, when K = 0, the volume of the slice is maximal
with respect to small variations of the hypersurface
itself.

Maximal slicing leads to an elliptic equation, with
the key advantages that the slice will be smooth and
will avoid physical singularities. To illustrate the behav-
ior of the slice, Smarr and York introduced a model in
which the space-time is spherically symmetric, the spa-
tial metric γij is flat, the scalar curvature R is a con-
stant R0 within a sphere of volume r0 and zero out-
side, and there is no matter. This is inconsistent (as
the scalar curvature clearly depends on the spatial met-
ric) but sufficiently accurate to be useful when inter-
preted in a perturbative sense. Using the Hamiltonian
constraint (3), the maximal slicing equation in vacuum
can be rewritten as D2α = αR. We thus find that for
this model the maximal slicing equation becomes

1
r2

d
dr

(
r2 d

dr
α
)
=
⎧⎨⎩αR0 r < r0,

0 otherwise,

with solution

α(r) = 1

r
√
R0

sinh(r
√
R0)

cosh(r0
√
R0)

, r < r0.

The minimal value of the lapse occurs at the origin and
is αmin = α(0) = 1/cosh(r0

√
R0) ∼ e−r0 . This expo-

nential collapse of the lapse is a standard feature of
singularity-avoiding slicings.

While maximal slicing avoids both physical and coor-
dinate singularities, it has a number of problems that

restrict its use in numerical simulations. First, as an

elliptic condition it can be difficult to solve efficiently

and accurately on grids adapted for solving hyperbolic

equations. Elliptic equations also depend strongly on

the boundary conditions, which for astrophysical prob-

lems should be enforced at infinity, where the space-

time is expected to be flat. This is not possible on a stan-

dard finite numerical grid, leading to inherent approxi-

mations. Most important, however, is the phenomenon

of slice stretching. In the vicinity of a black hole the slice

is sucked toward the singularity (as observers infall)

and also wraps around it (as the slice avoids the singu-

larity). This leads to a peak in the metric components;

for a Schwarzschild black hole the peak is in the radial

components and grows as τ4/3, where τ is proper time

at infinity.

3.3 Hyperbolic Slicings

While the key problem with maximal slicing is the

stretching of the slice (a 3-coordinate effect that

requires a shift condition to rectify), considerable effort

has been invested in hyperbolic slicing conditions. The

two main reasons for this are that the computational

effort required is considerably reduced when using sim-

ple numerical techniques and that the analysis of the

well-posedness of the full system, coupling any for-

mulation in section 2 to the gauge, is considerably

simplified.

The simplest hyperbolic slicing condition is the har-

monic gauge condition �xc = 0 introduced in sec-

tion 2.5.2. Written in terms of the gauge variables, this

becomes

d
dt
α = −α2K =⇒ d

dt

(
α√γ
)
= 0,

where γ is the determinant of the 3-metric γij . Har-

monic slicing thus directly relates the lapse to the vol-

ume elements of Eulerian observers. However, numer-

ical experiments rapidly showed that harmonic slicing

is not singularity avoiding.

The Bona–Massó family of slicings is an ad hoc

generalization satisfying the condition

d
dt
α = −α2f(α)K,

where f(α) is an arbitrary, positive function. Note that,

if f(α) = 2/α, this can be directly integrated to give

α = 1 + log(γ), the “1 + log slicing” condition, which

closely mimics maximal slicing. Harmonic slicing is

clearly given by f(α) = 1.



V.15. Numerical Relativity 685

To study the singularity-avoiding properties of the
slicing, note that as ∂tγ1/2 = −γ1/2αK (when the shift
vanishes) we have

d log(γ1/2) = dα
αf(α)

.

Thus, γ1/2 ∝ exp[
∫
(αf(α))−1 dα], and it follows that,

as f is positive, the lapse must collapse as the volume
elements go to zero in the approach to the singularity.
For the specific case of 1 + log slicing we have γ1/2 ∝
eα/2, which is finite as the lapse collapses, implying sin-
gularity avoidance. For the case of harmonic slicing we
have γ1/2 ∝ α, so as the lapse collapses the volume ele-
ments do as well. This marginal singularity avoidance
is insufficient for numerical simulations.

3.4 Shift Conditions

As with the development of hyperbolic slicing con-
ditions, the standard hyperbolic shift conditions are
motivated by elliptic conditions. The distortion tensor
Σij = 1

2γ
1/3Ltγ̃ij is essentially the velocity of the con-

formal metric. The minimal distortion condition, which
minimizes the integral of ΣijΣij over the slice, is

DjΣij = 0.

When rewritten in terms of variables introduced for
the BSSNOK formulation, this becomes the Gamma
freezing condition

∂tΓ̃ i = 0. (8)

Driver conditions—hyperbolic equations that aim to
asymptotically satisfy elliptic conditions such as (8)—
have become the method of choice in the field. The
Gamma driver condition

∂tβi = 3
4B
i, ∂tBi = ∂tΓ̃ i − ηBi

is intended to resemble a wave equation. With it, we
assume there exists a (slowly varying) stationary state
for the shift satisfying (8), to which the “current” shift
is a small perturbation. The driver condition then prop-
agates and damps (using the hand-tuned coefficient η)
these perturbations, driving the final result to a sta-
tionary Gamma freezing state. While this condition has
been used successfully for evolving single black holes,
once a black hole moves on the grid (as it must in the
example of binary black holes), it is necessary to mod-
ify the gauge to the moving puncture condition, where
∂t → ∂t − βk∂k.

The combination of 1+ log slicing with moving punc-
ture gauges produces the “trumpet” slice, which has
been shown to cover the exterior and part of the inte-
rior of the space-time of a Schwarzschild black hole,

Evolved
wormhole

slice

Initial
wormhole

slice

i 
+

Trumpet
slice

r = 0

Innermost
grid point

r = ∞

Figure 1 A Penrose diagram showing the relationship
between the initial and evolved wormhole slices and a
trumpet slice. The heavy dots represent the distribution
of numerical grid points. (Reprinted figure with permission
from David J. Brown, Physical Review D 80:084042 (2009).
Copyright (2009) by the American Physical Society.)

without coordinate singularities, while settling down to

a steady state. The slice does not cover the entire space-

time; in the wormhole picture, the slice just penetrates

the “neck” or “throat,” as shown in figure 1.

4 Covering the Space-Time

The simplest example of a numerical space-time con-

siders 1 + 1 dimensions with Cartesian coordinates and

no matter. Unfortunately, there can be no interesting

dynamics: the Riemann tensor has only one indepen-

dent component, which must vanish, so the space-

time is Minkowski. However, this case can be used to

illustrate the techniques and, in particular, the gauge

dynamics. In this restricted case we will use the nota-

tion g = gxx and K = Kxx for the only nontrivial

components of the metric and the extrinsic curvature.

The ADM equations together with 1 + log slicing can

be written, in 1 + 1 dimensions, in the following form:

∂t

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α
g
Dα
Dg
g1/2K

⎞⎟⎟⎟⎟⎟⎟⎟⎠+ ∂x

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

0

2K
2αK

αDα/g1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−2αK
−2αgK

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ,

where the notation Dα := ∂x log(α), Dg := ∂x log(g)
has been used. Only the last three components con-

tribute to the principal symbol

P(ni = (1,0,0)) =

⎛⎜⎜⎝
0 0 2/g1/2

0 0 2α/g1/2

α/g1/2 0 0

⎞⎟⎟⎠ ,
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which has eigenvalues and eigenvectors

λ0 = 0, λ± = ±
√

2α
g
,

e0 =

⎛⎜⎜⎝
0

1

0

⎞⎟⎟⎠ , e± =

⎛⎜⎜⎝
2/α

2

±√2/α

⎞⎟⎟⎠ .
These are real and distinct when the lapse is positive,
so in this special case the system is strongly hyperbolic.

By diagonalizing the principal symbol, we see that
the eigenfunctions ω± = g1/2K ± Dα(α/2)1/2 satisfy
the advection equations

∂tω± + ∂x(λ±ω±) = 0,

while the eigenfunction ω0 = αDα/2 − Dg/2 does
not evolve. However, the characteristic speeds λ± are
themselves evolving. It is straightforward to check that

∂tλ± + λ±∂xλ± = αλ±
g1/2

[(
1 + 1

α

)
ω∓ ±

√
2
α
ω0

]
.

If we start from a region with, for example, ω− = 0 =
ω0, then this equation for λ+ is equivalent to the burg-

ers equation [III.4], for which the solutions generically
become discontinuous in finite time. A discontinuity
in λ+ must correspond to a discontinuity in g or α, a
gauge pathology that is completely unphysical!

It should be noted that these gauge pathologies rarely
occur in evolutions of physically interesting space-
times. Firstly, the restriction to a flat space-time signif-
icantly simplifies the analysis but drops the curvature
terms, which are important in most cases. Secondly, the
use of a shift condition, such as the moving puncture
gauge outlined in section 3.4, adds a number of terms
to the principal symbol, changing the nonlinear dynam-
ics. The results in this section do illustrate, however,
the essential importance of ensuring a well-behaved
coordinate system in numerical evolutions.

5 Evolving Black Holes

To evolve fully general space-times without symme-
tries, one of the complete formulations outlined in sec-
tion 2.5 must be used. In special circumstances such
as spherical symmetry, it is possible to use reduced
systems; it is even possible to use variants of the sim-
ple ADM equations. This allows detailed understanding
of the numerical behavior of the evolution to be built
up in simpler situations: for example, the only spheri-
cally symmetric black hole space-time is Schwarzschild.
As detailed in general relativity and cosmology

[IV.40], there are a wide range of coordinate represen-
tations of the Schwarzschild metric, but (as explained
in section 4) not all are suitable for numerical evolu-
tion. The additional regularity problems at the origin
in spherical symmetry mean that some care is needed
that is not necessary in the general case.

One key question that can be studied in spherical
symmetry is whether the formulation used for the
numerical evolution respects the physics being mod-
eled. For a black hole space-time, the main point is
that no information should leave the horizon. As the
eigenvalues of the principal symbol correspond to the
“speed” with which information (specified by the asso-
ciated eigenvalues) is propagating, the mathematical
question to check is whether the radially “outgoing”
eigenvalues are negative with respect to the horizon.

This question depends on the choice of formula-
tion and gauge. For a specific variant of the BSSNOK
formulation with the standard gauge, the eigenvalues
are

±1, ±
√

2/α, 0, β̂r , ± (αχ)−1/2,

where χ = e−4φ is related to the metric determinant,
and β̂r = √

grr /χ βr /α is the proper shift per unit
length per unit time. Note that some of the information
can propagate faster than light, particularly where the
lapse collapses. However, by checking the correspond-
ing eigenvectors it can be shown that no information
about the physics propagates outside a region within
the horizon.

There are additional numerical reasons for perform-
ing such a mathematical analysis for black hole space-
times. While the use of moving puncture gauges has
been remarkably successful for evolving black hole
space-times, the physics suggests another solution for
avoiding the singularity: excising it from the numeri-
cal grid completely. This requires placing a boundary
inside the numerical domain, within the horizon, so
that the infinities associated with the singularity have
no effect. Of course, this means that boundary condi-
tions must be imposed on this surface and the inher-
ent errors introduced from these conditions must not
be allowed to propagate outside of the horizon. As
seen for the horizon above, the sign of the eigenvalues
of the principal symbol will determine which informa-
tion is “coming into” the numerical domain and hence
must be set by the boundary conditions. This tech-
nique has been particularly successful when combined
with the generalized harmonic formalism described in
section 2.5.2.
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6 Extensions and Further Reading

The extension of the methods outlined above to cases

without symmetries (which is necessary for studying

cutting-edge cosmological models or the astrophysical

problem of binary black hole merger) is well covered in

a number of references. This article has relied heavily

on Alcubierre’s excellent book, and a complementary

viewpoint is given by Baumgarte and Shapiro. For the

inclusion of relativistic matter, necessary for both mod-

eling the early universe and for astrophysical applica-

tions such as supernovas and neutron stars, see the

book by Rezzolla and Zanotti.

In addition, relativity in general is extremely well

served by Living Reviews, a series of online review arti-

cles covering the field that can be found at www.living

reviews.org. Within numerical relativity there is a range

of articles on important issues not touched on above.

One such issue is the construction of initial data for the

numerical evolution that satisfies any constraint equa-

tions while also being physically meaningful. A second

issue concerns black holes in a dynamical space-time:

what types of horizons are meaningful and useful, and

how can they be found in numerical data?

Finally, we should note the key topic that has driven

large parts of modern numerical relativity: the quest

to detect gravitational waves. These “ripples in space-

time” carry energy and information from violent astro-

physical events, such as binary black hole mergers.

There are a number of currently running detectors that,

when they successfully measure gravitational waves,

will give unprecedented insight into the physics of

strongly gravitating systems. The development of the

mathematical theory of gravitational waves can be

traced from the classic texts of Misner, Thorne, and

Wheeler, and d’Inverno through to the recent mono-

graphs and review articles mentioned above. With

recent advances in computational power, numerical

methods, and mathematical techniques, numerical rel-

ativity can simulate the gravitational waves from binary

black hole mergers with sufficient accuracy for current

detectors, and research into relativistic matter, such as

binary neutron star simulations, continues.
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V.16 The Spread of Infectious Diseases
Fred Brauer and P. van den Driessche

1 Introduction

The first recorded example of a mathematical model for

an infectious disease is the study by Daniel Bernoulli in

1760 of the effect of vaccination against smallpox on

life expectancy. This study illustrates the use of math-

ematical modeling to try to predict the outcome of a

control strategy. An underlying goal of much mathe-

matical modeling in epidemiology is to estimate the

effect of a control strategy on the spread of disease

or to compare the effects of different control strate-

gies. Another striking example is the work of Ronald

Ross on malaria. He received the second Nobel Prize

in Physiology or Medicine for his demonstration of

the mechanism of the transmission of malaria between

humans and mosquitoes. However, his conclusion that

malaria could be controlled by controlling mosquitoes

was originally dismissed on the grounds that it would

be impossible to eradicate mosquitoes from a region.

Subsequently, Ross formulated a mathematical model

predicting that it would suffice to reduce the mosquito

population below a critical level, and this conclusion

was supported by field trials.

The idea that there is a critical level of transmissi-

bility for a disease is a fundamental one in epidemiol-

ogy, and it developed from models rather than from

experimental data. Some of the predictions of infec-

tious disease models may be counterintuitive. While

it is considered obvious that treatment of a disease

should decrease the prevalence of the disease (i.e., the

proportion of people infected at a given time), there

are situations in which drug treatment may incite the

http://www.livingreviews.org
http://www.livingreviews.org
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development of a drug-resistant strain of the disease

and an increase in the treatment level may actually

increase the prevalence of disease, with the histories

of tuberculosis and HIV/AIDS being good examples of

this phenomenon. Modeling is essential to identify the

possibility of such counterintuitive effects.

While the foundations of mathematical epidemiology

were laid by public health physicians, there have been

many theoretical elaborations. An elaborate mathemat-

ical theory has developed, and there has been a diver-

gence of interests between mathematicians and public

health professionals. One result of this has been that

there are both strategic models, which concentrate on

general classes of models and theoretical understand-

ing, and tactical models, which attempt to incorporate

as much detail as possible into a model in order to be

able to make good quantitative predictions. In recent

years there have been serious attempts to encourage

interaction between mathematical modelers and pub-

lic health professionals to improve understanding of

different views.

We concentrate here on relatively simple models and

qualitative understanding, but we recognize that the

models used to make quantitative predictions must

have much more detail and incorporate data. They

must therefore usually be solved numerically. The

development of high-speed computers has made it

possible to simulate very complicated models quickly,

and this has had a great influence on disease-outbreak

management.

There are many different types of infectious disease

transmission models. We consider only deterministic

models suitable for human disease, although there is

an extensive parallel theory of stochastic models. Also,

we confine our attention to continuous models, though

it can be argued that since disease transmission data

are obtained at discrete times it would be reasonable

to use discrete models.

For modeling an infectious disease, as for modeling

other natural phenomena, it is essential to understand

the biology, then to translate the biological problem

into a mathematical framework for the important fea-

tures, and finally to translate results back to the biol-

ogy, bearing in mind the assumptions made. An impor-

tant distinction is made between short-term models,

as for disease outbreaks and epidemics, in which

demographic effects such as births and deaths can be

ignored, and long-term models, as for endemic situa-

tions, in which it is necessary to include demographic

effects. In fact, an essential difference between these

two categories of models is the absence or presence of

a flow of new susceptible people into the population,

and such a flow may come from demographic effects or

from recovery of infectious individuals without immu-

nity against reinfection.

We mainly concentrate on compartmental models,

originally introduced by Kermack and McKendrick, in

which a given population is separated into compart-

ments identified by the disease status of the individ-

uals in those compartments. For example, there are

SIR (susceptible–infectious–removed) models in which

individuals are susceptible to infection; are infectious;

or are removed from infection by recovery from infec-

tion with immunity against reinfection, by inoculation

against being infected, or by death from the disease.

The model is described by assumptions about the rates

of passage between compartments. In an SIR model

it is assumed that recovery provides complete immu-

nity against reinfection. There are also SIS (susceptible–

infectious–susceptible) models, describing a situation

in which recovered individuals are immediately suscep-

tible to reinfection rather than being removed. These

two types of model describe diseases with fundamen-

tally different properties. Typically, diseases caused

by a virus (e.g., influenza) are of SIR type, while dis-

eases caused by a bacterium (e.g., gonorrhea) are of

SIS type. More elaborate compartmental structures are

possible, such as SLIR (susceptible–latent–infectious–

removed) models, in which there is a latent period

between becoming infected and becoming infectious

(the compartment L represents individuals who are

infected but not yet infectious); models in which some

individuals are selected for treatment; or models in

which some individuals are asymptomatic, i.e., infec-

tious but without disease symptoms. Also, there are

diseases of SIRS type, for which recovery provides

immunity but only temporarily. For example, influenza

strains mutate rapidly, and recovery from one strain

provides immunity against reinfection only until the

strain mutates enough to act as a different strain.

We consider SIR and SIS as the basic disease types

and describe their analysis, but we also indicate how

more complicated compartmental structures may be

described.

Our aim is to give a taste of this exciting area of

applied mathematics, and to encourage further explo-

ration, rather than to present a complete portrait of

mathematical epidemiology.
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Figure 1 An SIR model flow chart with demographics.

2 SIR Models: Measles and Influenza

Measles and influenza are viral diseases and, in most
cases, an individual who has been infected and has sub-
sequently recovered has lifelong immunity to the dis-
ease; thus, an SIR model is appropriate. Measles (with-
out vaccination) often stays endemic in a population.
By contrast, seasonal influenza is a relatively short-
lived epidemic, with the number of infectious individ-
uals peaking and then going to zero. We use these two
diseases as examples of general SIR models.

2.1 Models with Demographics: Measles

We want to know what happens if a small number of
people infected with measles are introduced into a sus-
ceptible population of N people. To investigate this,
we formulate an ordinary differential equation (ODE)
system that determines the change in the numbers of
susceptible, infectious, and recovered people with time,
denoted by S, I, andR, respectively, and includes demo-
graphics but assumes that there are no deaths due to
measles. A flow chart for the model is given in figure 1.
Let A > 0 be the number of newborns per unit time in
the population, let d > 0 be the natural death rate, let
1/γ be the average duration of measles infection (this
is about five days), and let λ be the disease transmis-
sion parameter. The rate of change of S is then given as
the input rate (A) minus the output rate (λSI/N + dS),
and similarly for the rates of change of I and R. Thus,
measles evolves in time according to the equations

dS
dt

= A− λSI
N

− dS,
dI
dt

= λSI
N

− (d+ γ)I,
dR
dt

= γI − dR.

Here N = S + I + R, and it is assumed that an aver-
age infectious person makes λ contacts in unit time, of
which a fraction S/N are with susceptible people and

thus transmit infection, giving λSI/N new infections in
unit time. This is called standard incidence. The model
above assumes that all newborns enter the susceptible
class, thus ignoring passive immunity from maternal
antibodies.

The R equation is not in fact needed as R does not
enter into the other equations: it can therefore be deter-
mined from S and I. The first two equations always
have one equilibrium: that is, a constant solution with
dS/dt = dI/dt = 0. This is given by (S, I) = (A/d,0)
and is called the disease-free equilibrium (DFE). The
equations may have another equilibrium (S∗, I∗) with
I∗ > 0, and this is called an endemic equilibrium.

Assume that a small number of people in a suscepti-
ble population are infected with measles. Will measles
die out or become endemic? Analysis of the equilib-
ria show that this depends on the product of the dis-
ease transmission parameter and the average death-
adjusted infectious duration. This product, denoted by
R0, with R0 = λ/(d + γ), is called the basic reproduc-
tion number and is the average number of new infec-
tions caused by an infectious person introduced into
a susceptible population. If R0 < 1, then the solution
tends to the DFE and measles dies out in the popula-
tion. If R0 > 1, then measles tends to an endemic level
with the number of infectious people:

I∗ = dN
d+ γ

(
1 − 1

R0

)
,

with N = A/d. Thus R0 = 1 acts as a critical level, or
threshold, at which the model exhibits a forward bifur-
cation. There is an exchange of stability between the
disease-free and endemic equilibria. Stochastic models
usually exhibit a similar threshold, but if R0 > 1, then
there is a finite probability of disease extinction.

In order to prevent measles from becoming endemic,
a fraction p > 1 − 1/R0 of newborns needs to be vac-
cinated to reduce R0 below 1 and give the popula-
tion herd immunity. This was achieved worldwide for
smallpox (eradicated in 1977), which had R0 ≈ 5, so
that theoretically 80% vaccination provided herd immu-
nity. However, measles has a higher R0 value, up to 18
in some populations, making it unrealistic to achieve
herd immunity. Data on measles in the pre-vaccine era
show biennial oscillations about an endemic level, so
more complicated models including seasonal forcing
are needed for accurate predictions.

2.2 Models Ignoring Demographics: Influenza

Interest in epidemic models, which had been largely
ignored for many years, was reignited by the severe
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Figure 2 An SIR model flow chart with no demographics.
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Figure 3 Simulation of the influenza SIR model showing
the number of infectious people against time, with λ = 0.5,
γ = 0.25, N = 1000, I(0) = 5.

acute respiratory syndrome (SARS) outbreak of 2002–3,

and this interest carried over into concerns about the

possibility of an influenza pandemic.

For seasonal influenza, birth and death can be

ignored, since this is a single outbreak of short duration

and the demographic timescale is much slower than the

epidemiological timescale (see figure 2 for a flow chart).

Setting A = d = 0 in the measles model gives a model

with no endemic equilibrium since I = 0 is the only

equilibrium condition. With an initial number of infec-

tious people I(0) > 0, the parameter R0 = λ/γ still

acts as a threshold. Influenza first increases to a peak

and then decreases to zero (an influenza epidemic) if

R0 > 1, but it simply decays to zero (no epidemic) if

R0 < 1. Figure 3 shows a numerical solution of the

model equations (done with Maple) with parameters

that give R0 = 2 for a population of 1000 starting with

5 infectious people. With R0 > 1, the model shows that

not all susceptible people are infected before the epi-

demic dies out. In fact, the number of susceptible peo-

ple remaining uninfected, S(∞), is given implicitly as

the positive root of the final size equation:

log
S(0)
S(∞) = R0

(
1 − S(∞)

N

)
,

where S(0) ≈ N is the initial number of susceptible

people. The total number infected by the disease is

I(0) + S(0) − S(∞). The attack rate (the fraction of

the population infected by the disease) is 1 − S(∞)/N .

The epidemic first grows approximately exponentially,

since for small time,

I(t) ≈ I(0) exp{γ(R0 − 1)t}.
This initial growth rate can be determined from data,

and together with a value of γ from data it can be used

to estimate R0. For seasonal influenza, R0 is usually

found to be in the range 1.4–2.4. The above formula

for herd immunity also applies for estimating the frac-

tion of the population that would need to be vacci-

nated to theoretically eradicate influenza. However, at

the beginning of a disease outbreak, stochastic effects

are important.

For more realistic models, other factors such as a

latent period, deaths due to influenza, asymptomatic

cases (people with no symptoms of disease but able

to transmit infection), and age structure need to be

included. These can all be put in a more general frame-

work in which the essential properties continue to hold.

However, the quantitative analysis of such complicated

models requires numerical simulations. Antiviral treat-

ment is also available for influenza, and model results

can guide public health policy on vaccination and

antiviral schedules. In fact, model predictions helped

to guide such policies during the 2009 H1N1 influenza

pandemic. Treatment with antiviral drugs can cause the

emergence of resistant strains. Some recent models for

optimal treatment strategies during an influenza pan-

demic suggest that it is best to do nothing initially and

then quickly ramp up treatment. However, policy mak-

ers must weigh modeling predictions (and their inher-

ent assumptions) with ethical, economic, and political

concerns.

As noted in our introduction, recovery from influ-

enza may provide temporary immunity, indicating an

SIRS model, which has a basic reproduction number R0

such that R0 = 1 acts as a sharp threshold (between

the DFE and the endemic equilibrium), as it does in the

SIR model with demographics. Models of this type that

take into account that vaccination is not totally effec-

tive and also wanes with time can give rise to a back-

ward bifurcation, in which R0 must be reduced below
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Figure 4 An SIS model flow chart.

a value Rc that is less than one to eradicate the dis-
ease. In models that exhibit backward bifurcation, for
Rc < R < 1 there are two endemic equilibria, with
the larger I value locally stable and the smaller I value
unstable, in addition to the locally stable DFE. Thus, in
this range of parameter values the disease may die out
or tend to the larger endemic equilibrium depending
on the initial conditions.

If we assume that the period of temporary immunity
is a constant, then a delay differential equation SIRS
model can be formulated, and it predicts that there
are periodic solutions arising through a hopf bifurca-

tion [IV.21 §2] about an endemic equilibrium for some
values of this period of temporary immunity. Data on
disease dynamics often exhibit periodicity; it is there-
fore an interesting challenge to determine what factors
contribute to this oscillatory behavior. Delay differen-
tial equations and systems that assume more general
distributions pose challenging mathematical problems.

3 SIS Models: Gonorrhea

Bacterial diseases do not usually give immunity on
recovery, so an SIS model is appropriate as a simple
model for such diseases (see figure 4 for a flow chart).
Ignoring death due to the disease, taking the total pop-
ulation at its equilibrium value N = A/d, and using
S = N − I, the model can be described by the equa-
tion for the rate of change of the number of infectious
people with time:

dI
dt

= λI N − I
N

− (d+ γ)I.

Given an initial number of infectious people, this logis-
tic equation can be solved by separation of variables
to give the number of infectious people at any later
time. Alternatively, an analysis of the equilibria can
be used to show that the basic reproduction number
R0 = λ/(d + γ) acts as a threshold, with the disease

dying out if R0 < 1 and going to an endemic level
I∗ = N(1 − 1/R0) if R0 > 1. Even if demograph-
ics are ignored, these conclusions still hold, unlike the
epidemic found for an SIR model.

Now consider a model for the heterosexual trans-
mission of gonorrhea: a sexually transmitted bacterial
disease. It is necessary to divide the population into
females and males and to model transmission of the
disease between them. Assume that there are no deaths
due to disease, so that the populations of females NF

and of males NM are constants. Set μF = d + γF and
μM = d + γM, which are the natural death-corrected
transition rates. The equations governing the number
of infectious females IF and infectious males IM are

dIF
dt

= λMF
NF − IF
NF

IM − μFIF,

dIM
dt

= λFM
NM − IM
NM

IF − μMIM,

where λMF and λFM are the transmission coefficients
from male to female and female to male, and 1/γF and
1/γM are the mean infectious periods for females and
males. Suppose that there is initially a small number
of males or females infected with gonorrhea. Will the
outbreak persist or will it die out? The equations have
a DFE with (IF, IM) = (0,0), and the behavior close to
this can be determined by linearizing the system (i.e.,
by neglecting terms of higher order than linear). Linear
stability of the DFE is determined by setting IF = C1ezt

and IM = C2ezt in this linearized system and determin-
ing the sign of the real part of z for nonzero constants
C1, C2. This is equivalent to finding the eigenvalues of
the Jacobian matrix J at the DFE, where

J =
(
−μF λMF

λFM −μM

)
.

The eigenvalues of J are given by the roots of the
characteristic equation

z2 + z(μF + μM)+ μFμM − λMFλFM = 0.

Both roots of this quadratic equation have negative real
parts if and only if the constant term is positive. With
this condition, small perturbations from the DFE decay,
and the DFE is linearly stable. Drawing on experience
from the previous models and taking into account bio-
logical considerations, R0 can be determined from this
condition (see the formula for R0 given below). Alter-
natively, there is a systematic way to find R0. Write J
as J = F−V , where F is the matrix associated with new
infections and V is the matrix associated with transi-
tions. Then R0 = ρ(FV−1), where ρ denotes the spec-
tral radius (i.e., the eigenvalue with the largest absolute
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value) and FV−1 is the next-generation matrix. For the
above model,

F =
(

0 λMF

λFM 0

)
, V =

(
μF 0

0 μM

)
,

giving

R0 =
√
λMFλFM

μMμF
.

This expression contains a square root because the
basic reproduction number is the geometric mean of
the reproduction number for each sex, namely λMF/μF

and λFM/μM. Linear stability is governed by R0, but in
fact global results also hold. If R0 < 1, then the disease
dies out in both sexes; whereas if R0 > 1, the disease
tends to an endemic state (I∗F , I

∗
M) and persists in both

sexes. This endemic state can be found by solving for
the positive equilibrium, giving

I∗M = (λMFλFM − μFμM)NFNM

μMλMFNM + λMFλFMNF
,

with a corresponding formula for I∗F . The global sta-
bility of the endemic state can be proved by using Lya-
punov functions, but as far as we know it is still an open
problem to prove this if deaths due to the disease are
incorporated into the model.

4 Models for HIV/AIDS

4.1 Population Models

The acquired immune deficiency syndrome (AIDS) epi-
demic that began in the early 1980s spread world-
wide and has prompted much research on this and
other sexually transmitted diseases. AIDS is caused
by the human immunodeficiency virus (HIV) and once
infected, individuals never recover. Data show that
after initial infection with the virus an individual has
high infectivity, but infectivity then drops to a low level
for a period of up to ten years before rising sharply due
to the onset of AIDS. Infectivity therefore has a “bath-
tub” shape. Compartmental ODE models with several
stages of infectivity subdividing the infectious state
can be formulated to approximate this shape. Alterna-
tively, this can be handled by partial differential equa-
tion models using age of infection as a variable. Cur-
rently, HIV can be treated with highly active antiretro-
viral therapy drugs, which both reduce the symptoms
and prolong the period of low infectivity.

Models for HIV/AIDS often focus on one population:
a male homosexual community, for example, or a group
of female sex workers and their male clients. Such mod-
els need to take account of many factors, including level

of sexual activity, drug use, condom use, and sexual
contact network, and this results in large-scale systems
with many parameters that need to be estimated from
data. The homogeneous models described previously
therefore need to be extended.

To illustrate this with a simple model with one infec-
tious stage, consider a male homosexual community in
which there are k risk groups that are delineated by
the numbers of partners an individual has each month,
thus introducing heterogeneity. Letting Si, Ii, and Ai
be the proportion of males with i partners each month
who are susceptible, infectious, and have developed
AIDS, respectively, the ODEs for the system are

dSi
dt

= dni −
k∑
j=1

βijSiIj − dSi,

dIi
dt

=
k∑
j=1

βijSiIj − dIi − γIi,

dAi
dt

= γIi − dAi −mAi,

for i = 1, . . . , k, where ni is the proportion of males
with i contacts per month, dni is the recruitment into
the male sexually active population with i partners per
month,m is mortality due to AIDS, and βij contains the
contact and transmission rates between a susceptible
male with i partners per month and an infectious male
with j partners per month. This formulation assumes
that all infectious males proceed to AIDS with rate γ
and at that stage they withdraw from sexual activity
and do not continue to contribute to disease spread.
The contact matrix among the males in the population
(βij) can be determined by surveying their distribu-
tion and the number of sexual partners they have. This
matrix is sometimes termed a WAIFW (who acquires
infection from whom) matrix. If it is assumed that part-
nerships are formed at random but in proportion to
their expected number of partners, then

βij = β
ij∑k

-=1 -n-
.

Making this assumption and taking μi = μ and γi = γ,
the next-generation matrix method has F matrix with
rank 1, and V a scalar matrix. Thus, the nonzero eigen-
value of FV−1 is equal to its trace, giving the basic
reproduction number as

R0 = β
d+ γ

∑k
i=1 i2ni∑k
i=1 ini

= β
d+ γ

(
M + V

M

)
,

where M and V are the mean and variance of the num-
ber of sexual partners per month. If all males have the
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same number of partners, then R0 = βM/(d+ γ), and
the above formula therefore shows that R0 increases
with the variance in the number of partners. Other
assumptions about the formation of partnerships can
be incorporated into this model structure. For example,
males could be more likely to form partnerships with
others having the same or a similar number of contacts
per month (assortative mixing).

To extend the above model to study the heterosexual
spread of HIV/AIDS, the population must be divided
into two sexes as well as being split according to activ-
ity level. Contact rates together with parameters related
to the disease need to be determined to parametrize
the model. It is generally observed that the probabil-
ity of transmission per sexual act from an infectious
male to a susceptible female is greater than that from
an infectious female to a susceptible male, so there is
asymmetry in the model.

Control strategies such as condoms, highly active
antiretroviral therapy treatment, and education can be
incorporated into the models for HIV/AIDS to guide
planning so that control can be optimized. However,
HIV develops resistance against the drugs that are cur-
rently used for its treatment, and this, as well as a
lack of treatment compliance, needs to be built into
models. In addition, individuals who are HIV positive
have a higher than average risk of developing other
diseases, such as tuberculosis and pneumonia. Rather
than developing such complicated models further, we
turn instead to a brief discussion of intra-host models.

4.2 Virus Dynamics

When HIV virus enters an individual’s body it attacks
the cells susceptible to infection, called target cells, and
produces infected cells that in turn produce new virus.
A basic model of intra-host virus infection consists of
the following three ODEs for the number of susceptible
target cells T , actively infected target cells I, and free
mature virus particles (virions) V :

dT
dt

= R − dTT − kVT ,
dI
dt

= kVT − dII,

dV
dt

= pI − dVV.

Here, dT, dI, and dV are the death rates of target cells,
infected cells, and virus particles, respectively; target
cells are infected by virus with rate constant k assum-
ing mass action incidence; R is the production rate of

R

T I

V

pI

kVT

dTT dI I

dV 
V

Figure 5 Virus dynamics flow chart.

new target cells; and p is the production rate of new
virus per infected cell. A flow chart for this model is
given in figure 5.

If a person is initially uninfected and then a small
amount of HIV virus is introduced, will the virus be suc-
cessful in establishing a persistent HIV infection? This
question can be addressed by a linear stability analysis,
as developed in previous sections. The DFE is given by
(T , V , I) = (R/dT,0,0), and the endemic equilibrium (if
it exists) is given by

(T , V , I) =
(
dIdV

kp
,
R
dI

− dTdV

kp
,
Rp
dIdV

− dT

k

)
.

Assuming that the production of new virus (i.e., the
pI term in the equation for V ) is not considered to be a
new infection, the next-generation matrix method gives

R0 = kpR
dTdIdV

.

However, if this production is assumed to be a new
infection, then this term must go in the F matrix and
gives

R0 =
√

kpR
dTdIdV

.

The endemic equilibrium exists and persistent HIV
infection occurs if these numbers are greater than 1,
which can be proved by using a Lyapunov function.
In fact, this differential equation system for the early
stage of HIV infection is equivalent to the population-
level SLIR system with a constant host population size.
Virus dynamic models therefore have features in com-
mon with disease transmission models even though the
biological background is different.

Notice that these formulas for R0 agree at the 1-
threshold value. This example illustrates the fact that
the formula for R0 depends on the biological assump-
tions of the model, and several formulas can give the
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same expression at the 1-threshold value. However,
the sensitivity of R0 to perturbations in parameters
depends on the exact formula. Drug treatment aims
to reduce the parameter k so that R0 is below 1. The
parameters and effects of drugs can be estimated from
data on individuals who are HIV positive.

5 Model Extensions

Some infectious diseases have features that may neces-
sitate models with compartments additional to those
described above. For example, some diseases are trans-
mitted to humans by vectors, as is the case for
malaria and West Nile virus, which are transmitted by
mosquitos. For such diseases, vector compartments are
needed. Waterborne diseases such as cholera can be
transmitted directly from person to person or indi-
rectly via contaminated water; thus some cholera mod-
els include a pathogen compartment. Other infectious
diseases, for example HIV/AIDS and hepatitis B, can
be transmitted vertically from mother to offspring.
In the case of hepatitis B, the mother may even be
asymptomatic. This alternative route of transmission
can be modeled by adding an input term into the
infectious class that represents infectious newborns,
and this modifies the basic reproduction number. For
Ebola, recently dead bodies are an important source of
infection that needs to be included in a model. From
the recent outbreak in West Africa, it appears that
health-care workers have an increased risk of infec-
tion, and there may be a significant number of asymp-
tomatic cases; these compartments should therefore be
explicitly included in an Ebola model.

The simplest compartmental models assume homo-
geneous mixing of individuals, but it is possible to
extend the structure to include heterogeneity of mix-
ing, as briefly described above in the model for HIV/
AIDS in a male heterosexual population. Network mod-
els take this still further by concentrating on the fre-
quencies of contacts between individuals. Agent-based
models separate the population into individuals, lead-
ing to very large systems that can be analyzed only by
numerical simulations. A particularly important het-
erogeneity in disease transmission is age structure,
since in many diseases, especially childhood diseases
such as measles, most transmission of infection occurs
between individuals of similar ages. Spatial heterogene-
ity appears in two quite different forms: namely, local
motion such as diffusion and long-distance travel such
as by airlines between distant locations. The former

is usually modeled by partial differential equations,
whereas the latter is usually modeled by a large sys-
tem of ODEs, giving a metapopulation model. With the
availability of good travel data, metapopulation models
are especially important for public health planning for
mass gatherings such as the Olympic Games. New or
newly emerging infectious diseases often call for new
modeling ideas; for example, metapopulation models
were further developed for SARS, and coinfection mod-
els have been developed for HIV and tuberculosis.
In addition, social behavior and the way that people
change their behavior during an epidemic are factors
that should be integrated into models, especially those
designed for planning vaccination and other control
strategies.

For interested readers the literature listed in the fur-
ther reading section below, as well as current jour-
nal articles and online resources, will provide more
information about these and other models.
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V.17 The Mathematics of Sea Ice
Kenneth M. Golden

1 Introduction

Among the large-scale transformations of the Earth’s
surface that are apparently due to global warming, the
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sharp decline of the summer Arctic sea ice pack is prob-
ably the most dramatic. For example, the area of the
Arctic Ocean covered by sea ice in September of 2012
was less than half of its average over the 1980s and
1990s. While global climate models generally predict
declines in the polar sea ice packs over the twenty-first
century, these precipitous losses have significantly out-
paced most projections. Here we will show how math-
ematics is being used to better understand the role
of sea ice in the climate system and improve projec-
tions of climate change. In particular, we will focus on
how mathematical models of composite materials and
statistical physics are being used to study key sea ice
structures and processes, as well as represent sea ice
more rigorously in global climate models. Also, we will
briefly discuss these climate models as systems of par-
tial differential equations (PDEs) solved using computer
programs with millions of lines of code, on some of
the world’s most powerful computers, with particular
focus on their sea ice components.

1.1 Sea Ice and the Climate System

Sea ice is frozen ocean water, which freezes at a tem-
perature of about −1.8 ◦C, or 28.8 ◦F. As a material,
sea ice is quite different from the glacial ice in the
world’s great ice sheets covering Antarctica and Green-
land. When salt water freezes, the result is a composite
of pure ice with inclusions of liquid brine, air pockets,
and solid salts. As the temperature of sea ice increases,
the porosity or volume fraction of brine increases. The
brine inclusions in sea ice host extensive algal and bac-
terial communities that are essential for supporting life
in the polar oceans. For example, krill feed on the algae,
and in turn they support fishes, penguins, seals, and
Minke whales, and on up the food chain to the top
predators: killer whales, leopard seals, and polar bears.
The brine microstructure also facilitates the flow of salt
water through sea ice, which mediates a broad range of
processes, such as the growth and decay of seasonal
ice, the evolution of ice pack reflectance, and biomass
buildup.

As the boundary between the ocean and the atmo-
sphere in the polar regions of the Earth, sea ice plays
a critical role as both a leading indicator of climate
change and as a key player in the global climate sys-
tem. Roughly speaking, most of the solar radiation that
is incident on snow-covered sea ice is reflected, while
most of the solar radiation that is incident on darker
sea water is absorbed. The sea ice packs serve as part

of Earth’s polar refrigerator, cooling it and protecting
it from absorbing too much heat from sunlight. The
ratio of reflected sunlight to incident sunlight is called
albedo. While the albedo of snow-covered ice is usually
larger than 0.7, the albedo of sea water is an order of
magnitude smaller, around 0.06.

1.1.1 Ice–Albedo Feedback

As warming temperatures melt more sea ice over time,
fewer bright surfaces are available to reflect sunlight,
more heat escapes from the ocean to warm the atmo-
sphere, and the ice melts further. As more ice is
melted, the albedo of the polar oceans is lowered, lead-
ing to more solar absorption and warming, which in
turn leads to more melting, creating a positive feed-
back loop. It is believed that this so-called ice–albedo
feedback has played an important role in the recent
dramatic declines in summer Arctic sea ice extent.

Thus even a small increase in temperature can lead
to greater warming over time, making the polar regions
the most sensitive areas to climate change on Earth.
Global warming is amplified in the polar regions.
Indeed, global climate models consistently show ampli-
fied warming in the high-latitude Arctic, although the
magnitude varies considerably across different mod-
els. For example, the average surface air temperature
at the North Pole by the end of the twenty-first cen-
tury is predicted to rise by a factor of about 1.5 to 4
times the predicted increase in global average surface
air temperature.

While global climate models generally predict de-
clines in sea ice area and thickness, they have sig-
nificantly underestimated the recent losses observed
in summer Arctic sea ice. Improving projections of
the fate of Earth’s sea ice cover and its ecosystems
depends on a better understanding of important pro-
cesses and feedback mechanisms. For example, dur-
ing the melt season the Arctic sea ice cover becomes
a complex, evolving mosaic of ice, melt ponds, and
open water. The albedo of sea ice floes is determined
by melt pond evolution. Drainage of the ponds, with
a resulting increase in albedo, is largely controlled by
the fluid permeability of the porous sea ice underly-
ing the ponds. As ponds develop, ice–albedo feedback
enhances the melting process. Moreover, this feedback
loop is the driving mechanism in mathematical models
developed to address the question of whether we have
passed a so-called tipping point or critical threshold in
the decline of summer Arctic sea ice. Such studies often
focus on the existence of saddle–node bifurcations in
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(a) (b)

(c) (d)

Figure 1 Sea ice exhibits composite structure on length
scales over many orders of magnitude: (a) the submillime-
ter scale brine inclusions in sea ice (credit: CRREL (U.S.
Army Cold Regions Research and Engineering Lab) report);
(b) pancake ice in the Southern Ocean, with microstructural
scale on the order of tens of centimeters; (c) melt ponds on
the surface of Arctic sea ice with meter-scale microstructure
(courtesy of Donald Perovich); and (d) ice floes in the Arctic
Ocean on the kilometer scale (courtesy of Donald Perovich).

dynamical system models of sea ice coverage of the
Arctic Ocean. In general, sea ice albedo represents a
significant source of uncertainty in climate projections
and a fundamental problem in climate modeling.

1.1.2 Multiscale Structure of Sea Ice

One of the fascinating, yet challenging, aspects of mod-
eling sea ice and its role in global climate is the sheer
range of relevant length scales of structure, over ten
orders of magnitude, from the submillimeter scale to
hundreds of kilometers. In figure 1 we show exam-
ples of sea ice structure illustrating such a range of
scales. Modeling sea ice on a large scale depends on
some understanding of the physical properties of sea
ice at the scale of individual floes, and even on the
submillimeter scale since the brine phase in sea ice
is such a key determinant of its bulk physical proper-
ties. Today’s climate models challenge the most pow-
erful supercomputers to their fullest capacity. How-
ever, even the largest computers still limit the hor-
izontal resolution to tens of kilometers and require
clever approximations and parametrizations to model
the basic physics of sea ice. One of the central themes of
this article is how to use information on smaller scales
to predict behavior on larger scales. We observe that

this central problem of climate science shares common-
ality with, for example, the key challenges in theoretical
computations of the effective properties of composites.

Here we will explore some of the mathematics used
in studying sea ice and its role in the climate system,
particularly through the lens of sea ice albedo and
processes related to its evolution.

2 Global Climate Models and Sea Ice

Global climate models, also known as general circu-
lation models, are systems of PDEs derived from the
basic laws of physics, chemistry, and fluid motion. They
describe the state of the ocean, ice, atmosphere, and
land, as well as the interactions between them. The
equations are solved on very powerful computers using
three-dimensional grids of the air–ice–ocean–land sys-
tem, with horizontal grid sizes on the order of tens
of kilometers. Consideration of general climate models
will take us too far off course, but here we will briefly
consider the sea ice components of these large-scale
models.

The polar sea ice packs consist primarily of open
water, thin first-year ice, thicker multiyear ice, and pres-
sure ridges created by ice floes colliding with each
other. The dynamic and thermodynamic characteris-
tics of the ice pack depend largely on how much ice
is in each thickness range. One of the most basic prob-
lems in sea ice modeling is thus to describe the evolu-
tion of the ice thickness distribution in space and time.
The ice thickness distribution g(x, t, h)dh is defined
(informally) as the fractional area covered by ice in the
thickness range (h,h+ dh) at a given time t and loca-
tion x. The fundamental equation controlling the evo-
lution of the ice thickness distribution, which is solved
numerically in sea ice models, is

∂g
∂t

= −∇ · (gu)− ∂
∂h
(βg)+ Ψ,

where u is the horizontal ice velocity, β is the rate of
thermodynamic ice growth, and Ψ is a ridging redis-
tribution function that accounts for changes in ice
thickness due to ridging and mechanical processes, as
illustrated in figure 2.

The momentum equation, or Newton’s second law for
sea ice, can be deduced by considering the forces on a
single floe, including interactions with other floes:

m
Du
Dt

= ∇ ·σ+ τa + τw −mαn× u−mg∇H,

where each term has units of force per unit area of the
sea ice cover,m is the combined mass of ice and snow
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Figure 2 Different factors contributing to the evolution of
the ice thickness distribution g(x, t, h). (Adapted, courtesy
of Christian Haas.)

per unit area, τa and τw are wind and ocean stresses,
and D/Dt = (∂/∂t)+u ·∇ is the material or convective
derivative. This is a two-dimensional equation obtained
by integrating the three-dimensional equation through
the thickness of the ice in the vertical direction.

The strength of the ice is represented by the internal
stress tensorσij . The other two terms on the right-hand
side are, in order, stresses due to Coriolis effects and
the sea surface slope, where n is a unit normal vector
in the vertical direction, α is the Coriolis parameter, H
describes the sea surface, and in this equation g is the
acceleration due to gravity.

The temperature field T(x, t) inside the sea ice (and
snow layer), which couples to the ocean below and
the atmosphere above through appropriate boundary
conditions, satisfies an advection–diffusion equation

∂T
∂t

= ∇ · (D(T)∇T)− v · ∇T ,
where D = K/ρC is the thermal diffusivity of sea ice,
K is its thermal conductivity, ρ is its bulk density, C
is the specific heat, and v is an averaged brine velocity
field in the sea ice.

The bulk properties of low-Reynolds-number flow of
brine of viscosity η through sea ice can be related to the
geometrical properties of the porous brine microstruc-
ture using homogenization theory [II.17]. The vol-
ume fractions of brine and ice are φ and 1 − φ. The
local velocity and pressure fields in the brine satisfy the
Stokes equations for incompressible fluids, where the
length scale of the microstructure (e.g., the period in
periodic media) is ε. Under appropriate assumptions, in
the homogenization limit as ε → 0, the averaged veloc-
ity v(x) and pressure p(x) satisfy Darcy’s law and the
incompressibility condition

v = −1
η
k∇p, ∇ · v = 0. (1)

Here, k is the permeability tensor, with vertical compo-
nent kzz = k in units of m2. The permeability k is an
example of an effective or homogenized parameter. The
existence of the homogenized limits v, k, and p in (1)
can be proven under broad assumptions, such as for
media with inhomogeneities that are periodic or have
translation-invariant statistics.

Obtaining quantitative information on k or other
effective transport coefficients—such as electrical or
thermal conductivity and how they depend on, say, the
statistical properties of the microstructure—is a cen-
tral problem in the theory of composites. A broad range
of techniques have been developed to obtain rigorous
bounds, approximate formulas, and general theories
of effective properties of composite and inhomogen-
eous media in terms of partial information about the
microstructure. This problem is, of course, quite sim-
ilar in nature to the fundamental questions of calcu-
lating bulk properties of matter from information on
molecular interactions, which is central to statistical
mechanics.

We note that it is also the case that one of the fun-
damental challenges of climate modeling is how to rig-
orously account for sub-grid scale processes and struc-
tures. That is, how do we incorporate important effects
into climate models when the scale of the relevant
phenomena being incorporated is far smaller than the
grid size of the numerical model, which may be tens
of kilometers. For example, it is obviously unrealis-
tic to account for every detail of the submillimeter-
scale brine microstructure in sea ice in a general cir-
culation model! However, the volume fraction and
connectedness properties of the brine phase control
whether or not fluid can flow through the ice. The
on–off switch for fluid flow in sea ice, known as the
rule of fives (see below), in turn controls such critical
processes as melt pond drainage, snow-ice formation
(where sea water percolates upward, floods the snow
layer on the sea ice surface, and subsequently freezes),
the evolution of salinity profiles, and nutrient replen-
ishment. It is the homogenized transport coefficient
(the effective fluid permeability) that is incorporated
into sea ice and climate models to account for these
and related physical and biogeochemical processes.
This effective coefficient is a well-defined parameter
(under appropriate assumptions about the microstruc-
ture) that captures the relevant microstructural tran-
sitions and determines how a number of sea ice pro-
cesses evolve. In this example we will see that rigor-
ous mathematical methods can be employed to analyze
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effective sea ice behavior on length scales much greater
than the submillimeter scale of the brine inclusions.

3 Mathematics of Composites

Here we give a brief overview of some of the mathemati-
cal models and techniques that are used in studying the
effective properties of sea ice.

3.1 Percolation Theory

Percolation theory was initiated in 1957 with the intro-
duction of a simple lattice model to study the flow
of air through permeable sandstones used in miner’s
gas masks. In subsequent decades this theory has
been used to successfully model a broad array of dis-
ordered materials and processes, including flow in
porous media like rocks and soils; doped semicon-
ductors; and various types of disordered conductors
like piezoresistors, thermistors, radar-absorbing com-
posites, carbon nanotube composites, and polar firn.
The original percolation model and its generalizations
have been the subject of intensive theoretical investi-
gations, particularly in the physics and mathematics
communities. One reason for the broad interest in the
percolation model is that it is perhaps the simplest
purely probabilistic model that exhibits a type of phase
transition.

The simplest form of the lattice percolation model
is defined as follows. Consider the d-dimensional inte-
ger lattice Zd, and the square or cubic network of bonds
joining nearest-neighbor lattice sites. We assign to each
bond a conductivity σ0 > 0 (not to be confused with
the stress tensor above) with probability p, meaning
it is open, and a conductivity 0 with probability 1 − p,
meaning it is closed. Two examples of lattice configura-
tions are shown in figure 3, with p = 1

3 in (a) and p = 2
3

in (b). Groups of connected open bonds are called open
clusters. In this model there is a critical probability pc,
0 < pc < 1, called the percolation threshold, at which
the average cluster size diverges and an infinite cluster
appears. For the two-dimensional bond lattice, pc = 1

2 .
For p < pc, the density of the infinite cluster P∞(p) is
0, while for p > pc, P∞(p) > 0 and near the threshold,

P∞(p) ∼ (p − pc)β, p → p+
c ,

where β is a universal critical exponent, that is, it
depends only on dimension and not on the details of
the lattice. Let x,y ∈ Zd and let τ(x,y) be the prob-
ability that x and y belong to the same open clus-
ter. The correlation length ξ(p) is the mean distance

between points on an open cluster, and it is a mea-
sure of the linear size of finite clusters. For p < pc,
τ(x,y) ∼ e−|x−y|/ξ(p), and ξ(p) ∼ (pc −p)−ν diverges
with a universal critical exponent ν as p → p−

c , as
shown in figure 3(c).

The effective conductivity σ∗(p) of the lattice, now
viewed as a random resistor (or conductor) network,
defined via Kirchhoff’s laws, vanishes for p < pc as
does P∞(p) since there are no infinite pathways, as
shown in figure 3(e). For p > pc, σ∗(p) > 0, and near
pc,

σ∗(p) ∼ σ0(p − pc)t, p → p+
c ,

where t is the conductivity critical exponent, with 1 �
t � 2 if d = 2,3 (for an idealized model), and numerical
values t ≈ 1.3 if d = 2 and t ≈ 2.0 if d = 3. Consider a
random pipe network with effective fluid permeability
k∗(p) exhibiting similar behavior k∗(p) ∼ k0(p−pc)e,
where e is the permeability critical exponent, with e = t
for lattices. Both t and e are believed to be universal;
that is, they depend only on dimension and not on the
type of lattice. Continuum models, like the so-called
Swiss cheese model, can exhibit nonuniversal behavior
with exponents different from the lattice case and e ≠ t.

3.2 Analytic Continuation and Spectral Measures

Homogenization is where one seeks to find a homoge-
neous medium that behaves the same macroscopically
as a given inhomogeneous medium. The methods are
focused on finding the effective properties of inhomo-
geneous media such as composites. We will see that the
spectral measure in a Stieltjes integral representation
for the effective parameter provides a powerful tool for
upscaling geometrical information about a composite
into calculations of effective properties.

We now briefly describe the analytic continuation
method for studying the effective transport properties
of composite materials. This method has been used
to obtain rigorous bounds on effective transport coef-
ficients of two-component and multicomponent com-
posite materials. The bounds follow from the special
analytic structure of the representations for the effec-
tive parameters and from partial knowledge of the
microstructure, such as the relative volume fractions of
the phases in the case of composite media. The analytic
continuation method was later adapted to treating the
effective diffusivity of passive tracers in incompressible
fluid velocity fields.

We consider the effective complex permittivity ten-
sor ε∗ of a two-phase random medium, although the
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Figure 3 The two-dimensional square lattice percolation model (a) below its percolation threshold of pc = 1
2 and (b) above it

(courtesy of Salvatore Torquato). (c) Divergence of the correlation length as p approaches pc. (d) The infinite cluster density
of the percolation model, and (e) the effective conductivity.

method applies to any classical transport coefficient.
Here, ε(x,ω) is a (spatially) stationary random field in
x ∈ Rd and ω ∈ Ω, where Ω is the set of all geomet-
ric realizations of the medium, which is indexed by the
parameter ω representing one particular realization,
and the underlying probability measure P is compatible
with stationarity.

As in sea ice, we assume we are dealing with a
two-phase locally isotropic medium, so that the com-
ponents εjk of the local permittivity tensor ε satisfy
εjk(x,ω) = ε(x,ω)δjk, where δjk is the Kronecker
delta and

ε(x,ω) = ε1χ1(x,ω)+ ε2χ2(x,ω). (2)

Here, εj is the complex permittivity for medium j =
1,2, and χj(x,ω) is its characteristic function, equal-
ing 1 for ω ∈ Ω with medium j at x, and 0 otherwise,
with χ2 = 1 − χ1.

When the wavelength is much larger than the scale of
the composite microstructure, the propagation prop-
erties of an electromagnetic wave in a given compos-
ite medium are determined by the quasistatic limit of
Maxwell’s equations:

∇× E = 0, ∇ ·D = 0, (3)

where E(x,ω) and D(x,ω) are stationary electric and
displacement fields, respectively, related by the local
constitutive equation D(x) = ε(x)E(x), and ek is a
standard basis vector in the kth direction. The elec-
tric field is assumed to have unit strength on average,
with 〈E〉 = ek, where 〈·〉 denotes ensemble averaging
overΩ or spatial averaging over all of Rd. The effective
complex permittivity tensor ε∗ is defined by

〈D〉 = ε∗〈E〉, (4)

which is a homogenized version of the local constitu-
tive relation D = εE.

For simplicity, we focus on one diagonal coefficient
ε∗ = ε∗kk, with ε∗ = 〈εE · ek〉. By the homogeneity of

ε(x,ω) in (2), ε∗ depends on the contrast parameter

h = ε1/ε2, and we definem(h) = ε∗/ε2, which is a Her-

glotz function that maps the upper half h-plane to the

upper half-plane and is analytic in the entire complex

h-plane except for the negative real axis (−∞,0].
The key step in the method is obtaining a Stieltjes

integral representation for ε∗. This integral representa-

tion arises from a resolvent representation of the elec-

tric field E = s(sI−Γ χ1)−1ek, where Γ = ∇(Δ−1)∇· acts

as a projection from L2(Ω, P) onto the Hilbert space of

curl-free random fields, and Δ−1 is based on convolu-

tion with the free-space Green function for the Lapla-

cian Δ = ∇2. Consider the function F(s) = 1 −m(h),
s = 1/(1−h), which is analytic off [0,1] in the s-plane.

Then, writing F(s) = 〈χ1[(sI − Γ χ1)−1ek] · ek〉 yields

F(s) =
∫ 1

0

dμ(λ)
s − λ , (5)

where μ(dλ) = 〈χ1Q(dλ)ek · ek〉 is a positive spec-

tral measure on [0,1], and Q(dλ) is the (unique) pro-

jection valued measure associated with the bounded,

self-adjoint operator Γ χ1.

Equation (5) is based on the spectral theorem for the

resolvent of the operator Γ χ1. It provides a Stieltjes

integral representation for the effective complex per-

mittivity ε∗ that separates the component parameters

in s from the complicated geometrical information con-

tained in the measure μ. (Extensions of (5) to multicom-

ponent media with ε = ε1χ1 + ε2χ2 + ε3χ3 +· · ·+ εnχn
involve several complex variables.) Information about

the geometry enters through the moments

μn =
∫ 1

0
λn dμ(λ) = 〈χ1[(Γ χ1)nek] · ek〉,

n = 0,1,2, . . . .

For example, the mass μ0 is given by μ0 = 〈χ1ek ·ek〉 =
〈χ1〉 = φ, where φ is the volume or area fraction of

material of phase 1, and μ1 = φ(1−φ)/d if the material
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Figure 4 Realizations of the two-dimensional lattice perco-
lation model are shown in (a) and (b), and the correspond-
ing spectral functions (averaged over 5000 random realiza-
tions) are shown in (c) and (d). In (c), there is a spectral gap
around λ = 1, indicating the lack of long-range order or con-
nectedness. The gap collapses in (d) when the percolation
threshold of p = pc = 0.5 has been reached, and the sys-
tem exhibits long-range connectedness. Note the difference
in vertical scale in the graphs in (c) and (d).

is statistically isotropic. In general, μn depends on the

(n+ 1)-point correlation function of the medium.

Computing the spectral measure μ for a given com-

posite microstructure involves first discretizing a two-

phase image of the composite into a square lattice

filled with 1s and 0s corresponding to the two phases.

The key operator Γ χ1, which depends on the geom-

etry via χ1, then becomes a self-adjoint matrix. The

spectral measure may be calculated directly from the

eigenvalues and eigenvectors of this matrix. Examples

of these spectral measures for the percolation model

on the two-dimensional square lattice are shown in

figure 4.

4 Applications to Sea Ice

4.1 Percolation Theory

Given a sample of sea ice at temperature T in degrees

Celsius and bulk salinity S in parts per thousand (ppt),

the brine volume fractionφ is given (approximately) by

the equation of Frankenstein and Garner:

φ = S
1000

(
49.185
|T | + 0.532

)
. (6)

As temperature increases for fixed salinity, the volume
fraction φ of liquid brine in the ice also increases. The
inclusions become larger and more connected, as illus-
trated in parts (a)–(c) of plate 6, which show images of
the brine phase in sea ice (in gold) obtained from X-ray
tomography scans of sea ice single crystals.

As the connectedness of the brine phase increases
with rising temperature, the ease with which fluid can
flow through sea ice—its fluid permeability—should
increase as well. In fact, sea ice exhibits a percolation
threshold, or critical brine volume fraction φc, or crit-
ical temperature Tc, below which columnar sea ice is
effectively impermeable to vertical fluid flow and above
which the ice is permeable, and increasingly so as tem-
perature rises. This critical behavior of fluid transport
in sea ice is illustrated in plate 6(d). The data on the
vertical fluid permeability k(φ) display a rapid rise
just above a threshold value of about φc ≈ 0.05 or
5%, similar to the conductivity (or permeability) in fig-
ure 3(e). This type of behavior is also displayed by data
on brine drainage, with the effects of drainage shut-
ting down for brine volume fractions below about 5%.
Roughly speaking, we can refer to this phenomenon as
the on–off switch for fluid flow in sea ice. Through the
Frankenstein–Garner relation in (6), the critical brine
volume fraction φc ≈ 0.05 corresponds to a criti-
cal temperature Tc ≈ −5 ◦C, for a typical salinity of
5 ppt. This important threshold behavior has therefore
become known as the rule of fives.

In view of this type of critical behavior, it is reason-
able to try to find a theoretical percolation explanation.
However, with pc ≈ 0.25 for the d = 3 cubic bond
lattice, it was apparent that key features of the geom-
etry of the brine microstructure in sea ice were being
missed by lattices. The threshold φc ≈ 0.05 was iden-
tified with the critical probability in a continuum per-
colation model for compressed powders that exhibit
microstructural characteristics similar to sea ice. The
identification explained the rule of fives, as well as data
on algal growth and snow-ice production. The com-
pressed powders shown in figure 5 were used in the
development of so-called stealthy or radar-absorbing
composites.

When we applied the compressed powder model
to sea ice, we had no direct evidence that the brine
microstructure undergoes a transition in connected-
ness at a critical brine volume fraction. This lack of
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Figure 5 (a) A powder of large polymer spheres mixed with smaller metal spheres. (b) When the powder is compressed, its
microstructure is similar to that of the sea ice in (c). (Parts (a) and (b) are adapted from Golden, K. M., S. F. Ackley, and V. I.
Lytle. Science 18 December 1998:282 (5397), 2238–2241. Part (c) is adapted from CRREL report 87-20 (October 1987).)

evidence was partly due to the difficulty of imaging

and quantitatively characterizing the brine inclusions

in three dimensions, particularly the thermal evolution

of their connectivity. Through X-ray computed tomog-

raphy and pore structure analysis we have now ana-

lyzed the critical behavior of the thermal evolution of

brine connectedness in sea ice single crystals over a

temperature range from −18 ◦C to −3 ◦C. We have

mapped three-dimensional images of the pores and

throats in the brine phase onto graphs of nodes and

edges, and analyzed their connectivities as functions of

temperature and sample size. Realistic network mod-

els of brine inclusions can be derived from porous

media analysis of three-dimensional microtomography

images. Using finite-size scaling techniques largely con-

firms the rule of fives, as well as confirming that sea ice

is a natural material that exhibits a strong anisotropy

in percolation thresholds.

Now we consider the application of percolation

theory to understanding the fluid permeability of sea

ice. In the continuum, the permeability and conduc-

tivity exponents e and t can take nonuniversal values

and need not be equal, as in the case of the three-

dimensional Swiss cheese model. Continuum models

have been studied by mapping to a lattice with a prob-

ability density ψ(g) of bond conductances g. Nonuni-

versal behavior can be obtained when ψ(g) is singu-

lar as g → 0+. However, for a lognormal conductance

distribution arising from intersections of lognormally

distributed inclusions, as in sea ice, the behavior is

universal. Thus e ≈ 2 for sea ice.

The permeability scaling factor k0 for sea ice is esti-

mated using critical path analysis. For media with g in

a wide range, the overall behavior is dominated by a

critical bottleneck conductance gc, the smallest conduc-

tance such that the critical path {g : g � gc} spans the

sample. With most brine channel diameters between
1.0 mm and 1.0 cm, spanning fluid paths have a small-
est characteristic radius rc ≈ 0.5 mm, and we estimate
k0 by the pipe-flow result r2

c /8. Thus,

k(φ) ∼ 3(φ−φc)2 × 10−8 m2, φ→ φ+
c . (7)

In plate 6(f), field data with φ in [0.055,0.15], just
aboveφc ≈ 0.05, are compared with (7) and show close
agreement. The striking result that, for sea ice, e ≈ 2,
the universal lattice value in three dimensions, is due to
the general lognormal structure of the brine inclusion
distribution function. The general nature of our results
suggests that similar types of porous media, such as
saline ice on extraterrestrial bodies, may also exhibit
universal critical behavior.

4.2 Analytic Continuation

4.2.1 Bounds on the Effective Complex Permittivity

Bounds on ε∗, or F(s), are obtained by fixing s in
(5), varying over admissible measures μ (or admissible
geometries), such as those that satisfy only

μ0 = φ, (8)

and finding the corresponding range of values of F(s)
in the complex plane. Two types of bounds on ε∗ are
obtained. The first bound R1 assumes only that the rel-
ative volume fractions p1 = φ and p2 = 1 − p1 of
the brine and ice are known, so that (8) is satisfied. In
this case, the admissible set of measures forms a com-
pact, convex set. Since (5) is a linear functional of μ,
the extreme values of F are attained by extreme points
of the set of admissible measures, which are the Dirac
point measures of the form p1δz . The values of F must
lie inside the circle p1/(s − z), −∞ � z � ∞, and the
region R1 is bounded by circular arcs, one of which is
parametrized in the F -plane by

C1(z) = p1

s − z , 0 � z � p2. (9)
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To display the other arc, it is convenient to use the
auxiliary function

E(s) = 1 − ε1

ε∗
= 1 − sF(s)
s(1 − F(s)) , (10)

which is a Herglotz function like F(s), analytic off [0,1].
Then, in the E-plane, we can parametrize the other
circular boundary of R1 by

Ĉ1(z) = p2

s − z , 0 � z � p1. (11)

In the ε∗-plane, R1 has vertices V1 = ε1/(1 − Ĉ1(0)) =
(p1/ε1+p2/ε2)−1 andW1 = ε2(1−C1(0)) = p1ε1+p2ε2,
and collapses to the interval

(p1/ε1 + p2/ε2)−1 � ε∗ � p1ε1 + p2ε2 (12)

when ε1 and ε2 are real, which are the classical arith-
metic (upper) and harmonic (lower) mean bounds, also
called the elementary bounds. The complex elementary
bounds (9) and (11) are optimal and can be attained by a
composite of uniformly aligned spheroids of material 1
in all sizes coated with confocal shells of material 2, and
vice versa. These arcs are traced out as the aspect ratio
varies.

If the material is further assumed to be statistically
isotropic, i.e., if ε∗ik = ε∗δik, then μ1 = φ(1−φ)/dmust
be satisfied as well. A convenient way of including this
information is to use the transformation

F1(s) = 1
p1

− 1
sF(s)

. (13)

The function F1(s) is, again, a Herglotz function, which
has the representation

F1(s) =
∫ 1

0

dμ1(z)
s − z .

The constraint μ1 = φ(1 −φ)/d on F(s) is then trans-
formed to a restriction of only the mass, or zeroth
moment μ1

0, of μ1, with

μ1
0 = p2/p1d.

Applying the same procedure as for R1 yields a region
R2 whose boundaries are again circular arcs. When
ε1 and ε2 are real with ε1 � ε2, the region col-
lapses to a real interval, whose endpoints are known as
the Hashin–Shtrikman bounds. We remark that higher-
order correlation information can be conveniently
incorporated by iterating (13).

4.2.2 Inverse Homogenization

It has been shown that the spectral measure μ, which
contains all geometrical information about a compos-
ite, can be uniquely reconstructed if measurements of

the effective permittivity ε∗ are available on an arc
in the complex s-plane. If the component parameters
depend on frequency ω (not to be confused with real-
izations of the random medium above), variation of
ω in an interval (ω1,ω2) gives the required data.
The reconstruction of μ can be reduced to an inverse
potential problem. Indeed, F(s) admits a representa-
tion through a logarithmic potential Φ of the measure
μ,

F(s) = ∂Φ
∂s
, Φ(s) =

∫ 1

0
ln |s − z|dμ(z), (14)

where ∂/∂s = ∂/∂x − i∂/∂y . The potential Φ satisfies
the Poisson equation ΔΦ = −ρ, where ρ(z) is a density
on [0,1]. A solution to the forward problem is given
by the Newtonian potential with μ(dz) = ρ(z)dz. The
inverse problem is to find ρ(z) (or μ) given values of
Φ, ∂Φ/∂n, or ∇Φ. The inverse problem is ill-posed and
requires regularization [IV.4 §7] to develop a stable
numerical algorithm.

When frequency ω varies across (ω1,ω2), the com-
plex parameter s traces an arc C in the s-plane. Let A
be the integral operator in (14),

Aμ = ∂
∂s

∫ 1

0
ln |s − λ|dμ(λ),

mapping the set of measures M[0,1] on the unit inter-
val onto the set of derivatives of complex potentials
defined on a curve C. To construct the solution we con-
sider the problem of minimizing ‖Aμ−F‖2 over μ ∈ M,
where ‖·‖ is the L2(C)-norm, F(s) is the measured data,
and s ∈ C. The solution does not depend continuously
on the data, and regularization based on constrained
minimization is needed. Instead of ‖Aμ − F‖2 being
minimized over all functions in M, it is minimized over
a convex subset satisfying J(μ) � β for a stabilizing
functional J(μ) and some β > 0. The advantage of
using quadratic J(μ) = ‖Lμ‖2 is the linearity of the
corresponding Euler equation, resulting in efficiency
of the numerical schemes. However, the reconstructed
solution necessarily possesses a certain smoothness.
Nonquadratic stabilization imposes constraints on the
variation of the solution. The total variation penaliza-
tion, as well as a nonnegativity constraint, does not
imply smoothness, permitting more general recovery,
including the important Dirac measures.

We have also solved a reduced inverse spectral
problem exactly by bounding the volume fraction of
the constituents, an inclusion separation parameter q,
and the spectral gap of Γ χ1. We developed an algo-
rithm based on the Möbius transformation structure
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of the forward bounds whose output is a set of alge-
braic curves in parameter space bounding regions of
admissible parameter values. These results advance
the development of techniques for characterizing the
microstructure of composite materials, and they have
been applied to sea ice to demonstrate electromagneti-
cally that the brine inclusion separations vanish as the
percolation threshold is approached.

5 Geometry of the Marginal Ice Zone

Dense pack ice transitions to open ocean over a
region of broken ice termed the marginal ice zone
(MIZ), a highly dynamic region in which the ice cover
lies close to an open ocean boundary and where
intense atmosphere–ice–ocean interactions take place.
The width of the MIZ is a fundamental length scale for
polar dynamics, in part because it represents the dis-
tance over which ocean waves and swell penetrate into
the sea ice cover. Wave penetration can break a smooth
ice layer into floes, meaning that the MIZ acts as a buffer
zone that protects the stable morphology of the inner
ice. Waves also promote the formation of pancake ice,
as shown in plate 7. Moreover, the width of the MIZ
is an important spatial dimension of the marine polar
habitat and impacts human accessibility to high lati-
tudes. Using a conformal mapping method to quan-
tify MIZ width (see below), a dramatic 39% widening
of the summer Arctic MIZ, based on three decades of
satellite-derived data (1979–2012), has been reported.

Challenges associated with objective measurement
of the MIZ width include the MIZ’s shape, which is in
general not geodesically convex, as illustrated by the
shaded example in plate 8(a). Sea ice concentration (c)
is used here to define the MIZ as a body of marginal ice
(0.15 � c � 0.80) adjoining both pack ice (c > 0.80) and
sparse ice (c < 0.15). To define an objective MIZ width
applicable to such shapes, an idealized sea ice concen-
tration field ψ(x,y) satisfying laplace’s equation

[III.18] within the MIZ,

∇2ψ = 0, (15)

was introduced. We use (x,y) to denote a point in two-
dimensional space, and it is understood that we are
working on the spherical Earth. Boundary conditions
for (15) are ψ = 0.15 where MIZ borders a sparse ice
region and ψ = 0.80 where the MIZ borders a pack
ice region. The solutions to (15) for the examples in
parts (a) and (b) of plate 8 are illustrated by colored
shading. Any curve γ orthogonal to the level curves
of ψ and connecting two points on the MIZ perimeter
(a black field line through the gradient field ∇ψ, as in

plate 8(b)) is contained in the MIZ, and its length pro-
vides an objective measure of MIZ width (-). Defined
in this way, - is a function of distance along the MIZ
perimeter (s) from an arbitrary starting point, and this
dependence is denoted by - = -(s). Analogous appli-
cations of Laplace’s equation have been introduced in
medical imaging to measure the width or thickness of
human organs.

Derivatives in (15) were numerically approximated
using second-order finite differences, and solutions
were obtained in the data’s native stereographic projec-
tion since solutions of Laplace’s equation are invariant
under conformal mapping. For a given day and MIZ,
a summary measure of MIZ width (w) can be defined
by averaging - with respect to distance along the MIZ
perimeter:

w = 1
LM

∫
M
-(s)ds, (16)

where M is the closed curve defining the MIZ perime-
ter and LM is the length of M . Averaging w over July–
September of each available year reveals the dramatic
widening of the summer MIZ, as illustrated in plate 8(c).

6 Geometry of Arctic Melt Ponds

From the first appearance of visible pools of water,
often in early June, the area fraction φ of sea ice cov-
ered by melt ponds can increase rapidly to over 70% in
just a few days. Moreover, the accumulation of water
at the surface dramatically lowers the albedo where
the ponds form. There is a corresponding critical drop-
off in average albedo. The resulting increase in solar
absorption in the ice and upper ocean accelerates melt-
ing, possibly triggering ice–albedo feedback. Similarly,
an increase in open-water fraction lowers albedo, thus
increasing solar absorption and subsequent melting.
The spatial coverage and distribution of melt ponds
on the surface of ice floes and the open water between
the floes thus exerts primary control of ice pack albedo
and the partitioning of solar energy in the ice–ocean
system. Given the critical role of ice–albedo feedback
in the recent losses of Arctic sea ice, ice pack albedo
and the formation and evolution of melt ponds are of
significant interest in climate modeling.

While melt ponds form a key component of the Arc-
tic marine environment, comprehensive observations
or theories of their formation, coverage, and evolution
remain relatively sparse. Available observations of melt
ponds show that their areal coverage is highly vari-
able, particularly for first-year ice early in the melt sea-
son, with rates of change as high as 35% per day. Such
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Figure 6 (a) Area–perimeter data for 5269 Arctic melt
ponds, plotted on logarithmic scales. (b) Melt pond frac-
tal dimension D as a function of area A, computed from
the data in (a). Ponds corresponding to the three black
stars in (a), from left to right, are denoted by (c), (d),
and (e), respectively, in the bottom diagram. The transi-
tional pond in (d) has a horizontal scale of about 30 m.
(Adapted from Hohenegger, C., B. Alali, K. R. Steffen, D. K.
Perovich, and K. M. Golden. 2012. Transition in the fractal
geometry of Arctic melt ponds. The Cryosphere 6:1157-–62
(doi:10.5194/tc-6-1157-2012).)

variability, as well as the influence of many competing
factors controlling the evolution of melt ponds and ice
floes, makes the incorporation of realistic treatments
of albedo into climate models quite challenging. Small-
and medium-scale models of melt ponds that include
some of these mechanisms have been developed, and
melt pond parametrizations are being incorporated
into global climate models.

The surface of an ice floe is viewed here as a two-
phase composite of dark melt ponds and white snow or
ice. The onset of ponding and the rapid increase in cov-
erage beyond the initial threshold is similar to critical
phenomena in statistical physics and composite mate-
rials. It is natural, therefore, to ask if the evolution of
melt pond geometry exhibits universal characteristics
that do not necessarily depend on the details of the
driving mechanisms in numerical melt pond models.
Fundamentally, the melting of Arctic sea ice is a phase-
transition phenomenon, where a solid turns to liquid,
albeit on large regional scales and over a period of time
that depends on environmental forcing and other fac-
tors. We thus look for features of melt pond evolu-
tion that are mathematically analogous to related phe-
nomena in the theories of phase transitions and com-
posite materials. As a first step in this direction, we
consider the evolution of the geometric complexity of
Arctic melt ponds.

By analyzing area–perimeter data from hundreds of
thousands of melt ponds, we have discovered an unex-
pected separation of scales, where the pond fractal
dimension D exhibits a transition from 1 to 2 around a
critical length scale of 100 m2 in area, as shown in fig-
ure 6. Small ponds with simple boundaries coalesce or
percolate to form larger connected regions. Pond com-
plexity increases rapidly through the transition region
and reaches a maximum for ponds larger than 1000 m2,
whose boundaries resemble space-filling curves with
D ≈ 2. These configurations affect the complex radi-
ation fields under melting sea ice, the heat balance of
sea ice and the upper ocean, under-ice phytoplankton
blooms, biological productivity, and biogeochemical
processes.

Melt pond evolution also appears to exhibit a per-
colation threshold, where one phase in a composite
becomes connected on macroscopic scales as some
parameter exceeds a critical value. An important exam-
ple of this phenomenon in the microphysics of sea ice
(discussed above), which is fundamental to the pro-
cess of melt pond drainage, is the percolation tran-
sition exhibited by the brine phase in sea ice, or the
rule of fives discussed on page 697. When the brine
volume fraction of columnar sea ice exceeds approx-
imately 5%, the brine phase becomes macroscopically
connected so that fluid pathways allow flow through
the porous microstructure of the ice. Similarly, even
casual inspection of the aerial photos in plate 9 shows
that the melt pond phase of sea ice undergoes a perco-
lation transition where disconnected ponds evolve into
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much larger-scale connected structures with complex
boundaries. Connectivity of melt ponds promotes fur-
ther melting and the breakup of floes, as well as hor-
izontal transport of meltwater and drainage through
cracks, leads, and seal holes.
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V.18 Numerical Weather Prediction
Peter Lynch

1 Introduction

The development of computer models for numeri-
cal simulation and prediction of the atmosphere and
oceans is one of the great scientific triumphs of the
past fifty years. Today, numerical weather prediction
(NWP) plays a central and essential role in operational
weather forecasting, with forecasts now having accu-
racy at ranges beyond a week. There are several rea-
sons for this: enhancements in model resolution, better
numerical schemes, more realistic parametrizations of
physical processes, new observational data from satel-
lites, and more sophisticated methods of determining
the initial conditions. In this article we focus on the fun-
damental equations, the formulation of the numerical
algorithms, and the variational approach to data assim-
ilation. We present the mathematical principles of NWP
and illustrate the process by considering some specific
models and their application to practical forecasting.

2 The Basic Equations

The atmosphere is governed by the fundamental laws
of physics, expressed in terms of mathematical equa-
tions. They form a system of coupled nonlinear partial
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differential equations (PDEs). These equations can be

used to predict the evolution of the atmosphere and to

simulate its long-term behavior.

The primary variables are the fluid velocity V (with

three components, u eastward, v northward, and w
upward), pressure p, density ρ, temperature T , and

humidity q. Using Newton’s laws of motion and the

principles of conservation of energy and mass, we can

obtain a system whose solution is well determined by

the initial conditions.

The central components of the system, govern-

ing fluid motion, are the navier–stokes equations

[III.23]. We write them in vector form:

∂V
∂t

+ V ·∇V + 2Ω× V + 1
ρ
∇p = F + g.

The equations are relative to the rotating Earth and

Ω is the Earth’s angular velocity. In order, the terms

of this equation represent local acceleration, nonlin-

ear advection, Coriolis term, pressure gradient, friction,

and gravity. The friction term F is small in the free

atmosphere but is crucially important in the boundary

layer (roughly, the first 1 km above the Earth’s surface).

The apparent gravity g includes the centrifugal force,

which depends only on position.

The temperature, pressure, and density are linked

through the equation of state

p = RρT,
where R is the gas constant for dry air. In practice, a

slight elaboration of this is used that takes account of

moisture in the atmosphere.

Energy conservation is embodied in the first law of

thermodynamics,

cv
dT
dt

+ RT∇ · V = Q,

where cv is the specific heat at constant volume and

Q is the diabatic heating rate. Conservation of mass is

expressed in terms of the continuity equation:

dρ
dt

+ ρ∇ · V = 0.

Finally, conservation of water substance is expressed

by the equation
dq
dt

= S,

where q is the specific humidity and S represents all

sources and sinks of water vapor.

Once initial conditions, appropriate boundary con-

ditions, and external forcings, sources, and sinks are

given, the above system of seven (scalar) equations pro-
vides a complete description of the evolution of the
seven variables {u,v,w,p, ρ, T , q}.

For large-scale motions the vertical component of
velocity is very much smaller than the horizontal com-
ponents, and we can replace the vertical equation by
a balance between the vertical pressure gradient and
gravity. This yields the hydrostatic equation

∂p
∂z

+ gρ = 0.

Hydrostatic models were used for the first fifty years of
NWP but nonhydrostatic models are now coming into
widespread use.

3 The Emergence of NWP

The idea of calculating the changes in the weather
by numerical methods emerged around the turn of
the twentieth century. Cleveland Abbe, an American
meteorologist, viewed weather forecasting as an appli-
cation of hydrodynamics and thermodynamics to the
atmosphere. He also identified a system of mathemat-
ical equations, essentially those presented in section 2
above, that govern the evolution of the atmosphere.
This idea was developed in greater detail by the Norwe-
gian Vilhelm Bjerknes, whose stated goal was to make
meteorology an exact science: a true physics of the
atmosphere.

3.1 Richardson’s Forecast

During World War I, Lewis Fry Richardson, an English
Quaker mathematician, calculated the changes in the
weather variables directly from the fundamental equa-
tions and presented his results in a book, Weather
Prediction by Numerical Process, in 1922. His predic-
tion of pressure changes was utterly unrealistic, being
two orders of magnitude too large. The primary cause
of this failure was the inaccuracy and imbalance of
the initial conditions. Despite the outlandish results,
Richardson’s methodology was unimpeachable, and is
essentially the approach we use today to integrate the
equations.

Richardson was several decades ahead of his time.
For computational weather forecasting to become a
practical reality, advances on a number of fronts were
required. First, an observing system for the tropo-
sphere, the lowest layer of the atmosphere, extending
to about 12 km, was established to serve the needs of
aviation; this also provided the initial data for weather
forecasting. Second, advances in numerical analysis led
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to the design of stable and accurate algorithms for solv-

ing the PDEs. Third, progress in meteorological theory,

especially the development of the quasigeostrophic

equations and improved understanding of atmospheric

balance, provided a means to eliminate the spurious

high-frequency oscillations that had spoiled Richard-

son’s forecast. Finally, the invention of high-speed dig-

ital computers enabled the enormous computational

task of solving the equations to be undertaken.

3.2 The ENIAC Integrations

The first forecasts made using an automatic com-

puter were completed in 1950 on the ENIAC (Elec-

tronic Numerical Integrator and Computer), the first

programmable general-purpose computer. The fore-

casts used a highly simplified model, representing the

atmosphere as a single layer and assuming conserva-

tion of absolute vorticity expressed by the barotropic

vorticity equation,

d
dt
(ζ + f) = 0,

where ζ is the vorticity of the flow and f = 2Ω sinφ
is the Coriolis parameter, with Ω the angular velocity

of the Earth and φ the latitude. The Lagrangian time

derivative
d
dt

= ∂
∂t

+ V ·∇

includes the nonlinear advection by the flow. The equa-

tion was approximated by finite differences in space

and time with a grid size of 736 km (at the North Pole)

and a time step of three hours. The resulting forecasts,

while far from perfect, were realistic and provided a

powerful stimulus for further work.

Baroclinic, or multilevel, models that enabled realis-

tic representation of the vertical structure of the atmo-

sphere were soon developed. Moreover, the simplified

equations were replaced by more accurate primitive

equations, that is, the equations presented in section 2

but with the hydrostatic approximation. As these equa-

tions simulate high-frequency gravity waves in addition

to the motions that are important for weather, the ini-

tial conditions must be carefully balanced. Techniques

for ensuring this were developed. Most notable among

these was the normal-mode initialization method: the

flow is resolved into normal modes and modified to

ensure that the tendencies, or rates of change, of

the gravity wave components vanish. This suppresses

spurious oscillations.

4 Solving the Equations

Analytical solution of the equations is impossible, so
approximate methods must be employed. We consider
methods of discretizing the spatial domain to reduce
the PDEs to an algebraic system and of advancing the
solution in time.

4.1 Time-Stepping Schemes

LetQ denote a typical dependent variable, governed by
an equation of the form

dQ
dt

= F(Q).

We replace the continuous-time domain t by a sequence
of discrete times {0,Δt,2Δt, . . . , nΔt, . . . }, with the
solution at these times denoted by Qn = Q(nΔt).
If this solution is known up to time t = nΔt, the
right-hand term Fn = F(Qn) can be computed. The
time derivative is now approximated by a centered
difference

Qn+1 −Qn−1

2Δt
= Fn,

so the “forecast” value Qn+1 may be computed from
the old value Qn−1 and the tendency Fn:

Qn+1 = Qn−1 + 2ΔtFn.

This is called the leapfrog scheme. The process of step-
ping forward from moment to moment is repeated a
large number of times, until the desired forecast range
is reached.

The leapfrog scheme is limited by a stability criterion
that restricts the size of the time step Δt. One way of
circumventing this is to use an implicit scheme such as

Qn+1 −Qn−1

2Δt
= F

n−1 + Fn+1

2
.

The time step is now unconstrained by stability, but the
scheme requires the solution of the equation

Qn+1 −ΔtFn+1 = Qn−1 +ΔtFn−1,

which is prohibitive unless F(Q) is a linear function.
Normally, implicit schemes are used only for particular
(linear) terms of the equations.

4.2 Spatial Finite Differencing

For the PDEs that govern atmospheric dynamics we
must replace continuous variations in space by discrete
variables. The primary way to do this is to substitute
finite-difference approximations for the spatial deriva-
tives. It then transpires that the stability depends on
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the relative sizes of the space and time steps. A real-
istic solution is not guaranteed by reducing their sizes
independently.

We consider the simple one-dimensional wave equa-
tion

∂Q
∂t

+ c ∂Q
∂x

= 0,

where Q(x, t) depends on both x and t, and where the
advection speed c is constant. We consider the sinu-
soidal solution Q = Q0eik(x−ct) of wavelength L =
2π/k. We use centered difference approximations in
both space and time:

Qn+1
m −Qn−1

m
2Δt

+ c
(Qnm+1 −Qnm−1

2Δx

)
= 0,

where Qnm = Q(mΔx,nΔt). We seek a solution of
the form Qnm = Q0eik(mΔx−CnΔt). For real C , this is a
wavelike solution. However, if C is complex, this solu-
tion will behave exponentially, quite unlike the solution
of the continuous equation. Substituting Qnm into the
finite-difference equation, we find that

C = 1
kΔt

sin−1
[(
cΔt
Δx

)
sinkΔx

]
.

If the argument of the inverse sine is less than unity, C
is real. Otherwise, C is complex, and the solution will
grow with time. Thus, the condition for stability of the
solution is ∣∣∣∣cΔtΔx

∣∣∣∣ � 1.

This is the Courant–Friedrichs–Lewy criterion, discov-
ered in 1928. It imposes a strong constraint on the rel-
ative sizes of the space and time grids. The limitation
on stability can be circumvented by means of implicit
finite differencing. Then

C = 2
kΔt

tan−1
[(
cΔt
2Δx

)
sinkΔx

]
.

The numerical phase speed C is always real, so the
implicit scheme is unconditionally stable, but the cost
is that a linear system must be solved at each time step.

4.3 Spectral Method

In the spectral method, each field is expanded in a
series of spherical harmonics:

Q(λ,φ, t) =
∞∑
n=0

n∑
m=−n

Qmn (t)Ymn (λ,φ),

where the coefficientsQmn (t) depend only on time, and
where Ymn (λ,φ) are the spherical harmonics

Ymn (λ,φ) = eimλPmn (φ)

for longitude λ and latitude φ. The coefficients Qmn of
the harmonics provide an alternative to specifying the

field values Q(λ,φ) in the spatial domain. When the
model equations are transformed to spectral space they
become a coupled set of equations (ordinary differen-
tial equations) for the spectral coefficients Qmn . These
are used to advance the coefficients in time, after which
the new physical fields may be computed.

In practice, the series expansion must be truncated
at some point:

Q(λi,φj, t) =
N∑
n=0

n∑
m=−n

Qmn (t)Ymn (λi,φj).

This is called triangular truncation, and the value of N
indicates the resolution of the model. There is a compu-
tational grid, called the Gaussian grid, corresponding to
the spectral truncation.

5 Initial Conditions

Numerical weather prediction is an initial-value prob-
lem; to integrate the equations of motion we must spec-
ify the values of the dependent variables at an initial
time. The numerical process then generates the val-
ues of these variables at later times. The initial data
are ultimately derived from direct observations of the
atmosphere.

The optimal interpolation analysis method was, for
several decades, the most popular method of automatic
analysis for NWP. This method optimizes the combina-
tion of information in the background (forecast) field
and in the observations, using the statistical proper-
ties of the forecast and observation errors to produce
an analysis that, in a precise statistical sense, is the best
possible analysis.

An alternative approach to data assimilation is to find
the analysis field that minimizes a cost function. This is
called variational assimilation and it is equivalent to the
statistical technique known as the maximum-likelihood
estimate, subject to the assumption of Gaussian errors.
When applied at a specific time, the method is called
three-dimensional variational assimilation, or 3D-Var
for short. When the time dimension is also taken into
account, we have 4D-Var.

5.1 Variational Assimilation

The cost function for 3D-Var may be defined as the sum
of two components:

J = JB + JO.

We represent the model state by a high-dimensional
vector X. The term

JB = 1
2 (X −XB)TB−1(X −XB)



V.18. Numerical Weather Prediction 709

represents the distance between the model state X and
the background field XB weighted by the background
error covariance matrix B. The term

JO = 1
2 (Y −HX)TR−1(Y −HX)

represents the distance between the analysis and the
observed values Y weighted by the observation error
covariance matrix R. The observation operator H is a
rectangular matrix that converts the background field
into first-guess values of the observations. More gener-
ally, the observation operator is nonlinear but, for ease
of description, we assume here that it is linear.

The minimum of J is attained at X = XA, where

∇XJ = 0,

that is, where the gradient of J with respect to each of
the analyzed values is zero. Computing this gradient,
we get

∇XJ = B−1(X −XB)+HTR−1(Y −HX).
Setting this to zero we can deduce the expression

X = XB +K(Y −HXB).

Thus, the analysis is obtained by adding to the back-
ground field a weighted sum of the difference between
observed and background values. The matrix K, the
gain matrix, is given by

K = BHT(R+HBHT)−1.

The analysis error covariance is then given by

A = (I −KH)B.
The minimum of the cost function is found using

a descent algorithm such as the conjugate gradi-

ent method [IV.11 §4.1]; 3D-Var solves the minimiza-
tion problem directly, avoiding computation of the gain
matrix.

The 3D-Var method has enabled the direct assimi-
lation of satellite radiance measurements. The error-
prone inversion process, whereby temperatures are
deduced from the radiances before assimilation, is thus
eliminated. Quality control of these data is also eas-
ier and more reliable. As a consequence, the accuracy
of forecasts has improved markedly since the intro-
duction of variational assimilation. The accuracy of
medium-range forecasts is now about equal for the two
hemispheres (see figure 1). This is due to better satel-
lite data assimilation. Satellite data are essential for the
Southern Hemisphere as conventional data are in such
short supply. The extraction of useful information from
satellite soundings has been one of the great research
triumphs of NWP over the past forty years.

5.2 Inclusion of the Time Dimension

Whereas conventional meteorological observations are
made at the main synoptic hours, satellite data are
distributed continuously in time. To assimilate these
data, it is necessary to perform the analysis over a
time interval rather than for a single moment. This is
also more appropriate for observations that are dis-
tributed inhomogeneously in space. Four-dimensional
variational assimilation, or 4D-Var for short, uses all
the observations within an interval t0 � t � tN . The
cost function has a term JB measuring the distance to
the background field XB at the initial time t0, just as in
3D-Var. It also contains a summation of terms measur-
ing the distance to observations at each time step tn in
the interval [t0, tN]:

J = JB +
N∑
n=0

JO(tn),

where JB is defined as for 3D-Var and JO(tn) is given
by

JO(tn) = (Yn −HnXn)TR−1
n (Yn −HnXn).

The state vector Xn at time tn is generated by integra-
tion of the forecast model from time t0 to tn, written
Xn = Mn(X0). The vector Yn contains the observations
valid at time tn.

Just as the observation operator had to be linearized
to obtain a quadratic cost function, we linearize the
model operator Mn about the trajectory from the back-
ground field, obtaining what is called the tangent linear
model operator Mn. Then we find that 4D-Var is for-
mally similar to 3D-Var with the observation operator
H replaced by HnMn. Just as the minimization of J
in 3D-Var involved the transpose of H, the minimiza-
tion in 4D-Var involves the transpose of HnMn, which
is MT

nHT
n. The operator MT

n, the transpose of the tan-
gent linear model, is called the adjoint model. The con-
trol variable for the minimization of the cost function
is X0, the model state at time t0, and the sequence of
analyses Xn satisfies the model equations, that is, the
model is used as a strong constraint.

The 4D-Var method finds initial conditions X0 such
that the forecast best fits the observations within the
assimilation interval. This removes an inherent disad-
vantage of optimal interpolation and 3D-Var, where all
observations within a fixed time window (typically of
six hours) are assumed to be valid at the analysis time.
The introduction of 4D-Var at the European Centre
for Medium-Range Weather Forecasts (ECMWF) led to
a significant improvement in the quality of operational
medium-range forecasts.



710 V. Modeling

30

40

50

60

70

80

90

100

%

1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013

Day 3, Northern Hemisphere Day 3, Southern Hemisphere

Day 5, Northern Hem. Day 5, Southern Hemisphere

Day 7, Northern Hem. Day 7, Southern Hemisphere

Day 10, Northern Hemisphere

Day 10, Southern Hemisphere

Figure 1 Anomaly correlation (%) of 500 hPa geopotential height: twelve-month running mean (©ECMWF).

6 Forecasting Models

Operational forecasting today is based on output from

a suite of computer models. Global models are used for

predictions of several days ahead, while shorter-range

forecasts are based on regional or limited-area models.

6.1 The ECMWF Global Model

As an example of a global model we consider the inte-

grated forecast system (IFS) of the ECMWF (which is

based in Reading, in the United Kingdom). The ECMWF

produces a wide range of global atmospheric and

marine forecasts and disseminates them on a regu-

lar schedule to its thirty-four member and cooperat-

ing states. The primary products are deterministic fore-

casts for the atmosphere out to ten days ahead, based

on a high-resolution model, and probabilistic forecasts,

extending to a month, made using a reduced resolution

and an ensemble of fifty-one model runs.

The basis of the NWP operations at the ECMWF is the

IFS. It uses a spectral representation of the meteoro-

logical fields. The IFS system underwent major resolu-

tion upgrades in 2006 and in 2010. Table 1 compares

the spatial resolutions of the three model cycles, indi-

cating the substantial improvements in model resolu-

tion in recent years. The truncation of the deterministic

model is now T1279; that is, the spectral expansion is

Table 1 Upgrades to the ECMWF IFS in 2006 and 2010.
The spectral resolution is indicated by the triangular trun-
cation number, and the effective resolution of the associ-
ated Gaussian grid is indicated. The number of model lev-
els, or layers used to represent the vertical structure of the
atmosphere, is also given.

Before After
2006 2006–9 2009

Spectral truncation T511 T799 T1279
Effective resolution 39 km 25 km 16 km
Model levels 60 91 137

terminated at total wave number 1279. This is equiv-
alent to a spatial resolution of 16 km. The number of
model levels in the vertical has recently been increased
to 137. The new Gaussian grid for the IFS has about
2 × 106 points. With 137 levels and five primary prog-
nostic variables at each point, about 1.2 × 109 num-
bers are required to specify the atmospheric state at
a given time. That is, the model has about a billion
degrees of freedom. The computational task of making
forecasts with such high resolution is truly formidable.
The ECMWF carries out its operational program using
a powerful and complex computer system. At the heart
of this system is a Cray XC30 high-performance com-
puter, comprising some 160 000 processors, with a sus-
tained performance of over 200 teraflops (2 × 1014

floating-point operations per second).
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6.2 Mesoscale Modeling

Short-range forecasting requires detailed guidance that
is updated frequently. Many national meteorological
services run limited-area models with high resolution
to provide such forecast guidance. These models per-
mit a free choice of geographical area and spatial res-
olution, and forecasts can be run as frequently as
required. Limited-area models make available a com-
prehensive range of outputs, with a high time resolu-
tion. Nested grids with successively higher resolution
can be used to provide greater local detail.

The Weather Research and Forecasting Model is a
next-generation mesoscale NWP system developed in a
partnership involving American national agencies (the
National Centers for Environmental Prediction and the
National Center for Atmospheric Research) and uni-
versities. It is designed to serve the needs of both
operational forecasting and atmospheric research. The
Weather Research and Forecasting Model is suitable for
a broad range of applications, from meters to thou-
sands of kilometers, and it is currently in operational
use at several national meteorological services.1

6.3 Ensemble Prediction

The chaotic nature of atmospheric flow is now well
understood. It imposes a limit on predictability, as
unavoidable errors in the initial state grow rapidly and
render the forecast useless after some days. As a result
of our increased understanding of the inherent diffi-
culties of making precise predictions, there has been
a paradigm shift in recent years from deterministic
to probabilistic prediction. A forecast is now consid-
ered incomplete without an accompanying error bar,
or quantitative indication of confidence.

The most successful way of producing a probabilis-
tic prediction is to run a series, or ensemble, of fore-
casts, each starting from a slightly different initial state
and each randomly perturbed during the forecast to
simulate model errors. The ensemble of forecasts is
used to deduce probabilistic information about future
changes in the atmosphere. Since the early 1990s this
systematic method of providing an a priori measure
of forecast accuracy has been operational at both the
ECMWF and at the National Centers for Environmen-
tal Prediction in Washington. In the ECMWF’s ensem-
ble prediction system, an ensemble of fifty-one fore-
casts is performed, each having a resolution half that

1. Full details of the system are available at www.wrf-model.org.

of the deterministic forecast. Probability forecasts for a
wide range of weather events are generated and dissem-
inated for use in the operational centers, and they have
become the key tools for medium-range prediction.

7 Verification of ECMWF Forecasts

Forecast accuracy has improved dramatically in recent
decades. This can be measured by the anomaly corre-
lation. The anomaly is the difference between a fore-
cast value and the corresponding climate value, and
the agreement between the forecast anomaly and the
observed anomaly is expressed as the anomaly correla-
tion. The higher this score the better; by general agree-
ment, values in excess of 60% imply skill in the forecast.
In figure 1, the twelve-month running mean anomaly
correlations (in percentages) of the three-, five-, seven-,
and ten-day 500 hPa height forecasts are shown for
the extratropical Northern Hemisphere and Southern
Hemisphere. The lines above each shaded region are
for the Northern Hemisphere and the lines below are
for the Southern Hemisphere, with the shading showing
the difference in scores between the two.

The plots in figure 1 show a continuing improvement
in forecast accuracy, especially for the Southern Hemi-
sphere. By the turn of the millennium, the accuracy was
comparable for the two hemispheres. Predictive abil-
ity has improved steadily over the past thirty years,
and there is now accuracy out to eight days ahead.
This record is confirmed by a wealth of other data. Pre-
dictive skill has been increasing by about one day per
decade, and there are reasons to hope that this trend
will continue for several more decades.

8 Applications of NWP

NWP models are used for a wide range of applica-
tions. Perhaps the most important purpose is to pro-
vide timely warnings about weather extremes. Great
financial losses can be caused by gales, floods, and
other anomalous weather events. The warnings that
result from NWP guidance can greatly diminish losses
of both life and property. Transportation, energy con-
sumption, construction, tourism, and agriculture are
all sensitive to weather conditions. There are expec-
tations from all these sectors of increasing accu-
racy and detail in short-range forecasts, as decisions
with heavy financial implications must continually be
made.

NWP models are used to generate special guidance
for the marine community. Predicted winds are used to

http://www.wrf-model.org
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drive wave models, which predict sea and swell heights

and periods. Prediction of road ice is performed by

specially designed models that use forecasts of tem-

perature, humidity, precipitation, cloudiness, and other

parameters to estimate the conditions on the road sur-

face. Trajectories are easily derived from limited-area

models. These are vital for modeling pollution drift, for

nuclear fallout, smoke from forest fires, and so on. Avi-

ation benefits significantly from NWP guidance, which

provides warnings of hazards such as lightning, icing,

and clear-air turbulence.

9 The Future

Progress in NWP over the past sixty years can be accu-

rately described as revolutionary. Weather forecasts

are now consistently accurate and readily available.

Nevertheless, some formidable challenges remain. Sud-

den weather changes and extremes cause much human

hardship and damage to property. These rapid devel-

opments often involve intricate interactions between

dynamical and physical processes, both of which vary

on a range of timescales. The effective computational

coupling between the dynamical processes and the

physical parametrizations is a significant challenge.

Nowcasting is the process of predicting changes over

periods of a few hours. Guidance provided by current

numerical models occasionally falls short of what is

required to take effective action and avert disasters.

Greatest value is obtained by a systematic combina-

tion of NWP products with conventional observations,

radar imagery, satellite imagery, and other data. But

much remains to be done to develop optimal now-

casting systems, and we may be optimistic that future

developments will lead to great improvements in this

area.

At the opposite end of the timescale, the chaotic

nature of the atmosphere limits the validity of deter-

ministic forecasts. Interaction between the atmosphere

and the ocean becomes a dominant factor at longer

forecast ranges, as does coupling to sea ice [V.17].

Also, a more accurate description of aerosols and trace

gases should improve long-range forecasts. Although

good progress in seasonal forecasting for the tropics

has been made, the production of useful long-range

forecasts for temperate regions remains to be tack-

led by future modelers. Another great challenge is the

modeling and prediction of climate change, a matter of

increasing importance and concern.

Further Reading

Lynch, P. 2006. The Emergence of Numerical Weather Pre-
diction: Richardson’s Dream. Cambridge: Cambridge Uni-
versity Press.

V.19 Tsunami Modeling
Randall J. LeVeque

1 Introduction

The general public’s appreciation of the danger of
tsunamis has soared since the Indian Ocean tsunami
of December 26, 2004, killed more than 200 000 peo-
ple. Several other large tsunamis have occurred since
then, including the devastating March 11, 2011, Great
Tohoku tsunami generated off the coast of Japan. The
international community of tsunami scientists has also
grown considerably since 2004, and an increasing num-
ber of applied mathematicians have contributed to the
development of better models and computational tools
for the study of tsunamis. In addition to its impor-
tance in scientific studies and public safety, tsunami
modeling also provides an excellent case study to illus-
trate a variety of techniques from applied and com-
putational mathematics. This article combines a brief
overview of tsunami science and hazard mitigation
with descriptions of some of these mathematical tech-
niques, including an indication of some challenging
problems of ongoing research.

The term “tsunami” is generally used to refer to any
large-scale anomalous motion of water that propagates
as a wave in a sizable body of water. Tsunamis differ
from familiar surface waves in several ways. Typically,
the fluid motion is not confined to a thin layer of water
near the surface, as it is in wind-generated waves. Also
the wavelength of the waves is much longer than nor-
mal: sometimes hundreds of kilometers. This is orders
of magnitude larger than the depth of the ocean (which
is about 4000 m on average), and tsunamis are there-
fore also sometimes referred to as “long waves” in the
scientific literature. In the past, tsunamis were often
called “tidal waves” in English because they share some
characteristics with tides, which are the visible effect
of very long waves propagating around the Earth. How-
ever, tsunamis have nothing to do with the gravitational
(tidal) forcing that drives the tides, and so this term is
misleading and is no longer used. The Japanese word
“tsunami” means “harbor wave,” apparently because
sailors would sometimes return home to find their
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harbor destroyed by mysterious waves they did not
observe while at sea. Strong currents and vortices in
harbors often cause extensive damage to ships and
infrastructure even when there is no onshore inunda-
tion. Although the worst effects of a tsunami are often
observed in harbors, the effects can be devastating in
any coastal region. Because tsunamis have such a long
wavelength, they frequently appear onshore as a flood
that can continue flowing inward for tens of minutes
or even hours before flowing back out. The flow veloc-
ities can also be quite large, with the consequence that
even a tsunami wave with an amplitude of less than
a meter can sweep people off their feet and do con-
siderable damage to structures. Tsunamis arising from
large earthquakes often result in flow depths greater
than a meter, particularly along the coast closest to the
earthquake, where run-up can reach tens of meters.

Tsunamis are generated whenever a large mass of
water is rapidly displaced, either by the motion of the
seafloor due to an earthquake or submarine landslide,
or when a solid mass enters the water from a land-
slide, volcanic flow, or asteroid impact. The largest
tsunamis in recent history, such as the 2004 and 2011
events mentioned above, were all generated by mega-
thrust subduction zone earthquakes at the boundary
of oceanic and continental plates. Offshore from many
continents there is a subduction zone where plates are
converging. The denser material in the oceanic plate
subducts beneath the lighter continental crust. Rather
than sliding smoothly, stress builds up at the inter-
face and is periodically released when one plate sud-
denly slips several meters past the other, causing an
earthquake during which the seafloor is lifted up in
some regions and depressed in others. All of the water
above the seafloor is lifted or falls along with it, cre-
ating a disturbance on the sea surface that propa-
gates away in the form of waves. See figure 1 for an
illustration of tsunami generation and figure 2 for a
numerical simulation of waves generated by the 2011
Tohoku earthquake off the coast of Japan. This arti-
cle primarily concerns tsunamis caused by subduction
zone earthquakes since they are a major concern in risk
management and have been widely studied.

2 Mathematical Models and
Equations of Motion

Tsunamis are modeled by solving systems of partial
differential equations (PDEs) arising from the theory
of fluid dynamics. The motion of water can be very
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Figure 1 Illustration of the generation of a tsunami by a
subduction zone earthquake. (a) Overall, a tectonic plate
descends, or “subducts,” beneath an adjoining plate, but
it does so in a stick–slip fashion. (b) Between earthquakes
the plates slide freely at great depth, where hot and duc-
tile, but at shallow depth, where cool and brittle, they stick
together; slowly squeezed, the overriding plate thickens.
(c) During an earthquake the leading edge of the overriding
plate breaks free, springing seaward and upward; behind,
the plate stretches and its surface falls; the vertical displace-
ments set off a tsunami. (Image courtesy of Brian Atwa-
ter and taken from Atwater, B., et al. 2005. The Orphan
Tsunami of 1700—Japanese Clues to a Parent Earthquake in
North America. Washington, DC: University of Washington
Press.)
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Figure 2 Propagation of the tsunami arising from the March 11, 2011, Tohoku earthquake off the coast of Japan at four
different times: (a) 20 minutes, (b) 30 minutes, (c) 1 hour, and (d) 2 hours after the earthquake. Waves propagate away from
the source region with a velocity that varies with the local depth of the ocean. Contour lines show sea surface elevation
above sea level, in increments of 0.2 m (in (a) and (b): at early times) and 0.1 m (in (c) and (d): at later times). There is a wave
trough behind the leading wave peak shown here, but for clarity the contours of elevation below sea level are not shown.

well modeled by the navier–stokes equations [III.23]
for an incompressible viscous fluid. However, these
are rarely used directly in tsunami modeling since
they would have to be solved in a time-varying three-
dimensional domain, bounded by a free surface at the

top and by moving boundaries at the edges of the
ocean as the wave inundates or retreats at the shore-
line. Fortunately, for most tsunamis it is possible to use
“depth-averaged” systems of PDEs, obtained by inte-
grating in the (vertical) z-direction to obtain equations



V.19. Tsunami Modeling 715

in two space dimensions (plus time). In these formu-
lations, the depth of the fluid at each point is mod-
eled by a function h(x,y, t) that varies with loca-
tion and time. The velocity of the fluid is described
by two functions u(x,y, t) and v(x,y, t) that repre-
sent depth-averaged values of the velocity in the x-
and y-directions, respectively. In addition to a reduc-
tion from three to two space dimensions, this elimi-
nates the free surface boundary in z; the location of
the sea surface is now determined directly from the
depth h(x,y, t). These equations are solved in a time-
varying two-dimensional xy-domain since the moving
boundaries at the shoreline must still be dealt with.

A variety of depth-averaged equations can be derived,
depending on the assumptions made about the flow.
For large-scale tsunamis, the so-called shallow-water

equations [III.27] (also called the Saint Venant or long-
wave equations) are frequently used and have been
shown to be very accurate. The assumption with these
equations is that the fluid is sufficiently shallow rela-
tive to the wavelength of the wave being studied. This is
generally true for tsunamis generated by earthquakes,
where the wavelength is typically 10–100 times greater
than the ocean depth.

The two-dimensional shallow-water equations have
the form

ht + (hu)x + (hv)y = 0,

(hu)t + (hu2 + 1
2gh

2)x + (huv)y = −ghBx,
(hv)t + (huv)x + (hv2 + 1

2gh
2)y = −ghBy,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1)

where subscripts denote partial derivatives, e.g., ht =
∂h/∂t. In addition to the variables h,u, v already intro-
duced, which are each functions of (x,y, t), these equa-
tions involve the gravitational force g and the topogra-
phy or seafloor bathymetry (underwater topography),
which is denoted by B(x,y). Typically, B = 0 repre-
sents sea level, while B > 0 is onshore topography and
B < 0 represents seafloor bathymetry. Water is present
wherever h > 0, and η(x,y, t) = h(x,y, t) + B(x,y)
is the elevation of the water surface. See figure 3 for
a diagram in one space dimension. During an earth-
quake, B should also be a function of t in the region
where the seafloor is deforming. In practice it is often
sufficient to include this deformation in B(x,y), while
the initial conditions for the depth h(x,y,0) are based
on the undeformed topography. The seafloor deforma-
tion then appears instantaneously in the initial surface
η(x,y,0), which initializes the tsunami. In the remain-
der of this article, the term topography will be used for
both B > 0 and B < 0 for simplicity.

Sea level = 0
η

h
B < 0

B > 0

Figure 3 Illustration showing the notation
used in the shallow-water equations (1).

If B(x,y) < 0 is constant (a flat bottom), then the
“source terms” on the right-hand side of these equa-
tions drop out and the equations model the conser-
vation of mass (h) and momentum (hu,hv). Over a
varying bottom, mass is still conserved but momentum
is affected by the terrain, as seen in the reflection of
waves at a shoreline, for example, and in partial reflec-
tion when a wave interacts with underwater features.
The term 1

2gh
2 appearing in the momentum equations

is the depth-averaged “hydrostatic pressure” in a col-
umn of water of depth h. (This and all other terms in
(1) should in fact also involve the fluid density ρ, but
this cancels out everywhere if the density is assumed
to be constant.)

The equations (1) are a nonlinear system of equa-
tions of hyperbolic type. Hyperbolic PDEs frequently
arise when waves are modeled mathematically; the pro-
totype is the wave equation [III.31] itself. The ampli-
tude of a tsunami in the deep ocean is generally very
small relative to the water depth, typically less than a
meter even for a large megathrust tsunami. Away from
the coast these equations could be approximated by
linearized equations with variable coefficients arising
from the varying topography. Near the shore, however,
the amplitude of the wave is large relative to the depth
of the fluid and the full nonlinear equations must be
used to accurately model the interaction of a tsunami
with the nearshore topography and the onshore inun-
dation that occurs. Solutions to nonlinear hyperbolic
PDEs can become discontinuous if a shock [II.30] devel-
ops. In the case of the shallow-water equations, a shock
is also called a “hydraulic jump” and is a mathemati-
cal idealization of a thin zone in which the depth and
velocity both undergo rapid transitions from one value
to another. Such regions frequently appear as a tur-
bulent wave front (sometimes called a turbulent bore)
once the tsunami moves into sufficiently shallow water.
The shallow-water equations do not model this turbu-
lent zone directly, but they are frequently adequate to
capture important quantities such as the depth and
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fluid velocities behind the bore and its propagation
speed.

3 Uses of Tsunami Modeling

The PDEs describing a tsunami cannot be solved
exactly, in general, and numerical methods must there-
fore be used to simulate the propagation and inunda-
tion of a tsunami. A brief description of how this might
be done and some of the challenges that arise is given
in section 4, but first we motivate the need for numer-
ical models by describing some common uses of such
models.

3.1 Real-Time Warning Systems

One natural use of a numerical model is to assist
in issuing warnings in real time as a tsunami propa-
gates across the ocean and to determine which coastal
regions should be evacuated. There are many chal-
lenges to doing this quickly and accurately. Accurate
assessment is critical not only to ensure that people in
areas that are at risk are properly warned but also to
avoid triggering evacuation in areas where it is not nec-
essary, which can itself cause loss of life, have a serious
financial impact, and decrease the likelihood that atten-
tion will be paid to future warnings. For a subduction
zone megathrust earthquake it is often impossible to
issue tsunami warnings quickly enough for areas along
the nearby coastline. The tsunami may arrive in less
than an hour, and it is critical that residents understand
the need to move to high ground when a major earth-
quake occurs. On the other hand, across the ocean the
earthquake itself is not felt and so provides no direct
indication of an impending tsunami, but several hours
are available in which to perform simulations and issue
warnings.

3.2 Tsunami Source Inversion

To perform tsunami simulations it is necessary to esti-
mate the source, i.e., the deformation of the sea floor
that generates the tsunami, since this determines the
initial conditions that are used to numerically solve
the PDEs modeling tsunami propagation and inunda-
tion. There is generally no way to measure this directly,
and so some form of inverse problem [IV.15] must be
solved to obtain an estimate of the deformation based
on measurements that can be made, such as seismome-
ter recordings of the earthquake or measurements of
the tsunami itself. Initial estimates of the location and

magnitude of an earthquake generally come from ana-
lyzing recordings of seismic waves, which are compres-
sion and shear waves that travel through the Earth with
much higher velocity than tsunamis and that are rou-
tinely recorded at hundreds of seismometers widely
scattered around the world. From the measured wave-
forms at many locations it is possible to construct an
estimate of how the Earth must have moved to pro-
duce this set of data. This relies ultimately on solv-
ing an inverse problem for the PDEs modeling wave
motion in elastic materials. Seismic inversions gener-
ally estimate the slip of the Earth along the earthquake
fault, which may be tens of kilometers below the sea
floor. Converting this slip on the fault plane to defor-
mation of the sea floor requires solving another elastic-
ity problem, whose solution is often approximated by
the Okada model. This is based on the Green function
for the deformation of the boundary of an elastic half-
space caused by a delta function dislocation. Integrat-
ing this over a finite-sized patch of a fault plane gives
an estimate of the resulting seafloor displacement.

While the results of seismic inversions are invaluable
in modeling tsunamis, performing an accurate inver-
sion requires collecting and processing a large amount
of data and this may not be feasible in real time. In
order to gather better information about tsunamis as
they propagate, a number of pressure gauges have
recently been deployed on the seafloor that are able to
measure water pressure extremely accurately. From the
hydrostatic pressure it is possible to estimate the depth
of the water at these locations with enough precision to
capture variations due to a tsunami passing by. Direct
measurement of a tsunami at one or more of these
gauges can then be combined with seismic models iden-
tifying the approximate source location and geophysi-
cal knowledge of the faults that are most likely to pro-
duce tsunamis. This information, together with accu-
rate tsunami propagation models, allows an inverse
problem to be solved that in turn enables us to estimate
the seafloor deformation that caused the tsunami more
accurately and quickly than is possible using seismic
information alone.

3.3 Hazard Modeling and Mitigation

Real-time simulations of tsunamis are used to issue
warnings, but tsunami modeling has many ongoing
uses beyond this. Protecting communities requires ade-
quate planning long before a tsunami takes place, and
tsunami models are used to simulate the effect of
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tsunamis arising from hypothetical earthquake events.
The results of such models can be used to determine
what regions of a community are most at risk and what
regions can be designated as safe zones for evacuation.
Modeling the arrival time and pattern of the waves can
be used in connection with traffic-flow models of evac-
uation. Some communities in tsunami-prone regions
build sea walls or gates that can be closed for pro-
tection against tsunamis, or build “vertical evacuation
structures” in regions where there is no easily accessi-
ble high ground for large-scale evacuation. These struc-
tures may take the form of multiuse buildings built
to withstand tsunamis and tall enough that the upper
floors are safe havens, or they may consist of large
berms that form artificial high ground. Designing such
structures requires modeling the flow depth and often
also the fluid velocities of hypothetical tsunamis.

Of course it is impossible to know exactly what the
seafloor deformation will be for future earthquakes,
but quite a bit is known about the major subduction
zones and the likely locations and magnitudes of large
earthquakes based on geology and past history. There
is always a question of how large a tsunami one should
design for. Sometimes an estimate of the “credible
worst case” tsunami for that location is used, but this
may correspond to an event with very low probability
of occurrence that would require enormous expendi-
ture to protect against—money that might be better
spent protecting against more likely events at addi-
tional locations. To better understand these trade-offs,
there has recently been increased interest in probabilis-
tic tsunami hazard assessment, in which a set of possi-
ble events are assigned probabilities or an entire spec-
trum of possible events is assigned some probability
density function, typically over a very high-dimensional
stochastic space. The goal is then to obtain from this
a probabilistic description of the resulting inundation
patterns, flow depths, velocities, etc. This is a form of
uncertainty quantification [II.34], a rapidly grow-
ing field of importance in many fields of computational
science where simulations are based on many uncertain
inputs and the goal is a probabilistic description of the
resulting outputs rather than a single simulation result.
Applied mathematicians and statisticians have a large
role to play in the development of new techniques to
efficiently solve these problems.

3.4 The Study of Past Tsunamis and Earthquakes

Another major use of tsunami modeling is the study
of past tsunamis. A wealth of data has been collected

following recent tsunami events by “tsunami survey
teams” that measure inundation and runup along
affected coasts. There are also data available from
seafloor pressure gauges, tide gauges along the coast,
and other data-collection facilities. Models of the sea-
floor deformation produced by solving the source
inversion problem can then be used as initial data for
tsunami models and the computed results compared
with measurements. Such studies are important in ver-
ifying that a tsunami model gives a sufficiently accurate
approximation to a real tsunami that it can be used with
confidence for warning or hazard mitigation purposes.
Validated models are also used in performing tsunami
source inversion to estimate the seafloor deformation,
and this can give additional insight into the earthquake
mechanism that is useful to seismologists. Tsunami
models can also help explain unusual features of past
events by providing a laboratory for exploring the fluid
dynamics taking place during the event.

Tsunami models can also help reconstruct events
that happened in the more distant past, for which
there are no pressure gauge or tide gauge data and
perhaps only limited historical records of the regions
inundated, or no human records in the case of pre-
historic events or those that occurred on uninhabited
coastlines. Luckily, for many events a geological record
of the tsunami inundation is recorded in the form of
tsunami deposits. As a tsunami approaches shore it typ-
ically becomes turbulent and picks up sediment from
the seafloor, such as sand and marine microorganisms.
This material is carried inland during the flooding stage
and typically settles out of the flow as the flow decel-
erates and reverses, leaving behind a layer of deposits,
often far inland. In tsunami-prone areas there are often
many layers of tsunami deposits that have been built
up over thousands of years, separated by layers of
soil that slowly build up between tsunamis. Core sam-
ples or trenches can reveal many past events that can
often be dated using radiocarbon dating of organic
matter or interspersed tephra layers from known vol-
canic eruptions. The study of tsunami deposits is a
major source of information about the magnitude, loca-
tion, and recurrence times of past earthquakes. This
information is critical in developing probabilistic mod-
els of tsunami or earthquake hazards, as well as to
obtaining a better scientific understanding of earth-
quake processes. Numerical tsunami models can be
used to help identify the location and magnitude of
seafloor deformation that would lead to the patterns
of inundation recorded by tsunami deposits. Models
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that include sediment erosion, transport, and deposi-
tion are also being used to better understand the fluid
dynamics of the creation of tsunami deposits, and this
will ultimately lead to more accurate descriptions of
the tsunamis that caused observed deposits.

4 Numerical Modeling

Systems of nonlinear PDEs such as the nonlinear
shallow-water equations (1) typically cannot be solved
exactly except for very simple cases: a one-dimensional
wave on a linear beach for example. Realistic tsunami
modeling always relies on numerical solution of the
PDEs. This requires discretizing the equations in some
manner: replacing the differential equations describ-
ing the continuum solution (defined for all (x,y, t) in
some domain) by a finite set of discrete algebraic equa-
tions whose solution can be computed in finite time on
a computer. There are many ways to do this, and gen-
eral discussions of numerical solution of PDEs are given
in numerical solution of partial differential

equations [IV.13].

Finite-difference methods are often used, in which a
discrete grid is introduced consisting of a finite num-
ber of grid points (xi,yj) covering the domain, and the
solution is approximated only at these points at a dis-
crete set of times t0, t1, t2, . . . . Derivatives in the PDE
are replaced by finite-difference approximations based
on the approximate solution at neighboring grid points,
giving a discrete set of algebraic equations that can
be solved on a computer. Another popular approach
is to use a finite-volume method, in which the domain
is subdivided into a finite number of grid cells and
the approximate solution consists of average values of
the solution over each grid cell. Integrating the PDEs
over a grid cell gives an expression for the time deriva-
tive of the cell average that can be used to update the
cell averages from one time tn to the next time tn+1.
To obtain better accuracy, methods in which the solu-
tion on each grid cell is approximated by a polyno-
mial rather than by only the cell average (which can
be interpreted as a constant function, or polynomial of
degree 0, over each cell) are sometimes used. In this
case, the higher-order coefficients of each polynomial
must be updated from one time step to the next. A
method of this type that has recently become popu-
lar for tsunami modeling is the discontinuous Galerkin
method, in which the piecewise polynomial function
obtained from the polynomials defined on each cell is
not assumed to be continuous at the interface between

one cell and its neighbor. The term “Galerkin” refers
to a finite-element approach to deriving equations for
evolving the polynomial coefficients in time.

4.1 Nonlinearity and Shock Formation

A prominent feature of nonlinear hyperbolic PDEs is
that shocks can form in the solutions: shocks are dis-
continuities in the depth and velocity that can arise
even from smooth initial conditions. As mentioned in
section 2, these correspond to hydraulic jumps or bores
that are seen in tsunamis as they approach the shore.
Sharp discontinuities are only an approximation of the
true behavior, but they often give a good approximation
of the flow. Incorporating more accurate fluid dynamics
models would lead to systems of PDEs that are much
more computationally expensive to solve.

The presence of discontinuities in the solution can
lead to difficulties in solving the PDEs numerically,
since derivatives are infinite at a point of discontinu-
ity, and finite-difference approximations to derivatives
generally diverge. This has led to the increased popu-
larity of both finite-volume and discontinuous Galerkin
methods, which are better able to robustly capture dis-
continuities in the solution. Methods designed to do
this well are often called shock-capturing methods.

4.2 Inundation and the Moving Shoreline

Another computational challenge in modeling tsuna-
mis, or any other geophysical flow over topography, is
the need to handle the moving boundary of the flow at
the shoreline. Many early tsunami models did not cap-
ture this moving boundary at all. Instead, the equations
were solved over a fixed domain defined by the origi-
nal shoreline with some boundary conditions imposed
at this fixed boundary, such as an impermeable wall.
While this approach could not be used to model inun-
dation directly, it could still give some indication of
the tsunami runup based on recording the depths and
velocities along this wall boundary. Other mathemat-
ical or physical models were then used to estimate
inundation from these values.

Most recently developed tsunami models attempt to
model inundation directly. For simple problems it may
be possible to use a grid that moves with time so that
one edge of the grid is always along the shoreline. For
realistic problems this is generally infeasible, since the
shoreline can be very complex and can break into pieces
as islands or isolated pools of water form. Most tsunami
models instead use a fixed grid and implement some
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form of wetting and drying algorithm to keep track of
which grid points or cells are dry (h = 0) and which
are wet (h > 0). Standard approaches to approximating
the PDEs typically break down near the shoreline, and
it is a major challenge in developing tsunami models
to deal with this phenomenon robustly and accurately,
particularly since this is often the region of primary
interest in terms of the model results.

4.3 Mesh Refinement

Another challenge arises from the vast differences in
spatial scale between the ocean over which a tsunami
propagates and a section of coastline such as a harbor
where the solution is of interest. In the shoreline region
it may be necessary to have a fine grid, with perhaps
10 m or less between grid points, in order to resolve
the flow at a scale that is useful. It is clearly impracti-
cal, and luckily also unnecessary, to resolve the entire
ocean to this resolution. The wavelength of a tsunami
is typically more than 100 km, so the grid point spac-
ing in the ocean can be more like 1–10 km. Moreover,
we need even lower resolution over most of the ocean,
particularly before the tsunami arrives.

To deal with the variation in spatial scales, virtually
all tsunami codes use unequally spaced grids, often by
starting with a coarse grid over the ocean and then
refining portions of the grid to higher resolution where
needed. Some models only use static refinement, in
which the grid does not change with time but has finer
grids in regions of interest along the coast. Other com-
puter codes use adaptive mesh refinement, in which
the regions of refinement change with time to adapt to
the evolving solution. For example, areas of refinement
might be used to follow the propagating wave with a
finer grid than is used over the rest of the ocean, and
additional levels of refinement added near the coastal
region of interest only when the tsunami is approaching
shore.

A related issue is the choice of time steps for advanc-
ing the solution. Stability conditions generally require
that the time step multiplied by the maximum wave
speed should be no greater than the width of a grid
cell. This is because the explicit methods that are typ-
ically used for solving hyperbolic PDEs, such as the
shallow-water equations, update the solution in each
grid cell based only on data from the neighboring cells
in each time step. If a wave can propagate more than
one grid cell in one time step, then the method becomes
unstable. This necessary condition for stability is called

the cfl condition [V.18 §4.2], after fundamental work

on the convergence of numerical methods by Courant,

Friedrichs, and Lewy in the 1920s. For the shallow-

water equations the wave speed is
√
gh, which varies

dramatically from the shoreline, where h ≈ 0, to the

deepest parts of the ocean, whereh can reach 10 000 m.

Additional difficulties arise in implementing an adap-

tive mesh refinement algorithm: if the grid is refined

in part of the domain by a factor of ten, say, in each

spatial dimension, then typically the time step must

also be decreased by the same factor. Hence, for every

time step on the coarse grid it is necessary to take ten

time steps on the finer grid, and information must be

exchanged between the grids to maintain an accurate

and stable solution near the grid interfaces.

4.4 Dispersive Terms

In some situations, tsunamis are generated with short

wavelengths that are not sufficiently long relative to

the fluid depth for the shallow-water equations to be

valid. This most frequently happens with smaller local-

ized sources such as a submarine landslide rather than

with large-scale earthquakes. In this case it is often still

possible to use depth-averaged two-dimensional equa-

tions, but the equations obtained typically include addi-

tional terms involving higher-order derivatives. These

are generally dispersive terms that can better model the

observed effect that waves with different wavelengths

propagate at different speeds.

The introduction of higher-order derivatives typi-

cally requires the use of implicit methods to efficiently

solve the equations, since the stability constraint for

an explicit method generally requires a time step that

is much smaller than is desirable. Implicit methods

result in an algebraic system of equations that need

to be solved at each time step, coupling the solu-

tion at all grid points. This is typically much more

time-consuming than an explicit method.

Further Reading

See Bourgeois (2009) for a recent survey of tsunami

sedimentology and Geist et al. (2009) for a general

introduction to probabilistic modeling of tsunamis.

Some detailed descriptions of numerical methods for

tsunami simulation can be found, for example, in

Giraldo and Warburton (2008), Grilli et al. (2007), Kowa-

lik et al. (2005), LeVeque et al. (2011), Lynett et al.

(2002), and Titov and Synolakis (1998). The use of
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V.20 Shock Waves
C. J. Chapman

1 Introduction

A shock wave is a sudden or even violent change
in pressure occurring in a thin layer-like region of a
continuous medium such as air. Other properties of
the medium also change suddenly: notably the veloc-
ity, temperature, and entropy. In a strong shock, pro-
duced for example by a spacecraft while still in the
Earth’s atmosphere, the increase in temperature is
great enough to break up the molecules of the air and
produce ionization. Shock waves that are “weak” in the
mathematical sense (i.e., those that produce a pressure
change that is only a minute fraction of atmospheric
pressure) are, unfortunately, extremely strong in the

subjective sense because of the exquisite sensitivity
of our hearing. This fact is of great importance for
civil aviation in limiting the possible routes of super-
sonic aircraft, which produce shock waves with focus-
ing properties and locations that depend sensitively on
atmospheric conditions.

In the modeling of a shock wave, the thin region of
rapid variation may nearly always be replaced by a sur-
face across which the properties of the medium are
regarded as discontinuous. The governing equations
of motion, representing conservation of mass, momen-
tum, and energy, still apply if they are expressed in
integrated form, and their application to a region con-
taining the surface of discontinuity leads to simultane-
ous algebraic equations relating the limiting values of
physical quantities on opposite sides of this surface.
In addition, the entropy of the medium must increase
on passage through the shock. The resulting algebraic
relations, in conjunction with the partial differential
equations of motion applied everywhere except on the
shock surface, suffice for the solution of many impor-
tant practical problems. For example, they determine
the location and speed of propagation of the shock
wave, which are usually not given in advance but have
to be determined mathematically as part of the process
of solving a problem.

The theory of shock waves has important military
applications, especially to the design of high-speed mis-
siles and the properties of blast waves produced by
explosions. On occasion, this has stimulated world-
class mathematicians (and even philosophers) to make
contributions to the subject that have turned out to
be enduringly practical. Ernst Mach, who with Peter
Salcher in the 1880s was the first person to photograph
a shock wave, explained the properties of the high-
speed bullets that had been used in the Franco-Prussian
war (1870–71), and in World War II John von Neumann
analyzed the effect of blast waves on tanks and build-
ings, obtaining the surprising result that a shock wave
striking obliquely exerts a greater pressure than if it
strikes head-on. Richard von Mises and Lev Landau also
worked on shock waves in this period, as well as fluid
and solid mechanics “full-timers” such as Geoffrey I.
Taylor and Theodore von Karman.

2 Mathematical Theory

2.1 Mass, Momentum, and Energy

For definiteness, consider a shock wave in air. First we
present the equations that apply to a normal shock,
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through which the air flows at right angles (see also
shocks [II.30]). Later we consider an oblique shock, for
which arbitrary orientations (within wide limits) are
possible between the incoming and outgoing air, and
the shock itself.

Three jump conditions across a normal shock are

ρ1u1 = ρ2u2,

p1 + ρ1u2
1 = p2 + ρ2u2

2,

e1 + p1

ρ1
+ 1

2u
2
1 = e2 + p2

ρ2
+ 1

2u
2
2.

The subscripts 1 and 2 here refer to opposite sides of
the shock, and the frame of reference is that in which
the shock is at rest. The variables are the densities
ρ1, ρ2; the velocity components u1, u2; the pressures
p1, p2; and the internal energies per unit mass e1, e2.
All quantities may be taken to be positive, with the air
flowing in from side 1 and out from side 2.

The first of the above equations represents conserva-
tion of mass, since the left-hand side is the mass of air
per unit area per unit time flowing into the shock and
the right-hand side is the corresponding quantity flow-
ing out. The second equation accounts for the change
in the momentum of air per unit volume from ρ1u1

to ρ2u2. This change occurs at a rate proportional to
the velocity, giving the terms ρ1u2

1, ρ2u2
2, and is driven

by the net force arising from the jump in pressure,
giving the terms p1, p2. The third equation accounts
for the change in the energy of the air per unit mass
from e1 + 1

2u
2
1 to e2 + 1

2u
2
2, comprising internal energy

and kinetic energy. The forces that produce this change
in energy come from the pressure and give the terms
p1/ρ1, p2/ρ2. It is convenient to combine each inter-
nal energy and pressure term into a single quantity:
the enthalpy. Then, in terms of the enthalpies h1, h2,
defined by h1 = e1 + p1/ρ1 and h2 = e2 + p2/ρ2, the
energy equation is

h1 + 1
2u

2
1 = h2 + 1

2u
2
2.

2.2 Entropy

A fourth jump condition across a shock concerns the
entropy, which is a measure of the energy in the dis-
ordered molecular motions that is not available to per-
form work at the macroscopic scale. The condition is
that the entropy of the material passing through the
shock must increase. Although the entropy condition
is “only” an inequality, it is of fundamental importance
in determining the type of shocks that can or cannot
occur. For example, the condition shows that, in almost

all materials, a rarefaction shock (at which the pres-
sure suddenly falls) is impossible. A shock in air there-
fore has the property that on passing through it the
air undergoes an increase in pressure, density, temper-
ature, internal energy, and enthalpy and a decrease in
velocity.

For air in conditions that are not too extreme, the
entropy per unit mass per degree on the absolute tem-
perature scale is proportional to ln(p/ργ), where γ is
the ratio of specific heats, which is approximately a con-
stant. Thus, with the sign convention that u2 and u1 in
the jump conditions are positive, the entropies s2 and
s1 on opposite sides of the shock satisfy the condition
s2 > s1, so that

p2/ρ
γ
2 > p1/ρ

γ
1 .

2.3 The Rankine–Hugoniot Relation

Simple algebraic manipulation of the jump conditions
gives

h2 − h1 = 1
2

(
1
ρ1

+ 1
ρ2

)
(p2 − p1).

This is an especially useful relation because h2 and
h1 are functions of (p2, ρ2) and (p1, ρ1), respectively.
Thus, if (p1, ρ1) are fixed, representing known up-
stream conditions, the Rankine–Hugoniot relation gives
the shock adiabatic, relating p2 to ρ2, i.e., the pressure
and density downstream.

2.4 The Mach Number

A basic property of a normal shock, deducible from
the four jump conditions, is that the flow into it is
supersonic, i.e., faster than the speed of sound, and the
flow out of it is subsonic, i.e., slower than the speed of
sound. This provides a strong hint that we should use
variables based on the incoming and outgoing Mach
numbers, M1 and M2, defined as the ratio of the flow
speeds to the local speed of sound, denoted by c1 and
c2. Thus

M1 = u1

c1
> 1, M2 = u2

c2
< 1.

We also have available the equation of state for air,
p = ρRT , and the innumerable formulas of thermo-
dynamics, from which we select merely

c2 = γRT = γp/ρ = (γ − 1)h.

Here R is the gas constant, T is absolute temperature,
and the formulas apply with subscript 1 or subscript
2 (but the same values of γ and R) on each side of
the shock. We now have simultaneous equations in
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abundance, and a little algebra starting from the jump
conditions gives

M2
2 = 1 + 1

2 (γ − 1)M2
1

γM2
1 − 1

2 (γ − 1)
.

2.5 Pressure and Temperature Rise

With the aid of the relation between M2
2 and M2

1 , the
change in any quantity at a normal shock may read-
ily be expressed in terms of M2

1 and γ alone. Such a
representation is highly practical in calculations. For
example, an important aspect of a shock wave is that
it can produce considerable increases in pressure and
temperature. But how do these increases depend on the
Mach number of the incoming flow? The answer for a
shock wave in air is

p2

p1
= 1 + 2γ

γ + 1
(M2

1 − 1)

and

T2

T1
= (1 + 1

2 (γ − 1)M2
1 )(γM

2
1 − 1

2 (γ − 1))
1
4 (γ + 1)2M2

1

.

The functional form of this last equation is important
for modeling purposes. Because the specific-heat ratio
γ is of “order one” (it is approximately 1.4 for atmo-
spheric air), the equation shows that at high Mach num-
bers the absolute temperature ratio T2/T1 scales with
M2

1 . Thus, during the acceleration phase of the flight of
a hypersonic vehicle, the simple equation of state we
have been using, p = ρRT , ceases to apply long before
operating speed is attained. Physical processes beyond
the reach of this “ideal gas equation” must be included,
and the subject of shock waves rapidly starts to overlap
with the chemistry of the breakup of the molecules and
with the physics of ionized gases. Applied mathemati-
cians such as Sir James Lighthill and John F. Clarke have
played an important role in developing the required
theory of such strong shock waves.

3 Oblique Shock Waves

3.1 Usefulness in Modeling

Oblique shock waves provide a versatile tool for mod-
eling the flow around a supersonically moving body
of any shape. The reason for this is that the local
change in flow direction produced by the surface of the
body always produces an oblique shock somewhere in
the flow. A concave corner, for example, produces an
oblique shock attached to the corner, and the apex of a
forward-facing wedge produces oblique shocks on each
side of the wedge, attached to the apex.

 

Figure 1 Weak shock waves (Mach surfaces)
in a supersonic nozzle.

Moreover, a smooth concave part of the body sur-
face produces a flow field in which disturbances prop-
agate on surfaces whose orientation is that of oblique
shocks of vanishingly small strength. These Mach sur-
faces come to a focus a short distance away from a
concave boundary to produce a full-strength oblique
shock. In general, a Mach surface is a surface on which
a weak disturbance in pressure and associated quan-
tities can propagate in accordance with the equations
of acoustics as a Mach wave. The theory of weak shock
waves is subsumed under acoustic theory in such a way
that a weak shock corresponds to a characteristic sur-
face of the acoustic wave equation. Shocks and charac-
teristic surfaces do not in general coincide, but they do
in the limit of zero shock strength.

Oblique shock waves are fundamental to the mod-
eling of shock wave intersections and reflections. In a
fluid, shock intersections produce vorticity, localized
in surfaces called slip surfaces, across which there is
a jump in the tangential component of velocity. Shock
reflections can be of different types, depending on the
orientation and strength of the incoming shock. A com-
mon type is the Mach reflection, in which a nearly
straight shock wave, known as the stem, extends from
the body surface to a triple intersection of shocks, from
which there also emerges a slip surface.

Many excellent photographs of oblique shock wave
patterns may be found in Van Dyke (1982). Figures 1
and 2 are examples of science as art.

3.2 Flow Deflection

The most basic question one can ask about an oblique
shock is the following: if the incoming flow is at Mach
numberM1 and the flow is deflected by an angle θ from
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Figure 2 Reflection of a shock wave by a wedge, and
rolling up of the vortex sheets (slip surfaces) produced.

its original direction, what are the possible oblique
shock angles φ that can bring this deflection about?
The angle φ is that between the shock surface and
the incoming flow, so that a normal shock corresponds
to θ = 0 and φ = π/2. The question is readily
answered by starting with the formulas for a normal
shock and superposing a uniform flow parallel to the
shock surface. A little algebra and trigonometry give

tanθ = (M2
1 sin2φ− 1) cotφ

1 + ( 1
2 (γ + 1)− sin2φ)M2

1

.

At a single value ofM1, the graph of θ againstφ rises
from θ = 0 at φ = sin−1(1/M1) to a maximum θ =
θmax(M1) at a higher value of φ, before falling back
to θ = 0 at φ = π/2. Thus the shock angle and flow
deflection are limited to definite intervals. The angle
sin−1(1/M1) is the Mach angle and gives the Mach wave
described above.

As M1 is varied, there is a maximum possible value
of θmax(M1), attained in the limit of largeM1, and there
is a corresponding value ofφ. For air in conditions that
are not too extreme, with a ratio of specific heats close
to γ = 1.4, we obtain the useful result that the greatest
possible flow deflection at an oblique shock is 46◦, and
the corresponding shock angle is 68◦.

For given M1, and a deflection angle in the allow-
able range, there are two possible shock angles φ. The
smaller angle gives the weaker shock, and, except in a
narrow range of deflection angles just below θmax(M1),
a supersonic outflow; the outflow from the stronger
shock, at the larger angle, is always subsonic. Thus,
although the inflow must be supersonic, the outflow
may be subsonic or supersonic, depending on the mag-
nitude of the equivalent superposed uniform flow on a

normal shock referred to above. The ultimate explana-

tion of such matters is the entropy condition. Whether

or not the outflow is supersonic is important in prac-

tice because a supersonic outflow may contain further

shock waves. Which shock pattern actually occurs may

depend on the downstream conditions.

4 Dramatic Examples of Shock Waves

4.1 Asteroid Impact

The Earth has a long memory: the shock wave pro-

duced by the asteroid that extinguished the dinosaurs

(and hence led to human life, via the rise of mammals)

left a signature that is still visible in the Earth’s crust.

The asteroid struck Earth 66 million years ago near

Chicxulub in the Yucátan Peninsula in Mexico, produc-

ing a crater 180 km in diameter. Besides generating a

tsunami [V.19] in the oceans, which mathematically

speaking evolves into a type of shock wave near the

shore, it generated shock waves in the rocks of the

Earth’s crust. These shock waves propagated around

the Earth, triggering an abundance of violent events,

such as earthquakes and the eruption of volcanoes.

Geologists have determined which metamorphic fea-

tures of rock can be produced only by the intense pres-

sure in the shock waves from a meteorite or aster-

oid, one example being the patterns of closely spaced

parallel planes that are visible under a microscope in

grains of shocked quartz. The mathematical theory of

shock waves in solids, such as metal and rock, is highly

developed.

4.2 The Trinity Atomic Bomb Test

The world’s first nuclear explosion took place in July

1945, in the desert of New Mexico in the United

States, when the U.S. army tested an atomic bomb

with the code name Trinity. The explosion was filmed,

and the film, which showed the hemispherical shock

wave rising into the atmosphere, was released not long

afterward.

For all the complexity of the physical processes and

fluid dynamics in the explosion, it is remarkable that a

simple scaling law describes to high accuracy the radius

r of the shock wave as a function of time t after deto-

nation, in which the only parameters are the explosion

energy E and the initial air density ρ. The scaling law is

r = C
(
Et2

ρ

)1/5
,
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where C is a constant close in value to 1. With the aid of
this scaling law, and a logarithmic plot, G. I. Taylor was
able to determine the energy of the explosion rather
accurately using only the film as data.

4.3 Shock Wave Lithotripsy

A medical treatment for a kidney stone is to break up
the stone by applying a pulsed sound wave of high
intensity that is brought to a focus at the stone. The
focusing causes the pulses to become shock waves, in
which the sudden rise in pressure provides the required
disintegrative force on the stone. The machine used
is called a lithotripter; it is designed so that the fre-
quency and intensity of the shock waves can be con-
trolled and varied as the treatment progresses. A water
bath is applied to the patient’s back, so that the pulse
propagates through water and then tissue.

Further Reading

Chapman, C. J. 2000. High Speed Flow. Cambridge: Cam-
bridge University Press.

Ockendon, H., and J. R. Ockendon. 2004. Waves and Com-
pressible Flow. New York: Springer.

Van Dyke, M. 1982. An Album of Fluid Motion. Stanford, CA:
Parabolic Press.

V.21 Turbulence
Julian C. R. Hunt

1 An Introduction to the Physical and
Mathematical Aspects of Turbulence

Turbulence in artificially and naturally generated fluid
flows consists of a wide range of random unsteady eddy
motions that differ over varying sizes and frequencies,
examples being those observed in the wake of a model
building in a wind tunnel and in clouds (figure 1). In
the eddies with the greatest energy, the velocity fluctu-
ations are of order u0 and their typical size is of order
L0 (figure 2).

Turbulent flows differ greatly from laminar flows

[IV.28], which are stable and predictable even if they are
unsteady. The two kinds of flow depend differently on
the kinematic viscosity ν , which is a property of fluids
that is independent of the velocity and is determined by
very small molecular motions on scales unrelated to the
scale of the flow. The study of turbulence begins with
defining, mathematically and conceptually, first the sta-
tistical framework for the kinematics and dynamics of

(a)

(b)

Figure 1 (a) Random edges of turbulent clouds. (b) Tur-
bulence in the wake of a model building in a wind tunnel,
showing variations in random motions of fluid particles.
(Courtesy of D. Hall.)

random flow fields and then the mechanisms for tran-
sition processes between laminar and turbulent flows,
which occur when the dimensionless Reynolds number
Re = u0L0/ν is large enough for the fluctuating viscous
stresses to be small. The goal of turbulence research is
not, realistically, to find an overall theory but rather
to describe and explain characteristics, patterns, and
statistical properties found in different types of tur-
bulent flows or particular regions of turbulent flows.
Remarkably, the smallest-scale eddy motions have an
approximately universal statistical structure.

An equally significant but more practical result is
the Prandtl–Karman theory, which states that the mean
velocity near all kinds of resistive surfaces has a
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Velocity v (t)

Temp.    (t)θ

θ∂  (t)/∂t

∂u(t)/∂t

0 0.1 0.2 0.3 0.4
t (s)

Figure 2 Measurements of turbulent velocities in a wind
tunnel at Re ∼ 105 (courtesy of Z. Warhaft: taken from
“Passive scalars in turbulent flows” (Annual Review of Fluid
Mechanics 32:203–40, 2000)).

logarithmic profile. Turbulence concepts apply in engi-
neering and environmental flows, as well as in oceans
and planetary atmospheres, where the eddy sizes range
over factors of hundreds to thousands, while in the
interior of the Earth, on other planets, in stars, and even
in the far constellations, the range can extend to fac-
tors of millions or more. Partially turbulent motions
are observed in the flows along air passages and in
the larger blood vessels of humans and large mam-
mals, where they greatly influence the vital transport
of liquids, gases, and particles.

The fluid media in which turbulence occurs may
consist of liquids, gases, or multiphase mixtures with
droplets, bubbles, or particles. Some complex fluid
media behave like fluids only under certain conditions
and for limited periods of time, examples being low-
density ionized gases in space or mixtures of solids and
fluids in mud and volcanoes.

In the early twentieth century, leading scientists and
mathematicians including Ludwig Prandtl, G. I. Taylor,
Theodore von Kármán, and Lewis Fry Richardson estab-
lished the systematic study of turbulence based on the
principles of fluid dynamics and statistical analysis that
had been developed during this period. The combina-
tion of these mathematical approaches, together with
limited experimental results and hypotheses based on
the ideas of statistical physics, led to Andrey Kol-
mogorov and Alexander Obukhov’s general statistical
theory in 1941. New measurement technologies and
greater computational speed and capacity have shown
how eddy structure changes at very high Reynolds
number (Re � 105), and this is leading to revision

and clarification of physical concepts and statistical
models.

There are differences between turbulence and other
kinds of random motions in fluids, such as waves on
liquid surfaces or the chaotic motions of colliding solid
particles. In turbulence, localized flow patterns adjust
faster to local conditions than typical wave motions.

The aim of this article is to show how mathemati-
cally based research into turbulent flows, with the aid
of experiments and computations, has led to methods
for exploring the qualitative and quantitative aspects
of turbulence. Key physical and statistical results are
explained.

2 Randomness and Structure

The mathematical concepts and terminology that are
used to measure, describe, and analyze the random
fields that occur in turbulent flows are the same as
those used for other random processes. The turbu-
lent velocity field, v∗, is broadly like other continu-
ous three-dimensional random processes. It and other
variables at given points in space (x) and time (t) can-
not be exactly predicted when the Reynolds number Re
exceeds a critical value for the region of flow where
turbulence exists, DT (this may be a subregion of the
whole flow).

A large number of experimental or computational
trials are needed to calculate for a given flow the prob-
ability, defined as pr(v∗)dv∗, of a single component
v∗ of the variable lying between two values v∗ and
v∗ + dv∗. The mean value of v∗ is

〈v∗〉 =
∫∞

−∞
v∗ pr(v∗)dv∗.

The fluctuation of v∗ relative to its mean value is

v = v∗ − 〈v∗〉.
These “ensemble” statistical properties are mainly

expressed in terms of the moments, correlations, and
spectra of the fluctuation v , but particular features
of the flow can be defined by calculating conditional
statistics when variables lie within certain ranges or
have particular properties.

The mth moment of the fluctuation is defined as

M(m) = 〈vm〉 = 〈(v∗ − 〈v∗〉)m〉.
Thus M(1) = 〈v〉 = 0 and M(2) = 〈v2〉 ≡ v′2, the vari-
ance of v (v′ is the standard deviation), which defines
the width of the distribution and, broadly, the magni-
tude of fluctuations. The skewness Sk, which is defined
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by Sk = M(3)/v′3, indicates whether large fluctuations
are positive or negative (see figure 2, where Sk = 0).

In many types of turbulent flows, such as in a wind
tunnel, the statistics do not change with time and are
spatially homogeneous (in one or more directions).
Time averages taken over periods between t0 and t0 +
T are then used to calculate mean or higher mth
moments, denoted by overbars. For example,

(v∗)mT (x) =
1
T
∫ t0+T

t0
[v∗(x, t)]m dt.

Similarly, spatial averages can be taken over distances
between two points, x10 and x10 +X1:

(v∗)mX1
(x2, x3, t)

= 1
X1

∫ x10+X1

x10

[v∗(x1, x2, x3, t)]m dx1.

In “ergodic” flows the time and/or space averages are
well defined and are the same for all experiments (e.g.,
by turning on and off the flow). The space and time
means (m = 1) are equal to the ensemble mean 〈v∗〉.

However, there are also well-defined “non-ergodic”
turbulent flows, where time means in one experiment
differ significantly from those in other experiments in
the same flow. In these types of flows, a number of dif-
ferent, but persistent, large-scale flow patterns occur,
given the same initial or boundary conditions. Such
nonuniqueness is found in flows in containers with one
or more axes of symmetry, for example, in the decay of
swirling flows in ellipsoidal containers. In such cases,
the ensemble mean does not correspond to the space/
time average in any given flow.

In most turbulent flows, pr(v) has a single maximum
(or mode) where v = v̂ , which is the most frequent
value of the fluctuations. Where Sk > 0, as in the ver-
tical velocity in cumulus clouds (figure 1), there is a
greater probability of large values of positive v than of
large negative values. But since the latter are the most
frequent values, v̂ < 0.

When studying probability distributions it is usual
to start by comparing them with pr(v) for the most
general and least repeatable type of random variable
that can be conceived: namely, the sum of an infinite
number of independent random variables. This is the
Gaussian or normal distribution:

pG(v) = 1√
2πv′ exp(−(v − 〈v〉)2/2v′2).

For many of the random variables observed in turbu-
lent flows this is a useful approximation. But if pr(v)
slightly differs frompG(v), this is physically significant
because it indicates repeatability and structure.

The average sizes of turbulent eddies with differ-

ent levels of energy can be estimated from statistical

measurements of space-time two-point correlations,

defined as the average of the product of the veloci-

ties at two points along a line in the x1-direction. The

dimensionless form for homogeneous turbulence is

C(r1, x1, t) = 〈v(x1, t)v(x1 + r1, t)〉
〈v2〉(x1, t)

.

Integrals of C define integral timescales and length

scales,

T =
∫∞

−∞
C dt, L =

∫∞

−∞
C dr1.

Turbulence structure and statistics are also described

in terms of characteristic random modes. Consider a

variable v(x1), expressed as a sum of the products of

space filling, nonrandom modesφn(x) (e.g., sinusoidal

waves with wave numbers kn = 2πn/X1) with random

coefficients an:

v(x) =
N∑
n=1

anφn(x).

The modes are assumed to be orthogonal to each other

over the space XL to XU, i.e.,∫ XU

XL

φm(x)φn(x)dx = δmn,

where δmn is the kronecker delta [I.2 §2, table 3].

The spectrum E(v)(kn) of v(x) is defined as the mean

square of the amplitude coefficients:

〈a2
n〉 = E(v)(kn).

The sum of the energy of the modes is equal to the

variance,
∑
n E(v)(kn) = v′2. The Karhunen–Loève and

Wiener–Khintchine theorems show how the correlation

C and the spectrum are linked. For example, fluctua-

tions correlated over small distances r1 (� L) also con-

tribute most of the energy over this length scale, i.e.,

E(kn), where kn ∼ L/r1.

In an infinite space, E(kn) tends to a continuous spec-

trum E(k) as N → ∞. Note that the spectra of veloc-

ity gradients ∂v/∂x ≡ vx , i.e., E(vx)(k), are equal to

k2E(k), so that E(vx)(k) is greatest where k is large and

eddies are small.

Sometimes there is a “spike” in the spectrum where

energy is concentrated at a particular wave number kn
or frequency ωn, such as vortex shedding downwind

of an aircraft wing.

In turbulence, the fluctuating velocity is a three-

dimensional vector v in three-dimensional space with
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three components, v = (v1, v2, v3)(x, t), the total vari-

ance being v′2 = 〈vjvj〉 (summing over j where indices

are repeated).

The anisotropy of turbulence variables can be ex-

pressed independently of the frame of reference in

terms of the variances of the components and of

the correlations between the components in different

directions, e.g., 〈vivj〉/v′2.

3 Dynamics in a Statistical Framework

Based on Newton’s second law, the rate of change of

momentum of a fluid element (which is much larger

than any molecules, but much smaller than the scale

of fluid motions), with density ρ∗(x∗, t∗) and moving

with a velocity v∗
i (x

∗, t∗), is equal to the molecular

forces acting on it caused by the gradients of fluid pres-

sure p∗(x∗, t∗), viscous stresses τ∗
ij , and a specified

body force F∗
i (x

∗, t∗).
The momentum and continuity equations can be

expressed in nondimensional forms by expressing dis-

tances in relation to a fixed overall scale L∗, velocity

vectors in terms of a reference velocity v∗
0 , and the time

variation in terms of L∗/v∗
0 . From the navier–stokes

equations [III.23],

Dui
Dt

= ∂ui
∂t

+uj
∂ui
∂xj

= − ∂
∂xi

(p̄ + p)+ 1
Re

∇2ui + f̄i + fi, (1)

where xi = x∗
i /L

∗, t = t∗v∗
0 /L∗, ui = v∗

i /v
∗
0 , and the

mean and fluctuating values for p∗, F∗
i are

p̄ + p = p∗

ρ0(v∗
0 )2

, f̄i + fi =
F∗
i

ρ0(v∗
0 )2/L∗

.

Since the densities of fluid elements change little

in most natural and engineering turbulent flows, the

fluctuating velocity field is not divergent, i.e., ∇ · u =
∂uj/∂xj = 0.

Note that the equations now contain the single nondi-

mensional Reynolds number Re = v∗
0 L∗/ν , so that the

effect of varying the velocity scale, the length scale,

or the kinematic viscosity (by the same amount) is the

same as varying the single parameter Re. For turbulent

flows, v∗
0 may be taken as the (dimensional) standard

deviation v′∗.

To study the flow field’s statistical properties, the

nondimensional velocity and pressure are expressed in

terms of their mean and fluctuating values,Ui(x, t) and

ui(x, t) (see section 2).

Taking the divergence of (1) gives

∇2(p̄ + p) = −(Σ2 − 1
2ω

2)+ ∂(f̄i + fi)
∂xi

,

where ω = ∇× u is the vorticity vector, ω = |ω|, and

Σ2 = ΣijΣij, Σij =
1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
.

Thus, the pressure, which is determined by the diver-
gence of the inertial and body force terms, has maxi-
mum or minimum values where the strain Σ is greater
than or less than ω/

√
2.

For incompressible fluids the viscous stresses, τij ,
are proportional to Σij , τij = (2/Re)Σij . Note that τij
is zero both in pure rotational flows (i.e., ω ≠ 0 and
Σ = 0), such as at the center of a vortex, and in inviscid
flows, where Re → ∞. But the local viscous force at a
point in the flow, which is equal to the stress gradient,
∂τij/∂xj = −Re−1(∇ ×ω)i, is zero in pure straining
flows (i.e., ω = 0) and where the vorticity is uniform.

The dissipation of energy is given by ε = Σijτij .
It is proportional to Re−1 and is also zero locally for
pure rotational flows, but its total integral in an iso-
lated flow region DT is proportional to ω2, i.e., ε =
(2/Re)

∫
ω2 dV .

Taking the curl of (1) eliminates the pressure gradient
and leads to an equation for the vorticity ω(x, t). In
dimensionless vector terms

Dω
Dt

= (ω · ∇)u+ 1
Re

∇2ω+∇× (f̄ + f ), (2)

which shows how the inertial straining term leads to
high and low variations inω. The main effect of viscos-
ity in (2) is to “diffuse” vorticity from regions of high
vorticity to regions of low vorticity, especially from/to
boundaries. If Re � 1, vorticity is diffused and there
are no sharp peaks in vorticity.

The body force affects only the vorticity and, from
there, the velocity field if it is rotational; for example,
if the force is determined by a potential Φ, f̄ +f = ∇Φ,
it affects only the pressure.

The momentum equation (1) defines how the mean
and fluctuating components of the turbulent flow field,
denoted by Ui = 〈ui〉 and ui, are connected dynami-
cally. From there, the ensemble average of the rate of
change of the turbulent kinetic energy of the fluctua-
tions K = 1

2 〈uiui〉 is

∂K
∂t

+Ui
∂K
∂xi

= −〈uiuj〉
∂Ui
∂xj

+ 1
Re

〈ui∇2ui〉

+ ∂
∂xj

(〈ujp〉 + 1
2 〈ukukuj〉)+ 〈uifi〉,

(3)
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or, schematically, {A} = {P} − 〈ε〉 + {ET} + {F}. Here,
{A} is the time variation and advection of K; {P} is the
production of K by interactions between the fluctua-
tions and gradients of the mean velocity; 〈ε〉 is the vis-
cous dissipation by the smallest eddies, determined by
the correlation between ui and viscous stresses; {ET}
is the transfer of energy by the fluctuations, i.e., by gra-
dients of the cross correlations ofuj and p, and by gra-
dients of third-order moments; and {F} is the rate of
production of K by the forcing term, which is equal to
the correlation between ui and fi.

For homogeneous flows without mean gradients or
fluctuating body forces, (3) simply shows that K decays
in proportion to the dissipation:

DK
Dt

= −〈ε〉. (4)

This process in a wake is depicted in figure 1(b).

4 Transition to Fully Developed Turbulence

The transition from laminar flow to well-developed tur-
bulence may take place in part of a flow, such as over
an aircraft wing, or in the whole flow, such as in a pipe.
The turbulence may develop for a certain time and then
decay back into laminar flow.

There are different stages in the transition to tur-
bulence, which evolves from growing small-amplitude
fluctuations, depending on the boundary conditions
and the Reynolds number, Re. One class of initially
transitional fluctuations are “modal,” when all the com-
ponents in different directions of the flow grow at
the same rate within a defined flow domain DT. The
most unstable modes have a defined wavelength and
frequency, so that the initial energy spectrum may
be in a “spike.” By contrast, in “nonmodal” fluctu-
ations, different components have different rates of
growth despite interacting with each other (see fluid

mechanics [IV.28 §8]).

At the beginning of the transition process (in space
or time, or as Re increases), the dynamics are lin-
ear. In shear layers with velocity profile U(x3) with
an inflection point where d2U/dx2

3 = 0, the undulat-
ing “Kelvin–Helmholtz” modal fluctuations ũ are expo-
nentially growing at a rate defined by σ , where ũ ∝
exp(σt). In other parts of the flow, fluctuations may
not exist. In swirling flow between circular cylinders,
the axisymmetric vortex-like modal fluctuations of G. I.
Taylor extend across the whole flow. These modal fluc-
tuations can grow only when Re exceeds the critical
value Recrit = ΔU∗

0 L
∗
0 /ν , where ΔU∗

0 is the change in

mean velocity across the flow and L∗0 is the length scale.

Recrit is independent of the magnitude of ũ provided

it is small. Different kinds of nonlinear development

occur as these fluctuations grow or change into other

modal forms.

Some basic laminar flows Ui(x, t), such as shear flow

between planes or in the center of a vortex, are sta-

ble to small modal disturbances, but low-amplitude

nonmodal disturbances can grow in these flows if Re
exceeds a critical value, Re′crit, defined by root mean

square fluctuations. In a shear flow, arbitrary initial

disturbances are transformed into well-defined eddy

structures such as the elongated streaks of high and

low streamwise fluctuations. The spectra change from

a narrow to a broad band shape as modal and nonmodal

fluctuations develop and become nonlinear.

The transition process affects the structure of the

fluctuations and their spectral energy distribution,

ranging from large scales to the smallest viscously

affected eddy motions. Typically, the changes occur on

a timescale of the most energetic eddies, so that inter-

actions take place between all the scales down to the

smallest. In general, whatever the initial transition pro-

cess, and whatever the boundary conditions, all types

of turbulence retain some of their initial characteristic

features over extended periods, as is discussed in the

next section.

However, most types of “well-developed turbulence”

also have a number of common features so long as the

Reynolds number exceeds its critical value for transi-

tion, Retrans. There may be multiple values of Retrans

above which further changes in the structure can occur.

5 Homogeneous Turbulence

The basic mechanisms and statistical structure of tur-

bulence are best studied where the velocity fluctua-

tions are homogeneous and where they are not affected

by boundaries or the eddy structures generated by

large-scale gradients of the mean and fluctuating veloc-

ities. Nevertheless, even homogeneous turbulent flows

depend on the initial or continuing forcing.

Turbulent flows consist of random fluctuations and

eddies, i.e., local regions of vortical flow confined

within moving envelopes. At high Reynolds number,

the boundaries of flow regions like clouds tend to be

sharply defined, with high local gradients of velocity.

Nonlinear fluctuations and eddies evolve internally and

interact with other eddies.
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In a fixed frame of reference (or one moving with
the mean velocity), the one-dimensional spatial spec-
trum E11(k1) for wave number k1 in the x1-direction
is always finite at k1 = 0, i.e., E11(0) = 〈u2

1〉Lx/π .
The integral scale Lx defines the size of the eddies
containing most of the energy.

Also, E11(k1) tends monotonically to zero as k1Lx →
∞, which implies that the smallest eddies on average
have small velocities. Over the range 0 < k1Lx � 1, the
spectrum remains of the order of E11(0). For most well-
developed flows, E11(k1) has a single maximum where
k1Lx ∼ 1.

The “Eulerian” frequency spectrum for the x1 com-
ponent is denoted by EE11(ω). The integral timescale
TE = (2πu′

1)−1EE11(0), where u′
1 = 〈u2

1〉1/2, is broadly
similar to the spatial spectrum. In shear flows with
“coherent structures,” TE can be significantly larger.

At high Reynolds number, over smaller scales and
higher frequencies, the frequency and spatial spectra
are proportional to each other,

EE11(ω) ∼ (1/u′
1)E11(k1),

where k1 =ωu′
1. These results demonstrate how large

eddies advect small eddies randomly at speeds approx-
imately equal to the root mean square velocity u′

1,
which explains why TE ∼ Lx/u′

1.
The time dependence of the velocity or displace-

ment Xi(t;Xi(t0)) of a fluid particle released at Xi(t0)
over numerous experiments defines the “Lagrangian”
time-dependent statistics of its velocity ui(t;Xi(t0)) ≡
ui(t). The auto-correlation (for stationary, homoge-
neous turbulence) of the velocity over a time inter-
val τ , defined as CLii(τ) = 〈ui(t)ui(t + τ)〉, where
CLii(0) = 〈u2

i 〉, also defines the Lagrangian timescale
TL = (u′)−2

∫∞
0 C

L
ii(τ)dτ . TL, which is the timescale for

the velocity of a fluid particle as it is carried around a
large eddy, is of the same order as TE and also the time
for pairs of particles to separate. Thus TL is also the
“interaction” time, Ti , for the large eddies to interact
with each other.

The decay of homogeneous turbulence with time
depends on the mean loss of energy by viscous dissi-
pation, 〈ε〉, as shown by (4).

Since ε is proportional to the square of the velocity
gradients, which are greatest for the smallest scales,
the mean value is related to the energy spectrum by

〈ε〉 = 1
Re

∫∞

0
k2E(k)dk.

At high Re, these dissipative eddies are quasilaminar
thin shear flows and vortices, with typical velocities

u0 and length scale L0, and characteristic thickness -
of order L0Re−1/2. Consequently, the dissipation rate
within the layer, ε, is of order u3

0/L0, which is inde-
pendent of the value of Re. Outside these layers, ε is
very small. Even smaller-scale scattered vortices con-
tribute significantly to 〈ε〉 (see below). High-resolution
computer simulations demonstrate that

〈ε〉 = CεK3/2/Lx, (5)

where Cε decreases as Re increases. When Re is above
about 104, Cε reaches a constant value of order unity,
depending slightly on the initial form of the turbulence.

The turbulence is fully developed at time t0 and
then decays with a self-similar structure for t > t0.
The integral timescales increase in proportion to the
development time t − t0, i.e., TE ∼ TL ∼ Lx/K1/2 ∼
(t − t0).

Combining the above equations leads to the decay
law of turbulence,

dK
dt

= − AdK
t − t0

,

where Ad has a constant value for each type of tur-
bulence as it decays, usually in the range 1.1–1.3. The
turbulence energy K and the length scale Lx then have
related power-law variations in terms of their values,
Kd and Lxd, at time td > t0:

K
Kd

=
(
t − t0
td − t0

)−Ad

,
Lx
Lxd

=
(
t − t0
td − t0

)1−Ad/2
.

Since Ad > 1, the Reynolds number of the turbulence
decreases from its initial value Re0 at t = t0 in pro-
portion to K1/2Lx ∝ (t − t0)1−Ad . Eventually, the local
value of Re becomes so small that the eddy motions are
smeared out by viscous stresses and the energy decays
rapidly in proportion to exp(−k2(t − t0)/Re0).

The rate of change of the energy spectrum E(k) for
eddies of scale k−1 is equal to the net inertial transfer of
energy to eddies on this scale, denoted by −dΠ(k)/dk,
minus the spectrum of dissipation of energy ε̃(k) at
wave number k:

dE(k)
dt

= −dΠ(k)
dk

− ε̃(k).

The growth of the integral scale in decaying turbu-
lence results from the net upscale transfer of energy
to eddies larger than Lx , where ε̃(k) is negligible. For
eddy scales less than Lx , downscale transfer exceeds
upscale transfer, as a result of negative straining (i.e.,
∂u/∂x < 0) in eddies larger than k−1 amplifying gra-
dients (∂u/∂x)2 associated with scales less than k−1.
Since there is a greater probability that large-velocity
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gradients are negative, the normalized skewness of
∂u/∂x,

Sk∂u/∂x = 〈(∂u/∂x)3〉
〈(∂u/∂x)2〉3/2 ,

has a finite negative value, typically −0.5 ± 0.2.
For the smallest-scale motions with typical velocity

uvisc and large velocity gradients (where k ∼ kvisc �
1/Lx ), the transfer of energy is balanced by the vis-
cous dissipation of energy, i.e., dΠ/dk ∼ ε̃(k) ∼
Re−1kviscu2

visc, so that dE(k)/dt is small. These eddy
motions must also be energetic and large enough for
inertio-viscous interactions with larger scales to sus-
tain the fluctuations, i.e., their local Reynolds number
must be large enough that Reuvisc/kvisc ∼ 1.

In the inertial range, where k � kvisc, since the dis-
sipation and energy decay terms are small, the iner-
tial transfer gradient term is very small, i.e., dΠ/dk�
u′3, from which Π(k) ∼ const. = Πi . By integrating
the spectrum equation over the inertio-viscous range
between kvisc and ∞, it follows that the mean dis-
sipation over all wave numbers is equal to Πi , i.e.,∫∞
0 ε̃(k)dk = 〈ε〉 = Πi .

These equations define the viscous or micro-length
scales in terms of Re, since 〈ε〉 ∼ 1. Thus, -visc =
1/kvisc ∼ Re−3/4, which may be 0.1% of the integral
scales Lx for large-scale or high-speed flows. From this,
we infer that the typical eddy velocities in the viscous
range are uvisc ∼ (〈ε〉/Re)1/4 ∼ Re−1/4u′.

At very high Reynolds number, highly dissipative
fluctuations (ε � 〈ε〉) and large velocities of order
u′ are generated intermittently on the length scale
-visc within thin shear layers of thickness -. But they
contribute little to the overall values of C11 and E(k).

Kolmogorov and Obukhov used this statistical-phys-
ics analysis (inspired by the poetic description of eddy
motions and downscale energy transfer by Richardson)
to hypothesize that the cross-correlationC11(r) of fluc-
tuating velocities u1 over small distances in the inertial
range where -visc � r � Lx is determined by Πi = 〈ε〉.
From this, using dimensional analysis (or local scaling)
we obtain Ĉ11(r) = 〈u2

1〉 − C11(r) = α〈ε〉2/3r2/3.
Experiments show that the coefficient α ∼ 10. This

similarity extends to correlations of third moments of
velocity differences. Consequently, for these scales the
energy spectrum E(k) in the inertial range also has
a self-similar form, E(k) = αk〈ε〉2/3k−5/3, where the
coefficient αk = α/3.

The statistics of the random displacements of fluid
particles (released at time t0 from X1 = 0) in the x1-
direction determine how particles are dispersed, and

the distance between them increases with time t − t0.
Since dX1/dt = u1(t;X1(t0) = 0), the mean square
displacement is

d〈X2
1〉

dt
= 2

〈
X1

dX1

dt

8
= 2

∫ t−t0
0

CL11(τ)dτ.

Properties of the auto-correlation show that the initial
dispersion at small time depends on the whole spec-
trum, i.e., for (t − t0) � TL, 〈X2

1〉 ∼ u′2(t − t0)2.
Later, large scales determine the dispersion (as in any
diffusion process):

〈X2
1〉 ∼ 2u′2TL(t − t0). (6)

The rate of spreading of pairs of particles released at
t = t0 and located at X(a)(t) and X(b)(t) is d(ΔX)/dt,
where ΔX = |X(a) − X(b)|. This rate is mostly deter-
mined by the eddy motions on the scale of the sepa-
ration distance ΔX. Thus, in the inertial range scales,
i.e., -visc < ΔX < Lx , d(ΔX)/dt ∼ 〈ε〉1/3(ΔX)1/3, from
which 〈(ΔX)2〉 ∼ 〈ε〉(t−t0)3. Over longer time intervals
and larger separations the particle motions become
decorrelated. Then 〈(ΔX)2〉 is given by twice the sin-
gle particle dispersion in (6). In this random eddying,
some pairs of particles stay close together over consid-
erable distances; this explains why odors can often be
detected over large distances.

6 Physical and Computational Aspects
of Inhomogeneous Turbulence

Most types of inhomogeneous turbulent flows in engi-
neering and geophysics, as well as in laboratory exper-
iments, are influenced by rigid or flexible boundaries,
or by interfaces between different regions of turbulent
flow, such as those at the edges of wakes, jets, and
shear layers. The overall widths of each of these flows
is denoted by Λ. There may or may not be a gradient of
the mean velocity, e.g., where ∂U1/∂x3 ≠ 0.

The eddy motions and dynamics in these flows can
be represented schematically on a “state-space” map of
relative timescales and length scales, as a guide to mod-
els, statistical analyses, and computational methods.

The x-axis of the map, T̃ , is the ratio of the Lagran-
gian timescale TL to the imposed distortion time Tdis

from when turbulence is generated or distorted. The y-
axis is L̃, the ratio of the spatial integral scale Lx to the
overall width Λ.

When T̃ and L̃ are significantly less than unity, the
turbulence is in local equilibrium and is determined by
local dynamics, and by slow, large-scale random forcing
such as that in engines.
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In free shear flows (jets, wakes, and shear layers)
the turbulence lies between these limits in the quasi-
equilibrium zone, where T̃ and L̃ are both of order one,
even though the energy and the eddy structure may be
changing significantly.

Models of the mean flow Ui(xj, t) and variances or
eddy shear stress derived from 〈uiuj〉 of such turbu-
lent flows are based on the momentum equation (1) and
on approximate relations between Ui and 〈uiuj〉. For
quasi-equilibrium turbulence, 〈uiuj〉 is proportional to
the gradients of the mean velocity,

−〈uiuj〉 = νe

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
,

where νe is the eddy viscosity, whose order of magni-
tude is Lx

√
K, where the kinetic energy and length scale

are determined by physical arguments, (3) and (5).
In some flows, Lx is prescribed. The mean flow and K

are then derived from the coupled equations for Ui and
K and from initial and boundary conditions. Generally,
however, Lx is calculated from (5) using the approxi-
mate equation for 〈ε〉 in terms of U and K. Then Ui, K,
and 〈ε〉 are calculated using up to twelve coupled par-
tial differential equations. This is the widely used K–ε
computational method.

In nonequilibrium turbulent flows, or in inhomogen-
eous regions of turbulent flows (such as near obsta-
cles) when T̃ > 1 and/or L̃ > 1, quasilinear rapid-
distortion analysis or time-dependent numerical solu-
tions demonstrate the sensitive effects of turbulence
structure.

Now consider the basic types of inhomogeneous tur-
bulence. In a uniform shear flow when U(x3, t) = U0 +
Sx3, the energy equation (3) reduces to {A} = {P}−〈ε〉,
because the turbulence is quasihomogeneous, i.e., L̃�
1. When S � u′/Lx , the turbulent energy u′2 and the
length scale Lx both increase with time. Generally, the
effect of dissipation is to reduce the growth rate.

The mean shear distorts the eddies into elongated
accelerating and decelerating “streaks,” with length
comparable to Lx . The shear also limits the length scale
L(3)x of the vertical fluctuations and determines the
momentum transport across the shear. Thus, follow-
ing Prandtl’s concept, the eddy viscosity νe ∼ u′L(3)x ∼
u′2/S. The spectra for these anisotropic flows are dis-
torted but broadly similar to the spectra for homoge-
neous turbulence.

Shear free boundary layers occur where velocity fluc-
tuations, with root mean square velocity u′ and length
scale L(3)x , vary in the x3-direction and the mean veloc-
ity gradient, dU1/dx3, is zero. These layers occur in

stirred or heated flows near rigid surfaces or near
interfaces between gas and liquid flows. Here, eddy
transport and forcing balance finite dissipation, i.e.,
0 = {ET} + {F} − 〈ε〉. The normal component of the
turbulence is blocked by the interface at x3 = 0, i.e.,
L(3)x is reduced and u′

3 ∼ 〈ε〉1/3x1/3
3 . Very close to

resistive interfaces, thin viscous or roughness sublay-
ers form with thickness -s, so that the length scale
L(3)x ∼ (x3 − -s).

At the edges of clouds, jets, etc., randomly moving
thin interfacial shear layers with thickness -i form,
centered, for example, at x3 = zi(x1, x2, t). The local
energy balance, 0 = {P} + {ET} − 〈ε〉, shows that the
local gradients of turbulence amplify the tangential
components of vorticity while keeping the thickness -i

of the layer much less than the integral scale L(3)x .
Turbulent shear boundary layers with thickness Λ

flow over resistive surfaces at x3 = 0, where U1 =
ui = 0. Outside the boundary layers, there are uniform
flows with velocity U0 in the x1-direction. In the sur-
face layer, where x3 � Λ, the eddy structure is simi-
lar to that in uniform shear flow. But the energy equa-
tion reduces to a balance between production and dis-
sipation, 0 = {P} − 〈ε〉, because the energy here is not
increasing ({A} = 0). As in shear free boundary lay-
ers, the blocking effect of the viscous/rough surface
determines the length scale L(3)x ∼ (x3 − -s). Using
this length scale and the estimated relations between
characteristic velocity fluctuations u∗ near the surface
(which are of order u′ ∼ √

K), the gradient of the mean
velocity is derived, namely, dU1/dx3 = u∗/(κx3),
where Karman’s constant coefficient, κ ≈ 0.4, depends
on the general relation between u∗, x3, and 〈ε〉(x3).
Here, u∗2 is equal to the mean shear stress at the
surface.

Integrating from the sublayer, where the boundary
condition at the resistive surface is U1 → 0 as x3 → 0,
leads to the Karman–Prandtl profile outside the viscous
sublayer:

U1(x3) ∼ u
∗

κ
log

(
x3 − -s

-s

)
for x3 > -s,

where -s ∼ (Re−1)/u∗.
Close to a smooth surface, where x3 � -s, the tur-

bulence is damped and the profile is determined by
viscous stresses only. The profile at the bottom of the
viscous sublayer is

U1(x3) = x3Reu∗2, where -s > x3 > 0.

In the upper part of the turbulent shear boundary
layer the eddies are affected by the mean shear flow
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and by interactions with the thin shear layer of the
undulating interface. The mean “jump” velocity across
the interface, ΔU , is found to be of the order of u′, as
occurs in interfacial shear layers. When averaged, the
mean velocity profile is a smooth adjustment from the
surface layer to the free stream velocity, where x3 ∼ Λ.

Evidently, different types of thin layers affect the
structure of most turbulent flows and, therefore, their

sensitivity to factors such as buoyancy, or changes to
the external mean flow.

Further Reading

Davidson, P. A. 2004. Turbulence: An Introduction for Scien-
tists and Engineers. Oxford: Oxford University Press.

Tennekes, H., and J. L. Lumley. 1972. A First Course in
Turbulence. Cambridge, MA: MIT Press.



Part VI

Example Problems

VI.1 Cloaking
Kurt Bryan and Tanya Leise

1 Imaging

An object is cloaked if its presence cannot be detected
by an observer using electromagnetic or other forms
of imaging. In fact, the observer should not notice that
cloaking is even occurring. Cloaking has a long history
in science fiction, but recent developments have put the
idea on a firmer mathematical and physical basis.

Suppose that an observer seeks to image some
bounded region Ω in space. This is to be accomplished
by injecting energy into Ω from the outside, then
observing the response: that is, the energy that comes
out of Ω. An example of this process is radar: the
injected energy consists of electromagnetic waves and
the observed response consists of the waves reflected
by objects in the region. Many other types of energy can
be used to form images, for example, acoustic (sonar),
mechanical, electrical, or thermal. In each case energy
is injected into Ω, response data is collected, and from
this information an image may be formed by solving an
inverse problem. To cloak an object the relevant phys-
ical properties of Ω must be altered so that the energy
“flows around” the object, as if the object were not
there. The challenge is to do this in a way that is math-
ematically rigorous and physically implementable. One
successful approach to cloaking is based on the idea of
transformation optics, which we will now discuss in the
context of impedance imaging.

In impedance imaging, the bounded region Ω ⊂ Rn

to be imaged consists of an electrically conductive
medium, with n = 2 or n = 3. Let the vector x rep-
resent position in a Cartesian coordinate system, let
u = u(x) represent the electrical potential inside Ω,
and let J = J(x) represent the electric current flux in
Ω. We assume a linear relation J = −σ∇u (a form of
Ohm’s law), where for each x the quantity σ = σ(x) is

a symmetric positive-definite n×nmatrix. The matrix
σ is called the conductivity of Ω and dictates how vari-
ations in the potential induce current flow. If σ = γI
for some scalar function γ(x) > 0 (I is the n×n iden-
tity matrix), then the conductivity is said to be isotropic :
there is no preferred direction for current flow. Other-
wise, σ is said to be anisotropic. In impedance imaging
the goal is to recover the internal conductivity of Ω
using external measurements.

Specifically, to image a regionΩ, the observer applies
an electric current flux density g with

∫
∂Ω g ds = 0

to the boundary ∂Ω. If charge is conserved inside Ω,
then ∇ · J = 0 in Ω and the potential u satisfies the
boundary-value problem

∇ · σ∇u = 0 in Ω, (1)

(σ∇u) ·n = g on ∂Ω. (2)

Here n denotes an outward unit normal vector field
on ∂Ω, and we assume that each component of the
matrix σ is suitably smooth. The boundary-value prob-
lem (1), (2) has a solution u that is uniquely defined up
to an arbitrary additive constant. This solution depends
on g, of course, but also on the conductivity σ(x).
By applying different current inputs g and measuring
the resulting potential f = u|∂Ω , an observer builds up
information about the conductivity σ . If σ = γI is
isotropic, then knowledge of the response f for every
input g uniquely determines γ(x); that is, the observer
can “image” an isotropic conductivity with this type of
input current/measured voltage data. However, a gen-
eral anisotropic conductivity cannot be uniquely deter-
mined from this type of data, opening the way for
cloaking.

2 Cloaking: First Ideas

Suppose a region Ω has isotropic conductivity σ = I,
so γ ≡ 1. We wish to hide an object with different
conductivity inside Ω in such a way that the object is
invisible to an observer using impedance imaging. One
approach is to remove the conductive material from
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some subregion D ⊂ Ω, where D ∩ ∂Ω = ∅, thereby
creating a nonconductive hole for hiding an object. For
example, take D to be a ball Bρ(p) of radius ρ cen-
tered atp ∈ Ω. In this case the boundary-value problem
(1), (2) must be amended with the boundary condition
∇u · n = 0 on ∂D, since current cannot flow over ∂D.
Unfortunately, this means that the hole D is likely to
be visible to the observer, for the region Ω \D typically
yields a different potential response on ∂Ω than does
the region Ω. The difference in input-response map-
pings forΩ versusΩ \Bρ(p) grows like O(ρn) with the
radius ρ of the hole (measured via an operator norm).
The visibility of the hole is therefore proportional to its
area or volume. To hide something nontrivial, we need
ρ to be large, but the observer can then easily detect it.

3 Cloaking via a Transformation

Let us consider the special case in which Ω is the unit
disk in R2. We will show how to make a large non-
conductive hole in Ω, say a hole B1/2(0) of radius 1

2
centered at the origin, essentially undetectable to an
observer. We do this by “wrapping” the hole with a care-
fully designed layer of anisotropic conductor. Let Ωρ
denoteΩ\Bρ(0) and let r denote distance from the ori-
gin. Choose ρ ∈ (0, 1

2 ) and let φ be a smooth invertible
mapping from Ωρ to Ω1/2 with smooth inverse, with
the properties that φ maps r = ρ to r = 1

2 and φ fixes
a neighborhood 1

2 < ρ0 < r � 1 of the outer bound-
ary r = 1. Such mappings are easily constructed. Let
y = φ(x) and define a function v(y) = u(φ−1(y))
on Ω1/2. The function v satisfies the boundary-value
problem

∇ · σ∇v = 0 in Ω1/2,

∇v ·n = g on ∂Ω,

(σ∇v) ·n = 0 on r = 1
2 ,

where σ is the symmetric positive-definite matrix

σ(y) = Dφ(x)(Dφ(x))T

|det(Dφ(x))|
and Dφ is the Jacobian of φ. Also, because φ fixes r =
1, we have v ≡ u on the outer boundary.

The quantity σ may be interpreted as a conductivity
consisting of an anisotropic shell around the hole, but
with σ ≡ I near ∂Ω. For any input current g, the poten-
tial v on the region Ω1/2 with conductivity σ has the
same value on r = 1 as the potential uρ onΩρ . If ρ ≈ 0,
then uρ −u0 = O(ρ2), where u0 is the potential on the
region Ω with no hole. The anisotropic conductivity σ
thus has the effect of making the hole B1/2(0) appear to

(a) (b)

(c) (d)

–1

0

1

0 1–1
–1

0

1

0 1–1

–1

0

1

0 1–1
–1

0

1

0 1–1

Figure 1 Comparison of flow lines of the current J =
−σ∇u on annuli Ω ⊂ R

2, with input flux g(θ) =
(σ∇u) · n|r=1 = cosθ + sinθ (in polar coordinates).
(a) Empty disk. (b) Uncloaked Ω1/10. (c) Uncloaked Ω1/2.
(d) Cloaked Ω1/2. The regions in (a)–(c) have isotropic con-
ductivity 1, while the near-cloaked annulus in (d) has con-
ductivity σ given by the transformation described in sec-
tion 3. For (a), (b), and (c), the resulting boundary potential
is f(θ) = (cosθ+sinθ)(1+ρ2)/(1−ρ2), with ρ = 0, ρ = 1

10 ,
and ρ = 1

2 , respectively, so that these regions will be distin-
guishable to an observer. In (d), the near-cloaked annulus
has anisotropic conductivity σ corresponding to ρ = 1

10 ,
for which the mapping between f and g is identical to that
in (b).

be a hole of radius ρ, effectively cloaking the larger hole
if ρ ≈ 0 (see figure 1). In the limit ρ → 0+, the resulting
cloaking conductivity is singular but cloaks perfectly.

4 Generalizations

The transformation optics approach to cloaking is not
limited to impedance imaging. Many forms of imag-
ing with physics governed by a suitable partial dif-
ferential equation may be amenable to cloaking. The
key is to define a suitable mapping φ from the region
containing something to be hidden to a region that
looks “empty.” Under the appropriate change of vari-
able, one obtains a new partial differential equation that
describes how to cloak the region, and the coefficients
in this new partial differential equation may possess a
reasonable physical interpretation (e.g., an anisotropic
conductivity). The transformation thus prescribes the
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required physical properties the medium must possess
in order to direct the flow of energy around an obsta-
cle in order to cloak it. The construction of materi-
als with the required properties is an active and very
challenging area of research.

Further Reading

Bryan, K., and T. Leise. 2010. Impedance imaging, inverse
problems, and Harry Potter’s cloak. SIAM Review 52:359–
77.

Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann. 2009.
Cloaking devices, electromagnetic wormholes, and trans-
formation optics. SIAM Review 51:3–33.

Kohn, R. V., H. Shen, M. S. Vogelius, and M. I. Wein-
stein. 2008. Cloaking via change of variables in electric
impedance tomography. Inverse Problems 24:1–21.

VI.2 Bubbles
Andrea Prosperetti

Ordinarily, the term “bubble” designates a mass of gas
and/or vapor enclosed in a different medium, most
often a liquid. Soap bubbles and the bubbles in a
boiling pot are very familiar examples, but bubbles
occur in many, and very diverse, situations of great
importance in science and technology: air entrainment
in breaking waves, with implications for the acidifi-
cation of the oceans; water oxygenation, with conse-
quences for, for example, marine life and water purifi-
cation; volcanic eruptions; vapor generation, e.g., for
heat transfer, power generation, and distillation; cavi-
tation and cavitation damage, e.g., in hydraulic machin-
ery and on ship propellers; medicine, e.g., in decom-
pression sickness (the “bends”), kidney stone fragmen-
tation (lithotripsy), plaque removal in dentistry, blood
flow visualization, and cancer treatment; beverage car-
bonation; curing of concrete; bread making; and many
others. There is therefore a very extensive literature on
this subject across a wide variety of fields.

It is often the case that liquid masses in an immiscible
liquid are also referred to as bubbles, rather than, more
properly, “drops.” This is more than a semantic issue as
the most characteristic—and, indeed, defining—feature
of bubbles is their large compressibility. When a bub-
ble contains predominantly vapor (i.e., a gas below
its critical point), condensation and evaporation are
strong contributors to volume changes, which can be
so extreme as to lead to the complete disappearance
of the bubble or, conversely, to its explosive growth.
Bubbles containing predominantly an incondensible

gas are usually less compressible but still far more

so than the surrounding medium. Some unexpectedly

large effects are associated with this compressibility

because, in a sense, a bubble represents a singularity

for the host liquid.

To appreciate this feature one can look at the sim-

plest mathematical model, in which the bubble is

spherical with a time-dependent radius R(t) and is

surrounded by an infinite expanse of incompressible

liquid. The dynamics of the bubble volume is governed

by the so-called Rayleigh–Plesset equation, which, after

neglecting surface tension and viscous effects, takes

the form

R(t)
dU
dt

+ 3
2U

2 = 1
ρ
(pi − p∞). (1)

Here, U = dR/dt, ρ is the liquid density, and pi, p∞ are

the bubble’s internal pressure and the ambient pres-

sure (i.e., the pressure far from the bubble). If these two

pressures can be approximated as constants, this equa-

tion has an energy first integral, which, for a vanishing

initial velocity, is given by

U(t) = ±
√

2(pi − p∞)
3ρ

[
1 − R

3(0)
R3(t)

]
, (2)

with the upper sign for growth (pi > p∞, R(0) � R(t))
and the lower sign for collapse (pi < p∞, R(0) � R(t)).
In this latter case, by the time that R(t) has become

much smaller than R(0), this expression would predict

U ∝ −R−3/2, which diverges as R(t) → 0. Of course,

many physical effects that are neglected in this simple

model (particularly the ultimate increase of pi but also

liquid compressibility, loss of sphericity, viscosity, and

others) prevent an actual divergence from occurring,

but, nevertheless, this feature is qualitatively robust

and responsible for the unexpected violence of many

bubble phenomena.

The approximation pi � const. is reasonable for

much of the lifetime of a bubble that contains mostly

a low-density vapor. A frequently used model for

an incondensible gas bubble assumes a polytropic

pressure–volume relation of the form pi×(volume)κ =
const., with κ a number between 1 (for an isothermal

bubble) and the ratio of the gas specific heats (for an

adiabatic bubble). The internal pressure pi in the sim-

ple model (1) is then replaced by pi = pi0(R0/R)3κ for

some reference values R0 and pi0.

The interaction of bubbles with pressure distur-

bances, such as sound, is often of interest, e.g., in

underwater sound propagation, medical ultrasonics,
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ultrasonic cleaning, and other fields. Provided the wave-
length is much larger than R (which is usually the case
in the vast majority of situations of interest), the effect
of a sound field with frequency f can be accounted for
in the model (1) by setting p∞ = p0 + pA cos(2πft),
where p0 is the static pressure and pA the sound pres-
sure amplitude at the bubble location. With this adapta-
tion and pi given by the polytropic model, (1) describes
strongly nonlinear oscillations and gives an explana-
tion of the richness of the acoustic spectrum scattered
by bubbles. In the limit of small-amplitude oscillations,
it is easy to deduce from (1) an expression for the reso-
nance frequency f0 of the bubble, namely, 2πf0R0 =√

3κp0/ρ, which, for an air–water system at normal
pressure, gives approximately f0R0 � 3 kHz × mm.

The gas in an oscillating gas bubble alternately cools
and heats up. The phase mismatch between the result-
ing heat exchanges with the liquid and the driving
sound pressure is responsible for major energy losses,
which, for bubbles larger than a few microns, domi-
nate over other losses (e.g., those due to a moderate
viscosity or sound reradiation). This energy loss is the
cause of the strikingly dull sound that a glass full of
carbonated beverage emits when struck with a solid
object. If the sound intensity (e.g., that produced by a
transducer in a resonant system) is sufficiently strong,
then the increase in the temperature of the gas can
be so large as to give rise to exotic chemical reactions
(sonochemistry) and even to the generation of a plasma,
which emits brief flashes of light synchronous with the
periodic collapses of the bubble (sonoluminescence).

Bubbles containing predominantly vapor can form
due to a temperature increase, as in boiling, but also
as a result of a lowering of local pressure, as in cav-
itation. Such bubbles are much more unstable than
bubbles that contain a significant amount of inconden-
sible gas. They may keep growing and be ultimately
removed by buoyancy, as in fully developed boiling, or
they might violently collapse as soon as they encounter
cooler liquid (hence the hissing noise of a pot that is
just about to boil) or the pressure recovers.

While the spherical model is useful to understand
many aspects of bubble phenomena, in many cases it is
an oversimplification. For example, the spherical shape
can be unstable when a bubble compresses because sur-
face perturbations grow in amplitude as they are con-
fined into a smaller and smaller surface or as the bubble
contents begins to push out to limit the collapse veloc-
ity, thus giving rise to a Rayleigh–Taylor unstable sit-
uation. Spherical instability is strongly favored in the

neighborhood of a solid; the collapsing bubble devel-
ops an involuted shape with a liquid jet that traverses
the bubble and is directed against the solid surface.
The velocity of the jets thus formed can reach several
tens of meters per second and can contribute strongly
to the effects of cavitation, both undesirable (metal
fatigue and failure, vibration, noise) and desirable (den-
tal plaque removal, kidney stone comminution, clean-
ing of jewelry and small electronic components).

Surface tension is the physical process that tends
to keep bubbles spherical against the action of other
agents, such as the instabilities just mentioned, but
also gravity and translational motion, as in the case of
the buoyant rise of bubbles in a liquid. Deformation
due to gravity is often quantified by the Eötvös number
Eo = ρd2g/σ (where d is the diameter of a sphere of
equal volume; g is the acceleration due to gravity; and
σ is the surface tension coefficient), which expresses
the balance between gravity and surface tension. The
effect of translation is quantified by the Weber num-
ber We = ρu2d/σ (where u is the translational veloc-
ity with respect to the liquid), which expresses the bal-
ance between inertia and surface tension. It is also a
common observation that bubbles often fail to ascend
along a rectilinear path: the flattening of the bubble into
a roughly ellipsoidal shape causes a loss of stability
of the rectilinear trajectory, a phenomenon known as
Leonardo’s paradox.

In a boiling pot or in a champagne glass, bubbles
are often seen to originate from preferred spots rather
than randomly over the entire surface of the container
or in the bulk of the liquid. The reason for this phe-
nomenon is that intermolecular forces (the origin of the
macroscopic surface tension) make it very difficult to
nucleate (i.e., expand) a bubble starting from a “molec-
ular hole.” In the vast majority of cases bubbles orig-
inate from preexisting micron-size nuclei, mostly con-
sisting of gas pockets stabilized somehow, either on
floating particles or, more frequently, on the surface
of the container. The additional pressure necessary to
expand these nuclei to visible size against surface ten-
sion causes, for example, the boiling incipience of water
at atmospheric pressure to occur at a temperature a few
degrees higher than 100 ◦C or a carbonated beverage
not to rush in a foamy mess out of a newly opened can
(provided it has not been shaken beforehand, an action
that injects a multitude of nuclei into the liquid).

When a bubble detaches from a nozzle, or the jet in
a bubble collapsing near a wall strikes the other side of
the bubble surface, or a bubble is entrapped in a liquid
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due to a surface disturbance (e.g., an impacting drop, a
breaking wave), the liquid surface undergoes a topolog-
ical change that, in a macroscopic sense, amounts to a
mathematical singularity. Processes of this type repre-
sent a significant numerical challenge in computational
modeling.

In many cases bubbles occur in groups, or clouds,
which, for certain purposes, can be considered as turn-
ing the liquid into a homogeneous medium with effec-
tive properties different from those of the pure liquid.
Examples are the bubble clouds produced by a break-
ing wave, which endow the liquid mass in which they
reside with a compressibility much larger than that of
the surrounding bubble-free liquid. As a consequence,
these clouds can execute volume pulsations that result
in a significant low-frequency (from about 50 Hz to over
1000 Hz) ambient noise in the ocean. Clouds of bub-
bles deliberately injected at the bottom of ponds or in
some industrial processes (e.g., glass making, chemi-
cal industry) are used to destratify and mix the liquid,
or to greatly increase the gas–liquid contact area to
facilitate the occurrence of chemical reactions. There
is a significant body of literature on the application of
homogenization and various statistical methods to the
derivation of effective properties for such systems.

Some types of flow cavitation are characterized by
the formation of large vapor cavities that are periodi-
cally shed and break up into bubble clouds when they
are transported into regions of higher pressure. The
collapse of these clouds proceeds by a cascade pro-
cess that greatly enhances the destructive action of
cavitation phenomena.

The massive formation of vapor bubble clouds that
can occur, for example, when a pressurized liquid-
filled container is opened, when liquefied natural gas
comes into contact with water (“cold explosion”), or
when a liquid that is highly supersaturated with a gas
is exposed to lower pressure (e.g., the CO2 eruption of
Lake Nyos, Cameroon, in 1986) can be a violent and
devastating phenomenon. The mathematical modeling
of these processes offers numerous challenges, many
of which are still far from having been satisfactorily
met.
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VI.3 Foams
Denis Weaire and Stefan Hutzler

1 Introduction

Ever since J. A. F. Plateau laid down the foundations

of much of the theory of liquid foam structures in

the middle of the nineteenth century, we have under-

stood the problem in terms of the minimization of

the total areas of soap films, under appropriate con-

straints. The subject therefore relates to the theory of

minimal surfaces, which poses important pure mathe-

matical problems, one of which is an existence theorem

for a single film, named in honor of Plateau himself.

More practical problems deal with the complex disor-

dered arrangements of bubbles, as in figure 1. Theory

is often confined to static equilibrium or slowly varying

(quasistatic) cases.

Figure 1 is an idealized representation of a dry foam,

that is, one of very low liquid content, so that it con-

sists entirely of thin films, represented by surfaces that

meet symmetrically at 120◦, three at a time, in lines

(Plateau borders), as required for stable equilibrium.

Furthermore, the lines themselves meet symmetrically,

four at a time, at tetrahedral angles of 109.47◦, another

necessary condition for equilibrium and stability.

A foam may also be wet and have a finite liquid frac-

tion φ. Generalizing the idealized model, all the liquid

is contained in the Plateau borders, whose cross sec-

tion swells as φ increases. At a maximum value of

φc � 0.36, corresponding to the porosity of a random

packing of spheres, the bubbles become spherical (the

wet limit), as in figure 2.

The main complication in determining or describ-

ing these structures in detail is the awkward geomet-

rical form of their constituent surfaces. Each has con-

stant total curvature (by the law of Laplace and Young,

ΔP = 2γ(C1 +C2), where ΔP is the pressure difference

between neighboring bubbles, and γ denotes the sur-

face tension), but the two principal curvatures C1 and

C2 can vary. Only in very special cases can the form

of such a surface be captured by explicit mathemati-

cal expressions. Computer simulation therefore plays

a strong role in the subject.
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Figure 1 A computer simulation of a dry foam using Ken
Brakke’s Surface Evolver program. (This simulation was car-
ried out by Andy Kraynik and is reproduced with his kind
permission.)

 

Figure 2 Wet foams resemble sphere packings. (The exam-
ple shown was computed by Andy Kraynik (Kraynik 2006)
and is reproduced with kind permission of Wiley-VCH
Verlag GmbH & Co. KGaA.)

Figure 3 Surface Evolver represents the surfaces of a bub-
ble as a triangular mesh that can be refined to a high degree.
The example shown is the Weaire–Phelan structure for dry
foam: a space-filling arrangement of equal-volume bubbles
and minimal surface area.

2 Simulation

For more than two decades, Ken Brakke’s Surface
Evolver has been the favorite method of simulation.1

It represents the surfaces as tessellations (figure 3)
and can deal with a variety of constraints and refine-
ments. Samples of thousands of bubbles have been sim-
ulated (figure 1), and many physical properties have
been determined. These include the statistical proper-
ties of the structure, elastic moduli, yield stress, and
coarsening (the evolution that results from diffusion
of gas between bubbles).

3 Heuristic Models

Simpler, more approximate models are often invoked
to avoid the heavy computational demands of the accu-
rate Surface Evolver simulations. Bubbles are often
represented by overlapping spheres (or circles, in two
dimensions), with a repulsive force associated with the
overlap. Figure 4 shows the variation of shear modu-
lus against liquid fraction for a typical simulation. Sim-
ilar models are used in the theory of granular matter,
and the two subjects find common ground when foams
are studied close to the wet limit, when the bubbles

1. Surface Evolver can be download for free at www.susqu.edu/
brakke/evolver/evolver.html.

http://www.susqu.edu/brakke/evolver/evolver.html
http://www.susqu.edu/brakke/evolver/evolver.html
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Figure 4 The variation of shear modulus with liquid frac-
tion for two-dimensional random foam. The data points are
results from bubble model simulations for a number of
samples; the solid line is a least-squares fit. As the shear
modulus approaches zero (at a value of φc � 0.16 in
two dimensions), the foam loses its rigidity and is better
described as a bubbly liquid.

may (paradoxically) be described as hard spheres. A
complex of fascinating questions arises in that limit,
generally gathered under the heading of “jamming.”

4 Continuum Models

In the context of engineering applications, foams are
often described by semi-empirical continuum repre-
sentations, which may be justified to some extent by
appeal to the detailed microscopic models that we have
described.

In rheology, the foam may be taken to be a contin-
uous medium with the characteristics of the Bingham
or Herschel–Bulkley models, which describe the foam
as an elastic solid, for stress S below a threshold (the
yield stress Sy). When subjected to stress above this
threshold, the foam flows according to

S = Sy + cγ̇a, (1)

where γ̇ is the strain rate, c is called the consistency,
and the exponent a may be determined from simula-
tions or experiments. In recent years such models of
non-Newtonian fluids have been the basis of debates on
shear localization. In a nonlinear system such as this,
the response to an imposed shear stress may be flowing
within a shear band.

For foam drainage (the passage of liquid through a
foam under gravity and pressure gradients), a partial
differential equation may be developed for the evolu-
tion of liquid fraction φ(x, t) as a function of vertical
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Figure 5 The merging of two solitary waves with respective
velocities va and vb (shown here as numerical solution of
the foam drainage equation) has also been seen in foam
drainage experiments.

position and time. In its most elementary form, it has
been called the foam drainage equation, and it is given
by

∂φ
∂t

= ∂
∂x

(
c2

√
φ
∂φ
∂x

− c1φ2
)
, (2)

where c1 and c2 are parameters containing values for
the viscosity, density, and surface tension of the liquid,
the mean bubble diameter, and geometrical constants
related to foam structure.

Various elaborations have been advanced, e.g., tak-
ing into account different boundary conditions at the
gas–liquid interfaces. In simple circumstances (one-
dimensional flow), the foam drainage equation has
interesting analytic solutions, such as a solitary wave
propagating with velocity v :

φ(x, t) =

⎧⎪⎪⎨⎪⎪⎩
v
c1

tanh2
[√
c1v
c2

(x − vt)
]

if x � vt,

0 if x > vt.

The merging of two such waves is shown in figure 5.

5 More General Computational Models

More recently, attention has turned to phenomena
that require models and methods that go beyond the
quasistatic regime.

In 2013 Saye and Sethian developed a formalism to
accurately describe local fluid motion within bubbles,
soap films, and their junctions, and they applied this
to the evolution of a bubble cluster. Three phases of
evolution were identified and separated for the pur-
poses of simulation. These are the approach to equilib-
rium, involving rearrangements of bubbles, followed by
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liquid drainage through the films and Plateau borders,
and finally film rupture caused by thinning. This last
event throws the system far out of equilibrium so that
we may return to the first phase, and so on.

Further progress in both theory and computation is
required to model the types of foams that feature in
many applications and that are often wet and laden
with particles.

6 The Kelvin Problem

The Kelvin problem asks the following question. For
a dry foam of equal-sized bubbles, what arrangement
has lowest energy (i.e., total surface area)? As a prob-
lem in discrete geometry, this seems rather intractable.
Kelvin himself offered an inspired conjecture in 1887,
in which the bubbles (or cells) were arranged in the
body-centered cubic crystal structure. This remained
the best candidate until 1994, when Weaire and Phe-
lan identified a structure of lower energy, using Surface
Evolver (figure 3).

In terms of rigorous proof, the Kelvin problem
remains open, but few doubt that the Weaire–Phelan
structure will prevail. It comes closest to satisfying
some criteria for average numbers of cell faces (and
other properties) that may be loosely argued as follows.
One may conceive an ideal polyhedron for area mini-
mization that has flat faces and the tetrahedral angle
at the vertices, but this cannot be realized since it is eas-
ily shown that it has noninteger numbers of faces and
edges. Average values for the Weaire–Phelan structure
come close to this ideal.

7 Two Dimensions

Many of the basic questions of foam physics may be
pursued in two dimensions, which may be realized
experimentally as a sandwich of bubbles between two
plates (figure 6).

In two dimensions much of the mathematics is radi-
cally simplified: ideally, the bubbles occupy polygonal
cells with circular sides. Much more can be adduced
by way of exact results; for example, the implication of
Euler’s theorem that the average number of sides of a
cell is six.

Von Neumann pointed out that if gas diffusion
between cells is proportional to pressure difference,
each cell grows (or shrinks) at a rate determined only
by its number of sides n, apart from a constant of
proportionality:

dAn
dt

∝ (n− 6), (3)

Figure 6 The simplified geometry of a two-dimensional
foam, realized as bubbles squeezed between two plates, as
in this photograph, makes the computation of its proper-
ties more tractable. Many of the results are also relevant
for three dimensions.

where An is the area of an n-sided cell. The effect is

a gradual coarsening of the structure, as cells progres-

sively vanish.

Another example of the tractability of problems in

two dimensions is the counterpart of the Kelvin prob-

lem: Thomas Hales has produced a fairly elementary

proof that the honeycomb pattern has the minimum

line length.

Empirical correlations are also found, such as that

between the number of sides n of a cell and m, the

average number of sides of its neighbors (this is the

Aboav–Weaire law):

m = 6 − a+ 6a+ μ2

n
. (4)

Here, μ2 is the second moment of the cell side distri-

bution about the mean, and a � 1.2 is an empirical

parameter.

Such relations all have their counterparts in a three-

dimensional foam, but only as debatable approxima-

tions.
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VI.4 Inverted Pendulums
David Acheson

In 1908 a mathematician at Manchester University
called Andrew Stephenson discovered that a rigid pen-
dulum can be stabilized upside down if its pivot is
vibrated up and down at high frequency.

Suppose, then, that we let a denote the amplitude of
the pivot motion andω the pivot frequency, so that the
height of the pivot is a sinωt at time t.

The simplest case is for a single light rod of length l
with a point mass at one end. Stephenson assumed in
his mathematical analysis that a� l and showed that
the inverted state will then be stable if aω >

√
2gl.

He confirmed his results experimentally, and with l =
10 cm and a = 1 cm, say, the critical value of ω/2π
turns out to be about 22 Hz.

This is all very different, incidentally, from balancing
an upturned pole on the palm of one hand, for there
is no “feedback” in Stephenson’s experiment, and the
pivot vibrations are completely regular and strictly up
and down.

The phenomenon was rediscovered and brought to
wider attention by P. L. Kapitza in the 1950s, and it is
now a well-known curiosity of classical mechanics.

1 An Inverted Pendulums Theorem (1993)

It is less well known, perhaps, that the same “trick”
can be performed with any finite number of linked
pendulums, all balanced on top of one another.

The theorem in question works by relating the sta-
bility of the inverted state to just two simple proper-
ties of the pendulum system in its downward-hanging,
unvibrated state.

A

B
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q

u
en

cy
ω

Drive amplitude a

Figure 1 The inverted pendulums theorem.

Suppose, then, that we have N pendulums hang-
ing down, one from another, with the uppermost one
attached to a (fixed) pivot. There will be N modes
of small oscillation of this system about the down-
ward state, each with its own natural frequency. In the
lowest-frequency mode, for example, all the pendulums
swing in the same direction at any given moment, while
in the highest-frequency mode adjacent pendulums
swing in opposite directions.

Letωmin andωmax denote the lowest and highest nat-
ural frequencies, and suppose, too, thatω2

max �ω2
min,

which is usually the case when N � 2.
The whole system can then be stabilized in its upside-

down state by vibrating the pivot up and down with
amplitude a and frequency ω such that

a <
0.450g
ω2

max
(1)

and

aω >
√

2g
ωmin

. (2)

The stable region in the aω-plane therefore has the
characteristic shape indicated in figure 1, where the
straight line BC corresponds to (1) and the curve AB
to (2).

The sketches indicate what happens if we gradually
leave the stable region. If the frequency ω is reduced
far enough that (2) is violated, the pendulums collapse
by slowly wobbling down on one side of the vertical.
If, instead, the drive amplitude a is increased enough
for (1) to be violated, the pendulums first lose their

http://www.susqu.edu/brakke/
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Figure 2 An inverted triple pendulum.

stability to an upside-down buckling oscillation at fre-

quency 1
2ω. Further increases in a then cause a rather

more dramatic collapse.

The numerical values of ωmin and ωmax depend, of

course, on the number of pendulums involved, and

their various shapes, sizes, and mass distributions. If

many pendulums are involved, ωmax is typically quite

large, so the pivot amplitude a has to be small to sat-

isfy (1). This in turn means that the pivot frequency

ω needs to be very large in order to satisfy (2), and in

this way it becomes comparatively difficult to stabilize

a long chain of pendulums in its inverted state, as one

would expect.

2 Experiments

These strange theoretical predictions were verified

experimentally—for two-, three-, and four-pendulum

systems—by Tom Mullin in the early 1990s.

Figure 2 shows a three-pendulum system, stabilized
upside down, recovering from a substantial distur-
bance and gradually wobbling back to the upward
vertical.

In this particular case the rods all have length l =
19 cm, and they are joined by two low-friction bearings,
each of which weighs nearly twice as much as one of the
rods. As a result,

ωmin = 0.729
(
g
l

)1/2
and ωmax = 2.174

(
g
l

)1/2
,

so the theorem predicts that this particular system will
be stable in the inverted state if

a
l
< 0.095 and

a
l

ω
(g/l)1/2

> 1.94.

These predictions were confirmed by the experimen-
tal data, and in figure 2 a is 1.4 cm and ω/2π =
35 Hz.

3 Nonlinear Dynamics

We were particularly surprised, in fact, by just how sta-
ble the inverted multiple-pendulum system could be
in the actual experiment. The theorem itself is based
on linear stability theory and therefore guarantees sta-
bility only with respect to infinitesimally small distur-
bances. Yet in the experiments we found that we could
gently push the pendulum column over by as much as
45◦ or so and, provided we kept it reasonably straight in
the process, it would then recover and gradually settle
again on the upward vertical.

This kind of robust behavior had been evident, how-
ever, in our computer simulations of one-, two- and
three-pendulum systems based on the full, nonlin-
ear differential equations of motion (including a small
amount of friction).

And these numerical simulations revealed another
surprising feature: in some regions of parameter space
for which the inverted state is stable, there is a sec-
ond, entirely different, way in which the pendulums
can avoid falling over. For a certain range of initial con-
ditions they will settle instead into curious “multiple-
nodding” oscillations about the upward vertical.

The simplest of these is a double-nodding mode, at
frequency 1

4ω, with adjacent pendulums on opposite
sides of the upward vertical at any given moment, and
each pendulum nodding twice on one side before flip-
ping over to the other. For reasonably large values of
ω this mode exists when a is between about 70% and
90% of the maximum value allowed by (1).
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There is also a triple-nodding mode, at frequency
1
6ω, with each pendulum nodding three times in suc-
cession on each side, for a between about 60% and
70% of its maximum value. Again, the system will only
gradually settle into such an oscillation if given a suf-
ficient nudge toward it; if the inverted, upright state
is disturbed sufficiently slightly, the pendulums just
gradually settle back again on the upward vertical.

In principle, there exist even more exotic oscillations
of this general kind. With an inverted double pendulum,
for instance, it is possible to get an asymmetric oscil-
lation of double-nodding type in which both upside-
down pendulums stay on one side of the upward ver-
tical throughout. This was discovered by first setting
up a standard, symmetrical double-nodding oscillation
and then moving in the general direction of the point B
in the stability diagram by gradually changing both a
and ω. At present, however, all of these strange non-
linear oscillations are just theoretical predictions, and
they have yet to receive proper experimental study.

4 Not Quite the Indian Rope Trick

The principal results of the theorem above have had a
fair amount of media attention over the years, largely
because of a (loose!) connection with the legendary
Indian rope trick.

Yet one clear prediction from the theory is that our
particular gravity-defying “trick” cannot be done with a
length of rope that is perfectly flexible, with no bending
stiffness. This is because if we model such a rope as N
freely linked pendulums of fixed total length, and then
let N → ∞, we find that ωmin tends to a finite limit but
ωmax → ∞. The theorem then requires that a → 0 in
order to satisfy (1) and, therefore, thatω→ ∞ in order
to satisfy (2).

Even without this difficulty, however, we would be
a long way from the genuine Indian rope trick, as
described down the generations, for this would involve
making a small boy climb up the vibrating apparatus
before disappearing at the top.
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VI.5 Insect Flight
Z. Jane Wang

1 How Do Insects Fly?

All things fall. Apples and leaves fall to the ground,
the moon falls toward the Earth, and the Earth toward
the sun. We would fall too if we did not will ourselves
to stand upright. To walk, we lift one leg and let our-
selves fall again. Why any organism should decide to
fight against the inevitable fate of falling is a mystery
of evolution. But there they are, insects and birds, flying
in the face of gravity.

What insects and birds have discovered are ways to
push the air around them; and the air, in turn, pushes
the Earth away. How do insects flap their wings so as
to create the necessary aerodynamic forces to hover?
How do they adjust their wing motion to dart forward
or to turn? Have they found efficient wing strokes? Can
we emulate them?

Insects, millions of species in all, are small creatures,
but they span a wide range of sizes. One of the largest,
a hawkmoth, has a wing span of 5 cm and weighs
1.5 g. One of the smallest, a chalcid wasp, measures
less than a millimeter and weighs 0.02 mg. The smaller
they are, the faster they flap their wings. A hawkmoth
flaps its wings at about 20 Hz and a chalcid wasp at
about 400 Hz. This inverse scaling of the wing beat fre-
quency with the wing length implies a relatively con-
stant wing tip speed, about 1 m s−1, which holds over
three orders of magnitude in length scale across all the
different species. Curiously, 1 m s−1 is a common speed
for natural locomotion: we walk and swim at a similar
pace.

Each flapping wing creates a whirlwind around itself,
governed by the Navier–Stokes equations. Insects have
stumbled upon families of solutions to the Navier–
Stokes equations that provide their wings with the
necessary thrust (plate 10). Given the wing size and
the wing speed, the flow generated by each wing is
characterized by a Reynolds number (Re) in the range
10–10 000, which is neither small enough to be in the
Stokesian regime, where the viscous force dominates,
nor large enough to be in the inviscid regime, where
the viscous force is negligible. The interplay of the vis-
cous and inertial effects, especially near the wing, often
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leads to unexpected behavior and eludes simple theo-
ries. Another important aspect of the flow is that it is
intrinsically unsteady, and this implies that the timing
is critical. Part of an insect’s skill is to tame the unruly
flow and to coordinate the timing of its own movement
with the timing of the flow.

For instance, dragonflies can adjust the timing of
their forewings and hindwings during different maneu-
vers. When hovering, their forewings and hindwings
tend to beat out of phase to gain stability and save
power. When taking off, the beats of the two sets of
wings will be closer to being in phase, and the interac-
tion of the flow leads to a higher thrust. To stay aloft,
each wing flaps up and down along an inclined stroke
plane as if rowing in air. The downstroke has an angle
of attack of about 60◦, while the upstroke has a smaller
angle of attack, close to 10◦. Such an asymmetry results
in an upward aerodynamic drag that supports much
of its weight. Fruit flies, on the other hand, use only
two wings to fly. Their halteres, the much-reduced hind-
wings, have evolved into a gyroscopic sensor that mea-
sures the rotational velocity of the body. The wings of
fruit flies flap back and forth with an angle of attack of
about 40◦, and they support their weight with aerody-
namic lift, much like a helicopter. The angles of attack
used by insects, much greater than the 10–15◦ used by
an airfoil in steady flight, are determined by the weight
balance, given the limited wing speed that the insects
can generate. Associated with the large angle of attack
is the flow separation. The wings must then take advan-
tage of dynamic stall, which provides a high transient
force during the wing beat. In such a flow regime, the
two flight strategies, asymmetric rowing and symmetric
flapping, can be similarly effective.

Can a flapping wing be more efficient than a steady
translating wing? A generic flapping wing motion is
almost always less efficient than the optimal steady
flight. This is not to say that all flapping wing mo-
tions are less efficient. Computational optimization of
Navier–Stokes solutions finds some solutions, rare as
they are, that are more efficient than the optimal steady
flight at insect scales. One trick that works to the advan-
tage of the flapping wing is that it can catch its own
wake as it reverses, allowing the wing to gain an added
lift with almost no energy cost.

2 Solving Navier–Stokes Equations
Coupled to Flapping Wings

To understand the nature of unsteady flows and to
mathematically quantify the aerodynamic forces, flight

efficiency, and the timing of the wing strokes, it is nec-
essary to solve the governing Navier–Stokes equations
coupled to the dynamics of a flapping wing.

The wing drives the flow, and the flow modulates the
wing motion. The dynamics of the wing is governed
by Newton’s equation. The fluid velocity u(x, t) and
pressure p(x, t) are governed by the conservation of
momentum and mass of the fluid, the navier–stokes

equations [III.23]:

∂u
∂t

+ (u · ∇)u = −∇p
ρ

+ ν∇2u,

∇ · u = 0,

where ρ is the density of the fluid and ν is the kine-
matic viscosity. By choosing a length scale, L, and a
velocity scale, U , the equation can be expressed in a
nondimensional form containing the Reynolds number,
Re = UL/ν . The flow velocity is far smaller than the
speed of sound, and the flow is therefore nearly incom-
pressible. The coupling between the wing and the fluid
lies in the no-slip boundary condition at the wing sur-
face, ubd = us, which states that the flow velocity at the
wing surface is the same as the wing velocity.

What kinds of solutions do we expect from these
coupled partial differential equations? Imagine that a
wing is detached from the insect and falls with a weight
attached to it. The dynamics of this passive falling wing
is governed by the same set of equations described
above, and the way it falls would reveal a specific solu-
tion to the governing equations. To view some of these
solutions, we can drop a piece of paper. It may tum-
ble and flutter erratically. The falling style of a piece
of paper depends on its geometry and density. If we
drop a business card, we would find it tumbling about
its span axis while drifting away. That is, a card driven
by its own weight while interacting with air can lead
to a periodic motion (figure 1). To reason this back-
ward, we deduce that the observed periodic movement
of the paper generates a thrust that on average balances
the weight of the paper. If we tilt the falling trajecto-
ries so that they move along in a horizontal direction,
they begin to resemble a forward-flapping flight. These
periodic motions, though not identical to insect wing
motions, are in essence similar to the ones that nature
has found.

To quantify the flow dynamics and to tease out the
key elements that are responsible for the thrust, we
turn to computers and experiments. Much of the inter-
esting behavior of the flow originates near the sharp
tips of the wing, yet computational schemes often
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Figure 1 Periodic motion of free falling paper. From U. Pes-
avento and Z. J. Wang (2004), Falling paper: Navier–Stokes
solutions, model of fluid forces, and center of mass eleva-
tion, Physical Review Letters 93(14):144501.

encounter great difficulty in resolving moving sharp

interfaces. This is a known difficulty in nearly all fluid-

structure simulations. To resolve the flows, there is no

one-size-fits-all scheme. If we are interested in a sin-

gle rigid wing flapping in a two-dimensional fluid, we

can take advantage of the two-dimensional aspect of

the problem. We can use a conformal mapping tech-

nique to generate a naturally adaptive grid around the

wing such that the grids are exponentially refined at

the tip. We can also solve the equation in a frame that

is comoving with the wing to avoid grid regeneration.

The movement of the wing then gets translated into far-

field boundary conditions on the flow field. The confor-

mal map allows us to simulate the flow in a large com-

putational domain, where the vorticity is small at the

far field. The solution near the far field can be approx-

imated analytically, and it can be implemented in the

far-field boundary conditions. These treatments lead to

high-order numerical computations to resolve the flow

efficiently.

A three-dimensional flexible wing needs a different

treatment. Computational methods may also need to

handle multiple moving objects. One class of tech-

niques is based on the idea of the immersed interface

method and its predecessor, the immersed boundary

method. In these Cartesian-grid methods, the interfaces

cut through the grids. The problem of treating the mov-

ing interfaces therefore becomes the problem of han-

dling singular forces along the interfaces or the discon-

tinuities in the fluid variables across each interface. One

of the challenges with these methods is to go beyond

first-order accuracy at the interfaces where singulari-
ties reside. Recent work has shown that with careful
treatment of the discontinuities across moving inter-
faces, it is possible to obtain second-order accuracy.
This makes a difference when resolving the critical part
of the flow.

3 How Do Insects Turn?

Unsteady aerodynamics is one of the many puzzles
when it comes to understanding insect flight. Flap-
ping flight, like fixed-wing flight, is intrinsically unsta-
ble. Without proper circuitry for sensing and control,
an insect would fall. The same control circuitry that
insects use for stabilization may also be used for acro-
batic maneuvers. So how do insects modulate their
wings to turn?

We end the article with the example of how a fruit fly
makes a sharp yaw turn, or a saccade (plate 11). A fruit
fly beats its wings about 250 times per second, and it
can make a saccade in about 20 wing beats, or about
80 ms. The wing beat frequency is too fast for direct
beat-to-beat control by neurons. Instead, the insects
have learned to shift their “gear” and wait a few wing
beats before shifting the gear back. We now have some
idea of how the “gear shift” for the yaw turn works. The
wing hinge acts as if it is a torsional spring. To adjust
its wing motion, the wing hinge shifts the equilibrium
position of the effective torsional spring, and this leads
to a slight shift of the angle of attack of that wing. The
asymmetry of the left and right wings creates a drag
imbalance that causes the insect to turn. To turn 120◦

degrees, the asymmetry in the wing angle of attack is
only about 5◦.

The torques acting at the wing base have been com-
puted using aerodynamic models applied to real-time
tracking of the three-dimensional wing and body kine-
matics during free flight, which were filmed with mul-
tiple high-speed cameras. The wing and body orienta-
tions were extracted using computer vision algorithms.
In the case of fruit flies, this amounts to reconstruct-
ing three rigid bodies based on the three sets of sil-
houettes recorded by the cameras. For larger insects,
one can also add markers to help with tracking. Recent
progress in tracking algorithms allows for semiauto-
matic processing of vast amounts of data. Although
this is still time-consuming, it is a welcome depar-
ture from the earlier days of working with miles of
cine films, a technique invented in the late nineteenth
century.
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4 From Flight Dynamics
to Control Algorithms

In a natural environment, insects are constantly being
knocked about by wind or visual and mechanical per-
turbations. And yet they appear to be unperturbed and
are able to correct their course with ease. The halteres,
mentioned earlier, provide a fast gyroscopic sensor that
enables a fruit fly to keep track of its angular rotational
rate. Recent work has found that when a fruit fly’s body
orientation is perturbed with a torque impulse, it auto-
matically adjusts its wing motion to create a corrective
torque. If the perturbation is small, the correction is
almost perfect.

Exactly how their brains orchestrate this is a question
for neural science as well as for mathematical modeling
of the whole organism. By examining how insects turn
and respond to external perturbations, we can begin to
learn about their thoughts.

Further Reading

Chang, S., and Z. J. Wang. 2014. Predicting fruit fly’s sens-
ing rate with insect flight simulations. Proceedings of
the National Academy of Sciences of the USA 111(31):
11246–51.

Ristroph, L., A. Bergou, G. Ristroph, G. Berman, J. Gucken-
heimer, Z. J. Wang, and I. Cohen. 2012. Dynamics, control,
and stabilization of turning flight in fruit flies. In Natural
Locomotion in Fluids and on Surfaces, edited by S. Chil-
dress, A. Hosoi, W. W. Schultz, and Z. J. Wang, pp. 83–99.
New York: Springer.

Wang, Z. J. 2000. Two dimensional mechanism for insect
hovering. Physical Review Letters 85(10):2035.

. 2005. Dissecting insect flight. Annual Review of Fluid
Mechanics 37:183–210.

Xu, S., and Z. J. Wang. 2006. An immersed interface method
for simulating the interaction of a fluid with moving
boundaries. Journal of Computational Physics 201:454–
93.

VI.6 The Flight of a Golf Ball
Douglas N. Arnold

A skilled golfer hitting a drive can accelerate his club
head from zero to 120 miles per hour in the quarter
of a second before making contact with the ball. As a
result, the ball leaves the tee with a typical speed of
175 miles per hour and at an angle of 11◦ to the ground.
From that moment the golfer no longer exercises con-
trol. The trajectory of the ball is determined by the laws
of physics.

Figure 1 The actual trajectory of a
golf ball is far from parabolic.

In elementary calculus we learn to model the trajec-
tory of an object under the influence of gravity. The hor-
izontal component of its velocity is constant, while it
experiences a vertical acceleration down toward Earth
at 32.2 feet per second per second. This results in a
parabolic trajectory that can be described exactly. Over
a flat course, a ball traveling with the initial speed and
launch angle mentioned above would return to Earth at
a point 256 yards from the tee. In fact, observation of
golf ball trajectories reveals that their shape is far from
parabolic, as illustrated in figure 1, and that golfers
often drive the ball significantly higher and farther than
the simple formulas from calculus predict, even on a
windless day. The discrepancy can be attributed to the
fact that these formulas assume that gravity is the only
force acting on the ball during its flight. They neglect
the forces that the atmosphere exerts on the ball pass-
ing through it. Surprisingly, this air resistance can help
to increase the range of the ball.

1 Drag and Lift

Instead of decomposing the air resistance force vec-
tor into its horizontal and vertical components, it is
more convenient to make a different choice of coordi-
nate directions: namely, the direction opposite to the
motion of the ball, and the direction orthogonal to that
and directed skyward (see figure 2). The correspond-
ing components of the force of air resistance are then
called the drag and the lift, respectively. Drag is the
same force you feel pushing on your arm if you stick it
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Air resistance

Drag

Gravity

Lift

Figure 2 Air resistance is decomposed into drag and lift.

out of the window of a moving car. Golfers want to min-
imize it, so their ball will travel farther. Lift is largely a
consequence of the back spin of the ball, which speeds
the air passing over the top of the ball and slows the air
passing under it. By Bernoulli’s principle, the result is
lower pressure above and therefore an upward force on
the ball. Lift is advantageous to golfers, since it keeps
the ball aloft far longer than would otherwise be the
case, allowing it to achieve more distance.

Drag and lift are very much affected by how the air
interacts with the surface of the ball. In the middle of
the nineteenth century, when rubber golf balls were
introduced, golfers noticed that old scuffed golf balls
traveled farther than new smooth balls, although no
one could explain this unintuitive behavior. This even-
tually gave rise to the modern dimpled golf ball. Along
the way a great deal was learned about aerodynam-
ics and its mathematical modeling. Hundreds of dif-
ferent dimple patterns have been devised, marketed,
and patented. However, even today the optimal dim-
ple pattern lies beyond our reach, and its discovery
remains a tough challenge for applied mathematics and
computational science.

2 Reynolds Number

Drag and lift—which are also essential to the design of
aircraft and ships, the swimming of fish and the flight
of birds, the circulation of blood cells, and many other
systems—are not easy to model mathematically. In this
article, we shall concentrate on drag. It is caused by
two main sources: the friction between the ball’s sur-
face and the air, and the difference in pressure ahead

of and behind the ball. The size and relative impor-
tance of these contributions depends greatly on the
flow regime. In the second half of the nineteenth cen-
tury, George Stokes and Osborne Reynolds realized that
a single number could be assigned to a flow that cap-
tured a great deal about its qualitative behavior. Low
Reynolds number flows are slow, orderly, and laminar.
Flows with high Reynolds number are fast, turbulent,
and mixing.

The Reynolds number has a simple formula in terms
of four fundamental characteristics of the flow: (1) the
diameter of the key features (e.g., of the golf ball),
(2) the flow speed, (3) the fluid density, and (4) the fluid
viscosity. The formula is simple: the Reynolds number
is simply the product of the first three of these divided
by the fourth. This results in a dimensionless quantity:
it does not matter what units you use to compute the
four fundamental characteristics as long they are used
consistently. The viscosity, which enters the Reynolds
number, measures how thick the fluid is: water, for
example, is a moderately thin fluid and has viscosity
5 × 10−4 lb/ft s, while honey, which is much thicker,
has a viscosity of 5 in the same units, and pitch, which
is practically solid, has a viscosity of about 200 000 000.

Using the diameter of a golf ball (0.14 feet), its speed
(257 feet per second), and the density (0.74 pounds per
cubic foot) and viscosity (0.000012 lb/ft s) of air, we
compute the Reynolds number for a professionally hit
golf ball in flight as about 220 000, much more than a
butterfly flying (4000) or a minnow swimming (1), but
much less than a Boeing 747 (2 000 000 000).

3 The Mysterious Drag Crisis

At the very beginning of the twentieth century, as
the Wright brothers made the first successful air-
plane flight, aerodynamics was a subject of intense
interest. The French engineer Alexandre Gustave Eif-
fel, renowned for his famous tower, dedicated his later
life to the study of aerodynamics. He built a laboratory
in the Eiffel tower and a wind tunnel on its grounds
and measured the drag on various objects at various
Reynolds numbers. In 1912 Eiffel made a shocking dis-
covery: the drag crisis. Although one would expect that
drag increases with increasing speed, Eiffel found that
for flow around a smooth sphere, there is a paradoxical
drop in drag as the flow speed increases past Reynolds
number 200 000. This is illustrated in figure 3. Of great
importance in some aerodynamical regimes, the drag
crisis begged for an explanation.
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Figure 3 A smooth sphere moving through a fluid exhibits
the drag crisis: between Reynolds numbers of approxi-
mately 200 000 and 300 000, the drag decreases as the
speed increases.

4 The Drag Crisis Resolved

The person who was eventually to explain the drag cri-

sis was Ludwig Prandtl. Eight years before Eiffel dis-

covered the crisis, Prandtl had presented one of the

most important papers in the field of fluid dynamics

at the International Congress of Mathematicians. In his

paper he showed how to mathematically model flow in

the boundary layer. As a ball flies through the air, a

very accurate mathematical model of the flow is given

by the system of partial differential equations known

as the navier–stokes equations [III.23]. If we could

solve these equations, we could compute the drag and

thereby elucidate the drag crisis. But the solution of the

Navier–Stokes equations is too difficult. Prandtl showed

how parts of the equations could be safely ignored

in certain parts of the flow: namely, in the extremely

thin layer where the air comes into contact with the

ball. His equations demonstrated how the air speed

increased rapidly from zero (relative to the ball) at the

surface of the ball to the ball speed outside a thin layer

around the ball surface. Prandtl also described very

accurately the phenomenon of boundary-layer separa-

tion, by which higher pressure behind the ball (the pres-

sure being lower on the top and bottom of the ball, by

Bernoulli’s principle) forces the boundary layer off the

ball and leads to a low-pressure trailing wake behind

the ball, much like the wake left behind by a ship.

This low-pressure trailing wake is a major source of

drag.

Boundary-layer separation

Trailing wake

Tripwire

Figure 4 Flow past a smooth sphere, clearly exhibiting
boundary-layer separation and the resulting trailing wake.
A tripwire has been added to the lower sphere. The result-
ing turbulence in the boundary layer delays separation and
so leads to a smaller trailing wake. (Photos from An Album
of Fluid Motion, Milton Van Dyke.)

In 1914 Prandtl used these tools to give the following
explanation of the drag crisis.

(1) At high speed, the boundary layer become tur-
bulent. For a smooth sphere, this happens at a
Reynolds number of about 250 000.

(2) The turbulence mixes fast-moving air outside the
boundary layer into the slow air of the boundary
layer, thereby speeding it up.

(3) The air in the boundary layer can therefore resist
the high-pressure air from behind the ball for
longer, and boundary-layer separation occurs far-
ther downwind.

(4) The low-pressure trailing wake is therefore nar-
rower, reducing drag.

Prandtl validated this subtle line of reasoning experi-
mentally by measuring the drag on a sphere in an air
stream and then adding a small tripwire to the sphere
to induce turbulence. As you can see in a reproduc-
tion of this experiment shown in figure 4, the result
is indeed a much smaller trailing wake.
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Figure 5 Simulation of flow over dimples.

5 The Role of Dimples

The drag crisis means that when a smooth sphere
reaches a Reynolds number of 250 000 or so, it expe-
riences a large decrease in drag and can travel farther.
This would be a great boon to golfers were it not for one
fact: a golf ball–size sphere would need to travel over
200 miles per hour to achieve that Reynolds number,
a speed that is not attained in golf. So why is the drag
crisis relevant to golfers? The answer lies in the dim-
ples. Just as a tripwire can be added to a smooth sphere
to induce turbulence and precipitate the drag crisis,
so can other perturbations of the surface. By suitably
roughening the surface of a golf ball, e.g., by adding
dimples, the Reynolds number at which the drag cri-
sis occurs can be lowered to about 50 000, well within
the range of any golfer. The resulting drag reduction
doubles the distance flown by the ball over what can be
achieved with a smooth ball.

6 Stalking the Optimal Golf Ball

As we have seen, dimples dramatically affect the flight
of a golf ball, so a natural question is how to design
an optimally dimpled ball. How many dimples should
there be and in what pattern should they be arranged?
What shape of dimple is best: round, hexagonal, tri-
angular, …, some combination? What size should they
be? How deep and with what profile? There are count-
less possibilities, and the thousands of dimple patterns
that have been tested, patented, and marketed encom-
pass only a small portion of the relevant design space.
Modern computational science offers the promise that
this space can be explored in depth with computa-
tional simulation, and indeed great progress has been
made. For example, in 2010 a detailed simulation of
flow over a golf ball with about 300 spherical dimples at
a Reynolds number of 110 000 was carried out by Smith

et al. (2012). The computation was based on a finite-
difference discretization of the Navier–Stokes equa-
tions using about a billion unknowns and it required
hundreds of hours on a massive computing cluster to
solve. It furnished fascinating insights into the role of
the dimples in boundary-layer detachment and reat-
tachment, hinted at in figure 5. But even such an
impressive computation neglects some important and
difficult aspects, such as the spin of the golf ball, and
once those issues have been addressed the coupling
of the simulation to effective optimization procedures
will be no small task. The understanding of the flight of
a golf ball has challenged applied mathematicians for
over a century, and the end is not yet in sight.

Further Reading

Smith, C. E., N. Beratlis, E. Balaras, K. Squires, and M.
Tsunoda. 2012. Numerical investigation of the flow over
a golf ball in the subcritical and supercritical regimes.
International Journal of Heat and Fluid Flow 31:262–73.

VI.7 Automatic Differentiation
Andreas Griewank

1 From Analysis to Algebra

In school, many people have suffered the pain of having
to find derivatives of algebraic formulas. As in some
other domains of human endeavor, everything begins
with just a few simple rules:

(u+ cv)′ = u′ + cv′, (uv)′ = u′v +uv′. (1)

With a constant factor c, the first identity means that
differentiation is a linear process; the second identity
is known as the product rule. Here we have assumed
that u and v are smooth functions of some variable x,
and differentiation with respect to x is denoted by a
prime. Alternatively, one writes u′ = u′(x) = du/dx
and also calls the derivative a differential quotient. To
differentiate composite functions, suppose the inde-
pendent variable x is first mapped into an intermedi-
ate variable z = f(x) by the function f , and then z is
mapped by some function g into the dependent vari-
able y . One then obtains, for the composite function
y = h(x) ≡ g(f(x)),

h′(x) = g′(f (x))f ′(x) = dy
dx

= dy
dz

dz
dx
. (2)

This expression for h′(x) as the product of the deriva-
tives g′ and f ′ evaluated at z = f(x) and x, respec-
tively, is known as the chain rule. One also needs to
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know the derivatives ϕ′(x) of all elemental functions
ϕ(x), such as sin′(x) = cos(x).

Once these elemental derivatives are known, we can
combine them using the three rules mentioned above
to differentiate any expression built up from elemental
functions, however complicated. In other words, we are
then doing algebra on a finite set of symbols represent-
ing elemental functions in one variable and additions
or multiplications combining two variables. In principle
this is simple, but as one knows from school, the size of
the resulting algebraic expressions can quickly become
unmanageable for humans. The painstaking execution
of this differentiation by algebra task is therefore best
left to computers.

2 From Formulas to Programs

Even the set of undifferentiated formulas describing
moderately complicated systems like a robot arm, a
network of pipes, or a grinding process for mechanical
components may run over several pages. People there-
fore stop thinking of them as formulas and instead call
them programs, coded in languages such as Fortran and
C, or in systems such as Mathematica and Maple.

This is particularly true when we have many, say
n � 1, independent (input) variables xj and m � 1
dependent (output) variables yi. For the sake of nota-
tional simplicity, we collect them into vectors x =
(xj) ∈ Rn and y = (yi) ∈ Rm. The computer program
will typically generate a large number of quantities vk,
k = 1, . . . , -, which we may interpret and thus differen-
tiate as functions of the input vector x. We can include
all the quantities of interest by defining vk ≡ xk+n for
k = 1 −n, . . . ,0 and v-−m+k ≡ yk for k = 1, . . . ,m.

Assuming that there are no branches, we find that
the vi with i > 0 are computed through a fixed, finite
sequence of - assignments:

vi = vj ◦ vk or vi =ϕi(vj), i = 1, . . . , -. (3)

Each operation ◦ is an addition, +, or a multiplication,
∗, and

ϕi ∈ {c, rec, sqrt, sin, cos, exp, log, . . . } (4)

is an elemental function from a given library, including
a constant setting v = c, the reciprocal v = rec(u) =
1/u, and the square root v = sqrt(u) = √

u. Note that
a subtraction u−w = u+ (−1)∗w can be performed
as an addition after multiplication of the second argu-
ment by −1, and a division u/w = u ∗ rec(w) can
be performed as a multiplication after computing the
reciprocal of the second argument.

Assuming that there are no cyclic dependencies, we
may order the variables such that it always holds that
j < i and k < i in (3). Hence, with respect to data depen-
dency the vi form the nodes of a directed acyclic

graph [II.16], an observation that is usually credited to
the Russian mathematician Kantorovich. All vi = vi(x)
for i = 1, . . . , - will therefore be uniquely defined as
functions of the independent variable vector x. This
applies in particular to the dependent variables yi =
v-−m+i, so that the program loop actually evaluates
some vector function y = F(x).

For example, we may first specify a vector function
y = F(x) : R3  → R2 by a formula

F(x) =
[
x2

1
x2 + x3

sin(x1)
,
cos(x3)
x2 + x3

]
.

Then we may decompose the formula into the following
sequence of elemental operations:

v−2 = x1, v−1 = x2, v0 = x3

v1 = v−2 ∗ v−2 ϕ1 = ∗
v2 = sin(v−2) ϕ2 = sin

v3 = v−1 + v0 ϕ3 = +
v4 = v1 ∗ v3 ϕ4 = ∗
v5 = cos(v−2) ϕ5 = cos

v6 = 1/v2 ϕ6 = rec

v7 = v4 ∗ v6 ϕ7 = ∗
v8 = v5 ∗ v6 ϕ8 = ∗
y1 = v7, y2 = v8

Of course, there may be several such evaluation pro-
grams yielding the same mathematical mapping F, and
they may differ significantly with respect to efficiency
and accuracy. While computer algebra packages may
attempt to simplify or optimize the code, in the auto-
matic differentiation approach described below, one
generally unquestioningly accepts the given evaluation
program as the proper problem specification.

3 Propagating Partial Derivatives

So far we have tacitly assumed that one wishes to com-
pute the derivatives of all dependentsyi with respect to
all xj . These form a rectangular m×n matrix, the so-
called Jacobian F′(x), which can be quite costly to eval-
uate. Each column of the Jacobian is the partial deriva-
tive of F(x) with just one component xj of x consid-
ered to be variable. Similarly, each row of the Jacobian is
the gradient of just one componentyi = Fi with respect
to the complete vector x. Therefore, we will consider
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the univariate case n = 1 first, and in the next section
we begin with the scalar-valued case m = 1.

In celestial mechanics or for a complicated system
like a mechanical clock, the only really independent
variable may be the time x1 = t, so that n = 1 arises
naturally. Then the derivatives y′

i of the dependent
variables yi, and also those z′k of the intermediates zk,
are in fact velocities. In the general case n = 1, we can
interpret them as rates of change.

So how can we compute them? Very simply, by apply-
ing the differentiation rules (1), (2) for addition, multi-
plication, and elemental functions, we obtain for i =
1, . . . , - one of the three instructions

v′
i = v′

j+v′
k, v′

i = v′
jvk+vjv′

k, v′
i =ϕ′

i(vj)v
′
j . (5)

As is the case for ϕ(vj) = sin(vj), evaluating the ele-
mental derivatives ϕ′(vj) usually comes at about the
same cost as the elementals ϕ(vj) themselves. There-
fore, compared with (3) the propagation of the partial
derivatives v′

i costs just a few additional arithmetic
operations, so that overall

OPS{y′} � 3 OPS{F(x)}. (6)

Here, y′ = F′(x) and OPS counts arithmetic operations
and memory accesses. When x is in fact a vector x, we
have to propagate partial derivatives with respect to
each one of n components to obtain the full Jacobian,
at a cost of

OPS{F′(x)} � 3nOPS{F(x)}. (7)

4 Comparison with Other Approaches

A very similar operation count to the bound (7) is
obtained if one approximates Jacobians by one-sided or
central finite differences [II.11]. However, this classi-
cal technique cannot deliver fully accurate approxima-
tions, that is, with an accuracy equal to the precision
of the underlying floating-point arithmetic. In contrast,
applying the differentiation rules in the way described
here imposes no inherent limitation on the accuracy.

Sometimes, automatic differentiation is portrayed as
a halfway house between numerical differentiation by
differencing and the kind of symbolic differentiation
performed by computer algebra systems like Maple and
Mathematica. In fact, though, automatic differentiation
is much closer to the latter. The main distinction is
that our derivatives v′

i are propagated as floating-point
numbers at the current point x ∈ Rn, whereas fully
symbolic differentiation propagates algebraic expres-
sions in terms of the independent variables xj for
j = 1, . . . , n.

By first transforming the original code (3) to (5)
according to the differentiation rules, we actually per-
form symbolic differentiation in some way. At the soft-
ware level, this transition is usually implemented by
operator overloading or source transformation. Both
the transformation and the subsequent evaluation of
derivatives in floating-point arithmetic have a complex-
ity that is proportional to the complexity of the code for
evaluating F itself. This is also true for the following
reverse mode of automatic differentiation.

5 Propagating Partial Adjoints

Data fitting and other large-scale computational tasks
require the unconstrained optimization of a scalar
function y = F(x), where m = 1 and n � 1. One
then needs the gradient vector ∇F(x) = F ′(x) ∈ Rn

to guarantee iterative decent. According to (7), its cost
relative to that of F(x) would grow like the domain
dimension n.

Fortunately, just as one can propagate forward the
scalar derivatives v′

i of intermediates vi with respect
to a single independent x, it is possible to propagate
backward the so-called adjoint derivatives v̄i of a sin-
gle dependent y with respect to the intermediates vi
through the evaluation loop. More specifically, starting
from ȳ = v̄- = 1 and v̄i = 0 for 1 −n � i < - initially,
we need to execute for i = -, . . . ,1 the incremental
operations

v̄j := v̄j + v̄i, v̄k := v̄k + v̄i,
v̄j := v̄j + v̄ivk, v̄k := v̄k + v̄ivk,

v̄j := v̄j + v̄iϕ′(vj)

in the case of additions, multiplications, and elemental
functions, respectively. In all three cases the adjoints
of the arguments vj , and possibly vk, are updated by a
contribution proportional to the adjoint v̄i of the value
vi. Provided these composite operations are executed
in reverse order to the original function evaluation, at
the end one obtains the desired gradient:

∇F(x) = x̄ = (v̄j−n)j=1,...,n.

Moreover, just like in the forward mode one has to do
just a few additional operations, so that

OPS{x̄} � 4 OPS{F(x)}.
This remarkable result is called the cheap gradient prin-
ciple. The same scheme can be applied componentwise
to vector-valued F with m > 1. The resulting Jacobian
cost is

OPS{F′(x)} � 4mOPS{F(x)},
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which is more advantageous than (7) if there are signif-
icantly fewer dependents than independents.

6 Generalizations and Extensions

We have considered here only the propagation of first
derivatives in the forward or reverse mode. Naturally,
there are hybrid procedures combining elements of for-
ward and backward propagation of derivatives. Some of
them exploit sparsity in Jacobians and also Hessians,
i.e., symmetric matrices of second-order partial deriva-
tives. Automatic differentiation techniques can be used
to evaluate univariate Taylor polynomials of any degree
d, with the effort being quadratic in d. These Taylor
coefficients can then be used to determine derivative
tensors of any degree and any order.

Further Reading

The basic theory of automatic differentiation is laid out
by Griewank and Walther (2008), and a more computer
science–oriented introduction is given by Naumann
(2012). For references to current activities in automatic
differentiation, check www.autodiff.org. Diverse topics
including software tool development and specific appli-
cations are covered in a series of proceedings volumes
of which Forth et al. (2012) is the most recent.
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2012. Recent Advances in Automatic Differentiation. Lec-
ture Notes in Computational Science and Engineering,
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VI.8 Knotting and Linking of
Macromolecules
Dorothy Buck

Knot theory has its roots in the natural sciences: Lord
Kelvin conjectured that elements were composed of
knotted vortices in the ether. This motivated Peter
Guthrie Tait to begin classifying knots. Since then, knot
theory has grown into a rich and fundamental area of
mathematics with surprising connections to algebra,
geometry, and mathematical physics.

Since the 1980s, when knotted and linked deoxyri-
bonucleic acid (DNA) molecules were discovered, knot

(b)

(a)

Figure 1 (a) An electron microscopy image of a knotted
DNA trefoil. (b) A trefoil knot. (Images courtesy of Shailja
Pathania.)

theorists have played a central role in exploring the
biological ramifications of the topological aspects of
DNA. This has been a successful symbiotic dialogue:
problems in biology have suggested novel, interesting
questions to knot theorists. In turn, new topological
ideas arose that allowed wider biological problems to
be considered.

1 Knots and Links

A knot is a curve in 3-space whose ends meet and that
does not self-intersect, i.e., a simple closed curve. A
planar circle is an example of the trivial knot; see fig-
ure 1(b) for an example of the simplest nontrivial knot,
the trefoil, also known as the (2,3)-torus knot. Several,
say n, knots can be intertwined together (again with-
out self-intersections) to form an n-component link.
Two knots or links are equivalent if it is possible to
smoothly deform, without cutting and resealing, one
into the other (more technically, if there is an ambient
isotopy of 3-space that takes one to the other).

The fundamental question in knot theory is: when are
two different-looking knots equivalent? In particular,
when is a complicated-looking knot actually unknot-
ted? And when knotted, what is the most efficient
way to unknot it? Much of 3-manifold topology has
developed in order to provide ways of telling knots
apart.

2 DNA Molecules Can Knot and Link

Anyone who has untangled their headphone cords after
retrieving them from their backpack or handbag intu-
itively understands how a long flexible object con-
fined to a small volume can become entangled. DNA
molecules in the cell are the molecular analogue of this
situation.

http://www.autodiff.org
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Figure 2 A DNA trefoil knot.
(Figure courtesy of Massa Shoura.)

DNA is composed of two intertwined strands, each

composed of many repeated units (nucleotides), each

in turn composed of a phosphate group, a sugar, and

one of four bases (adenine, cytosine, thymine, and gua-

nine). These two intertwined strands, like a spiral stair-

case, form the famous double helix of DNA, wrapping

around an imaginary central axis. Unlike a staircase,

though, DNA molecules are flexible, and in living cells

the central axis bends and contorts. In some cases—

such as with bacterial DNA, chloroplast DNA, and our

own mitochondrial DNA—the top and bottom of this

twisted ladder are bonded together, so that the cen-

tral axis is actually circular or even knotted (figures 1(a)

and 2).

When this circular DNA is copied before cell divi-

sion, the resulting two DNA molecules are linked as

a (2, n)-torus two-component link, where n is propor-

tional to the number of nucleotides of the original

DNA molecule. These knotted and linked molecules

can be simple or complex: for example, mitochondrial

DNA from the parasite that causes sleeping sickness

forms an intricate network of thousands of small linked

circles that resemble chain mail.

In the cell, this (circular or linear) DNA is confined to a

roughly spherical volume whose diameter is many mag-

nitudes smaller than the length of the molecule itself.

(For example, in humans, a meter of DNA resides in a

nucleus whose diameter is 10−6 meters.) This extreme

confinement means that the DNA axis can writhe (form-

ing supercoils). As discussed in more detail below, when

certain enzymes act on circular DNA, they can knot

or link—or indeed unknot or unlink—DNA molecules,

converting these supercoils into knot or link nodes (or

vice versa).

Linear DNA, such as human chromosomal DNA, is

often “stapled down” at regular intervals via a pro-

tein scaffolding. These bulky proteins ensure that if a

DNA segment in between becomes knotted, it cannot be

untied. Even linear DNA can therefore exhibit nontrivial

knotting.

2.1 DNA Forms Only Certain Knots and Links

Experimentally, DNA knots and links can be resolved

in two ways: via electron microscopy or via elec-

trophoretic migration. DNA molecules have been visu-

alized by electron microscopy (figure 1(a)). However,

this process can be laborious and difficult: even deci-

phering the sign of crossings on an electron micro-

graph is nontrivial. A much more widespread technique

to partially separate DNA knot and link types is that

of agarose gel electrophoresis. Gel electrophoresis is

straightforward and requires relatively small amounts

of DNA. The distance a DNA knot or link migrates

through the gel is proportional to the minimal cross-

ing number (MCN), the fewest number of crossings with

which a knot can be drawn. Under standard conditions,

knots of greater MCN migrate more rapidly than those

with lesser MCN. However, there are 1 701 936 knots

with MCN � 16, so both mathematicians and experi-

mentalists have been actively developing new methods

for determining (or predicting) the precise DNA knot

or link type. They have demonstrated that a very small

subfamily of knots and links (including the torus knots

and links above) appear in DNA.

3 DNA Knotting and Linking
Is Biologically Important

The helical nature of DNA leads to a fundamental topo-

logical problem: the two strands of DNA are wrapped

around each other once for every 10.5 base pairs, or

0.6 billion times in every human cell, and they must

be unlinked so that the DNA can be copied at every cell

division. Additionally, in the cell, DNA knots can inhibit

important cellular functions (such as transcription) and

are therefore lethal.
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Unsurprisingly, then, there are a host of proteins, in
every organism, that carefully regulate this knotting
and linking.

4 Unknotting and Unlinking DNA

In organisms as varied as bacteria, mice, humans,
and plants, there are proteins (type II topoisomerases)
whose sole function is to unlink and unknot entan-
gled DNA. These act by performing crossing changes to
convert nontrivial knots and links into planar circles.
There has been significant interdisciplinary research
to understand how these proteins that act locally at
DNA crossings perform a global reaction (unknotting/
unlinking).

These topoisomerases are major antibiotic and che-
motherapeutic drug targets. With topoisomerases inac-
tivated (or stranded in an intermediate state of the reac-
tion), the resulting trapped linked DNA molecules pre-
vent proliferation of the bacteria (or cancerous cells) as
well as being lethal to the original cell.

5 Knotting and Linking DNA

There are also other important proteins, site-specific
recombinases, that affect the knot/link type of DNA.
These site-specific recombinases are standard tools for
genetically modifying organisms and in synthetic biol-
ogy. The proteins alter the order of the sequence of the
DNA base pairs by deletion, insertion, or inversion of
a DNA segment. While changing DNA knotting or link-
ing is not the primary function of these site-specific
recombinases, it is a by-product of the reaction when
the original circular DNA is supercoiled.

Using tools from knot theory, mathematicians have
been able to help biologists better understand the ways
in which these proteins interact with DNA. For exam-
ple, mathematicians have developed models of how
the recombinase proteins reshuffle the DNA sequence.
These models can then predict various new features
of these interactions, such as the particular geomet-
ric configuration the DNA takes when the protein is
attached or the biochemical pathway the reaction pro-
ceeds through.

6 Mathematical Methods of Study

As discussed above, topology has been used to under-
stand topoisomerases and recombinases and their
interactions with DNA. The rough character of these

Figure 3 Two segments (lighter and darker) of DNA in a
rational tangle. (Figure courtesy of Kenneth L. Baker.)

arguments is to begin by modeling the circular DNA

molecule in terms of tangles (a tangle is a 3-ball with

two properly embedded arcs (figure 3)). The action of

the protein on the DNA, which converts it from one

knot type to another, is then represented as tangle

surgery: replacing one tangle by another. If the tangles

involved are rational (a tangle obtained from two verti-

cal arcs by alternately twisting the two arcs horizontally

then vertically around one another, such as in figure 3),

then this tangle surgery corresponds to so-called Dehn

surgery in the corresponding double branch cover.

Questions about which tangles are involved then turn

into questions about Dehn surgery, often yielding lens

spaces. These latter questions are central to 3-manifold

topology, and a rich array of methods have been devel-

oped to answer them, including, most recently, knot

homologies.

7 Knotted Proteins

We conclude by discussing one other family of macro-

molecules that can become entangled. While almost

all proteins are linear biopolymers, the rigid geom-

etry of a folded protein means that entanglement can

become trapped. These entanglements can be knots,

slipknots, or ravels. Originally thought to be experi-

mental artifacts, many “knotted” proteins have recently

been discovered in the Protein DataBase of the National

Center for Biotechnology Information. The function of
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these knots is still being fully explored, but they may

contribute to thermal and/or mechanical stability.

If the ends of the linear entangled protein chain are

at the surface of the folded protein, then joining them

together to characterize the underlying knot is fairly

straightforward. However, if these ends are buried,

then depending on the closure one can achieve a vari-

ety of knots. Characterizing this entanglement has thus

become a new focus for interdisciplinary researchers,

including knot theorists.

Further Reading

Buck, D. 2009. DNA topology. In Applications of Knot
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and links arising from site-specific recombination on
twist knots. Journal of Physics A 44:045002.

Hoste, J., M. Thistlethwaite, and J. Weeks. 1998. The first
1,701,936 knots. Mathematical Intelligencer 20:33–48.

Maxwell, A., and A. Bates. 2005. DNA Topology. Oxford:
Oxford University Press.

Millett, K., E. Rawdon, A. Stasiak, and J. Sulkowska. 2013.
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VI.9 Ranking Web Pages
David F. Gleich and Paul G. Constantine

Google’s search engine enables Internet users around

the world to find web pages that are relevant to

their queries. Early on, Google distinguished its search

algorithm from competing methods by combining a

measure of a page’s textual relevance with a mea-

sure of the page’s global importance; this latter mea-

sure was dubbed PageRank. Google’s PageRank scores

help distinguish important pages like Purdue Univer-

sity’s home page, www.purdue.edu, from its array of

subpages.

If we view the web as a huge directed graph, then

PageRank scores are the stationary distribution of a

particular markov chain [II.25] on the graph. In the

web graph, each web page is a node and there is a

directed edge from node i to node j if web page i has a

hypertext reference, or link, to web page j. A small sam-

ple of the web graph from Wikipedia pages is shown in

figure 1. The adjacency matrix [II.16] for the graph
from the figure is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0
1 1 0 0 1 1 0 1 0 0
1 1 1 1 0 0 0 0 1 0
0 0 1 0 0 0 1 0 1 1
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

PageRank
Google

Adjacency matrix
Markov chain
Eigenvector

Directed graph
Graph

Linear system
Vector space

Multiset

Google’s founders Sergey Brin and Larry Page imag-
ined an idealized web surfer with the following behav-
ior. At a given page, the surfer flips a coin with prob-
ability α of heads and probability 1 − α of tails. On
heads, the surfer clicks a link chosen uniformly at ran-
dom from all the links on the page. If the page has no
links, then we call it a dangling node. On tails, and at
dangling nodes as well, the surfer jumps to a page cho-
sen uniformly at random from the whole graph. (There
are alternative models for handling dangling nodes.)
This simple model of a random surfer creates a Markov
chain on the web graph; transitions depend only on the
current page and not the web surfer’s browsing history.
The PageRank vector is the stationary distribution of
this Markov chain, which depends on the value of α.
For the graph in figure 1, the transition matrix P for
the PageRank Markov chain with α = 0.85 is (to two
decimal places)

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.02 0.19 0.19 0.19 0.19 0.02 0.19 0.02 0.02 0.02
0.86 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.02 0.02 0.02 0.02 0.30 0.30 0.30 0.02 0.02 0.02
0.19 0.19 0.02 0.02 0.19 0.19 0.02 0.19 0.02 0.02
0.19 0.19 0.19 0.19 0.02 0.02 0.02 0.02 0.19 0.02
0.02 0.02 0.23 0.02 0.02 0.02 0.23 0.02 0.23 0.23
0.02 0.02 0.02 0.02 0.02 0.44 0.02 0.02 0.02 0.44
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.86 0.02
0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.86 0.02 0.02
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The PageRank vector x is

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.08

0.05

0.06

0.04
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0.07

0.07

0.24

0.25

0.06

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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PageRank
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GraphDirected
graph

Multiset

Figure 1 A subgraph of the web from Wikipedia.

To define the PageRank Markov chain generally:

• let G = (V , E) be the web graph;
• let A be the adjacency matrix;
• let n = |V | be the number of nodes;
• let D be a diagonal matrix where Dii is 1 divided by

the number of outlinks for page i, or 0 if page i has
no outlinks;

• let d be an n-vector where di = 1 if page i is
dangling with no outlinks, and 0 otherwise; and

• let e be the n-vector of all ones.

Then

P = αDA+α/n · deT + (1 −α)/n · eeT

is the PageRank Markov chain’s transition matrix. The
PageRank vector x is the eigenvector of PT with eigen-
value 1:

PTx = x.
This eigenvector always exists, is nonnegative, and is
unique up to scaling because the matrix P is irreducible.
By convention, the vector x is normalized to be a prob-
ability distribution, eTx = 1. Therefore, x is unique for
a given web graph and 0 < α < 1. The vector x also
satisfies the nonsingular linear system

(I −α(ATD + 1/n · edT))x = (1 −α)/n · e.
Thus, PageRank is both an eigenvector of the Markov
chain transition matrix and the solution of a nonsingu-
lar linear system. This duality gives rise to a variety of
efficient algorithms to compute x for a graph as large
as the web. As the value of α tends to 1, the matrix
I −α(ATD + 1/n · edT) becomes more ill-conditioned,
and computing PageRank becomes more difficult. How-
ever, when α is too close to 1, the quality of the ranking

degrades. For the graph in figure 1, as α tends to 1,
the PageRank vector concentrates all its mass on the
pair “Linear system” and “vector space.” This happens
because this pair is a terminal strong component of
the graph. The same behavior occurs in the web graph;
consequently, the PageRank scores of important pages
such as www.purdue.edu are extinguished as α → 1.
We recommend 0.5 � α � 0.99 and note that α = 0.85
is a standard choice.

The canonical algorithm for computing PageRank
scores is the power method [IV.10 §5.5] applied to the
eigenvector equation PTx = x with the normalization
eTx = 1. If we start with x(0) = e/n and iterate,

x(k+1) = αATDx(k) +α(dTx(k))/n · e+ (1 −α)/n · e,
then after k steps of this method, ‖x(k) − x‖1 � 2αk.
This iteration converges quickly when α � 0.99. With
α = 0.85, it gives a useful approximation with 10–15
iterations.

PageRank was not the first web ranking to use
the structure of the web graph. Shortly before Brin
and Page proposed PageRank, Jon Kleinberg proposed
hyperlink-induced topic search [I.1 §3.1] (HITS)
scores to estimate the importance of pages in a query-
dependent subset of the web. HITS scores are com-
puted only on a subgraph of the web graph, with the top
1000 textually relevant pages and all inlink and outlink
neighbors within distance 2. The left and right domi-
nant singular vectors [II.32] of the adjacency matrix
are hub and authority scores for each page, respec-
tively. An authority is a page with many hubs pointing
to it, and a hub is a page that points to many authori-
ties. The now-defunct search engine Teoma used scores
related to HITS.

Modern search engines use complex algorithms to
produce a ranked list of web pages in response to a
query; scores such as PageRank and HITS may be one
component of much larger systems. To judge the qual-
ity of a ranking, search engine architects must compare
algorithmic results with human judgments of the rele-
vance of pages to a particular query. There are a few
common measures for such comparisons. Precision is
the percentage of the search engine’s results that are
relevant to the human. Recall is the percentage of all
relevant results identified by the search engine. Recall
is not often used for web search as there are often many
more relevant results than would fit on a top 10, or
even a top 1000, list. Normalized discounted cumulative
gain is a weighted score that rewards a search engine
for placing more highly relevant documents before less

http://www.purdue.edu
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relevant documents. Architects study these measures
over a variety of queries to optimize a search engine
and choose components of their final ranking proce-
dure. Two active research areas on ranking algorithms
include new types of regression problems to automat-
ically optimize ranked lists of results and multiarmed
bandit problems to generate personalized rankings for
both web search engines and content recommendation
services like Netflix.

Further Reading

Langville and Meyer’s book contains a complete treat-
ment of mathematical web ranking metrics that were
publicly available in 2005. Manning et al. give a modern
treatment of search algorithms including web search.
While PageRank’s influence in Google’s ranking may
have decreased over time, its importance as a tool
for finding important nodes in a graph has grown
tremendously. PageRank vectors for graphs from biol-
ogy (Singh et al.), chemistry (Mooney et al.), and ecol-
ogy (Allesina and Pascual) have given domain scientists
important new insights.

Allesina, S., and M. Pascual. 2009. Googling food webs: can
an eigenvector measure species’ importance for coextinc-
tions? PLoS Computational Biology 5:e1000494.

Langville, A. N., and C. D. Meyer. 2006. Google’s PageRank
and Beyond. Princeton, NJ: Princeton University Press.

Manning, C. D., P. Raghavan, and H. Schütze. 2008. An Intro-
duction to Information Retrieval. Cambridge: Cambridge
University Press.

Mooney, B. L., L. R. Corrales, and A. E. Clark. 2012. Molec-
ulaRnetworks: an integrated graph theoretic and data
mining tool to explore solvent organization in molecu-
lar simulation. Journal of Computational Chemistry 33:
853–60.

Singh, R., J. Xu, and B. Berger. 2008. Global alignment
of multiple protein interaction networks with applica-
tion to functional orthology detection. Proceedings of the
National Academy of Sciences of the USA 105:12763–68.

VI.10 Searching a Graph
Timothy A. Davis

When you ask your smartphone or GPS to find the best
route from Seattle to New York, how does it find a
good route? If you ask it to help you drive from Seattle
to Hawaii, how does it know you cannot do that? If
you post something on a social network for only your
friends and friends of friends, how many people can

see it? These questions can all be posed in terms of
searching a graph (also called graph traversal).

For an unweighted graph G = (V , E) of n nodes, stor-
ing a binary adjacency matrix A in a conventional array
using O(n2) memory works well in a graph traversal
algorithm if the graph is small or if there are edges
between many of the nodes. In this matrix, aij = 1 if
(i, j) is an edge, and 0 otherwise. With edge weights, the
value of aij in a real matrix can represent the weight of
the edge (i, j), although this assumes that in the prob-
lem at hand an edge with zero weight is the same as no
edge at all.

A road network can be represented as a weighted
directed graph, with each node an intersection and
each edge a road between them. The graph is directed
because some roads are one-way, and it is unconnected
because you cannot drive from Seattle to Hawaii. The
edge weight aij represents the distance along the road
from i to j; all edge weights must therefore be greater
than zero.

An adjacency matrix works well for a single small
town, but it takes too much memory for the millions
of intersections in the North American road network.
Fortunately, only a handful of roads intersect at any
one node, and thus the adjacency matrix is mostly zero,
or sparse. A matrix is sparse if it pays to exploit its
many zero entries. This kind of matrix or graph is best
represented with adjacency lists, where each node i has
a list of nodes j that it is adjacent to, along with the
weights of the corresponding edges.

Searching a graph from a single source node, s, dis-
covers all nodes reachable from s via path(s) in the
graph. Nodes are marked when visited, so to search the
entire graph, a single-source algorithm can be repeated
by starting a new search from each node in the graph,
ignoring nodes that have already been visited. The
graph traversal then performs actions on each node vis-
ited, and also records the order in which the graph was
traversed. Often, only a small part of the graph needs
to be searched. This can greatly speed up the solution
of problems such as route planning.

Breadth-first search (BFS) is the simplest way to
search a graph. It ignores edge weights, so it is suited
only for unweighted graphs. It starts by placing the
source node s at distance d(s) = 0; the distance of all
other nodes starts as d(i) = ∞. At the kth step (starting
at k = 0), all nodes i at distance d(i) = k are examined,
and any neighbors j with d(j) = ∞ have their distance
d(j) set to k+1. The process halts when step k finds no
such neighbors; d(j) is then the length of the shortest
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path from s to j, or d(j) = ∞ if there is no such path.

In a social network, your friends are at level one and

your friends of friends are at level two in a BFS starting

at your node. The BFS algorithm can also be expressed

in terms of the binary adjacency matrix: (AT + I)kis is

nonzero if and only if there is a path of length k or less

from s to i.
Depth-first search (DFS) visits the same nodes as BFS

but in a different order. If it sees an unvisited node j
while examining node i, it fully discovers all unvisited

nodes reachable from j and then backtracks to node i
to consider the remainder of the nodes adjacent to i. It

is best described recursively, as below. All nodes start

out unvisited.

DFS(i):
mark i as visited

for all nodes j adjacent to i do:

if node j is not visited

DFS(j)

Both BFS and DFS describe a tree; i is the parent of

j if the unvisited node j is discovered while examin-

ing node i. The DFS tree has a rich set of mathematical

properties. For example, if “(i” is printed at the start

of DFS(i) and “i)” when it finishes (after traversing all

its neighbors j), then the result is an expression with

properly nested and matching parentheses. The paren-

theses of two nodes i and j are either nested one within

the other, or they are disjoint. Many problems beyond

the scope of this article rely on properties of the DFS

tree such as this.

If the graph is stored in adjacency list form, both BFS

and DFS take an amount of time that is linear in the

size of the graph: O(|V | + |E|), where |V | and |E| are

the number of nodes and edges, respectively.

Examples of a BFS traversal and a DFS traversal of

an undirected graph are shown in figure 1. The search

starts at node 1. The levels of the BFS search and the

parentheses of the DFS are shown. The DFS of fig-

ure 1 assumes that neighbors are searched in ascending

order of node number (the order makes no difference

in the BFS). Both the BFS and DFS trees are shown via

arrows, which point from the parent to the child in the

tree; they do not denote edge directions since the graph

is undirected.

Dijkstra’s algorithm finds the shortest path from the

source node s to all other nodes in a weighted graph. It

is roughly similar to BFS, except that it keeps track of a

distance d(j) (the shortest path known so far to each

1
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0 1 2 3 (1 (2 (3 (4 (5 5) (6 6) 4) 3) 2) 1)
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Figure 1 (a) The BFS and (b) the DFS of an undirected graph.
Arrows denote tree edges, not edge directions. Part (a) is
labeled with the BFS level of each node, starting at level
zero, where the BFS started, and ending at the last node
discovered (node 5) at level 4. In (b), if “(i” is printed when
the DFS starts at node i, and “i)” is printed when node i
finishes, then the result when starting a DFS at node 1 is
(1 (2 (3 (4 (5 5) (6 6) 4) 3) 2) 1), which describes how the
DFS traversed the graph.

node) for each node j. Instead of examining all nodes in

the next level, it prioritizes them by the distance d and

picks just one unvisited node i with the smallest d(i),
whose distance d(i) is now final, and updates tentative

distance d for all its neighbors.

The algorithm uses a heap to keep track of its unvis-

ited nodes j, each with a metric d(j). Removing the

item with smallest metric takes O(logn) time if the

heap contains n items. If an item’s metric changes but

it remains in the heap, it takes O(logn) time to adjust

its position in the heap. Initializing a heap of n items

takes O(n) time.

Nodes no longer in the heap have been visited, and

their d(j) is the shortest path from s to j. The shortest

path can be traced backward from j to s by walking the

tree from j to its parent p(j), then to p(p(j)), and so

on until reaching s.
Nodes in the heap have not been visited, and their

d(j) is tentative. They split into two kinds of nodes:

those with finite d (in the frontier ), and those with infi-

nite d. Each node in the frontier is incident on at least

one edge from the visited nodes. The node in the fron-

tier with the smallestd(j) has a very useful property on

which the algorithm relies: its d(j) is the true shortest

distance of the path from s to j. The algorithm selects

this node and then updates its neighbors as j moves

from the frontier into the set of visited nodes.

The algorithm finds the shortest path from s to all

other nodes in O((|V | + |E|) log |V |) time; this asymp-

totic time can be reduced with a Fibonacci heap, but

in practice a conventional heap is faster. More impor-

tantly, the search can halt early if a particular target

node t is sought, although in the worst case the entire

graph must still be searched.
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Dijkstra(G, s):
set d(j) = ∞ and p(j) = 0 for all nodes

d(s) = 0

initialize a heap for all nodes with metric d
while the heap is not empty do:

remove i from heap with smallest d(i)
for all nodes j adjacent to i do:

if d(j) > d(i)+ aij
d(j) = d(i)+ aij
adjust j in the heap

p(j) = i
For a route from Seattle to New York, Dijkstra’s

algorithm acts like BFS, searching for New York in
ever-widening circles centered at Seattle. It considers
a route through Alaska before finding New York, which
is clearly nonoptimal. A* search (pronounced A-star) is
one method that can exploit the known locations of the
nodes of a road network to reduce the search. It mod-
ifies the heap metric via a heuristic that uses a lower
bound on the shortest distance from s to j. To find
the shortest path from the source node s to all other
nodes, both algorithms find the same result in the same
time, but if they halt early when finding the target, A* is
typically faster than Dijkstra’s algorithm. Your smart-
phone uses additional methods to speed up the search,
but they are based on the ideas described here.

Further Reading

Kepner, J., and J. Gilbert. 2011. Graph Algorithms in the
Language of Linear Algebra. Philadelphia, PA: SIAM.

Rosen, K. H. 2012. Discrete Mathematics and Its Applica-
tions, 7th edn. Columbus, OH: McGraw-Hill.

VI.11 Evaluating Elementary Functions
Florent de Dinechin and Jean-Michel
Muller

1 Introduction

Elementary (transcendental) functions, such as expo-
nentials, logarithms, sines, etc., play a central role in
computing. It is therefore important to evaluate them
quickly and accurately.

The basic operations that are easily and efficiently
implemented on integrated circuits are addition, sub-
traction, and comparison (at the same cost), and mul-
tiplication (at a larger cost). The only functions of
one variable that can be implemented using these

0
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0.002

0.2 0.4 0.6 0.8 1.0

Figure 1 Taylor approximation is local: it becomes very
inaccurate for values distant from 0 (solid line, Taylor
approximation error).

primitive operations are piecewise polynomials. Sec-
tion 2 therefore studies the approximation of a func-
tion by a polynomial. As such, approximations are bet-
ter on smaller intervals, and section 3 therefore intro-
duces techniques that reduce the interval size. Sec-
tion 4 discusses the evaluation of a polynomial by a
machine.

If we also consider division to be a primitive opera-
tion, we may compute rational functions, to which most
of these techniques can be generalized. Finally, the last
important parameter is memory, which may be used
to store tables of precomputed values to speed up the
evaluation.

For manipulating multiple-precision numbers (i.e.,
numbers with thousands of digits), special algorithms
(based on arithmetic–geometric iteration, for instance)
are used.

2 Polynomial Approximation

Consider as an example the approximation of the expo-
nential function f(x) = ex on the interval [0,1] by
a polynomial of degree 5. We might first try using a
Taylor approximation. The Taylor formula at 0 gives

f(x) ≈ p(x) = 1 + x + x
2

2
+ x

3

6
+ x

4

24
+ x5

120
.

Figure 1 plots the approximation error, i.e., the differ-
ence f(x)− p(x), on [0,1].

Taylor approximation is focused on a point. The
remez algorithm [IV.9 §3.5] converges to a polyno-
mial that minimizes the maximum error over the whole
interval. As figure 2 shows, this is achieved by ensur-
ing that the error f − p oscillates in the interval, which
means that the error achieves its maximal absolute
value at several points on the interval, with the sign
of the error oscillating from one point to the next. The
Remez approximation is much more accurate than the
Taylor approximation. Unfortunately, the Remez algo-
rithm computes real-valued coefficients, and rounding
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Figure 2 The Remez error oscillates around zero (solid line),
but this is lost when its coefficients are rounded to 16-bit
numbers (dashed line).
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Figure 3 The best polynomial with 16-bit coefficients (solid
line, Remez approximation error; dashed line, error of best
16-bit approximation).

Table 1 ‖ex − p(x)‖∞ versus degree and interval size.

Degree︷ ︸︸ ︷
2 3 4 5

[0,1] 1.41 × 10−2 8.76 × 10−4 5.07 × 10−5 4.86 × 10−6

[0, 1
2 ] 1.08 × 10−3 3.40 × 10−5 8.33 × 10−7 5.27 × 10−8

[0, 1
4 ] 1.07 × 10−4 1.90 × 10−6 4.57 × 10−8 1.94 × 10−9

these coefficients to machine-representable numbers
degrades the approximation quality. (This is illustrated
by figure 2 in the case where the coefficients are
rounded to 16-bit numbers, corresponding to about
five significant decimal digits.) A recent variation on
the Remez algorithm that is implemented in the open-
source Sollya tool computes the best approximation
with 16-bit coefficients (see figure 3).

Whatever the approximation scheme, the approxi-
mation error decreases with the degree and increases
with the interval size, as illustrated by table 1. Eval-
uating polynomials of high degree is time-consuming.
Also, the evaluation error may increase with the degree.
This suggests that we investigate range reduction tech-
niques to reduce the interval size.

3 Range Reduction

Range reduction exploits identities that are satisfied

by the function to reduce the evaluation on an inter-

val to an evaluation (of f , or of another function) on

a smaller interval. Techniques depend on the function

itself but also on the number format used for inputs.

The literature therefore provides many range reduction

techniques for each function.

Let us take the example of the exponential on [0,1],
for which we will use the identity ea+b = ea × eb .

An input x with n-bit binary representation x =∑n
i=1 xi2−i can be decomposed into x = a + b with

a = ∑k
i=1 xi2−i and b = ∑n

i=k+1 xi2−i for some k. This

decomposition is free in terms of hardware and costs

very little—just a few shifts and logical operations—

in terms of software. We may now tabulate ea. The

table will have 2k entries, and k will be chosen such

that the table size is acceptable: typically, k ≈ 8. Fur-

thermore, we observe that b ∈ [0,2−k], and therefore

eb can be evaluated using a polynomial of much lower

degree than would be required in the full range [0,1].
The reconstruction ex = ea × eb will cost only one

multiplication.

With the same input decomposition, another more

general technique is to tabulate one polynomial pa for

each value of a, with all the pa having the same degree.

In this case the reconstruction costs us nothing, as

f(x) ≈ pa(b). However, each table entry is larger.

Since cos and sin are periodic functions, range reduc-

tion for these functions consists of deducing, from the

input variable x, an integern and a numbery such that

y ≈ x −nπ. (1)

This range reduction step should not be overlooked: a

naive implementation of (1) may lead to very inaccu-

rate results for very large arguments. In such cases,

a sophisticated range reduction technique has been

suggested by Payne and Hanek.

4 Evaluation

Once a suitable approximation polynomial has been

found, there are several ways of evaluating it. For

instance, a degree-5 polynomial may be evaluated in

Horner form:

p(x) = a0 + x(a1 + x(a2 + x(a3 + x(a4 + xa5)))).

This form minimizes the number of multiplications

in general, but it is sequential. On modern machines,
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one may improve the performance by exploiting paral-
lelism. We can write

p(x) = a0 + a2x2 + a4x4 + x(a1 + a3x2 + a5x4)
≡ pe(x2)+ xpo(x2).

This costs one extra multiplication, but pe(x2) and
po(x2) can be evaluated in parallel. This idea can be
exploited recursively to express more parallelism if
needed. Function-specific techniques can be used here,
too: exploiting the fact that the Taylor formula for sine
has only odd coefficients, for example.

Further Reading

Brent, R. P., and P. Zimmermann. 2010. Modern Computer
Arithmetic. Cambridge: Cambridge University Press.

Ercegovac, M. D., and T. Lang. 2004. Digital Arithmetic. San
Francisco, CA: Morgan Kaufmann.

Higham, N. J. 2002. Accuracy and Stability of Numerical
Algorithms, 2nd edn. Philadelphia, PA: SIAM.

Knuth, D. E. 1998. The Art of Computer Programming, 3rd
edn, volume 2. Reading, MA: Addison-Wesley.

Muller, J.-M. 2006. Elementary Functions, Algorithms and
Implementation, 2nd edn. Boston, MA: Birkhäuser.

Payne, M., and R. Hanek. 1983. Radian reduction for trigono-
metric functions. SIGNUM Newsletter 18:19–24.

VI.12 Random Number Generation
Harald Niederreiter

The notion of randomness is frequently encountered
in everyday life. For instance, we view the outcome of
a fair coin toss as random and unpredictable, and the
same holds for a throw of dice, a perfect shuffle of a
card deck, and the drawing of numbers in a lottery.
Such examples may lead to an intuitive understand-
ing of random objects (heads and tails, integers from 1
to 6, permutations of a finite set, bits 0 and 1, or real
numbers). Grasping randomness in scientific terms is
much harder and may even prove elusive, depending
on viewpoints that verge on the philosophical.

Some theoretical framework for randomness is need-
ed, however, since there are important methods in com-
putational and applied mathematics that rely on ran-
dom objects. A prime example is offered by Monte Carlo
methods, which can be described as numerical meth-
ods based on random sampling. The random samples
usually consist of real numbers or points in a Euclid-
ean space. In its standard form, a Monte Carlo method
approximates the expected value of a random vari-
able (or, in other words, the integral of an integrable
function) by a sample mean (or, in other words, the

average value of the integrand taken over a random
sample). Random objects are also required as inputs in
probabilistic algorithms that are used in mathematics
and computer science. Further applications appear in
computational statistics, operations research, and com-
puter games, among many other areas. Random bits are
employed specifically in cryptography in the context of
fast and powerful schemes for data encryption.

The problem of generating random objects (be they
bits, integers from a given interval, or points in a Euclid-
ean space) can, in most cases, be reduced to that of
generating random (real) numbers. The task of ran-
dom number generation presents itself in the following
form: given a target distribution function F on the real
line R, generate a sequence of real numbers that sim-
ulates a sequence of independent and identically dis-
tributed random variables with distribution function F .
This task can be simplified by concentrating on an easy
standardized distribution function: the uniform distri-
bution function U on R given by U(t) = 0 for t < 0,
U(t) = t for 0 � t � 1, and U(t) = 1 for t > 1. Random
numbers for which the target distribution function is U
are called uniform random numbers. Since the proba-
bility measure corresponding to U is supported on the
interval [0,1], uniform random numbers can be taken
from the same interval and they satisfy the property
that the probability of a uniform random number from
[0,1] falling into the subinterval [0, t] is equal to t.

Random numbers for which the target distribution
function F is different from U are obtained from uni-
form random numbers by transformation methods.
For instance, if F is strictly increasing and continu-
ous on R and x0, x1, . . . is a sequence of uniform
random numbers from the open interval (0,1), then
F−1(x0), F−1(x1), . . . can be taken as a sequence of ran-
dom numbers with target distribution function F . For
obvious reasons, this transformation method is called
the inversion method. Many other transformation meth-
ods have been developed, such as the rejection method,
the composition method, and the ratio-of-uniforms
method.

From a practical point of view, truly random numbers
obtained, for example, by physical means (such as toss-
ing coins, throwing dice, or spinning a roulette wheel)
are too cumbersome because of the need for storage
and extensive statistical testing. Therefore, users have
resorted to pseudorandom numbers that are gener-
ated in a computer by deterministic algorithms with
relatively few input parameters. In this way, problems
of storage and reproducibility of the numbers do not
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arise. Furthermore, well-chosen algorithms for pseudo-
random number generation can be subjected to rigor-
ous theoretical analysis that may reduce the need for
extensive statistical testing of randomness properties.

In principle, it should be clear that a deterministic
sequence of numbers cannot pass all possible tests for
randomness. When using pseudorandom numbers in
a numerical method such as a Monte Carlo method,
you should therefore be aware of the specific desir-
able statistical properties of the random numbers in the
computational problem at hand and choose pseudo-
random numbers that are known to pass the corre-
sponding statistical tests. For instance, if all that is
needed is the statistical independence of pairs of two
successive uniform random numbers, then goodness-
of-fit tests relative to a two-dimensional distribution
(in this case, the two-dimensional uniform distribution
supported on the unit square) are quite sufficient for
this particular purpose.

For the same reasons as above, we can focus on uni-
form pseudorandom numbers, that is, pseudorandom
numbers with the target distribution function U , when
facing the problem of generating pseudorandom num-
bers. The history of uniform pseudorandom number
generation is nearly as old as that of the Monte Carlo
method and goes back to the 1940s. One of the earliest
recorded methods is the middle-square method of John
von Neumann. The algorithm here works with a fixed
finite precision and an iterative procedure: it takes the
square of the previous uniform pseudorandom num-
ber (which can be taken to belong to the interval [0,1])
and extracts the middle digits to form a new uniform
pseudorandom number in [0,1]. Theoretical analysis
of this method has shown, however, that the algorithm
is actually quite deficient, since the generated numbers
tend to run into a cycle with a short period length. If
a finite precision is fixed (which is standard practice
when working with a computer), then periodic patterns
seem unavoidable when using an iterative algorithm
for uniform pseudorandom number generation. It is a
primary requirement of a good algorithm for uniform
pseudorandom number generation that the period of
its generated sequences is very long.

Another early method for generating uniform pseu-
dorandom numbers that performs much better with
regard to periodicity properties is the linear congruen-
tial method, which was introduced by the number theo-
rist Derrick Henry Lehmer. Here we choose a large inte-
ger M (usually a prime or a power of 2), an integer g
relatively prime to M and of high multiplicative order

modulo M , and, as an initial value, an integer y0 with
1 � y0 � M−1 that is relatively prime toM . A sequence
y0, y1, . . . of integers from the set {1,2, . . . ,M − 1} is
then generated recursively by yn+1 ≡ gyn (modM)
for n = 0,1, . . . . The numbers xn = yn/M for n =
0,1, . . . belong to the interval [0,1] and are called linear
congruential pseudorandom numbers. The sequence
x0, x1, . . . is periodic with period length equal to the
multiplicative order of g modulo M . This periodicity
property suggests that M should be of size at least 230

in practice. Given the modulus M , it is important that
the parameter g be chosen judiciously. Bad choices of g
lead to sequences of linear congruential pseudorandom
numbers that fail simple statistical tests for random-
ness, and there are in fact infamous cases of published
generators that used bad values of g. The linear con-
gruential method is still popular and many recommen-
dations for good choices of parameters are available in
the literature. For instance, the GNU Scientific Library
recommends the CRAY pseudorandom number gener-
ator, which uses the linear congruential method with
parameters M = 248 and g = 44 485 709 377 909.

Most of the currently employed methods for uni-
form pseudorandom number generation use number-
theoretic or algebraic techniques. A simple extension of
the linear congruential method, the multiple-recursive
method, replaces the first-order linear recursion in
the linear congruential method by linear recursions
of higher order. This leads to larger period lengths
for the same value of the modulus M . Another fam-
ily of methods is formed by shift-register methods,
where uniform pseudorandom numbers are generated
by means of linear recurring sequences modulo 2. A
related family of methods uses vector recursions mod-
ulo 2 of higher order, and this family includes the
very popular Mersenne twister MT19937. The MT19937
produces sequences of uniform pseudorandom num-
bers with period length 219937 − 1 that possess 623-
dimensional equidistribution up to 32 bits accuracy.
Furthermore, the generated sequences pass numerous
statistical tests for randomness. There are also meth-
ods based on nonlinear recursions, but these methods
are harder to analyze.

Further Reading

Devroye, L. 1986 Non-Uniform Random Variate Generation.
New York: Springer.

Fishman, G. S. 1996 Monte Carlo: Concepts, Algorithms, and
Applications. New York: Springer.

Gentle, J. E. 2003 Random Number Generation and Monte
Carlo Methods, 2nd edn. New York: Springer.
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VI.13 Optimal Sensor Location in the
Control of Energy-Efficient
Buildings
Jeffrey T. Borggaard, John A. Burns,
and Eugene M. Cliff

1 Motivation and Introduction

Buildings are responsible for more than a third of all

global greenhouse gas emissions and consume approx-

imately 40% of global energy. To fully appreciate the

scale of this problem, consider the fact that a 10%

reduction in buildings’ energy usage is equivalent to

all renewable energy generated in the United States

each year. Moreover, a 70% reduction would be the

equivalent of eliminating the energy consumption of

the entire U.S. transportation sector. Building systems

are highly complex and uncertain dynamical systems.

Optimization and control of these systems offer unique

modeling, mathematical, and computational challenges

if we are to develop new tools for the design, con-

struction, and operation of energy-efficient buildings.

In particular, research into new mathematical meth-

ods and computational algorithms is needed to control,

estimate, and optimize systems governed by partial

differential equations (PDEs); research into the model-

reduction techniques that are required to efficiently

simulate fully coupled dynamic building phenomena is

also needed.

These PDE control and estimation problems must

be approximated by a “control-appropriate” numerical

scheme. It is well known that unless these approximate

models preserve certain system properties, they may

not be suitable for control or optimization.

In this article we consider a single problem from this

large research area: an optimal sensor location prob-

lem. We show how rather abstract mathematical theory

can be employed to solve the problem and illustrate

where approximation theory plays an important role in

developing numerical methods. We present an example

motivated by the design and control of hospitals. A U.S.

Energy Information Administration report has shown

that large hospitals accounted for less than 1% of all

commercial buildings in the United States in 2007 but

consumed 5.5% of the total delivered energy used by

the commercial sector. Hospitals alone therefore repre-

sent a significant consumer of energy, and the design,

optimization, and control of energy use at the scale of

 

Figure 1 A hospital suite.

individual rooms has been the subject of several recent
studies.

2 Mathematical Formulation

Consider the problem of locating a sensor somewhere
on a wall in the main zone of the hospital suite in fig-
ure 1 such that the sensor provides the best estimate
of the temperature field in the entire suite. We assume
that the room is configured so that the control inlet
diffusers and outlet vents are fixed and the flow field is
in steady state. The goal is to find a single thermostat
location that provides a sensed output that can be used
by the Kalman filter to optimally estimate the state of
the thermal conditions inside the room.

Let Ω ⊂ R3 be an open bounded domain with
boundary ∂Ω of Lipschitz class. Consider an advection–
diffusion process in the region Ω with boundary ∂Ω
described by the PDE

Tt(t, x)+[v(x)·∇T(t, x)] = κ∇2T(t, x)+w(t,x), (1)

with boundary conditions

T(t, x)|ΓI = bT (x)u, η(x) · [κ∇T(t, x)]|ΓO = 0.

Here, T is the state, u is a fixed constant tempera-
ture at the inflow, bT (·) is a function describing the
inflow shape profile, η(x) is the unit outer normal, ΓI
is the part of the boundary where the inflow vents are
located, and ΓO = ∂Ω − ΓI is the remaining part of the
boundary. The function v(x) is a given velocity field,
and w(t,x) is a spatial disturbance. We assume that
the disturbance w(t,x) is a spatially averaged random
field such that

w(t,x) =
∫∫∫

Ω
g(x,y)η(t,y)dy,

where η(t, ·) ∈ L2(Ω) for all t � 0, and g(·, ·) ∈ L2(Ω×
Ω) is given; this is a very reasonable assumption for
problems of this type.
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We assume that there is a single sensor (a thermostat)
located at a point q ∈ ∂Ω that produces a local spatial
average of the state T(t, x). In particular,

y(t) =
∫∫∫

Bδ(q)∩Ω
h(x)T(t, x)dx +ω(t), (2)

where h(·) ∈ L2(Ω) is a given weighting function,
Bδ(q) is a ball of radius δ about q, andω(t) is the sen-
sor noise. Define the output map C(q) : L2(Ω) −→ R1

by

C(q)ϕ(·) =
∫∫∫

Bδ(q)∩Ω
h(x)ϕ(x)dx,

in terms of which the measured output defined by (2)
has the abstract form

y(t) = C(q)T(t, ·)+ω(t). (3)

The standard formulation of the distributed parame-
ter model for the convection–diffusion system (1) with
output (3) leads to an infinite-dimensional system in
the Hilbert space H = L2(Ω) given by

ż(t) = Az(t)+Gη(t) ∈ H ,

with output

y(t) = C(q)z(t)+ω(t),
where the state of the distributed parameter system is
z(t)(·) = T(t, ·) ∈ H = L2(Ω), A is the usual con-
vection diffusion operator, and G : L2(Ω) → L2(Ω) is
defined by

[Gη(·)](x) =
∫∫∫

Ω
g(x,y)η(y)dy.

Typically, the measurement y(t) produced by the
thermostat on the wall is the only information available
to feed into a controller (the heating, ventilation, and air
conditioning system) to adjust the room temperature.
However, this information can be used to estimate the
temperature in the entire room by using a mathemati-
cal model. The most well-known method for construct-
ing this approximation is the so-called Kalman filter. In
this PDE setting, the optimal Kalman filter produces an
estimate ze(t) of z(t) by solving the system

że(t) = Aze(t)+ F(q)[y(t)− C(q)ze(t)],

where the observer gain operator F(q) is given by

F(q) = Σ[C(q)]∗

and the operator Σ = Σ(q) satisfies the infinite-dimen-
sional riccati operator equation [III.25]

AΣ + ΣA∗ − Σ[C(q)]∗C(q)Σ +GG∗ = 0. (4)

The solution Σ(q) is the state estimation covariance
operator, and the estimation error is given by

E
(∫ +∞

0
‖ze(s, q)− z(s)‖2

L2(Ω) ds
)
= trace(Σ(q)), (5)

where E(γ) denotes the expected value of the ran-
dom variable γ and trace(Λ) denotes the trace of the
operator Λ.

We note that in finite dimensions the trace trace(Σ)
of an operator Σ is the usual trace of the matrix. How-
ever, in infinite dimensions not all operators have finite
trace, and hence one needs to establish that Σ(q) is
of trace class (i.e., has finite trace) in order for (5)
to be finite. One can show that for the problem here,
Σ = Σ(q) is of trace class.

The optimal sensor management problem becomes a
distributed parameter optimization problem with the
“state” Σ defined by the Riccati system (4) and the cost
functional defined in terms of the trace of Σ by

J(Σ, q) = trace(Σ)+ R(q),
where Σ satisfies (4) and the function R(q) could
be selected to impose penalties on “bad” regions to
be avoided. This cost function is selected because
trace(Σ(q)) is the estimation error when the Kalman
filter is used as a state estimator. We assume that for all
q ∈ ∂Ω the Riccati equation (4) has a unique positive-
definite solution Σ = Σ(q). The optimal sensor place-
ment problem can be stated as the following optimal
control problem, where we note that the assumption
that for each q ∈ ∂Ω the Riccati equation (4) produces
a unique Σ = Σ(q) allows us to introduce the reduced
functional J̃(q) = J(Σ(q), q).

The optimal sensor location problem. Find qopt such
that

J̃(q) = J(Σ(q), q) = trace(Σ(q))+ R(q) (6)

is minimized, where Σ = Σ(q) is a solution of the
system (4).

As observed above, one can show that Σ(q) is of trace
class and that the optimization problem is well defined.
This formulation of the problem allows us to directly
apply standard optimization algorithms.

3 Approximation and Convergence

One of the main issues that needs to be addressed in
order to develop practical numerical schemes for solv-
ing the optimal sensor location problem is the approx-
imation of the Riccati operator equation (4), which is
required to compute Σ = Σ(q). Here, C(·) varies con-
tinuously with respect to the Hilbert–Schmidt norm on
the set of trace class operators. The practical impli-
cation of this fact is that trace(Σ(·)) also varies con-
tinuously with respect to q. Thus, we have the basic



VI.13. Optimal Sensor Location in the Control of Energy-Efficient Buildings 765

foundations that allow the application of numerical
optimization methods. In particular, we make use of
known results on existence and approximations deal-
ing with convergence in the space of Hilbert–Schmidt
operators on H .

The key observation is that numerical approaches to
solve the Riccati equation (4) that produce approxima-
tions ΣN(q) of Σ(q) must have specific properties if
one expects to obtain convergence of trace(ΣN(q)) to
trace(Σ(q)).

Writing the Riccati equation (4) as

AΣ + ΣA∗ − ΣD(q)Σ + F = 0,

where D(q) = C(q)∗C(q) and F = GG∗, one clearly
sees that one must construct convergent approxima-
tions AN , CN(q), and GN of the operators A, C(q),
and G, respectively. What is sometimes overlooked is
that the dual operators also need to be approximated.
Thus, one also needs to construct convergent approx-
imations [A∗]N , [C∗(q)]N , and [G∗]N of the opera-
tors A∗, C∗(q), and G∗, respectively. It is important
to note that, in general, [AN]∗, [CN(q)]∗, and [GN]∗

may not converge to A∗, C∗(q), and G∗ in a suitable
topology, and hence convergence of trace(ΣN(q)) to
trace(Σ(q)) can fail. In addition to dual convergence,
the numerical scheme must preserve some stabilizabil-
ity and detectability conditions. Again, it is important
to note that even standard numerical schemes may not
preserve these important control-system properties.

Consider a sequence of approximating problems
defined by (HN,AN,CN(q),GN), where HN ⊂ H
is a sequence of finite-dimensional subspaces of H ,
and AN ∈ L(HN,HN), CN(q) ∈ L(HN,R1), and
GN ∈ L(HN,HN) are bounded linear operators. Here,
L(X,Y) denotes the usual space of bounded linear
operators from X to Y. In this article we use standard
finite-element methods so that HN is a finite-element
space of piecewise polynomial functions. Let PN : H →
HN denote the orthogonal projection of H onto HN

satisfying ‖PN‖ � 1 and such that ‖PNz − z‖ → 0 as
N → ∞ for all z ∈ H . For each N = 1,2,3, . . . consider
the finite-dimensional approximations of (4) given by

ANΣN + ΣN[A∗]N − ΣNDN(q)ΣN + FN = 0, (7)

and assume that (7) has solutions ΣN . The approximate
optimal sensor location problem is now to minimize

J̃N(q) = trace(ΣN(q))+ R(q),
subject to the constraint (7).

In order to discuss convergence of the finite-dimen-
sional approximating Riccati operators, we need to

assume that the numerical scheme preserves the basic
stabilizability and detectability conditions needed to
guarantee that the Riccati equation (7) has a unique
positive-definite solution.

The required assumptions, which we will not state
here, break into four distinct conditions concerning
the convergence of the operators, convergence of the
adjoint operators, preservation of uniform stabilizabil-
ity/detectability under the approximation, and com-
pactness requirements on the input operator. Under
these assumptions one can show that the Riccati equa-
tion (7) has a unique nonnegative solution ΣN(q) for all
sufficiently large N and that

lim
N→+∞

trace(ΣN(q)) = trace(Σ(q)).

One can also prove that

lim
N→+∞

trace(ΣN(q)PN − PNΣ(q)) = 0,

which states that the operators ΣN(q) converge to Σ(q)
in the trace norm. For the specific case treated here, one
can establish that these assumptions hold for standard
finite-element schemes.

4 Numerical Results for the Hospital Suite

For simplicity, we consider the two-dimensional ver-
sion of the hospital suite shown in figure 2. The “bed
area” is the large zone on the right, and the remain-
ing zones are bath and dressing areas. There are four
inlet vents, and the outflow is into a hall through the
door on the left. The optimal sensor location problem
is not very sensitive to the outflow location since the
flow is dominated by the outflow from the bed area to
the other two zones.

For the numerical runs, we assumed a nearly uniform
disturbance, such that

w(t,x) = [Gεη(t, ·)] =
∫∫∫

Ω
δε(x −y)η(t,y)dy,

where δε(y) is a smooth approximation of the delta
function. We also set R(q) = 0.

In figure 2 we show the inflow, the outflow, and the
flow through the suite. The asterisks on the north and
south walls are the points q1 and q2, where the cost
function J̃(q) = J(Σ(q)) = trace(Σ(q)) has local min-
ima. Figure 3 provides a plot of J̃(q) = trace(Σ(q)) as q
moves from the northwest corner along the north wall,
down the east wall, across the south wall, and then up
the west side of the bed area. Observe that the optimal
sensor location problem has two solutions: one on the
north wall between the two inlets and one on the south
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Figure 2 A two-dimensional hospital suite with four inlets.

wall between the two inlets there. There is also a local
minimum located in the opening from the bed area to
the bath area where there is no wall. Although there is
also a local minimum on the east wall, this minimum is
nearly the same as the maximum value.

This example illustrates that the optimal sensor
placement problem is reasonably well behaved. Even
though there are multiple local minima, most numer-
ical optimization algorithms can handle this type of
problem. The “roughness” near q1 and q2 is caused
primarily by the coarse grid used in the flow solver.
However, even with the coarse grid used for these cal-
culations, it is clear that the model is accurate enough
to roughly identify the neighborhoods where the global
minimizers are located. This trend has been noticed
in several other problems of this type and suggests
that a multigrid-like [IV.13 §3] approach to the opti-
mization problem might improve the overall algorithm.
In particular, we first solve the optimization problem
on a coarse grid to identify a rough neighborhood of
the minimizer and then conduct a fine-grid optimiza-
tion starting in this neighborhood. This idea has been
successfully applied to similar problems.

5 Closing Comments

One goal of this article was to illustrate how a rather
abstract mathematical framework can be used to for-
mulate and solve some very practical (optimal) design
problems that arise in the energy sector. A second take-
away is that one must be careful when introducing
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Figure 3 The value of trace(Σ(q)) along the walls.

approximations to numerically solve the resulting opti-
mization problem. In particular, additional appropriate
assumptions are needed to guarantee convergence of
the operators.

Another issue concerns the finite-dimensional opti-
mization problem itself. Although we do not have the
space to fully address this issue, it is clear that apply-
ing modern gradient-based optimization to the approx-
imate optimal sensor location problem requires that
the mapping q → [J̃N(q)] = trace(ΣN(q)) be at least
C1. This smoothness requirement also places addi-
tional restrictions on the types of approximations that
can be used to discretize the infinite-dimensional sys-
tem. There are several approaches one might consider
to approximate the gradient ∇q[J̃N(q)]. These range
from direct finite-difference methods to more advanced
continuous sensitivity and adjoint methods. In theory
there is no difference between these methods as long as
they produce consistent gradients. However, in practice
the choice can greatly influence the speed and accu-
racy of the optimization algorithm. We are therefore
reminded of the following quote attributed to Manfred
Eigen:

In theory, there is no difference between theory and
practice. But, in practice, there is.
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VI.14 Robotics
Charles W. Wampler

1 Robot Kinematics

Robotics is an interdisciplinary field involving mechan-
ical and electrical engineering, computer science, and
applied mathematics that also draws inspirations from
biology, psychology, and cognitive science. From robots
in a factory to interplanetary rovers, one of the funda-
mental capabilities a robot must have is knowledge of
where it is and how to get to where it needs to go. This
includes knowing where its appendages are and how to
move them effectively. While in technical jargon these
appendages may be called “manipulators” with “end-
effectors” that directly interact with workpieces, they
are more commonly referred to as robot “arms” and
“hands,” especially when the robot links are connected
end to end in serial fashion. Locating a hand involves
finding both its position and its orientation. For exam-
ple, to pick an object out of an open jar, it is impor-
tant for the hand to not only reach the position of the

u
pu p

− ( )

Rp

u p

θ

p u p u

Figure 1 Rotation of 1p around axis 1u.

object but also to be oriented through the opening of

the jar. Orientation is fully specified by a 3 × 3 orthog-

onal matrix, sometimes called a rotation matrix or a

direction cosine matrix.

It turns out that the geometric motion characteris-

tics, that is, the kinematics, of most robots (and most

mechanical systems in general) are well modeled by

systems of polynomial equations. In particular, this can

be seen in the most common element used in mecha-

nism work: the rotational joint. When a series of links

are connected end-to-end by rotational joints, each link

turns circles with respect to its neighbors, and circles

can be described by polynomial equations. The polyno-

mial nature of the models allows one to apply algebraic

geometry to solving kinematics problems.

Consider a serial-link robot arm with rotational joints

canted at various angles so that the hand maneuvers

in three-dimensional space, not just in one plane. To

be more precise, consider first just a single joint and

let 1u ∈ R3 be a unit vector (1u · 1u = 1) along its joint

axis, assumed to be passing through the origin. As illus-

trated in figure 1, the rotation of an arbitrary vector
1p ∈ R3 through an angle of θ around unit vector 1u is

R(1u,θ)1p = (1u· 1p)1u+[1p−(1u· 1p)1u] cosθ+ 1u× 1p sinθ,

where R(1u,θ) is a 3 × 3 matrix expression formed from

the matrix interpretation of the vectorial operations on

the right-hand side.

The trigonometric expression for the rotation can be

converted to an algebraic one by replacing (cosθ, sinθ)
by (c, s) subject to the unit-circle condition c2 + s2 =
1. Abusing notation, we call the reformulated rotation

matrix R(1u, c, s), which in matrix form becomes

R(1u, c, s) = 1u1uT + (I − 1u1uT)c +Λ(1u)s,

http://www.eia.gov/consumption/commercial/reports/2007/large-hospital.cfm
http://www.eia.gov/consumption/commercial/reports/2007/large-hospital.cfm
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Figure 2 Serial-link robot schematic.

where
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y
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⎤⎥⎥⎦
⎞⎟⎟⎠ =

⎡⎢⎢⎣
0 −z y
z 0 −x

−y x 0

⎤⎥⎥⎦ .
For example, if 1u = [1 0 0]T, then R(1u, c, s) is a rota-
tion in the yz-plane. We note that R(1u, c, s) is linear in
(c, s). As the joint turns, the vector 1u defining it stays
constant while c and s vary, but R(1u, c, s) is always
orthogonal, and its determinant is 1.

This generalizes to a multilink arm. Consider links
numbered 0 to N from the robot’s base to its hand,
connected in series by rotational joints. To formulate
the position and orientation of the hand with respect
to the base, we need geometric information about the
links and their joints. As illustrated in figure 2, mark
a point P1 on the joint axis between links 0 and 1, and
similarly mark points P2, . . . ,PN on the succeeding axes.
Also, mark a reference point in the hand as PN+1. Next,
freeze the arm in some initial pose, and at this con-
figuration let 1ui be a unit vector along the axis of the
joint between link i− 1 and link i. Finally, in the initial
pose, let the vector from Pi to Pi+1 be 1pi and let the ini-
tial orientation of the hand be Q0 ∈ SO(3). With these
definitions and the shorthand Ri := R(1ui, ci, si), we
may write the orientation, Q = [Qx Qy Qz] ∈ SO(3),
of the hand with respect to the base and the position
vector, 1q, from P1 to PN as

Q = R1R2 · · ·RN−1RNQ0, (1)

1q = R1(1p1 + R2(1p2 + · · · + RN(1pN) · · · )). (2)

Given the joint rotations (ci, si), i = 1, . . . , N , one may
evaluate these expressions to obtain Q and 1q. This
solves the forward kinematics problem for serial-link
arms.

2 Inverse Kinematics

Evaluation of the forward kinematics formulas tells us
where a serial-link robot’s hand is relative to its base.
More challenging is to reverse this by answering the
inverse kinematics problem: what joint rotations (ci, si),
i = 1, . . . , N , will cause the hand to attain a desired
location (Q, 1q)? The space of all rigid-body motions
is SE(3), a six-dimensional space parameterizable by
three rotations and three translations. Thus, we need
N � 6 joints to place the hand in any arbitrary position
and orientation within the working volume of the arm.

Let us consider the important case of N = 6, where
we expect to have a finite number of solutions to the
equations (1), (2) along with

c2
i + s2

i = 1, i = 1, . . . ,6. (3)

Although (1) has nine entries, only three are indepen-
dent since QTQ = I. The isolated solutions of the
system are preserved if one takes three random lin-
ear combinations of these nine, which with the rest of
the equations makes a system of twelve polynomials
in twelve unknowns. By Bézout’s theorem, the number
of isolated solutions of a system of N polynomials in
N unknowns cannot exceed the total degree, defined
as the product of the degrees of the equations. For the
system at hand, this comes to 6626 = 2 985 984. It turns
out that this upper bound is rather loose.

The root count can be reduced by algebraically ma-
nipulating the equations. First, using the fact that
R−1
i = RT

i , one may rewrite (1), (2) as

RT
3R

T
2R

T
1Q = R4R5R6Q0, (4)

RT
3 (R

T
2 (R

T
1 1q − 1p1)− 1p2)

= 1p3 + R4(1p4 + R5(1p5 + R6 1p6)). (5)

These equations are now cubic, reducing the total
degree to 3626 = 46 656. But the equations are
far from being general cubics because the (ci, si)
pairs each appear linearly. Grouping the unknowns
into three groups as {c1, s1, c4, s4}, {c2, s2, c5, s5}, and
{c3, s3, c6, s6}, equations (4), (5) are recognized as being
trilinear. Based on this grouping of the variables, a vari-
ant of Bézout’s theorem known as the “multihomoge-
neous Bézout number” bounds the maximum possible
number of isolated roots by the coefficient of α4β4γ4

in (α+ β+ γ)6(2α)2(2β)2(2γ)2, i.e., 5760.
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This is just the beginning of the algebraic manipula-
tions that one can perform on the way to showing that
the “six-revolute” (or 6R) inverse kinematic problem
has at most sixteen isolated roots.

From an early statement of the problem by Pieper
in 1968 to a numerical solution by Tsai and Morgan
in 1985 using continuation through to the first alge-
braic derivation of an eliminant equation of degree 16
by Lee and Liang in 1988, this problem was one of the
top conundrums for kinematicians for twenty years.
Now, though, powerful computer algorithms can be
applied to solve the problem in minutes with either
symbolic computer algebra, based on variants of Buch-
berger’s algorithm, or numerical algebraic geometry,
based on continuation methods. In the latter approach,
no further manipulation of the equations is required, as
one can set up a homotopy that continuously deforms
an appropriate start system into a target 6R example.
Using the variable groups mentioned above, this homo-
topy has 5760 paths, which can be tracked in parallel
on multiple processors. The endpoints of these paths
include the sixteen isolated solutions (real and com-
plex) of the example 6R problem. Once solved, the gen-
eral target example can serve as the start system for
a sixteen-path parameter homotopy to solve any other
6R inverse kinematic problem.

3 Generalizations

In addition to serial-link arms, robots and similar mech-
anisms can have a variety of topologies, composed
of serial chains connected together to form closed-
chain loops. Both forward and inverse kinematics prob-
lems become challenging, but the kinematics remain
algebraic and modern algorithms derived from alge-
braic geometry apply. These mathematical methods for
kinematic chains also find application in biomechani-
cal models of humans and animals and in studies of
protein folding.
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VI.15 Slipping, Sliding, Rattling, and
Impact: Nonsmooth Dynamics
and Its Applications
Chris Budd

1 Overview

We all live in a nonsmooth world. Events stop and start,
by accident, design, or control. Once started, mechan-
ical parts in bearings, bells, and other machines can
come into contact and impact with each other. Once
in contact, such parts can slide against each other,
intermittently sticking and slipping. If these parts are
rocks, then the result is an earthquake, a system that
is notoriously hard to predict. While on a small scale
these systems might be smooth, on a macroscopic
scale they lose smoothness in one or more derivatives,
and their motion is best approximated, and analyzed,
by assuming that they are nonsmooth. To study such
problems—which may be as simple as a ball bouncing
on a table or as complex as a collapsing building, or
even the climate—we need to extend classical dynam-
ical systems theory to allow for nonsmooth effects.
Typically, the problems considered, including systems
with impact, sticking, and sliding, are piecewise smooth
(PWS) and comprise smooth trajectories interrupted
by instantaneous nonsmooth events. Such dynamical
systems are tractable to analysis, which reveals a rich
variety of behavior, including chaos, new routes to
chaos, and bifurcations that are not observed in smooth
dynamical systems.

2 What Is a Piecewise-Smooth
Dynamical System?

Piecewise-smooth systems comprise flows, maps, and a
hybrid mixture of the two. To define them, let the whole
system be given by x(t) ∈ Ω ⊂ Rn, withΩ divided into
subsets Si, i = 1, . . . , N , with the boundary between Si
and Sj being the surface Σij of codimension p � 1. A
PWS flow, often called a Filippov system, is given by

dx
dt

= Fi(x) if x ∈ Si, (1)

where Fi is smooth in the set Ωi. As x crosses the set
Σij , the right-hand side of (1) will typically lose smooth-
ness. An example of a Filippov system is a room heater
controlled by a thermostat that switches a heating ele-
ment on when the temperature of the room T(t) falls
below specified temperature T0. In this case we have
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Figure 1 (a) Piecewise-smooth flow,
(b) sliding flow, and (c) hybrid flow.

two regions in which the operation of the heating sys-
tem is smooth, and the set Σ12 is the surface T−T0 = 0.
The trajectories of a Filippov system are themselves
PWS, losing regularity when they intersect Σij .

Particularly interesting behavior (illustrated in fig-
ure 1) occurs on those subsets of Σij for which both
vector fields Fi and Fj point toward Σij . In this case
we observe sliding motion in which the dynamical sys-
tem has solutions that slide along Σij . On the slid-
ing surface the system obeys a different set of equa-
tions obtained by certain averages of the vector field to
give a regularized sliding vector field. Sliding problems
arise naturally in studying friction and in many types
of control problems and they are typically studied
using the theory of differential inclusions, which studies
differential equations with set-valued right-hand sides.

A PWS map is defined by

xn+1 = Fi(xn) if xn ∈ Si, (2)

with a piecewise-linear map given by the special case of
taking

Fi(xn) = Aixn + bi, Σ = {x : c · x = 0}, (3)

where the Ai are matrices and the bi are vectors. Maps
such as (3), often called Feigin maps if they are con-
tinuous or maps with a gap otherwise, arise naturally
in their own right, in control problems and in circle
maps, but they also appear in neuroscience, where the
condition c · xn � 0 is a threshold for neurons firing.
They also occur in the context of Poincaré maps for sys-
tems of the form (1). Despite their apparent simplicity,
the dynamics of systems of the form (3) is especially
rich, particularly if the Ai have complex eigenvalues.
Another such map is the remarkable Nordmark map,
which arises very often in the context of the grazing
bifurcations described in the next section. This takes
the form

xn+1 =
⎧⎨⎩A1xn + b1

√
c · xn, c · xn � 0,

A2xn + b2, otherwise.
(4)

The square-root term means that close to the line Σ =
{x : c ·x = 0} the map has unbounded derivatives and

can introduce infinite stretching in the phase plane.
It is therefore no surprise that such naturally occur-
ring maps lead to chaotic behavior over a wide range
of parameter values.

Finally, we have hybrid systems [II.18], which are a
combination of PWS flows in the regions Si and maps
R : Σ → Σ that act when the solution trajectories inter-
sect the set Σ (see figure 1). Hybrid systems arise natu-
rally in control problems, and are also a natural descrip-
tion of the many types of phenomena that involve
instantaneous impacts, such as bouncing balls, rattling
gears, or constrained mechanical motion such as that
of bearings. The dynamics of hybrid systems can also
be described by using measure differential inclusions.

3 What Behavior Is Observed?

Many of the phenomena associated with smooth dy-
namical systems can be found in PWS ones. For exam-
ple, the systems (1) and (2) can have states such as
fixed points, periodic trajectories, and chaotic solu-
tions. If the fixed points are distant from the discon-
tinuity surfaces Σij or if any trajectories intersect such
surfaces transversally, then we can apply the implicit
function theorem to study them, and they have bifurca-
tions (saddle–node, period-doubling, Hopf) in the same
manner as smooth systems. The main differences arise
when, as a parameter varies, these states intersect Σij
for the first time, so that a fixed point evolves to lie on
Σij , or a trajectory evolves so that it has a tangential,
or grazing, intersection with Σij . These intersections
typically lead to dramatic changes in the behavior of
the solution in a discontinuity-induced bifurcation. Such
bifurcations lead to new routes to chaos and many new
phenomena. As an example consider the system (2) in
the simplest case when xn is a scalar and for some
0 < λ < 1 we have

xn+1 =
⎧⎨⎩λxn + μ − 1, xn � 0,

λxn + μ, xn < 0.

If μ > 1 then the map defined above has a fixed point
at x∗ = (μ − 1)/(1 − λ). Similarly, if μ < 0 the map
has a fixed point at x∗ = μ/(1 − λ). At μ = 1 and at
μ = 0, respectively, one of these two fixed points lies
on the discontinuity set Σ = {x : x = 0}. If 0 < μ < 1
we see complex behavior, and a bifurcation diagram
for the case of λ = 0.7 is given in figure 2. This has
the remarkable structure of a period-adding cascade in
which we see a period-(n +m) orbit existing for val-
ues of the parameter μ that lie between the values of μ
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Figure 2 A discontinuity-induced bifurcation leading to
a period-adding cascade in a piecewise-linear map.

for which we see period-n and period-m orbits. Period
adding (and the closely related phenomenon of period
incrementing) is a characteristic feature of the bifur-
cations observed in PWS systems. More generally, very
similar phenomena are observed when periodic orbits
of PWS flows graze with Σij , leading to grazing bifur-
cations, which can be studied using the Nordmark map
(4) and observed experimentally. Even more complex
behavior is observed in the bifurcations associated with
the onset of sliding motion.

Overall, the study of bifurcations in PWS systems is
still in a relatively early stage of development. Much
needs to be done both to classify them and understand
them mathematically, and to study their rich behavior
in the many applications in which they arise.
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VI.16 From the N-Body Problem to
Astronomy and Dark Matter
Donald G. Saari

1 A Dark Mystery from Astronomy

Puzzles coming from astronomy have proved to be
an intellectual temptation for mathematicians, which

is why for centuries these two areas have enjoyed a
symbiotic relationship. The challenge of describing the
motion of the planets, for instance, led to calculus and
Newton’s equations of motion, which in turn revolu-
tionized astronomy and physics. But so many mathe-
matical results have been found about the Newtonian
N-body problem that only a flavor can be offered here.
To unify the description, topics are selected to indi-
cate how they shed light on the intriguing astronomical
mystery of dark matter.

The dark matter enigma can be seen, for example, in
the fact that the predicted mass level needed to keep
galaxies from dissipating vastly exceeds what is known
to exist. This huge difference between predicted and
known mass amounts is believed to consist of unob-
served mass called dark matter. While no current evi-
dence exists about the nature of this missing matter,
whatever it may be, it appears to dominate the mass of
galaxies and the universe.

What is not appreciated is that mathematics is a
major player in this mystery story. It must be; the pre-
dicted mass is a result of a mathematical analysis of the
NewtonianN-body problem. A review of the mathemat-
ics is accompanied with descriptions of other N-body
puzzles.

1.1 The Mass of Our Sun

Start with something simpler; how can the mass of our
sun be determined? The answer involves Newton’s laws
and planetary rotational velocities. Let r(t) be the vec-
tor position of a planet (with mass m) relative to the
sun (with massM). If r = |r|, and G is the gravitational
constant, Newton’s inverse-square force law requires
the acceleration r′′ to satisfy

mr′′ = −GMm
r2

(
r
r

)
= −GMmr

r3
. (1)

If r is the scalar length of r, then its value is given by
the dot product r2 = r ·r = (r)2. By differentiating this
expression twice and using [r · v]2 + [r × v]2 = r2v2,
where v = r′ is the velocity, it follows by substitution
into (1) that the scalar acceleration satisfies

mr ′′ = −GMm
r2

+m[r × v]2
r3

= −GMm
r2

+mv
2
rot

r
, (2)

where vrot is the planet’s rotational velocity (the v
component that is orthogonal to r).

Our Earth has an essentially circular orbit, so r ′′ ≈ 0;
from (2) we can then deduce that

M ≈ rv
2
rot

G
. (3)
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Using Earth’s distance from the sun (the r value) and
the time it takes to orbit the sun (a year), the rotational
velocity and M , the sun’s mass, can be computed.

Conversely, (3) asserts that the sun’s specified mass
M is needed to sustain Earth’s rotational velocity with
its nearly circular orbit. According to (2), a vrot larger
than

vrot ≈ [GM/r]1/2 (4)

would force a larger r ′′ > 0 and introduce the possi-
bility that Earth might escape from the solar system.
Luckily for us, this does not happen.

But there is a potential problem: the planet masses
are negligible compared with that of the sun, so what
would it mean if information about a farther out
planet—Neptune, say—predicted a significantly larger
mass for the sun? Three natural options are as follows.

(1) Newton’s law is wrong.
(2) The larger mass prediction means that Neptune’s

velocity is too large for the planet to be kept in
the solar system ((2), (4)). Our system may therefore
dissipate.

(3) The predicted mass is there. Rather than reflecting
the sun’s mass, it is unobserved and hiding between
the orbits of Earth and Neptune. This is a “solar
system dark matter” concern.

Fortunately, we escape the onerous task of selecting
among these undesired alternatives because Kepler’s
third law requires the numerator in (3), rv2

rot, to essen-
tially be a constant, i.e., the rotational velocities of
planets decrease to zero as r increases according to
v2

rot = C/r . Kepler’s law, then, offers us reassurance
that Newton’s law is correct: we will not lose a planet
(at least in the near future), and there is no solar system
dark matter concern.

The intent of this hypothetical scenario is to demon-
strate the close relationship that connects Newton’s law
of attraction, mass values, and limits on the rotational
velocities needed to sustain a stable system. But while
Kepler’s third law ensures that problems do not arise in
our solar system, what about galaxies? Could the rota-
tional velocities of stars be too large to be sustained by
the amount of known mass? This is discussed next.

1.2 The Mass of a Galaxy

The minuscule planetary mass values allow our solar
system to be modeled as a collection of two-body prob-
lems; this is what allows us to use (2) to determine
the sun’s mass. But “two-body” approximations are

not realistic for a galaxy, with its billions of stars. To
determine mass values from galactic dynamics would
require a deep understanding of the behavior ofN-body
systems in which N is in the billions. Unfortunately, a
complete mathematical solution is known only for the
two-body problem, so something else is needed.

Astrophysicists address this concern in several clever
ways. Pictures of galaxies, for instance, convey a
sense of a thick “star soup.” This appearance suggests
approximating a system of N discrete bodies with a
continuum model in which the force on a particle is
determined by Newton’s first and second laws.

As developed in calculus classes, if a body in a con-
tinuum symmetric setting is inside a spherical shell, it
experiences no net gravitational force from the shell.
If the body is outside a spherical ball, the symmetry
causes the gravitational force to behave as though the
ball’s mass is concentrated at its center. With these
assumptions, an equation can be derived to determine
M(r), which is a galaxy’s total mass up to distance r
from the center of mass. This equation, which closely
resembles (3), is

M(r) ≈ rv
2
rot

G
. (5)

There are other ways to predict galactic masses, but
(5) is often used to justify the amount of mass that is
needed to keep stars in circular orbits.

Herein lies the problem: rather than behaving in a
way that is consistent with Kepler’s third law, where
vrot values decrease as r increases, observations prove
that the vrot values start with a sharp, almost lin-
ear increase before tapering off to an essentially con-
stant or increasing value! According to (5), a constant
vrot means that the predicted mass must grow linearly
with the distance from the center of the galaxy. Obser-
vations, however, cannot account for anywhere near
this much mass! As with the solar system dark mat-
ter story, this vast difference between predictions and
observations puts forth uncomfortable options.

(1) Newton’s laws are incorrect, at least at the large
light-year distances in a galaxy.

(2) The velocities are too large for the mass values;
expect the galaxy to fly apart.

(3) The difference between the predicted M(r) ≈ Cr
and the known mass is there but cannot be seen; it
is due to unobserved “dark matter.”

Most, but not all, astronomers and astrophysicists
find the first two options to be unpalatable, so they
concentrate on the third choice.
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Sun Jupiter

(a) (b)

(c)

Figure 1 Discrete-body interactions: (a) interactions,
(b) central configuration, and (c) spider web.

2 A Mathematical Analysis

While astrophysicists attack this concern with observa-
tions and imaginative experiments, an applied mathe-
matician would examine the mathematics. Is (5) being
used properly? Namely, could it be that dark matter is
a mathematical error in the predicted mass values? The
following outline of how to analyze these questions is
intended to encourage others to explore these issues.

As (5) relies on continuum models to approximate
Newtonian systems with N discrete bodies, it is natu-
ral to examine this assumption. Clearly, the behavior of
“star soup” continuum models need not agree with that
of systems ofN discrete bodies. After all, if two discrete
bodies on circular orbits come close to each other (fig-
ure 1(a)), their mutual attraction can dwarf the effects
of other particles, so neither acceleration is directed
toward the center of mass. Further violating what con-
tinuum models require, the faster body can drag along
the slower one, as suggested by both figure 1(a) and pic-
tures of arms of galaxies with the appearance of stars
being pulled along by others.

For discrete systems, then, actual rotational veloci-
ties involve combinations of the total mass M(r) and
a tugging, rather than just M(r) as required by (5).
This added pulling requires the stars to have veloci-
ties larger than those strictly permitted byM(r): larger
velocities force exaggerated predicted mass values. The
mathematical issue is whether this reality of exagger-
ated mass values invalidates the use of (5). A way to
analyze this concern is to use analyticN-body solutions
in which the precisely known mass value is compared
with (5) prediction. First, though, other properties of
N-body systems are described.

2.1 Central Configurations

Interestingly, certain N-body solutions can perma-
nently retain the same geometric shape. These shapes
are central configurations; they occur when each body’s
vector position (relative to the center of mass), rj , lines
up with its acceleration (or force) so that with the same
negative constant λ,

λrj = r′′j , j = 1, . . . , N. (6)

This balancing scenario (6) requires carefully posi-
tioned bodies. For example, in 1769 Euler proved that
there is a unique three-body positioning on a line that
defines such a configuration. This separation of parti-
cles depends on the mass values. For intuition, if the
middle one is too close to one of the end ones, it would
be pulled toward that end. As this is also true for each
of the end bodies, the intermediate-value theorem sug-
gests that there is a balancing position for the middle
body where it defines a central configuration. Then, in
1772, Lagrange discovered that the only noncollinear
three-body central configuration is an equilateral tri-
angle (figure 1(b)); this is true independent of mass
values!

The mutual tugging (6) among the bodies allows each
body to behave as if it were in a two-body system ((1)).
Indeed, with appropriate initial conditions, a planar
central configuration will rotate forever in a circular
or elliptic manner, while retaining its shape. This hap-
pens in our solar system; in 1906 the astronomer Max
Wolf discovered that the sun, Jupiter, and some aster-
oids, which he named the Trojans, form the rotating
equilateral triangle configuration seen in figure 1(b)!

2.2 Rings of Saturn and Spiderwebs

In the nineteenth century, the mathematician James
Clerk Maxwell used central configurations to study
properties of the rings of Saturn. To indicate what he
did, take a circle and any number, k, of evenly spaced
lines passing through the circle’s center, i.e., each adja-
cent pair is separated by the same angle. Place a body
with massm at every point where a line passes through
the circle; these 2k bodies model the particles in a ring.
By symmetry, the force acting on each body is the same,
so the system satisfies the central configuration condi-
tion (6). To include Saturn, place a body with any mass
value,m∗, at the circle’s center r = 0. By symmetry, the
forces of the 2k bodies cancel, so r′′ = 0. As λ0 = 0,
this (N = 2k + 1)-body system satisfies (6). By plac-
ing this system in a circular motion, Maxwell created a
dynamical model for a ring of Saturn.
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As represented in figure 1(c), Maxwell’s approach can

be extended by using any number of circles, say n of

them. Wherever a line passes through the jth circle,

place a mass mj , j = 1, . . . , k. As each line passes

through a circle twice, this creates the (N = 2nk)-
body problem. Whatever the mass choices, by using

an argument similar to the one used for the collinear

three-body configuration, which involves adjusting the

radii of the circles, it follows that a balancing point can

be found where (6) is satisfied. This spiderweb-style

configuration can be placed in a circular orbit.

2.3 Unsolved Problems

Beyond the central configurations described above and

many others that are known, it remains interesting to

discover new classes and kinds of central configura-

tions. This means that we need to know when all of

them have been found; could there be an infinite num-

ber of them? Not for three- and four-body problems; the

Euler and Lagrange solutions are the only three-body

choices, and Hampton and Moeckel have proved that

there are a finite number of four-body central configu-

rations. A fundamental unsolved problem for N � 5 is

whether, for given mass values, there are only a finite

number of central configurations.

3 Mass Values

The main objective is to determine whether (5) can

be trusted to always provide an accurate, or at least

reasonably accurate, mass prediction when applied to

systems of N discrete bodies. For instance, it may be

acceptable for the predicted value to be twice that of the

actual value. A way to analyze this question is to select

mass values for the spiderweb configuration. Remem-

ber, no matter what mass values are selected, adjusting

the distances between circles ensures that it defines

a central configuration. In fact, because a rotation or

scale change of a central configuration is again that

same central configuration, let the minimum spacing

between circles be one unit.

As closely as it is possible to do with N discrete bod-

ies, this configuration resembles the symmetric star

soup continuum setting. By choosing the number of

lines to be sufficiently large, say k = 10 000 000, the

mass distribution is very symmetric. By selecting a

large n value, say n = 10 000, this (N = 2nk)-body

problem involves billions of bodies.

Whatever the choice of mass values mj , the spider-
web rotates like a rigid body. This means that there is a
constant D > 0 such that the common rotational veloc-
ity of the bodies at distance r is vrot = Dr . The (5) mass
prediction for constant E > 0 is, therefore,

M(r) ≈ Er3. (7)

Equation (7) holds independent of the choice of the
masses, which allows an infinite number of examples
to be created. For instance, if the masses on the jth
circle are mj = 1/2kj, j = 1, . . . , n, then the ring’s
total mass is 1/j. A computation shows that the precise
mass value out to the sth ring is

s∑
j=1

1
j

≈ ln(s).

Remember, the minimum spacing between circles is
one unit, so to reach the sth ring, it must be that r � s.
Thus, to have theM(s) = 20 mass value, it must be that
ln(r) � ln(s) = 20, or r � e20. This forces the (7) pre-
dicted value to exceed [Ee20]3, which means that the (5)
prediction exponentially exaggerates the precise value
by a multiple in the trillions. Clearly, this is unaccept-
able. Indeed, any consistent multiple larger than 100
would seriously undermine claims about the existence
and amount of dark matter.

As this simple analysis proves that (5) cannot be reli-
ably used in all situations, the wonderful mathematical
challenge is to determine when, where, and whether it
does provide reasonably valid predictions. Of course,
it follows from Newtonian dynamics, which requires
a dragging effect, that (5) must exaggerate predicted
mass values. So the issue is to determine by how much
in general. An even more interesting mathematical chal-
lenge is to discover equations that will predict mass
values for discrete systems that can be trusted.
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VI.17 The N-Body Problem and the Fast
Multipole Method
Lexing Ying

1 Introduction

The N-body problem in astrophysics studies the mo-

tion of a large group of celestial objects that interact

with each other. An essential step in the simulation

of an N-body problem is the following evaluation of

the gravitational potentials that involve pairwise inter-

action among these objects: given a set P ⊂ R3 of N
stars and the masses {f(y) : y ∈ P} of the stars, the

goal is to compute for each star x ∈ P the gravitational

potential u(x) defined by

u(x) =
∑

y∈P,y �=x
G(x,y)f(y),

where G(x,y) = 1/|x − y| is the Newtonian gravi-

tational kernel. Similar computational tasks appear in

many other areas of physics. For example, in electro-

magnetics, the evaluation of the electrostatic potentials

takes exactly the same form, with the kernel G(x,y) =
1/|x − y| in three dimensions or G(x,y) = ln(1/|x −
y|) in two dimensions; evaluation of magnetic induc-

tion with the Biot–Savart law also takes a similar form.

In acoustic scattering, a similar computation shows up

with more oscillatory kernel functions G(x,y). Finally,

problems related to heat diffusion often require this

computation with Gaussian-type kernel G(x,y).
A direct computation of u(x) for all x ∈ P clearly

takes O(N2) steps. For many of these applications, the

number of objectsN can be in the millions, if not more,

so a computation of order O(N2) can be very time-

consuming. The fast multipole method, developed by

Greengard and Rokhlin, computes an accurate approx-

imate solution in about O(N) steps. The word mul-

tipole refers to a series expansion that is used fre-

quently in electromagnetics for describing a field in a

region that is well separated from the source charges.

Each term of this multipole expansion is a product of

an inverse power in the radial variable and a spheri-

cal harmonic function in the angular variables. Since

the multipole expansions often converge rapidly, they

can be truncated after just a few terms—a fact that

plays a key role in the efficiency of the fast multipole

method.

 

Figure 1 N points quasiuniformly
distributed in a unit box [0,1]2.

2 Algorithm Description

To illustrate the algorithm, we consider the two-

dimensional case and assume that the point set P is dis-

tributed quasiuniformly inside the unit boxΩ = [0,1]2
(see figure 1). The algorithms for three-dimensional and

nonuniform distributions are more involved, but the

main ideas remain the same.

We start with a slightly simpler problem, where B and

A are two disjoint cubes of the same size, each contain-

ing O(n) points. Consider the evaluation at points in A
of the potentials induced by the points in B, i.e., for

each x ∈ A∩ P , compute

u(x) =
∑

y∈B∩P
G(x,y)f(y).

Though direct computation of u(x) takes O(n2) steps,

there is a much faster way to approximate the calcu-

lation if A and B are well separated. Let us imagine

A and B as two galaxies. When A and B are far away

from each other, instead of considering all pairwise

interactions, one can sum up the mass in B to obtain

fB = ∑
y∈B∩Pf (y) and place it at the center cB of B,

evaluate the potential uA = G(cA, cB)fB at the center

cA of A as if all the mass is located at cB , and finally use

uA as the approximation of the potential at each point

x in A. A graphical description of this three-step pro-

cedure is given in figure 2 and it takes only O(n) steps

instead ofO(n2) steps. The procedure works well when

A and B are sufficiently far away from each other, but it

gives poor approximation when A and B are close. For

the time being, however, let us assume that the pro-

cedure provides a valid approximation whenever the
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B A

f (y)

O (n) O (n)

O (1)

O (n2)
u (x ) = uA

uA = G (cA , cB ) fBfB =            f  (y)
y   B

Figure 2 A three-step procedure that efficiently approxi-
mates the potential in A induced by the sources in B. The
computational cost is reduced from O(n2) to O(n).

 

Figure 3 The domain is partitioned with an octree structure
until the number of points in each leaf node is bounded by
a small constant.

distance between A and B is greater than or equal to
the width of A and B.

From an algebraic point of view, the three-step pro-
cedure is a rank-1 approximation of the interaction
between A and B:

G(A,B) ≈

⎡⎢⎢⎢⎣
1
...

1

⎤⎥⎥⎥⎦G(cA, cB) [1 · · · 1
]
,

where G(A,B) is the matrix with entries given by
(G(x,y))x∈A∩P,y∈B∩P . fA and uB are now the interme-
diate results of applying this rank-1 approximation.

This simple problem considers the potential inA only
from points in B. However, we are interested in the
interaction between all points in P . To get around this,
we partition the domain hierarchically with an octree
structure until the number of points in each leaf box is
less than a prescribed O(1) constant (see figure 3). The
whole octree then has O(logN) levels, and we define
the top level to be level 0. At level -, there are 4-

cubes and each cube has O(N/4-) points due to the
quasiuniform point distribution.

The algorithm starts from level 2. Let B be one of the
boxes on level 2 (see figure 4(a)). The near field N(B)
of B is the union of B and its neighboring boxes, and
the far field F(B) of B is the complement of the near
field N(B). For a box A in B’s far field, the computation

A
A

A A

B
B

B B

(a) (b)

(c) (d)

Figure 4 The algorithm at different levels. B stands for a
source box.A is a target box for which the interaction with B
is processed at the current level. Dark gray denotes boxes
for which the interaction has already been considered by
the previous level. Light gray denotes boxes for which the
interaction is being considered at the current level. For the
first three plots, a three-step procedure is used to accelerate
the interaction between well-separated boxes. For the last
plot, the nearby interaction is handled directly at the leaf
level.

of the potentials at points in A induced by the points
in B can be accelerated with the three-step procedure.
There are 42 possibilities for B, and for each B there are
O(1) choices for A (see figure 4(a)). Since both A and
B contain O(N/42) points due to the quasiuniformity
assumption, the cost for all the interaction that can be
taken care of on this level is

42 ·O(1) ·O(N/42) = O(N).
We cannot process the interaction between B and its
near field on this level, so we go down one level in the
octree.

We again use B to denote a cube at level 3 (see fig-
ure 4(b)). We do not need to consider B’s interaction
with the far field of B’s parent since it has already been
taken care of at the previous level. Only the interac-
tion between B and its parent’s near field needs to be
considered. At this level, there are at most 62 boxes in
its parent’s near field. Out of these boxes, 27 of them
are, typically, well separated from B and the interaction
between B and these boxes can be accelerated using the
three-step procedure. The set of these boxes is called
the interaction list of B. Since each box on this level
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contains O(N/43) points and there are 43 possibili-
ties for B, the total cost for the three-step procedures
performed on this level is again

43 ·O(1) ·O(N/43) = O(N).
However, for the interaction of B and the boxes in its
near field, we need to go down again.

For a general level -, there are 4- choices for B (see
figure 4(c)). For each B, there are at most 27 possibilities
for A. Since each box on this level has O(N/4-) points,
the cost of far-field computation is

4- ·O(1) ·O(N/4-) = O(N).
Once we reach the leaf level, there is still the interac-

tion between a leaf box and its neighbors to consider
(see figure 4(d)). For that, we just use direct computa-
tion. Since there are O(N) leaf boxes, each containing
O(1) points and having O(1) neighbors, the total cost
of direct computation is

O(N) ·O(1) ·O(1) = O(N).
For the three-step procedure between a pair of well-

separated boxes A and B, it is clear that the first step
depends only on B and the last step depends only on A.
Therefore, there is an opportunity for reusing compu-
tation. Taking this observation into consideration, we
can write the algorithm as follows.

(1) For each level - and each box A on level -, set uA
to be zero.

(2) For each level - and each box B on level -, compute
fB =∑

y∈B∩P f (y).
(3) For each level - and each box B on level -, and for

each boxA in B’s interaction list, updateuA = uA+
G(cA, cB)fB .

(4) For each level - and each boxA on this level, update
u(x) = u(x)+uA for each x ∈ A∩ P .

(5) For each box A at the leaf level, update u(x) =
u(x)+∑y∈N(A)∩P G(x,y)f(y) for each x ∈ A∩P .

Since the cost at each level is O(N) and there are
O(logN) levels, the whole cost of the algorithm is
O(N logN).

The question now is whether we can do it in fewer
steps. The answer is that we can, and it is based on the
following simple observation.

Let B1, . . . , B4 be B’s children. Since B = B1 ∪· · ·∪B4

and all the Bi are disjoint, we can conclude that (see
figure 5(a))

fB = fB1 + fB2 + fB3 + fB4 .

(a) (b)

B

B1 B2

B3 B4

A

A1 A2

A3 A4

Figure 5 A basic observation that speeds up the compu-
tation of fB and uA. (a) fB can be computed directly from
fBi , where the Bi are B’s children. (b) Instead of adding uA
directly to all the points in A, we only add to uAi , where the
Ai are A’s children.

Therefore, assuming that the fBi are ready, using the

previous line to compute fB is much more efficient than

summing over all f(y) in B for large B.

Similarly, for each A, we update u(x) := u(x) + uA
for each x ∈ A ∩ P . Assume that A1, . . . , A4 are the

children boxes of A. Then, since we perform the same

step for each Ai and each x belongs to one such Ai, we

can simply update uAi := uAi + uA instead, which is

much more efficient (see figure 5(b)).

Notice that in order to carry out these two improve-

ments, we make the assumption that for fB we visit

the parent after the children, while for uA we visit the

children after the parent. This requires us to traverse

the octree with different orders at different stages of

the algorithm. Putting the pieces together, we reach the

following algorithm.

(1) For each level - and each box A on level -, set uA
to zero.

(2) Traverse the tree from level L − 1 up to level 0,

and for each box B, if B is a leaf box, set fB =∑
y∈B∩P f (y). If B is not a leaf box, set fB = fB1 +

· · · + fB4 .

(3) For each level -, for each B, and for each A in B’s

interaction list, update uA = uA +G(cA, cB)fB .

(4) Traverse the tree from level 0 down to level L − 1,

and for each box A, if A is not a leaf box, update

uAi = uAi +uA for each child Ai of A. If A is a leaf

box, update u(x) = u(x)+uA.

(5) For each box A at the leaf level, update u(x) =
u(x)+∑y∈N(A)∩P G(x,y)f(y) for each x ∈ A∩P .

Steps (1), (3), and (5) are the same as in the previous

algorithm, and their cost is O(N) each. For steps (2)

and (4), since there are at most O(N) boxes in the tree

and the algorithm spends O(1) steps per box, the cost

is againO(N). As a result, the total cost is, as promised,
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O(N). This is essentially the fast multipole method
algorithm proposed by Greengard and Rokhlin.

3 Algorithmic Details

We have so far been ignoring the issue of accuracy. In
fact, if we use only fB and uA as described, the accu-
racy is low, since A and B can be only one box away
from each other. Recall that the three-step procedure
that we have used so far is a poor rank-1 approxima-
tion of the interaction between A and B. The low-rank
approximation used in the fast multipole method by
Greengard and Rokhlin is based on the truncated mul-
tipole and local expansions. The resulting fB and uA
are the coefficients of the truncated multipole and local
expansions, respectively. In addition, there are natu-
ral multipole-to-multipole operators TB,Bi that trans-
form fBi to fB (fB = ∑

i TB,BifBi ), local-to-local opera-
tors TAi,A that take uA to uAi (uAi = uAi + TAi,AuA),
and multipole-to-local operators TA,B that take fB to
uA (uA = uA + TA,BfB ). We will not go into the details
of these representation here, except for two essential
points.

• For any fixed accuracy, both fB from the multi-
pole expansions and uA from the local expansions
contain only O(1) numbers.

• The translation operators are maps from O(1)
numbers to O(1) numbers, and applying them
takes O(1) steps. A lot of effort has been devoted
to further optimizing the implementation of these
operators.

From these two points it is clear that the overall O(N)
complexity of the fast multipole method remains the
same when more accurate low-rank approximations are
used. There are many other ways to implement the
low-rank approximations and the translation operators
between them. Some examples include the H2 matri-
ces of Hackbusch et al., the fast multipole method
without multipole expansion of Anderson, and the
kernel-independent fast multipole method.
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VI.18 The Traveling Salesman Problem
William Cook

The traveling salesman problem, or TSP for short, is a
prominent model in discrete optimization [IV.38]. In
its general form, we are given a set of cities and the cost
to travel between each pair of them. The problem is to
find the cheapest route to visit each city and to return
to the starting point. The TSP owes its fame to its suc-
cess as a benchmark for developing and testing algo-
rithms for computationally difficult problems in dis-
crete mathematics, operations research, and computer
science. The decision version of the problem is a mem-
ber of the np-hard [I.4 §4.1] complexity class. Applica-
tions of the TSP arise in logistics, machine scheduling,
computer-chip design, genome mapping, data analysis,
guidance of telescopes, circuit-board drilling, machine-
translation systems, and in many other areas.

The origin of the TSP’s catchy name is somewhat of a
mystery. It first appears in print in a 1949 RAND Corpo-
ration research report by Julia Robinson, but she uses
the term in an offhand way, suggesting it was a famil-
iar concept at the time. The origin of the problem itself
goes back to the early 1930s, when it was proposed
by Karl Menger at a mathematics colloquium in Vienna
and by Hassler Whitney in a seminar at Princeton Uni-
versity. The problem also has roots in graph theory and
in the study of Hamiltonian circuits.

1 Exact Algorithms

A route that visits all cities and returns to the starting
point is called a tour ; finding an optimal tour (that is,
one that is cheapest) is the goal of the TSP. This can be
accomplished by simply enumerating all permutations
of the cities and evaluating the costs of the correspond-
ing tours. For ann-city TSP, this approach requires time
proportional to n factorial. In 1962, Bellman and the
team of Held and Karp each showed that any instance
of the problem can solved in time proportional ton22n.
This is significantly faster than brute-force enumera-
tion, but the algorithm takes both exponential time and
exponential space.



VI.18. The Traveling Salesman Problem 779

The heart of the Bellman–Held–Karp method can be
described by a simple recursive equation. To set this up,
denote the cities by the labels 1,2, . . . , n and, for any
pair of cities (i, j), let cij denote the cost of traveling
from city i to city j. We may set city 1 as the fixed
starting point for the tours; let N = {2, . . . , n} denote
the remaining cities. For any S ⊆ N and for any j ∈ S,
let opt(S, j) denote the minimum cost of a path starting
at 1, running through all points in S, and ending at j.
We have

opt(S, j) = min(opt(S \ {j}, i)+ cij : i ∈ S \ {j}). (1)

Moreover, the optimal value of the TSP is

ν∗ = min(opt(N, j)+ cj1 : j ∈ N). (2)

Observe that for all j ∈ N we have opt({j}, j) = c1j .
Starting with these values, the recursive equation (1) is
used to build the values opt(S, j) for all S ⊆ N and
j ∈ S, working our way through sets with two ele-
ments, then sets with three elements, and step by step
up to the full set N . Once we have the values opt(N, j)
for all j ∈ N , we use (2) to find ν∗. Now, in a sec-
ond pass, the optimal tour is computed by first iden-
tifying a city vn−1 such that opt(N,vn−1) + cvn−11 =
ν∗, then identifying a city vn−2 ∈ N \ {vn−1} such
that opt(N \ {vn−1}, vn−2) + cvn−1vn−2 = opt(N,vn−1),
and so on until we have v1. The optimal tour is
(1, v1, . . . , vn−1). This second pass is to permit the algo-
rithm to store only the values opt(S, j) and not the
actual paths that determine these values.

The running-time bound arises from the fact that in
an n-city problem there are 2n−1 subsets S that do not
contain the starting point. For each of these we consider
at most n choices for the end city j, and the computa-
tion of the opt(S, j) value involves fewer than n addi-
tions and n comparisons. Multiplying 2n−1 by n by 2n,
we have that the total number of steps is no more than
n22n.

Despite the attention that the TSP receives, no algo-
rithm with a better worst-case running time has been
discovered for general instances of the problem in the
fifty years plus since the work of Bellman, Held, and
Karp. It is a major open challenge in TSP research to
improve upon the n22n bound.

2 Approximation Algorithms

The problem of determining whether or not a given
graph has a Hamiltonian circuit, that is, a circuit that
visits every vertex of the graph, is also a member of the
NP-hard complexity class. This problem can be encoded

as a TSP by letting the cities correspond to the vertices
of the graph, assigning cost 0 to all pairs of cities cor-
responding to edges in the graph and assigning cost
1 to all other pairs of cities. A Hamiltonian circuit has
cost 0, and any nonoptimal tour has cost at least 1. A
method that returns a solution within any fixed per-
centage of optimality will therefore provide an answer
to the yes/no question. Thus, unless NP = P, there can
be no α-approximation algorithm for the TSP that runs
in polynomial time, that is, no algorithm that is guar-
anteed to produce a tour of cost no more than α times
the cost of an optimal tour.

An important case of the TSP is when the travel costs
are symmetric, that is, when the cost of traveling from
city A to city B is the same as the cost of traveling from B
to A. A further natural restriction, known as the triangle
inequality, states that for any three cities A, B, and C, the
cost of traveling from A to B plus the cost of traveling
from B to C must not be less than the cost of traveling
from A directly to C. Under these two restrictions, there
is a polynomial-time algorithm due to Christofides that
finds a tour the cost of which is guaranteed to be no
more than 3

2 times the cost of an optimal tour.
A symmetric instance of the TSP can be described

by a complete graph G = (V , E) having vertex set
V = {1, . . . , n} and edge set E consisting of all pairs
of vertices, together with travel costs (ce : e ∈ E).
Christofides’s algorithm begins by finding a minimum-
cost spanning tree T in G; the cost of T is no more
than the cost of an optimal TSP tour. The algorithm
then computes a minimum-cost perfect matching M in
the subgraph of G spanned by the vertices that meet
an odd number of edges in the tree T ; the cost of M is
no more than 1

2 times the cost of an optimal TSP tour
since any tour is the union of two perfect matchings.
The union of the edges in T and the edges in M form a
graph H on the vertices V such that every vertex meets
an even number of edges. ThusH has an Eulerian cycle,
that is, a route that starts and ends at the same vertex
and visits every edge of H. The Eulerian cycle can be
transformed into a TSP tour by traversing the cycle and
skipping over any vertices that have already been vis-
ited. The cost of the resulting tour is no more than the
cost of the cycle due to the triangle inequality. Thus,
the cost of the tour is no more than 3

2 times the cost of
the optimal tour.

Christofides proved his 3
2 -approximation result in

1976. Again, despite considerable attention from the
research community, the factor of 3

2 has not been
improved upon for the case of general symmetric costs
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satisfying the triangle inequality. This is in contrast to
the Euclidean TSP, where cities correspond to points in
the plane and the travel cost between two cities is the
Euclidean distance between the points. For the Euclid-
ean TSP, it is known that for any α greater than 1
there exists a polynomial-time α-approximation algo-
rithm. Such a result is not possible in the general
triangle-inequality case unless NP = P.

The 3
2 result of Christofides applies only to symmet-

ric instances of the TSP. For asymmetric instances satis-
fying the triangle inequality, there exists a randomized
polynomial-time algorithm that with high probability
produces a tour of cost no more than a factor propor-
tional to logn/ log logn times the cost of an optimal
tour.

3 Exact Computations

In her 1949 paper Robinson formulates the TSP as find-
ing “the shortest route for a salesman starting from
Washington, visiting all the state capitals and then
returning to Washington.” The fact that the TSP is in
the NP-hard class does not imply that exactly solving a
particular instance of the problem, such as Robinson’s
example, is an insurmountable task. Indeed, five years
after Robinson’s paper, Dantzig, Fulkerson, and John-
son initiated a computational approach to the problem
by building a tour through 49 cities in the United States,
together with a proof that their solution was the short-
est possible. This line of work has continued over the
years, including a 120-city solution though Germany in
1977, a 532-city U.S. tour in 1987, and a 24 978-city
tour through Sweden in 1998. Each of these studies
works with symmetric integer-valued travel costs that
approximate either the road distances or the Euclidean
distances between city locations.

The dominant approach to the exact solution of
large-scale symmetric instances of the TSP is the
linear-programming [IV.11 §3.1] (LP) technique de-
veloped by Dantzig et al. in their original 1954 paper.
For a TSP specified by a complete graph G = (V , E),
an LP relaxation of the TSP instance can be formulated
using variables (xe : e ∈ E). A tour corresponds to the
LP solution obtained by setting xe = 1 if the edge e is
included in the tour, and setting xe = 0 otherwise. The
Dantzig et al. subtour relaxation of the symmetric TSP
is the LP model

minimize
∑
(cexe : e ∈ E), (3)

subject to
∑
(xe : v is an end of e) = 2 ∀v ∈ V, (4)

∑
(xe : e has exactly one end in S) � 2 ∀∅ ≠ S � V,

(5)

0 � xe � 1 ∀e ∈ E. (6)

The equations (4) are called the degree equations and
the inequalities (5) are called the subtour-elimination
constraints. For any tour, the corresponding 0/1-vector
x satisfies all the degree equations and subtour-
elimination constraints. Thus, the optimal LP value is
a lower bound on the cost of an optimal solution to the
TSP. If the travel costs satisfy the triangle inequality,
then the optimal TSP value is at most 3

2 times the opti-
mal subtour value. The 4

3 conjecture states that this
3
2 factor can be improved to 4

3 ; its study is a focal
point of efforts to improve Christofides’s approxima-
tion algorithm.

In computational studies, the subtour relaxation is
solved by an iterative process called the cutting-plane
method. To begin, an optimal LP solution vector x0 is
computed for the much smaller model having only the
degree equations as constraints. The method iteratively
improves the relaxation by adding to the model individ-
ual subtour-elimination constraints that are violated by
x0 and then computing the optimal LP solution again.
When x0 satisfies all subtour-elimination constraints,
then it is an optimal solution to the subtour relaxation.
The success of the method relies in practice on the fact
that typically only a very small number of the exponen-
tially many subtour-elimination constraints need to be
represented explicitly in the LP relaxation.

To improve the lower bound provided by the subtour
relaxation, the exact-solution process continues by con-
sidering further classes of linear inequalities that are
satisfied by all tours, again adding individual inequali-
ties to the LP model in an iterative fashion. If the lower
bound provided by the LP model is sufficiently strong
for a test instance, then the TSP can be solved via a
branch-and-bound search using the LP model as the
bounding mechanism. The overall process is called the
branch-and-cut method ; it was developed for the TSP,
and it has been successfully applied to many other
problem classes in discrete optimization.

4 Heuristic Solution Methods

In many applied settings, a near-optimal solution to
the TSP is satisfactory, that is, a tour that has cost
close to that of an optimal tour but is not necessar-
ily the cheapest possible route. The search for heuris-
tic methods that perform well for such applications is
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the most actively studied topic in TSP research, and
this activity has helped to create and improve many of
the best-known schemes for general heuristic search,
such as simulated annealing, genetic algorithms, and
local-improvement methods. This line of research dif-
fers from that of approximation algorithms in that
the methods do not come with any strong worst-case
guarantee on the cost of the discovered tour, but the
performance of typical examples can be much better
than results produced by the known α-approximation
techniques.

Heuristic methods range from extremely fast algo-
rithms based on space-filling curves through sophisti-
cated combinations of local-improvement and genetic-
algorithm techniques. The choice of method in a practi-
cal computation involves a trade-off between hoped-for
tour quality and anticipated running time. The fastest
techniques construct a tour step by step, typically in a
greedy fashion, such as the nearest-neighbor method,
where at each step the next city to be added to the
route is the one that can be reached by the least travel
cost from the current city. The higher-quality heuristic
algorithms create a sequence of tours, seeking modifi-
cations that can lower an existing tour’s total cost. The
simplest of these tour-improvement methods, for sym-
metric costs, is the 2-opt algorithm, which repeatedly

searches for a pair of links in the tour that can be
replaced by a cheaper pair reconnecting the resulting
paths. The 2-opt algorithm serves as a building block
for many of the best-performing heuristic methods,
such as the Lin–Kernighan k-opt algorithm.

In a genetic algorithm for the TSP, an initial collec-
tion of tours is generated, say, by repeatedly applying
the nearest-neighbor algorithm with random starting
cities. In each iteration, some pairs of members of the
collection are chosen to mate and produce child tours.
A new collection of tours is then selected from the old
population and the children. The process is repeated a
large number of times and the best tour in the collec-
tion is chosen as the winner. In the mating step, sub-
paths from the parent tours are combined in some fash-
ion to produce the child tours. In the best-performing
variants, tour-improvement methods are used to lower
the costs of the child tours that are produced by the
mating process.
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Part VII

Application Areas

VII.1 Aircraft Noise
C. J. Chapman

1 Introduction

Aircraft noise is a subject of intense public interest, and
it is rarely out of the news for long. It became especially
important early in the 1950s with the growth in the use
of jet engines and again in the 1960s with the develop-
ment of the Anglo-French supersonic aircraft Concorde
(now retired). Aircraft noise is currently a major part of
the public debate about where to build new airports and
whether they should be built at all.

The general public might be surprised to know that
our understanding of the principles of aircraft noise,
and of the main methods that are available to control
it, have come largely from mathematicians. In particu-
lar, Sir James Lighthill, one of the great mathematical
scientists of the twentieth century, created a new scien-
tific discipline, called aerodynamic sound generation,
or aeroacoustics, when he published the first account of
how a jet generates sound in 1952. Prior to this theory,
which he created by mathematical analysis of the equa-
tions of fluid motion, no means were available to esti-
mate the acoustic power from a jet even to within a
factor of a million.

Moreover, Lighthill’s theory had an immediate prac-
tical consequence. The resulting eighth-power scaling
law for sound generation as a function of Mach num-
ber (flow speed divided by sound speed) meant that
the amount of thrust taken from the jet would have to
be strictly controlled; this was achieved by the devel-
opment of high bypass-ratio turbofan aeroengines, in
which a high proportion of the thrust is generated by
the large fan at the front of the engine. Such a fan
produces a relatively small increase in the velocity of
a large volume of air, i.e., in the bypass air flow sur-
rounding the jet, in contrast to the jet itself, which pro-
duces a large increase in the velocity of a small volume

of air. The engineering consequence of a mathematical
theory is therefore plain to see whenever a passenger
ascends the steps to board a large aircraft and admires
the elegant multibladed fan so clearly on display.

2 Lighthill’s Acoustic Analogy

The idea behind Lighthill’s theory is that the equations
of fluid dynamics may be written exactly like the wave
equation of acoustics, with certain terms (invariably
written on the right-hand side) regarded as acoustic
sources. Solution of this equation gives the sound field
generated by the fluid flow. A key feature of the method
is that the source terms may be estimated using the
simpler aerodynamic theory of flow in which acoustic
waves have been filtered out. The simpler theory, which
includes the theory of incompressible flow as a limit-
ing case, had become very highly developed during the
course of the two world wars and in the period there-
after and was therefore available for immediate use in
Lighthill’s theory of sound generation.

This innocuous-sounding description of the method
hides many subtleties, which are in no way alleviated
by the fact that Lighthill’s equation is exact. But let us
first give the equation in its standard form and define
its terms. The equation is(

∂2

∂t2
− c2

0∇2
)
ρ′ = ∂2Tij

∂xi∂xj
.

Here, t is time and∇2 = ∂2/∂x2
1+∂2/∂x2

2+∂2/∂x2
3 is the

Laplacian operator, where (x1, x2, x3) is the position
vector in Cartesian coordinates. Away from the source
region, the fluid (taken to be air) is assumed to have
uniform properties, notably sound speed c0 and den-
sity ρ0. At arbitrary position and time, the fluid density
is ρ, and the deviation from the uniform surrounding
value is ρ′ = ρ−ρ0, the density perturbation. The left-
hand side of Lighthill’s equation is therefore simply the
wave operator, for a uniform sound speed c0, acting on
the density perturbation produced throughout the fluid
by a localized jet.
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The right-hand side of the equation employs the
summation convention for indices (here over i, j =
1,2,3) and so is the sum of nine terms in the second
derivatives of T11, T12, . . . , T33. Collectively, these nine
quantities Tij form the Lighthill stress tensor, defined
by

Tij = ρuiuj + (p′ − c2
0ρ

′)δij − τij.
Here, (u1, u2, u3) is the velocity vector, p′ = p − p0 is
the pressure perturbation, defined analogously to ρ′,
and τij is the viscous stress tensor, representing the
forces due to fluid friction. Because of the symmetry
of Tij with respect to i and j, there are only six inde-
pendent components, of which the three with i = j are
longitudinal and the three with i ≠ j are lateral.

The solution of Lighthill’s equation, together with the
acoustic relation p′ = c2

0ρ′ that applies in the radiated
sound field (though not in the source region), gives the
outgoing sound field p′(x, t) in the form

p′ = 1
4π

∂2

∂xi∂xj

∫
V

Tij(y, t − |x −y|/c0)
|x −y| dV.

Here, x is the observer position, y = (y1, y2, y3) is an
arbitrary source position, and |x − y| is the distance
between them. The integration is over the source region
V , and the volume element is dV = dy1 dy2 dy3. The
retarded time t−|x−y|/c0 allows for the time it takes
a signal traveling at speed c0 to traverse the distance
from y to x.

Lighthill’s equation is referred to as an acoustic anal-
ogy because the uniform “acoustic fluid,” in which
acoustic perturbations are assumed to be propagating,
is entirely fictional in the source region! For example,
the speed of sound there is not uniform but varies
strongly with position in the steep temperature gra-
dients of an aircraft jet; and the fluid velocity itself,
which contributes to the propagation velocity of any
physical quantity such as a density perturbation, is
conspicuously absent from a wave operator that con-
tains only c0. Nevertheless, Lighthill’s power as a math-
ematical modeler enabled him to see that the acoustic
analogy, with Tij estimated from nonacoustic aerody-
namic theory, would provide accurate predictions of jet
noise in many important operating conditions, e.g., in
subsonic jets at Mach numbers that are not too high.

The increasing difficulty in applying Lighthill’s theory
at higher Mach numbers derives from the fact that an
aircraft jet is turbulent [V.21] and contains swirling
eddies of all sizes that move irregularly and unpre-
dictably throughout the flow. The higher the Mach
number, the more that must be known about the

individual eddies or their statistical properties in order
to take account of the delicate cancelation of the
sound produced by neighboring eddies. As the Mach
number increases, small differences in retarded times
become increasingly important in determining the pre-
cise amount of this cancelation. Lighthill’s equation
therefore provides an impetus to develop ever more
sophisticated theories of fluid turbulence for modeling
the stress tensor Tij to greater accuracy.

2.1 Quadrupoles

A noteworthy feature of Lighthill’s equation is that
the source terms occur as second spatial derivatives
of Tij . This implies that the sound field produced by
an individual source has a four-lobed cloverleaf pat-
tern, referred to as a quadrupole directivity. A crucial
aspect of Lighthill’s theory of aerodynamic sound gen-
eration is, therefore, that the turbulent fluid motion
creating the sound field is regarded as a continuous
superposition of quadrupole sources of sound. Phys-
ically, this is the correct point of view because away
from boundaries the fluid has “nothing to push against
except itself”; that is, since the pressure inside a fluid
produces equal and opposite forces on neighboring ele-
ments of fluid, the total dipole strength, arising from
the sum of the acoustic effects of these internal forces,
must be identically zero.

Mathematically, the four-lobed directivity pattern
arises from the expansion of p′ in powers of 1/|x| for
large |x|. The dominant term, proportional to 1/|x|,
gives the radiated sound field; its coefficient contains
angular factors xixj/|x|2 corresponding to the deriva-
tives ∂2/∂xi∂xj acting on the integral containing Tij .
For example, in spherical polar coordinates (r , θ,φ)
with r = |x| and

(x1, x2, x3) = (r sinθ cosφ, r sinθ sinφ, r cosθ),

the lateral (x1, x2) quadrupole has the directivity pat-
tern

x1x2

|x|2 = 1
2 sin2 θ sin 2φ.

This pattern has lobes centered on the meridional half-
planes φ = π/4, 3π/4, 5π/4, and 7π/4, separated by
the half-planesφ = 0,π/2,π , and 3π/2, in which there
is no sound radiation.

2.2 The Eighth-Power Law

Lighthill’s theory predicts that the power generated
by a subsonic jet is proportional to the eighth power
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of the Mach number. This follows from a beautifully
simple scaling argument based on only the equations
given above, and we will now present this argument in
full, at the same time giving the scaling laws for the
important physical quantities in the subsonic jet noise
problem.

Assume that a jet emerges with speed U from a noz-
zle of diameter a into a fluid in which the ambient den-
sity is ρ0 and the speed of sound is c0. The Mach num-
ber of the jet is therefore M = U/c0, and the timescale
of turbulent fluctuations in the jet is a/U . The fre-
quency therefore scales with U/a, and the wavelength
λ of the radiated sound scales with c0a/U , i.e., a/M . We
are considering the subsonic regime M < 1, so a < λ,
and the source region is compact.

The Lighthill stress tensor Tij is dominated by the
terms ρuiuj , which scale with ρU2, and the integra-
tion over the source region gives a factor a3. In the
far field, the term |x − y| appearing in the denomi-
nator of the integrand may be approximated by |x|,
and the spatial derivatives applied to the integral intro-
duce a factor 1/λ2. The far-field acoustic quantities
are the perturbation pressure, density, and velocity,
i.e., p′, ρ′, and u′, which satisfy the acoustic relations
p′ = c2

0ρ′ = ρ0c0u′. Putting all this together gives the
basic far-field scaling law

p′

ρ0c2
0

= ρ′

ρ0
= u

′

c0
∼ M4 a

|x| .

In a sound wave, the rate of energy flow, measured
per unit area per unit time, is proportional to p′u′.
Since a sphere of radius |x| has area proportional to
|x|2, it follows that the acoustic power W ′ of the jet,
i.e., the total acoustic energy that it radiates per unit
time in all directions, obeys the scaling law

W ′

ρ0c3
0a2

∼ M8.

This is the famous eighth-power law for subsonic jet
noise. It would be hard to find a more striking exam-
ple of the elegance and usefulness of the best applied
mathematics.

The significance of the high exponent in the scaling
law is that at very low Mach numbers a jet is ineffi-
cient at producing sound; but this inefficiency does not
last when the Mach number is increased. This is why
jet noise became such a problem in the early 1950s,
as aircraft engines for passenger flight became more
powerful. Unfortunately, there is no way to evade a fun-
damental scaling law imposed by the laws of mechan-
ics, and it is impossible to make a very-high-speed

jet quiet. This was the original impetus to develop
high-bypass-ratio turbofan aeroengines to replace jet
engines.

3 Further Acoustic Analogies

The acoustic analogy has been extended in many ways.
For example, the Ffowcs Williams–Hawkings equation
accounts for boundary effects by means of a vector Ji
and a tensor Lij to represent mass and momentum flux
through a surface, which may be moving. These terms
are given by

Ji = ρ(ui − vi)+ ρ0vi

and

Lij = ρui(uj − vj)+ (p − p0)δij − τij,
where (v1, v2, v3) is the velocity of the surface and
τij is the viscous stress tensor. Derivatives of Ji and
Lij , with suitable delta functions included to localize
them on the surface, are then used as source terms
for the acoustic wave equation. The Ffowcs Williams–
Hawkings equation has been of enduring importance
in the study of aircraft noise and is widely used in
computational aeroacoustics.

Variations of Lighthill’s equation can be obtained
by redistributing terms between the right-hand side,
where they are regarded as sources, and the left-hand
side, where they are regarded as contributing to the
wave propagation operator; different choices of the
variable (or the combination of variables) on which
the wave operator acts are also possible. Although
the equations obtained in this way are always exact,
the question of how useful they are, and whether the
physical interpretations they embody are “real,” has
at times been contentious and led to interminable
discussion! Among the widely accepted equations are
those of Lilley and Goldstein, which place the convec-
tive effect of the jet mean flow in the wave operator
and modify the source terms on the right-hand side
accordingly. Morfey’s acoustic analogy is also useful;
this provides source terms for sound generation by
unsteady dissipation and nonuniformities in density,
such as occur in the turbulent mixing of hot and cold
fluids.

4 Howe’s Vortex Sound Equation

Since the vorticity of a flow field is so important in
generating sound, both in a turbulent jet and in other
flows, it is desirable to have available an equation that
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contains it explicitly as a source, rather than implicitly,
as in the Lighthill stress tensor. The vorticityω, defined
as the curl of the velocity field, is a measure of the local
rotation rate of a flow. In vector notation, ω = ∇ ∧ u,
where ∧ indicates the cross product; in components,

(ω1,ω2,ω3) =
(
∂u3

∂x2
− ∂u2

∂x3
,
∂u1

∂x3
− ∂u3

∂x1
,
∂u2

∂x1
− ∂u1

∂x2

)
.

An extremely useful equation with vorticity as a
source is Howe’s vortex sound equation, in which the
independent acoustic variable is the total enthalpy
defined by

B =
∫

dp
ρ

+ 1
2 |u|2.

The symbol B is used to stand for Bernoulli because
this variable appears in Bernoulli’s equation. Howe’s
vortex sound equation is a far-reaching generalization
of Bernoulli’s equation, and is(

D
Dt

(
1
c2

D
Dt

)
− 1
ρ
∇ · (ρ∇)

)
B = 1

ρ
∇ · (ρω∧ u),

where c is the speed of sound and D/Dt = ∂/∂t+u ·∇
is the convective derivative. In the limit of low Mach
number, this simplifies to(

1

c2
0

∂2

∂t2
−∇2

)
B = ∇ · (ω∧ u),

and the pressure in the radiated sound field is p = ρ0B.

Howe’s equation is used to calculate the sound pro-
duced by the interaction of vorticity with any type of
surface. Examples include aircraft fan blades interact-
ing with turbulent inflows or with the vortices shed
by any structure upstream of the blades. An advan-
tage of Howe’s equation is that it provides analytical
solutions to a number of realistic problems, and hence
gives the dependence of the sound field on the design
parameters of an aircraft.

5 Current Research in Aircraft Noise

Aircraft noise is such an important factor in limiting
the future growth of aviation that research is carried
out worldwide to limit its generation. Jet noise is dom-
inant at takeoff, fan and engine noise are dominant in
flight, and airframe noise is dominant at landing, so
there is plenty for researchers to do. Sources of engine
noise are combustion and turbomachinery, and sources
of airframe noise are flaps, slats, wing tips, nose gear,
and main landing gear. The propagation of sound once
it has been generated is also an important area of air-
craft noise research, especially the propagation of sonic
boom.

A new subject, computational aeroacoustics, was cre-

ated thirty years ago, and this is now the dominant

tool in aircraft noise research. The reader might won-

der why its elder sibling, computational fluid dynamics,

is not adequate for the task of predicting aircraft noise

simply by “adding a little bit of compressibility” to an

established code. The answer lies in one of the most

pervasive ideas in mathematics, that of an invariant—

here, the constant in Bernoulli’s theorem. In an incom-

pressible flow, a consequence of Bernoulli’s theorem

is that pressure fluctuations are entirely balanced by

corresponding changes in velocity. Specialized com-

putational techniques must therefore be developed to

account for the minute changes in the Bernoulli “con-

stant” produced by fluid compressibility and satisfying

the wave equation. Computational aeroacoustics takes

full account of such matters, which are responsible for

the fact that only a minute proportion of near-field

energy (the province of computational fluid dynamics)

propagates as sound.

Research on aircraft noise takes place in the world’s

universities, companies, and government research es-

tablishments, and all of it relies heavily on mathemat-

ics. It is remarkable how many of the most practi-

cal contributions to the subject are made by individ-

uals who are mathematicians; no fewer than six of the

authors in the further reading section below took their

first degree in mathematics (many with consummate

distinction) and have used mathematics throughout

their careers.
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VII.2 A Hybrid Symbolic–Numeric
Approach to Geometry
Processing and Modeling
Thomas A. Grandine

1 Background

Numerical computations for scientific and engineering

purposes were the very first applications of the elec-

tronic computer. Originally built to calculate artillery

firing tables, the first use of ENIAC (Electronic Numer-

ical Integrator and Computer) was performing calcu-

lations for the hydrogen bomb being developed at

Los Alamos. Indeed, all of the applications of early

computers were numerical applications. After the art

of computer programming had matured considerably,

Macsyma at MIT introduced the notion of symbolic

computing to the world. Unlike numerical comput-

ing, symbolic computing solves problems by producing

analytic expressions in closed form.

More recently, tools have been developed to combine

these two approaches in powerful and intriguing ways,

Chebfun and Sage being prime examples. At Boeing, my

colleagues and I have also been pursuing this idea for

some time, and we continue to discover new ways of

leveraging this technology to solve problems.

Geometric models are required throughout Boeing

for many reasons: digital preassembly, engineering

analysis, direct manufacturing, supply chain manage-

ment, cost estimation, and myriad other applications.

Depending on the application, models may be very sim-

ple (see figure 1) or very complex (see figure 2). Regard-

less of complexity, many computations need to be

performed with these models. Properly conveying the

algebraic formulation of these geometry problems so

that the computations can be performed is not always

straightforward.

Boeing has software that takes advantage of the com-

bined strength of numeric and symbolic methods. It

is named Geoduck (pronounced GOO-ee-duck) after a

large clam indigenous to the Pacific Northwest in the

United States. Like Sage, it is based on python [VII.11]

programming. The tool enables construction of geom-

etry models at arbitrary levels of detail and rapid query

and processing of those models by most downstream

applications.

Like most commercially available geometric model-

ing tools, Geoduck represents geometric entities as
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Figure 1 A simple two-dimensional
airplane wing planform model.

Figure 2 A detailed model of the Boeing 777.

mathematical maps from a rectangular domain (param-
eter space) to a range (model space). For example, the
cylinder shown in figure 3 depicts the range of the map

S(u,v) =

⎛⎜⎜⎝
cos 2πu
sin 2πu

4v

⎞⎟⎟⎠ .
Geoduck uses tensor product splines [IV.9 §2.3] as the
primary functional form. The most important reasons
for this are that they have a convenient basis for com-
putation (B-splines), they live in nestable linear function
spaces, and they are made up of polynomial pieces that
can be integrated and differentiated symbolically.

2 Some Simple Examples

Given a planar curve represented in Geoduck as a para-
metric spline map c from [0,1] to two-dimensional
model space, one frequent problem is finding the clos-
est and farthest points from a given pointp, specifically
to determine the extreme points of

1
2 (c(u)− p) · (c(u)− p).

Like Chebfun and Sage, Geoduck permits functions to
be assigned to variables, and this makes calculations
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v

u

Figure 3 A simple parametric surface map.

with spline functions easy to code and understand
in Geoduck. After accounting for the endpoints, the
extreme points are found by using the following Geo-
duck code to differentiate the expression and set the
resulting expression to zero:

cder = c.Differentiate ()
der = Dot (cder, c - p)
expts = der.Zeros ()

Arithmetic operators have been overloaded in Geoduck
to work on splines, and this is done in the assignment
to der. Since splines are piecewise polynomial func-
tions, any linear combination of them is also a spline
and can be represented as a B-spline series, and that is
how Geoduck implements overloaded operators.

Since c is a spline function, so is its derivative, and
the Differentiate method performs the expected
function. Similarly, the Dot function forms the spline
function that is the dot product of cder and c - p.
Note that the product of two splines is also a spline.

All of the operations up to this point have been car-
ried out analytically. The Zeros method, however, is a
numerical method because it is designed to work on
piecewise polynomial functions of arbitrary degree. In
Geoduck, the method is a straightforward implemen-
tation of a 1989 algorithm of mine, and it finds all of
the real zeros of the spline function. The results of this
code are depicted in figure 4. Here, the curve c is shown
along with line segments drawn from the point p to the
calculated points on the curve c. The segments corre-
sponding to local maxima are shown as dashed lines,
while the local minima are shown as dotted lines.

Of course, the basic recipe of performing a deriva-
tion for a geometric calculation of interest then encod-
ing that derivation into a Geoduck script that combines

Figure 4 The local extrema of the
distance from a point to a curve.

symbolic and numeric calculations can be followed

over and over again to solve a very rich collection of

interesting problems.

As a second example, consider the problem of finding

common tangents to a pair of curves c and d. As before,

both curves will be represented as vector-valued spline

functions in two dimensions. If points on c are given

by c(u) and points on d are given by d(v), then a com-

mon tangent will be the line segment between points

c(u) and d(v) that has the property that the vector

c(u)− d(v) is parallel to the tangents of both curves,

given by c′(u) and d′(v). The (u,v) pairs that satisfy

the following system of equations correspond to the

endpoints of the desired tangent lines:

c′(u)× (c(u)− d(v)) = 0,

d′(v)× (c(u)− d(v)) = 0,

where × is the scalar-valued cross product in R2, i.e.,

the determinant of the 2 × 2 matrix whose columns are

the operands.

Consider the following Geoduck code:

cminusd = TensorProduct (c, ’-’, d)

cder = cminusd.Differentiate (0)

dder = cminusd.Differentiate (1)

f1 = Cross (cder, cminusd)

f2 = Cross (dder, cminusd)

tanpts = Zeros ([f1, f2])

This example introduces the TensorProduct function,

which takes a pair of spline functions as inputs and

returns a new spline function defined over the tensor

product of the domains of the original functions. In this
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Figure 5 Calculated common tangents to a pair of curves.

case, both c and d are defined over the interval [0,1], so
the new spline function cminusd is defined over [0,1]2.

The Differentiate method is similar to before,
except now it is applied to functions of more than one
variable, so it will return the partial derivative with
respect to the variable indicated by the index passed
in. The Cross function here is similar to Dot in the first
example, and it also requires the two input splines to
be defined over the same domain, which in this case
is [0,1]2.

Finally, the Zeros function solves the given spline
system of equations. The curves c and d are shown in
figure 5 along with the four computed tangent lines.

3 Industrial Examples

Although Geoduck excels at solving simple geometric-
analysis problems as just illustrated, it also solves
real-life geometric-modeling and geometry-processing
problems faced by Boeing. Consider the wing depicted
in figure 6. Following standard practice, a surface w
is constructed that models the wing as a tensor prod-
uct spline. Usually, the points w(u,v) on the wing are
arranged so that the variable v increases with wingspan
and the functions w(·, v) for each fixed value of v
describe individual airfoils. Each such airfoil has the
property that w(0, v) = w(1, v) is the point on the
trailing edge, and as u increases, the point on the air-
foil traverses first the lower part of the airfoil and then
the upper part.

One practical problem that needs to be solved as
a preprocessing step for many aerodynamic analysis
simulations is to determine the leading edge of the
wing. For each airfoil section, the point on the leading
edge is characterized by being the point that is farthest
from the trailing edge. Thus, for each v it can be deter-
mined by minimizing (w(u,v)−w(0, v)) · (w(u,v)−

Figure 6 A wing model with leading edge curve shown.

w(0, v)). Since v is (temporarily) fixed, this problem
can be solved by differentiating with respect to u and
setting the resulting expression equal to 0:

wu(u,v) · (w(u,v)−w(0, v)) = 0.

Since this equation can be solved for u for every value
of v , that leads to an entire one-parameter family of
solutions of the formw(u(v), v) for the implicit func-
tionu given by the equation. The resulting leading edge
curve is shown in figure 6, and it is generated with the
following Geoduck code:

w0 = w.Trim ([[0.0, 0.0], [0.0, 1.0]])
zero = Line ([0.0], [0.0])
w0uv = TensorProduct (zero, ’+’, w0)
wu = w.Differentiate (0)
f = Dot (wu, w - w0uv)
le = f.Intersect ([1.0, 0.0])

The spline function zero is just the function defined
over [0,1] whose value is zero everywhere. It is needed
here so that w0uv is a function of two variables.

This is very similar to the previous examples, with
only two new wrinkles. The first is the use of the Trim
method to construct a new spline identical to the origi-
nal except that its domain of definition is restricted to a
subset of the original. Since the value of u is restricted
in this case to be 0, the function w0 is a function of
only one variable. Making w0 a function of two variables
necessitates the use of TensorProduct so that Dot is
once again provided with input functions with identical
domains. The last wrinkle is the use of the Intersect
method. In this case, it finds the zero set of an under-
determined system in the domain of f . The resulting
locus of points in that domain is the preimage of the
leading edge curve we are seeking.

As a final example, consider the problem of locating
a spar of maximum depth along the span of a wing,
something that is very desirable for structural reasons.
This time, imagine the wing split into two pieces w1
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Figure 7 The maximum-depth spar for the given wing. Only
the lower part of the wing is shown here so that the spar is
visible.

and w2. Suppose that w1 is the upper part of the wing
whilew2 is the lower part. As before, the second param-
eter increases with the span of the wing. Imagine that
both surfaces have the same parametrization, so that
the y component of the two pieces satisfies y1(·, v1) =
y2(·, v2) whenever v1 = v2. Thus, for each value of v1

the vertical distance between the upper and lower sur-
faces will be maximized whenever the corresponding
tangent vectors are parallel, i.e., when

∂
∂u1

(
x1(u1, v1)
z1(u1, v1)

) ∥∥∥∥ ∂
∂u2

(
x2(u2, v2)
z2(u2, v2)

)
.

With this in mind, new surfaces ŝ1 and ŝ2 can be defined
by

ŝ1(u1, v1) =

⎛⎜⎜⎜⎝
x1(u1, v1)
y1(u1, v1)

(∂/∂u1)z1(u1, v1)
(∂/∂u1)x1(u1, v1)

⎞⎟⎟⎟⎠ ,

ŝ2(u2, v2) =

⎛⎜⎜⎜⎝
x2(u2, v2)
y2(u2, v2)

(∂/∂u2)z2(u2, v2)
(∂/∂u2)x2(u2, v2)

⎞⎟⎟⎟⎠ .
Note that the third component of each of these new
surfaces is the slope of the curves that are the sections
of the surfaces. The tangent vectors are parallel when
these slopes are the same. Thus, curves along each of
the two original surfaces s1 and s2 can be calculated
as the intersection of the new surfaces ŝ1 and ŝ2. The
resulting spar is the ruled surface between these two
curves, which is shown in figure 7.
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VII.3 Computer-Aided Proofs via
Interval Analysis
Warwick Tucker

1 Introduction

The aim of this article is to give a brief introduction
to the field of computer-aided proofs. We will do so
by focusing on the problem of solving nonlinear equa-
tions and inclusions using techniques from interval
analysis. Interval analysis is a framework designed to
make numerical computations mathematically rigor-
ous. Instead of computing approximations to sought
quantities, the aim is to compute enclosures of the
same. This requires taking both rounding and dis-
cretization errors into account.

1.1 What Is a Computer-Aided Proof?

Computer-aided proofs come in several flavors. The
types of proofs that we will address here are those
that involve the continuum of the real line. Thus, the
problems we are trying to solve are usually taken from
analysis, rather than from, say, combinatorics.

Rounding errors can be handled by performing all
calculations with a set-valued arithmetic, such as inter-
val arithmetic with outward rounding. The discretiza-
tion errors, however, require some very careful analy-
sis, and this usually constitutes the genuinely hard,
analytical, part of the preparation of the proof. Quite
often, the problem must be reformulated as a fixed-
point equation in some suitable function space, and
this can require some delicate arguments from func-
tional analysis. Moreover, the discretization bounds
must be made completely rigorous and explicit; in fact,
they must be computable in finite time.

1.2 Examples from Mathematics

The field of interval analysis [II.20] has reached a
high level of maturity, and its techniques have been
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used in solving many notoriously hard problems in
mathematics.

As a testament to the advances made in recent years,
we mention a few results that have been obtained using
computer-aided proofs:

• Hass and Schlafly (2000) solved the double bubble
conjecture (a problem stemming from the theory of
minimal surfaces);

• Gabai et al. (2003) showed that homotopy hyper-
bolic 3-manifolds have noncoalescable insulator
families;

• the long-standing Kepler conjecture (concerning
how to densely pack spheres) was recently settled
by Hales (2005); and

• the present author solved Smale’s fourteenth prob-
lem about the existence of the Lorenz attractor in
1999.

2 Solving Nonlinear Equations

In this section we describe some computer-aided tech-
niques for solving nonlinear equations. As we shall see
later, this is a basic (hard) ingredient in many problems
from analysis. Some of the presented techniques can
be extended to the infinite-dimensional setting (e.g.,
fixed-point equations in function spaces), but in order
to keep the exposition simple and short we will cover
only the finite-dimensional case here.

To be precise, given a function f , together with a
search domain X, our task is to establish the existence
(and uniqueness) of all zeros of f residing inside X.
Due to the nonlinearity of f , and the global nature of
X, this is indeed not a simple task.

A basic principle of interval analysis is to extend our
original problem to a set-valued version that satisfies
the inclusion principle. In the setting we are interested
in (solving f(x) = 0), this means that we must find
an interval extension of f : that is, an interval-valued
function F satisfying

range(f ;x) = {f(x) : x ∈ x} ⊆ F(x). (1)

Here, x denotes an interval and x denotes a real num-
ber. When f is an elementary function, F is obtained
by substituting all appearing arithmetic operators and
standard functions with their interval-valued counter-
parts. In higher dimensions, we consider the compo-
nents of f separately.

We will now briefly describe two techniques that we
use in our search for the zeros of f .

2.1 Interval Bisection

Interval analysis provides simple criteria for exclud-
ing regions in the search space where no solutions to
f(x) = 0 can reside. The entire search region X is
adaptively subdivided by set-valued bisection into sub-
rectangles xi, each of which must withstand the test
0 ∈ F(xi). Failing to do so results in the subrectangle
being discarded from further search; by (1), the set xi
cannot contain any solutions. The bisection phase ends
when all remaining subrectangles have reached a suffi-
ciently small size. What we are left with is a collection
of rectangles whose union is guaranteed to contain all
zeros of f (if there are any) within the domain X.

As a simple example, consider the function f(x) =
sinx(x − cosx) on the domain X = [−10,10] (see fig-
ure 1(a)). This function clearly has eight zeros in X:
{±3π,±2π,±π,0, x∗}, where x∗ is the unique (posi-
tive) zero of x − cosx = 0. Applying the interval bisec-
tion method with the stopping tolerance 0.001 pro-
duces the nine intervals listed below. Note, however,
that intervals 4 and 5 are adjacent. This always hap-
pens when a zero is located exactly at a bisection point
of the domain.

Domain : [-10,10]
Tolerance : 0.001
Function calls: 227
Solution list :
1: [-9.42505,-9.42444] 6: [+0.73853,+0.73914]
2: [-6.28357,-6.28296] 7: [+3.14148,+3.14209]
3: [-3.14209,-3.14148] 8: [+6.28296,+6.28357]
4: [-0.00061,+0.00000] 9: [+9.42444,+9.42505]
5: [+0.00000,+0.00061]

The mathematical content of this computation is that
all zeros of f , restricted to [−10,10], are contained in
the union of the nine output intervals (see figure 1(b)).
No claims can be made about existence at this point.

2.2 The Interval Newton Method

Another (equally important) tool of interval analysis
is a checkable criterion for proving the existence and
(local) uniqueness of solutions to nonlinear equations.
The underlying tool is based on a set-valued exten-
sion of Newton’s method, which incorporates the Kan-
torovich condition, ensuring that the basin of attrac-
tion has been reached. Let x denote a subrectangle that
survived the bisection process, and let x̌ be a point in
the interior of x (e.g., its midpoint). We now form the
Newton image of x:

N(x) = x̌ − [DF(x)]−1f(x̌).



792 VII. Application Areas

–4

–2

0

2

4

6

8

–10 –8 –6 –4 –2 0 2 4 6 8 10

(a)

(b)

–10 –5 0 5 10

Figure 1 (a) The function f(x) = sinx(x − cosx) on the
domain X = [−10,10]. (b) Increasingly tight enclosures of
the zeros.

This is a set-valued version of the standard Newton
method: note that the correction term involves solv-
ing a linear system with interval entries. If we cannot
solve this linear system, we apply some more bisection
steps to the set x. The Newton image carries some very
powerful information. If N(x) ∩ x = ∅, then x can-
not contain any solution to f(x) = 0 and is therefore
discarded. On the other hand, if N(x) ⊆ x, then x con-
tains a unique zero of f . In the remaining case, we can
shrink x into N(x) ∩ x and redo the Newton test. If
successful, this stage will give us an exact count of the
number of zeros of f(x) within the domain X.

In figure 2 we illustrate the geometric construction
of the Newton image.

3 An Application to the
Restricted n-Body Problem

The Newtonian n-body problem addresses the dynam-
ics of n bodies (which can be assumed to be point

N (xk )

xk + 1 xkxk

Figure 2 One iteration of the interval Newton method.

particles) with masses mi > 0, moving according to

Newton’s laws of motion. A relative equilibrium is a

planar solution to Newton’s equations that performs a

rotation of uniform angular velocity about the system’s

center of mass. Thus, in a rotating coordinate frame,

the constellation of bodies is fixed.

A long-standing question, raised by Aurel Wintner

in 1941, concerns the finiteness of the number of

(equivalence classes of) relative equilibria. In 1998,

Fields medalist Steven Smale listed a number of chal-

lenging problems for the twenty-first century. Problem

number 6 reads:

Is the number of relative equilibria finite, in the n-
body problem of celestial mechanics, for any choice
of positive real numbers m1, . . . ,mn as the masses?

At the time of writing, this problem remains open for

n � 5.

Recently, Kulevich et al. (2009) established that the

number of equilibria in the planar circular restricted

four-body problem (PCR4BP) is finite for any choice of

masses. The PCR4BP under consideration consists of

three large bodies (primaries) with arbitrary masses at

the vertices of an equilateral triangle rotating on circu-

lar orbits about their common center of mass. A fourth

infinitesimal mass, subject to the gravitational attrac-

tion of the primaries, is inserted into their plane of

motion and is assumed to have no effect on their circu-

lar orbits. In an appropriately selected rotating frame,

the primaries are fixed (see figure 3).

Since we are concerned only with equivalence classes

of solutions, we may normalize the system’s total mass

such that
∑
i mi = 1. Without loss of generality, we may

also assume that the equilateral triangle of primaries

has unit sides. This makes the problem compact and

thus amenable to a global search.
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m1

m2

m3

m4 = 0

Figure 3 The basic configuration with Lagrange’s
equilateral triangle for the PCR4BP.

Let x1, x2, x3, c ∈ R2 denote the (fixed) positions
of the three primary bodies and their center of mass,
respectively. Let z = (z1, z2) be the position of the
fourth (infinitesimal mass) body. Then its motion is
governed by the system of differential equations

z̈1 = ∂V
∂z1

+ 2ż2,

z̈2 = ∂V
∂z2

− 2ż1,

where the potential V is given by

V(z) = 1
2‖z − c‖2

2 +
3∑
k=1

mi

‖xi − z‖2
. (2)

Thus, the relative equilibria are given by the critical
points of V . In essence, we have reduced the problem
to that of solving nonlinear equations.

Kulevich et al. showed not only that the number of
relative equilibria in the PCR4BP is finite, but that there
are at most 196 equilibrium points. This upper bound is
believed to be a large overestimation. Numerical explo-
rations by Simó (1978) indicate that there are eight,
nine, or ten equilibria, depending on the values of the
masses.

The proof of Kulevich et al. is based on techniques
from Bernstein–Khovanskii–Kushnirenko (BKK) theory.
This provides checkable conditions determining if a
system of polynomial equations has a finite number of
solutions for which all variables are nonzero. The tech-
niques utilized stem from algebraic geometry, such as
the computation of Newton polytopes, and are more
general than Gröbner basis methods.

Figure 4 The PCR4BP in the equal-mass case m1 = m2 =
m3 = 1

3 . The three primaries are marked by circles; the ten
equilibria are marked by disks. The rectangular grid stems
from the subdivision in the adaptive elimination process.

An interesting special case is taking all masses equal:
m1 =m2 =m3 = 1

3 . The PCR4BP then has exactly ten
solutions, as was first established by Lindow in 1922.
We will illustrate how rigorous zero-finding techniques
can readily deal with this scenario.

By the normalization of the primaries and masses, we
can restrict our search to the squareX = [− 3

2 ,+
3
2 ]

2. Let
f(z) = ∇V(z) denote the gradient of V , and extend it
to a set-valued function satisfying the inclusion princi-
ple (1). The problem is now reduced to finding (or sim-
ply counting) the zeros of f restricted to X. Using a
combination of the set-valued bisection and the inter-
val Newton operator described above, it is straightfor-
ward to establish that the PCR4BP in the equal-mass
case has exactly ten relative equilibria. Using a stop-
ping tolerance of 10−2 in the bisection stage, we arrive
at 1546 discarded subrectangles, with 163 remaining
for the next stage. The Newton stage discards another
150 subrectangles and produces ten isolating neigh-
borhoods for the relative equilibria (and three for the
primaries) (see figure 4).

As far as our approach is concerned, there is nothing
special about choosing the masses to be equal in (2).
Taking, for example, m = ( 1

10 ,
2

10 ,
7
10 ), we can repeat

the computations and find that there are exactly eight
relative equilibria (see figure 5).
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Figure 5 The PCR4BP in the case m = ( 1
10 ,

2
10 ,

7
10 ).

The computations involved take a fraction of a sec-

ond to perform on a standard laptop.

4 Solving Nonlinear Inclusions

In the set-valued framework it makes a lot of sense to

extend the concept of solving equations of the form

f(x) = y to include solving for inclusions f(x) ∈ y,

where y is a given set. This is a very natural problem

formulation in the presence of uncertainties; think of

y as representing noisy data with error bounds.

Ify is a set with nonempty interior, we should expect

the solution set S to share this property. Therefore, we

should be able to approximate the solution set both

from the inside and from the outside. In other words,

we would like to compute two sets S and S that satisfy

S ⊆ S ⊆ S.

S and S are called the inner and outer approximations

of S, respectively. By measuring the size of their dif-

ference, S \S, we can obtain reliable information about

how close we are to the solution set S.

Given a partition P(X) of the domain X, the outer

approximation S is computed precisely as in sec-

tion 2.1: it contains all partition elements whose inter-

val images have nonempty intersection with the range

y. The inner approximation contains all partition ele-

ments whose interval images are contained in the range

–2.0

–1.5

–1.0

–0.5

0

0.5

–2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0

Figure 6 An outer approximation S of the solution set S
(shaded). All rectangles of width greater than 10−2 belong
to the inner approximation S.

y. In other words, we have

S = {x ∈ P(X) : F(x) ⊆ y},
S = {x ∈ P(X) : F(x)∩y ≠∅}.

As an example, consider the nonlinear function

f(x) = sinx1 + sinx2 + 2
5 (x

2
1 + x2

2)

and suppose we want to find the set

S = {x ∈ [−5,+5]2 : f(x) ∈ [−0.5,0.5]}.

By a simple bisection procedure, we adaptively parti-

tion the domain X = [−5,5]2 into subrectangles and

discard rectangles x such that F(x)∩ [−0.5,0.5] = ∅.

The remaining rectangles are classified according to

whether they belong to S and/or S. Note that, as soon

as a subrectangle is determined to belong to S, it under-

goes no further bisection. Only subrectangles whose

interval images intersect ∂S are subdivided. This is

illustrated in figure 6, in which a stopping tolerance

of 10−2 was used.

The ability to solve nonlinear inclusions is of great

importance in parameter estimation. Given a finitely

parametrized model function f(x;p) = y together

with a set of uncertain data (x1,y1), . . . , (xn,yn) and

a search space P, the task is to solve for the set

S = {p ∈ P : f(xi;p) ∈ yi, i = 1, . . . , n}.

This can be done by computing inner and outer approx-

imations of S, exactly as described above. Today there
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exist very efficient techniques (e.g., constraint propaga-

tion) for solving precisely such problems.

5 Recent Developments

In this article we have focused exclusively on nonlinear

equation solving, but computer-aided proofs are also

used in many other areas. Global optimization is a field

that is well suited to rigorous techniques, and there

are many software suites that rely on interval analysis

and set-valued computations. A great deal of effort has

been expended developing methods for rigorously solv-

ing ordinary differential equations, and several mature

software packages that produce validated results at a

reasonable computational cost now exist. There have

also been many successful endeavors in the realm of

partial differential equations, but here each problem

requires its own set of tools and there is no natu-

ral one-size-fits-all approach to this vast area. Another

area of application is parameter estimation, where set-

valued techniques are used to model the uncertain-

ties in the estimated states. With the recent interest in

uncertainty quantification, rigorous computations have

a bright future.
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VII.4 Applications of Max-Plus Algebra
David S. Broomhead

1 Basics

Max-plus algebra is a term loosely applied to algebraic
manipulations using the operations max and +. More
precisely, consider the set of real numbers R and aug-
ment this with a smallest (with respect to the total
ordering on R) element ε = −∞. Let us say R̄ = R∪{ε}.
A rich arithmetic on R̄ is then obtained by defining the
binary operations ⊕ and ⊗:

a⊕ b = max{a,b} ∀a,b ∈ R̄,

a⊗ b = a+ b ∀a,b ∈ R̄.

In this algebra, ε acts as the “zero” element in the sense
that a⊕ ε = a and a⊗ ε = ε for any a ∈ R̄, while 0 acts
as the unit element since a⊗0 = a for any a ∈ R̄. Both
⊕ and ⊗ are commutative and associative operations,
and ⊗ distributes over ⊕ because the identity

a+ max{b, c} = max{a+ b,a+ c}
translates directly to the distributive law

a⊗ (b ⊕ c) = (a⊗ b)⊕ (a⊗ c).
Max-plus powers of any a ∈ R̄ can be defined recur-
sively by a⊗(k+1) = a ⊗ a⊗k, with a⊗0 = 0. Note that
a⊗k = k × a. This can be extended to any real-valued
power, α, by defining a⊗α = α× a.

The arithmetic that is taught in childhood differs
from this max-plus system in important ways. In partic-
ular, a⊕a = a for all a ∈ R̄, so ⊕ is idempotent. A con-
sequence of this is that there is no additive inverse, i.e.,
there is not a nice analogue of the negative of a num-
ber. (The negative numbers in R̄ actually correspond to
the multiplicative inverse since x ⊗ (−x) = 0). Math-
ematically, (R̄,⊕,⊗) is a semifield, albeit one that is
commutative and idempotent.

2 Tropical Mathematics

Tropical mathematics is a recent, broader name for
algebra and geometry based on the max-plus semifield
and related semifields. In many applications, it can be
more convenient to use the min-plus semifield, which
is defined as above but using the min operation rather
than max. In this case, the binary operations are defined
over R∪{∞}. The max-plus and min-plus semifields are
isomorphic by the map x  → −x. A third commutative
idempotent semifield is called max-times. It is based on
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the nonnegative reals with operations max and times
and is isomorphic to max-plus by the map x  → logx.

3 An Overview of Applications

Tropical mathematics has been applied to such a wide
range of problems that it is impossible to cover them
all here. It has been used to analyze the timing of
asynchronous events, such as timetabling for trans-
port networks, the scheduling of complex tasks, the
control of discrete-event systems, and the design of
asynchronous circuits in microelectronics. There are
deep connections with algebraic geometry, which have
led to applications in the analysis of deoxyribonucleic
acid (DNA) sequences and their relation to phylogenetic
trees. There is also work on optimization that is con-
nected with semiclassical limits of quantum mechanics,
Hamilton–Jacobi theory, and the asymptotics of zero-
temperature statistical mechanics. In all these cases
the mathematical structures, built on the semifield
structure described above, lead to simple, often lin-
ear, formulations of potentially complicated nonlinear
problems.

Consider a simple example of scheduling for asyn-
chronous processes. At time x1 an engineer begins to
make a component that takes a1 hours to complete.
In the max-plus notation, the time in which the task
is completed is a1 ⊗ x1. A second engineer begins to
make a different component at time x2 that takes a2

hours. If both components are to be combined to make
the finished product, the product cannot be completed
before (a1 ⊗ x1) ⊕ (a2 ⊗ x2), i.e., before the last com-
ponent is finished. The two operations ⊗ and ⊕ occur
naturally here, and there is also a hint of linear algebra,
since the earliest time for completion appears to be the
scalar product, in a max-plus sense, of a vector of start-
ing times (x1, x2) and the vector of durations of each
task (a1, a2).

4 Timing on Networks

The timetable for a rail network has to coordinate the
movements of many independent trains in order to pro-
vide a safe and predictable service. A range of issues
have to be addressed: railway stations have limited
numbers of platforms; parts of the network may have
single-track lines; passengers need to make connec-
tions; etc. Max-plus algebra provides useful tools to do
this.

As a basic example consider a railway, from A to B,
a section of which is single track. For safety, there is a

token that must be given by a signalman to the driver
about to enter the single-track section. There is only
one token, and when the driver leaves the section he
returns it to a second signalman, who can give it to the
driver of a train traveling in the opposite direction.

Let the timetable be such that trains from either
direction arrive at the single-track section every T
hours, and let xA(k) be the time at which the kth train
from A to B enters the section, and similarly with xB(k).
The time taken for a train to traverse the section is τ .
Then, for 1 < k ∈ N,

xA(k) = τ ⊗ xB(k− 1)⊕ T⊗k,

xB(k) = τ ⊗ xA(k)⊕ T⊗k,

with the initial condition xA(1) = T . The lack of sym-
metry between these expressions arises because the
first train is assumed to be traveling from A to B. In
words, these formulas mean that a train cannot enter
the section before it arrives there or before the previ-
ous train traveling in the opposite direction has left.
By substitution, the following linear nonhomogeneous
equation for xA(k) is found:

xA(k) = τ⊗2 ⊗ xA(k− 1)⊕ τ ⊗ T⊗k−1 ⊕ T⊗k.

This equation can be solved by introducing xA(k) =
τ⊗2k⊗y(k)withy(1) = τ⊗−2⊗T . Assuming that T > τ
gives

y(k) = y(k− 1)⊕ λ⊗k ⇒ y(k) =
k⊕
j=1

λ⊗j ,

where λ = τ⊗−2 ⊗ T = T − 2τ .
There are two cases that are distinguished by the sign

of the parameter λ. If λ > 0, the sequence of λ⊗j is
increasing, so that y(k) = λ⊗k. In this case, therefore,
xA(k) = T⊗k: trains enter the single-track section from
A every T hours, i.e., at the same rate that they arrive
from A. If λ < 0, the sequence of λ⊗j is now decreasing,
so that y(k) = λ. Hence xA(k) = T ⊗ τ⊗2(k−1): trains
enter the single-track section from A every 2τ hours,
and, since this is less than the rate at which they arrive
from A, a queue develops.

Calculations such as this can be used to assess the
stability of timetables. Here, the parameter λ is the dif-
ference between the timetabled interval between trains
arriving at the single-track section and the time it takes
a token to return to the first signalman. A timetable that
sets T to be such that λ has a small positive value is
vulnerable to unexpected delays in the single-track sec-
tion. Large-scale timetabling of rail networks has been
carried out using linear systems of max-plus equations.
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5 Linear Algebra

Matrices and vectors based on the semifield (R̄,⊕,⊗)
can be defined in the obvious way as A = (aij) ∈
R̄m×n. In particular, when n = 1, this is an element of
(R̄m,⊕,⊗) that, although it is not quite a vector space
(the negative of a vector is not defined), is a semimodule
defined over (R̄,⊕,⊗).

Matrices can be combined using a natural gener-
alization of the usual rules of matrix addition and
multiplication:

(A⊕ B)ij = aij ⊕ bij,
with A,B ∈ R̄m×n, and

(A⊗ B)ij = ai1 ⊗ b1j ⊕ · · · ⊕ ail ⊗ blj =
l⊕
k=1

aik ⊗ bkj,

where A ∈ R̄m×l and B ∈ R̄l×n.

A diagonal matrix, say D = diag(d1, . . . , dn), has all
its off-diagonal elements equal to ε. In particular, the
n×n identity matrix is

I = diag(0, . . . ,0).

The only max-plus matrices that are invertible are
the diagonal matrices and those nondiagonal matri-
ces that can be obtained by permutation of the rows
and columns of a diagonal matrix. The inverse of the
diagonal matrix D is D⊗−1 = diag(−d1, . . . ,−dn).

The paucity of invertible max-plus matrices is due to
the lack of subtraction, or additive inverses, as noted
in section 1, but there are tools for solving systems of
max-plus linear equations. Define conjugate operations
on R̄ ∪∞ as

a⊕′ b = min{a,b},
a⊗′ b = a+ b

(with the convention that ε ⊗′ ∞ = ∞ and ε ⊗ ∞ = ε),
and extend these definitions to matrices and vectors as
before. Consider the one-sided linear equation

A⊗ x = d,
where x ∈ R̄n is an unknown vector and d ∈ R̄m, A ∈
R̄m×n are known. The productA⊗x is a max-plus linear
combination of the columns of A, and so the existence
of a solution corresponds to d being an element of the
span of the columns of A. If a solution exists in R̄∪∞,
it is x = A− ⊗′ d, where A− = −AT is the conjugate
of A. Even if no solution exists, A− ⊗′ d is the greatest
solution (with respect to the product order on R̄n) of
the system of inequalities A⊗ x � d.

r

1

0

3

2

1

0
21 21

b

(a)

(b)

Figure 1 A heaps of pieces example. The two pieces
are shown separately in (a), and the heap following the
sequence of pieces rbrbrb is shown in (b).

6 An Example Application

Imagine a set of resources R = {1, . . . , n} and a set
of basic tasks A = {ω1, . . . ,ωm}. For each task it
is known which resources will be required, in what
order, and for how long. This problem can be stud-
ied using a heaps of pieces model, which resembles
the game Tetris. Figure 1 illustrates this for a simple
example based on two tasks ω1 = r and ω2 = b and
two resources labeled 1 and 2. Part (a) shows how the
pieces are employed to represent the use of resources
on the basic tasks: for r , resource 1 is required for one
time unit and resource 2 is not required at all; for b,
the task takes three time units, initially resource 2 is
required, then resources 1 and 2 work in parallel, and
finally resource 2 completes the task. Complex schedul-
ing of these tasks is represented by piling the pieces
into heaps such that each piece touches but does not
overlap the pieces below it (unlike in Tetris, no rotation
or horizontal movement of pieces is allowed). Part (b)
shows the heap created when the pieces are introduced
alternately, starting with r .

Each piece is characterized by a pair of functions
l,u : R → R̄ that give, respectively, the lower and upper
contours of the piece, i.e., the earliest and latest times
that each resource is in use. Since l and u are functions
defined on a discrete set, R, they will be treated as vec-
tors with dimension equal to the cardinality of R. If a
piece does not use a given resource, the corresponding
components of l and u are set to ε, so in the exam-
ple, l(r) = (0, ε)T, u(r) = (1, ε)T, l(b) = (1,0)T, and
u(b) = (2,3)T. Associated with each piece there is a
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subset S ⊂ R of resources that the corresponding task

requires; in this example, S(r) = {1} and S(b) = {1,2}.

Generally, for each piece, ω ∈ A, u(ω) � l(ω), and

l(ω) is defined such that mink∈S(ω) lk(ω) = 0.

These models can be used to study the efficiency of

different scenarios, for example, introducing the tasks

in various periodic patterns or randomly. The rate at

which the maximum height of the heap grows indicates

how long the total job takes as the number of repeti-

tions of the tasks is increased. A comparison between

the rates of growth of the maximum and minimum

heights is a measure of how uniformly the work is

distributed over the various resources available.

A heap model can be expressed as a linear max-plus

system. Consider the upper contour of a heap contain-

ing p pieces, x(p) : R → R̄. What is the new contour if a

new piece is added? Let the new piece be calledωjp+1 ∈
A. If this piece is placed at some height h, this can be

represented by adding h to its upper and lower contour

functions or using the max-plus notation: h⊗u(ωjp+1)
and h⊗ l(ωjp+1). The smallest possible value of h such

that h ⊗ l(ωjp+1) � x(p) must now be chosen. This is

achieved when maxi∈S(ωjp+1 ){xi(p)−h⊗li(ωjp+1)} = 0

or, in max-plus notation,

h =
⊕

i∈S(ωjp+1 )
l−1
i (ωjp+1)⊗ xi(p) = l−(ωjp+1)⊗ x(p),

where l−(ωjp+1) is a row vector whose components are

−li if li is finite and ε otherwise. The upper contour of

the heap is now given by

x(p + 1) = M(ωjp+1)⊗ x(p), (1)

where M(ω) is an n×n matrix

M(ω) = I ⊕u(ω)⊗ l−(ω).

This is a linear equation that relates successive upper

contours of the heap.

Returning to the example, use of this formula gives

M(r) =
(

1 ε
ε 0

)
, M(b) =

(
1 2

2 3

)
.

The iteration process given by equation (1) should

begin with no pieces present, i.e., x(0) = (0, . . . ,0)T,

and requires a specification of the matrix at each step.

The sequence of matrices corresponds to the sequence

of pieces introduced. In figure 1, the example shows

a periodic sequence alternating pieces r and b. This

begins

x(1) =
(

1 ε
ε 0

)
⊗
(

0

0

)
=
(

1

0

)
,

x(2) =
(

1 2

2 3

)
⊗
(

1

0

)
=
(

2

3

)
,

and so on.

The regularity of this sequence means that the matrix
describing every second iterate is given by the product
M(br) = M(b)⊗M(r):

M(br) =
(

1 2

2 3

)
⊗
(

1 ε
ε 0

)
=
(

2 2

3 3

)
.

It is interesting to note that the vector x(2) is an
eigenvector of M(br):

M(br)⊗
(

2

3

)
= 3 ⊗

(
2

3

)
,

where the eigenvalue is 3. This means that, if pieces
continue to be added alternately, the heap will grow in
height linearly at a rate of 3 units every cycle. More
generally, if the scheduling of tasks is periodic with
period p and the sequence of tasks is given byw ∈ Ap ,
then the growth rate of the completion time might
be obtained by finding the eigenvalue of M(w). This
leaves two questions: do iterates of the initial condition
converge to an eigenvector of M(w), and does M(w)
generally possess an eigenvalue (and, if so, how is it
computed)?

7 Eigenvalues and Eigenvectors

In general, the eigenvalue problem for square matrices
is defined as one would expect. Given an n×n matrix
A, look for a λ ∈ R̄ and a nontrivial vector x ∈ R̄n such
that

A⊗ x = λ⊗ x.
A graphical interpretation of A is helpful. Associate
with A a weighted directed graph GA with n vertices,
such that, for each aij ≠ ε there is an edge from
the vertex j to the vertex i. Each edge is assigned
a weight given by the corresponding matrix element
aij . Conventionally, these are known as communication
graphs. The following theorem links the existence of a
(unique) eigenvalue of a matrix to the structure of the
corresponding communication graph.

Theorem 1. If GA is strongly connected, then A has a
unique, nonzero, i.e., not equal to ε, eigenvalue equal
to the maximal average weight of circuits in GA.
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Figure 2 The communication graph of the matrix M(br).

A circuit is a path in GA that leads from a vertex back
to itself. There are two obvious notions of the length
of a circuit: the number of vertices or edges (generally
known as the circuit length) and the sum of the weights
on the edges (known as the circuit weight). The average
weight of a circuit is found by dividing the latter by the
former.

Figure 2 shows the communication graph for the
matrix M(br) in the heaps of pieces example. There
are three circuits, two of which are loops containing
one edge and one vertex each. The remaining circuit has
two edges, and these edges connect both vertices of the
graph. The maximum average weight of these circuits
is 3, which is the eigenvalue found above by substitut-
ing an eigenvector into the eigenvalue equation.

8 Cyclicity and Convergence

An elementary circuit of the communication graph GA
is a circuit that does not intersect itself. The cyclicity
of a strongly connected graph is the greatest common
divisor of the lengths of all its elementary circuits. If
the graph consists of more than one strong component
(i.e., more than one maximal strongly connected sub-
graph), its cyclicity is the least common multiple of the
cyclicities of its strong components.

Cyclicity is a topological property as it depends only
on the circuits and their lengths. The matrix A con-
tains more information than this since it associates a
weight with each edge of GA. This information can be
captured by considering the critical graph associated
with GA. The critical circuits of GA are those elemen-
tary circuits with maximum mean weight (i.e., the total
weight divided by the length). The critical graph associ-
ated with GA is the subgraph consisting of vertices and
directed edges found in the critical circuits. The cyclic-
ity of the matrix A, denoted σ(A), is the cyclicity of the
critical graph associated with GA.

As an example consider M(br) and its correspond-
ing communication graph shown in figure 2. The graph
has two kinds of elementary circuit: the self-loops
(weights 2 and 3; length 1) and the cycle involving both

vertices (weight 5; length 2). There is one critical circuit:
the self-loop with weight 3. The critical graph therefore
consists of the vertex labeled “2” in figure 2 together
with the self-loop. The cyclicity of this, and therefore
of M(br), is unity.

Integer max-plus powers of ann×nmatrix,A, can be
defined recursively as in the scalar case. The following
theorem is about the asymptotics of max-plus powers
of a matrix and therefore provides information about
the dynamics if a max-plus square matrix is applied
repeatedly to a general vector.

Theorem 2. Let GA be strongly connected and let the
matrix A have eigenvalue λ and cyclicity σ(A). Then
there exists a positive integer K such that

A⊗(k+σ(A)) = λ⊗σ(A) ⊗A⊗k

for all k � K.

The theorem guarantees that after sufficiently many
iterations the system in question converges to a regular
behavior dominated by the eigenvalue of the matrix. In
the example and in terms of the upper contour of the
heap, there is a K such that

M((br)q+K)⊗ x(0) = 3⊗q ⊗ x(K)
for all positive integers q. The rate at which the maxi-
mum height of the heap grows asymptotically is then

lim
q→∞

‖M((br)q+K)⊗ x(0)‖max

2q
= 3

2
,

where ‖x‖max is the maximum component of x. The
same calculation using the minimum component shows
that it also grows at a rate 3

2 . Note that theorem 2
implies that these results are independent of the initial
condition x(0). Together, theorems 1 and 2 provide the
means to calculate these measures of efficiency for any
periodic sequence of tasks.

9 Stochastic Models

If the heap model is of a system responding to exter-
nal random influences, the iteration process given by
equation (1) will involve randomly chosen sequences of
matrices rather than the periodic sequences discussed.
What can now be said of the asymptotic behavior of
the heap? Rather than eigenvalues, the behavior of long
random sequences of matrices is determined by the
Lyapunov exponents of the system. Assume that the
matrices in the sequence are independent and identi-
cally distributed and that they are regular with proba-
bility one (each row contains at least one element that
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is not ε). Then the Lyapunov exponent λmax defined as

lim
q→∞

‖x(q)‖max

q
= λmax

(and analogously for λmin) exists for almost all se-
quences and is independent of the initial (finite) choice
of x(0). This result shows that, in principle, it is pos-
sible to calculate the efficiency measures discussed
above. The main difference is that, although the Lya-
punov exponents exist, there is no nice prescription for
their calculation. The development of efficient numer-
ical algorithms is an open problem that the interested
reader might, perhaps, wish to consider!
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VII.5 Evolving Social Networks,
Attitudes, and Beliefs—and
Counterterrorism
Peter Grindrod

1 Introduction

The central objects of interest here are

(i) an evolving digital network of peer-to-peer commu-
nication,

(ii) the dynamics of information, ideas, and beliefs that
can propagate through that digital network, and

(iii) how such networks become important in matters
of national security and defense.

The applications of this theory spread far beyond these
topics though. For example, more than a quarter of all

marketing and advertising spending in the United King-

dom and the United States is now spent online: so dig-

ital media marketing (“buzz” marketing), though in its

infancy, requires a deeper understanding of the nature

of social communication networks. This is an impor-

tant area of complexity theory, since there is no closed

theory (analogous to conservation laws for molecular

dynamics or chemical reactions) available at the micro-

scopic “unit” level. Instead, here we must consider irra-

tional, inconsistent, and ever-changing people. More-

over, while the passage of ideas is mediated by the

networking behavior, the very existence of such ideas

may cause communication to take place: systems can

therefore be fully coupled.

In observing peer-to-peer communication in mobile

phone networks, messaging, email, and online chats,

the size of communities is a substantial challenge.

Equally, from a conceptual modeling perspective, it

is clear that being able to simulate, anticipate, and

infer behavior in real time, or on short timescales,

may be critical in designing interventions or spotting

sudden aberrations. This field therefore requires and

has inspired new ideas in both applied mathematical

models and methods.

2 Evolving Networks in
Continuous and Discrete Time

Consider a population of N individuals (agents/actors)

connected through a dynamically evolving undirected

network representing pairwise voice calls or online

chats. Let A(t) denote the N × N binary adjacency

matrix for this network at time t, having a zero diago-

nal. At future times, A(t) is a stochastic object defined

by a probability distribution over the set of all possible

adjacency matrices. Each edge within this network will

be assumed to evolve independently over time, though

it is conditionally dependent upon the current network

(so any edges conditional on related current substruc-

tures may well be highly correlated over time). Rather

than model a full probability distribution for future net-

work evolution, conditional on its current structure,

say Pδt(A(t + δt) | A(t)), it is enough to specify its

expected value E(A(t + δt) | A(t)) (a matrix contain-

ing all edge probabilities, from which edges may be

generated independently). Their equivalence is trivial,

since

E(A(t + δt) | A(t)) =
∑
B
BPδt(B | A(t)),
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and

Pδt(B | A(t)) =
N−1,N∏

i=1, j=i+1

WBi,j
i,j (1 −Wi,j)1−Bi,j ,

where W = E(A(t + δt) | A(t)). Hence we shall specify
our model for the stochastic network evolution via

E(A(t + δt) | A(t)) = A(t)+ δtF(A(t)), (1)

valid as δt → 0. Here the real matrix-valued function F
is symmetric, it has a zero diagonal, and all elements
within the right-hand side will be in [0,1]. We write

F(A(t)) = −A(t) ◦ω(A(t))+ (C −A(t)) ◦α(A(t)).
Here C denotes the adjacency matrix for the clique
where all 1

2N(N−1) edges are present (all elements are
1s except for 0s on the diagonal), so C −A(t) denotes
the adjacency matrix for the graph complement ofA(t);
ω(A(t)) and α(A(t)) are both real nonnegative sym-
metric matrix functions containing conditional edge
death rates and conditional edge birth rates, respec-
tively; and ◦ denotes the Hadamard, or element-wise,
matrix product.

In many cases we can usefully consider a discrete-
time version of the above evolution. Let {Ak}Kk=1 denote
an ordered sequence of adjacency matrices (binary,
symmetric with zero diagonals) representing a discrete-
time evolving network with value Ak at time step tk.
We shall then assume that edges evolve independently
from time step to time step with each new network con-
ditionally dependent on the previous one. A first-order
model is given by a Markov process

E(Ak+1 | Ak) = Ak◦(C−ω̃(Ak))+(C−Ak)◦α̃(Ak). (2)

Here ω̃(Ak) is a real nonnegative symmetric matrix
function containing conditional death probabilities,
each in [0,1], and α̃(Ak) is a real nonnegative symmet-
ric matrix function containing conditional edge birth
probabilities, each in [0,1].

As before, the edge independence assumption im-
plies that P(Ak+1 | Ak) can be reconstructed from
E(Ak+1 | Ak).

A generalization of katz [IV.18 §3.4] centrality for
such discrete-time evolving networks can be obtained.
In particular, if 0 < μ < 1/max{ρ(Ak)}, then the
communicability matrix

Q = (I − μA1)−1(I − μA2)−1 · · · (I − μAK)−1

provides a weighted count of all possible dynamic
paths between all pairs of vertices. It is nonsymmetric
(due to time’s arrow) and its row sums represent the
abilities of the corresponding people to send messages

to others, while its column sums represent the abili-
ties of the corresponding people to receive messages
from others. Such performance measures are useful in
identifying influential people within evolving networks.
This idea has recently been extended so as to succes-
sively discount the older networks in order to produce
better inferences.

3 Nonlinear Effects: Seen and Unseen

In the sociology literature the simplest form of nonlin-
earity occurs when people introduce their friends to
each other. So, in (2), if two nonadjacent people are
connected to a common friend at step k, then it is
more likely that those two people will be directly con-
nected at step k+1. To model this triad closure dynamic
we may use ω̃(Ak) = γC , so all edges have the same
step-to-step death probability, γ ∈ [0,1], and

α̃(Ak) = δC + εA2
k.

Here δ and ε are positive and such that δ+ε(N−2) < 1.
The element (A2)i,j counts the number of mutual con-
nections that person i and person j have at step k. This
equation is ergodic and yet it is destined to spend most
of its time close to states where the density of edges
means that there is a balance between edge births and
deaths. A mean-field approach can be applied, approxi-
mating Ak with its expectation, which may be assumed
to be of the formpkC (an erdős–rényi random graph

[IV.18 §4.1] with edge density pk). In the mean-field
dynamic one obtains

pk+1 = pk(1 − γ)+ (1 − pk)(δ+ (N − 2)εp2
k). (3)

If δ is small and ω < 1
4ε(N − 2), then this nonlin-

ear iteration has three fixed points: two stable ones,
at δ/γ +O(δ2) and 1

2 + ( 1
4 − γ/(ε(N − 2)))1/2 +O(δ),

and one unstable one in the middle. Thus the extracted
mean-field behavior is bistable. In practice, one might
observe the edge density of such a network approach-
ing one or other stable mean-field equilibrium and jig-
gling around it for a very long time, without any aware-
ness that another type of orbit or pseudostable edge
density could exist. Direct comparisons of transient
orbits from (2), incorporating triad closure, with their
mean-field approximations in (3) are very good over
short to medium timescales. Yet though we have cap-
tured the nonlinear effects well in (3), the stochastic
nature of (2) must eventually cause orbits to diverge
from the deterministic stability seen in (3).

The phenomenon seen here explains the events of
a new undergraduate’s first week at university are so
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important in forming high-density connected social
networks among student year groups. If we do not per-
turb them with a mix of opportunities to meet, they
may be condemned to remain close to the low-density
(few-friends) state for a very long time.

4 Fully Coupled Systems

There is a large literature within psychology that is
based on individuals’ attitudes and behaviors being in
a tensioned equilibrium between excitory (activating)
processes and inhibiting processes. Typically, the state
of an individual is represented by a set of state vari-
ables, some measuring activating elements and some
measuring the inhibiting elements.

Activator–inhibitor systems have had an impact
within mathematical models where a uniformity equi-
librium across a population of individual systems
becomes destabilized by the very act of simple “pas-
sive” coupling between them. Such Turing instabilities
can sometimes seem counterintuitive.

Homophily is a term that describes how associations
are more likely to occur between people who have
similar attitudes and views. Here we show how indi-
viduals’ activator–inhibitor dynamics coupled through
a homophilic evolving network produce systems that
have pseudoperiodic consensus and fractionation.

Consider a population of N identical individuals,
each described by a set of m state variables that are
continuous functions of time t. Let xi(t) ∈ Rm denote
the ith individual’s attitudinal state. Let A(t) denote
the adjacency matrix for the communication network,
as it does in (1). Then consider

ẋi = f(xi)+D
N∑
j=1

Aij(xj − xi), i = 1, . . . , N. (4)

Here f is a given smooth field over Rm, drawn from a
class of activator–inhibitor systems, and is such that
f(x∗) = 0 for some x∗, and the Jacobian there,
df(x∗), is a stability matrix (that is, all its eigenvalues
have negative real parts). D is a real diagonal nonnega-
tive matrix containing the maximal transmission coef-
ficients (diffusion rates) for the corresponding attitu-
dinal variables between adjacent neighbors. Let X(t)
denote them×Nmatrix with ith column given byxi(t),
and let F(X) be them×N matrix with ith column given
by f(xi(t)). Then (4) may be written as

Ẋ = F(X)−DXΔ. (5)

Here Δ(t) denotes the graph Laplacian for A(t), given
byΔ(t) = Γ (t)−A(t), where Γ (t) is the diagonal matrix

containing the degrees of the vertices. This system has
an equilibrium at X = X∗, say, where the ith column of
X∗ is given by x∗ for all i = 1, . . . , N .

Now consider an evolution equation for A(t), in the
form of (1), coupled to the states X:

E(A(t + δt) | A(t))
= A(t)+ δt(−A(t) ◦ (C −Φ(X(t)))γ

+ (C −A(t)) ◦Φ(X(t))δ). (6)

Here δ and γ are positive constants representing the
maximum birth rate and the maximum death rate,
respectively; and the homophily effects are governed by
the pairwise similarity matrix, Φ(X(t)), such that each
term Φ(X(t))i,j ∈ [0,1] is a monotonically decreasing
function of a suitable seminorm ‖xj(t) − xi(t)‖. We
shall assume thatΦ(X(t))i,j ∼ 1 for ‖xj(t)−xi(t)‖ < ε,
and Φ(X(t))i,j = 0 otherwise, for some suitably chosen
ε > 0.

There are equilibria at X = X∗ with either A = 0 or
A = C (the full clique). To understand their stability,
let us assume that δ and γ → 0. Then A(t) evolves very
slowly via (6). Let 0 = λ1 � λ2 � · · · � λN be the eigen-
values of Δ. Then it can be shown that X∗ is asymptot-
ically stable only if all N matrices, df(x∗) − Dλi, are
simultaneously stability matrices; and conversely, it is
unstable in the ith mode of Δ if df(x∗) −Dλi has an
eigenvalue with positive real part.

Now one can see the possible tension between
homophily and the attitude dynamics.

Consider the spectrum of df(x∗)−Dλ as a function
of λ. If λ is small then this is dominated by the stability
of the uncoupled system, df(x∗). If λ is large, then this
is again a stability matrix, since D is positive-definite.
The situation, dependent on some collusion between
choices of D and df(x∗), where there is a window of
instability for an intermediate range of λ, is known as
a Turing instability. Note that, as A(t) → C , we have
λi → N , for i > 1. So ifN lies within the window of insta-
bility, we are assured that the systems can never reach a
stable consensual fully connected equilibrium. Instead,
Turing instabilities can drive the breakup (weakening)
of the network into relatively well-connected subnet-
works. These in turn may restabilize the equilibrium
dynamics (as the eigenvalues leave the window of insta-
bility), and then the whole process can begin again as
homophily causes any absent edges to reappear. Thus
we expect a pseudocyclic emergence and diminution of
patterns, representing transient variations in attitudes.
In simulations, by projecting the networkA(t) onto two
dimensions using the Frobenius matrix inner product,
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one may observe directly the cyclic nature of consensus
and division.

Even if the stochastic dynamics in (6) are replaced by
deterministic dynamics for a weighted communication
adjacency matrix, one obtains a system that exhibits
aperiodic, wandering, and also sensitive dependence. In
such cases the orbits are chaotic: we know that they will
oscillate, but we cannot predict whether any specific
individuals will become relatively inhibited or relatively
activated within future cycles. This phenomenon even
occurs when N = 2.

These models show that, when individuals, who are
each in a dynamic equilibrium between their acti-
vational and inhibitory tendencies, are coupled in a
homophilic way, we should expect a relative lack of
global social convergence to be the norm. Radical and
conservative behaviors can coexist across a population
and are in a constant state of flux. While the macro-
scopic situation is predictable, the journeys for indi-
viduals are not, within both deterministic and stochas-
tic versions of the model. There are some commen-
tators in socioeconomic fields who assert that diver-
gent attitudes, beliefs, and social norms require lead-
ers and are imposed on populations; or else they are
driven by partial experiences and events. But here we
can see that the transient existence of locally clustered
subgroups, holding diverse views, can be an emergent
behavior within fully coupled systems. This can be the
normal state of affairs within societies, even without
externalities and forcing terms.

Sociology studies have in the past focused on rather
small groups of subjects under experimental condi-
tions. Digital platforms and modern applied mathe-
matics will transform this situation: computation and
social science can use vast data sets from very large
numbers of users of online platforms (Twitter, Face-
book, blogs, group discussions, multiplayer online
games) to analyze how norms, opinions, emotions,
and collective action emerge and spread through local
interactions.

5 Networks on Security and Defense

“It takes a network to defeat a network” is the man-
tra expressed by the most senior U.S. command in
Afghanistan and Iraq. This might equally be said of the
threats posed by terrorists, or in post-conflict peace-
keeping (theaters of asymmetric warfare), and even by
the recent summer riots and looting within U.K. cities.
But what type of networks must be defeated, and what
type of network thinking will be required?

So far we have discussed peer-to-peer networks in
general terms. But we are faced with some specific
challenges that stress the importance of social and
communications networks in enabling terrorist threats:

• the analysis of very large communications net-
works, in real time;

• the identification of influential individuals;
• inferring how such networks should evolve in the

future (and thus spotting aberrant behavior); and
• recognizing that fully coupled systems may natu-

rally lead to diverse views, and pattern formation.

All of these things become ever more essential. Popula-
tion-wide data from digital platforms requires efficient
and effective applicable mathematics.

Modern adversaries may be most likely to be

• organized through an actor network of transient
affiliations appropriate for (i) time-limited oppor-
tunities and trophy or inspired goals; (ii) procure-
ment, intelligence, reconnaissance and planning;
and (iii) empowering individuals and encouraging
both innovation and replication through competi-
tion;

• employing an operational digital communication
network that enables and empowers action while
maximizing agility (self-adaptation and reducing
the time to act) through the flow of information,
ideas, and innovations; and

• reliant upon a third-party dissemination network
within the public and media space (social media,
broadcast media, and so forth) so as to maximize
the impact of their actions.

There are thus at least three independent networks
operating on the side of those who would threaten
security.

Here we have set out a framework for analyzing the
form and dynamics of large evolving peer-to-peer com-
munications networks. It seems likely that the chal-
lenge of modeling their behavior may lead us to develop
new models and methods in the future.
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VII.6 Chip Design
Stephan Held, Stefan Hougardy, and
Jens Vygen

1 Introduction

An integrated circuit or chip contains a collection of

electronic circuits—composed of transistors—that are

connected by wires to fulfill some desired functional-

ity. The first integrated circuit was built in 1958 by

Jack Kilby. It contained a single transistor. As predicted

by Gordon Moore in 1965, the number of transistors

per chip doubles roughly every two years. The pro-

cess of creating chips soon became known as very-

large-scale integration (VLSI). In 2014 the most complex

chips contain billions of transistors on a few square

centimeters.

In this article we concentrate on the design of dig-

ital logic chips. Analog integrated circuits have many

fewer transistors and more complex design rules and

are therefore still largely designed manually. In a mem-

ory chip, the transistors are packed in a very regular

structure, which makes their design rather easy. In con-

trast, the design of VLSI digital logic chips is impossible

without advanced mathematics.

New technological challenges, exponentially increas-

ing transistor counts, and shifting objectives like

decreased power consumption or increased yield con-

stantly create new and challenging mathematical prob-

lems. This has made chip design one of the most inter-

esting application areas for mathematics during the

last forty years, and we expect this to continue to be

the case for at least the next two decades, although

technology scaling might slow down at some point.

1.1 Hierarchical Chip Design

Due to its enormous complexity, the design of VLSI

chips is usually done hierarchically. A hierarchical

design makes it possible to distribute the design task

to different teams. Moreover, it can reduce the over-

all effort, and it makes the design process more pre-

dictable and more manageable.

For hierarchical design, a chip is subdivided into log-

ical units, each of which may be subdivided into sev-

eral levels of smaller units. An obvious advantage of

hierarchical design is that components that are used

multiple times need to be designed only once. In par-

ticular, almost all chips are designed based on a library

of so-called books, predesigned integrated circuits that

realize simple logical functions such as AND or NOT or

a simple memory element. A chip often contains many

instances of the same book; these instances are often

called circuits.

The books are composed of relatively few transistors

and are predesigned at an early stage. For their design

one needs to work at the transistor level and hence fol-

low more complicated rules. Once a book (or any hier-

archical unit) is designed, the properties it has that are

relevant for the design of the next higher level (e.g.,

minimum-distance constraints, timing behavior, power

consumption) are computed and stored. Most books

are designed so that they have a rectangular shape and

the same height, making it easier to place them in rows

or columns.

1.2 The Chip-Design Process

The first step in chip design is the specification of

the desired functionality and the technology that will

be used. In logic design, this functionality is made

precise using some hardware description language.

This hardware description is converted into a netlist

that specifies which circuits have to be used and how

they have to be connected to achieve the required

functionality.

The physical-design step takes this netlist as input

and outputs the physical location of each circuit and

each wire on the chip. It will also change the netlist

(in a logically equivalent way) in order to meet timing

constraints.

Before fabricating the chip (or fixing a hierarchical

unit for later use on the next level up), one conducts

physical verification to confirm that the physical lay-

out meets all constraints and implements the desired
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functionality, and timing analysis checks that all sig-
nals arrive in time. Further testing will be done with
the hardware once a chip is manufactured.

From a mathematical point of view, physical design
is the most interesting part of chip design as it requires
the solution of several different challenging mathemat-
ical problems. We will therefore describe this in more
detail below.

1.3 Physical Design

Two inputs of the physical-design stage are a netlist
and a chip area. The netlist contains a set of circuits.
Each circuit is an instance of a book and has some pins
that must be connected to some other pins. Moreover,
the netlist includes pins on the chip area that are called
input/output-ports and connect the chip to the outside.
The set of all pins is partitioned into nets. All pins that
belong to the same net have to be connected to each
other by wires.

The task of the physical-design step is to assign a
location to each circuit on the chip area (placement ) and
to specify locations for all the wires that are needed to
realize the netlist (routing). Placement and routing are
also called layout (see figure 1).

A layout has to satisfy many constraints. For exam-
ple, design rules specify the minimum width of a wire,
the minimum distance between two different wires, or
legal positions for the circuits.

Moreover, a chip works correctly (at the desired clock
frequency) only if all signals arrive in time (neither too
early nor too late). This is described by timing con-
straints. It is usually impossible to meet all timing con-
straints without changing the netlist. This is called tim-
ing optimization. Of course, any changes must ensure
that the netlist remains logically equivalent.

Due to the complexity of the physical-design prob-
lem, placement, routing, and timing optimization are
treated largely as independent subproblems, but they
are of course not independent. Placement must ensure
that a feasible routing can be found and that timing
constraints can be met. Changes in timing optimization
must be reflected by placement and routing. Finally,
routing must also consider timing constraints.

We describe some of the mathematical aspects of
these three subproblems in what follows.

2 Placement

All circuits must be placed within the chip area so
that no two circuits overlap. This is called a feasible

(b)

(a)

Figure 1 (a) Placement and (b) routing of a chip with
4 496 492 circuits and 5 091 819 nets, with 762 meters of
wires. Large rectangles are predesigned units, e.g., memory
arrays or microprocessors. A Steiner tree connecting the
five pins of one net is highlighted in (b).

placement. In addition we want to minimize a given
objective function. Normally, the chip area and all cir-
cuits have a rectangular shape. Thus, finding a feasible
placement is equivalent to placing a set of small rect-
angles disjointly within some larger rectangle. This is
known as the rectangle packing problem.

No efficient algorithm is known that is guaranteed
to solve the rectangle packing problem for all possi-
ble instances. However, finding an arbitrary feasible
placement is usually easy in practice.
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2.1 Netlength Minimization

The location of the circuits on the chip area is primarily
responsible for the total wire length that is needed for
wiring all the nets in the netlist. If the total wire length
is too long, a chip will not be routable. Moreover, the
length of the wires greatly impacts the signal delays
and the power consumption of a chip. Thus, a reason-
able objective function of the placement problem is to
minimize the total wire length.

As this cannot be computed efficiently, estimates are
used. Most notably, the bounding box length of a net
is obtained by taking half the perimeter of a smallest
axis-parallel rectangle that contains all its pins. A com-
monly used quadratic netlength estimate is obtained by
summing up the squared Euclidean distances between
each pair of pins in the net and dividing this value by
one less than the number of pins.

No efficient algorithms are known for finding a place-
ment that minimizes the total netlength with respect
to any such estimate, even if we ask only for a solu-
tion that is worse than an optimum solution by an arbi-
trarily large constant factor. Under additional assump-
tions, such as that all circuits must have exactly the
same size, one can find a placement in polynomial
time whose total netlength is O(logn) worse than an
optimum placement, where n denotes the number of
circuits.

2.2 Placement in Practice

As mentioned above, finding an arbitrary feasible place-
ment is usually easy. Moreover, one can define local
changes to a feasible placement that results in another
feasible placement. General local search-based heuris-
tics (such as simulated annealing) can therefore be
applied. However, such methods are prohibitively slow
for today’s instances, with several million circuits.

Another paradigm, motivated by some theoretical
work, is called min-cut. Here, the netlist is partitioned
into two parts, each with roughly half of the circuits,
such that as few nets as possible cross the cut. The
two parts will be placed on the left and right parts of
the chip area and then partitioned further recursively.
Unfortunately, the bipartitioning problem cannot be
solved easily, and the overall paradigm lacks stability
properties and the results are inferior.

A third paradigm, analytical placement, is the one
that is predominantly used in practice today. It begins
by ignoring the constraint that circuits must not over-
lap; minimizing netlength (bounding box or quadratic)

is then relatively easy. For several reasons (it is faster
to solve; it is more stable; it gives better spreading),
quadratic netlength is minimized in practice. This is
equivalent to solving a system of linear equations with
a sparse positive-definite matrix.

The placement that minimizes quadratic netlength
typically has many overlapping circuits. Two strategies
for working toward a feasible placement exist: either
the objective function is modified in order to pull cir-
cuits away from overloaded regions or a geometric par-
titioning is done. For geometric partitioning one can
assign the circuits efficiently to four quadrants (or more
than four regions) such that no region contains more
circuits than fit into it and such that the total (linear
or quadratic) movement is minimized. The assignment
to the regions can then be translated into a modified
quadratic optimization problem.

Both strategies (as well as min-cut placement) are
iterated until the placement is close to legal. This
roughly means until there exists a legal placement in
which all circuits are placed nearby. This ends the
global-placement phase.

After global placement (whether analytic or min-cut),
the solution must be legalized. Here, given an illegal
placement as input, we ask for a legal placement that
differs from the input as little as possible. The common
measure is the sum of the squared distances. Unfortu-
nately, only special cases of this problem can be solved
optimally in polynomial time, even when all circuits
have the same height and are to be arranged in rows.

3 Routing

In routing, we must connect the set of each net’s pins
by wires. The positions of the pins are determined by
the placement. Wires can run on different wiring planes
(sometimes more than ten), which are separated by
insulating material. Wires of adjacent planes can be
connected by so-called vias. In almost all current tech-
nologies, all wire segments run horizontally or verti-
cally. For efficient packing, every plane is used predom-
inantly in one direction; horizontal and vertical planes
alternate.

Wires can have different widths, complicated spacing
requirements, and other rules to obey. Although impor-
tant, such rules do not change the overall nature of the
problem.

Before all nets are routed, some areas are already
used by power supply or clock grids. These too must
be designed, but this task is still largely a manual one.
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3.1 Steiner Trees

The minimal connections for a net can be modeled as
Steiner trees. A Steiner tree for a given set of terminals
(pins) is a minimal connected graph containing these
terminals and possibly other vertices (see figure 1). If
wiring is restricted to predefined routing tracks, the
space available for routing a single net can be mod-
eled as an undirected graph. Finding a shortest Steiner
tree for a given set of terminals in a graph is NP-hard,
and the same holds even for shortest rectilinear Steiner
trees in the plane. Moreover, shortest is not always best
when it comes to meeting timing constraints, and the
routing graph is huge (it can have more than 1011 ver-
tices). Therefore, routing algorithms mostly use fast
variants of Dijkstra’s algorithm in order to find a short-
est path between two components and then compose
the Steiner trees of such paths. If done carefully, this is
at most a factor 2(t − 1)/t worse than optimal, where
t is the number of terminals (pins in the net).

3.2 Packing Steiner Trees

Since finding just one shortest Steiner tree is hard, it is
not surprising that finding vertex-disjoint Steiner trees
in a given graph is even harder. In fact, it is NP-hard
even if every net has only two pins and the graph is a
planar grid. Nevertheless, it would be possible to solve
such problems if the instances were not too large.

Current detailed routing algorithms route the nets
essentially sequentially, revising earlier decisions as
necessary (rip-up and reroute). To speed up the sequen-
tial routing approach and to improve the quality of
results, a global routing step is performed at the begin-
ning. Here, the routing space is modeled by a coarser
graph, whose vertices normally correspond to rectan-
gular areas (induced by a grid) on a certain plane. Two
vertices are connected if they correspond to the same
area on adjacent planes or to horizontally or vertically
(depending on the routing direction of the plane) adja-
cent areas on the same plane. Edges have capacities,
depending on how many wires we can pack between
the corresponding areas.

Global routing then asks us to find a Steiner tree for
each net such that the number (more generally, the
total width) of Steiner trees using an edge does not
exceed its capacity. This problem is still NP-hard, and
the global routing graphs can still be large (they often
have more than 107 vertices). Nevertheless, global rout-
ing can be solved quite well in both theory and prac-
tice; the best approach with a theoretical guarantee is

based on first approximately solving a fractional relax-

ation (called min–max resource sharing, a generaliza-

tion of multicommodity flows), then applying random-

ized rounding to obtain an integral solution, and finally

correcting local violations (induced by rounding).

Global routing is also done at earlier stages of the

design flow, e.g., during placement, in order to esti-

mate routability and exhibit areas with possible routing

congestion.

4 Timing Optimization

A chip performs its computations in cycles. In each

cycle electrical signals start from registers or chip

inputs, traverse some circuits and nets, and finally

enter registers or chip outputs.

Timing optimization has to ensure that all signals

arrive within a given cycle time. Under this constraint,

the power consumption shall be minimized. However,

achieving the cycle time is a difficult problem on its

own.

4.1 Logic Synthesis

The structure of a Boolean circuit has a big impact on

the performance and power consumption of a chip. On

the one hand, the depth, i.e., the maximum number of

logic circuits on a combinatorial path, should be small

so that the cycle time is met. On the other hand, the

total number of circuits to realize a function should

not be too big.

Almost all Boolean functions have a minimum rep-

resentation size that is exponential in the number of

input variables. Hence, functions that are realized in

hardware are quite special.

Some very special functions—such as adders, certain

symmetric functions, or paths consisting alternately of

AND and OR circuits—can be implemented optimally

or near-optimally by divide-and-conquer or dynamic-

programming algorithms, but general logic synthesis

is done by (mostly local) heuristics today.

4.2 Repeater Trees

Another central task is to distribute a signal from a

source to a set of sinks. As the delay along a wire grows

almost quadratically with its length, repeaters, i.e.,

circuits implementing the identity function or inver-

sion, have to be inserted to strengthen the signal and

linearize the growth.
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For a given Steiner tree, repeaters can be inserted
arbitrarily close to optimally in polynomial time using
dynamic programming.

A more difficult problem asks for the structure of
the Steiner tree (into which repeaters can be inserted).
A minimum-length Steiner tree can have very long
source–sink paths. In addition, every bifurcation from
a path adds capacitance and delay. Trees should there-
fore not only be short; they should also consist of short
paths with few bifurcations.

Combining approximation algorithms for minimum
Steiner trees with Huffman coding, bicriteria algo-
rithms can be derived, trading off total length and path
delays.

4.3 Circuit Sizing

In circuit sizing, the channel widths of the underlying
transistors are optimized. A wider channel charges the
capacitance of the output net faster but increases the
input capacitances and, thus, the delays of the prede-
cessors. Assuming continuously scalable circuits and
a simplified delay model, the problem of finding opti-
mum sizes for all circuits can be transformed into a
geometric program. This can be solved by interior-point
methods or by the subgradient method and Lagrangian
relaxation.

However, rounding such a continuous solution to dis-
crete circuit sizes can corrupt the result. Theoretical
models for discrete timing optimization, such as the
discrete time–cost trade-off problem, are not yet well
understood. Local search is therefore used extensively
for post-optimization.

4.4 Clock-Tree Construction

One of the few problems that can be solved efficiently
in theory and in practice is clock skew scheduling. Each
register triggers its stored bit once per cycle. The times
at which the signals are released can be optimized such
that the cycle time is minimized. To this end a register
graph is constructed, with each register represented by
a vertex. There is an arc if there is a signal path between
the corresponding registers. An arc is weighted by the
maximum delay of a path between the two registers.
The minimum possible cycle time is now given by the
maximum mean arc weight of a cycle in the graph.
This reduces to the well-studied minimum mean cycle
problem.

The challenging problem is then to distribute a clock
signal such that the optimal trigger times are met.

Here, facility location algorithms for bottom-up tree

construction are combined with dynamic programming

for repeater insertion.

Further Reading

Alpert, C. J., D. P. Mehta, and S. S. Sapatnekar, eds. 2009.
Handbook of Algorithms for Physical Design Automation.
Boca Raton, FL: Taylor & Francis.

Held, S., B. Korte, D. Rautenbach, and J. Vygen. 2011. Com-
binatorial optimization in VLSI design. In Combinato-
rial Optimization: Methods and Applications, edited by
V. Chvátal, pp. 33–96. Amsterdam: IOS Press.

International Technology Roadmap for Semiconductors.
2013. SEMATECH, Austin, TX, 2013. Available (and annu-
ally updated) at www.itrs.net.

VII.7 Color Spaces and Digital Imaging
Nicholas J. Higham

1 Vector Space Model of Color

The human retina contains photoreceptors called cones

and rods that act as sensors for the human imaging

system. The cones come in three types, with responses

that peak at wavelengths corresponding to red, green,

and blue light, respectively (see figure 1). Rods are of

a single type and produce only monochromatic vision;

they are used mainly for night vision. Because there are

three types of cones, color theory is replete with terms

having the prefix “tri.” In particular, trichromacy, devel-

oped by Young, Grassmann, Maxwell, and Helmholtz,

is the theory that shows how to match any color with

an appropriate mixture of just three suitably chosen

primary colors.

We can model the responses of the three types of

cones to light by the integrals

ci(f ) =
∫ λmax

λmin

si(λ)f(λ)dλ, i = 1 : 3, (1)

where f describes the spectral distribution of the light

hitting the retina, si describes the sensitivity of the

ith cone to different wavelengths, and [λmin, λmax] ≈
[400 nm,700 nm] is the interval of wavelengths of

the visible spectrum. Note that this model is linear

(ci(f + g) = ci(f ) + ci(g)) and it projects the spec-

trum onto the space spanned by the si(λ)—the “human

visual subspace.”

http://www.itrs.net
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Figure 1 Response curves for the cones and the rods
(solid gray line). S, M, and L denote the cones most sensi-
tive to short (blue, solid black line), medium (green, dotted
black line), and long (red, dashed black line) wavelengths,
respectively. (After Bowmaker, J. K., and H. J. A. Dartnall,
1980, Visual pigments of rods and cones in a human retina,
Journal of Physiology 298:501–11.)

For computational purposes a grid of n equally
spaced points λi on the interval [λmin, λmax] is intro-
duced, and the repeated rectangle (or midpoint) quad-
rature rule is applied to (1), yielding

c = STf , c ∈ R3, S ∈ Rn×3, f ∈ Rn,

where the ith column of the matrix S has samples of
si at the grid points, the vector f contains the values
of f(λ) at the grid points, and the vector c absorbs
constants from the numerical integration. In practice,
a value of n around 40 is typically used.

Let the columns of P = [p1 p2 p3] ∈ Rn×3 represent
color primaries, defined by the property that the 3 × 3
matrix STP is nonsingular. For example, p1, p2, and p3

could represent red, blue, and green, respectively. We
can write

STf = STP(STP)−1STf ≡ STPa(f), (2)

where a(f) = (STP)−1STf ∈ R3. This equation shows
that the color of any spectrum f (or more precisely the
response of the cones to that spectrum) can be matched
by a linear combination, Pa(f), of the primaries. A
complication is that we need all the components of a
to be nonnegative for this argument, as negative inten-
sities of primaries cannot be produced. A way around
this problem is to write a(f) = a1 − a2, where a1 con-
tains the nonnegative components of a(f) and a2 has
positive components, and rewrite (2) as

ST(f + Pa2) = STPa1.

This equation says that Pa1 matches f with appro-
priate amounts of some of the primaries added. This

rearrangement is a standard trick in colorimetry, which

is the science of color measurement and description.

To summarize, the color of a visible spectrum f
can be matched by tristimulus values a(f) = ATf ,

where AT = (STP)−1ST, because STf = STPa(f).
The columns of A ∈ R3×n are called (samples of)

color-matching functions for the given primaries.

To determine A, a human observer is asked to match

light of single wavelengths λi by twiddling knobs to

mix light sources constituting the three primaries until

a match is obtained. Light of a single wavelength cor-

responds to a vector f = ei, where ei has a 1 in the

ith position and zeros everywhere else, and the vec-

tor a(f) = ATf that gives the match is therefore the

ith column of AT. In this way we can determine the

color-matching matrix A corresponding to the given

primaries.

This vector space model of color is powerful. For

example, since the 3 ×nmatrix ST has a nontrivial null

space, it tells us that there exist spectra f and g with

f �= g such that STf = STg. Hence two colors can

look the same to a human observer but have a different

spectral decomposition, which is the phenomenon of

metamerism. This is a good thing in the sense that color

output systems (such as computer monitors) exploit

metamerism to reproduce color. There is another form

of metamerism that is not so welcome: when two col-

ors appear to match under one light source but do not

match under a different light source. An example of

this is when you put on socks in the bedroom with the

room lights on and they appear black, but when you

view them in daylight one sock turns out to be blue.

The use of linear algebra in understanding color was

taken further by Jozef Cohen (1921–95), whose work is

summarized in the posthumous book Visual Color and

Color Mixture: The Fundamental Color Space (2001).

Cohen stresses the importance of what he calls the

“matrix R,” defined by

R = S(STS)−1ST = SS+,

where S+ denotes the moore–penrose pseudoinverse

[IV.10 §7.3] of S. Mathematically, R is the orthogo-

nal projector onto range(S). Cohen noted that R is

independent of the choice of primaries used for color

matching, that is, R is unchanged under transforma-

tions S ← SZ for nonsingular Z ∈ R3×3 and so is

an invariant. He also showed how in the factorization

S = QL, where Q ∈ Rn×3 has orthonormal columns

and L ∈ R3×3 is lower triangular, the factor Q (which
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he called F ) plays an important role in color theory

through the use of “tricolor coordinates” QTf .

We do not all see color in the same way: about 8% of

males and 0.5% of females are affected by color blind-

ness. The first investigation into color vision deficien-

cies was by Manchester chemist John Dalton (1766–

1844), who described his own color blindness in a lec-

ture to the Manchester Literary and Philosophical Soci-

ety. He thought that his vitreous humor was tinted

blue and instructed that his eyes be dissected after

his death. No blue coloring was found but his eyes

were preserved. A deoxyribonucleic acid (DNA) analy-

sis in 1985 concluded that Dalton was a deuteranope,

meaning that he lacked cones sensitive to the medium

wavelengths (green). The color model and analogues

of figure 1 for different cone deficiencies help us to

understand color blindness.

Given the emphasis in this section on trichromacy,

one might wonder why printing is usually done with

a four-color CMYK model when three colors should be

enough. CMYK stands for cyan–magenta–yellow–black,

and cyan, magenta, and yellow are complementary col-

ors to red, green, and blue, respectively. Trichromatic

theory says that a CMY system is entirely adequate for

color matching, so the K component is redundant. The

reason for using K is pragmatic. Producing black in a

printing process by overlaying C, M, and Y color plates

uses a lot of ink, makes the paper very wet, and does not

produce a true, deep black due to imperfections in the

inks. In CMYK printing, gray component replacement

is used to replace proportions of the CMY components

that produce gray with corresponding amounts of K.

(A naive algorithm to convert from CMY to CMYK is

K = min(C,M,Y), C ← C − K, M ← M − K, Y ← Y − K,

though in practice slightly different amounts of C, M,

and Y are required to produce black.)

2 Standardization

The Commission Internationale de l’Éclairage (CIE) is

responsible for standardization of color metrics and

terminology. Figure 2 shows the standard RGB color-

matching functions produced by the CIE in 1931 and

1964. They are based on color-matching experiments

and correspond to primaries at 700 nm (red), 546.1 nm

(green), and 435.8 nm (blue). The red curve takes nega-

tive values as shown in the figure, but nonnegative func-

tions were preferred for calculations in the precom-

puter era as they avoided the need for subtractions. So
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Figure 2 CIE RGB color-matching functions from the 1931
standard. (File adapted from an original on Wikimedia
Commons.)
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Figure 3 CIE XYZ color-matching functions from the 1931
standard. (File adapted from an original on Wikimedia
Commons.)

a CIE XYZ space was defined that has nonnegative color-
matching functions (see figure 3) and that is obtained
via the linear mapping1⎡⎢⎢⎣

X
Y
Z

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0.49 0.31 0.20

0.17697 0.81240 0.01063

0 0.01 0.99

⎤⎥⎥⎦
⎡⎢⎢⎣
R
G
B

⎤⎥⎥⎦ .
Two of the choices made by the CIE that led to this
transformation are that the Y component approxi-
mates the perceived brightness, called the luminance,
and that R = G = B = 1 corresponds to X = Y = Z = 1,
which requires that the rows of the matrix sum to 1.

Because the XYZ space is three dimensional it is
not easy to visualize the subset of it corresponding to

1. The coefficients of the matrix are written here in a way that indi-
cates their known precision. Thus, for example, the (1,1) element is
known to two significant digits but the (2,1) element is known to five
significant digits.
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the visible spectrum. It is common practice to use a
projective transformation

x = X
X + Y + Z , y = Y

X + Y + Z (z = 1 − x −y)

to produce a chromaticity diagram in terms of the
(x,y) coordinates (see plate 12). The visible spectrum
forms a convex set in the shape of a horseshoe. The
curved boundary of the horseshoe is generated by light
of a single wavelength (pure color) as it varies across the
visible spectrum, while at the bottom the “purple line”
is generated by combinations of red and blue light. The
diagram represents color and not luminance, which is
why there is no brown (a dark yellow). White is at ( 1

3 ,
1
3 ),

and pure colors lying at opposite ends of a line passing
through the white point are complementary: a combi-
nation of them produces white. Any point outside this
region represents an “imaginary color,” a distribution
of light that is not visible to us.

A common use of the chromaticity diagram is in
reviews of cameras, scanners, displays, and printers,
where the gamut of the device (the range of producible
colors) is overlaid on the diagram. Generally, the closer
the gamut is to the visible spectrum the better, but
since images are passed along a chain of devices start-
ing with a camera or scanner, a key question is how
the gamuts of the devices compare and whether colors
are faithfully translated from one device to another.
Color management deals with these issues, through
the use of International Color Consortium (ICC) pro-
files that describe the color attributes of each device by
defining a mapping between the device space and the
CIE XYZ reference space. Calibrating a device involves
solving nonlinear equations, which is typically done by
newton’s method [II.28].

3 Nonlinearities

So far, basic linear algebra and a projective transforma-
tion have been all that we need to develop color theory,
and one might hope that by using more sophisticated
techniques from matrix analysis one can go further. To
some extent, this is possible; for example, the Binet–
Cauchy theorem on determinants finds application in
several problems in colorimetry. But nonlinearities can-
not be avoided for long because human eyes respond
to light nonlinearly, in contrast to a digital camera’s
sensor, which has a linear response. The relative dif-
ference in brightness that we see between a dark cellar
and bright sunlight is far smaller than the relative dif-
ference in the respective number of photons reaching

our eyes, and this needs to be incorporated into the
model. One way of doing this is described in the next
section.

4 LAB Space

A problem with the CIE XYZ and RGB spaces is that they
are far from being perceptually uniform, which means
that there is not a linear relation between distances in
the tristimulus space and perceptual differences. This
led the CIE to search for nonlinear transformations that
give more uniform color spaces, and in 1976 they came
up with two standardized systems, L*u*v* and L*a*b*
(or LAB, pronounced “ell-A-B”). In the LAB space the L
coordinate represents lightness, the A coordinate is on
a green–magenta axis, and the B coordinate is on a blue–
yellow axis. For a precise definition in terms of the XYZ
space, if Xn, Yn, and Zn are the tristimuli of white then

L = 116f(Y/Yn)− 16,

A = 500[f (X/Xn)− f(Y/Yn)],
B = 200[f (Y/Yn)− f(Z/Zn)],

where

f(x) =
⎧⎨⎩x1/3, x � 0.008856,

7.787x + 16
116 , x � 0.008856.

The cube root term tries to capture the nonlinear per-
ceptual response of human vision to brightness. The
two cases in the formula for f bring in a different for-
mula for low tristimulus values, i.e., low light. The light-
ness coordinate L ranges from 0 to 100. The A and
B coordinates are typically in the range −128 to 128
(though not explicitly constrained), and A = B = 0
denotes lack of color, i.e., a shade of gray from black
(L = 0) to white (L = 100). In colorimetry, color dif-
ferences are expressed as Euclidean distances between
LAB coordinates and are denoted by ΔE.

An interesting application of LAB space is to the
construction of color maps, which are used to map
numbers to colors when plotting data. The most com-
monly used color map is the rainbow color map, which
starts at dark blue and progresses through cyan, green,
yellow, orange, and red, through colors of increasing
wavelength. In recent years the rainbow color map has
been heavily criticized for a number of reasons, which
include

• it is not perceptually uniform, in that the colors
appear to change at different rates in different
regions (faster in the yellow, slower in the green);
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• it is confusing, because people do not always

remember the ordering of the colors, making inter-

pretation of an image harder;

• it loses information when printed on a mono-

chrome printer, since high and low values map to

similar shades of gray.

These particular criticisms can be addressed by using a

color map constructed in LAB space with colors having

monotonically increasing L values and linearly spaced

A and B values. Color maps based on such ideas have

supplanted the once-ubiquitous rainbow color map

as the default in MATLAB and in some visualization

software.

For image manipulation there are some obvious

advantages to working in LAB space, as luminosity

and color can easily be independently adjusted, which

is not the case in RGB space. However, LAB space

has some strange properties. For example, (L,A, B) =
(0,128,−128) represents a brilliant magenta as black

as a cellar! LAB space contains many such imaginary

colors that cannot exist and are not representable in

RGB. For many years LAB was regarded as a rather eso-

teric color space of use only for intermediate represen-

tations in color management and the like, though it is

supported in high-end software such as Adobe Photo-

shop and the MATLAB Image Processing Toolbox. How-

ever, in recent years this view has changed, as photog-

raphers and retouchers have realized that LAB space,

when used correctly, is a very powerful tool for manip-

ulating digital images. The book Photoshop LAB Color

(2006) by Dan Margulis describes the relevant tech-

niques, which include ways to reduce noise (blur the

A and B channels), massively increase color contrast

(stretch the A and B channels), and change the color

of colorful objects in a scene while leaving the less

colorful objects apparently unchanged (linear transfor-

mations of the A and B channels). As an example of

the latter technique, plate 13(a) shows an RGB image

of a building at the University of Manchester, while

plate 13(b) shows the result of converting the image to

LAB, flipping the sign of the A channel, then convert-

ing back to RGB. The effect is to change the turquoise

paint to pink without, apparently, significantly chang-

ing any other color in the image including the blue sky.

In truth, all the colors have changed, but mostly by

such a small amount that the changes are not visible,

due to the colors having small A components in LAB

coordinates.

5 JPEG

JPEG is a compression scheme for RGB images that can
greatly reduce file size, though it is lossy (throws infor-
mation away). The JPEG process first converts from RGB
to the YCbCr color space, where Y represents luminance
and Cb and Cr represent blue and red chrominances,
respectively, using the linear transformation⎡⎢⎢⎣

Y
Cb

Cr

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0.299 0.587 0.114

−0.1687 −0.3313 0.5
0.5 −0.4187 −0.0813

⎤⎥⎥⎦
⎡⎢⎢⎣
R
G
B

⎤⎥⎥⎦ .
The motivation for this transformation is that human
vision has a poor response to spatial detail in colored
areas of the same luminance, so the Cb and Cr compo-
nents can take greater compression than the Y compo-
nent. The image is then broken up into 8 × 8 blocks and
for each block a two-dimensional discrete cosine trans-
form is applied to each of the components, after which
the coefficients are rounded, more aggressively for the
Cb and Cr components. Of course, it is crucial that the
3 × 3 matrix in the above transformation is nonsingu-
lar, as the transformation needs to be inverted in order
to decode a JPEG file.

The later JPEG2000 standard replaces the discrete
cosine transform with a wavelet transform [I.3 §3.3]
and uses larger blocks. Despite the more sophisticated
mathematics underlying it, JPEG2000 has not caught on
as a general-purpose image format, but it is appropri-
ate in special applications such as storing fingerprints,
where it is much better than JPEG at reproducing edges.

6 Nonlinear RGB

The CIE LAB and XYZ color spaces are device inde-
pendent: they are absolute color spaces defined with
reference to a “standard human observer.” The RGB
images one comes across in practice, such as JPEG
images from a digital camera, are in device-dependent
RGB spaces. These spaces are obtained from a linear
transformation of CIE XYZ space followed by a non-
linear transformation of each coordinate that modifies
the gamma (brightness), analogously to the definition
of the L channel in LAB space. They also have specifi-
cations in (x,y) chromaticity coordinates of the pri-
maries red, green, and blue, and the white point (as
there is no unique definition of white). The most com-
mon nonlinear RGB space is sRGB, defined by Hewlett–
Packard and Microsoft in the late 1990s for use by con-
sumer digital devices and now the default space for
images on the Web. The sRGB gamut is the convex hull
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of the red, green, and blue points, and it is shown on
the chromaticity diagram in plate 12.

7 Digital Image Manipulation

Digital images are typically stored as 8-bit RGB images,
that is, as arrays A ∈ Rm×n×3, where aijk, k = 1 : 3,
contain the RGB values of the (i, j) pixel. In practice,
each element aijk is an integer in the range 0 to 255,
but for notational simplicity we will assume the range
is instead [0,1]. Image manipulations correspond to
transforming the array A to another array B, where

bijk = fijk(aijk)
for some functions fijk. In practice, the 3mn func-
tions fijk will be highly correlated. The simplest case
is where fijk ≡ f is independent of i, j, and k, and an
example is fijk(aijk) = min(aijk+0.2,1), which bright-
ens an image by increasing the RGB values of every pixel
by 0.2. Another example is

fijk(aijk) =
⎧⎨⎩2a2

ijk aijk � 0.5,

1 − 2(1 − aijk)2 aijk � 0.5.
(3)

This transformation increases contrast by making RGB
components less than 0.5 smaller (darkening the pixel)
and those greater than 0.5 larger (lightening the pixel).
These kinds of global manipulations are offered by all
programs for editing digital images, but the results
they produce are usually crude and unprofessional.
For realistic high-quality results, the transformations
need to be local and, from the photographic point of
view, proportional. For example, the brightening trans-
formation above will change any RGB triplet (r , g, b)
with min(r , g, b) � 0.8 to (1,1,1), which is pure white,
almost certainly producing an artificial result. The
transformation (3) that increases contrast will change
the colors, since it modifies the RGB values at each pixel
independently.

Advanced digital image manipulation avoids these
problems by various techniques, a very powerful one
being to apply a global transformation through a mask
that selectively reduces the effect of the transforma-
tion in certain parts of the image. The power of this
technique lies in the fact that the image itself can be
used to construct the mask.

However, there are situations where elementary cal-
culations on images are useful. A security camera might
detect movement by computing the variance of several
images taken a short time apart. A less trivial example
is where one wishes to photograph a busy scene such

as an iconic building without the many people and vehi-
cles that are moving through the scene at any one time.
Here, a solution is to put the camera on a tripod and
take a few tens of images, each a few seconds apart, and
then take the median of the images (each pixel gets the
median R, G, and B values of all the pixels in that loca-
tion in the image). With luck, and assuming the lighting
conditions remained constant through the procedure,
the median pixel will in every case be the unobscured
one that was wanted!
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VII.8 Mathematical Image Processing
Guillermo Sapiro

1 What Is Image Processing?

In order to illustrate what image processing is, let us
use examples from different applications and from
some superb contributions to image (and video) pro-
cessing research from the last few decades.

Without doubt, the most important contribution to
the field is JPEG, the standard for image compres-
sion. Together with bar code readers, JPEG is the most
widely used algorithm in the area. Virtually all the
images on our cell phones and on popular image-
sharing Web sites such as Facebook and Flickr are
compressed with JPEG. The basic idea behind JPEG
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is to first transform every 8 × 8 image patch via a
discrete cosine transform (DCT; the real-valued com-
ponent of the fast Fourier transform), attempting to
approximate the decorrelation that could be optimally
achieved only via the data-dependent Karhunen–Loeve
transform. The DCT coefficients are then quantized,
and while a simple uniform quantization is used per
coefficient position, interesting mathematical theory
lies behind this in the form of the optimal Max–Lloyd
quantizer (and vector quantization in general). Finally,
the quantized coefficients are encoded via Huffman
coding, putting to work one of the most successful
(and, along with the Lempel–Ziv universal compression
framework, most widely used) information theory algo-
rithms. Part of the beauty of JPEG is its simplicity: the
basic algorithm can be implemented in a morning by
any undergraduate student, and of course it can be
executed very efficiently for large images using simple
hardware. And yet despite its simplicity, a lot of theory
stands behind JPEG.

Image compression does not stop with JPEG, of
course, and we also have lossless compression tech-
niques like JPEG-LS. This is another technique based
on beautiful mathematics in the context modeling and
Golomb coding areas, and it has been used by NASA’s
Jet Propulsion Laboratory for both Mars rovers expe-
ditions; the Mars rovers also incorporate a wavelets-

based [I.3 §3.3] lossy compression algorithm (see fig-
ure 1, which was acquired on Mars and transmitted to
Earth with these compression techniques). The image
in figure 1 is composed of multiple high-resolution
images covering different regions of the scene (with
some overlapping), aligned together to form a larger
image. Such alignment is often obtained via nonlinear
optimization techniques that penalize disagreements
between the overlapping regions. Finally, videos are
compressed via MPEG, in which, as in the JPEG-LS tech-
nique, predictive coding plays a fundamental role. The
idea behind predictive coding is to use past data (e.g.,
past frames in a video) to predict future ones, encoding
only the difference.

Consumers are familiar with image processing be-
yond compression. We all go to the movies, and some
often notice mistakes in the films they see: a cam-
eraman who is accidentally included in a shot, say.
In order to repair such mistakes, the areas of the
corresponding objects have to be inpainted, or filled
in, with information from the background or other
sources (see plate 14). The mathematics behind image
inpainting is borrowed from the calculus of variations,

Figure 1 A beautiful image from Mars that we can enjoy
thanks to image compression. (Image courtesy of NASA/Jet
Propulsion Laboratory.)

partial differential equations, transport problems, and

the Navier–Stokes equations; think in terms of colors

being transported rather than fluids. Some more recent

techniques are based on exploiting the redundancy and

self-similarity in images and automatically performing

a cut-and-paste approach. This borrows ideas that go

back to Shannon’s thoughts on the English language:

by looking at the past in a given text, and construct-

ing letter and word distributions, we can predict the

future, or at least construct words and sentences that

look like correct grammar. These techniques, which can

also be formalized with tools from the calculus of vari-

ations, are based on finding the best possible informa-

tion, in the form of image regions, edges, or patches, to

“copy” from, and then “pasting” such information into

the zone to be inpainted.

Image inpainting can be considered an extreme case

of image denoising, where the “noise” is the region to

be inpainted. Noisy images (in the more standard sense,

where the noise is spread around the whole image

(e.g., additive Gaussian or Poisson noise)) have also

motivated considerable research in image processing,

with one of the most famous mathematical approaches

being total variation (TV). In TV we optimize for the

absolute norm of the image gradient, this being a crit-

ical regularizer for inverse problems, which are intrin-

sically ill-posed. TV also appears in compressed sens-

ing [VII.10] and in image-segmentation formulations

like that of Mumford and Shah, where the idea is

to segment an image by fitting it with, for example,

piecewise-constant functions. TV appears both because

of its piecewise requirement (total variation zero for

each piece) and the fact that the length of a curve can

be measured via the TV of the corresponding indica-

tor function. And yet TV is also part of the famous
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(a)

(b)

Figure 2 (a) Cryotomography of HIV viruses (one slice of
the actual three-dimensional volume) and (b) a reconstruc-
tion from such data of the HIV env protein via mathe-
matical image processing. The very noisy HIV particles, as
they appear in the raw data illustrated in (a), are classi-
fied and aligned/registered to obtain the three-dimensional
reconstructed HIV env protein. (Courtesy of Liu, Bartesaghi,
Borgnia, Subramaniam, and Sapiro.)

active contour model, where a curve is geometrically
deformed toward object boundaries, an effect that can
be achieved by computing geodesics (plate 15).

Special effects are very useful in images and movies.
We can play with them ourselves, at an amateur level,
on our computers, but at the professional level they
are included in virtually all current movies (virtually all
movies are now “touched up” by mathematical imag-
ing tools before they are released). At the core of this
is the idea of image segmentation, where we isolate
objects and then paste them into new backgrounds (see
plate 16).

While image processing is widely used in commercial
applications such as those just mentioned, medical and
biological imaging is another key area in which image
processing has made an important contribution. In fig-
ure 2 we see an example of human immunodeficiency
virus (HIV) research.

Finally, the analysis of images and videos is also key,
e.g., identifying the objects in an image or the activity
in a video (see plate 17).

To recap, with image processing we go to Hollywood,
Mars, and the hospital, and mathematics is everywhere.
Problems range from compression to reconstruction
and recognition, and as we will discuss further below,
challenging problems emerge for a number of branches
of applied mathematics.

1.1 Who Uses Image Processing?

The answer to this question is “everybody,” as we have
seen above. Consumers use image processing every

time they take a digital picture, and they experience
its benefits every time they go to the movies. Doctors
increasingly use image processing for improving radi-
ology pictures, as well as for performing automatic
analysis. Surveillance applications are abundant. Indus-
trial automatization is now a ubiquitous client of image
processing. Imaging-related companies and, therefore,
image processing itself are simply everywhere.

2 Who Works in Image Processing?

One of the beauties of this area is that regardless of
one’s interest in applied mathematics, there is always
an important and challenging problem and applica-
tion in the area of image and video processing. Let us
present a few examples.

Harmonic analysis. Wavelets come to mind immedi-
ately, of course; they are the basic component behind
the JPEG2000 image compression standard and they
are behind numerous other image reconstruction and
enhancement techniques. Moreover, harmonic analy-
sis is the precursor of compressed sensing and sparse
modeling, two of the most successful and interest-
ing ideas in image analysis, leading to the design of
new cameras and state-of-the-art algorithms in appli-
cations ranging from image denoising to object and
activity recognition.

The calculus of variations and partial differential

equations. This is the mathematics behind image
inpainting and leading image-segmentation tech-
niques. An integral part of this is, of course, numeri-
cal analysis, from classical techniques to more mod-
ern ones such as level set methods. [II.24]

Optimization. Image processing has been greatly influ-
enced by modern optimization techniques, whether
it be in the search for patches for image inpainting
or in segmentation techniques based on graph parti-
tions. Images are large, and efficient computational
techniques are therefore critical to the success of
image processing.

Statistics and probability. Bayesian and non-Bayesian
formulations appear all the time, in numerous prob-
lems and to give different interpretations to other
formulations, such as the standard optimization one
for sparse modeling.

Topology. Although not obviously related to image
processing, topology, and in particular persistent
homology, has made significant contributions to
image processing.
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But as well as benefiting from tremendous mathe-
matical advances, image processing has also opened
up new questions that have led to the development of
new mathematical results, ranging from the viscosity
solutions of partial differential equations to fundamen-
tal theorems in harmonic analysis and optimization.
There is therefore a perfect synergy between image pro-
cessing and applied mathematics, each benefiting and
feeding the other.

3 Concluding Thoughts and Perspectives

Digital images are more and more becoming part of our
daily lives, and the more images we have, the more
challenges we face. Applied mathematics has been
critical to image processing, and all the best image-
processing algorithms have fundamental mathematics
behind them. Image processing also asks new and chal-
lenging questions of mathematics, thereby opening the
door to new and exciting results. As one famous math-
ematician once told me, “If it works, there should be a
math explanation behind it.”
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VII.9 Medical Imaging
Charles L. Epstein

1 Introduction

Over the past fifty years the processes and techniques
of medical imaging have undergone a veritable explo-

sion, calling into service increasingly sophisticated
mathematical tools. Mathematics provides a language
to describe the measurement processes that lead, even-
tually, to algorithms for turning the raw data into
high-quality images. There are four principal modali-
ties in wide application today: X-ray computed tomog-
raphy (X-ray CT), ultrasound, magnetic resonance imag-
ing (MRI), and emission tomography (positron emission
tomography (PET) and single-photon emission com-
puted tomography (SPECT)). Each modality uses a dif-
ferent physical process to produce image contrast: X-
ray CT produces a map of the X-ray attenuation coeffi-
cient, which is strongly correlated with density; ultra-
sound images are produced by mapping absorption
and reflection of acoustic waves; in their simplest form,
magnetic resonance images show the density of water
protons, but the subtlety of the underlying physics pro-
vides many avenues for producing clinically meaning-
ful contrasts in this modality; PET and SPECT give spa-
tial maps of the chemical activity of metabolites, which
are bound to radioactive elements. It has recently been
found useful to merge different modalities. For exam-
ple, a fused MRI/PET image shows metabolic activity
produced by PET, at a fairly low spatial resolution,
against the background of a detailed anatomic image
produced by MRI. Plate 18 shows a PET image, a PET
image fused with a CT image, and the CT image as well.

In this article we consider mathematical aspects
of PET, whose underlying physics we briefly explain.
Positron emission is a mode of radioactive decay stem-
ming from the reaction

proton → neutron + positron + neutrino + energy. (1)

Two isotopes, of clinical importance, that undergo this
type of decay are F18 and C11. The positron, which
is the positively charged antiparticle of the electron,
is typically very short-lived as it is annihilated, along
with the first electron it encounters, producing a pair
of 0.511 MeV photons. This usually happens within a
millimeter or two of the site of the radioactive decay.
Due to conservation of momentum, these two photons
travel in nearly opposite directions along a straight line
(see figure 1). The phenomenon of pair annihilation
underlies the operation of a PET scanner.

A short-lived isotope that undergoes the reaction
in (1) is incorporated into a metabolite, e.g., fluo-
rodeoxyglucose, which is then injected into the patient.
This metabolite is taken up differentially by vari-
ous structures in the body. For example, many types
of cancerous tumors have a very rapid metabolism
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and quickly take up available fluorodeoxyglucose. The
detector in a PET scanner is a ring of scintillation crys-
tals that surrounds some portion of the patient. The
high-energy photon interacts with the crystal to pro-
duce a flash of light. These flashes are fed into photo-
multiplier tubes with electronics that localize, to some
extent, where the flash of light occurred and measure
the energy of the photon that produced it. Finally, dif-
ferent arrival times are compared to determine which
events are likely to be “coincidences,” caused by a sin-
gle pair annihilation. Two photons detected within a
time window of about 10 nanoseconds are assumed
to be the result of a single annihilation event. The
measured locations of a pair of coincident photons
then determines a line. If the photons simply exited
the patient’s body without further interactions, then
the annihilation event must have occurred somewhere
along this line (see figure 1). It is not difficult to imag-
ine that sufficiently many such measurements could
be used to reconstruct an approximation for the dis-
tribution of sources, a goal that is facilitated by a more
quantitative model.

2 A Quantitative Model

Radioactive decay is usually modeled as a Poisson ran-
dom process. Recall that Y is a Poisson random variable
of intensity λ if

Prob(Y = k) = λ
ke−λ

k!
. (2)

A simple calculation shows that E[Y] = λ and Var[Y] =
λ as well. Let H denote the region within the scanner
that is occupied by the patient, and, for p ∈ H, let ρ(p)
denote the concentration of radioactive metabolite as
a function of position. If ρ is measured in the correct
units, then the probability of k decay events originating
from a small volume dV centered atp, in a time interval
of unit length, is

Prob(k;p) = ρ(p)
ke−ρ(p)

k!
dV. (3)

Decays originating at different spatial locations are
regarded as independent events.

Assume, for the moment, that

(i) there are many decay events, so that we are justified
in replacing this probabilistic law by its mean, ρ(p),

(ii) the high-energy photons simply exit the patient
without interaction, and

(iii) we are equally likely to detect a given decay event
on any line passing through the source point.

PQ

*

Pair
annihilation

Radioactive
decay

Coincidence
detected

P

Q

Figure 1 A radioactive decay leading to a positron–electron
annihilation, exiting along -PQ , which is detected as a
coincidence event at P and Q in the detector ring.

Let -PQ be the line joining the two detector positions
P and Q where photons are simultaneously detected.
With these assumptions we see that by counting up the
coincidences observed at P and Q we are finding an
approximation to the line integral

Xρ(-PQ ) =
∫
-PQ

ρ(p)dl,

where dl is the arc length along the line -PQ . This is
nothing other than a sample of the three-dimensional
X-ray transform of ρ, which, if it could be approxi-
mately measured with sufficient accuracy, for a suffi-
ciently dense set of lines, could then be inverted to pro-
duce a good approximate value for ρ. This is essentially
what is done in x-ray ct [VII.19].

For the moment, we restrict our attention to lines that
lie in a plane π0 intersecting the patient and choose
coordinates (x,y, z) so that π0 = {z = z0}. The lines
in this plane are parametrized by an angle θ ∈ [0, π]
and a real number s, with

-θ,s = {(s cosθ, s sinθ, z0)+ t(− sinθ, cosθ,0) :

t ∈ (−∞,∞)}
(see figure 2). In terms of s and θ, the two-dimensional
X-ray transform is given by the integral

Xρ(s, θ, z0) =
∫∞

−∞
ρ((s cosθ, s sinθ, z0)

+ t(− sinθ, cosθ,0))dt.

The inverse of this transform is usually represented
as a composition of two operations: a filter acting on
Xρ(s, θ, z0) in the s variable, followed by the back-
projection operator. If g(s, θ) is a function on the space
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s
θ θs,

Figure 2 The lines in the plane π0 are labeled by θ, the
angle the normal makes with the x-axis, and s, the distance
from the line to the origin.

of lines in a plane, then the filter operation can be rep-
resented by Fg(s, θ) = ∂sHg(s, θ), where H is a con-
stant multiple of the Hilbert transform acting in the s
variable. The back-projection operator X∗g defines a
function of (x,y) ∈ π0 that is the average of g over all
lines passing through (x,y):

X∗g(x,y) = 1
π

∫ π
0
g(x cosθ +y sinθ,θ)dθ.

Putting together the pieces, we get the filtered back-
projection (FBP) operator, which inverts the two-dimen-
sional X-ray transform: ρ(x,y, z0) = [X∗ ◦F] ·Xρ. By
using this approach for a collection of parallel planes,
the function ρ could be reconstructed in a volume. This
provides a possible method for reconstruction of PET
images, and indeed the discrete implementations of
this method have been extensively studied. In the early
days of PET imaging this approach was widely used, and
it remains in use today. Note, however, that using only
data from lines lying in a set of parallel planes is very
wasteful and leads to images with low signal-to-noise
ratio.

Assumption (i) implies that our measurement is
a good approximation to the X-ray transform of ρ,
Xρ(s, θ, z0). Because of the very high energies involved
in positron emission radioactivity, only very small
amounts of short-lived isotopes can be used. The mea-
sured count rates are therefore low, which leads to mea-
surements dominated by Poisson noise that are not a
good approximation to the mean. Because the FBP algo-
rithm involves a derivative in s, the data must be signif-
icantly smoothed before this approach to image recon-
struction can be applied. This produces low-resolution
images that contain a variety of artifacts due to system-
atic measurement errors, which we describe below.

At this point it is useful to have a more accurate
description of the scanner and the measured data. We

Detector ring

di

dj

Tij

b2

b1

b1

Figure 3 The detector ring is divided into finitely many
detectors of finite size. Each pair (di, dj) defines a tube Tij
in the region occupied by the patient. This region is divided
into boxes {bk}.

model the detector as a cylindrical ring surrounding

the patient, which is partitioned into a finite set of

regions {d1, . . . , dn}. The scanner can localize a scintil-

lation event as having occurred in one of these regions,

which we heretofore refer to as detectors. This instru-

ment design suggests that we divide the volume inside

the detector ring into a collection of tubes, {Tij}, with

each tube defined as the union of lines joining points in

di to points in dj (see figure 3). A measurement nij is

the number of coincidence events observed by the pair

of detectors (di, dj). The simplest interpretation of nij
is as a sample of a Poisson random variable with mean

proportional to ∫
-PQ⊂Tij

Xρ(-PQ ). (4)

Below we will see that this interpretation requires

several adjustments.

Assumption (ii) fails as the photons tend to interact

quite a lot with the bulk of the patient’s body. Large

fractions of the photons are absorbed, or scattered,

with each member of an annihilation pair meeting its

fate independently of the other. This leads to three

distinct types of measurement errors.
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Randoms. These are coincidences that are observed by

a pair of detectors but that do not correspond to a

single annihilation event. These can account for 10–

30% of the observed events (see figure 4(a)).

Scatter. If one or both photons is/are scattered and

then both are detected, this may register as a coin-

cidence at a pair of detectors (di, dj), but the anni-

hilation event did not occur at a point lying near Tij
(see figure 4(b)).

Attenuation. Most photon pairs (often 95%) are simply

absorbed, leading to a substantial underestimate of

the number of events occurring along a given line.

Below we discuss how the effects of these sorts of mea-

surement errors can be incorporated into the model

and the reconstruction algorithm. To get quantita-

tively meaningful, artifact-free images, these errors

must be corrected before application of any image-

reconstruction method.

Assumption (iii) is false in that the detector array,

which is usually a ring of scintillation counters, en-

closes only part of the patient. Many lines through the

patient will therefore be disjoint from the detector only

intersect it or at one end. This problem can, to some

extent, be mitigated by using only observations coming

from lines that lie in planes that intersect the detec-

tor in a closed curve. If the detector is a section of a

cylinder, then each point p lies in a collection of such

planes {πψ,φ} whose normal vectors {νψ,φ} fill a disk

Dp lying on the unit sphere. If ρψ,φ(p) denotes the

approximate value for ρ(p) determined using the FBP

algorithm in the planeπψ,φ, then an approximate value

with improved signal-to-noise ratio is obtained as the

average:

ρ̄(p) = 1
|Dp|

∫
Dp
ρψ,φ(p)dS(ψ,φ),

where dS(ψ,φ) is the spherical areal measure. A par-

ticular implementation of this idea that is often used

in PET scanners goes under the name of the “Col-

sher filter.” Other methods use a collection of paral-

lel two-dimensional planes to reconstruct an approx-

imate image from which the missing data for the

three-dimensional X-ray transform can then be approx-

imately computed.

In addition to these inherent physical limitations on

the measurement process, there are a wide range of

instrumentation problems connected to the detection

and spatial localization of high-energy photons, as well

as the discrimination of coincidence events. Effective

Random
coincidence

detected

*

Pair
annihilation

Radioactive
decay

Detector ring

*

*

Scattering
event

Detector ring

(a)

(b)

Pair
annihilation

Radioactive
decay

Coincidence
detected along
incorrect line

Figure 4 The measurement process in PET scanners is
subject to a variety of systematic errors. (a) Randoms are
detected coincidences that do not result from a single decay
event. (b) Scatter is the result of one or both of the pho-
tons scattering off an object before being detected as a
coincidence event but along the wrong line.

solutions to these problems are central to the success
of a PET scanner, but they are beyond the scope of this
article.

3 Correcting Measurement Errors

To reconstruct images that are quantitatively meaning-
ful and reasonably free of artifacts, the measured data
{nij} must first be corrected for randoms, scatter, and
attenuation (see figure 4). This requires both additional
measurements and models for the processes that lead
to these errors.
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3.1 Randoms

We first discuss how to correct for randoms. Let Rij
denote the number of coincidences detected on the pair
(di, dj) that are not caused by a decay event in Tij . In
practice, coincidences are considered to be two events
that are observed within a certain time window τ (usu-
ally about 10 nanoseconds). In addition to coincidences
between two detectors, the numbers of single counts,
{ni}, observed at {di} are recorded. In fact, the number
of “singles” is usually one or two orders of magnitude
larger than the number of coincidences. From the mea-
sured number of singles observed over a known period
of time we can infer rates of singles events {ri} for each
detector. Assuming that each of these singles processes
is independent, a reasonable estimate for the number
of coincidences observed on the detector pair (di, dj)
over the course of T units of time that are actually ran-
doms is Rij � τTrirj . A somewhat more accurate esti-
mate is obtained if one accounts for the decay of the
radioactive source.

There are other measurement techniques for esti-
mating Rij , though these estimates tend to be rather
noisy. Simply subtracting Rij from nij can increase
the noise in the measurements and also change their
basic statistical properties. There is a useful technique
for replacing Rij with a lower-variance estimate. Let
A be a collection of contiguous detectors including di
that are joined to dj , and let B be a similar collection,
including dj , that are joined to di. Suppose that R̃mn
are estimates for the randoms detected in the pairs
{(dn,dm) : n ∈ B, m ∈ A}. The expression

R̂ij =
[
∑
m∈A R̃im][

∑
n∈B R̃nj]∑

m∈A,n∈B R̃mn
provides an estimate for Rij with reduced noise vari-
ance.

3.2 Scatter

The next source of error we consider is scatter, which
results from one or both photons in the annihilation
pair scattering off some matter in the patient before
being recorded as a coincidence at a pair of detectors
(di, dj). If the scattering angle is not small, then the
annihilation event will not have occurred in expected
tube Tij . Some part of nij , which we denote Sij , there-
fore corresponds to radioactive decays that did not
occur in Tij . Scattered photons tend to lose energy,
so many approaches to estimating the amount of scat-
ter are connected to measurement of the energies of

detected photons. Depending on the design of the scan-
ner, scatter can account for 15–40% of the observed
coincidences. There are many methods for estimat-
ing the contribution of scatter but most of them are
related to the specific design of the PET scanner and
are therefore beyond the purview of this article.

3.3 Attenuation

Once contributions from randoms and scatter have
been removed to obtain corrected observations ñij =
nij −Rij −Sij , we still need to account for the fact that
many photon pairs are simply absorbed. This process
is described by Beer’s law, which is the basis for X-ray
CT. Suppose that an annihilation event takes place at a
point p0 within the patient and that the photons travel
along the rays -+ and -− originating at p0. The atten-
uation coefficient is a function μ(p) defined through-
out the patient’s body such that the probabilities of
detecting photons traveling along -± are

P± = exp
(
−
∫
-±
μ dl

)
.

As we “count” only coincidences, and the two pho-
tons are independent, the probability of observing the
coincidence is simply the product

P+P− = exp
(
−
∫
-
μ dl

)
,

where - = -+ ∪ -−. In other words, the attenuation
of coincidence counts due to photons traveling along
- does not depend on the location of the annihilation
event along this line! This factor can therefore be mea-
sured by observing the fraction of photons, of the given
energy, emitted outside the patient’s body that pass
through the patient along - and are detected on the
opposite side.

For each pair (di, dj) we can therefore determine an
attenuation coefficient qij . The extent of the intersec-
tion of Tij with the patient’s body has a marked effect
on the size of qij , which can range from approximately
1 for tubes lying close to the skin to approximately 0.1
for those passing through a significant part of the body.
The corrected data, which is passed to a reconstruction
algorithm, is therefore

Nij =
ñij
qij

= nij − Rij − Sij
qij

.

In addition to the corrections described above, there
are a variety of adjustments that are needed to account
for measurement errors attributable to the details of
the behavior of the detector and the operation of the
electronics. Applying an FBP algorithm to the corrected
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data, we can obtain a discrete approximation ρFBP(p)
to ρ(p). In the next section we describe iterative algo-

rithms for PET image reconstruction. While the FBP

algorithm is linear, and efficient, iterative algorithms

allow for incorporation of more information about the

measurement process and are better suited to low

signal-to-noise ratio data.

4 Iterative Reconstruction Algorithms

While filtered back projection provides a good start-

ing point for image reconstruction in PET, the varying

statistical properties of different measurements can-

not be easily incorporated into this algorithm. A vari-

ety of approaches have been developed that allow for

the exploitation of such information. To describe these

algorithms we need to provide a discrete measurement

model that is somewhat different from that discussed

above. The underlying idea is that we are developing a

statistical estimator for the strengths of the Poisson

processes that produce the observed measurements.

Note that these measurements must still be corrected

as described in the previous section.

In the previous discussion we described the region,

H, occupied by the patient as a continuum, with ρ(p)
the strength of the radioactive decay processes, a con-

tinuous function of a continuous variable p ∈ H. We

now divide the measurement volume into a finite col-

lection of boxes, {b1, . . . , bB}. The radioactive decay of

the tracer in box bk is modeled as a Poisson process

of strength λk. For each point p ∈ H and each detec-

tor pair (di, dj), we let c(p; i, j) denote the probability

that a decay event at p is detected as a coincidence in

this detector pair. The patient’s body will produce scat-

ter and attenuation that will in turn alter the values

of c(p; i, j) from what they would be in its absence,

i.e., the area fraction of a small sphere centered at p
intercepted by lines joining points in di to points in dj .

In the simplest case, the measurements {nij} would

be interpreted as samples of Poisson random variables

with means
B∑
k=1

p(k; i, j)λk,

where

p(k; i, j) = 1
V(bk)

∫
bk
c(p; i, j)dp

is the probability that a decay event in bk is detected

in the pair (di, dj). Here, V(bk) is the volume of bk.
Assuming that the attenuation coefficient does not vary

rapidly within the tube Tij , we can incorporate attenu-
ation into this model, as above, by replacing p(k; i, j)
with p(k; i, j) → qijp(k; i, j) = pa(k; i, j). Ignoring
scatter and randoms, the expected value of nij would
then satisfy

E[nij] =
B∑
k=1

pa(k; i, j)λk = n̄ij .

In this model, scatter and randoms are regarded as
independent Poisson processes, with means λs(i, j)
and λr(i, j), respectively. Including these effects, we see
that the measurement nij is then a sample of a Poisson
random variable with mean n̄ij +λs(i, j)+λr(i, j). The
reconstruction problem is then to infer estimates for
the intensities of the sources {λk} from the observa-
tions {nij}. There are a variety of approaches to solving
this problem.

First we consider the reconstruction problem ignor-
ing the contributions of scatter and randoms. The mea-
surement model suggests that we look for a solution,
(λ∗1 , . . . , λ

∗
B ), to the system of equations

nij =
B∑
k=1

pa(k; i, j)λ∗k .

If the array of detectors is three dimensional, there are
likely to be many more detector pairs than boxes in the
volume. The number of such pairs is quadratic in the
number of detectors. This system of equations is there-
fore highly overdetermined, so a least-squares solution
is a reasonable choice. That is, λ∗ could be defined as

λ∗ = arg min
{y : 0�yk}

∑
i,j

(
nij −

B∑
k=1

pa(k; i, j)yk
)2

.

Note that we constrain the variables {yk} to be non-
negative, as this is certainly true of the actual intensi-
ties. The least-squares solution can be interpreted as a
maximum-likelihood (ML) estimate for λ, when the like-
lihood of observing n given the intensities y is given
by the product of Gaussians:

Lg(y) =
∏
i,j

exp
[
−
(
nij −

B∑
k=1

pa(k; i, j)yk
)2 ]

.

It is assumed that the various observations are samples
of independent processes. If we have estimates for the
variances {σij} of these measurements, then we could
instead consider a weighted least-squares solution and
look for

λ∗g,σ = arg min
{y : 0�yk}

∑
i,j

1
σij

(
nij −

B∑
k=1

pa(k; i, j)yk
)2

.
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Because the data tends to be very noisy, in addi-

tion to the “data term” many algorithms include a

regularization term, such as

R(y) =
B∑
k=1

∑
k∈N(k)

|yk −yk′ |2,

where for each k, the N(k) are the indices of the boxes

contiguous to bk. The β-regularized solution is then

defined as

λ∗g,σ ,β = arg min
{y : 0�yk}

[∑
i,j

1
σij

(
nij −

B∑
k=1

pa(k; i, j)yk
)2

+ βR(y)
]
.

As noted above, these tend to be very large systems of

equations and are therefore usually solved via iterative

methods. Indeed, a great deal of the research effort in

PET is connected with finding data structures and algo-

rithms to enable solution of such optimization prob-

lems in a way that is fast enough and stable enough for

real-time imaging applications.

Given the nature of radioactive decay, it is perhaps

more reasonable to consider an expression for the

likelihood in terms of Poisson processes. With

μ(i, j)(y) =
B∑
k
pa(k; i, j)yk,

we get the Poisson likelihood function

Lp(y) =
∏
i,j

e−μ(i,j)(y)[μ(i, j)(y)]nij

nij !
.

The expectation–maximization (EM) algorithm provides

a means to iteratively find the nonnegative vector that

maximizes logLp(y). After choosing a nonnegative

starting vector y(0), the map from y(m) to y(m+1) is

given by the formula

y(m+1)
k = y(m)k

1∑
i,j pa(k; i, j)

∑
i,j

[ pa(k; i, j)nij∑
k pa(k; i, j)y(m)k

]
.

(5)

This algorithm has several desirable features. Firstly,

if the initial guess y(0) is positive, then the positiv-

ity condition on the components of y(m) is automatic.

Secondly, before convergence, the likelihood is mono-

tonically increasing; that is, L(y(m)) < L(y(m+1)).
Note that if nij = ∑

k pa(k; i, j)y(m)k for all (i, j),
then y(m+1) = y(m). The algorithm defined in (5)

converges too slowly to be practical in clinical appli-

cations. There are several methods to accelerate its

convergence, which also include regularization terms.

(a) (b)

Figure 5 Two reconstructions from the same PET data illus-
trating the superior noise and artifact suppression attain-
able using iterative algorithms: (a) image reconstructed
using the FBP algorithm and (b) image reconstructed using
an iterative ML algorithm. Images courtesy of Dr. Joel Karp,
Hospital of the University of Pennsylvania.

We conclude this discussion by explaining how to
include estimates for the contributions of scatter and
randoms to nij in an ML reconstruction algorithm. We
suppose that nij can be decomposed as a sum of three
terms:

nij =
B∑
k=1

pa(k; i, j)λk + Rij + Sij. (6)

With this decomposition, it is clear how to modify the
update rule in (5):

y(m+1)
k = y(m)k

1∑
i,j pa(k; i, j)

×
∑
i,j

[ pa(k; i, j)nij∑
k pa(k; i, j)y(m)k + Rij + Sij

]
.

In addition to the ML-based algorithms, there are many
other iterative approaches to solving these optimiza-
tion problems that go under the general rubric of
“algebraic reconstruction techniques,” or ART. Figure 5
shows two reconstructions of a PET image: part (a) is
the result of using the FBP algorithm, while part (b)
shows the output of an iterative ML–EM algorithm.

5 Outlook

PET imaging provides a method for directly visualiz-
ing and spatially localizing metabolic processes. As is
clear from our discussion, the physics involved in inter-
preting the measurements and designing detectors is
rather complicated. In this article we have touched on
only some of the basic ideas used to model the mea-
surements and develop reconstruction algorithms. The
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FBP algorithm gives the most direct method for recon-
structing images, but the images tend to have low res-
olution, streaking artifacts, and noise. One can eas-
ily incorporate much more of the physics into itera-
tive techniques based on probabilistic models, and this
should lead to much better images. Because of the large
number of detector pairs for three-dimensional vol-
umes, naive implementations of iterative algorithms
require vast computational resources. At the time of
writing, both reconstruction techniques and the modal-
ity as a whole are rapidly evolving in response to the
development of better detectors and faster computers,
and because of increased storage capabilities.

Further Reading

A comprehensive overview of PET is given in Bailey
et al. (2005). A review article on instrumentation and
clinical applications is Muehllehner and Karp (2006).
An early article on three-dimensional reconstruction is
Colsher (1980). An early paper on the use of ML algo-
rithms in PET is Vardi et al. (1985). Review articles on
reconstruction methods from projections and recon-
struction methods in PET are Lewitt and Matej (2003)
and Reader and Zaidi (2007), respectively.

Bailey, D. L., D. W. Townsend, P. E. Valk, and M. N.
Maisey, eds. 2005. Positron Emission Tomography. Lon-
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Colsher, J. G. 1980. Fully three-dimensional positron emis-
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Vardi, Y., L. A. Shepp, and L. Kaufman. 1985. A statistical
model for positron emission tomography. Journal of the
American Statistical Association 80:8–20.

VII.10 Compressed Sensing
Yonina C. Eldar

1 Introduction

Compressed sensing (CS) is an exciting, rapidly grow-
ing field that has attracted considerable attention
in electrical engineering, applied mathematics, statis-
tics, and computer science. CS offers a framework

for simultaneous sensing and compression of finite-

dimensional vectors that relies on linear dimension-

ality reduction. Quite surprisingly, it predicts that

sparse high-dimensional signals can be recovered from

highly incomplete measurements by using efficient

algorithms.

To be more specific, let x be an n-vector. In CS we do

not measure x directly but instead acquire m < n lin-

ear measurements of the form y = Ax using anm×n
CS matrix A. Ideally, the matrix is designed to reduce

the number of measurements as much as possible while

allowing for recovery of a wide class of signals from

their measurement vectors y . Thus, we would like to

choose m� n.

Since A has fewer rows than columns, it has a

nonempty null space. This implies that for any partic-

ular signal x0, an infinite number of signals x yield the

same measurements y = Ax = Ax0. To enable recov-

ery, we must therefore limit ourselves to a special class

of input signals x.

Sparsity is the most prevalent signal structure used

in CS. In its simplest form, sparsity implies that x has

only a small number of nonzero values but we do not

know which entries are nonzero. Mathematically, we

express this condition as ‖x‖0 � k, where ‖x‖0 denotes

the -0-“norm” of x, which counts the number of non-

zeros in x (note that ‖ · ‖0 is not a true norm, since in

general ‖αx‖0 �= |α| ‖x‖0 for α ∈ R). More generally,

CS ideas can be applied when a suitable representation

of x is sparse. A signal x is k-sparse in a basis Ψ if there

exists a vector θ ∈ Rn with only k� n nonzero entries

such that x = Ψθ. As an example, the success of many

compression algorithms, such as jpeg 2000 [VII.7 §5],

is tied to the fact that natural images are often sparse

in an appropriate wavelet transform.

Finding a sparse vector x that satisfies the measure-

ment equation y = Ax can be performed by an exhaus-

tive search over all possible sets of size k. In general,

however, this is impractical; in fact, the task of finding

such an x is known to be np-hard [I.4 §4.1]. The sur-

prising result at the heart of CS is that, ifx (or a suitable

representation of x) is k-sparse, then it can be recov-

ered from y = Ax using a number of measurements

m that is on the order of k logn, under certain condi-

tions on the matrix A. Furthermore, recovery is possi-

ble using polynomial-time algorithms that are robust to

noise and mismodeling of x. In particular, the essential

results hold when x is compressible, namely, when it

is well approximated by its best k-term representation
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min‖v‖0�k ‖x − v‖, where the norm in the objective is
arbitrary.

CS has led to a fundamentally new approach to signal
processing, analog-to-digital converter (ADC) design,
image recovery, and compression algorithms. Con-
sumer electronics, civilian and military surveillance,
medical imaging, radar, and many other applications
rely on efficient sampling. Reducing the sampling rate
in these applications by making efficient use of the
available degrees of freedom can improve the user
experience; increase data transfer; improve imaging
quality; and reduce power, cost, and exposure time.

2 The Design of Measurement Matrices

The ability to recover x from a small number of mea-
surements y = Ax depends on the properties of the CS
matrix A. In particular, A should be designed so as to
enable unique identification of a k-sparse signal x. Let
the support S of x be the set of indices over which x is
nonzero, and denote by xS the vector x restricted to its
support. We similarly denote by AS the columns of A
corresponding to this support, so that y = Ax = ASxS .
When the support is known, we can recover x from y
via xS = (AT

SAS)−1AT
Sy , assuming that AS has full col-

umn rank. The difficulty in CS arises from the fact that
the support of x is not known in advance. Therefore,
determining conditions on A that ensure recovery is
more involved.

As a first step, we would like to choose A such that
every two distinct signals x, x′ that are k-sparse lead to
different measurement vectors Ax ≠ Ax′. This can be
ensured if the spark of A satisfies spark(A) � 2k + 1,
where spark(A) is the smallest number of columns
of A that are linearly dependent. Since spark(A) ∈
[2,m+ 1], this yields the requirement that m � 2k.

Unfortunately, computing the spark of a general
matrix A has combinatorial computational complexity,
since one must verify that all sets of columns of a cer-
tain size are linearly independent. Instead, one can pro-
vide (suboptimal) recovery guarantees using the coher-
ence μ(A), which is easily computable and is defined
as

μ(A) = max
1�i�=j�n

|aT
i aj|

‖ai‖2‖aj‖2
,

where ai is the ith column of A. For any A,

spark(A) � 1 + 1
μ(A)

.

Therefore, if

k <
1
2

(
1 + 1

μ(A)

)
, (1)

then for any y ∈ Rm there exists at most one k-sparse

signal x ∈ Rn such that y = Ax.

In order to ensure stable recovery from noisy mea-

surements y = Ax + w, where w represents noise,

more stringent requirements on A are needed. One

such condition is the restricted isometry property (RIP).

A matrix A has the (k, δ)-RIP for δ ∈ (0,1) if, for all

k-sparse vectors x,

(1 − δ)‖x‖2
2 � ‖Ax‖2

2 � (1 + δ)‖x‖2
2.

This means that all submatrices of A of sizem× k are

close to an isometry and are therefore distance preserv-

ing. Clearly, ifA has the (2k,δ)-RIP with 0 < δ < 1, then

spark(A) � 2k+ 1.

The RIP enables recovery guarantees that are much

stronger than those based on spark and coherence.

Another property used to characterize A is the null-

space condition. This requirement ensures that the null

space of A does not contain vectors that are concen-

trated on a small subset of indices. If a matrix sat-

isfies the RIP, then it also has the null-space prop-

erty. However, checking whether A satisfies either

of these conditions has combinatorial computational

complexity.

Random matrices A of sizem×n withm < n, whose

entries are independent and identically distributed

with continuous distributions, have spark(A) = m +
1 with high probability. When the distribution has

zero mean and finite variance, then in the asymptotic

regime (as m and n grow) the coherence converges

to μ(A) = 2
√

logn/m. Random matrices from Gauss-

ian, Rademacher, or (more generally) a sub-Gaussian

distribution have the (k, δ)-RIP with high probability

if m = O(k log(n/k)/δ2). Similarly, it can be shown

that a partial Fourier matrix with m = O(k log4n/δ2)
rows, namely a matrix formed from the n × n Fourier

matrix by taking m of its rows uniformly at random,

satisfies the RIP of order k with high probability. A sim-

ilar result holds for random submatrices of orthogonal

matrices.

There are also deterministic matrices that satisfy the

spark and RIP conditions. For example, an m×n Van-

dermonde matrix constructed from n distinct scalars

has spark equal to m+ 1. Unfortunately, these matri-

ces are poorly conditioned for large values of n, ren-

dering the recovery problem numerically unstable. It

is also possible to construct deterministic CS matri-

ces of size m × n that have the (k, δ)-RIP for k =
O(√m logm/ log(n/m)).
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3 Recovery Algorithms

Many algorithms have been proposed to recover a
sparse vector x from measurements y = Ax. When
the measurements are noise free, and when A satisfies
the spark requirement, the unique sparse vector x can
be found by solving the optimization problem

x̂ = arg min
x∈Rn

‖x‖0 subject to y = Ax. (2)

Solving (2) relies on an exhaustive search, so a vari-
ety of computationally feasible alternatives have been
developed.

One popular approach to obtain a tractable problem
is to replace the -0-norm by the -1-norm, which is con-
vex. The resulting adaptation of (2), known as basis
pursuit, is defined by

x̂ = arg min
x∈Rn

‖x‖1 subject to y = Ax.

This algorithm can be implemented as a linear pro-

gram [IV.11 §3], making its computational complex-
ity polynomial in n. Basis pursuit is easily modified
to allow for noisy measurements by changing the con-
straint to ‖y − Ax‖2

2 � ε, where ε is an appropriately
chosen bound on the noise magnitude. The Lagrangian
relaxation of the resulting problem is given by

x̂ = arg min
x∈Rn

‖x‖1 + λ‖y −Ax‖2
2,

and it is known as basis pursuit denoising (BPDN). Many
fast methods have been developed in order to find
BPDN solutions.

An alternative to optimization-based techniques are
greedy algorithms for sparse signal recovery. These
methods are iterative in nature and select columns ofA
according to their correlation with the measurements
y . Several greedy methods can be shown to have per-
formance guarantees that match those obtained for
BPDN.

For example, the matching-pursuit and orthogonal
matching pursuit algorithms proceed by finding the
column aj of A most correlated to the signal residual,
where

j = arg max
i

|aT
i r |2

‖ai‖2
2

.

The residual r is obtained by subtracting the con-
tribution of a partial estimate of the signal from y :
r = y − ASxS , where S is the current guess of the
support set. The convergence criterion used to find
sparse representations consists of checking whether
y = Ax exactly or approximately. The difference
between the two techniques is in the coefficient update

stage. While in orthogonal matching pursuit in each
stage all nonzero elements are chosen so as to mini-
mize the residual error ‖y −ASxS‖2

2, in matching pur-
suit only the component associated with the currently
selected column is updated to aT

j r/‖aj‖2
2.

Another popular approach is known as iterative hard
thresholding: starting from an initial estimate x̂0 = 0,
the algorithm iterates a gradient descent step followed
by hard thresholding, i.e.,

x̂i = Hk(x̂i−1 +AT(y −Ax̂i−1)).

Here, Hk(v) returns the k entries of v that are largest
in absolute value.

Many of the CS algorithms above come with guaran-
tees on their performance. For example, basis pursuit
and orthogonal matching pursuit recover a k-sparse
vector from noiseless measurements when the matrix
A satisfies (1). There also exist coherence-based guar-
antees designed for measurements corrupted with arbi-
trary noise. In general, though, results based on coher-
ence typically suffer from the so-called square-root bot-
tleneck: they require m = O(k2) measurements to
ensure good recovery.

Stronger guarantees are available based on the RIP,
which motivates the popularity of random CS matrices.
In particular, orthogonal matching pursuit recovers a
k-sparse vector from exact measurements if A has the
(k+1, δ)-RIP with a small enough value of δ. More gen-
erally, a sparse vector x can be recovered with small
error from noisy measurements using iterative hard
thresholding and BPDN whenA has the (ck, δ)-RIP, with
appropriate values of c and δ. These results also hold
whenx is not exactly sparse but only compressible. The
recovery error in this case is proportional to that of the
best k-sparse approximation of x and to the norm of
the noise. Since random matrices satisfying the RIP can
be constructed as long asm = O(k log(n/k)), it follows
that with high probability on the order of k log(n/k)
measurements suffice to guarantee recovery of sparse
vectors in the noise-free setting and to ensure recovery
with small error in the noisy case.

4 Applications

4.1 Imaging

One of the first applications of CS was the single-pixel
camera. This camera uses a single photon detector (the
single pixel) to measure m inner products of a desired
image, represented by a vector x in Rn, and a set of test
vectors. Each vector represents the pattern of a digital
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micromirror device, which consists of n tiny mirrors
that are individually oriented in a pseudorandom fash-
ion either toward the photodiode (representing a 1) or
away from it (representing a 0). The incident light field
is reflected off the digital micromirror device, collected
by a lens, and then focused onto the photodiode, which
computes the inner product between x and the ran-
dom digital micromirror device pattern. This process is
repeated m times with different patterns. Good recov-
ery of the underlying image has been obtained using
about 60% fewer random measurements than the num-
ber of reconstructed pixels, assuming sparsity of the
image in the wavelet domain.

Another application in which the measurements are
performed in the transform domain is magnetic res-
onance imaging (MRI). In MRI the measurements cor-
respond to samples of the image’s two-dimensional
continuous Fourier transform. By exploiting the princi-
ples of CS, one can recover an MRI image from fewer
Fourier-domain measurements assuming sparsity of
the image in an appropriate transform domain. For
example, magnetic resonance angiography images are
typically sparse in the pixel domain. The sparsity of
these images can be increased by considering spatial
finite differences. Brain MRIs are known to be sparse in
the wavelet domain, and dynamic MRI is sparse in the
temporal domain.

MRI scanning time strictly depends on the number
of samples taken during acquisition. Therefore, appli-
cations of CS to MRI offer significant improvement in
image acquisition speed. As performing an MRI scan
currently takes at least thirty minutes, rapid MRI will
reduce patient discomfort and image distortion due
to patient movement during acquisition. An impor-
tant factor affecting the performance of CS-based MRI
recovery is the sampling trajectory chosen in the fre-
quency domain. Pure random sampling is impractical,
due to hardware and physiological constraints. This
directly impacts the RIP and the coherence of the result-
ing measurement matrix. Different applications of MRI
impose varying constraints on the possible trajectories,
which must be taken into account when designing a
CS-based MRI system.

4.2 Analog-to-Digital Conversion

To date, essentially all ADCs follow the celebrated
Shannon–Nyquist theorem, which states that, in order
to avoid information loss when converting an analog
signal to a digital one, the sampling rate must be at

(b)(a)

Figure 1 Sub-Nyquist hardware prototypes for
(a) cognitive radio and (b) radar.

least twice the signal bandwidth. Ongoing demand for
data, as well as advances in radio frequency technol-
ogy and the desire to improve resolution, have pro-
moted the use of high-bandwidth signals. The resulting
rates dictated by the Shannon–Nyquist theorem impose
severe challenges both on the acquisition hardware and
on subsequent storage and processing.

Combining ideas from sampling theory with the prin-
ciples of CS, several new paradigms have been devel-
oped that allow the sampling and processing of a wide
class of analog signals at sub-Nyquist rates using prac-
tical hardware architectures. One such framework is
referred to as Xampling, and it has led to sub-Nyquist
prototypes for a variety of problems including cogni-
tive radio, radar, ultrasound imaging, ultra-wideband
communication, and more. Two of the hardware boards
developed for cognitive radio and radar are presented
in figure 1.

In a cognitive radio setting, the signalx(t) is modeled
as a multiband input with sparse spectra, such that its
continuous-time Fourier transform is supported on N
frequency intervals with individual widths not exceed-
ing B Hz. Each interval is centered around an unknown
carrier frequency fi that is no larger than a maximum
frequency fmax. Using the Xampling paradigm, a sub-
Nyquist prototype referred to as the modulated wide-
band converter has been developed that can sample
and process such signals at rates as low as 2NB, despite
the fact that the signal may be spread over a very
wide frequency range. This rate is much lower than the
Nyquist rate, corresponding to fmax.

The modulated wideband converter modulates the
incoming signal with a pseudorandom periodic se-
quence, applies a lowpass filter to the result, and then
samples the output at a low rate. The mixing opera-
tion aliases the spectrum to baseband with different
weights for each frequency interval. The signal is recov-
ered using CS techniques that account for the signal
structure. The board in figure 1 samples signals with
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(b)(a)

Figure 2 Sub-Nyquist ultrasound imaging. (a) A standard
image and (b) an image formed at a twenty-eighth of the
Nyquist rate.

a Nyquist rate of 2.4 GHz and a spectral occupancy of
120 MHz at a rate of 280 MHz.

Another signal class that can be sampled at sub-
Nyquist rates are streams of pulses:

x(t) =
L∑
-=1

a-h(t − t-), t ∈ [0, τ],

where the time delays t- and amplitudes a- are
unknown. Such signals arise, for example, in communi-
cation channels that introduce multipath fading, ultra-
sound imaging, and radar. Here, again, the Xampling
paradigm can be used to sample and process such sig-
nals at rates as low as 2L/τ irrespective of the signal’s
bandwidth.

The board in figure 1 allows, for example, detection
of radar signals at a thirtieth of the signal’s Nyquist
rate. Figure 2 demonstrates fast ultrasound imaging
using Xampling. Part (a) shows an ultrasound frame
obtained by standard imaging techniques, while the
image in part (b) is formed from samples at a twenty-
eighth of the Nyquist rate. All the processing is per-
formed at this low rate as well.

5 Extensions

In recent years, the area of CS has branched out to many
new fronts and has worked its way into several appli-
cation areas. This, in turn, necessitates a fresh look at
many of the basics of CS.

A significant part of recent work on CS can be clas-
sified into three major areas. The first of these con-
sists of theory and applications related to CS matrices
that are not completely random, or entirely determinis-
tic, and that often exhibit considerable structure. This
largely follows from efforts to model the way in which
samples are acquired in practice, which leads to sens-
ing matrices that inherit their structure from the real
world.

The second area includes signal representations that
exhibit structure beyond sparsity as well as broader
classes of signals, such as low-rank matrices and matrix
completion, exploiting the distribution of the nonzero
coefficients or other structured knowledge about the
nonzero entries of x, and continuous-time signals with
finite- or infinite-dimensional representations. In the
context of analog signals, large amounts of effort are
being devoted to the development of efficient ADC pro-
totypes that achieve sub-Nyquist sampling in practice.

Finally, a very recent trend in CS is to move away
from the linear measurement model and consider var-
ious types of nonlinear measurements. One particular
example of this is phase-retrieval problems in which
the measurements have the form yi = |aT

i x|2 for
a set of vectors ai. Note that only the magnitude
of aT

i x is measured here, and not the phase. Phase-
retrieval problems arise in many areas of optics, where
the detector can measure only the magnitude of the
received optical wave. Several important applications
of phase retrieval include X-ray crystallography, trans-
mission electron microscopy, and coherent diffractive
imaging. Exploiting sparsity and ideas related to low-
rank matrix representations results in efficient algo-
rithms for phase retrieval with provable recovery guar-
antees. Another example of nonlinear measurements
are quantized measurements.
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VII.11 Programming Languages:
An Applied Mathematics View
Nicholas J. Higham

The purpose of this article is to give an overview of

computer programming languages from the point of

view of applied mathematics. The historical develop-

ment is emphasized because modern languages have

been strongly influenced by those that came before, and

indeed the oldest language of all, Fortran, is still widely

used. Figure 1 shows the major relationships between

the languages discussed in this article.

1 The Early Days

The first digital stored-program computers were pro-

grammed by directly entering the low-level instruc-

tions, represented by binary numbers, that the cen-

tral processing unit understood (see figure 2). This was

tedious and error prone, so assembly languages were

developed that allowed the instructions to be entered

as mnemonics, which were then translated by software

(the assembler) into the corresponding binary instruc-

tions. To add 5 to a number stored in a memory loca-

tion, one might write a sequence of assembly language

instructions such as LDA P (load the contents of mem-

ory location P into the accumulator), ADC #5 (add 5

to the accumulator), STA Q (store the contents of the

accumulator in memory location Q). Assembly language

requires the programmer to work at the level of indi-

vidual machine instructions and is far removed from

mathematical notation.

It was a major step forward when John Backus and his

colleagues at IBM designed the language Fortran and in

1957 distributed a Fortran compiler for the IBM 704

computer. A compiler translates a program written in a

high-level language into a sequence of machine instruc-

tions that can then be directly executed. Standing for

“formula translation,” Fortran allowed mathematical

expressions to be expressed in a natural algebraic nota-

tion, such as Q = P + 5 for the example above. It also

included many of the features we take for granted

in programming languages today, such as loops, con-

ditional tests, arrays, and elementary functions. For-

tran was a huge success, and it became the first pro-

gramming language to be standardized, as American

National Standards Institute (ANSI) standard Fortran 66

(where the digits denote the year of adoption of the

standard). Standardization was important for expand-
ing the number of compiler implementations of the lan-
guage and aiding the portability of programs from one
system to another. Fortran 66 included subroutines and
functions, and also supported three floating-point data
types: real, double precision, and complex.

Subroutines and functions are examples of subpro-
grams, sequences of code forming essentially separate
programs that can be called with different input argu-
ments from a main program or other subprogram. They
are essential in mathematical computation for encap-
sulating basic operations such as adding two vectors
or finding a norm of a vector, as well as for higher-
level tasks such as finding the roots of a polynomial or
solving a differential equation. Arguments to a subpro-
gram can be passed in at least two ways. In call by value
the argument is evaluated at the time of the subpro-
gram call and its value is copied into the formal param-
eter inside the subprogram. In call by reference the
address of the parameter is passed, so that the actual
and formal parameters effectively share the same mem-
ory locations. An important difference between call by
value and call by reference is that in the latter case
any change made to the argument within the subpro-
gram also changes the actual argument. In Fortran all
parameters are passed by reference.

The first commercial Fortran textbook was A Guide to
Fortran Programming by Daniel McCracken, published
in 1961. The author has stated that only a couple of
programs in the book had been tested because machine
time cost $46 per hour!

Lisp, invented by John McCarthy in 1958, is the sec-
ond oldest language still in wide use. The name stands
for “list processor” and, as the name suggests, Lisp is
based on list data structures. Lisp is well suited to func-
tional programming, in which programs are entirely
expressed in terms of mathematical functions (in par-
ticular, function application is the only control struc-
ture) and functions have no “side effects”; that is, they
do not do anything except return a value. Lisp programs
look completely different to those written in an impera-
tive language such as Fortran, not least due to the pro-
fusion of parentheses and the use of prefix notation
(the sum 1 + 2 + 3 is expressed as (+ 1 2 3); see
section 5.4). While Lisp is rarely used for floating-point
computation, it is well suited to symbolic computa-
tion, and it is the language in which the popular Emacs
editor is mostly written. Lisp also has intrinsic math-
ematical interest due to its close relation to Alonzo
Church’s lambda calculus. The “if–then–else” construct
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Fortran1957

Basic1964 PL/I
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Figure 1 Time line of selected programming languages, with major influences denoted by arrows.

first appeared in Lisp. Lisp has various dialects, includ-

ing Scheme (used particularly for teaching) and Com-

mon Lisp.

Fortran had been developed in an ad hoc manner.

A different language called Algol 60 was produced in

1960 through the efforts of an international commit-

tee. The language was described in a formal notation,

later called Backus–Naur form. Algol 60 was based on

nested blocks delimited by begin and end statements,

with the scope of a variable (the region of the program

in which it is valid) restricted to the enclosing block,

and it allowed for dynamic arrays, whose size is deter-

mined during execution of the program. It became the

“official” language for publishing mathematical soft-

ware in the 1960s (notably for the first six years of the

journal Communications of the ACM, which began in

1960) and a strong competitor to Fortran for practi-

cal use. However, the language ultimately did not suc-

ceed for a variety of reasons, including the fact that

it did not define any input–output facilities (making it

impossible to write a portable “Hello, world!” program).

Nevertheless, some influential early mathematical soft-

ware was published in Algol 60, notably linear algebra

software in the journal Numerische Mathematik, later

collected into a 1971 volume of the Handbook for Auto-

matic Computation series. In late 2014 it was reported

that a language called JOVIAL based on a 1958 version

of Algol was still in use in the UK air traffic control

system.

Algol 60 greatly influenced future languages, such

as Algol 68 (1968), a more rigorously defined language

designed by a working group of the International Fed-

eration for Information Processing, which was mainly

of interest to computer science researchers, and Pas-

cal, published in 1971 by Niklaus Wirth, which is a

much smaller and simpler language than Algol 68. Pas-

cal was widely taught in universities through the 1980s,

as it promoted the notion of structured programming

(see section 5.17) and so provided a way to avoid the

hard-to-read “spaghetti code” that could easily be pro-

duced in Fortran 66. It also achieved wide use in indus-

try, thanks to the availability of compilers on early
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Figure 2 The first program for a stored-program computer:
a version of Tom Kilburn’s highest factor routine that first
ran on the Manchester “Baby” on June 21, 1948. Taken from
G. C. Tootill’s notebook. Copyright of The University of
Manchester.

PCs and Macintosh computers. However, Pascal was not

well suited to numerical programming, not least due to

its support for only one type of floating-point variable

(real) and the absence of an exponentiation operator.

An influential early textbook was George Forsythe

and Cleve Moler’s Computer Solution of Algebraic Equa-

tions, published in 1967. It contained listings of pro-

grams written in Algol 60, Fortran, and PL/I for solv-

ing a square linear system of equations Ax = b.

(PL/I (1964) was a large language that was not widely

adopted for scientific computing; Edsger Dijkstra said

that “Using PL/I must be like flying a plane with 7,000

buttons, switches, and handles to manipulate in the

cockpit.”) These codes were part of a long sequence that

led to the Fortran linear system solver in the LINPACK

(1979) library.

Basic was invented at Dartmouth College in 1964 by

John Kemeny and Thomas Kurtz in order to teach pro-

gramming to students who did not necessarily have a

science background. At Dartmouth, Basic was used on a

time-sharing system, which allowed the programmer to

interact with the computer via a terminal, as opposed

to the usual batch processing of the time, in which

jobs were prepared on punched cards and handled by

computer operators. The original Basic was in some

respects a simplified Fortran, with only one data type
(double precision), free-form input, the key word LET

required before every assignment, numbered lines, and
a GOTO command whose destination was a line number.
Many early personal computers, including the IBM PC,
provided versions of Basic (usually based on Microsoft
Basic), typically built into the firmware of the machine.
Visual Basic, introduced by Microsoft in 1991, included
features to aid in the development of graphical user
interface (GUI) applications, and it continues to exist
as part of the .NET framework. Although a language
often associated with writing games (such as the classic
Star Trek game originating on 1970s minicomputers),
Basic was a capable language for numerical computa-
tions, and its accessibility on microcomputers led to it
being widely used in mathematical research and teach-
ing, including by this author. Basic was often imple-
mented with an interpreter, which translates and exe-
cutes each statement in the source code before going
on to the next statement.

Another 1960s development was the language APL,
implemented at IBM in 1965. It takes its name, and
much of its notation, from the 1962 book A Program-
ming Language by Kenneth Iverson. It is unusual in
using non-ASCII characters to represent operators and
functions, which make possible very concise programs
that are often criticized as being cryptic. The notation
�·� and �·� for the floor and ceiling functions originates
in Iverson’s book and is used (as functions � and �) in
APL. Indeed, APL has been described as an “executable
notation.” APL has powerful array processing and is
normally interpreted. It was never widely adopted but
has been influential and is still in use today.

2 The Modern Era

The language C (1973), by Dennis Ritchie, is a com-
pact language in which the Unix operating system was
mainly implemented. C has float and long floating-
point data types, corresponding to single and dou-
ble precision, respectively. Arguments to C functions
are passed by value, but a pointer can be passed in
order to achieve call by reference. The syntax is terse
and powerful. C has been remarkably successful for
several reasons. First, its operations and types map
directly to the hardware, making it easy to write pro-
grams that carry out low-level system tasks and mak-
ing it possible for compilers to produce very efficient
code. Second, an ANSI/ISO standard was produced in
1989 (and revised in 1999 and 2011), aiding portability
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of programs. Third, C has remained more free from

proprietary extensions than other languages.

The language C++ by Bjarne Stroustrup (1985) is

a descendant of C that is a superset, but for mi-

nor details, and adds better type checking, flexi-

ble data abstraction mechanisms, and support for

object-oriented programming. Data abstraction allows

the programmer to specify user-defined types, called

classes in C++, and isolates how they are represented

from how they are used; in other words, it hides the

implementation details within the implementation of

the types. Object-oriented programming is a method-

ology based on a hierarchy of classes and objects,

which are specific instances of the classes with their

own characteristics. One of the most popular uses of

object-oriented programming is in developing GUIs.

C++ also supports “generic programming,” through the

use of templates, whereby code can be written with

parametrized types.

Throughout the history of computing, new program-

ming languages have regularly been designed, with vari-

ous goals, including providing a better general-purpose

language or providing a language tailored to specific

purposes, such as system programming tasks.

Java, developed by James Gosling at Sun Microsys-

tems in 1995, is a widely used object-oriented lan-

guage with a syntax similar to that of C++. It com-

piles to a machine-independent bytecode that runs in

the Java virtual machine (JVM), and a JVM is provided

for each machine on which Java is to be used. The

initial version of Java required bitwise reproducibility

of floating-point arithmetic across different machines.

While superficially an attractive feature, it inhibited

common compiler optimizations as well as the use

of extended precision registers. These over-restrictive

floating-point semantics were relaxed in later versions

of Java, but other aspects such as the lack of com-

plex arithmetic continue to hinder its use for numeri-

cal computation. JVMs exploit just-in-time compilation,

in which Java bytecode is compiled into native machine

code at run time. The JVM has importance beyond Java:

some more recent languages such as Scala (2003) and

Clojure (a dialect of Lisp created in 2007) compile to

JVM bytecode.

Of the many languages introduced since C++, the

most important from the computational mathemat-

ics point of view is Python (1991), designed by Guido

van Rossum. Python is a dynamic language, which

means that it lies somewhere between an interpreted

language and a compiled language, with many fea-
tures of the latter. It supports several programming
paradigms, including object orientation and functional
programming. Its success in scientific computing stems
to a large extent from its libraries, which provide core
computational and graphics capabilities (NumPy, SciPy,
and matplotlib), and from its ability to integrate com-
ponents written in other languages, such as C and For-
tran. It has been said that “one doesn’t need to switch
to Python, only to know where to use it.” Python was
designed to be a readable language, and its expression
syntax is similar to that of C.

The newest language discussed here is Julia (2012),
designed specifically for high-performance scientific
computing. Julia is a dynamic language that achieves
speed approaching that of compiled C code, in part
due to just-in-time compilation using the LLVM com-
piler infrastructure. A distinctive feature of Julia is its
exploitation of multiple dispatch, which allows a func-
tion to exist in several forms operating on different data
types, with the appropriate version being called at run
time based on the actual arguments supplied. An inter-
esting feature of Julia is that it allows the user to view
the underlying assembly language that the language
generates. Viewing these low-level operations can pro-
vide much insight into how the language works and its
efficiency (see figure 3).

The Fortran standard has undergone regular revi-
sions, known as “Fortran xy,” where xy is 77, 90, 95,
2003, or 2008 and is related to the year of publication
of the standard. Fortran 77 introduced an if–then–else
construct, improved input/output, and a character data
type. Fortran 90 incorporated dynamic array allocation,
operations on arrays, modules (a mechanism for pack-
aging data, derived types, subprograms, and interface
blocks), recursive subprograms, numeric inquiry func-
tions, and parametrized intrinsic types. Later revisions
have introduced support for object-oriented program-
ming and for handling exceptions in IEEE floating-point
arithmetic, and interoperability with C.

3 Parallelism

Most of the languages mentioned above do not include
facilities for managing execution of codes in parallel,
that is, for specifying how a computation is to be bro-
ken up and executed by different processors simul-
taneously. Various extensions of existing languages
have been proposed for parallel computing, but gen-
erally they have not achieved widespread or long-term
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In [1]: f(x,y) = x*y
Out[1]: f (generic function with 1 method)
In [2]: @code_native f(3,5)
.text
Filename: In[1]
Source line: 1

push RBP
mov RBP, RSP

Source line: 1
imul RDI, RSI
mov RAX, RDI
pop RBP
ret

In [3]: @code_native f(3.0,5.0)
.text
Filename: In[1]
Source line: 1

push RBP
mov RBP, RSP

Source line: 1
mulsd XMM0, XMM1
pop RBP
ret

Figure 3 A short Julia session, run from within a Jupyter
notebook. The text that follows “In [·]:” on a line is user
input. The definition of the function f does not specify the
types of the arguments. Julia generates different x86 assem-
bler code depending on whether the actual arguments are
integers (as in In [2]) or floating-point numbers (as in In
[3]).

use. Two widely used systems for parallel computing
are the Message Passing Interface (MPI) for distributed
memory systems and Open MP for shared-memory sys-
tems. Both are implemented as application program-
ming interfaces (APIs) that can be invoked from lan-
guages such as C, C++, and Fortran. For expressing
parallelism on specialist devices such as graphics pro-
cessing units (GPUs), specialist languages are available,
such as CUDA for NVIDIA GPUs and Open Comput-
ing Language (OpenCL) for GPUs and heterogeneous
platforms in general.

4 Problem-Solving Environments

Nowadays, a large part of scientific computing is done
within environments that provide a programming lan-
guage, an interactive command window with the dis-
play of graphics, and the ability to export graphics and
more generally publish documents to HTML, PDF, TEX,
and so on. They usually also have the ability to mix
numerical and symbolic computing and by default dis-
play the result of assignments in the command window.

The term problem-solving environments (PSEs) is used

for such systems, of which there are many.

PSEs have dynamic languages that, combined with

the interactive interface, avoid the edit–compile–run

cycle of languages such as C and Fortran. They allow

quick coding without the need to define the types of

variables before use. Moreover, a PSE language typi-

cally includes high-level constructs that would corre-

spond in a traditional language to many lines of code,

such as a command to find the indices of the largest

element(s) of an array or to compute the eigensystem

of a matrix. Since it is generally accepted that a pro-

grammer’s productivity, measured in the number lines

of code written, is independent of the language, it fol-

lows that using a higher-level language should allow

the programmer to achieve more in a given time. On

the other hand, PSEs usually do not execute code as

fast as a compiled language.

The oldest PSE is MATLAB, originally written in For-

tran in 1978 by Cleve Moler as a means of providing

students with easy access to the EISPACK and LINPACK

linear algebra program libraries. Rewritten in C, MAT-

LAB was released as a commercial product in 1984 by

The MathWorks. The fundamental data type in MAT-

LAB is a matrix, and MATLAB fully supports complex

arithmetic.

An interesting feature of MATLAB is that much of

it is written in MATLAB, in the form of M-files contain-

ing MATLAB commands. Certain key functions are writ-

ten in C or call vendor-supplied basic linear algebra

subprograms (blas) [IV.10 §13] or lapack [IV.10 §13]

codes. MATLAB programs tend to be much shorter

than their equivalents in compiled languages, and yet,

depending on the nature of the code, they can run at

similar speed. Because of the ease and economy of

coding, and the interactive interface that aids debug-

ging, MATLAB is often used as a prototyping tool, an

environment for developing and testing ideas before

implementing them in a language such as C or Fortran.

GNU Octave is free software with many of the fea-

tures of MATLAB and a largely compatible syntax, so

that carefully coded programs can run in both MAT-

LAB and Octave. Scilab is another open-source alterna-

tive to MATLAB, but it is less compatible with MATLAB

than Octave.

Maple started out as a computer algebra system

developed at the University of Waterloo in 1980. It is

now a commercial product sold by Waterloo Maple and

has all the usual features of a PSE.
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Mathematica, by Wolfram Research Software, had a
notebook interface from its first release in 1988, show-
ing program code, output with typeset mathematics,
and graphics in a single window. It supports proce-
dural, functional, rule-based, and pattern-based pro-
gramming paradigms. It is particularly popular in the
physics community.

R is a freely available PSE targeted at statistical com-
puting and data analysis. Many contributed R packages
are available on the Comprehensive R Archive Network
(CRAN).

Sage is an open-source, Python-based PSE that builds
on many other open-source packages. It has a browser-
based notebook.

Project Jupyter (formerly known as IPython) is an
open-source project that includes a network proto-
col for interactive computing in any programming lan-
guage, a browser-based notebook interface, and tools
for sharing and converting these notebooks into mul-
tiple output formats, including HTML and PDF. This
makes the Jupyter Notebook a full-fledged PSE for Julia,
Python, R, and other languages.

5 Programming Miscellany

We now focus on a variety of different aspects of pro-
gramming that have a particular relevance to applied
mathematics.

5.1 Pseudocode

In the early days of computing it was common to
include a complete program listing in an article, as can
be seen in the 1950s issues of the journal Mathemat-
ical Tables and Aids to Computation. This practice is
now uncommon, not least because of the ease of dis-
tributing code over the Web. It is now usual to describe
in print the underlying algorithm in terms of a pseu-
docode that the author bases informally on the control
structures and other syntax of a particular program-
ming language (MATLAB being a common example).
A good pseudocode combines precision, brevity, and
readability. For examples of pseudocode see the article
on algorithms [I.4].

5.2 Abstraction

The mathematical concept of abstraction has proved to
be important in programming, where it refers to sepa-
rating concepts from implementation details. Subpro-
grams take input arguments, carry out a computation,

and then return output. How they do it need not be
known to the programmer who invokes them, so a sub-
program is an abstraction of the computation it carries
out. Abstraction applies to both procedures and data,
and is used to the full in object-oriented programming.

5.3 Influence on Mathematics

While mathematics has had a strong influence on pro-
gramming language design, programming languages
have also influenced mathematics. We already noted
that APL introduced the ceiling and floor notation. The
array subscripting (or slicing) notation A(i:j,p:q)—
used in Algol 68, MATLAB, and other languages to
denote the subarray comprising the intersection of
rows i to j and columns p to q of the two-dimensional
array A—is now widely used in numerical linear algebra,
especially in pseudocode.

In a 1928 paper, Kurt Hensel suggested the notation
A\B forA−1B andA/B forAB−1, but it did not catch on.
Cleve Moler independently introduced the notation in
MATLAB, and the term “backslash” is now commonly
used to mean solving a matrix equation.

5.4 Notation for Expressions

In mathematics we normally write expressions in the
conventional infix notation illustrated by a + b(c-d),
using parentheses and the usual precedence rules to
specify the order of operations. In Lisp and related
languages, the expression above is written

+ a * (b (- c d)) (1)

in which each arithmetic operator is followed by its two
arguments. This prefix notation (also called Polish nota-
tion) is easier for computers to parse. The evaluation
proceeds left to right, with the arguments of each oper-
ator evaluated recursively (in practice, using a stack),
and no knowledge of the precedence of the operators
is necessary.

The parentheses in (1) are not strictly necessary, but
they are required in Lisp because operators can take
multiple arguments: + 1 2 3 evaluates to 6.

In reverse Polish notation (RPN) the operator follows
rather than precedes the operands (as in the expression
n! for a factorial). The expression (1) is written

a b c d - * +

which is again evaluated left to right, with the variables
a and b set aside until it is time to use them. An alterna-
tive way to write the expression that mingles the data
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and the operands is

c d - b * a +

RPN is used in the languages Forth and PostScript, and
on HP pocket calculators.

5.5 Syntactic Peculiarities and Pitfalls

While there is much commonality between different
languages, certain differences can catch the unwary
programmer out. In most languages a single equals
sign denotes an assignment: x = 1. A test for equal-
ity is written with a double equals in C and MATLAB:
if (x == y). If the test is written if (x = y) then in
C this results in y being assigned to x and the if test
being passed if x is nonzero because (x = y) evaluates
as a true Boolean expression. Algol and Pascal use :=
for assignment, but this is not common in modern lan-
guages. R has two assignment operators, <- and =, of
which only the former can be used anywhere in a pro-
gram. The test for “not equal” is even more varied: ˜=
in MATLAB, != in C, R, and Python, .NE. in Fortran 77,
/= in Fortran 90, and <> in Basic and Pascal.

A common operation is to increment a variable,
which is typically done using a statement such as x = x
+ 1. Some languages provide a shorthand notation for
this operation: in Python it is x += 1 and in C, C++, and
Java it is x++. A subtlety is illustrated by the C code

i = 1; j = 1; a = i++; b = ++j;

which results in a = 1 and i = j = b = 2 because the
assignment is done before the incrementation with i++
and after for ++j.

Another aspect of syntax that varies among lan-
guages is operator precedence in expressions. An
expression a*b + c is interpreted as ab + c in most
languages, but as a(b+ c) in APL, which does not have
any operator precedence and always evaluates right
to left. However, it is for relational and logical oper-
ators that differences are most common. An expres-
sion of the form x or y and z (with symbols such as
| and & replacing or and and in many languages) can
mean x or (y and z) or (x or y) and z depending
on the language. In Lisp, expressions must be fully
parenthesized, so they always have an unambiguous
mathematical meaning.

5.6 Booleans

A Boolean, or logical, data type contains two possible
values: true and false. Many languages denote these

values true and false. Exceptions include Lisp (t and
nil) and Fortran (.true. and .false.).

C does not have a Boolean data type and instead
regards any nonzero numerical value as representing
true and zero as representing false. In MATLAB, logi-
cal values are converted to 0 (for false) or 1 (for true)
in numerical expressions, and this can be useful in a
one-line expression such as

(exp(x) - 1 + (x == 0)) /( x + (x == 0))

which evaluates to (ex − 1)/x when x �= 0 and to 1 =
limx→0(ex − 1)/x when x = 0, avoiding what would
otherwise be a division by zero.

5.7 Array Storage and Array Indexing

Fortran stores arrays in column major order, meaning
that a two-dimensional array is stored sequentially in
memory, with the elements of the first column being
followed by those of the second, and so on. C and many
other languages store arrays in row major order. This
difference is inconvenient when calling Fortran codes
from other languages. Knowledge of the storage format
is crucial because for efficiency it is important to access
elements of arrays in the order in which they are stored.

Programming languages differ as to the starting
index for arrays. In Fortran and MATLAB, for example,
arrays start at index 1 (a(1), a(2), . . . ), whereas in
C and Python the first index is 0 (a[0], a[1], . . . ).
Note that the type of brackets used for array indices,
round or square, also varies, as illustrated. Mathemati-
cal descriptions of an algorithm may use 0 or 1 as the
starting index, depending on the notation in effect.

The syntax for array slices also differs between lan-
guages. While in Fortran and MATLAB a(i:j) extracts
a(i), a(i+1), . . . , a(j), in Python a[i:j] extracts
a[i], a[i+1], . . . , a[j-1], so a[j] is omitted. These
differences can be a cause of confusion and bugs. One
needs to be aware of them and program with care.

5.8 Complex Arithmetic

Computations with complex numbers are ubiquitous in
applied mathematics. From its earliest versions Fortran
has had a complex data type that can be used in expres-
sions such as a + b*c, just like the real and double-
precision data types. In some other languages, func-
tions implementing complex arithmetic can be written
but then expressions must be converted to a sequence
of function calls, such as cadd(a,cmult(b,c)). The
PSEs mentioned above all support complex arithmetic,
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as do C (introduced in the 1999 standard), C++, Julia
(which uses im rather than i for the imaginary unit),
and Python (which uses j for the imaginary unit).

It cannot necessarily be assumed that the compiler
or interpreter implements complex arithmetic in the
most accurate and robust way. For example, if the mod-
ulus of a complex number is computed as |a + ib| =
(a2 +b2)1/2, then the intermediate sum of squares can
overflow even when |a+ ib| is representable as a finite
floating-point number. The possibility of overflow is
easily avoided by evaluating |a|(1 + (b/a)2)1/2 when
|a| � |b| and an analogous expression when |b| > |a|.
Operations such as complex division and evaluation
of complex elementary functions are more difficult to
implement reliably.

5.9 Variable Names

In mathematics, variable names are usually one letter,
Greek or Roman, in lowercase or uppercase. Since For-
tran introduced the possibility of variable names hav-
ing more than one letter (albeit limited to six letters in
Fortran 77 and earlier versions), multiletter names have
been common. Due to the use of long variable names
comprising several words joined together, several nam-
ing conventions have been introduced, illustrated by
endOfFile or EndOfFile (camel case), end-of-file,
and end_of_file (pothole case). Of course, which
characters are allowed in variable names depends on
the language. The use of long variable names is facili-
tated by text editors that allow autocompletion.

5.10 Floating-Point Semantics

Many mathematical relations fail to hold in floating-

point arithmetic [II.13] because of the effects of
rounding errors. For example, (a+b)+c and a+(b+c)
will in general evaluate to results differing at the round-
off level. Unfortunately, much more subtle issues can
cause mathematical relations to break down. Intel x86
chips have 80-bit registers whose precision exceeds
that of 64-bit double-precision variables. After the
assignment x = 1.0/3.0 to a double-precision variable
x, a test if x == 1.0/3.0 can return false with some
optimizing compilers if 1.0/3.0 is temporarily stored
in an extended precision register.

Some processors offer a fused multiply–add (FMA)
instruction that evaluates an expression x*y + z with
just a single rounding error; that is, the result is the
exact value of x*y + z rounded to the target precision.
The behavior of a program can then depend on the

compiler in subtle ways. For example, the discriminant

b2 − 4ac of a quadratic equation can evaluate as nega-

tive when b2 � 4ac if an FMA is used. These kinds of

behavior make it very difficult to prove rigorous cor-

rectness results for computer programs executed in

floating-point arithmetic.

5.11 Floating-Point Parameters

Programs that perform floating-point computation of-

ten need to use parameters of the floating-point arith-

metic, such as the unit roundoff [II.13] (typically in

a convergence test) or the overflow level. Some lan-

guages, such as Fortran, provide direct access to these

parameters via intrinsic functions. For those that do

not, there are ways to compute them at run time,

though these may not be entirely reliable when used

with optimizing compilers.

5.12 High-Precision Computations

The IEEE floating-point arithmetic standard defines

single- and double-precision formats corresponding

to about eight and sixteen significant decimal dig-

its, respectively. Most programming languages support

two floating-point data types that map onto these for-

mats. A 2008 revision of the IEEE standard added a 128-

bit quadruple-precision format, which corresponds to

about thirty-two significant decimal digits. Quadruple

precision is not yet available in hardware, so arith-

metic of precision higher than double must currently

be provided in software.

In Fortran 90 and later versions of Fortran the avail-

ability of different precisions can be queried, through

the selected_real_kind function. This allows access

to quadruple precision if it is supported by the com-

piler.

A number of open-source libraries are available

that implement arbitrary precision floating-point arith-

metic. The GNU MPFR library is a C library that provides

correctly rounded arithmetic and mathematical func-

tions, and it is used by Julia’s BigFloat data type. The

GNU MPC library builds on MPFR to handle complex

arithmetic. Mpmath is a Python library for arbitrary

precision floating-point arithmetic.

High-precision arithmetic has many uses, includ-

ing in experimental applied mathematics [VIII.6]

and for obtaining accurate solutions to ill-conditioned

problems. For a researcher developing or testing a

numerical algorithm, high precision provides a way to
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compute reference solutions that allow the accuracy of
the algorithm to be tested.

5.13 Types

A number of subtle issues in programming languages
revolve around the data type of a variable or expres-
sion: integer, floating point, logical, string, and so on.
Some languages, such as C and Java, require the type
of a variable to be explicitly declared before an assign-
ment is made to that variable. For example, in C the
statement double x = 1.1 both declares x to be a
double-precision variable and gives it the value 1.1.
Some languages make specifying the type of a variable
optional or not possible at all. Fortran uses implicit typ-
ing: if the type is not specified then a default type is
assigned based on the first letter of the variable (integer
for i to p and real otherwise). However, it is regarded
as good practice to turn off this implicit typing with the
statement implicit none. PSEs tend to determine the
type at the point of assignment.

The type of a variable or expression might be fixed
or it might be able to change during the execution of
a program. For example, some languages allow a string
to be added to a number and define the result to be
either a string or a number. The terms weakly typed and
strongly typed are often used in this context to charac-
terize a language’s type system, but these terms have
no commonly agreed definition.

Type systems have an important influence on pro-
grams in at least two main ways. First, many program-
ming errors are caused by variables (or constants) hav-
ing an incorrect type. An apocryphal story tells of the
loss of a 1960s NASA rocket due to the Fortran 66
software controlling the rocket having a line of the
form DO 10 k = 1.3 instead of the intended DO 10 k

= 1,3, which starts a loop. The mistyping of a period
for a comma in the former statement causes the For-
tran compiler to interpret it as the assignment of 1.3
to the variable DO10k, since spaces are unimportant in
Fortran 66 source code, and the implicit typing of For-
tran causes the variable DO10k to be created with real
type.

The second influence of a type system is on efficiency,
since the speed at which a code executes will depend on
how much the compiler or interpreter knows about the
types of the variables. The computation of x*y will run
much slower than it might if at run time the types of x
and y must be checked to decide whether to issue an
integer multiplication or a floating-point multiplication

instruction. Figure 3 illustrates the point, but in this

instance the decision is made at compile time, with no

loss of efficiency.

5.14 Complexity Analysis

Several measures of the complexity of a code have been

proposed. They can be used to estimate the probability

of bugs, the difficulty of testing, and the cost of main-

tenance of the code. The metrics apply to individual

components such as functions, subroutines, and proce-

dures, and a large complexity measure can be reduced

by breaking the component into smaller pieces.

The simplest metric is the number of executable

lines of source code. The cyclomatic complexity, or

McCabe complexity, of a code is defined in terms of

the directed graph [II.16] that has nodes given by

blocks of code containing no decisions or branches

and edges corresponding to branches between nodes.

The cyclomatic complexity is given by the formula

edges − nodes + 2, and it turns out to be equal to

one plus the number of predicates (logical tests). The

Npath metric is the number of possible execution paths

through the code, which can be much larger than the

cyclomatic complexity.

Tools are needed to compute these metrics. In MAT-

LAB the function checkcode computes the cyclomatic

complexity.

5.15 Formatting of Source Code

Mathematicians are used to having complete freedom

in how they lay out their written mathematics on the

page. Programming languages vary in their prescrip-

tiveness of the layout of the source code. Most impose

few restrictions and allow one to collapse a program

block onto a single very long line provided comments

are removed and (if necessary) statement separators

are added. When computers had small memories, such

a transformation would sometimes be done in order

to save having to store the carriage return and line

feed characters. Sometimes further code obfuscation

is done in order to conceal the purpose of a code, for

security reasons.

Fortran 77 requires code to lie between columns 7

and 72, with columns 1–5 reserved for statement num-

bers and column 6 for indicating a continuation line.

These restrictions stem from the punched cards used to

enter programs into early computers and were removed

in Fortran 90.
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Some text editors provide automatic indentation tai-
lored to the language being edited, and various pretty
printing tools are available to format code for readabil-
ity or to impose a particular house style. The use of
such tools can aid debugging and make it simpler to
compare different versions of a program with a diff
command. Python is unusual in that it uses indenta-
tion to define if statements, for loops, while loops, and
so on, whereas most languages use braces, brackets, or
key words to delimit code blocks.

5.16 Readability

There are often several ways to write a piece of code.
A balance needs to be struck between length of code,
efficiency, and understandability. In C++, for an integer
variable n one can compute the expression 2*n+1 as
n << 1 | 1, where << is the bit-shift left operator and
| is the bitwise or. The latter version is, however, rather
inscrutable and may not be any faster than the former
under a good compiler.

Sometimes one needs to make a variable cycle
between several values. If the values are 0 and 1 then
the assignment n = 1 - n flips between them and the
purpose of the assignment is reasonably clear. Sup-
pose, though, that we wish to make n take on the val-
ues 1, 2, 3, repeatedly. If we can find a polynomial p
such that p(1) = 2, p(2) = 3, and p(3) = 1, then the
assignment n = p(n) will do the trick. Such a p is a
polynomial interpolant [I.3 §3.1] to the given data,
and the p of lowest degree is the quadratic p(x) =
− 3

2x
2 + 11

2 x − 2. However, the purpose of the assign-
ment with p is not obvious, and its correctness is not
trivial to check. An if statement of the form

if n == 1
n = 2

elseif n == 2
n = 3

else
n = 1

end

does the job in a more transparent fashion. Alterna-
tively, an assignment replacing n by (n mod 3)+1 could
be used, supplemented by a comment explaining its
purpose.

5.17 Structured Programming

In Fortran a go to statement causes a jump to a labeled
statement anywhere in the program. In 1968 Edsger

Dijkstra wrote a letter to the editor of the journal Com-
munications of the ACM in which he claimed that the
use of go to statements, which were very common
in Fortran 66 programs, represented poor program-
ming practice. The letter was published with the title
“Go to statement considered harmful.” The notion of
structured programming subsequently became popu-
lar. Structured programming enforces a logical struc-
ture on the program that makes it easier to under-
stand and modify through the use of certain canon-
ical control structures together with modular com-
position of programs. A long 1974 paper by Don-
ald Knuth titled “Structured programming with go to
statements” presents a balanced analysis of the pros
and cons of go to statements.

5.18 Literate Programming

In the 1980s Knuth championed the idea of literate pro-
gramming, in which a document contains a combina-
tion of source code and documentation for the code
(in TEX format), and both the code and the documenta-
tion can be generated from it. He used this approach
to great effect in writing TEX and associated programs
using his WEB system (which has no connection with
the World Wide Web, which it predates). Nowadays, lit-
erate programming is mainly used in two forms. In the
first, documentation is embedded in comment lines of
a program’s source code and documentation genera-
tion tools are used to extract it to HTML, PDF, etc. In
the second form, a document contains code that car-
ries out the computational experiments needed for a
paper, and a separate “preprocessor” executes the code
and inserts its output (numeric or graphical) back into
the source document. This approach facilitates repro-

ducible research [VIII.5] and is typically done with
“weave” tools available for R and Python or in Emacs
Org mode.

5.19 Interoperability

Interoperability refers to the ability to call a program
written in one language from a program written in a
different language. Historically, the degree of interop-
erability that is available has depended on which oper-
ating system and compiler is in use, as well as on the
languages themselves. Even when cross-language calls
are possible there are pitfalls to watch out for, such
as the potentially different ways in which multidimen-
sional arrays are stored in different languages (see sec-
tion 5.7). There is a strong trend to mixed-language
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programming, encouraged by languages such as C++,

Julia, and Python that have been designed with inter-

operability in mind, by the support provided in PSEs

for calling or being called by another language, and by

languages that are built on the same virtual machine

(such as Java, Scala, and Clojure).

5.20 Domain-Specific Languages

A domain-specific language (DSL) is a language focused

on a particular problem domain, examples being HTML

for Web pages, SQL for databases, and TEX for math-

ematical typesetting [VIII.4 §1]. An important bene-

fit of a DSL is that it can allow programming at a high

level of abstraction that fully exploits knowledge of the

problem domain and thereby reduces the total time to

deliver a solution to a problem.

Applied mathematics has a variety of DSLs, and these

often involve symbolic manipulation as part of the

code-generation process. The General Algebraic Mod-

eling System (GAMS) is a high-level modeling system

for mathematical optimization. It includes a DSL in

which optimization problems of several different types

can be specified. A number of DSLs are associated

with software for solving partial differential equations.

For example, the Unified Form Language in the FEn-

iCS project is a DSL for finite-element discretizations,

implemented as a Python module.

DSLs for plotting graphics are plentiful, even being

built on top of other DSLs (e.g., the various graphics

packages for LATEX).

5.21 Translation between Languages

In mathematics we are used to translating between dif-

ferent notations and moving from one space or basis

to another. It is natural to ask whether a program can

be transformed from one language to another with-

out any change in its behavior. One reason for want-

ing to do so is to convert programs that were written

many years ago but are still used today (legacy codes)

into a more modern language. Such translation tools

are available, but they are used out of necessity rather

than as a standard tool. A tool called f2c written at Bell

Labs in the 1990s could convert Fortran 77 codes to C,

though the resulting code was not meant to be readable

by humans. There are more recent tools for converting

Fortran to C++ that produce more readable code.

Table 1 Extract from the TIOBE Programming Community
Index for February 2015. Clojure, Forth, Mathematica, and
OpenCL are all ranked in the range 51–100.

Language Rank

C 1
Java 2
C++ 3
Python 8
Visual Basic 9
MATLAB 17
R 18
Pascal 19
PostScript 24
Fortran 31
Lisp 32
Scheme 38
Scala 41
PL/I 45

5.22 Popularity of Languages

An interesting question is which are the most popu-
lar programming languages. This question is both hard
to define precisely and hard to answer. One attempt is
provided by the TIOBE Programming Community Index
(www.tiobe.com), which is produced once a month
based on “the number of skilled engineers world-wide,
courses and third party vendors,” as found via popu-
lar search engines. Table 1 shows a ranking of most
of the languages mentioned in this article. These rank-
ings are quite volatile and should not be taken too seri-
ously, but an interesting implication is that old lan-
guages such as Fortran and Lisp continue to compete
with their younger counterparts.

5.23 Language of the Future

An old joke goes, “I don’t know what language we’ll
be using in fifty years time, but it will be called For-
tran.” Fortran has been under attack since the 1960s
but shows no signs of dying, as noted in the previ-
ous subsection. The frequent revisions to the Fortran
standard have kept the language up to date, while the
huge amount of legacy code means that in many appli-
cations it is difficult or impossible to switch to alter-
native languages. The improved interoperability of lan-
guages and compilers enables binaries of compiled For-
tran libraries such as LAPACK and the commercial NAG
Library to be readily called from other languages and
even Excel spreadsheets. Perhaps the future is inher-
ently multilingual, with programs being written in a

http://www.tiobe.com
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modern language such as C++ or Python and calling ker-

nels written in C, Fortran, or assembly language tuned

for particular processors by the manufacturer.

One thing we can be sure of is that new languages

will continue to be developed, each trying to combine

the best features of existing languages with new ideas

that resonate with developments in hardware and soft-

ware. However, it is important that language designers

remember the lessons of the past and contemplate the

comment of Tony Hoare about Algol 60: “Here is a lan-

guage so far ahead of its time, that it was not only an

improvement on its predecessors, but also on nearly all

its successors.”

Further Reading

The following list is very selective and merely provides

a starting point for further exploration.

Abelson and Sussman (1996) is a classic introduc-

tion to programming based on Scheme that empha-

sizes ideas such as abstraction and recursion over syn-

tax. It has many interesting mathematical examples,

including symbolic differentiation.

The longevity of Fortran, with its multiple revisions,

is such that its history, as told by Metcalf (2011),

provides a prism into the history of programming

languages.

The Turing Award of the Association for Computing

Machinery (ACM) is an annual award that is to computer

science what the Fields Medal is to mathematics. The

book of lectures from the first twenty years of awards is

full of insights into programming languages. It includes

lectures by, among those mentioned in this article,

Backus, Dijkstra, Iverson, Knuth, McCarthy, Ritchie, and

Wirth.

An excellent source for the history of programming

languages (and computing) is the journal IEEE Annals

of the History of Computing.
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VII.12 High-Performance Computing
Jack Dongarra

1 Historical Overview

Looking back on the last four decades, high-perfor-
mance computing (HPC) has been characterized by
rapid change in vendors, architectures, technologies,
algorithms, software, and system usage. Despite all
these changes, performance, as measured in terms of
the number of flops1 per second, has evolved steadily.
Often cited in this context is Moore’s law, which states
that the number of transistors on integrated circuits
doubles approximately every two years. Figure 1 plots
the peak performance of various computers over the
last six decades, all supercomputers of their time, and
demonstrates how well Moore’s law holds for perfor-
mance for nearly the entire lifespan of modern com-
puting.

The initial success of vector computers in the 1970s,
which could carry out operations on whole vectors at
a time, was driven by raw performance. The introduc-
tion of this type of computer system started the mod-
ern supercomputing era. In the 1980s the availability of
standard development environments and application
software packages became more important. In addi-
tion to performance, these criteria determined the suc-
cess of multiprocessor vector systems, especially with
industrial customers.

Massively parallel computers, which share the work
among a large number of processors, became suc-
cessful in the early 1990s due to their better price–
performance ratios, which were made possible by the
improving performance of “off the shelf” micropro-
cessors. At the lower end of the market and for mid-
priced systems, massively parallel processing comput-
ers were replaced by microprocessor-based symmetric
multiprocessing systems (systems in which identical
processors share the same memory) in the middle of

1. A flop is an elementary floating-point operation: addition, sub-
traction, multiplication, or division.



840 VII. Application Areas

 
 

IBM 7090
 

CDC 6600 
 

IBM 360/195  

CDC 7600  Cray 1  
 

 TMC CM-2
 

  
ASCI Red  

 Earth Simulator 

Blue Gene/L  Roadrunner

 
 

K

 

BG/Q

 

100

102

104

106

108

1010

1012

1014

1016

1950 1960 1970 1980 2010

Year

1990 2000

fl
o
p

s/
s

EDSAC 1

UNIVAC 1

Cray 2
Cray X-MP

TMC CM-5
Cray T3D

ASCI White

Tianhe-1A
Tianhe-2

1955 1965 1975 1985 20151995 2005

Figure 1 Peak performance of the fastest computer systems over the last six decades.

the 1990s. The success of microprocessor-based sym-
metric multiprocessing systems, even for very high-end
systems, was the basis for the emergence of cluster
concepts in the early 2000s. During the first half of
the decade clusters of personal computers and work-
stations became the prevalent architecture for many
application areas. However, the Japanese Earth Simula-
tor vector system (2002) demonstrated that many sci-
entific applications could benefit greatly from a differ-
ent computer architecture, creating renewed interest
in new architectures and new programming paradigms
within the scientific HPC community.

The IBM Roadrunner system at Los Alamos National
Laboratory, which employs a hybrid design built from
commodity parts, broke the petaflops (1015 flops per
second) threshold in June 2008. The next major target
is exascale computing (1018 flops per second), a thou-
sandfold increase over petascale, which is not expected
to be achieved before 2020.

2 Challenges

Science priorities lead to scientific models, and mod-
els are implemented in the form of algorithms. Algo-
rithm selection is based on various criteria, such as

accuracy, verification, convergence, performance, par-

allelism, and scalability. Models and associated algo-

rithms are not selected in isolation but must be evalu-

ated in the context of the existing computer hardware

environment. Algorithms that perform well on one type

of computer hardware may become obsolete on newer

hardware, so selections must be made carefully and

may change over time. Moving forward to exascale com-

puting will put heavier demands on algorithms in at

least two areas: the need for increasing amounts of

data locality in order to perform computations effi-

ciently and the need to obtain much higher factors of

fine-grained parallelism as high-end systems support

increasing numbers of compute threads. As a conse-

quence, parallel algorithms must adapt to this environ-

ment, and new algorithms and implementations must

be developed to exploit the computational capabili-

ties of the new hardware. The transition from cur-

rent sub-petascale and petascale computing to exas-

cale computing will be at least as disruptive as the

transition from vector to parallel computing was in the

1990s.

We now describe some of the particular challenges

that lie ahead in the use of HPCs.



VII.12. High-Performance Computing 841

2.1 New Algorithms for Multicore Architectures

Multicore processors, in which a single chip contains
two or more independent processing units called cores,
are now ubiquitous from the desktop through to HPC
systems. Scalable multicore systems will increase the
cost of communication relative to computation. Within
a node (a single multicore processor) data transfer
between cores is relatively inexpensive, but across
nodes the cost of data transfer is becoming very large.
This trend is addressed by new approaches such as
communication-avoiding algorithms (see section 2.4),
algorithms that support simultaneous computation
and communication, and algorithms that vectorize well
and have a large volume of functional parallelism.

2.2 Adaptive Response to Load Imbalance

Adaptive multiscale algorithms are an important part
of many applications because they apply computa-
tional power precisely where it is needed. However,
they introduce dynamically changing computation that
results in processor workload imbalances because the
distribution of tasks is static. As we move toward sys-
tems with billions of processors, even naturally load-
balanced algorithms on homogeneous hardware will
present many of the same daunting problems with
adaptive load balancing that are observed in today’s
adaptive codes. For example, software-based recov-
ery mechanisms for fault tolerance or energy man-
agement will create substantial load imbalances as
tasks are delayed by rollback to a previous state or
correction of detected errors. Scheduling based on a
directed acyclic graph also requires new approaches
to optimize resource utilization without compromising
spatial locality. These challenges require development
and deployment of sophisticated software approaches
to rebalance computation dynamically in response to
changing workloads and conditions of the operating
environment.

2.3 Multiple-Precision Algorithms and Software

One instance of the increasingly adaptive nature of
libraries is the capability to recognize and exploit
the presence of mixed-precision arithmetic. Motivation
comes from the fact that, on modern architectures, 32-
bit (single-precision) floating-point operations can exe-
cute at least twice as fast as 64-bit (double-precision)
operations. The performance of algorithms for solv-
ing linear systems or computing eigenvalues or singu-
lar values can be significantly enhanced by applying a

given method in single precision and then using a few
steps of iterative refinement [IV.10 §2] in double
precision to elevate the accuracy of the result from sin-
gle to double precision. This technique can be applied
not only to conventional processors but also to other
technologies such as graphics processing units, and
it can therefore utilize heterogeneous hardware more
effectively. The use of mixed precision exploits not only
the greater speed of single-precision arithmetic but
also the fact that there is a reduction in the amount
of storage needed and in the amount of information
moved from memory for 32-bit or single-precision data
when compared with 64-bit or double-precision arrays.

2.4 Communication-Avoiding Algorithms

Algorithmic complexity is usually expressed in terms
of the number of operations performed rather than
the quantity of data movement within memory. How-
ever, in modern systems memory movement is increas-
ingly expensive compared with the cost of computa-
tion. It is therefore necessary to develop algorithms
that reduce communication to a minimum while not
unduly increasing the amount of computation. A gen-
eral approach is to derive bandwidth and latency lower
bounds for various dense and sparse linear algebra
algorithms on parallel and sequential machines, e.g., by
extending the well-known lower bounds for the usual
O(n3) matrix multiplication algorithm, and then to
seek new algorithms that (nearly) attain these lower
bounds. The study of communication-avoiding algo-
rithms is in its infancy, but it is already leading to new
algorithmic ideas and approaches.

2.5 Auto-tuning

Numerical libraries need to be able to adapt to the pos-
sibly heterogeneous environment in which they have to
operate in order to achieve good performance, energy
efficiency, load balancing, and so on. The objective is to
provide a consistent library interface that remains the
same for users independent of scale and processor het-
erogeneity but that achieves good performance and effi-
ciency by binding to different underlying code, depend-
ing on the configuration. In addition, the auto-tuning
has to be extended to frameworks that go beyond
library limitations and are able to optimize data layout
(such as blocking strategies for sparse matrix kernels),
stencil auto-tuners (since stencil kernels, which update
array elements according to a fixed pattern, are diverse
and not amenable to library calls), and even tuning of
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the optimization strategy for multigrid solvers (opti-
mizing the transition between the multigrid coarsen-
ing cycle and the coarse grid solver to minimize run
time). Adding heuristic search techniques and com-
bining them with traditional compiler techniques will
enhance the ability to address generic problems.

2.6 Fault Tolerance and Robustness for Large-Scale

Systems

Modern personal computers may run for weeks with-
out rebooting and most data servers are expected to
run for years. However, because of their scale and com-
plexity, today’s supercomputers run for only a few
days before a reboot is needed. The major challenge in
fault tolerance is that faults in extreme-scale systems,
with their millions of processors, will be continuous
rather than exceptional events. This requires a major
shift from today’s software infrastructure. On today’s
supercomputers every failure kills the application run-
ning on the affected resources. These applications have
to be restarted from the beginning or from their last
checkpoint. The checkpoint/restart technique will not
scale to highly parallel systems because a new fault will
occur before the application can be restarted, causing
the application to become stuck in a state of constant
restarts. New fault-tolerant paradigms need to be devel-
oped and integrated into both the system software and
user applications.

2.7 Building Energy Efficiency into Algorithm

Foundations

Energy consumption is becoming a major issue in HPC,
with energy costs for some of the largest machines
already exceeding a million dollars per year. Minimiz-
ing power consumption must now be added to the tra-
ditional goals of algorithm design: namely, correctness
and performance. The emerging metric of merit is per-
formance per watt. Energy reduction depends on soft-
ware as well as hardware, so it is essential to build
power and energy awareness, control, and efficiency
into the foundations of numerical libraries.

2.8 Sensitivity Analysis

As the high-fidelity solution of models becomes pos-
sible, the next challenge is to study the sensitivity of
the model to parameter variability and uncertainty and
to seek an optimal solution over a range of parameter
values. The most basic form of analysis—the forward

method for either local or global sensitivity analysis—
simultaneously runs many instances of the model or
its linearization, leading to an embarrassingly paral-
lel execution model. Such high-throughput computing
tasks are well suited to using spare cycles on pools
of personal computers, e.g., running at night or over
weekends.

2.9 Numerical Pitfalls

Problems that warrant the use of the fastest comput-
ers are necessarily among the largest problems ever
to be solved, according to any appropriate measure of
problem dimension. Various mathematical or numeri-
cal difficulties can potentially arise as dimensions grow
ever larger, including slower convergence of an itera-
tive method that has performed well for smaller prob-
lems, computed results having lower accuracy due to
an increased number of rounding errors, and overflow
of intermediate results. A good example of what can
go wrong concerns the use of random number gen-

erators [VI.12] to construct the matrix A and vec-
tor b for the linear system Ax = b to be solved by
Gaussian elimination with partial pivoting for bench-
marking purposes. The obvious approach is to fill the
columns of the matrix A, one by one, with the out-
put from a pseudorandom number generator. A few
years ago, after a computation of this form lasting
20 hours, the computed result was found to be incor-
rect. The cause was eventually identified as a singular
matrix A: the number of matrix elements exceeded the
period of the random number generator, with the result
that columns repeated and the matrix was singular. By
itself, singularity should not affect the computation,
since rounding errors usually ensure that the matrix
is numerically nonsingular. However, the presence of
exactly repeated columns eventually leads to “zero piv-
ots,” which cause algorithm failure. The moral of the
story is that code that has worked perfectly up to a
certain problem size can fail in subtle ways for larger
problems.

One desirable numerical property of extreme-scale
computing is bitwise reproducibility of results for any
fixed processor count. But current computing frame-
works and libraries do not guarantee reproducibility.
The nonreproducibility is usually caused by a paral-
lel reduction operation. While the corresponding oper-
ation is mathematically associative, associativity may
not hold in floating-point arithmetic. For example, the
natural way to evaluate the sum a + b + c + d is from
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left to right, but alternatives are (a+ b)+ (c + d) and
(a + c) + (b + d), which are trivial examples of a par-
allel reduction operation, and these three expressions
will usually produce different results in floating-point
arithmetic. In general, one cannot make assumptions
about the order in which reduction operations are car-
ried out in parallel, so the values computed in floating-
point arithmetic may depend on the number of threads
of execution. This makes it much harder to debug pro-
grams. At extreme scale it may be possible to construct
faster algorithms if the order of evaluation is not pre-
specified: through the use of dynamic task schedul-
ing, for example. Thus, there may trade-offs between
speed and reproducibility. Furthermore, it may be pos-
sible to more cheaply ensure a bound on the variability
between different runs than to guarantee strict repro-
ducibility, by using extra precision in selected parts of
an algorithm, for example. Many users may prefer non-
reproducible results produced very quickly along with
a bound on the variability.

3 Outlook

The move to extreme-scale computing will require col-
laboration between hardware architects, systems soft-
ware experts, designers of programming models, and
implementers of the science applications that provide
the rationale for these systems. The various issues dis-
cussed in this article will need to be considered from a
whole-system perspective, and the different tools will
need to interoperate. As new ideas and approaches
are identified and pursued, some will fail. As with
past experience, there may be breakthroughs in hard-
ware technologies that result in different micro- and
macro-architectures becoming feasible and desirable,
and these will require rethinking of algorithms and
system software.
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VII.13 Visualization
Kristin Potter and Chris R. Johnson

1 Introduction

Schroeder, Martin, and Lorensen have offered the fol-
lowing useful definition of visualization:

Scientific visualization is the formal name given to the
field in computer science that encompasses user inter-
face, data representation and processing algorithms,
visual representations, and other sensory presentation
such as sound or touch. The term data visualization is
another phrase to describe visualization. Data visual-
ization is generally interpreted to be more general than
scientific visualization, since it implies treatment of
data sources beyond the sciences and engineering. . . .
Another recently emerging term is information visual-
ization. This field endeavors to visualize abstract infor-
mation such as hyper-text documents on the World
Wide Web, directory/file structures on a computer, or
abstract data structures.

The field of visualization is focused on creating
images that convey salient information about under-
lying data and processes. In recent decades, there
has been unprecedented growth in computational and
acquisition technologies, and this has resulted in an
increased ability to sense the physical world in precise
detail and to model and simulate complex physical phe-
nomena. As such, visualization plays a crucial role in
our ability to comprehend such large amounts of com-
plex data and to convey insight into diverse scientific
applications.

Shown in figure 1, the “visualization pipeline” is
one way to describe the process of visualization.1

The filtering step involves processing raw data and
includes operations such as resampling, compression,
and other image-processing algorithms such as feature-
preserving noise suppression. In what can be consid-
ered the core of the visualization process, the map-
ping stage transforms the preprocessed filtered data
into geometric primitives along with additional visual
attributes, such as color or opacity, determining the

1. The figures in this article are all reproduced with the permission
of the SCI Institute, apart from plate 21, which is reproduced with
the permission of Miriah Meyer. Citations in figure captions refer to
sources of further information on the techniques and methods for
creating the visualization.
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visual representation of the data. Rendering utilizes
computer graphics techniques to generate the final
image using the geometric primitives from the mapping
process.

While the range of visualization applications is vast,
it can be useful to classify techniques based on the
type of data to be presented. These types can be
summarized as whether they are

• scalar fields (temperature, voltage, density, vector
magnitudes, most image data),

• vector fields (pressure, velocity, electric field, mag-
netic field), or

• tensor fields (diffusion, electrical and thermal con-
ductivity, stress, strain).

2 Scalar Field Visualization

Scalar fields are among the most common data sets in
scientific visualization and have therefore received the
most research attention.

2.1 Direct Volume Rendering

Direct volume rendering is a method of displaying
three-dimensional volumetric scalar data as two-di-
mensional images and is probably one of the simplest
ways to visualize volume data. As shown in plate 19,
the individual values in the data set are made visi-
ble by an assignment to a transfer function of opti-
cal properties, such as color and opacity, which are
then projected and composited to form an image. As
a tool for scientific visualization, the appeal of direct
volume rendering is that no intermediate geometric
information need be calculated, so the process maps
from the data set “directly” to an image. This is in con-
trast to other rendering techniques such as isosurfac-
ing or segmentation, in which one must first extract ele-
ments from the data before rendering them. To create
an effective visualization with direct volume rendering
the researcher must find the right transfer function to
highlight regions and features of interest.

2.2 Isosurface Extraction

Isosurface extraction is a powerful tool for investigat-
ing volumetric scalar fields. The isosurface in a scalar
volume is the surface on which the data value is con-
stant, separating regions of higher and lower value.
Given the physical or biological significance of the
data value, the position of an isosurface, as well as its
relation to other neighboring isosurfaces, can provide

clues to the underlying structure of the scalar field.
A dynamic use of isosurfaces can provide better visu-
alization of complex space- or time-dependent behav-
iors in many scientific applications. Another powerful
technique for analyzing and computing isosurfaces and
moving fronts is level set methods.

3 Vector Field Visualization

Visualizing vector field data is challenging because
no existing natural representation can visually convey
large amounts of three-dimensional directional infor-
mation. Vector field methods must balance the con-
flicting goals of displaying large amounts of direc-
tional information while maintaining an informative
and uncluttered display. Researchers have developed
a number of vector field visualization techniques using
iconic representations, particle tracing methods, and
stream constructions. These methods are useful for
showing certain field characteristics, but they inher-
ently result in visual clutter when applied globally.

In physical fluid flow experiments, external materi-
als such as dye, hydrogen bubbles, or heat energy are
injected into the flow. As these external materials are
carried through the flow, scientists can track them visu-
ally, using them to examine the underlying flow struc-
ture. For example, to understand the flow patterns of
river currents, scientists might release dye into the river
to expose currents, eddies, and turbulence. Similarly, to
understand the air flow around an aircraft wing, scien-
tists may release smoke into wind tunnel experiments
to provide visual information about flow patterns, tur-
bulent regions, and vortex formation. Analogs to these
experimental techniques have been adopted by scien-
tific visualization researchers, particularly in the com-
putational fluid dynamics field. These researchers have
used numerical methods and three-dimensional com-
puter graphics techniques to produce graphical icons
such as arrows, motion particles, and other representa-
tions that highlight different aspects of the flow. Advec-
tion methods numerically integrate along paths defined
by the vector field. For example, the researcher can cre-
ate streamlines by advecting points through an instant-
aneous, static vector field and tracing their path. They
create pathlines, on the other hand, by advecting points
through a dynamic, time-varying vector field.

4 Tensor Field Visualization

In physical and biological systems, representing intrin-
sic material properties is an essential part of accurate
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Figure 1 The visualization pipeline.

modeling and imaging. Electrical conductivity and

molecular diffusivity are examples of material proper-

ties that describe the ability of particles (such as elec-

trons and water molecules) to pass through a given

material. In the simplest situation, the property is con-

stant in all directions, a condition called isotropy. On

the other hand, anisotropic materials are those that

exhibit directional sensitivity in the rate of transport:

for example, water diffuses through paper faster in one

direction than another. In real-world problems, mate-

rial properties are often inhomogeneous: varying as a

function of position within the material. Thus, proper

modeling of conductivity and diffusivity requires a field

of tensor values sampled in three dimensions. Gaining

insight into the structure of three-dimensional tensor

fields is a significant and ongoing problem in tensor

visualization.

Creating meaningful images or models from diffu-

sion tensor data is challenging because each sample

point has six independent degrees of freedom. As with

vector visualization, simple attempts at encoding all

the tensor variables at all sample locations rapidly pro-

duce unintelligible visual clutter. In some application

instances, such as diffusion tensor magnetic resonance

imaging of nerve tissue, the degree of anisotropy has

a biological significance relating to the white matter

structure, as shown in plate 20(b). An effective way to

avoid clutter is, therefore, to display only those tensors

that exhibit anisotropy of a certain degree or greater,

often using graphical icons such as three-dimensional

quadrics to indicate the six degrees of freedom through

shape and size. Another popular technique of feature

extraction is fiber tractography, which seeks to create

pathways to illustrate directional tissue structure. Stan-

dard visualization methods for this type of data use

hyper-streamlines to illustrate the directional path of a

fiber bundle, as shown in plate 20(a). Such methods are

often augmented with edge bundling to reduce clutter,
or blurring to indicate areas of noise or uncertainty.

5 Applications

The most important aspect of visualization is its role
in analysis, exploration, and discovery in the scientific
process. State-of-the-art technologies are combined in
creative ways to facilitate data understanding. It is the
role of the visualization researcher to understand how
to combine appropriate visualization techniques with
hypotheses about the data to reveal answers to scien-
tific questions. Here, we briefly discuss three real-world
applications of visualization.

5.1 Genomics

MizBee is a multiscale synteny browser for exploring
conservation relationships in comparative genomics
data (see plate 21). Synteny refers to the presence of
two or more genes on the same chromosome and can be
used to answer questions about evolution and genomic
function by comparing the genomes of different species
to find regions of shared sequences. Using side-by-side
linked views, MizBee enables efficient data browsing
across a range of scales, from the genome to the gene.
To present pairwise comparisons of similar regions
between different chromosomes, concentric circular
layouts are used to show two genes and lines are drawn
between regions to show pairs. On the right-hand side
of the figure, the chromosome view presents a detailed
look at user-selected blocks of interest, along with sta-
tistical information and layered annotations. The block
view (rightmost) is the most detailed view, providing
information about the conservation relationships of
features within the selected block related to proxim-
ity/location, size, orientation, and similarity. Each view
is optimized for viewing the different types of rele-
vant information; the views can communicate relevant
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information and degree of similarity for each region.
The design of MizBee is grounded in perceptual prin-
ciples, and it includes several techniques, such as edge
bundling and layering, to enhance visual cues about
relationships and the consistent use of an 8-channel
color map to effectively distinguish regions.

5.2 Climate and Weather

The EnsembleVis framework was developed to explore
ensembles of weather forecast models. This work uses
summary statistics to manage the display of the large,
time-varying data set. Because of its richness, it was
important to tease out a number of summaries across
various dimensions of the data. Rather then decid-
ing upon a single visualization technique to show all
aspects of the data, the system links multiple displays
to allow the user to simultaneously explore a variety
of data characteristics. Thus, the EnsembleVis frame-
work, as shown in plate 22, combines a number of
aggregation windows, each designed to answer a spe-
cific question. The main window presents a summary
of the data across the spatial domain. Alongside the
main window, a number of smaller windows show sum-
maries across other dimensions, such as a filmstrip
view of individual time steps, graphs of the individual
model responses for a data subset, and a query dialog
to filter results according to specific parameters. This
collection of visualizations reveals insight into general
trends of the model ensemble and highlights outlier
model runs. This system provides weather scientists
with the ability to explore the outputs of the simula-
tion to understand the consensus of the ensemble, the
probability of the consensus outcome, and model con-
figurations that lead to outlying results and to iden-
tify biased models that may hint at errors in the model
construction or missing atmospheric phenomena.

5.3 Bioelectric Fields

Bioelectric fields are produced by the living cells
responsible for the action of muscles and the trans-
mission of information in nerves. Many different imag-
ing modalities have been developed to assess this activ-
ity, including electrocardiography of the heart and elec-
trocardiography and magnetoencephalography of the
brain. In addition to their clinical applications, these
imaging techniques provide the basis for a computa-
tional reconstruction of the physiological activity at the
origin of the electric signal. This allows researchers to
gain insight into the mechanisms and consequences of

conditions such as myocardial ischemia: a shortfall in

blood supply that can, in extreme cases, lead to a com-

plete blockage of blood, resulting in a heart attack. To

explore the electric fields and electric current densities

associated with the cardiovascular and cerebral activity

in humans, advanced vector visualization techniques

for visual analysis have been developed.

To understand the bioelectric field in the direct vicin-

ity of the epicardium of the heart, stream surfaces are

used to capture the geometry of the current induced by

the cardiac source (see plate 23(a)). The surfaces also

provide an effective representation of the interconnec-

tions that exist between different regions on the heart’s

surface. A rainbow color map is used along each curve

to visualize the stretching of the return current as it

propagates through the torso.

The three-dimensional electric current within the

brain can be visualized using texturing techniques

to show the asymmetry of the electric patterns (see

plate 23(b)). Textures, computed on a clipping plane,

reveal the dipolar source of electric current and its

interaction with the surrounding tissue. The electric

current is clearly diverted by the presence of white mat-

ter tracts that lie close to the source. The field also

changes direction very rapidly as it approaches the

skull just beneath the surface of the head.

Focusing efforts on vector-field visualizations of

electric current, rather than scalar representations of

potentials, offers a more meaningful global depiction

of the continuous flow. This permits a deeper under-

standing of the three-dimensional shape of the bio-

electric sources and their fields. Such an approach pro-

vides new insight into the impact of tissue character-

istics, such as directional dependence, on the resulting

bioelectric fields.

6 Outlook for Visualization

The greatest successes in visualization come when

researchers are able to explore much more informa-

tion than previously possible. Often, tools designed for

specific applications turn out to address general prob-

lems and can be applied to other domains and appli-

cations. With the many software packages, prototype

examples, and tool suites that are available, visualiza-

tion is becoming accessible at a variety of levels, and we

expect to see it become an integral part of the scientific

work flow.
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VII.14 Electronic Structure Calculations
(Solid State Physics)
Eric Cancès

1 Introduction

The study of the electronic properties of solids has
led to major scientific discoveries (superconductivity,
the quantum Hall effect, giant magnetoresistance), as
well as to a large number of applications that have rev-
olutionized our daily lives: computers and electronic
devices being prime examples.

Besides its importance in terms of applications, the
modeling of the electronic structure of solids is an inex-
haustible source of fascinating problems in mathemat-
ical physics, the analysis of partial differential equa-
tions, numerical analysis, and scientific computing.

In solid state physics, the fundamental components
of matter are atomic nuclei and electrons in Coulomb

interaction. Starting with the chemical composition of
a material—that is, the number of atoms of each chem-
ical element that are present—it is possible to write
down the n-body Schrödinger equation encoding most
of its physical, and all of its chemical, properties. Unfor-
tunately, this equation is much too complicated to
be solved: indeed, it reads as a 3n-dimensional par-
tial differential equation, where n is the total num-
ber of particles (atomic nuclei and electrons) in the
material under consideration. For a macroscopic solid,
n is of the order of 1020 or larger, so the numer-
ical solution of the n-body Schrödinger equation is
way out of reach of even the most powerful comput-
ers conceivable at the present time. Several approx-
imations are therefore adopted. The first, called the
Born–Oppenheimer approximation, is based on the fact
that nuclei are thousands of times heavier than elec-
trons, and it can be mathematically justified by means
of adiabatic limits, letting the mass ratio between elec-
trons and nuclei go to zero. According to the Born–
Oppenheimer approximation, it is possible to compute
the electronic structure of the system at each time t
by solving a time-independent Schrödinger equation,
parametrized by the (time-dependent) positions of the
nuclei. The second step consists of replacing the elec-
tronic time-independent Schrödinger equation by sim-
pler models that are amenable to numerical simulation.
Electronic structure calculation is concerned with the
design and simulation of such models.

The purpose of this article is to introduce the reader
to

• independent-particle models, which enable us to
qualitatively understand the electronic structure of
crystals, and

• the Kohn–Sham model, based on density functional
theory.

The latter model allows us to run numerical simula-
tions that are in quantitative agreement with experi-
mental data. It can be used to predict the properties
of new molecules, materials, and nanostructures and
therefore has an extremely broad range of applications.
For instance, in the field of energy technology, it can be
used to design new materials for nuclear power plants,
fuel cells, or solar cells.

2 Electronic States

Any quantum system is characterized by a Hamilto-
nian: that is, a self-adjoint operatorH that acts on some
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hilbert space [I.2 §19.4] H . For independent-electron
models, as well as for mean-field models derived from
density functional theory, H is a Schrödinger operator
of the form

H = − 1
2Δ+ V(r)

that acts on the Hilbert space L2(R3) of complex-valued
square-integrable functions on R3, where

Δ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

is the Laplace operator and where V is a real-valued
function on R3. We adopt the system of atomic units
here, in which � = 1, e = 1, me = 1, and 4πε0 = 1,
where � is the reduced Planck constant, e the elemen-
tary charge, me the mass of the electron, and ε0 the
dielectric permittivity of the vacuum.

The spectral theory of self-adjoint operators

[IV.8] is the key mathematical tool in electronic struc-
ture calculation. In some sense, a self-adjoint operator
on L2(R3) can be seen as an infinite-dimensional Her-
mitian matrix. A finite-dimensional Hermitian matrix
A ∈ Cn×n has exactly n real eigenvalues (taking mul-
tiplicities into account), and can be diagonalized in an
orthonormal basis set. By definition, the spectrum of A
is the set σ(A) of the complex numbers λ such that
λI −A is noninvertible. A finite-dimensional square
matrix is noninvertible if and only if it is noninjec-
tive. Therefore, σ(A) is also the set of the eigenvalues
of A: namely, the set of the complex numbers λ for
which there exists x ∈ Cn \ {0} such that Ax = λx.
On the other hand, as L2(R3) is an infinite-dimensional
Hilbert space, the set of the eigenvalues of H (the point
spectrum of H) is, in general, a strict subset of the
spectrum σ(H) of H. For instance, the point spectrum
σp(H0) of the kinetic energy operator H0 = − 1

2Δ, act-
ing on L2(R3), is empty (there is no nonzero function
φ ∈ L2(R3) such thatH0φ = Eφ for some E ∈ C), while
its spectrum σ(H0) is equal to [0,+∞). The elements
of σ(H0) can be interpreted as generalized eigenvalues
since, for each k ∈ R3,

H0eik·r = |k|2
2

eik·r .

The plane wave r  → ek(r) = eik·r satisfies the equa-
tion H0ek = Eek with E = 1

2 |k|2, but it is not a
true eigenfunction, since it does not belong to the
space L2(R3). It is called a generalized eigenfunction. In
physics terminology, true eigenmodes are called bound
states, while generalized eigenmodes are called scatter-
ing states. The nature and the location of the spectrum
of a Schrödinger operatorH = − 1

2Δ+V depends on the

potential V . For V(r) = 1
2ω

2|r|2 (a three-dimensional
harmonic oscillator), the spectrum of H is pure point:
that is, it is composed of only the true eigenvalues
En = (n + 3

2 )ω, n ∈ N . For V(r) = −Z/|r|, Z ∈ N∗

(a hydrogen-like ion), the spectrum of H consists of an
infinite sequence of true eigenvalues En = −Z2/(2n2),
n ∈ N∗, and of a continuum [0,+∞) of generalized
eigenvalues.

The purpose of electronic structure calculation is to
identify the electronic ground state, and possibly the
lowest-energy excited states, of a molecular system. In
the framework of independent-electron models, these
states are easily obtained from the spectral decompo-
sition of the HamiltonianH. Assume for simplicity that
the bottom of the spectrum ofH consists of an increas-
ing sequence of eigenvalues ε1 � ε2 � · · · � εp (taking
multiplicities into account) and that the molecular sys-
tem of interest contains an even number N = 2p of
electrons. The ground state energy and the density are
then given by

E0 = 2
p∑
i=1

εi and ρ0(r) = 2
p∑
i=1

|φi(r)|2,

respectively, where (φi)1�i�p is an orthonormal set
of eigenfunctions of H associated with the eigenvalues
ε1, . . . , εp :

Hφi = εiφi and
∫

R3
φ∗
i φj = δij.

In physics, the eigenvalues εi are called energy lev-
els. The ground state is therefore obtained by putting
the electrons in the lowest energy levels, under the
constraint that there are at most two electrons per
energy level. This constraint, called the Pauli princi-
ple, is related to the fact that electrons are Fermions
of spin 1

2 . We will not elaborate further on the concept
of spin here and simply mention that, from a mathe-
matical perspective, the spin labels the projective rep-
resentations of the rotation group SO(3). Excited states
correspond to other distributions of the N electrons
in the energy levels. For instance, if εp+1 > εp , the
ground state is nondegenerate and the energy of the
first excited state is E1 = 2

∑p−1
i=1 εi + εp + εp+1 (see

figure 1).

3 Noninteracting Electrons in Crystals

As in solid state physics textbooks, we will first focus
on the case of perfect crystals, which are periodic
arrangements of atoms. We will show in particular that
a simple model of noninteracting electrons in a per-
fect crystal allows us to qualitatively understand why
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Figure 1 (a) The ground state and (b) the first excited
state for N = 8 electrons (p = 4 electron pairs).

some crystalline materials are insulators while others
are conductors. The mathematical framework for inves-
tigating the electronic structure of perfect crystals is
Bloch’s theory, the basics of which are sketched below.
We will then see how to model crystals with defects and
disordered materials such as doped semiconductors or
alloys.

In noninteracting electron models, a perfect crystal is
characterized by a lattice L (a discrete subgroup of R3)
and an L-periodic potential Vper : R3 → R. For the sake
of simplicity we will deal with the case when L = Z3,
so that

∀R ∈ Z3, ∀r ∈ R3, Vper(r +R) = Vper(r),

and we denote the unit cell by Γ = [− 1
2 ,

1
2 )

3. Introduc-
ing the translation operators τR defined by (τRφ)(r) =
φ(r − R), the above periodicity condition can be for-
mulated as τRVper = Vper for all R ∈ Z3. The quantum
Hamiltonian

Hper = − 1
2Δ+ Vper

is called a periodic Schrödinger operator. Under some
local integrability assumptions on Vper, it is self-adjoint
on L2(R3). It has no true eigenvalues (σp(Hper) = ∅),
and its spectrum is bounded below and composed of a
countable number of possibly overlapping intervals of
the real line, called bands. To establish this fundamen-
tal result, which is key to explaining insulating, semi-
conducting, and conducting behaviors, we need Bloch’s
theory.

Denoting by Γ ∗ = [−π,π)3 the Brillouin zone asso-
ciated with the lattice Z3, any function u ∈ L2(R3) can
be decomposed as

u(r) = 1
(2π)3

∫
Γ ∗
uq(r)eiq·r dq,

where

uq(r) =
∑
R∈Z3

u(r +R)e−iq(r+R).

For each q ∈ Γ ∗, the function uq is in L2
per, the space of

complex-valued, Z3-periodic, locally square-integrable

functions. This decomposition, which is reminiscent of

the Fourier transform, is called the Bloch–Floquet trans-

form. Bloch’s theorem states that, if an operator A on

L2(R3) commutes with the translations of the lattice Z3

(i.e., if it satisfies AτR = τRA for all R ∈ Z3), then there

exists a family of operators (Aq)q∈Γ ∗ on L2
per such that

(Au)(r) = 1
(2π)3

∫
Γ ∗
(Aquq)(r)eiq·r dq.

The above formula means that the operator A is block

diagonalized by the Bloch–Floquet transform. The oper-

ators (Hper)q have simple expressions:

(Hper)q = − 1
2Δ− iq · ∇ + 1

2 |q|2 + Vper.

For each q ∈ Γ ∗, the operator (Hper)q can be diagonal-

ized in an orthonormal basis set of L2
per,

(Hper)qφn,q = εn,qφn,q,
∫
Γ
φ∗
m,qφn,q = δmn,

and the sequence (εn,q)n�1 of its eigenvalues con-

verges to +∞. Besides, as the mapping q  → (Hper)q
is analytic, the eigenvalues εn,q can be indexed in such

a way that ε1,0 � ε2,0 � · · · and the mapping q  → εn,q
is even and continuous (and, in fact, analytic in each

direction). As a consequence (see figure 2),

σ((H0)per) =
⋃
q∈Γ ∗

⋃
n�1

{εn,q} =
⋃
n�1

[Σ−
n ,Σ+

n],

with

Σ−
n = min

q∈Γ ∗
εn,q and Σ+

n = max
q∈Γ ∗

εn,q.

The interval [Σ−
n ,Σ+

n] is called thenth band of the spec-

trum of Hper. If Σ−
n+1 > Σ+

n , the interval (Σ+
n ,Σ

−
n+1) is

called a spectral gap. It is easily checked that the func-

tions ψn,q(r) = φn,q(r)eiq·r are generalized eigen-

functions of Hper:

Hperψn,q = εn,qψn,q.

The functions ψn,q are not periodic but quasiperiodic,

in the sense that for each R ∈ Z3, (τRψn,q)(r) =
eiq·Rψn,q(r). They are called Bloch waves.

The electronic ground state is then obtained by filling

the lowest energy levels. In this particular setting, this
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Figure 2 The electronic structure of an insulating
crystal with N = 4 electrons per unit cell.

means that, if the crystal contains N electrons per unit

cell, the ground state energy per unit volume and the

ground state density are, respectively, given by

E0 = 2
+∞∑
n=1

∫
Γ ∗

H (εF − εn,q)εn,q dq,

ρ0(r) = 2
+∞∑
n=1

∫
Γ ∗

H (εF − εn,q)|ψn,q(r)|2 dq,

where H is the Heaviside function (H (x) = 0 if x < 0;

H (x) = 1 if x � 0). In the above formulas, εF is a real

number, called the Fermi level, such that 2N (εF) = N ,

where the function

N (E) =
+∞∑
n=1

∫
Γ ∗

H (E − εn,q)dq

denotes the so-called integrated density of states.

Filling one band therefore corresponds to putting

two electrons into each unit cell. One of two situations

then arises (see figure 3). The first corresponds to the

case when N = 2p is even and there is a gap g :=
Σ−
p+1 −Σ+

p > 0 between the pth and the (p+1)st band.

In this case, the lowest p bands (the valence bands) are

completely filled, while the other bands (the conduct-

ing bands) are empty. The minimum energy required to

excite an electron from the valence bands to the con-

ducting bands, in which electrons are free to travel, is

then equal to g. In the second situation (N = 2p−1, or

N = 2p and the pth and (p + 1)st bands overlap), the

pth band is not completely filled and an infinitesimal

amount of energy is sufficient to create an electronic

excitation. In the former case the crystal behaves as an

εF

εF

εF

(a)

(b)

(c)

Figure 3 Spectra of (a) an insulating perfect crystal with
N = 4 electrons per unit cell, (b) a conducting perfect crystal
with N = 6 electrons per unit cell, and (c) an insulating
crystal with a local defect.

insulator (large gap) or a semiconductor (small gap),

while in the latter case it behaves as a metal.

Perfect crystals do not exist in nature. Besides the

fact that real crystals are of course finite, the arrange-

ment of atoms in such materials is not perfectly peri-

odic. Indeed, real crystals contain both local defects

(vacancies, interstitial atoms, impurities, dislocation

loops) and extended defects (dislocation lines, grain

boundaries). For the sake of brevity we focus on local

defects in this article.

A single local defect (or a finite number of them) is

modeled by a perturbed periodic Schrödinger operator

H = − 1
2Δ + Vper +W , where W is a potential that van-

ishes at infinity. The spectrum of H contains the spec-

trum of Hper but may also contain discrete eigenvalues

located in the spectral gaps ofHper (see figure 3). These

eigenvalues correspond to bound states localized in the

vicinity of the defects, and they play an important role

in physics.

Doped semiconductors are key materials in electron-

ics. Their properties are due to the presence of impuri-

ties randomly distributed throughout the crystal. A few

impurities per million atoms can dramatically modify

the electronic properties of the crystal. Doped semi-

conductors can be modeled by random Schrödinger

operators of the form Hω = − 1
2Δ+ Vω, with

Vω(r) =
∑
R∈R

[(1 −ωR)v(r −R)+ωRw(r −R)],

where v andw are compactly supported functions and

the ωR are independent, identically distributed ran-

dom variables. Consider, for instance, the case when

ωR is a Bernoulli random variable, meaning that ωR =
1 with probability p and ωR = 0 with probability

1 − p. If p = 0, the potential is periodic (equal to∑
R∈R v(r −R)). On the other hand, the operator Hω

depends on the realization of the random variables

ωR. Similar stochastic models can be used to describe
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alloys. The study of the spectral properties of random

Schrödinger operators is an active field of research. It

is known that the spectrum of Hω is almost surely

independent of the realization ω = (ωR)R∈Z3 . This

result is in fact a consequence of the Birkhoff ergodic

theorem of probability theory. A fundamental result

is that disorder tends to localize the electrons. While

there are no bound states for p = 0, true eigenvalues

that correspond to bound states appear in the vicin-

ity of the edges of the bands as soon as p > 0. This

phenomenon, called Anderson localization, is central

to physics. Many mathematical questions about the

spectral properties of random Schrödinger operators

remain open.

4 Density Functional Theory

Let us finally turn to the modeling of interacting elec-

trons in crystals. We limit ourselves to the case of per-

fect crystals. Extending these models to the cases of

crystals with defects and alloys is at the edge of current

research.

The introduction of the Kohn–Sham model in the

mid-1960s revolutionized the modeling and simula-

tion of the electronic structure of solids. Indeed, this

model allows us to obtain simulation results that are

in quantitative agreement with experimental data.

The Kohn–Sham model is a mean-field model that

allows computation of the ground state density. For a

perfect crystal, the Kohn–Sham Hamiltonian reads as

follows:

Hρ0
per = − 1

2Δ+ VC,ρ0
per + V xc,ρ0

per ,

where VC,ρ0
per and V xc,ρ0

per are, respectively, the Coulomb

and exchange-correlation potentials. The former is the

electrostatic potential generated by the total (nuclear

and electronic) charge distribution. It is obtained by

solving the Poisson equation

−ΔVC,ρ0
per = 4π(ρ0 − ρnuc), VC,ρ0

per R-periodic,

where ρnuc is the periodic nuclear charge distribution

and ρ0 is the periodic electronic ground state density.

Several expressions for V xc,ρ0
per have been formulated by

physicists and chemists, based on theoretical physics

arguments, and parametrized by quantum Monte Carlo

simulations of the homogeneous (interacting) electron

gas. The simplest model for V xc,ρ0
per is the Xα potential

introduced by Slater, for which

V xc,ρ0
per (r) = −Cρ0(r)1/3,

where C is a given positive constant. Much more elab-
orate forms for V xc,ρ0

per are used in practice. As in the
noninteracting case, the electronic ground state den-
sity is obtained by filling up the lowest bands of the
periodic Schrödinger operator Hρ0

per. But the crucial dif-
ference is that, this time, the HamiltonianHρ0

per depends
on the ground state density. The Kohn–Sham model is
therefore a nonlinear eigenvalue problem. Note that the
Kohn–Sham equations are the Euler equations (the first-
order optimality conditions) of a constrained optimiza-
tion problem consisting of minimizing the Kohn–Sham
energy functional on the set of admissible electronic
states.

From a numerical point of view, the ground state
can be obtained either by minimizing the Kohn–Sham
energy functional or by solving the Kohn–Sham equa-
tions by an iterative procedure called a self-consistent
field algorithm. The Kohn–Sham model for perfect crys-
tals is usually discretized as follows. First, the Bril-
louin zone Γ ∗ is meshed using a regular grid GL of
step length Δq = 2π/L, L ∈ N∗. Then, for each
q ∈ GL = ΔqZ3 ∩ Γ ∗, the lowest-energy eigen-
values and eigenfunctions of the operator (Hper)q
are computed numerically by a Rayleigh–Ritz approx-
imation in the space spanned by the Fourier modes
(ek)k∈2πZ3, |k|�

√
2Ec

, where Ec is an energy cutoff.
This amounts to diagonalizing the Hermitian matrix
(〈ek|(Hper)q|ek′ 〉)k,k′∈2πZ3, |k|�

√
2Ec, |k′|�

√
2Ec

, where

〈ek|(Hper)q|ek′ 〉

=
∫
Γ
ek(r)∗((Hper)qek′)(r)dr

= |k+ q|2
2

δkk′ +
∫
Γ
Vper(r)ei(k′−k)·r dr.

When the two numerical parameters of the simula-
tion, L and Ec, go to infinity, the numerical results (the
ground state energy per unit volume and the ground
state density) converge to the exact solution of the
Kohn–Sham model.
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VII.15 Flame Propagation
Moshe Matalon

1 Introduction

A fundamental problem in combustion theory is the

determination of the propagation speed of a premixed

flame through a gaseous combustible mixture. In a pre-

mixed system the fuel and oxidizer are already mixed,

so following ignition a chemical reaction takes place

and spreads into the remaining unburned mixture until

one of the reactants is completely depleted. The propa-

gation speed depends on whether the combustible mix-

ture is quiescent or in a state of motion and on whether

the underlying flow is laminar or turbulent. Its practical

importance is evident, allowing, for example, the deter-

mination of the mean fuel consumption rate in a com-

bustor or an estimation of the spread of, and damage

caused by, an explosion in a combustible system.

It is seldom the case that the original reactants in

a combustion system interact among themselves in

a single step and produce the final product. In most

cases there is a large number of steps with intermediate

species involved before the final formation of products.

It is convenient, however, to use a global representation

fuel + ν oxidizer → (1 + ν)products + {Q}
for the chemical description. Accordingly, a mass ν of

oxidizer is consumed for each unit mass of fuel, pro-

ducing a mass (1+ν) of products and releasing a ther-

mal energy Q. The differential equation describing the

mass balance of fuel is

DYF

Dt
−DF∇2YF = −ω

ρ
, (1)

where the operator D/Dt ≡ ∂/∂t+v·∇ is the convective

derivative, i.e., Dφ/Dt is the rate of change of the prop-

erty φ of a material element taken while following the

fluid motion, with v the velocity vector and ∇ the gra-

dient operator taken with respect to the three spatial

coordinates (the dot signifies the inner product). Here,

ρ is the density of the entire mixture, the fuel mass frac-

tion YF is the ratio of the mass of fuel to the total mass

of the mixture, and the coefficient DF is the diffusivity

of fuel relative to the bulk (nitrogen for combustion in

air). In lean mixtures, where the reaction consumes only

a very small amount of oxidizer, the oxidizer mass frac-

tion YO can be treated as constant; otherwise, it is an

additional variable, and a similar equation to (1) must

be written for its consumption. The differential equa-
tion for the energy balance expressed in terms of the
temperature T is

DT
Dt

−α∇2T = Q
ρcp

ω, (2)

where α is the thermal diffusivity and cp is the spe-
cific heat (at constant pressure) of the mixture. Equa-
tions (1) and (2) state that fuel is consumed and energy
released (fuel and energy are the two main ingredients
of any combustion system) at a rate ω. The reaction
rate typically obeys an Arrhenius law of the form

ω = BρYFe−E/RT ,

with E the activation energy (the minimum energy
required for the reaction to be possible) and R the
universal gas constant.

The large temperature variations within the com-
bustion field produce large density variations, which,
in turn, modify the flow field. Since flames propagate
very slowly compared with sound waves, the process
is nearly isobaric and the density is inversely propor-
tional to the temperature. The velocity v obeys the
Navier–Stokes equations

Dρ
Dt

+ ρ∇ · v = 0, (3)

ρ
Dv
Dt

= −∇p + μ∇ ·Σ (4)

describing conservation of mass and momentum. Here,
p is the dynamic pressure (the small deviations from
the ambient pressure), Σ is the viscous stress tensor,
and μ is the viscosity of the mixture.

Despite the numerous simplifications introduced in
the above formulation, its mathematical complexity is
apparent, involving coupled partial differential equa-
tions that, in addition to the quadratic nonlinearity
of ordinary fluid flow problems, contain the highly
nonlinear exponential term. Recent advances in com-
putational capabilities permit such problems to be
addressed. However, the computations are quite inten-
sive and are usually carried out for a particular set
of parameters. Moreover, when dealing with multidi-
mensional flows and turbulence, they are often unable
to provide the required spatial and temporal resolu-
tions. Fundamental understanding has been achieved
primarily by analyzing simplified mathematical mod-
els that elucidate the physical interactions taking place
between the various mechanisms involved in a given
process. Because of the disparities between the spa-
tial scales and timescales involved in combustion prob-
lems, the techniques of perturbation and asymptotic
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methods have become the primary tools of mathemat-
ical analysis.

2 The Planar Adiabatic Flame

One of the simplest problems in combustion is a planar
flame propagating into a quiescent mixture of temper-
ature Tu, under adiabatic conditions. The solution, of
the formφ = φ(x+SLt), corresponds to a combustion
wave propagating from right to left along the x-axis at
a speed SL that is uniquely determined by the thermo-
dynamics and the transport and chemical kinetic prop-
erties of the combustible mixture. The determination
of SL, known as the laminar flame speed, has been the
subject of a large number of theoretical, numerical, and
experimental investigations. An analytical solution is
not available, but an asymptotic approximation can be
obtained when E/RTu � 1, i.e., when the activation
energy of the chemical reaction is much larger than
the energy of the fresh mixture, a condition that char-
acterizes most combustion systems. In this limit, the
reaction is confined to a thin region like that illustrated
in figure 1. Elsewhere, the chemical reaction rate ω is
negligible either because the exponential factor is van-
ishingly small (the preheat zone) or because the fuel
has been entirely consumed (the post-flame zone). The
asymptotic solution is then constructed by obtaining
solutions of the simplified equations in each of the
separate regions. Asymptotic matching then yields an
expression for the flame speed that, for a lean mixture
under the adopted simplifications, is of the form

SL =
√
ρb

ρu

2α2B
DF

RT 2
a

E(Ta − Tu)
e−E/2RTa , (5)

where
Ta = Tu +QYFu/cp (6)

is the (adiabatic) flame temperature, a direct conse-
quence of energy conservation. The subscripts “u” and
“b” identify conditions in the unburned and burned
states, respectively. The flame speed and temperature
given by (5), (6) are two of the most important proper-
ties that characterize a premixed flame. The flame tem-
perature increases with increasing heat release Q, and
its appearance in the highly temperature-dependent
exponential in (5) implies that it exerts the strongest
influence on the flame speed, meaning that reactions
with larger values of heat release propagate faster. The
flame speed is also affected by preheating the mixture,
i.e., increasing Tu, or diluting the gas with an inert sub-
stance whose properties can change the thermal and/or
mass diffusivities remarkably.

Unburned gas Burned gas

Reaction 
zone 

T

Ta

YFu

YFTu

ω

YF = 0

Preheat zone 

v = 0
SL v = (   − 1)SLσ

Figure 1 The structure of a planar premixed flame.

The mechanism of propagation is associated with the
heat conducted back from the reaction zone, precipi-
tating a rise in temperature in the adjacent gas layer
that triggers the chemical reaction. Since, in a one-
dimensional flow, the mass flux relative to the wave is
constant, the gas traveling through the flame expands
and speeds up. The hot burned gas moves away in the
direction opposite to flame propagation at a velocity
larger than SL by a factor (σ − 1), where σ = ρu/ρb is
the thermal expansion parameter.

The realization nearly fifty years ago that the pla-
nar propagation problem could be solved by means
of asymptotic techniques paved the way for much of
the theoretical development that has taken place in
recent years, particularly the mathematical description
of unsteady multidimensional laminar and turbulent
flames, which is discussed next.

3 Multidimensional Laminar Flames

Although planar flames can be observed in the labo-
ratory if appropriate measures are taken, real flames
are seldom flat. A Bunsen flame, for example, main-
tains a conical shape when the gas velocity at the exit
of the burner, V , is greater than SL. The geometry then
determines the cone opening angle θ = 2 sin−1(SL/V).
The shape of the flame stabilized in the laboratory
around a porous sphere is affected by natural con-
vection and resembles a teardrop that lacks spherical
symmetry. Buoyancy plays a significant role when the
representative Froude number Fr = V2L/g is small;
here, V is a characteristic flow velocity, L is a mea-
sure of the flame height, and g is gravitational accel-
eration. A more fundamental reason why flames are
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Figure 2 A steadily propagating corrugated flame.

often corrugated and propagate in an unsteady man-
ner is associated with instabilities, the most prominent
of which, in premixed flames, is the hydrodynamic,
or Darrieus–Landau (DL), instability. The gas expan-
sion induces hydrodynamic disturbances that tend to
enhance perturbations of the flame front. Diffusion
effects that often have stabilizing influences act only
on the short-wavelength disturbances, so large flames
acquire cusp-like conformations with elongated intru-
sions pointing toward the burned gas region, as shown
in figure 2. These structures are stable and, because
of their larger surface area, propagate at a speed UL

that is substantially larger than the laminar flame speed
SL. The dashed curve in the figure is the flame front,
the solid curves are selected streamlines, and the vari-
ous shades of gray correspond to regions of increased
velocity. The flow pattern demonstrates the deflection
of streamlines upon crossing the flame front, which is
a consequence of gas expansion, and the induced vor-
tical motion in the unburned gas that is otherwise at
rest, which is responsible for sustaining the cellular
structure by “pushing” the crests upward.

The mathematical description of multidimensional
flames exploits the disparity among the length scales
associated with the fluid dynamic field, the diffusion
processes, and the highly temperature-sensitive reac-
tion rate. On the largest scale, the entire flame, con-
sisting of the preheat and reaction zones, may be
viewed as a surface of discontinuity separating burned
from unburned gases, described by ψ(x, t) = 0.

Equations (3)–(4), with densities ρu, ρb, must then be

solved on either side of the flame front with appro-

priate jump conditions for the pressure and velocities

across ψ = 0. The internal flame structure facilitated

by the large-activation-energy assumption is resolved

on the smaller diffusion length scale, and through

asymptotic matching it provides the aforementioned

jump relations in the form of generalized rankine–

hugoniot relations [V.20 §2.3], as well as giving us

an expression for the flame speed. It is customary in

combustion to define theflame speed Sf relative to the

unburned gas, namely, Sf ≡ v∗
n − Vf , where vn = v · n

denotes the normal component of the gas velocity and

Vf = −ψt/|∇ψ| is the propagation speed with respect

to a fixed coordinate system; here, the unit normal n
is taken positive when pointing toward the burned gas

region, the asterisk superscript indicates that the veloc-

ity is to be evaluated at the flame front on its unburned

side, and the subscript t stands for time differentiation.

The expression for the flame speed takes the form

Sf = SL −LK, (7)

where K is the stretch rate, a measure of the flame front

deformation that results from the normal propagating

motion and the nonuniform underlying flow field. A

spherically expanding flame is stretched because of the

increase in its surface area that occurs at a rate propor-

tional to the instantaneous curvature. A planar flame

stabilized in a stagnation point flow is stretched as a

result of the diverging flow at a rate proportional to the

hydrodynamic strain. For a general surface, the local

stretch rate can be obtained from kinematic considera-

tions and is found to depend on the (mean) curvature of

the flame surface κ and the underlying hydrodynamic

strain, namely,

K = κSL − n · E · n,
where E is the strain rate tensor. The coefficient L,

known as the Markstein length, is of the order of the

flame thickness and incorporates the effects of diffu-

sion and chemical reaction. It can take positive or neg-

ative values depending on the mixture composition. In

an experimental setting, changes in L could be accom-

modated by varying the fuel type and mixture composi-

tion or the system’s pressure. The mathematical formu-

lation is thus composed of a nonlinear free-boundary

problem for the pressure and velocity fields with the

free surface (the flame front) determined by solving

ψt + v∗ · ∇ψ = Sf|∇ψ|, (8)
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with Sf given by (7). This formulation, known as the
hydrodynamic theory, has been a useful framework for
understanding intricate flame–flow interactions and, in
particular, the development of flame instabilities. The
flame shown in figure 2, for example, was obtained
using a variable-density Navier–Stokes solver in con-
junction with a front-capturing technique.

4 Turbulent Flames

Analogous to the definition of the laminar flame speed,
the turbulent flame speed ST can be defined as the
mean propagation speed of a premixed flame within
an isotropic homogeneous turbulent field of zero mean
velocity. If the incident fluid velocity is decomposed
into a mean (denoted by an overline) and a fluctuating
component, and the flame is held statistically station-
ary by adjusting the mean longitudinal flow velocityu1,
then the turbulent flame speed is ST = u1, as illustrated
in figure 3. The mean mass flow rate through the entire
flame shown in the figure is given by m̄ = ρuAST. Since
all the reactants pass through the wrinkled flame of
area Af , it can also be calculated from the total contri-
butions of mass flowing through the differential seg-
ments comprising the wrinkled flame, assuming each
segment propagates normal to itself at a speed SL. We
then have m̄ = ρuAfSL, implying that ST/SL = Af/A;
i.e., the increase in the speed of the turbulent flame
is due to the increase in the surface area of the flame
front. This relation was first noted by Damköhler, who
resorted to geometrical arguments with analogy to a
Bunsen flame to further deduce an explicit dependence
on the turbulence intensity v′

c, defined as the root mean
square of the velocity fluctuations. His result and those
of numerous other phenomenological studies conform
to expressions of the form

ST/SL = 1 + C(v′
c/SL)n, (9)

with various constants C and adjustable exponents
n. Although the experimental record exhibits a wide
scatter due to the variable accuracy of the methods
and the varied operating conditions, the data appears
to confirm that ST increases with increasing intensity
of turbulence for low to moderate values of v′

c. At
higher turbulence intensities, however, ST increases
only slightly and then levels off, an observation known
as the bending effect.

The hydrodynamic model provides a more rigor-
ous approach to the determination of the turbulent
flame speed. The thin-flame assumption implies that
the internal structure of the flame is not disturbed

x

y

z
A

TSS

u1 = ST + u'1
x = f (y, z, t )

Figure 3 A schematic of a statistically
stationary turbulent premixed flame.

by the turbulence and retains its laminar structure.
The results of this model are, strictly speaking, appli-
cable to only the wrinkled and corrugated flamelet
regimes of turbulent combustion, which encompass
many combustion applications and most laboratory
experiments. It excludes, in particular, the distributed-
reaction regime, where the basic structure of a flame
no longer exists and the notion of turbulent flame
speed becomes ambiguous. Since in the hydrodynamic
description every segment of the wrinkled flame prop-
agates at a speed Sf that depends on the local mixture
composition and flow conditions, as given by (7), the
mean mass flowing through the entire flame is now
m̄ = ρuSfAf . This yields

ST = Sf|∇ψ|, (10)

which must be determined through calculations simi-
lar to the one used to generate figure 2 after replac-
ing the quiescent setting with a turbulent flow field.
A pregenerated homogeneous isotropic turbulent flow,
characterized by intensity v′

c and integral scale -, is
thus fed as an inflow at the bottom of the integration
domain, as shown in figure 4(a). The flame is retained
at a prescribed location, on average, by controlling the
mean inflow velocity. Figure 4 illustrates such calcu-
lations. The turbulent nature of the flow is elucidated
by the clockwise/counterclockwise (dashed/solid) vor-
ticity contours, and the flame front is represented by
the solid dark curve. One notes the vorticity generated
downstream near the “cusp” of the flame front by baro-
clinic torque and a significant decrease in the vorticity
elsewhere; this is the result of volumetric expansion.

If the local flame speed is assumed to be constant and
equal to the laminar flame speed, (10) yields ST/SL =
|∇ψ|, implying that the increase in the speed of the
turbulent flame is due to the increase in the flame sur-
face area, as in Damköhler’s proposition. Equation (7)
in conjunction with (10) demonstrates that in turbu-
lent propagation an important role is played by the
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Figure 4 Flame propagation in turbulent flow; the instant-
aneous portrait shows a pocket of unburned gas that
pinched off from a folded segment of the flame surface.

mean stretching of the flame K̄, which influences the

mean local flame speed Sf and, consequently, ST. Scal-

ing laws accounting for stretch effects were recently

obtained using numerical simulations within the con-

text of the hydrodynamic theory, for “two-dimensional”

turbulence and for L > 0. Although two-dimensional

flow lacks some features of real turbulence, the results

extend the current understanding of turbulent flame

propagation and yield expressions for ST that are

free of any turbulence modeling assumptions and/or

ad hoc adjustment parameters. The condition L > 0

excludes the development of the thermodiffusive insta-

bilities that are observed in rich hydrocarbon–air or

lean hydrogen–air mixtures; instabilities that may fur-

ther contaminate the flame surface with small struc-

tures increase its overall surface and its propagation

speed. Three regimes have been identified depending

on the mixture composition, the thermal expansion
coefficient, and the turbulence intensity:

(i) a regime in which, on average, the flame brush
remains planar (i.e., has zero mean curvature) and
is unaffected by the DL instability;

(ii) a regime in which the DL effects, which are respon-
sible for frequent intrusions of the flame front into
the burned gas region, have a marked influence on
the flame front, which remains partially resilient to
turbulence; and

(iii) a highly turbulent regime in which the influences of
the DL instability play a limited role and the flame
propagation is totally controlled by the turbulence.

The third regime is affected by frequent folding of the
flame front and formation of pockets of unburned gas
that detach from the main flame surface and are rapidly
consumed, causing a significant reduction in the turbu-
lent flame speed. Expressions for the turbulent flame
speed of the form

ST

SL
=
[

1 − LK̄
SL

][
a+ b(-,L)c(σ)

(L/L)m
(v′

c

SL

)n]
have been obtained, with coefficients that depend on
the functional parameters in the various operating
regimes. The constant a depends on the nature of the
stable laminar flame when v′

c = 0; it is equal to 1 when
the stable flame is planar and equal to UL/SL when the
stable flame is the cusp-like conformation (shown in fig-
ure 2) resulting from the DL instability. The coefficient c
increases with increasingσ and plateaus as the thermal
expansion reaches sufficiently high values. The coeffi-
cient b is of relatively small magnitude, reaching a max-
imum at an intermediate scale that disturbs the flame
most effectively. Variations in the mixture composition
and ambient conditions, exhibited through the Mark-
stein length L, appear as a power law with exponentm
less than 1. Of greatest significance is the dependence
of ST on turbulence intensity; at low v′

c the depend-
ence of ST on turbulence intensity is quadratic (n = 2),
in accordance with Damköhler’s heuristic result, but
at higher turbulence levels the dependence is sublin-
ear (n < 1), which explains the bending effect that is
observed experimentally.
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VII.16 Imaging the Earth Using Green’s
Theorem
Roel Snieder

1 Introduction

The Earth is a big place: its radius is about 6400 km.
In comparison, the deepest boreholes so far drilled are
about 10 km deep. We therefore have little opportu-
nity to take direct measurements or samples inside
the Earth: it is mostly inaccessible. And even for the
upper 10 km that we can sample, the cost of drilling
deep boreholes is very high. This means that inferences
about the Earth’s interior are largely based on physical
and chemical measurements taken at the Earth’s sur-
face, or even from space. Investigating the inside of the
Earth therefore resembles that classical black-box prob-
lem: determine the contents of a closed box when you
can do anything except open the box.

If one could measure physical fields, such as the grav-
itational field or the elastic wave field, inside the Earth,
one could infer the local properties of the Earth by
inserting the measured field into the equation that gov-
erns that field and then extracting the physical parame-
ters, such as the mass density, from the field equation.
However, the fields are measured at, or sometimes even
above, the Earth’s surface. One therefore needs a recipe
for propagating the measured field from its surface of
observation into the Earth’s interior. This is a problem
where mathematics comes to the rescue in the form of
Green’s theorem. This relates measurements taken at
a surface bounding a volume to the fields inside that
volume: a principle called downward continuation.

In what follows we apply Green’s theorem to a large
class of physical systems and show that the theorem
only relates measurements at a surface to measure-
ments in the interior when the equations are the same
regardless of whether one moves toward the future or
toward the past. Such equations are said to be invari-
ant for time reversal. We focus in particular on seismic
imaging because this is the technique that provides the
highest spatial resolution.

2 Green’s Theorem for General Systems

Consider physical systems that satisfy the following
partial differential equation for a field u(r, t) that is
excited by sources q(r, t):

N∑
n=0

an(r)
∂nu
∂tn

= ∇ · (B(r)∇u(r, t))+ q(r, t). (1)

This equation captures many specific equations. An
example is the wave equation:

1
κ(r)

∂2u
∂t2

+ γ(r)∂u
∂t

= ∇ ·
(

1
ρ(r)

∇u
)
+ q(r, t), (2)

where κ is the bulk modulus, γ is a damping parameter,
and ρ is the density. Another example of equation (1)
is the diffusion equation:

∂u(r, t)
∂t

= ∇ · (D(r)∇u(r, t))+ q(r, t), (3)

with D(r) the diffusion constant. This equation is used
to describe flow in porous media such as aquifers
and hydrocarbon reservoirs. It also accounts for heat
conduction and for diffusive spreading of pollutants.
A variant of (3) is the Schrödinger equation, which
accounts for the dynamics of microscopic particles:

i�
∂ψ(r, t)
∂t

− V(r)ψ(r, t) = − �2

2m
∇2ψ(r, t). (4)

Here � is Planck’s constant divided by 2π , m is the
mass of the particle, and V(r) is the real potential in
which the particle moves. Yet another example is the
gravitational potential, which plays an important role
in geophysics because it helps constrain the mass den-
sity inside the Earth. The gravitational field satisfies
Poisson’s equation:

0 = ∇2u(r)− 4πGρ(r), (5)

where G is the gravitational constant. This equation
does not depend on time.

Note that the applications (2)–(5) are special forms
of the general equation (1). In these applications B(r)
is real, hence we use B = B∗ in the following, with the
asterisk denoting complex conjugation. We also use the
Fourier convention: f(t) =

∫
f(ω)e−iωt dω. With this,

the general equation (1) reduces to

N∑
n=0

(−iω)nan(r)u(r,ω)

= ∇ · (B(r)∇u(r,ω))+ q(r,ω). (6)

Each time derivative is replaced by a multiplication
by −iω. The treatment that follows is valid in the
frequency domain. For brevity we omit the frequency
dependence of variables.
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Let us consider two different field states, uP(r) and
uQ(r), excited by sources qP(r) and qQ(r), respec-
tively. Take equation (6) for state P , multiply by u∗

Q,
and integrate over volume. Next take the complex con-
jugate of (6) for state Q, multiply by uP , and integrate
over volume. Subtracting these two volume integrals
and applying Green’s theorem to the terms containing
B(r) gives

N∑
n=0

(−iω)n
∫
AnuPu∗

Q dV

=
∮
B
(
∂uP
∂n

u∗
Q −uP

∂u∗
Q

∂n

)
dS +

∫
(u∗
QqP −uPq∗Q)dV,

(7)

where ∂/∂n denotes the outward normal derivative to
the surface S that bounds the volume over which we
integrate, and

An(r) = an(r)− (−1)na∗
n(r). (8)

The Green function G(r,r0), defined as the solution
of (6) to a point excitation, q(r) = δ(r − r0), plays a
key role in what follows. An important property of G is
reciprocity: G(r,r′) = G(r′,r). Under suitable bound-
ary conditions, this property is valid for all applications
that follow.

Consider the case where uP is source free (qP = 0)
and uQ is excited by a point source, qQ(r) = δ(r−rQ).
Then uQ(r) = G(r,rQ) = G(rQ,r). Using this in (7),
denoting uP by u, and replacing r with r′ and rQ with
r gives

u(r) = −
N∑
n=0

(−iω)n
∫
An(r′)G∗(r,r′)u(r′)dV ′

+
∮
B(r′)

(
G∗(r,r′)

∂u
∂n′ − ∂G

∗(r,r′)
∂n′ u

)
dS′.

(9)

3 Moving the Field into the Interior

Equation (9) is a powerful tool for propagating mea-
surements taken at the boundary of a system into the
interior of that system. This is of particular importance
in earth science. First we illustrate this principle for
the acoustic wave equation (2), which is a prototype of
the equations that govern seismic imaging. In the nota-
tion of (1), the wave equation (2) has N = 2, a2 = 1/κ,
a1 = γ, a0 = 0, and B = 1/ρ. The coefficients an enter
(9) in a volume integral through the term An defined in
equation (8), which equals

An =
⎧⎨⎩2i Im(an) for n even,

2 Re(an) for n odd,
(10)

where Re and Im denote the real and imaginary parts,
respectively. According to (10), a2 does not contribute
because κ is real. Consider first the case when there is
no attenuation, so that a1 = γ = 0 and (9) reduces to
the representation theorem:

u(r) =
∮

1
ρ

(
G∗(r,r′)

∂u
∂n′ − ∂G

∗(r,r′)
∂n′ u

)
dS′. (11)

This expression relates measurements at the surface in
the integral on the right-hand side to the wave field in
the interior on the left-hand side.

What happens if there is attenuation? In that case,
a1 = γ > 0, and according to (9) and (10), equa-
tion (11) must be extended with a volume term 2iω ×∫
γ(r′)G∗(r,r′)u(r′)dV ′ on the right-hand side. This

term contains the wave field in the interior that we seek
to determine, so that this field does not follow from
measurements at the surface only. In principle, atten-
uation makes seismic imaging impossible, but in prac-
tice, attenuation in the Earth is weak and the offending
volume integral can therefore be ignored.

Can diffuse fields be imaged? For the diffusion equa-
tion (3) the only nonzero terms in (1) are a1 = 1 and
B = D. Inserting these into (9) gives

u(r) = 2iω
∫
G∗(r,r′)u(r′)dV ′

+
∮
D(r′)

(
G∗(r,r′)

∂u
∂n′ − ∂G

∗(r,r′)
∂n′ u

)
dS′.

Just as for attenuating acoustic waves, the right-hand
side contains the unknown field in the interior. This
means that measurements of diffusive fields taken at
the surface cannot be used for imaging using Green’s
theorem.

The Schrödinger equation (4) is first order in time,
and for this reason one might think that as for the dif-
fusion equation one cannot infer the field values within
a volume from measurements taken at the boundary.
For this equation, N = 1, a1 = i�, a0 = −V , and
B = −�2/(2m). According to (9) and (10), and assum-
ing that the potential V is real, the volume integral
depends on Im(a0) = Im(−V) = 0 for n = 0 and
on Re(a1) = Re(i�) = 0 for n = 1. The volume inte-
gral therefore vanishes and field values in the interior
can be determined from field values measured at the
boundary.

For the gravitational potential, field equation (5), all
an = 0 and B = 1, so that in a source-free region the
field satisfies

u(r) =
∮ (
G(r,r′)

∂u
∂n′ − ∂G(r,r

′)
∂n′ u(r′)

)
dS′. (12)
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The potential field does not depend on time, and as a
result both the field u and the Green function G are
real functions; there are therefore no complex conju-
gates in (12). This expression makes it possible to infer
the gravitational field above the Earth when the field
is known at the Earth’s surface. Expression (12) can
be used for upward continuation, where one infers the
gravitational field at higher elevations from measure-
ments taken at the Earth’s surface. This can be used, for
example, to compute the trajectories of satellites. Sim-
ilarly, one can use this expression for downward con-
tinuation, where one computes the gravitational field at
lower elevations from measurements taken higher up.
An application of downward continuation is to infer the
gravitational field at the Earth’s surface from measure-
ments taken from satellites or aircraft. It is, however,
not possible to use (12) to compute the gravitational
field inside the Earth. In the interior, the mass density
ρ(r) is nonzero, and according to (5), the source q(r)
is nonzero. This violates the assumption qP = 0 used in
the derivation of (9). For this reason, Green’s theorem
cannot be used to infer the mass density in the Earth
from measurements taken at the surface.

In general, the property that the field in the interior
follows from field measurements taken at the boundary
is valid for systems that are invariant for time rever-
sal. These are systems that obey equations that are
invariant when time is reversed and t is replaced by
−t. This is true for the wave equation in the absence
of attenuation, but attenuation breaks the symmetry
between past and future. The diffusion equation is not
invariant under time reversal; heat diffuses away when
moving forward in time. Like the diffusion equation,
Schrödinger’s equation is first order in time, and one
might think it is not invariant for time reversal. One can
show, however, that, whenψ(r, t) is a solution, then so
is ψ∗(r,−t). According to the principles of quantum
mechanics, one cannot make a distinction between the
wave function and its complex conjugate, and there-
fore the equation is effectively invariant for time rever-
sal and, as we have seen, measurements at the surface
suffice to determine the field in the interior.

4 Seismic Imaging

In this section we discuss the application of the rep-
resentation theorem (11) to seismic imaging. A typical
marine seismic experiment is shown in figure 1. In the
figure a ship tows a streamer (shown by the dashed
line), which is a long tube with hydrophones (pressure

p (z = 0) = 0 S0

S∞

Boat

Figure 1 The geometry of a marine seismic survey.

sensors) and/or geophones (motion sensors) that act

as recording devices. An air gun (a device delivering an

impulsive bubble of air) acts as a seismic source just

behind the ship. The waves reflected by layers in the

Earth are recorded by sensors in the streamer.

The water surface is a free surface, hence the pres-

sure p vanishes there: p(z = 0) = 0. However, the par-

ticle motion does not vanish. According to Newton’s

law, the acceleration a is related to the pressure by

ρa = −∇p. The vertical component of this expression

is given by

ρaz = −∂p
∂z
. (13)

We use this relation in the representation theorem (11)

for the pressure p. For the boundary we take the combi-

nation of the sea surface S0 and a hemisphere S∞ with

radius R (figure 1). In the presence of a tiny amount of

attenuation, the pressurep and Green functionG decay

as e−αR , with α an attenuation coefficient, and the con-

tribution of S∞ vanishes as R → ∞. The closed surface

integral thus reduces to the contribution of the free

surface S0. Since that surface is horizontal, the normal

derivative is just the derivative in the −z-direction. (We

have chosen a coordinate system with positive z point-

ing down.) As the pressure vanishes at the free surface,

expression (11) reduces to

p(r) = −
∫
S0

ρ−1(r′)G∗(r,r′)
(
∂p(r′)
∂z′

)
dS′.

Eliminating ∂p/∂z′ using (13) gives

p(r,ω) =
∫
S0

G∗(r,r′,ω)az(r′,ω)dS′, (14)

having restored the frequency dependence. This for-

mula relates the pressure in the subsurface to the

motion recorded at the sea surface.
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The reader may have wondered why the complex
conjugate of G was used, since most of the ex-
pressions also hold when the complex conjugation
is not applied. The time-domain Green function is
related to the frequency-domain Green function by
G(r,r′, t) =

∫
G(r,r′,ω)e−iωt dω, and hence the

time-reversed Green function satisfies G(r,r′,−t) =∫
G∗(r,r′,ω)e−iωt dω. This means that G∗(r,r′,ω)

corresponds in the time domain to the time-reversed
Green function G(r,r′,−t). As a consequence, equa-
tion (14) corresponds in the time domain to

p(r, t) =
∫
S0

G(r,r′,−t) 0 az(r′, t)dS′, (15)

where the star (0) denotes convolution. The Green func-
tionG(r,r′, t) is causal, meaning that it is only nonzero
after the point source acts at t = 0. It then moves the
waves forward in time away from the point of excita-
tion. Consequently, the time-reversed Green function
G(r,r′,−t) is nonzero only for t < 0, and it prop-
agates the wave backward in time. In (15), the time-
reversed Green function G(r,r′,−t) is convolved with
the recorded acceleration. This means that it takes the
waves that are recorded at the streamer and propagates
them backward in time. This is a desirable property:
in order to find the reflectors in the Earth, one needs
to know the wave field at the moment when it was
reflected off the reflectors. The recorded waves thus
need to be propagated back in time so that we know
them at earlier times when they were reflecting inside
the Earth. This is the reason why the time-reversed
Green function is used, and ultimately this is the reason
why the theory presented here used the complex conju-
gate G∗(r,r′,ω) instead of G(r,r′,ω). If we had used
G(r,r′, t) instead of G(r,r′,−t), equation (15) would
have given the pressure field inside the Earth after it
has been recorded at the receivers. This field does not
give information about the interaction of waves with
reflectors before the waves propagated to the surface
where they are recorded. For this reason the theory in
section 3 is based on G∗ rather than G.

5 A Chicken and Egg Problem

As shown here, Green’s theorem makes it possible to
infer the value of a physical field in the interior of
the Earth from measurements taken at, or above, the
Earth’s surface. There is, however, a catch. In order
to downward continue fields measured at the Earth’s
surface, one must know the Green function: see, for
example, (14). For the wave equation (2), the space and

time derivative fields are multiplied by the mass den-
sity and bulk modulus of the Earth, respectively. The
Green function needed for downward continuation of
seismic waves thus depends on the properties of the
Earth, but it is these properties that one seeks to deter-
mine. We therefore need the properties of the Earth to
determine the properties of the Earth!

Fortunately, there is a way out of this conundrum. It
turns out that for seismic imaging it suffices to have
an estimate of the Green function that positions the
wavefronts at more or less the correct location. Such an
estimated Green function is computed from a smooth
velocity model. The velocity used is obtained from a
procedure called velocity estimation, where one deter-
mines a smooth velocity model from measured arrival
times from reflected seismic waves. The success of the
seismic method in the hydrocarbon industry shows
that this procedure works in practice.
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VII.17 Radar Imaging
Margaret Cheney and Brett Borden

1 Background

“Radar” is an acronym for radio detection and ranging.
Radar was originally developed as a technique for
detecting objects and determining their positions by
means of echolocation, and this remains the principal
function of modern radar systems. Radar can provide
very accurate distance (range) measurements, and can
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also measure the rate at which this range is changing.
However, radar systems have evolved over more than
seven decades to perform an additional variety of very
complex functions; one such function is imaging.

Radar imaging has much in common with optical
imaging: both processes involve the use of electro-
magnetic waves to form images. The main difference
between the two is that the wavelengths of radar are
much longer than those of optics. Because the resolving
ability of an imaging system depends on the ratio of the
wavelength to the size of the aperture, radar imaging
systems require an aperture many thousands of times
larger than optical systems in order to achieve com-
parable resolution. Since kilometer-sized antennas are
not practicable, fine-resolution radar imaging has come
to rely on so-called synthetic apertures, in which a small
antenna is used to sequentially sample a much larger
measurement region.

There are many advantages to using radar for remote
sensing. Unlike many optical systems, radar systems
can be used day or night. Because the long radar wave-
lengths pass through clouds, smoke, etc., radar systems
can be used in all weather conditions. Moreover, some
radar systems can penetrate foliage, buildings, dry soil,
and other materials.

Radar waves scatter mainly from objects and features
whose size is on the same order as the wavelength.
This means that radar is sensitive to objects whose
length scales range from centimeters to meters, and
many objects of interest are in this range.

Radar has many applications, both military and civil-
ian. Radar systems are widely used in aviation and
transportation, for navigation, for collision avoidance,
and for low-altitude flight. Most of us are familiar with
police radar for monitoring vehicle speed. Radar is
also used to monitor weather, including Doppler mea-
surements of precipitation and wind velocity. Imaging
radar is used for land-use monitoring, for agricultural
monitoring, and for environmental monitoring. Radar-
based techniques are used to map the Earth’s surface
topography and dynamic evolution. Medical microwave
tomography is currently under development.

2 Mathematical Modeling

Mathematical modeling is based on maxwell’s equa-

tions [III.22], or, more commonly in the case of propa-
gation through dry air, the scalar approximation:(

∇2 − 1
c2

∂2

∂t2

)
E(t,x) = s(t,x), (1)

where E(t,x) denotes the (electric) field transmitted
and measured by the radar, x and t are position and
time variables, and c denotes the speed of light in
vacuum. In constant-wave-velocity radar problems, the
source s is a sum of two terms, s = sin + ssc, where
sin models the source due to the transmitting antenna,
and ssc models the effects of target scattering. The solu-
tion E to equation (1), which is written as Etot, there-
fore splits into two parts: Etot = Ein + Esc. The first
term, Ein, satisfies the wave equation for the known,
prescribed source sin, usually corresponding to the cur-
rent density on an antenna. This part we call the inci-
dent field; it is the field in the absence of scatterers. The
second part of Etot is due to the presence of scattering
targets, and this part is called the scattered field.

One approach to finding the scattered field is to
simply solve (1) directly using, for example, numerical
time-domain techniques. For many purposes, however,
it is convenient to reformulate the scattering problem
in terms of an integral equation.

In scattering problems the source term ssc represents
the target’s response to an incident field. This part of
the source function will generally depend on the geo-
metric and material properties of the target and on the
form and strength of the incident field. Consequently,
ssc can be quite complicated to describe analytically.

Usually, one makes the Born or single-scattering
approximation, namely

ssc(t,x) =
∫
V(x)Ein(t′,x)dt′, (2)

where V(x) is called the reflectivity function and
depends on target orientation. This results in a linear
formula for Esc in terms of V :

Esc(t,x) ≈ EB(t,x)

≡
∫∫
g(t − τ,x − z)V(z)Ein(τ,z)dτ dz, (3)

where g is the outgoing fundamental solution or (out-
going) Green function:

g(t,x) = δ(t − |x|/c)
4π|x| =

∫
e−iω(t−|x|/c)

8π2|x| dω. (4)

Here, |x| = √
x · x.

The Born approximation is very useful because it
makes the scattering problem linear. It is not, however,
always a good approximation.

The incident field in (3) is typically of the form
of an antenna beam pattern multiplied by the con-
volution g ∗ p, where g denotes the Green function
(4) and p denotes the waveform fed to the antenna.
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Consequently, we obtain the following model for the
scattered field:

Esc
B (t,x

0) =
∫
p(t − 2|x0 − z|/c)
(4π|x0 − z|)2 V(z)dz, (5)

where we have neglected the antenna beam pattern.
Under the Born approximation, the scattered field can
be viewed as a superposition of scattered fields from
targets that are point-like (i.e., V(z′) ∝ δ(z − z′)) in
the sense that they scatter isotropically. No shadowing,
obscuration, or multiple scattering effects are included.

Equation (5) is an expression for the field, which is
proportional to the voltage measured on a receiving
antenna. Note that the received power, which is pro-
portional to the square of the voltage, is proportional
to 1/R4, where R = |x0 −z| is the distance between the
antenna at position x0 and the scatterer at position z.
This 1/R4 dependence is the reason that radar signals
are typically extremely weak and are often swamped
by thermal noise in the receiving equipment. Radar
receivers typically correlate the incoming signal with
the transmitted pulse, a process called pulse compres-
sion or matched filtering, in order to separate the signal
from the noise.

Radar data do not normally consist simply of the
backscattered field. Radar systems typically demod-
ulate the scattered field measurements to remove
the rapidly oscillating carrier signal and convert the
remaining real-valued voltages to in-phase (I) and
quadrature (Q) components, which become the real and
imaginary parts of a complex-valued analytic signal (for
which the signal phase is well defined). For the pur-
poses of this article, however, we ignore the effects
of this processing and work simply with the scattered
field.

3 A Survey of Radar Imaging Methods

Synthetic-aperture radar (SAR) imaging relies on a num-
ber of very specific simplifying assumptions about
radar scattering phenomenology and data-collection
scenarios.

• Most imaging radar systems make use of the start–
stop approximation, in which both the radar sensor
and the scattering object are assumed to be sta-
tionary during the time interval in which the pulse
interacts with the target.

• The target or scene is assumed to behave as a rigid
body.

• SAR imaging methods assume a linear relationship
between the data and the scene.

Different geometrical configurations for the sensor
and target are associated with different terminology.

3.1 Inverse Synthetic-Aperture Radar

A fixed radar system staring at a rotating target is
equivalent (by change of reference frame) to a station-
ary target viewed by a radar moving (from pulse to
pulse) on a circular arc. This circular arc will define,
over time, a synthetic aperture, and sequential radar
pulses can be used to sample those data that would be
collected by a much larger radar antenna. Radar imag-
ing based on such a data-collection configuration is
known as inverse synthetic-aperture radar (ISAR) imag-
ing. This imaging scheme is typically used for imag-
ing airplanes, spacecraft, and ships. In these cases, the
target is relatively small and is usually isolated.

The small-scene approximation, namely

|x −y| = |x| − x̂ ·y +O
( |y|2

|x|
)
, (6)

where x̂ denotes a unit vector in the directionx, is often
applied to situations in which the scene to be imaged
is small in comparison with its average distance from
the radar. This approximation is valid for |x| � |y|.

Using (6) in (5) and shifting the time origin show
that, when the small-scene approximation is valid, the
radar data are approximately the Radon transform of
the reflectivity function.

3.2 Synthetic-Aperture Radar

SAR involves a moving antenna, and usually the an-
tenna is pointed toward the Earth. For an antenna view-
ing the Earth, we need to include a model for the
antenna beam pattern, which describes the directivity
of the antenna. For highly directive antennas, we often
simply refer to the antenna “footprint,” which is the
illuminated area on the ground.

Most SAR systems use a single antenna for both
transmitting and receiving. For a pulsed system, we
assume that pulses are transmitted at times tn, and we
denote the antenna position at time tn by γn. The data
can then be written in the form

Esc
B (t,n) =

∫
e−iω[t−2|γn−y|/c]A(ω,n,y)dωV(y)dy,

(7)
where A incorporates the geometrical spreading fac-
tors |x0 − y|−2, the transmitted waveform, and the
antenna beam pattern. (More details can be found in
Cheney and Borden (2009).)
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Because the timescale on which the antenna moves is

much slower than the timescale on which the electro-

magnetic waves propagate, the timescales have been

separated into a slow time, which corresponds to the n
of tn, and a fast time t.

The goal of SAR is to determine V from radar data

that are obtained from the scattered field Esc by I/Q

demodulation (mentioned at the end of section 2) and

matched filtering. Again, for the purposes of this arti-

cle, we neglect the processing done by the radar system

and work simply with the scattered field.

Assuming that γ andA are known, the scattered field

(7) depends on two variables, so we expect to form a

two-dimensional image. For typical radar frequencies,

most of the scattering takes place in a thin layer at the

surface. We therefore assume that the ground reflec-

tivity function V is supported on a known surface. For

simplicity we take this surface to be a flat plane, so that

V(x) = V(x)δ(x3), where x = (x1, x2).
SAR imaging comes in two basic varieties: spotlight

SAR and stripmap SAR.

3.2.1 Spotlight SAR

Spotlight SAR is illustrated in figure 1. Here, the mov-

ing radar system stares at a specific location (usually on

the ground) so that at each point in the flight path the

same target is illuminated from a different direction.

When the ground is assumed to be a horizontal plane,

the constant-range curves are large circles whose cen-

ters are directly below the antenna at γn. If the radar

antenna is highly directional and the antenna footprint

is sufficiently far away, then the circular arcs within the

footprint can be approximated as lines. Consequently,

the imaging method is mathematically the same as that

used in ISAR.

As in the ISAR case, the time-domain formulation of

spotlight SAR leads to a problem of inverting the Radon

transform.

3.2.2 Stripmap SAR

Stripmap SAR is illustrated in figure 2. Just as the time-

domain formulations of ISAR and spotlight SAR reduce

to inversion of the Radon transform, which is a tomo-

graphic inversion of an object from its integrals over

lines or planes, stripmap SAR also reduces to a tomo-

graphic inversion of an object from its integrals over

circles or spheres.

Figure 1 In spotlight SAR the radar is trained on a particular
location as the radar moves. In this figure the equirange
circles (dotted lines) are formed from the intersection of
the radiated spherical wavefront and the surface of a (flat)
Earth.

Figure 2 Stripmap SAR acquires data without staring. The
radar typically has fixed orientation with respect to the
flight direction and the data are acquired as the beam
footprint sweeps over the ground.

3.2.3 Interferometric SAR

Interferometric SAR is a sort of binocular radar imag-
ing system that can provide height information. These
systems use two antennas that create separate SAR
images. These images are complex, and height infor-
mation is encoded in the phase difference between the
two images.

4 Future Directions for Research

In the decades since the invention of SAR imaging, there
has been much progress, but many open problems still
remain. In particular, as outlined at the beginning of
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section 2, SAR imaging is based on specific assump-
tions that may not be satisfied in practice. When they
are not satisfied, artifacts appear in the image. Conse-
quently, a large number of the outstanding problems
can be grouped into two major areas.

Problems related to unmodeled motion. Both SAR
and ISAR are based on known relative motion be-
tween target and sensor, e.g., including the assump-
tion that the target behaves as a rigid body. When
this is not the case, the images are blurred or unin-
terpretable.

Problems related to unmodeled scattering physics.
The Born approximation leaves out many physical
effects, including not only multiple scattering and
creeping waves but also shadowing, obscuration, and
polarization changes. Neglecting these effects can
lead to image artifacts. But without the Born approx-
imation (or the Kirchhoff approximation, which is
similar), the imaging problem is nonlinear.
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VII.18 Modeling a Pregnancy Testing Kit
Sean McKee

1 Device Description

In this article we describe a general medical diagnos-
tic tool, based on antibody/antigen technology, whose

principal, and certainly most lucrative, application is
as a pregnancy testing kit. The fluorescence capillary-
fill device (FCFD) consists of two plates of glass sepa-
rated by a narrow gap. The lower plate is coated with
an immobilized layer of specific antibody and acts like
an optical waveguide. The upper plate has an attached
reagent layer of antigen (or hapten1) labeled with a
fluorescent dye. When the sample is presented at one
end of the FCFD, it is drawn into the gap by capil-
lary action and dissolves the reagent. The fluorescently
labeled antigen in the reagent now competes with the
sample antigen for the limited number of antibody sites
on the lower glass plate (see figure 1). The FCFD plate
structure may be regarded as a composite waveguide:
the intensities of the distinct optical paths, depending
on whether they originate from a fluorescent molecule
that is free in the solution or from a molecule bound
close to the surface of the plate, are picked up by a
photodetector.

We shall not be concerned with the optical aspects
of this device but rather with the competitive reaction
between the antigen and the fluorescent antigen for
those antibody sites, and we shall focus on its use as a
pregnancy testing kit. When a woman is pregnant the
presence of a “foreign body” causes the production of
antigen molecules (X), which are then countered by spe-
cific antibodies (Y). Denoting the fluorescently labeled
antigen by XF, figure 2 (representing the “blow-ups” in
figure 1) displays the situation when a woman is, and
is not, pregnant both at time t = 0 (when the sample
is first presented to the device) and at t = tf (when the
reaction is finished). Upon completion, a light is shone
down the lower plate, and, if the woman is pregnant,
the beam of greater light intensity will be detected at a
larger angle to the plate (as shown in figure 1).

2 Mathematical Model

When a sample (urine in this case) is presented to
the FCFD, it dissolves the labeled antigen but not the
antibody that is fixed on the lower wall. The device
is then left in a stationary position to allow the anti-
gen and the labeled antigen to diffuse across the gap
and compete for the antibody sites. Thus the mathe-
matical model consists of two one-dimensional diffu-
sion equations coupled through nonlinear and nonlo-
cal boundary conditions, and a number of conservation

1. Haptens are low-molecular-weight molecules that contain an
antigenic determinant; these have substantially larger diffusion coef-
ficients than the antigen molecules.
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(a) (b) 

Sample solution
Glass or
plastic
plates

‘‘Bound’’
light to
photodetector

‘‘Solution’’
light to
photodetector

Figure 1 A schematic of the fluorescent capillary-fill
device. More details can be found in Badley et al. (1987).

relationships. Since the equations themselves are lin-

ear, Laplace transforms may be employed to rechar-

acterize the system as two coupled nonlinear Volterra

integro-differential equations: in nondimensional form

they are

dw1

dt
(t) = γ1δ

[
(1 −w1(t)−w2(t))

×
(
μ −m

∫ t
0

dw1

dτ
(τ)K(δ(t − τ))dτ

)
− L1w1(t)

]
,

(1)

dw2

dt
(t) = γ2

[
(1 −w1(t)−w2(t))

×
(
g(t)−m

∫ t
0

dw2

dτ
(τ)K(t − τ)dτ

)
− L2w2(t)

]
.

(2)

Here,w1(t) andw2(t) denote the concentrations of the

complexes XY and XFY, respectively, while δ, μ, m, γ1,

and γ2 are nondimensional constants. The functions

g(t) and K(t) are given by

g(t) = 1 − e−λt + 2λ
∞∑
n=1

(−1)n

(λ−n2π2)
(e−n

2π2t − e−λt),

K(t) = 1√
πt

(
1 + 2

∞∑
n=1

e−n
2/t
)
,

where λ is a further nondimensional constant repre-

senting the dissolution rate of the bound XF.

XF XF XF XF XF

X X

X X

Y Y Y Y Y

(a)

XFY XFY XY XY XY

XF XF

XF
X

XF XF XF XF XF

Y Y Y Y Y

(b)

XFY XFY XFY XFY XFY

t = 0 t = tf

Figure 2 (a) Woman is pregnant. (b) Woman is not pregnant.
Here, X denotes the sample antigen, XF the antigen or hap-
ten with a fluorescent label, and Y the specific antibody for
the antigen or hapten.

Equations (1) and (2) admit a regular perturbation
solution for small m.

Extending results of Jumarhon and McKee, a further
recharacterization may be obtained in the form of a
system of four coupled, nonlinear, (weakly) singular
Volterra integral equations of the second kind: the four
dependent variables in this case, in nondimensional
form, are

[X](1, t), [XF](1, t),
∫ 1

0
[X](x, t)dx,

and ∫ 1

0
[XF](x, t)dx,

where [X] denotes the concentration of the antigen X,
etc. It is from this system that one is able to deduce
(global) existence and uniqueness of a solution of the
original diffusion problem, though the proofs are not
trivial.

It is also from these characterizations that one is able
to obtain small- and large-t asymptotic results; interest-
ingly, the large-t results require the explicit solution of
a quartic.

3 Design Considerations

The objective of this work was to provide a quanti-
tative design tool for the bioscientists. Indeed, this
model—or, more precisely, an earlier considerably sim-
plified model—was ultimately employed in the develop-
ment of Clearblue, the well-known pregnancy testing
kit. The model (and its associated code) allowed bio-
scientists to see that the device could be made small
(and, consequently, be produced very cheaply) and in
large batches, suitable for hospital use. Furthermore, it
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provided an indication of both the plate separation dis-

tance and how much antibody and labeled antigen were

required to be affixed to the plate surfaces. In short,

the tool obviated a great deal of experimentation, thus

saving time and allowing Unilever Research, through

a company that was then called Unimed, to bring the

product to market early.
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VII.19 Airport Baggage Screening with
X-Ray Tomography
W. R. B. Lionheart

1 The Security Screening Problem

In airport security, baggage carried in an aircraft’s hold

needs to be screened for explosive devices. Tradition-

ally, an X-ray machine is used that gives a single two-

dimensional projection of the X-ray attenuation of the

contents of the bag. In some systems, several views

are used to reveal threats that may be obscured by

large dense objects. An extension of this idea is to use

a large number of projections to reconstruct a three-

dimensional volume image of the luggage. This is the

X-ray computed tomography (CT) technology that is

familiar from medical applications (see medical imag-

ing [VII.9]). The image can then be viewed by an oper-

ator from any desired angle and threat-detection soft-

ware can be used that, for example, segments the vol-

ume image, identifying objects that have a similar X-ray

attenuation to explosives. In some airports, a two-stage

system is used in which bags that cannot be cleared

by an automatic system analyzing a two-dimensional

projection are then passed to a much slower X-ray

tomography system.

Airport baggage handling systems operate using con-

veyor belts traveling at around 0.5 m/s. Medical CT

machines use a gantry supporting the X-ray source

and an array of detectors that rotates in a horizontal
plane while the patient is translated in the direction
of the rotation axis. Relative to the patient, the source
describes a helical trajectory. By contrast, small labora-
tory CT machines rotate and translate the sample while
the source and detector remain fixed. Neither of these
is practical for scanning luggage at the desired speed:
the mass of the gantry is too great to rotate fast enough
and rotating the bag would displace the contents.

2 Real-Time Tomography

The company Rapiscan Systems has developed a sys-
tem called real-time tomography (RTT) that uses multi-
ple X-ray sources fixed in a circular configuration that
can be switched electronically, removing the need for a
rotating gantry. A cylindrical array of detectors is used,
and this is coaxial with the sources, but the X-rays can-
not penetrate the detectors, so the detectors are offset
relative to the sources (see figure 1).

A reasonable mathematical model of X-ray tomogra-
phy is that the line integrals of the linear attenuation
are measured for all lines joining sources to detectors.
For a helical source trajectory and detectors covering a
set called the Tam–Danielson window, there is an exact
reconstruction algorithm due to Katsevich expressed in
terms of derivatives and integral operators applied to
the data. Most medical and industrial CT machines use
an approximation of this using overdetermined data.

The RTT presents several mathematical challenges.

• The data is incomplete, resulting in an ill-posed
inverse problem [IV.15] to solve.

• The reconstruction must be completed quickly to
ensure the desired throughput of luggage.

• The sources can be fired in almost any order. In
fact, sequential firing that approximates a rotat-
ing gantry and a single-threaded helix trajectory
is the most difficult due to heat dissipation issues
in clusters of sources. What is the optimal firing
order?

3 Sampling Data and Sufficiency

As the RTT was originally conceived as a fast helical
scan machine, it is natural to think of the sources fir-
ing sequentially at equal time intervals as a discrete
approximation to a curve. A firing sequence in which
a fixed number of sources is skipped at each time step
approximates a multithreaded helix. Figure 2 illustrates
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Figure 1 A cartoon of an RTT scanner showing
the source circle and detector cylinder.

two possible firing orders, the first approximating a

multithreaded helix. The second could be interpreted

as a multithreaded helix (with two different pitches),

but it is more natural to view it as a triangular lattice

that samples the two-dimensional surface of a cylinder

rather than a curve.

The manifold of lines in three-dimensional space is

four dimensional and data from the X-ray transform of

a function of three variables satisfies a consistency con-

dition called John’s ultrahyperbolic equation. In con-

ventional helical CT, the lines through the helix in the

Tam–Danielson window are sufficient data to solve the

reconstruction problem (and consequently solve the

Dirichlet problem for John’s equation). We can inter-

pret the RTT data in figure 1 intersected with the detec-

tor array as a discrete sampling scheme for an open

subset of the four-dimensional space of lines. Using

the Fourier slice theorem for the Radon plane trans-

form along with the Payley–Wiener theorem, we can

see that for continuum data the inverse problem has

a unique solution, but an inversion using this method

would be highly unstable. In a practical problem with

a discrete sampling scheme and noisy data, we would

expect to need some regularization for a numerically

stable solution.

4 Inversion

The inversion of the RTT data can be considered as the

solution of a sparse linear system of equations relat-

ing the attenuation coefficients in voxels within the

region of interest to the measured data. As such we
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Figure 2 (a), (b) Two multithreaded helix source firing
sequences; (b) a lattice on the cylinder of source positions.
(c), (d) The number of rays intersecting each voxel for the
firing orders above. The second sequence ((b), (d)) has more
uniform coverage of the cylinder and produces a more
uniform distribution of rays.

can employ the standard techniques of numerical lin-
ear algebra and linear inverse problems, including iter-
ative solution methods and regularization. The matrix
of the system we solve is generally too large for direct
solution, but one method that works well for this prob-
lem is conjugate gradient least squares applied to the
generalized Tikhonov regularized system.

This approach allows us to apply a systematic choice
of regularization penalty, equivalent to an assump-
tion about the covariance of the prior distribution in
Bayesian terms. The matrix of the system we solve is
generally too large for direct solution with the com-
puting hardware available, but looking at scaled-down
systems we have found that the condition number of
the (unregularized) matrix is smallest for firing orders
that uniformly sample space. Another way to assess the
merits of a firing order is to look at the distribution of
directions of rays intersecting each voxel, and this crite-
rion leads to the same conclusion as the studies of con-
dition number (see figure 2). The resulting reconstruc-
tion results also demonstrate an improvement over the
lattice source firing.
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Figure 3 (a) Optimal two-sheet surface with an exaggerated
axial scale. (b) Reconstruction of a bass guitar from data
collected using a prototype RTT80 baggage scanner.

Even using contemporary graphics processing units,
iterative methods are too slow to solve the reconstruc-
tion problem in real time. Rebinning methods interpo-
late data from a (multithreaded) helix to approximate
data taken on a plane. Radon transform inversion on
the planes can be performed very quickly using filtered
back projection. A variation of this method is surface
rebinning. For each source location λ the image values
on a surface z = ζλ(x,y) (where z is the axial direction)
are approximated using two-dimensional Radon trans-
form inversion of the data corresponding to rays close
to that surface (see figure 3). For conventional helical
CT, the optimal surface to use is close to a plane, but for
the RTT geometry a good solution is to find a surface
with two sheets and reconstruct the sum of the atten-
uation coefficients at points on those sheets with the
same (x,y) coordinates. There is then a separate very
sparse linear system to solve to find the values of the
attenuation coefficient at a voxel, which will depend on
values on the upper and lower sheet for different source
positions. The optimal surface for a given geometry is
conveniently found as a fixed point of a contraction
mapping.
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VII.20 Mathematical Economics
Ivar Ekeland

Economic theory is traditionally divided into micro-

economics and macroeconomics. Microeconomics deal

with individuals, macroeconomics with society. At the

present time, microeconomics is seen as foundational,

meaning that society is understood as no more than

a contract (implicit or explicit) between individuals,

so that macroeconomics should be derived from the

behavior of individuals, just as all the laws of physics

should be derived from the behavior of atoms. Let me

hasten to add that we are no closer to this grand uni-

fication in economics than we are in physics. Macro-

economics and microeconomics are largely separate

fields, with the latter being much more conceptually

mature, whereas the basic principles of the former are

still under discussion.

1 Individuals

Individuals are seen as utility maximizers. Each of us

lives in an environment in which decisions are to be

made: choosing a point x ∈ A, say, where A is a closed

subset of Euclidean space. My preferences are charac-

terized by a continuous functionU : A→ R: I preferx to

y if U(x) > U(y), and I am indifferent if U(x) = U(y).
Note that the preference relation thus defined is tran-

sitive: if I prefer x to y and y to z, then I prefer x to z.

As we shall see later on, this transitivity holds only for

individuals, not for groups. The utility function charac-

terizes the individual: I have mine; you have yours; they

are different. Note that it is taken as given that some

of us are selfish, some are not, some of us are drug

addicts, some of us prefer guns—it will all show up in

our utility. At this point, economic theory is positive,

meaning that it does not tell people what they should

aim for; it tells them how best to reach their goals.

It is assumed that each individual chooses the point

that maximizes his or her utility function U over the

set of possible choices A. Of course, we need this

maximizer to be unique; otherwise we would have to

choose between all possible maximizers, and the deci-

sion problem would not be solved. In order to achieve

uniqueness, the set A is assumed to be convex and

the function U concave, one of them strictly so. The

admissible set A is usually defined by budgetary con-

straints. For instance, we may consider an economy
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withD goods, with x = (x1, . . . , xD) being a goods bun-
dle (meaning that xd is the quantity of good d in the
bundle). If the price of good d is pd, the price of the
bundle x is given by

px =
D∑
d=1

pdxd.

Consumers are then characterized by their utility
function U and their wealth w, and they will choose
the bundle x that they prefer among all those they
can afford. This translates into the convex optimization
problem

max
x
U(x), px � w, xd � 0 ∀d. (1)

Strange as it may seem, this model has testable con-
sequences, and the data supports it. It is worth going
into this in a little more detail. One first needs to distin-
guish what is observable from what is not. The utility
function U , for instance, cannot be observed: if I am
asked what my utility function is, I do not know how
to answer. However, the map p → x(p) (the demand
function) that associates with each price system the
corresponding minimum in problem (1) is observable:
it is conceivable that my consumption pattern could be
observed under price changes. The demand function is
known to satisfy the so-called Slutsky relations. These
are a system of first-order partial differential equations
(PDEs) that can be expressed compactly by stating that
the matrix S(x) defined by

S(x)m,n = ∂x
m

∂pn
−
∑
k
xm

∂xn

∂pk
pk

is symmetric and negative-definite. Browning and Chi-
appori have tested the Slutsky relations on Canadian
data and found them to be satisfied, so the con-
sumer model stands. Unfortunately, the model is too
restricted: it is not enough to weigh one decision
against another when the consequences are immediate
and certain. Most of the time, the consequences will
occur more or less far into the future, and they are
affected by various degrees of uncertainty.

The standard way to take into account uncertainty
goes back to von Neumann and Morgenstern (VNM).
Assume that uncertainty is modeled by a space Ω of
events, with a σ -algebra A, and that the individual
(who already has a utility function U ) puts on (Ω,A)
a probability P . The utility of a random variable X̃ will
then be its expected utility, namely, E[U(X̃)]. In this
framework, the concavity of U can be interpreted as
risk aversion.

The standard way to account for late consequences
is to discount future utilities. More precisely, it is
assumed that there is some δ > 0 (the psychological
rate of time preference) such that if x is consumed
at time t � 0, the resulting utility at time t = 0 is
e−δtU(x). Combining both VNM utility and discount-
ing, we can give the present value of an uncertain
consumption flow (a stochastic process) X̃t , t � 0, as

E
[∫∞

0
e−δtU(X̃t)dt

]
. (2)

One more equation is needed to describe how the
consumption flow X̃t is generated or paid for. With
this model one can then describe how people allo-
cate consumption and investment over time. It is the
workhorse of economic theory (both micro and macro)
and finance. The mathematical tools are optimal con-
trol, both stochastic and deterministic, both from the
PDE point of view (leading to the Hamilton–Jacobi–
Bellman equation) and from the point of view of the
Pontryagin maximum principle (leading, in the stochas-
tic case, to a backward stochastic differential equation).
All economics textbooks are replete with examples.

This model is now facing criticism due to accumu-
lated psychological evidence.

On the one hand, people do not seem to maximize
expected utility when facing uncertainty, e.g., they give
undue importance to events with a small probability,
and they are more sensitive to losses than to gains.
Allais (very early on) and (later) Ellsberg have pointed
out paradoxes, that is, experiments in which the actual
choices could not be explained by VNM utilities. Var-
ious alternative models have been suggested to take
these developments into account, the most popular of
which is the prospect theory of Kahneman and Tver-
sky. This is a modification of the VNM model in which
probabilities are distorted before the expectation is
computed.

On the other hand, people do discount future utilities
but not at a constant rate: the present value of receiv-
ing x at a time t is h(t)U(x), where h(t) is decreasing
from 1 to 0, but there is no reason it should be an expo-
nential, h(t) = e−δt . Psychological evidence suggests
that it looks more like h(t) = (1 + kt)−1 (hyperbolic
discounting). This means that (2) should be replaced
by

E
[∫∞

0
h(t)U(X̃t)dt

]
.

Unfortunately, this implies that the preferences of the
decision maker now depend on time! More precisely,
suppose that different flows (Xt and Yt , say) are given
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for t � T (assume they are deterministic; uncertainty

has nothing to do with it), and for 0 � s � T set

Is(X) :=
∫∞

T
h(t − s)U(Xt)dt.

Ifh(t) is not an exponential, it may well be the case that,

for s1 < s2 < T , we have Is1(X) < Is1(Y) but Is2(X) >
Is2(Y). This phenomenon is called time inconsistency.

It implies that seeking an optimal solution is useless,

since the decision maker will change his or her idea of

optimality as time goes by.

Non-VNM utilities and nonexponential discounts are

both the subject of active research because they seem

to stick closer to the actual behavior of economic

agents, notably investors, than do VNM utilities. This

creates major mathematical challenges, since it intro-

duces nonconvexities in optimization and control prob-

lems (prospect theory), and challenges the very concept

of optimality (time inconsistency), which then has to be

replaced by a Nash equilibrium of the game between

successive decision makers.

2 Groups

The main thing to understand about groups is that they

are not individuals; in particular, they do not have a util-

ity function. If there are N members in a group, each

of them with a utility function Un, 1 � n � N , and a

decision has to be made, then one cannot maximize all

the Un at the same time, except in very particular cases.

Each member has his of her own preferred choice xn,

and the collective choice will be the result of a decision

process. There is a large literature on collective choice,

which is mainly axiomatic: one specifies certain prop-

erties that such a process should satisfy, and then one

seeks to identify the solution, if there is one. The main

result in this direction is the Arrow impossibility the-

orem, which states the following. Suppose there is a

procedure that transforms any set of individual rank-

ings into a collective ranking. Suppose this procedure

satisfies two very mild conditions, namely:

• if every voter prefers alternative X over alternative

Y, then the group prefers X over Y; and

• if another alternative Z is introduced and if ev-

ery voter’s preference between X and Y remains

unchanged, then the group’s preference between

X and Y will also remain unchanged (even if vot-

ers’ preferences between other pairs, like X and Z,

Y and Z, or Z and W, change).

The procedure then consists of conforming in every
circumstance to the ranking of a fixed member of the
group (the dictator). The importance of Arrow’s the-
orem consists of emphasizing that in any situation
where a collective decision is to be made, the result
will be as much a function of the procedure chosen as
of the individual preferences of the members. In other
words, if the premises of microeconomic theory are
to be accepted, there is no such thing as the common
good. In any society there are only individual interests,
and as soon as they do not agree, there is no overriding
concern that would resolve the conflict; there are only
procedures, and one is as good as another. A rich liter-
ature on collective choice has sprung from this well. It
is axiomatic in nature, i.e., one seeks procedures that
will satisfy certain axioms posited a priori. For instance,
one might want to satisfy some criterion of fairness.
Unfortunately, there is not currently a formal model of
fairness or a clear understanding of distributive justice.

However, there is a generally accepted notion of effi-
ciency. Choose coefficients λn � 0, with

∑
λn = 1, and

maximize
∑
λnUn(x). The point x obtained in this way

will have the property that one cannot find another
point y such that Un(y) > Un(x) for some n, and
Un(y) � Un(x) for all n. It is called a Pareto optimum,
and of course it depends on the choice of the coeffi-
cients λn. If x is not a Pareto optimum, then resources
are being wasted, since one could give more to one per-
son without hurting anyone else. Note that if x is a
Pareto optimum, the choice x is efficient, since there
is no waste, but it need not be fair: taking λ1 = 1 and
λn = 0 for n � 0 gives a Pareto optimum.

Groups are ubiquitous in economic theory: the small-
est economic unit is not the individual but the house-
hold, two or more people living together and shar-
ing resources. How the resources are shared depends
on cultural, social, and psychological constraints, and
these would be extremely hard to model. However,
one can get a long way with the analysis by making
the simple assumption that the sharing of resources
within the group is efficient, i.e., Pareto optimal. For
an efficient household, composed of H members, each
one with his/her own utility function Uh(xh,X), the
consumption problem (1) becomes

max
{∑
h
λh(p)Uh(xh)

∣∣∣∣ px � w
}
,

where xh is the consumption of each member, p is
the price system, and the λh are the Pareto coefficients
that reflect power within the group (and depend on the
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price system). The econometrician observes the sum∑
xh(p), that is, he or she observes the aggregate con-

sumption of the group, not the individual consump-
tion of each member. It is possible to extend the Slut-
sky relations to this situation and identify the individ-
ual preferences of each member. This is done by using
exterior differential calculus, notably the Darboux and
Cartan–Kähler theorems.

3 Markets

Markets are groups that have chosen a particular way to
allocate resources. The standard model for competitive
markets is due to Arrow and Debreu. There are global
resources, namely a bundle of goods x̄ ∈ RD , that
should either be shared outright (an exchange econ-
omy) or used to produce more goods, which will then be
shared (a production economy) among the N members
of the group, each of whom has his or her own util-
ity function Un. There is also a production technology,
consisting of K firms, each of which is characterized by
a production set Yk: if (x,y) ∈ Yk, then firm k can pro-
duce the bundle x by consuming the bundle y . Time
runs from t = 0 to infinity, and there is some uncer-
tainty about the future, modeled by a set Ω of possible
states of the world.

Each good is characterized by its date of delivery
t � 0 and is contingent on some state of the world
ω: I pay now, and I get the good delivered at time t if
ω occurs (so, in effect, one can insure oneself against
any possible event). We start from an initial allocation
(sharing) of the global resources: each individual n in
the economy starts with a bundle xn ∈ RD , so that∑
n xn = x̄. However, this initial allocation may not be

Pareto optimal, hence the need for trading. The main
result of Arrow and Debreu states that, provided utili-
ties are concave and production functions are convex,
there is an equilibrium, namely, a price system such
that all markets are clear (demand equals supply for
each good). The main mathematical tool used to prove
the Arrow–Debreu result is the Brouwer fixed-point the-
orem, usually in its multivalued variant, the Kakutani
fixed-point theorem. Of course, the equilibrium that is
reached depends on the initial allocation.

Note that the theory is not entirely satisfactory, even
within its own set of assumptions. On the one hand,
there may be several equilibria, and the theory has
nothing to say about which one is chosen. On the other,
the theory is purely static: it does not say how an equi-
librium is reached from a nonequilibrium situation.

Mathematicians have expended much effort on find-
ing dynamics that would always converge to an equilib-
rium, and economists have tried to find procedures by
which market participants would infer the equilibrium
prices, but progress has so far been limited.

4 How Markets Fail

The idea that markets are always right has permeated
all economic policy since the 1970s, and it inspired
the wave of deregulation that has swept through the
U.S. and U.K. economies since the Reagan era. Eco-
nomic theory, though, does not support this view. The
strength of the market mechanism lies in the first and
second welfare theorems, which state that every equi-
librium is an efficient allocation of resources and that,
conversely, every efficient allocation of resources can
be achieved as a no-trade equilibrium (if it is chosen
as the initial allocation, it is also an equilibrium allo-
cation for an appropriate price system). However, the
conditions required for these theorems to hold, and
indeed for all of Arrow–Debreu theory, are very rarely
achieved in practice; in fact, I cannot think of a single
real-world market in which they are. A huge part of eco-
nomic theory is devoted to studying the various ways
in which markets fail and to how they can be fixed.

First of all, markets may exist and not be competitive.
All major markets (weapons, oil, minerals, cars, phar-
maceutical firms, operating systems, search engines)
are either monopolistic or oligopolistic, meaning that
producers charge noncompetitive prices, so the result-
ing allocation of resources is not efficient. In addition,
Arrow–Debreu theory eliminates uncertainty by assum-
ing that one can insure oneself against any future event,
and that is not the case. Note also that classical eco-
nomic theory assumes that consumption goods are
homogeneous (a Coke is a Coke is a Coke), whereas
many actually differ in subtle ways (Romanée-Conti is
not just another wine, and the 2000 vintage is not the
same as the 2001 vintage). Prices then have to take
quality into account, and consumers tend to behave
differently: if you become richer, you do not necessar-
ily buy more wine, but you certainly buy better wine.
Such markets are called hedonic, and interesting con-
nections have been found with the mathematical theory
of optimal transportation.

Second of all, markets do not price externalities. An
externality occurs when the fact that I consume some-
thing affects you. For instance, the competitive market
price for cigarettes would take into account the demand
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of smokers and the supply of tobacco manufacturers
but not the inconvenience to nonsmokers nor the dam-
age to their health, resulting in an inefficient alloca-
tion of resources. To restore efficiency, one would have
to charge the smokers for smoking and transfer the
money to nonsmokers, a nonmarket mechanism. Mar-
kets do not price public goods either. A public good is,
according to an old saying, “like a mother’s love: every-
one has a share, and everyone enjoys it fully.” More
precisely, it is a good that you can consume even if
you did not pay for it or contribute to producing it.
Sunshine, clean air, and a temperate climate are public
goods: even the worst polluter can enjoy them. Other
goods, like roads, education, or health, can be either
public or private: if they are free, they are public goods;
if you put a toll on a road, if you charge tuition fees, or
if you have to pay for medical treatment, they become
private goods. The problem with making them private
is that they have large positive externalities (the road
supports economic activity, having an educated work-
force is good for business, living with healthy individu-
als reduces one’s chances of falling ill) that the market
will not price, and the resulting situation will therefore
be inefficient.

5 Asymmetry of Information

Another imperfection of the Arrow–Debreu model is
that there is full information on the goods that are
traded: a loaf of bread is a loaf of bread; there can
hardly be a surprise. However, there are many situ-
ations in which information is asymmetric: typically,
the seller, who already owns the good, or who has
produced it, knows more about it than the buyer. Is
that important? For a long time it was thought that
only marginal adjustments to the Arrow–Debreu model
would be required to take care of asymmetry of infor-
mation, but then a seminal 1970 paper by Akerlof
showed that, in fact, this asymmetry is so important
that the Arrow–Debreu model breaks down entirely.

The Akerlof example is so important that I will sketch
it here. Consider a population of 2N people. Half of
them have a used car and want to sell it; the other half
do not have a car and want to buy one. So there are N
cars for sale. The quality of each car is modeled by a
number x. A car of quality x is worth x to the seller,
and 3

2x to the buyer.

The Arrow–Debreu situation is the case when buyer
and seller both know the value of x. Cars of different
quality will then be considered as different goods and

traded at different prices: quality x will trade at any
price p ∈ [x, 3

2x]. The market then functions and all
cars are sold. However, this is not realistic: as we all
know, the seller, who has used the car for some time,
knows more about the quality than the buyer, who will
only get to drive it around the block. Suppose, then, that
the seller knows x but all the buyer knows is its proba-
bility law, say that x is uniformly distributed between 0
and 1. Since buyers cannot distinguish between them,
all cars must have the same price p. If the buyer buys at
that price, the expected quality he gets isx = 1

2p, which
to him is worth 3

4p < p, which is less than he paid. So
no one will buy, at any price, and the market simply
does not function: there are people willing to buy, peo-
ple willing to sell, both would be better off trading, and
yet trade does not occur.

The lesson from the Akerlof example is that compet-
itive markets cannot function when there is asymme-
try of information. Since that paper, economists have
sought alternative procedures to allocate resources,
but at the time of writing, after many years of effort,
dealing with groups of three or more agents at once
under asymmetry of information is still beyond reach.
The standard model therefore deals with only two: the
principal and the agent. The agent has information that
the principal does not have, but the principal knows
that the agent has that information. Trading proceeds
as follows: the principal makes an offer (the contract)
to the agent, and the agent takes it or leaves it (no
bargaining).

Contract theory is divided into two main branches:
adverse selection and moral hazard. Adverse selection
occurs when the agent has a characteristic that he or
she knows but can do nothing about and that the prin-
cipal would dearly like to know but does not. This is
typically the case in insurance, but it occurs in other
situations as well. If I am looking for health insurance,
insurers would like to know as much as possible about
my medical condition and my genetic map, which may
be precisely what I do not want them to know. Air-
lines provide basically the same service to all passen-
gers (leaving from point A at time t and arriving at
point B at time T ), and they would like to know how
much each passenger is willing to pay. Since they can-
not access that information, they separate economy
class from business class in the hope that customers
will sort themselves out. Moral hazard occurs when the
principal contracts the agent to perform an action that
he or she, the principal, cannot monitor. The contract
then has to be devised in such a way that the agent finds
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it in his or her own interest to comply, even if noncom-
pliance cannot be observed and therefore cannot be
punished. This is typically the case in the finance indus-
try. If I entrust my wealth to a money manager, how am
I to know that he or she is competent, or even that he
or she works hard? The track record of the financial
industry is not encouraging in that respect. The solu-
tion, if you can afford it (this is what happens in hedge
funds, for instance), is to give the money manager such
a large part of your earnings that your interests become
aligned with theirs. It would be even better to have
him or her share the losses, but this is prohibited by
legislation (limited liability rules).

Informational asymmetry has spurred many math-
ematical developments. Adverse selection translates
into problems in the calculus of variations with con-
vexity constraints. A typical example is the following,
due to Rochet and Choné. Given a square Ω = [a, b]2,
with 0 < a < b, and a number c > 0, solve the problem

min
∫
( 1

2c∇u2 − x∇u+u)dx,

u ∈ H1, u � 0, u convex.

If it were not for the convexity constraint, this would
be a straightforward obstacle problem. As it is, we have
existence, uniqueness, and C1-regularity, but we do not
yet have usable optimality conditions.

For a long time, there was no comparable progress on
moral hazard problems, but in 2008 there was a break-
through by Sannikov, who showed how to solve them
in a dynamic setting. His basic model is quite simple.
Consider a stream of revenue

dXt = at dt + σ dBt,

where σ is a constant and Bt is Brownian motion. The
revenue accrues to the principal, but at depends on
the agent. More precisely, at each time t the agent
decides to perform an effort at � 0, at a personal cost
h(at), with h(0) = 0 and h increasing with a. The
effort is unobservable by the principal; all he or she
can observe is dXt , so that the agent’s effort is hidden
in the randomness. The problem is then for the prin-
cipal to devise a compensation scheme for the agent,
depending only on the past history ofXt , that will maxi-
mize the principal’s profit. Sannikov solves it by a clever
use of the martingale representation theorem, thereby
opening up a new avenue for research.

6 Conclusion

I hope this brief survey has shown the breath of math-
ematics used in modern economic theory: optimal

control, both deterministic and stochastic; diffusion

theory and Malliavin calculus; exterior differential cal-

culus; optimal transportation; and the calculus of varia-

tions. Economic theory is still trying to assimilate all the

consequences of informational asymmetry. This rev-

olution is far from over; the theory will probably be

very different in 2050 from what it is today. These are

exciting times.
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VII.21 Mathematical Neuroscience
Bard Ermentrout

1 Introduction

Mathematical neuroscience is a branch of applied math-

ematics and, more specifically, an area of nonlinear

dynamics concerned with the analysis of equations that

arise from models of the nervous system. The basic

units of the nervous system are neurons, which are cells

that reside in the brain, spinal cord, and throughout

many other regions of the bodies of animals. Indeed,

the presence of neurons is what separates animals from

other living organisms such as plants and fungi. Neu-

rons and their interactions are what allow organisms

to respond to a rapidly changing and unpredictable

environment. The number of neurons in an organism

ranges from just a few hundred in the nematode (a

small worm) to around 100 billion in the human brain.

Most neurons are complex cells that consist (roughly
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speaking) of a cell body, an axon, and dendrites. A typ-
ical neuron will generate transient changes in its mem-
brane potential on the order of 100 millivolts (called
action potentials) that communicate electrochemically
with other neurons through synapses. Neurons are typ-
ically threshold devices, so that if their membrane
potential exceeds a particular value, they will “fire” an
action potential. The synapses from one neuron can
be either excitatory or inhibitory: either they promote
action potentials in the receiving neuron or they pre-
vent them. There are about 100 trillion synapses in the
human brain. The properties of individual neurons are
reasonably well characterized as are the dynamics of
individual synapses. However, the behavior of even a
single neuron can be very complex and so, of course, is
the behavior of even a small piece of brain.

The cell membrane of a neuron is what separates
the neuron from the surrounding medium, and it is
through this membrane that the complex firing pat-
terns of neurons are mediated. Various ions such as
sodium, potassium, calcium, and chloride are con-
tained within the neuron and in the space between the
neurons. The membrane is dotted with thousands of
proteins called channels that selectively allow one or
more ions to pass into and out of the cell. By controlling
the instantaneous permeability of specific channels,
the cell is able to create large transient fluctuations
in its potential (the above-mentioned action potential).
While perhaps not at the level of Newton’s laws or the
Navier–Stokes equations for fluids, there are standard
models for the neuronal membrane, for the propaga-
tion of action potentials down axons, for the dynamics
of synapses, and for how all this information is inte-
grated into the cell body. Mathematical neuroscience
analyzes the dynamics of these models using various
tools from applied mathematics.

2 Single-Cell Dynamics

The modeling of a single neuron ranges from a simple
scalar ordinary differential equation (ODE) to a system
of many coupled partial differential equations (PDEs).
For simulation purposes, the latter model is simplified
to a large number of coupled ODEs representing the
different parts of the neuron, which are called compart-
ments. For example, the soma or cell body (see figure 1)
might be represented by one compartment, while the
dendrites and possibly the axon might be broken into
dozens of compartments. A neuron represented by a
single compartment is called a point neuron and that

is where we will focus our attention. A point neuron
is modeled by ODEs representing the permeabilities
of one or more channels whose properties have been
experimentally measured. The easiest way to think of
a single compartment is through an equivalent circuit
(see figure 1) defined by the transmembrane voltage,
V(t), the membrane capacitance, C , and the conduc-
tances of the various channels, gj(t). The first neuronal
membrane to be mathematically modeled was that of
the squid giant axon, for which Hodgkin and Hux-
ley received a Nobel Prize. The differential equations
represented by the figure have the form

C
dV
dt

= −gKn4(V − EK)− gL(V − EL)

− gNam3h(V − ENa)+ I(t),
dn
dt

= n∞(V)−n
τn(V)

,

dm
dt

= m∞(V)−m
τm(V)

,

dh
dt

= h∞(V)− h
τh(V)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Here, I(t) represents either the electrical current that
the experimenter can inject into the neuron or the cur-
rent from synapses from other neurons (see below).
The functionsn∞(V), etc., were measured through very
clever experiments and then fitted to particular func-
tions. The constants gL, EL, etc., were also experimen-
tally determined. While Hodgkin and Huxley (HH) did
this work nearly sixty years ago, the basic formulation
has not changed, and the thousands of papers devoted
to the modeling of channels and neurons follow this
general format: for each compartment in the represen-
tation of the neuron, there is a voltage, V(t), and auxil-
iary variables such as n(t),m(t), h(t) whose time evo-
lutions depends on V . One goal in mathematical neuro-
science is to characterize the dynamics of these nonlin-
ear ODEs as some of the parameters vary. In particular,
a typical experiment is to inject a constant current, I,
into the neuron and to then look at its dynamics. It is
also possible to pharmacologically block or reduce the
magnitude of the channels, so that the parameters gK,
gNa, etc., may also be manipulated. The most common
way to analyze the dynamics of equations like (1) is to
compute their fixed points and then study their stability
by linearizing about a steady state. For systems like the
HH equations, the equilibria are easy to find by solving
for the variablesm,h,n as functions of voltage, obtain-
ing a single equation of the form I = F(V), where I is
the constant current. Plotting V against I allows one
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Figure 1 Parts of neurons. Three neurons are shown, with
the input (dendrites), cell body, and output (axon) labeled
on one neuron. Dashed arrows show the direction of infor-
mation flow. The two insets show a magnified schematic of
the cell membrane and its equivalent electrical circuit.

to identify all the equilibria. Whether or not the equi-
libria are stable is determined by the eigenvalues of
the 4 × 4 Jacobian matrix. This procedure allows one
to find bifurcations [IV.21] to limit cycles through
the Andronov–Hopf bifurcation. In general, numerical
methods are used to find the solutions and their sta-
bility. Figure 2 shows the diagram for the HH equa-
tions as the applied current varies. There seems to be
only a single equilibrium point, which loses stability via
an Andronov–Hopf bifurcation and spawns a family of
periodic orbits. The stable periodic solutions represent
repetitive firing of the neuron. Note that there is a range
of currents (shown by the dashed lines) for which a sta-
ble equilibrium and a stable periodic orbit coexist. This
bistability was experimentally confirmed in the 1970s.

The other common approach to the analysis of equa-
tions like (1) is to exploit the differences in timescales.
For example, the dynamics of V , m are very fast com-
pared with the dynamics of n, h, so it becomes pos-
sible to use singular-perturbation methods to analyze
the dynamics. Because of this difference in timescales,
even the simple HH model can show complex dynam-
ics. For example, figure 2 shows that reducing the rate
of change of h by half results in a completely dif-
ferent type of dynamics (compare the top and bot-
tom plots of the voltage, V ). By treating this as a
singularly perturbed system, it is possible to explain
the complex spiking patterns seen in the HH model.

–80

–60

–40

–20

0

20

40

60

0 5 10 15 20 25
I

SPO

SE

HB

UE

UPO

V
 (t

)

(a)

(b)

–60

–40

–20

0

20

V
 (t

)

–60

–40

–20

0

20

V
 (t

)

1000 1200 1400 1600 1800 2000
Time

–30

–20

–10

0

10

V
 (t

),
 C

a(
t)

0 1000 2000 3000 4000 5000
Time

(c)

 

Figure 2 (a) A bifurcation curve for the HH model as
the applied current varies, showing stable equilibria (SE),
unstable equilibria (UE), stable and unstable periodic orbits
(SPO/UPO), and the Hopf bifurcation (HB). (b) Small changes
in the rate of change of h have drastic effects on the dynam-
ics. (c) Bursting behavior in a simple model where V(t) is
the fast voltage dynamics (black line) and Ca(t) is the slow
calcium dynamics (represented by the gray line).
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Singular perturbation also plays an important role in
the study of so-called bursting dynamics, where the
voltage shows periods of high-frequency spiking fol-
lowed by periods of quiescence; an example of this
can be seen in part (c) of the figure. To understand
the dynamics of, say, the bursting, we exploit the
differences in timescales to write the system as

dx
dt

= f(x,y), dy
dt

= εg(x,y),
where x represents the fast variables (typically, voltage
and possibly other variables) andy represents the slow
variable(s) (typically, a slow current). One then looks at
the dynamics of x treating y as a constant parameter.
This leads to parametrized dynamics, x(t;y), which
is then substituted into the y equation before aver-
aging is performed (if x is time-periodic) to resolve
the dynamics of y . If the x dynamics is bistable, say,
between a limit cycle and a fixed point, then, as y
slowly changes (at the timescale εt), the x dynamics
can vary between equilibrium behavior and oscillations,
thus producing the burst. Figure 2(c) shows the slow
dynamicsy (the thicker gray line, representing the slow
change in calcium concentration of the model) and the
fast dynamics x (the thinner black line, representing
voltage) for a simple bursting model.

3 Networks

The complexity of the dynamics of even a simple cell
dictates that some type of simplification is necessary
in order to study large networks of neurons. There
are two commonly taken paths: either one uses sim-
pler models for individual neurons or one takes “mean-
field” approaches, where neurons are approximated by
an abstract variable called the firing rate, or activity.
In the former case, a classic model for simplifying the
dynamics of a single neuron is the leaky integrate-and-
fire model, in which τV ′ = −V + V0, along with the
condition that, if V(t−) = V1, then V(t+) = V2, where
V1 > V2. Each reset event results in a simulated action
potential or spike of the neuron. (While the dynamics
of this class of models is quite simple, their discontin-
uous nature presents many mathematical challenges.)
With this model, a general network has the form

τi
dVi
dt

= −Vi +Ui(t)−
∑
j
wij(t)(Vi − Ej), (2)

where Ei, τi are constants, Ui(t) are inputs (often con-
sisting of broadband random signals), and wij(t) is
some prescribed function of the time, t, since neuron j
fired that decays to zero for large positive t and is zero

for t < 0. For example,wij(t) = Wik(t− tj)+ exp(−(t−
tj)+), where x+ is the positive part of x and Wij is a
constant. If Ej < 0 (Ej > 0), then the synapse is called
inhibitory (excitatory). If wij(t) depends only on i− j,
then we can regard the network as being spatially dis-
tributed. In this case, various patterns such as traveling
waves and spatially structured dynamics are possible.
The analysis of these networks is difficult, but meth-
ods from statistical physics have been applied when
the number of neurons becomes large and there is no
structure in the connectivity. With certain assumptions
about the connectivity patterns and strengths, the fir-
ing of individual neurons in (2) is chaotic and the corre-
lations between the firing times of neurons are nearly
zero. This state is called the asynchronous state, and in
this case it makes sense to define a population firing
rate, r(t). As the number of neurons in a given popu-
lation (say, excitatory cells) tends to infinity, the pop-
ulation rate, r(t)Δt, is defined as the fraction of the
population that has fired an action potential between t
and t +Δt. One of the important questions in theoret-
ical neuroscience is to relate r(t) to the dynamics of the
network of complex spiking neurons and, thus, derive
the dynamics of r(t). One can use various approaches
to reduce scalar models such as (2) to a PDE for the dis-
tribution of the voltages that can have discontinuities
and has the form

∂P(V, t)
∂t

= − ∂
∂V

(
f(V, t)P(V, t)−D∂g(V, t)P(V, t)

∂V

)
.

The firing rate is proportional to the flux through the
firing threshold, V1. This PDE can be very difficult to
solve; if there are several different populations, then
the same number of coupled PDEs must be solved.
Thus, there have been many attempts at arriving at sim-
plified models for the rate equations. Here, we offer a
heuristic description of a rate model for several inter-
acting populations of neurons. Let Ip(t) be the cur-
rent entering a representative neuron from population
p. If Ip is large enough, the neuron will fire at a rate
up(t) = Fp(Ip(t)) (see, for example, figure 2, which
gives the firing rate of the HH neuron as the current
changes). Each time a neuron from population p fires,
it will produce current in population q, so that the new
current into q from p is

Jqp(t) =
∫∞

0
ηqp(t′)up(t − t′)dt′.

ηqp is positive for excitatory currents and negative for
inhibitory ones. Dale’s principle states that the sign of
ηqp depends only on p. Summing up the currents from
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all populations gives us a closed system:

Iq(t) =
∑
q

∫∞

0
ηqp(t′)Fp(Ip(t − t′))dt′. (3)

Often, an equation for the rates is desired, so that

uq(t) = Fq
(∑
p

∫∞

0
ηqp(t′)up(t − t′)dt′

)
.

In either case, the result is a set of coupled integro-
differential equations. If the functions ηqp(t) are sums
of exponentials, then (3) can be inverted to create an
ODE. For example, if ηqp(t) = Wqp exp(−t/τq)/τq,
then (3) becomes

τq
dIq
dt

= −Iq +
∑
p
WqpFp(Ip). (4)

In the case where Wqp is symmetric, it is easy to
construct a Lyapunov function for this system and
prove that all solutions converge to fixed points. Net-
works such that the sign of Wqp depends only on p
are called excitatory–inhibitory networks, and they also
obey Dale’s principle. If Wqp > 0 (Wqp < 0), then popu-
lation p is called excitatory (inhibitory). Networks with
both excitatory and inhibitory populations have been
shown to exhibit complex dynamics such as limit cycle
oscillations and chaos.

4 Spatially Extended Networks

Equations of the form (4) have an obvious extension to
spatially distributed populations:

τe
∂Ie(x, t)
∂t

= Wee(x)∗ Fe(Ie(x, t))

−Wei(x)∗ Fi(Ii(x, t))− Ie(x, t), (5)

τi
∂Ii(x, t)
∂t

= Wie(x)(x)∗ Fe(Ie(x, t))

−Wii(x)∗ Fi(Ii(x, t))− Ii(x, t), (6)

where W(x) ∗ U(x) is a convolution over the spatial
domain of the network (often the infinite line or plane;
or on a circle or torus), and Ie, Ii are the respective exci-
tatory and inhibitory currents for the neuron at posi-
tion x. The functionsWqp(x) generally depend only on
|x| and decay rapidly for large arguments. These mod-
els have been used to explain spatiotemporal patterns
of activity found in experiments. While the equations
represent a great simplification, they have been quite
successful in explaining various experimental findings.

4.1 Wavefronts

When inhibitory circuits in the brain are damaged or
pharmacologically blocked, activity can pathologically

Space

T
im

e

(a) (a) (c)

Figure 3 Three examples of spatial activity in a population
model: (a) a traveling wavefront, (b) a stationary pulse, and
(c) spatially periodic activity.

spread across your cortex. Experiments have shown
that this activity takes the form of a traveling wave.
A natural starting point for the study of equations of
the form (5), (6) is, therefore, to consider models with
no inhibitory population. In this case, it is possible to
prove the existence of traveling fronts under certain
circumstances. In particular, let wee =

∫
R Wee(x)dx

and

(i) suppose that g(u) = −u + weeFe(u) has three
positive roots u1 < u2 < u3,

(ii) letWee(r) be a decreasing nonnegative function for
r � 0, and

(iii) assume that g′(u1,3) < 0 and g′(u2) > 0.

There is then a unique constant-speed wavefront join-
ingu1 withu3. This wave is analogous to the wave seen
in the scalar bistable reaction–diffusion equation. Fig-
ure 3(a) shows an example of a traveling wave whenWee

is an exponentially decaying function of space.

4.2 Stationary Pulses

Suppose that you are asked to remember the location
of a flash of light for a short period of time, and after
that time you must move your eyes to the place where
you recalled the light. This form of memory is called
short-term or working memory. By making recordings
of the activity in certain brain regions of monkeys while
they perform such a task, experimentalists have shown
that the neural correlate of working memory consists of
persistent neural activity in a spatially localized region.
In the context of the model equations (5), (6), work-
ing memory is represented by a stationary spatially
localized region of activity. Solutions to (5) can be con-
structed with the assumptions that Wei(x) = 0, Fe(I)
is a step function, and Wee(x) has the lateral inhibi-
tion property. That is, let q(x) =

∫ x
0 Wee(y)dy . The
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lateral inhibition property states that q(x) is increas-
ing up to x = a > 0 and then decreases, approach-
ing a finite value q∞ as x → ∞. While it is possible
to relax the assumptions on the shape of F to some
extent, there is still not a general existence theorem
for stationary pulses for this class of equations. Fig-
ure 3(b) shows a simulation of (5) when Wee(x) is
the difference between two exponential functions. One
can formally construct stationary pulse solutions to
the full excitatory–inhibitory network, (5), (6), using
singular-perturbation theory.

4.3 Regular Patterns

Numerous authors have suggested that the neural ana-
logue of simple geometric visual hallucinations is spon-
taneous spatially periodic activity in the visual cortex.
The connectivity of the visual system is such that under
certain circumstances, the spatially uniform solution
loses stability due to spatially periodic perturbations
in a restricted range of spatial frequencies. This phe-
nomenon is generally known as a symmetry-breaking
bifurcation and, in biological contexts, a Turing bifur-
cation. Figure 3(c) shows an example of such a bifurca-
tion in equations (5), (6) in one spatial dimension. In the
late 1970s bifurcation methods were applied to prove
the existence of stable spatial patterns in two spatial
dimensions that are the analogue of simple geometric
visual hallucinations.

5 Plasticity

One of the hallmarks of the nervous system is that it
is almost infinitely reconfigurable. If part of a region
is lost due to injury, other regions will rewire their
connections to compensate. The connection strengths
between neurons are believed to be the physiologi-
cal correlates of learning and memory. This ability
to change over time and alter connection strengths
is called synaptic plasticity ; it can take several forms,
over timescales that range from fractions of a sec-
ond to decades. For simplicity, we can divide plas-
ticity into short-term and long-term plasticity. To
make things concrete, we consider two neurons A and
B, with A sending the signal (the presynaptic neu-
ron) and B receiving the signal (the postsynaptic neu-
ron). Short-term plasticity typically involves the weak-
ening or strengthening of connections in a usage-
dependent manner and depends only on the presy-
naptic activity. In contrast, long-term plasticity, pre-
sumably responsible for learning and lifetime memory,

depends on the activity of both presynaptic and post-
synaptic activity.

5.1 Short-Term Plasticity

In short-term plasticity, only the activity of the presy-
naptic neuron matters, and two types of phenom-
ena occur: depression and facilitation. With depression
(respectively, facilitation), the strength of the synapse
weakens (respectively, strengthens) with each succes-
sive spike of neuron A and then recovers back to base-
line if there are no subsequent spikes. Let t∗ denote
the time of a presynaptic spike and define two variables
f(t) and q(t) corresponding to facilitation and depres-
sion, respectively. Let τf and τd be the respective time
constants, f0 and d0 the starting values, and af and ad
the degree of facilitation and depression. We then have

df
dt

= f0 − f
τf

+ afδ(t − t∗)(1 − f),

dq
dt

= d0 − q
τd

− adδ(t − t∗)q.

Typically, f0 = 0, d0 = 1, with τd,f of the order of
hundreds of milliseconds. The strength of the synapse
is then multiplied by q(t)f (t). For example, if there is
no facilitation, then f0 = 1, af = 0, and if there is no
depression, d0 = 1, ad = 0.

5.2 Long-Term Plasticity

Long-term plasticity depends on the activity of both the
presynaptic and postsynaptic neurons and is based on
an idea first proposed by Donald Hebb that “neurons
that fire together, wire together.” This type of Hebbian
plasticity is believed to be responsible for both wiring
up the nervous system as it matures and for the cre-
ation of new long-term memories (in contrast to the
working memory described above). IfwBA is the weight
or strength of the connection of neuron A to neuron B
and rA,B are the firing rates of the two neurons over
some period, then, typically,

dwBA

dt
= ε1(rA − θA)(rB − θB)+ ε2(WBA −wBA), (7)

with the additional proviso that, if the terms multiplied
by ε1 are both negative, the term is set to 0. This model
says that the weight will increase if both A and B are
firing at sufficiently high rates. If A is firing at a high
rate and B is firing at a low rate (or vice versa), then the
weight will decrease. Learning equations of the form
(7) are used to adjust the connectivities in rate models
such as equation (4) and are capable of encoding many
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“memories” in the strength of the weights. The term
with ε2 represents a tendency to decay to some baseline
weight.

Another form of Hebbian plasticity incorporates
causality in the sense that the weight from A to B will
be increased (decreased) if A fires slightly before (after)
B. A typical equation for the synaptic weight takes the
form

dwBA

dt
= F(tB − tA)g(wBA)+ ε2(WBA −wBA),

where tA,B are the times of the spikes of neurons A and
B. F(t) is often an exponentially decaying function of |t|
and is negative for t > 0 (B fires before A) and positive
for t < 0 (A fires before B). The function g(w) can be
constant, linear in w, or of a more complicated form.
This form of plasticity is called spike-time-dependent
plasticity and allows a group of neurons to connect up
sequentially and thus learn sequential tasks.

6 Summary

Mathematics plays a prominent role in the under-
standing of the behavior of the nervous system. Meth-
ods from nonlinear dynamics have been used to
explain both normal and pathological behavior (such
as epilepsy, Parkinson’s disease, and schizophrenia).
Conversely, models that arise in neuroscience provide
a wide range of problems that are awaiting rigorous
mathematical treatment.

Further Reading

Amari, S. I. 1977. Dynamics of pattern formation in lateral-
inhibition type neural fields. Biological Cybernetics 27(2):
77–87.

Ermentrout, B. 1998. Neural networks as spatio-temporal
pattern-forming systems. Reports on Progress in Physics
61(4):353–430.

Ermentrout, G. B., and D. H. Terman. 2010. Mathemati-
cal Foundations of Neuroscience, volume 35. New York:
Springer.

Rinzel, J. 1987. A formal classification of bursting mech-
anisms in excitable systems. In Mathematical Topics in
Population Biology, Morphogenesis and Neurosciences,
pp. 267–81. Berlin: Springer.

VII.22 Systems Biology
Qing Nie

1 Introduction

Biological organisms are complex interconnected sys-
tems comprising an enormous number of components

that interact in highly choreographed ways. These
systems, which are constantly evolving, have been
designed to carry out numerous tasks under diverse
environmental conditions. Because of limitations in
terms of the available experimental tools and technol-
ogy, biologists have for many years focused primarily
on how the individual components in these systems
work. More recently, advancements in genomics, pro-
teomics, metabolomics, and live tissue imaging have
led to an explosion of data at increasingly fine spatial
and temporal scales. In order to describe and under-
stand our increasingly complex and interconnected
view of the biological world, which is far more intri-
cate than any physical system, an integrated systems
approach is needed.

Systems biology, which initially gained momentum
in the 1990s, focuses on studying interactions between
components that give rise to emergent behavior. In
this view, a system is more than just the sum of its
parts. To better understand such systems, an interdis-
ciplinary approach that brings together experimental
tools and theoretical methodologies from diverse dis-
ciplines must be developed. In 2009 the US National
Research Council published A New Biology for the 21st
Century, which recommends a “new biology” approach
and asks for “greater integration within biology, and
closer collaboration with physical, computational, and
earth scientists, mathematicians and engineers.” In
many ways, this new biology is systems biology.

In many cases, the goals and questions of interests
in systems biology are different from those in clas-
sical biology. First, in addition to asking “how” (e.g.,
“How does a transcriptional factor lead to a feedback
loop between two regulators?”), one often asks “why”
(e.g., “Why is such a loop useful and what is its bene-
fit?”). Second, a primary goal of systems biology is to
uncover common principles governing many different
molecular mechanisms inferred from building blocks
in diverse organisms. Toward this goal, biological com-
ponents are scrutinized at different spatial or temporal
scales to explore novel and irreducible emergent prop-
erties, the biological equivalent of “first principles,”
arising from their interactions.

Mathematics through modeling plays a critical role
in systems biology (figure 1). Useful models span
the range from simple to highly complex. In some
cases, simple models of two components may be suf-
ficient to capture the key behavior of a network com-
posed of thousands of components, whereas in other
cases a twenty-component model might be required
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Figure 1 Mathematics in systems biology. All arrows
require various mathematical and computational tools that
are critical in systems biology.

to unravel complex dynamics and account for criti-

cal features such as variability between gene prod-

ucts. Furthermore, these pieces can either be concep-

tual or they can be identified with specific biological

components. These complexities introduce many chal-

lenges for mathematics. Moving from a descriptive to

a predictive model requires incorporation of massive

experimental data to constrain parameters. Further-

more, elucidating complex interactions to obtain laws

and emerging properties often requires exploration of

these models. The biological questions of interest dic-

tate the choice of models, which in turn demand dif-

ferent mathematical and computational tools. Here, we

illustrate this systems biology approach and the math-

ematics associated with it at three fundamental biologi-

cal scales: gene, cell, and tissue. We also discuss its role

in elucidating the function of an often-overlooked but

important element that permeates all scales: noise.

2 The Information Flows from and to the Gene

The genetic information coded in deoxyribonucleic acid

(DNA) needs to be processed into ribonucleic acid

(RNA) and proteins in order to function in a cell.

This process, in which DNA makes RNA and RNA

makes protein, is referred to in biology as the cen-

tral dogma. Through “transcription,” genetic informa-

tion contained in parts of DNA is transferred to mes-

senger RNA (mRNA). mRNA then interacts with a ribo-

some, a complex molecular machine that builds pro-

teins, to “translate” RNA into protein. Transcription

and translation are two major steps for passing genetic

codes to cellular functions. Transcription factors—a

special group of proteins that facilitate the transcrip-

tion process—are critical in linking one genetic code to

another, in many cases creating loops of gene-to-gene

regulation. Different genes make different proteins that

may regulate various transcriptions to control produc-
tion of other proteins.

Modeling transcription and translation requires a
mechanistic description of gene action and regulation
from the sequences in regulatory regions of DNA. Sta-
tistical physics provides a natural approach to examine
how a gene is activated and repressed through tran-
scription factors. Stochastic and probabilistic methods
(e.g., stochastic differential equations [IV.14] and
markov process models [II.25]) are the foundations
for this approach. In a typical transcription model, all
possible states of an enhancer with a statistical weight
are first catalogued. The action of a gene, estimated
through a probability, depends on whether a regula-
tory region (e.g., binding site) is bound or unbound,
and this probability is estimated as a fraction of the
states bound to activators. Transcriptional regulations
such as cooperativity, competitive interactions among
transcription factors, inhibition of activators by repres-
sors, and other epigenetic regulations (e.g., chromatin
structure and modification, or DNA methylation) can
be incorporated into this type of probabilistic model.
This approach has been used to identify numerous reg-
ulatory motifs, to elucidate the function of regulatory
regions of DNA, and to predict novel targets in the
genome.

3 Signal Transduction into and out of the Cell

The cell, a “building block” of life, is the smallest
information-processing unit that is able to respond to
environmental changes and make decisions on its own.
Proteins outside of a cell, which often serve as a stim-
ulus, can bind receptors on the cell membrane or be
trafficked into the cell to initiate cascades of biochem-

ical reactions [V.7]. Through these cascades, a spe-
cific stimulus activates one or a group of genes that
contribute to a specific program or task (e.g., cell divi-
sion for replication or changing cell fates). This process
of turning an external signal into an internal response
is often called signal transduction. One such example
is the MAPK/ERK pathway that transmits growth fac-
tor stimuli through cell surface receptors to induce cell
growth and division. Beyond understanding the pro-
cess of signal transduction, the critical factors that
lead to the pathway’s malfunction are also of inter-
est since, in many cases, this leads to cancer and other
disorders.

Modeling signal transductions requires an accurate
description of biochemical reactions for different types
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of biomolecules. When the number of molecules is

relatively small (e.g., smaller than ten), one can use

discrete, probabilistic approaches based on chemical

master equations. When a relatively large number of

molecules are present in a “well-stirred system,” chem-

ical concentrations provide a good approximation of

the numbers of molecules, and a continuum model can

describe the system. Common, fundamental concepts

in this approach include rate equations, Michaelis–

Menten kinetics, and the law of mass action. These

models lead to systems of ordinary differential equa-

tions that are often stiff when drastically different reac-

tion rates are present. Numerical simulations of such

models require specialized algorithms of good absolute

stability properties.

Regulations often exist in these signaling pathways.

Feedback represents interactions in which downstream

signals influence upstream signaling elements, whereas

feedforward regulation refers to connections that pass

upstream signals directly to the downstream signal-

ing components. Mathematically, feedback and feed-

forward regulations can be described by Hill functions,

which encode saturating tunable response curves. Sim-

ilar to a thermostat that adjusts the influx of heat

to stabilize the temperature around a prescribed one,

negative feedback is often used to control homeosta-

sis (i.e., stable steady state) in biology. In such a con-

troller, two distinct timescales for a fast “detector”

and a slow “reactor” are critical to maintaining stable

homeostasis. When these two timescales become close,

oscillatory dynamics arise, leading to periodic solu-

tions. Positive feedbacks (e.g., excitation–contraction

coupling in the heart, cellular differentiation, interac-

tion between cytokines and immune cells) can amplify

signals leading to bistable or ultrasensitive responses.

In a bistable system one input can lead to two distinct

outputs depending on the state of the system, com-

monly referred to as hysteresis. bifurcation analy-

sis [IV.21] (e.g., through pseudo-arc-length continua-

tion methods) is a major tool for studying bistability. In

feedforward regulations, a coherent loop has two par-

allel paths of the same regulation type (both positive or

both negative), whereas an incoherent loop has differ-

ent types of regulations in the two pathways. Positive

coherent loops can induce delay in response to an ON

signal without putting any delay effect on the OFF sig-

nal. On the other hand, incoherent loops can speed up

the response to ON signals as well as produce adap-

tation in which a response can disappear even though

the signal is still present; this is a common feature in
sensory systems.

Many pathways consist of hundreds of elements and
connections that often share components. While this
“cross-talk” between pathways allows the limited num-
ber of components in a cell to perform multiple tasks,
insulating mechanisms must exist to enable specificity
and fidelity of signals and avoid paradoxical situations
in which an input specific to one pathway activates
another pathway’s output or responds to another path-
way’s input more strongly than its own. To understand
how a cell directs information flows from diverse extra-
cellular stimuli to multiple gene responses, new math-
ematics on modularity, coarse-graining, and sensitivity
are needed to map the dynamics of systems consist-
ing of many components, drastic temporal scales, and
stochastic effects.

4 Communication and Organization

How cells effectively and correctly recognize and re-
spond to their microenvironment is critical to devel-
opment, repair, and homeostasis of tissue, and to the
immunity of the animal body. Different tissues—such
as nerves, muscle, and epithelium—are derived from
different parts of embryos. Errors made during commu-
nication between cells cause abnormal development or
lead to disease. Typically, cells communicate with other
cells, either through releasing diffusive molecules into
the extracellular space for signaling or by direct cell-
to-cell contact. In the first mechanism, the molecules
interact with the target cells through their receptors
on the cell membrane, which in turn activate path-
ways leading to different cellular functions. The action
range of diffusive molecules can be short (e.g., within
a distance of a few cells) or long (e.g., a distance of
tens of cells) depending on the relative relationship
between diffusion and reactions. These spatial dynam-
ics are naturally described by reaction–diffusion equa-
tions when tissues are modeled as continuum media.
Analysis of such equations is possible through lin-
ear or weakly linear stability when the systems have
fewer than three components, but numerical inves-
tigations of their dynamics are required when more
components or higher spatial dimensions are involved.
To create complex spatial patterns in tissue, such as
stripes and spots, systems often need to utilize mul-
tiple types of signaling molecules. One primary strat-
egy is to use two diffusive molecules of drastically dif-
ferent diffusion speeds, e.g., a slow activator and a
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fast inhibitor. In this short-range activation/long-range
inhibition mechanism, small initial disturbances can
spontaneously create complex patterns that describe
processes such as pigmentation, branching morpho-
genesis, or the skeletal shape in the limb.

Cell-to-cell contact through interactions between
membrane-bound proteins in different cells is another
major mechanism for patterning. A common exam-
ple of such signaling is lateral inhibition, which often
results in clusters of cells of one fate surrounded by
cells of different fates. This mechanism, which often
involves the notch signaling pathway, can increase the
contrast and sharpness of responses (e.g., in the visual
system) and is important in the central nervous sys-
tem, in angiogenesis, and in endocrine development.
Active motility driven by, for example, a chemical gradi-
ent (chemotaxis), a light gradient (phototaxis), or a stiff-
ness gradient (durotaxis) is another patterning mecha-
nism that is often employed in wound healing, early
development (e.g., sperm swimming toward an egg),
and migration of neurons.

Hybrid models that combine ordinary differential
equations for the temporal dynamics of signaling
and discrete and probabilistic descriptions of cells
are important in capturing these patterning mecha-
nisms when the role of individual cells is important.
Subcellular element methods and cellular Potts mod-
els are effective for simulating collective dynamics
and emerging properties, both of which arise from
these kinds of direct cell-to-cell communications. The
multiscale features of these systems—which involve
molecules in extracellular spaces, signal pathways with
feedbacks inside cells, mechanics in the surround-
ing tissues, and their physiological consequences—
present great challenges for modeling and computa-
tion, requiring innovation and transformative mathe-
matical developments.

5 Noise: Detrimental or Beneficial

Noise and randomness exist at all scales of living organ-
isms. The small numbers of binding sites on DNA,
the fluctuations in biochemical reactions, the complex
physical structures of intracellular and extracellular
spaces, and the noise associated with environmental
inputs all introduce uncertainty. Information that flows
from one level to the next (e.g., from gene to cell) may
be distorted if the noise propagates or is amplified.

What are the general principles that give rise to noise
attenuation? For a switching system consisting of ON

and OFF states (e.g., calcium signaling and p53 regu-
lation) stimulated by a temporal pulse input, a criti-
cal intrinsic quantity, termed the signed activation time
(SAT), succinctly captures the system’s ability to main-
tain a robust ON state under noise disturbances. When
the value of the SAT, defined as the difference between
the deactivation and activation times, is small, the sys-
tem is susceptible to noise in the ON state, whereas sys-
tems with a large SAT buffer noise in the ON state. This
theory, which was developed based on fluctuation dis-
sipation theory and multi-timescale analysis, can also
be used to scrutinize the noise in the OFF state through
the concept of iSAT (input-dependent SAT).

While noise is typically thought to impose a threat
that cells must carefully eliminate, noise is also found
to be beneficial in biology. For example, noise in gene
expression can induce switching of cell fates, enabling
the sharpening of boundaries between gene expres-
sion domains. Without such gene noise, there would
be an undesirable salt and pepper patterning region
caused by noisy morphogen signals. Other examples
of the benefits of noise include that noise can induce
bimodal responses in cases of positive transcriptional
feedback loops without bistability, noise can synchro-
nize oscillations in cell-to-cell signaling, rapid signal
fluctuations can lead to stochastic focusing, and sig-
naling noise can enhance the chemotactic drift of cells.
Apparently, life seems to find ways to deal with noise:
control and attenuate it whenever possible, but exploit
it otherwise. Systematic exploration of noise in complex
interconnected biological systems requires new tools in
stochastic analysis and computation.

6 Conclusion

The rapid increase that has been seen in the amount of
available biological data provides a tremendous oppor-
tunity for systems biology. Integration of new and old
data on multiple scales, abstracting connections among
key components, considering randomness and noise,
and deriving principles from commonality will soon be
at the center of scientific discovery. Systems biology,
which has stimulated the development of many new
mathematical and computational methods, is becom-
ing an increasingly important approach in the era of
big data. As systems biology holds the key to greater
understanding of life, what systems biology will do for
mathematics in the twenty-first century will be similar
to what physics and mechanics did in the nineteenth
century: it will give mathematics a new life.
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VII.23 Communication Networks
Walter Willinger

1 Introduction

A communication network is generally defined as a
collection of objects (e.g., devices, people, cells) that
use communication media such as optical fiber cables,
sound waves, or signaling pathways to exchange infor-
mation with one another using a common set of proto-
cols (i.e., rules and conventions that specify the minute
details of the actual information exchange). A particu-
larly well-known, and arguably the largest, man-made
communication network is the Internet, and it will fea-
ture prominently in this article. This is not to say that
other examples, especially some of biology’s communi-
cation networks, are not interesting or that they are less
important than the Internet. But studying the Internet
has unique and appealing advantages when contrasted
with biology. For one, we have full access to the Inter-
net designers’ original intentions and to an essentially
complete record of the entire evolutionary process. We
also know in detail how the network’s individual com-
ponents should work and how the components inter-
connect to create system-level behavior. Moreover, the
Internet offers unique opportunities for measurement
and for collecting massive and often detailed data sets
that can be used for an in-depth study of the network’s
properties and features.

As such, it is the design, operation, and evolution
of this large-scale, highly engineered system that we
focus on in this article. We use it as a concrete exam-
ple for illustrating the types of mathematical concepts,
approaches, and theories that are being developed

in support of a rigorous first-principles treatment of
large-scale communication networks.

2 Internet Hourglass Architecture

The early reasoning behind the design philosophy
that shaped the Internet’s architecture consists of two
main arguments. First, the primary objective was inter-
networking, that is, the development of an effective
technique for multiplexed utilization of already exist-
ing interconnected (but typically separately adminis-
tered) networks. Second, the primary requirement was
robustness; that is, the network needed to be resilient
to uncertainty in its components (e.g., router failures)
and usage patterns (e.g., traffic-demand variations), and
(on even longer timescales) to unanticipated changes in
networking technologies and offered services.

To achieve the stated key objective of internetwork-
ing, the fundamental structure of the original architec-
ture was the result of a combination of known technolo-
gies, conscientious choices, and visionary thinking. It
led to a packet-switched network in which a number of
separate networks are connected together using packet
communications processors called gateways. Commu-
nication is based on a single universal logical address-
ing scheme with a simple (net, host) hierarchy, and
the gateways or routers implement a store-and-forward
packet-forwarding algorithm.

Similarly, to satisfy the crucial requirement for
robustness, the early developers of the Internet relied
heavily on two proven guidelines for system design,
namely, the layering principle and the end-to-end argu-
ment. To illustrate this, in the context of packet-
switched networks the layering principle argues against
implementing a complex task (e.g., a file transfer
between two end hosts) as a single module. Instead,
it favors breaking the task up into subtasks, each of
which is relatively simple and can be implemented sep-
arately. The modules corresponding to the different
subtasks can then be thought of as being arranged in a
vertical stack, where each layer in the stack is responsi-
ble for performing a well-defined set of functionalities.
The role of the end-to-end argument is then to help with
the specifications of these functionalities and guide
their placement among the different layers. It achieves
these tasks by expressing a clear bias against low-layer
function implementation and arguing for bottom layers
that are kept as general and simple as possible.

This design process was largely responsible for
defining the main suite of protocols used in today’s
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Internet, and it is known as the five-layer transmis-
sion control protocol/Internet protocol (TCP/IP) proto-
col stack. This “vertical” decomposition encompasses
(from the bottom up) the physical, link, internetwork,
transport, and application layers. The same design
process was also instrumental in creating the closely
related “hourglass” metaphor for the architecture of
the Internet: an arrangement of the multilayer suite
of protocols in which each protocol interfaces only
with those in the layers immediately above and below
it, and where IP, the protocol for the internetwork-
ing layer of TCP/IP, occupies a separate layer at the
hourglass’s waist, where it provides a generic packet-
delivery service.

This abstract bit-level network service at the hour-
glass’s waist consists of a minimal set of widely agreed-
upon features. These features have to be implemented
according to an Internet-wide standard, they must be
supported by all the routers in the network, and they
are key to enabling communication across the global
Internet. In this context, global robustness and scal-
ability of routing, a key objective for IP, is achieved
and implemented in a fully decentralized and asyn-
chronous manner in TCP/IP (“horizontal” decomposi-
tion). The layers below the waist deal with the wide
variety of existing transmission and link technologies
and provide the protocols for running IP over whatever
bit-carrying network infrastructure is in place (“IP over
everything”). Above the waist is where enhancements
to IP (e.g., reliable packet delivery) are provided that
simplify the process of writing application-level proto-
cols (e.g., the Hypertext Transfer Protocol (HTTP) for
the World Wide Web) through which users ultimately
interact with the Internet (“everything over IP”).

From today’s perspective, “IP over everything and
everything over IP” is nothing but an ingenious heu-
ristic solution to an extremely challenging engineer-
ing problem that the early Internet designers faced.
This problem manifested itself in the form of great
uncertainty—uncertainty about the ways technologi-
cal advances challenge or do away with conventional
wisdom, about the manner in which the network will
be used in the future, and about the ways a net-
work comprised in part of unreliable components can
fail. Indeed, during its transition from a small-scale
research network some fifty years ago to a critical com-
ponent of today’s world economy and a social phe-
nomenon, the Internet has experienced drastic changes
with respect to practically all imaginable aspects of
networking. At the same time, its ability to scale (i.e.,

adapt to explosive growth), to support innovation (i.e.,
foster technological progress below and above the
hourglass waist), and to ensure flexibility (i.e., follow
a design that can evolve over time in response to
changing conditions) has been remarkable. In short,
the past fifty years have been testimony to the inge-
nuity of the early designers of the Internet architec-
ture. The fact that, by and large, their original design
has been maintained and has guided the development
of the network through a “sea of change” to what
we call today’s Internet is an astounding engineering
achievement.

3 Mathematics Meets Engineering

Despite the Internet’s enormous success, numerous
things have happened since its inception that have
questioned some of the fundamental architectural
design choices that were made by its early design-
ers. For one, the trust model assumed as part of the
original design turned out to be the very opposite of
what is required today (i.e., “trust no one” instead of
“trust everyone”). In fact, this part of the design is the
main culprit behind many of the security problems that
plague today’s Internet. Moreover, some of the prob-
lems that have been encountered have a tendency to
create a patchwork of technical solutions that, while
addressing particular short-term needs, may severely
restrict the future use of the network and force it down
an evolutionary dead end. To rule out such undesir-
able “solutions” and prevent the problems from occur-
ring in the first place, a mathematical language for
reasoning about the design aspects and evolutionary
paths of Internet-like systems is needed. The following
examples illustrate recent progress toward formulat-
ing such a language and providing the foundations for
a rigorous theory of Internet-like systems.

3.1 Internet (Big) Data

The Internet is, by and large, a collection of intercon-
nected computers, and computers excel in perform-
ing measurements. This inherent ability for measure-
ment has turned the Internet into an early source
for what is nowadays referred to as “big data.” Read-
ily accessible public data sets and carefully guarded
proprietary data have transformed the scientific stud-
ies of many Internet-related problems into prime
examples of measurement-driven research activities.
In turn, they have provided unprecedented oppor-
tunities to test the soundness of proposed Internet
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theories or check the validity of highly publicized

“emergent phenomena”: measurement-driven discov-

eries that come as a complete surprise, baffle the

experts (at first), cannot be explained nor predicted

within the framework of well-established mathemati-

cal theories, and typically invite significant subsequent

scientific scrutiny.

One such discovery was made in the early 1990s

when the first data sets of measured Internet traffic—

in the form of high-quality (i.e., high-time-resolution

time stamps), complete (i.e., no missing data), and

high-volume (i.e., over hours and days) packet traces—

became available for analysis. The picture that emerged

from mining this data challenged conventional wis-

dom because the observed traffic was the precise oppo-

site of what was assumed. Rather then being smooth,

with either no correlations or ones that decayed expo-

nentially quickly, measured traffic rates on network

links (i.e., the total number of packets per time unit)

were “bursty” over a wide range of timescales. Impor-

tantly, the observed burstiness was fully consistent

with (asymptotic second-order) self-similarity, or, equiv-

alently, long-range dependence, that is, autocorrela-

tions that decay algebraically or like a power law.

A second example of an emergent phenomenon was

reported in the late 1990s when different data sets for

studying the various types of connectivity structures

that are enabled by the layered architecture of the Inter-

net became available. While mathematicians focused

primarily on more “virtual,” or higher-layer, connec-

tivity structures, such as the Web graph (i.e., the link

structure between virtual entities, in the form of Web

pages), networking researchers were mainly interested

in more “physical,” or lower-layer, structures, such as

the Internet’s router topology, that is, the Internet’s

actual physical link structure that connects its physi-

cal components (i.e., routers and switches). Using the

available data to infer this physical router-level Inter-

net led to the surprising discovery that the observed

node degree distributions had a completely unexpected

characteristic. Instead of exhibiting the expected expo-

nentially fast decaying right tail behavior that essen-

tially rules out the occurrence of high-degree nodes in

the Internet, the right tail of the measured node degree

distribution decayed algebraically, like a power law. As

a result, while most nodes have small degrees, high-

degree nodes are bound to exist and have orders of

magnitude more neighbors than a “typical” node in the

Internet.

3.2 A Tale of Two Discoveries

Self-Similarity and Heavy Tails

Given that there was no explicit mechanism in the orig-
inal design of the Internet that predicted the observed
self-similarity property of actual Internet traffic, its dis-
covery fueled the development of new mathematical
models that could explain this phenomenon. Of partic-
ular interest were generative models that could explain
how the observed scaling behavior can arise naturally
within the confines of the Internet’s hourglass architec-
ture. Some of the simplest such models were inspired
by the pioneering works of Mandelbrot on renewal
reward processes and Cox on birth–immigration pro-
cesses. When applied to modeling Internet traffic, they
describe the aggregate traffic rate on a network link (i.e.,
the total number of packets per time unit) as a super-
position of many individual on–off processes. To a first
approximation, each on–off process can be thought
of as describing the activity of a single user as seen
at the IP layer, and the user’s activity is assumed to
alternate between sending packets at regular intervals
when active (or “on”) and not sending any packets when
inactive (or “off”).

An important distinguishing feature of these models
is that under suitable conditions on the individual on–
off processes, and when properly rescaled, the aggre-
gate traffic rate processes converge to a limiting pro-
cess as the length of the time unit and the number
of users tend to infinity. Provided that, for example,
the length of a “typical” on period is described by a
heavy-tailed distribution with infinite variance, this lim-
iting process can be shown to be fractional Gaussian
noise, the unique stationary Gaussian process that is
long-range dependent or, equivalently, exactly (second-
order) self-similar. The appeal of these constructive
models is that they identify a basic characteristic of
individual user behavior as the main reason for aggre-
gate Internet traffic being self-similar. Intuitively, this
basic characteristic implies that the activity of indi-
vidual users is highly variable: while most on periods
are very short and see only a few packets, there are a
few very long on periods during which the bulk of an
individual user’s traffic is sent.

These generative traffic models have been instrumen-
tal in adding long-range dependence and heavy-tailed
distributions to the mathematical modeler’s toolkit.
They have also sparked important subsequent research
efforts that have significantly advanced our under-
standing of these two mathematical concepts, which
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were viewed as esoteric and of no real practical value
just two decades ago. Moreover, they have raised the
bar with respect to model validation by identifying new
types of measurements at the different layers within
the TCP/IP protocol stack that can be used to test for
the presence of heavy-tailed behavior in the packet
traces generated by individual users. Not only has the
initial discovery of self-similarity in Internet traffic
withstood the test of time, but some twenty years later,
the ubiquitous nature of the heavy-tailed characteris-
tic of individual traffic components is now viewed as
an invariant of Internet traffic. Similarly, the existence
of long-range dependence in measured traffic, which
reveals itself in terms of self-similar scaling behavior,
is considered a quintessential property of modern-day
Internet traffic.

Engineered versus Random

In contrast to the discovery of self-similarity in Inter-
net traffic, the reported power-law claim for the Inter-
net’s router topology did not withstand subsequent
scrutiny and collapsed when tested with alternate mea-
surements or examined by domain experts. This col-
lapse ruled out the use of the popular scale-free

[IV.18 §3.1] graphs as realistic models of the Inter-
net’s router topology. In contrast to the traditional
erdős–rényi random graphs [IV.18 §4.1], which can-
not be used to obtain power-law node degrees, scale-
free graphs can easily achieve this objective by fol-
lowing a simple stochastic rule whereby a new node
connects with higher probability to an already highly
connected node in the exiting graph (i.e., preferential
attachment ). For the last decade, the study of scale-free
graphs and variants thereof has fueled the emergence
and popularity of network science, a new scientific dis-
cipline dedicated to the study of large-scale man-made
or naturally occurring networked systems.

The failure of scale-free graphs, in particular, and
network science, in general, to cope with man-made
physical structures such as the Internet’s router topol-
ogy motivated a new approach to modeling highly engi-
neered systems. Radically different from the inherently
random connectivity that results from constructs such
as Erdős–Rènyi or scale-free graphs, this new approach
is motivated by practical engineering considerations. It
posits that the physical connectivity of the Internet is
not the result of a series of (biased) coin tosses but is in
fact designed; that is, it is based on decisions that are
driven by objectives and reflect hard trade-offs between

what is technologically feasible and what is economi-
cally sensible. Importantly, randomness does not enter
in the form of (biased) coin tosses but in the form of the
uncertainty that exists about the “environment” (i.e.,
the traffic demands that the network is expected to
carry), and “good” designs are expected to be robust
with respect to changes in this environment.

The mathematical modeling language that naturally
reflects such a decision-making process under uncer-
tainty is constrained optimization. As a result, this
approach is typically not concerned with network
designs that are “optimal” in a strictly mathemati-
cal sense and are also likely to be np-hard [I.4 §4.1].
Instead, it aims at solutions that are “heuristically opti-
mal,” that is, solutions that achieve “good” perfor-
mance subject to the hard constraints that technol-
ogy imposes on the network’s physical entities (i.e.,
routers and links) and the economic considerations
that influence network design (e.g., budget limits). Such
models have been discussed in the context of highly
organized/optimized tolerances/trade-offs (HOT), and
they show that the contrast with random structures
such as scale-free graph-based networks could not be
more dramatic. In particular, they highlight the fact
that substituting randomness for any architecture- and
protocol-specific design choices leaves nothing but an
abstract graph structure that is incapable of provid-
ing any Internet-relevant insight and is, in addition,
inconsistent with even the most basic types of available
router topology-related measurements.

3.3 Networks as Optimizers

The ability to identify the root cause of self-similarity in
Internet traffic and to explain the Internet’s router-level
structure from first principles are two examples of an
ongoing research effort aimed at solving a “grand” chal-
lenge for communication networks. This challenge con-
sists of developing a relevant mathematical language
for systematically reasoning about network architec-
ture and protocol design in large-scale communication
networks, including the Internet.

At this point, the most promising candidate for pro-
viding such a common language is layering as opti-
mization decomposition. This approach is based on
two key ideas. First, it treats network protocol stacks
holistically and views them as distributed solutions of
some global optimization problems. The latter are typ-
ically formulated as some generalized network utility-
maximization problems (“networks as optimizers”) and
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are often the result of successful reverse engineer-
ing, that is, the challenging task of starting from an
observed network design that is largely based on engi-
neering heuristics and discovering and formulating
the mathematical problems being solved by the imple-
mented design. Second, by invoking the mathematical
language of decomposition theory for constrained opti-
mization, the approach enables the principled study
of how optimal solutions of a given global optimiza-
tion problem can be attained in a modularized (i.e.,
layered) and distributed way (“layering as decompo-
sition”). In the process, it facilitates the creative task
of forward engineering, that is, the systematic com-
parison of alternate solutions and the informed selec-
tion of new designs based on their provably superior
performance, efficiency, or robustness.

Note that the HOT approach complements recent
successful attempts at reverse engineering existing
protocols within the TCP/IP stack (e.g., TCP and its
variants, the Border Gateway Protocol for routing, and
various contention-based medium-access control pro-
tocols). It also illustrates that the basic idea of “net-
works as optimizers” extends beyond protocols and
is directly applicable to problems concerned with net-
work design. On the other hand, since different opti-
mal solutions typically correspond to different layer-
ing architectures, “layering as decomposition” allows
for a principled treatment of “how and how not to
layer.” Importantly, it also provides a rigorous frame-
work for comparing different protocol designs in terms
of optimality, efficiency, or robustness with respect to
perturbations of the original global optimization prob-
lem. The uncertainty due to heavy-tailed user activity—
the root cause of the self-similar nature of Internet
traffic—is one such perturbation with respect to which
the designed protocols ought to be robust.

4 Outlook

As our understanding of Internet-related communica-
tion networks deepens, it becomes more and more
apparent that in terms of architecture and protocol
design, technological networks are strikingly similar
to highly evolved systems that arise, for example, in
genomics or molecular biology, despite having com-
pletely different material substrates, evolution, and
assembly. A constructive scientific discourse about
architectural designs and protocols arising in the con-
text of highly engineered or highly evolved systems
therefore looms as a promising future research objec-
tive. The examples and recent developments discussed

in this article offer hope that such a discussion can

and will be based on a rich and relevant mathematical

theory that succeeds in making everything “as simple

as possible but not simpler.”
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VII.24 Text Mining
Dian I. Martin and Michael W. Berry

1 Introduction

Text mining is the automated analysis of natural lan-

guage text data to derive items of meaning contained in

that data and find information of interest. Automation

is required due to the volume of text involved. Further

complicating matters is the fact that text collections are

typically unstructured, or very minimally structured.

Text mining activities involve searching the data collec-

tion for specific information, classifying items within

the collection to derive useful characteristics, and ana-

lyzing the content of a collection to arrive at an overall

understanding of the body of information as a whole.

The ability to partition the data into understandable,

meaningful units for a user is a challenge.

While some methods for text mining attempt to

utilize linguistic properties and grammars, most of

the methods employed in text mining are based on

mathematics. These methods include statistical and

probabilistic approaches, simple vector space mod-

els, latent semantic indexing, and nonnegative matrix

factorization.
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2 Statistical and Probabilistic
Evaluation of Text

Statistical methods for evaluating text collections have
been in use since the 1950s. These methods look at
term frequency and probability of term usage to assign
significance to particular words or phrases. These
methods may be further informed by the use of dictio-
naries, grammars, stop lists, or other language-specific
information. A stop list, for example, is a list of unim-
portant or unwanted words that are discarded during
document parsing and are not used as referents for any
document. The end result of this analysis is to produce
a significance value for particular terms, sentences, or
passages within a collection. These approaches can be
susceptible to changing language use and are difficult
to generalize across widely separated collections of
information and different languages. However, these
techniques are still in use today in the areas of search
engine optimization and the generation of tag clouds.

3 The Vector Space Model

The vector space model (VSM) was developed to handle
text retrieval from a large information database with
heterogeneous text and varied vocabulary. The under-
lying formal mathematical model of the VSM defines
unique vectors for each term and document by repre-
senting terms and documents in a large sparse matrix.
The columns are considered the document vectors and
the rows are considered the term vectors. The matrix
is populated with the term frequency of each term in
each document. A weighting can then be applied to each
entry of the matrix in order to increase or decrease the
importance of terms within documents and across the
entire document collection. Similarity or distance mea-
surements can then be calculated within the context
of the vector space. Two such measures, cosine and
Euclidean distance, are easily calculated between any
two vectors in the space and are frequently used.

One of the first systems to use a traditional VSM was
the system for the mechanical analysis and retrieval
of text (SMART), developed by Gerard Salton at Cor-
nell University in the 1960s. Among the notable char-
acteristics of the VSM used by SMART is the premise
that the meaning of a document can be derived from
its components. The VSM is useful for lexical matching
and exploiting term co-occurrence among documents.
Searching the VSM for items similar to a given docu-
ment, or query, from outside of the collection is pos-
sible by constructing a query vector within the VSM.

Given the nature of the term-by-document matrix, a

query vector is formed in the same way a document is

constructed in the matrix: by giving those rows corre-

sponding to the terms from the query a frequency num-

ber, followed by a weighting, and finding documents

that are relevant to the query vector based on a sim-

ilarity measure. Similarities between queries and doc-

uments are then based on concepts or similar seman-

tic content. Exploiting the mathematical foundation of

a VSM for a document collection by first creating the

term-by-document matrix and then calculating similar-

ities between queries and documents as just described

is beneficial for searching through a large amount of

information efficiently.

4 Latent Semantic Indexing

Expanding on the term-by-document matrix of the VSM,

latent semantic indexing (LSI) uses a matrix factoriza-

tion to simultaneously map the contents of a doc-

ument collection on a set of orthogonal axes, scale

those mapping vectors across the collection accord-

ing to the singular values, and reduce the dimension-

ality of the representation to obtain the latent struc-

ture of a document collection. The terms and docu-

ments are organized into a single large matrix, just as

in the vector space model, and diagonal row scaling is

used to effect a particular term-weighting scheme. Prior

to scaling, each matrix cell is simply the nonzero fre-

quency of a term within a document. This matrix is then

processed using the singular value decomposition

[II.32] (SVD).

The SVD produces a dense multidimensional hyper-

space representation of the information collection (an

LSI space) containing vectors corresponding to the

terms and documents of the collection. Within this

semantic space, the meaning of a term is represented

as the average effect that it has on the meaning of doc-

uments in which it occurs. Similarly, the meaning of a

document is represented as the sum of the effects of all

the terms it contains. The position of terms and docu-

ments in the vector space represents the semantic rela-

tionships between those terms and documents. Terms

that are close to one another in the LSI space are consid-

ered to have similar meaning regardless of whether or

not they appear in the same document. Likewise, doc-

uments are identified as similar to each other if they

have close proximity in the LSI space regardless of the

specific terms they contain.
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4.1 Dimensionality

The SVD allows for the adjustment of the representa-

tion of terms and documents in the vector space by

choosing the number of dimensions: that is, the num-

ber of singular values that are kept (the remainder

being discarded or, equivalently, set to zero). This con-

trols the number of parameters by which a word or

document is described. The number of dimensions is

usually much smaller than either the number of terms

or documents, but it is still considered a large num-

ber of dimensions (typically 200–500). This reduction

of dimensionality is the key to sufficiently capturing

the underlying semantic structure of a document col-

lection. It reduces the noise associated with the vari-

ability in word usage and causes minor differences in

terminology to be ignored.

Selecting the optimal dimensionality is an important

factor in the performance of LSI. The conceptual space

for a large document collection needs more than a few

underlying independent concepts to define it. Using a

low number of dimensions is undesirable as it does

not produce enough differentiation between terms and

documents, whereas full dimensionality provides lit-

tle semantic grouping of terms and documents and in

effect treats every term and document as being unique

in meaning.

Figure 1 depicts a simple three-dimensional repre-

sentation of the LSI space composed of both term

vectors and document vectors. This illustration is an

extremely simplified representation using only three

dimensions. In practice, the LSI hyperspace will typi-

cally have anywhere from 300 to 500 dimensions or

more.

When this processing is completed, information

items are left clustered together based on the latent

semantic relationships between them. The result of this

clustering is that terms that are similar in meaning are

clustered close to each other in the space and dissim-

ilar terms are distant from each other. In many ways,

this is how a human brain organizes the information

that an individual accumulates over a lifetime.

4.2 The Difference between the Vector Space

Model and Latent Semantic Indexing

The difference between the traditional VSM and the

reduced-dimensional VSM used by LSI is that terms

form the dimensions or the axes of the vector space in

the traditional VSM and documents are represented as

Data clusters

Figure 1 Three-dimensional
representation of the LSI space.

vectors in the term space, whereas the axes or dimen-
sions in LSI are derived from the SVD. Therefore, since
the terms are the axes of the vector space in the tradi-
tional VSM, they are orthogonal to each other, causing
documents that do not contain a term in a user’s query
to have a similarity of zero with the query. The result is
that terms have their own unique independent mean-
ings. With LSI, the derived dimensions from the SVD
are orthogonal, but terms (as well as documents) are
vectors in the reduced-dimensional space, not the axes.
Terms no longer have unique meaning on their own, nor
are they independent. Terms get their meanings from
their mappings in the semantic space.

4.3 Application

LSI can be used to search, compare, evaluate, and
understand the information in a collection in an auto-
mated, efficient way. In fact, LSI provides a compu-
tational model that can be used to perform many of
the cognitive tasks that humans do with information
essentially as well as humans do them. The effective-
ness and power of LSI lies in the mathematical calcu-
lation of the needed part of the SVD: that is, the par-
tial SVD of reduced dimension. Given a large term-by-
document matrix A, where terms are in the rows and
documents are in the columns, the SVD computation
becomes a problem of finding the k largest eigenvalues
and eigenvectors of the matrix B = ATA.

Finding the eigenvectors and eigenvalues of B pro-
duces the document vectors and the singular values
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(the nonnegative square roots of the eigenvalues of B).
The term vectors are then produced by back multiply-
ing. Thus, the SVD computation is based on solving a
large, sparse symmetric eigenproblem. The approach
most effectively used to compute the SVD for this appli-
cation is based on the Lanczos algorithm. The Lanczos
algorithm, which is an iterative method, is proven to be
accurate and efficient in solving large, sparse symmet-
ric eigenproblems where only a modest number of the
largest or smallest eigenvalues of a matrix are desired.
While the computation of the reduced-dimensional vec-
tor space for a term-by-document matrix is a nontriv-
ial calculation, advanced implementations of LSI have
been shown to be scalable to address large problem
sizes.

5 Nonnegative Matrix Factorization

LSI can be quite robust in identifying which documents
are related. While it produces a set of orthogonal axes
that forms a mapping analogous to the cognitive rep-
resentation of meaning, it does not produce a set of
conveniently labeled features that can be examined
intuitively. Nonnegative matrix factorization (NMF) is
another approach that produces decompositions that
can be readily interpreted. Lee and Seung (1999) intro-
duced the NMF in the context of text retrieval. They
demonstrated the application of NMF in both text min-
ing and image analysis. In our context, NMF decom-
poses and preserves the nonnegativity of the original
term-by-document matrix whereby the resulting non-
negative matrix factors produce interpretable features
of text that tend to represent usage patterns of words
that are common across the given document corpus.

5.1 Constrained Optimization

To approximate the original (and possibly term-weight-
ed) term-by-document matrix A, NMF derives two
reduced-rank nonnegative matrix factorsW andH such
that A ≈ WH. The sparse matrix W is commonly
referred to as the feature matrix containing feature
(column) vectors representing usage patterns of promi-
nent weighted terms, while H is referred to as the coef-
ficient matrix because its columns describe how each
document spans each feature and to what degree (see
figure 2).

In general, the NMF problem can be stated as fol-
lows: given a nonnegative real-valued m×n matrix A
and an integer k such that 0 � k � min(m,n), find

Features

FeaturesTerms

Documents

HW

n

k

k

m
n

m

Figure 2 Nonnegative feature and coefficient matrices
from NMF; peaks or large components in individual feature
(weight) vectors are dominant terms (documents). The sub-
graphs under each matrix factor (W andH) reflect the values
of the nonnegative components of each column.

two nonnegative matricesW (m× k) andH (k×n) that
minimize the cost function

f(W,H) = ‖A−WH‖2
F ,

where the norm is the frobenius norm [I.2 §20].

5.2 Convergence Issues

The minimization of f(W,H) can be challenging due
to the existence of local minima owing to the fact that
f(W,H) is nonconvex in both W and H. Due to the
underlying iterative process, NMF-based methods do
not necessarily converge to a unique solution, so the
resulting matrix factors (W,H) depend on the initial
conditions. One approach to remedy the nonunique
solution problem is to avoid the use of randomiza-
tion for the initial W and H factors. One common
approach is to use the positive components of the trun-
cated SVD factors of the original term-by-document
matrix. The LSI factors described above can therefore
be used to seed the iterative NMF process with a fixed
starting point (initial W and H) that will converge to
the same minima (final W and H) for repeated fac-
torizations. Having multiple NMF solutions does not
necessarily mean that any of the solutions must be
erroneous. However, having a consistent ordering of
interpretable features is definitely advantageous for
knowledge-discovery applications.

6 Automation and Scalability

All of the methods discussed above leverage mathemat-
ical decompositions to analyze the meaning of natural
language text where the structure is not explicit. These
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methods provide a means of processing text in an auto-
mated way that is capable of handling large volumes
of information. With the continued expansion of the
amount of text to be analyzed, techniques such as LSI
and NMF can be used for scalable yet robust document
clustering and classification.
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VII.25 Voting Systems
Donald G. Saari

1 Paradoxical Outcomes

As only addition is needed to tally ballots, I once mis-
takenly believed that “mathematical voting theory” was
an oxymoron. To explore this thought, consider a sim-
ple setting in which 19 voters are selecting a social club
president from among Ann, Barb, and Connie. Suppose
the profile (i.e., a list of how many voters prefer each
ranking) is as in table 1.

It just takes counting to prove that Ann wins; the plu-
rality (vote-for-one) outcome is A 1 B 1 C with tally
8:7:4. Counting even identifies the “vote-for-two” win-
ner as … Connie. This is a surprise because Connie is the
plurality loser! Not only does this voting rule change
the “winner,” but its election ranking of C 1 B 1 A
(with tally 14:13:11) reverses the plurality ranking. To
add to the confusion, the Borda count winner (ascer-
tained from assigning 2, 1, and 0 points, respectively, to
a ballot’s top-, second-, and third-positioned candidate)
is Barb. So Ann wins with one rule, Barb with another,
and Connie with a third. Perhaps clarity comes from the
majority-vote paired comparisons because Barb beats

Table 1 Social club president voting profile.

Number Ranking Number Ranking

2 A 1 B 1 C 4 C 1 B 1 A
6 A 1 C 1 B 4 B 1 C 1 A
0 C 1 A 1 B 3 B 1 A 1 C

Ann (11:8) and Ann beats Connie (11:8), indicating the
B 1 A 1 C outcome. But no, Connie beats Barb (10:9),
thus creating a cycle, so this rule’s outcome suggests
that no candidate is favored!

This example captures a concern that should bother
everyone: election outcomes can more accurately reflect
the choice of a voting method rather than the intent of
the voters. A crucial role played by mathematics is to
explain why this can happen and to identify which rules
have outcomes that most accurately reflect the voters’
views. More generally, because “voting” serves as a pro-
totype for general aggregation methods, such as those
used in statistics or in approaches that are central to
the social sciences, expect the kinds of problems that
arise with voting rules to identify difficulties that can
arise in these other areas.

To tackle these issues, mathematical structures must
be found. To do so, assign each alternative to a vertex
of an equilateral triangle, as in figure 1(a). The rank-
ing assigned to a point in the triangle is determined by
its proximity to each vertex: for example, points on the
vertical perpendicular bisector represent indifference,
or an A–B tie, denoted by A ∼ B. The perpendicular
bisectors divide figure 1(a) into six regions, with each
small triangle representing all of the points with a par-
ticular ranking. For example, region 1 points are closest
to A, and next closest to B, so they have the A 1 B 1 C
ranking; region 5 represents the B 1 C 1 A ranking.

To exploit this geometry, place the introductory
example’s profile entries in the associated region; this
is illustrated in figure 1(b). Two voters have the region 1
ranking, for instance, so place “2” in this triangle; three
voters have the region 6 ranking, so place “3” in that
triangle. An advantage gained by this geometry is that
it separates the entries in a manner that simplifies the
tallying process. With the {A,B} vote, for example, all
voters preferring A to B are in the shaded region to
the left of the vertical line in figure 1(b). Thus, to com-
pute this majority-vote tally, just add the numbers on
each side of this line. Doing the same with each of fig-
ure 1(b)’s perpendicular bisectors leads to the tallies
listed by each edge.



892 VII. Application Areas

1
2

3 4

5
6

A B

C

A ~ B

2
6

0 4

4
3

A B

C

10

9

118

11

8

(a) (b)

2
6

0 4

4
3

A B

C(c)
4 + 10s

7 + 6s8 + 3s

Figure 1 Profile representations, and tallying ballots:
(a) ranking regions; (b) paired comparisons; and (c) posi-
tional outcomes.

The plurality tally is equally simple. Regions shar-
ing a vertex share the same top-ranked candidate (e.g.,
both shaded regions in figure 1(c) have A as the top-
ranked candidate), so add these values. This summa-
tion defines the values that are listed by the vertices
after selecting the s value (which is introduced next) to
be s = 0, or the A 1 B 1 C tally of 8:7:4.

“Positional rules” use specific weights (w1,w2,w3),
wj � wj+1, where w3 = 0 and w1 > 0. To tally a ballot,
assign wj points to the jth-positioned candidate. The
plurality vote, then, is (1,0,0), the vote-for-two rule
gives (1,1,0), and the Borda count gives (2,1,0). To
simplify the process, normalize the values by dividing
by w1 to obtain ws = (1, s,0), where s = w2/w1 is
the “second place” value; for example, the normalized
Borda count is w1/2 = (1, 1

2 ,0).
With this normalization, a candidate’s ws tally be-

comes “her plurality tally plus {s times her second place
votes}.” For instance, as A is second ranked in the two
regions with arrows in figure 1(c), herws tally is 8+3s;
the B and C tallies are similarly computed and listed
by their vertices. To illustrate, the “vote-for-two” C 1
B 1 A tally of 14:13:11 in the introductory paragraph is
recovered by using s = 1; the normalized Borda (s = 1

2 )
B 1 A 1 C tally is 10:9 1

2 :9, so the standard (2,1,0)
Borda tally is double that: 20:19:18.

This tallying approach allows questions to be an-
swered with simple algebra; for example, to find which
ws rule causes anA ∼ B tie, the equation 8+3s = 7+6s
proves it is s = 1

3 , which is equivalent to a (3,1,0) rule.

Similar algebraic computations prove that the profile in
figure 1(b) admits seven different positional outcomes,
four of which are strict rankings, that is, rankings
without any ties.

In general and by using the geometric structures of
higher-dimensional simplexes, we now know that, for
n candidates, profiles exist that allow precisely k dif-
ferent strict election rankings, where k is any integer
satisfying 1 � k � (n− 1)[(n− 1)!]; for example, with
n = 10 candidates, a profile can be created that has
3 265 920 different positional election rankings. Among
these rankings, it is possible for each candidate to be
first, then second, then third, then …, then last ranked
just by using different positional voting rules!

As is typically true in applied mathematics, results
are often discovered via experimentation. So, let me
invite the reader to use the above methods to solve
the following four problems. Answers (given later)
motivate the mathematical structures of voting rules.

(i) Not all voters want A to be the figure 1(c) plurality
winner. Identify all voters who could vote “strate-
gically” to force a personally preferred outcome.

(ii) Create a profile with the A 1 B 1 C plurality out-
come and a 10:9:8 tally in which the paired compar-
ison (majority-vote) outcome is an A 1 B, B 1 C ,
C 1 A cycle.

(iii) Create a different profile with the same plurality tal-
lies but where B now beats bothA and C in majority
votes; by beating everyone, Barb is the Condorcet
winner.

(iv) Create a third profile with these plurality tallies but
the vote-for-two outcome is whatever you want: B 1
C 1 A, say.

2 Two Central Results

Solving these questions makes it clear that the infor-
mation used in paired comparisons differs from that
used with plurality or anyws method. This assertion is
supported by the shaded regions in parts (b) and (c) of
figure 1: A’s plurality tally uses information from two
regions, while A’s majority vote uses three. Differences
become more pronounced with ws methods where A’s
outcome involves information from four regions! But
if rules use different information, then different out-
comes must be expected. This raises an interesting
mathematical challenge: to invent a voting rule that is
free from paradoxical behaviors.

In examining this issue, Kenneth Arrow put forth the
following ground rules.
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(i) Voters have complete, transitive preferences, i.e.,
they rank each pair of candidates, and if a voter
prefers X 1 Y , and Y 1 Z , then the voter prefers
X 1 Z .

(ii) To ensure reasonable outcomes, the societal rank-
ing is also required to be complete and transitive.
(The “societal ranking” is the outcome of the group
decision rule; if the rule is an election, then this is
the “election ranking.”)

(iii) The rule satisfies a unanimity condition (called
the Pareto condition) where for any pair {X,Y}, if
everyone prefers X 1 Y , then X 1 Y is the societal
outcome.

(iv) Why just unanimity? When determining the {Ann,
Barb} societal ranking, what voters think about
Connie should not matter. Arrow’s independence of
irrelevant alternatives (IIA) condition requires each
pair’s societal ranking to depend only on how each
voter ranks that particular pair; other information
is irrelevant.

While these conditions appear to be innocuous, the
surprising fact is that only one rule satisfies them: a dic-
tator (i.e., the rule is a function of one variable)! Namely,
the rule can be treated as selecting a particular voter,
say Mikko. Then, for all elections the rule’s outcome
merely reports Mikko’s preferences as the societal out-
come. From a mathematical perspective, Arrow’s theo-
rem proves that the information used by paired com-
parisons (figure 1(b)) is incapable of determining tran-
sitive rankings for three or more candidates. What kind
of information is appropriate? (For a different interpre-
tation of Arrow’s result, see the last listed reference in
the further reading section below.)

Another central result addresses whether strategic
voting can be avoided. A “strategic vote” is one where a
voter votes in a crafty manner to obtain a personally
preferred outcome. This option is not available with
two candidates, say Ann and Barb, where Ann will win a
majority vote. Someone supporting Barb has precisely
two choices, but neither is strategic. This is because
voting for Barb is sincere, while voting for Ann is coun-
terproductive, i.e., a “two-candidate” setting does not
provide enough wiggle room to be strategic.

Three candidates admit more possibilities. With fig-
ure 1(c), a nonsincere vote is counterproductive for sup-
porters of A or B. What remains are those C voters who
prefer B to A; by strategically voting for B, rather than
C , they achieve a personally preferred outcome (B over
A); for example, strategic voting moves the four votes
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Figure 2 Creating “paradoxes”: (a) cycle;
(b) Condorcet B; and (c) vote-for-two B 1 C 1 A.

by the C vertex toward B. A similar analysis holds for
any positional rule; for example, the figure 1(c) vote-
for-two winner is C , while B is the Borda winner. In each
case, there are ways for certain voters to be strategic.

For essentially these geometric reasons, the Gibbard–
Satterthwaite theorem asserts that, for any group deci-
sion or election rule involving three or more candidates,
there exist situations where some voter can be strate-
gic. Technical conditions are added to ensure that, say,
it is possible for each candidate to win with some pro-
file (e.g., the rule is not a de facto comparison of one
pair). While the proofs are combinatoric, the mathe-
matical reasons are essentially as above; this theorem
is a directional derivative result where three or more
alternatives are needed to provide enough “directions.”

3 The Mathematical Structure
of Positional Rules

Answers to questions (ii)–(iv) (figure 2) identify the
basic mathematical structure of voting rules. The plu-
rality tally constraint requires placing numbers in the
triangle that will have the specified sum by each vertex,
e.g., the two numbers by the A vertex must sum to 10.
Combinatorics proves that there are 11 × 10 × 9 = 990
ways to do so. To identify choices preferring A over B
in a majority vote, insert a shaded bar in the A 1 B
region to the left of the vertical line (figure 2(a)). Simi-
larly, to highlight B over C , place a shaded bar on B’s
side of the perpendicular bisection, with a similar bar
for C over A. Next, select values to stress the shaded
triangle; emphasizing its vertices creates the profile
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in figure 2(a), which will have a heavy cyclic vote. To
answer (iii), place shaded bars (figure 2(b)) to identify
where B dominates each of the other candidates.

Indeed, it is possible to select any ranking for each
pair, and profiles can be generated where the plural-
ity tallies and paired outcomes are as specified. As
the rules use different information, the mathemati-
cal assertion is that consistent election outcomes for
these rules cannot be expected, nor are they even very
likely. This negative conclusion holds for any number
of candidates and most positional rules.

To solve (iv) with the figure 1(c) ws -tallying method,
emphasize “second-place votes.” To keep plurality win-
ner A from receiving a larger tally, avoid placing num-
bers in her two figure 2(c) “second-place” regions,
which are indicated by the dashed double-headed
arrow. To assist B, place values in her second-place
regions indicated by the solid double-headed arrow.
An extreme (figure 2(c)) profile has the plurality win-
ner A but a vote-for-two ranking B 1 C 1 A with tally
26:17:10.

With these tools, the reader can create examples
to illustrate almost all of the possible three-candidate
paradoxical behaviors. Of more value is to use these
tools to extract the mathematical structures that will
explain these millennia-old puzzles. To do so, notice
how paired comparison differences (figure 2(b)) involve
the vertices of the shaded equilateral triangles; they
create combinations of profiles of the form

A 1 B 1 C, B 1 C 1 A, C 1 A 1 B, (1)

with regions 120◦ apart. Positional differences are cre-
ated by

A 1 B 1 C, C 1 B 1 A, (2)

expressions with regions diametrically apart.
In particular, the symmetry structures exposed by my

triangle approach identify the source of voting com-
plexities. To capture these symmetries, express them
as orbits of symmetry groups. The simplest group is
Z2 = {I, R} consisting of the identity map I and a rever-
sal R, where R2 = R ◦R = I; applying this group to any
ranking X 1 Y 1 Z yields the structure in (2); I keeps
the ranking and mapping R reverses it.

It is easy to show that differences in paired compar-
isons are immune to these Z2 structures, which cause
differences in positional outcomes, i.e., this orbit is
in the kernel of differences between paired compari-
son tallies. This is the mathematical property that per-
mits outcomes for positional methods to differ as radi-
cally as desired from paired comparison rankings. The

unique exception is the Borda count, which also has
this Z2 orbit structure in its kernel. Thus only Borda
rankings must be related to paired comparison rank-
ings. More precisely, for any other positional method,
profiles exist for which the positional outcome can be
whatever is wished, say A 1 B 1 C , but for which the
paired comparison is C 1 B 1 A; this kind of behavior
can never happen with Borda. Assertions of this form
extend to any number of candidates.

The next-simplest permutation group is defined by
P = (1,3,2), where the first-placed entry of X 1 Y 1 Z
is moved to third place, the third-placed entry is moved
to second, and the second-placed entry is moved to
first place, creating Y 1 Z 1 X; orbits of this {I, P , P2}
group, where P3 = I (so, permutation P is applied three
times to a ranking), generate the behavior in (1), which
causes all possible paired comparison differences. As
this Z3 structure has each candidate in each position
precisely once, the Z3 symmetry affects paired compar-
isons, but it never affects differences in tallies for any
positional rule. Thus, this symmetry structure in a pro-
file creates differences between paired and positional
outcomes; again, Borda is immune to its effects.

Surprisingly, for three candidates, these structures
completely explain all paradoxical outcomes, and they
answer all classical questions concerning differences
in positional and paired comparisons (details can be
found in the last two listed references in the further
reading section). Indeed, to create the introductory
example, I started with one voter preferring B 1 C 1
A, added appropriate Z2 reversal structures to create
desired positional outcomes (they never affect Borda or
paired rankings), and then added a sufficiently strong
Z3 paired comparison component (they never affect
positional or Borda rankings) to create a cyclic paired
comparison outcome.

Note that only the Borda count is immune to Z2 and
Z3 symmetry structures that create paradoxical con-
clusions. This is what makes it easy to construct argu-
ments showing why the Borda count is the unique rule
that most accurately represents voter interests.

Elections involving more candidates require finding
appropriate symmetry group structures that affect one
kind of subset of alternatives but not others. As an
example, orbits of the Klein four-group (capturing sym-
metries of squares) do not affect rankings for paired
comparisons or four-candidate positional rankings, but
they change positional rankings for triplets. Again, only
the Borda count (assign n−j points to a jth-positioned
candidate), which is a linear function, places all of these
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orbit structures in its kernel. As an immediate conse-
quences and for any number of candidates, only Borda
is not affected by the symmetries that cause paradoxi-
cal outcomes. That is, the Borda count is the unique rule
that minimizes the kinds and likelihoods of paradoxical
outcomes.

Another class of voting theory explores what can hap-
pen by changing a profile. An obvious example is the
above mentioned Gibbard–Satterthwaite strategic vot-
ing result, where a sincere profile is converted into
a strategic one. Because this theorem proves that all
rules are susceptible to strategic efforts, the next nat-
ural question is to find a positional rule that is least
affected by this behavior, that is, find the rule that is
most unlikely to allow successful strategic actions. (The
answer is the Borda count.) Other issues include under-
standing how a winning candidate can lose an election
while receiving more support, or how, by not voting,
a voter can be rewarded with a personally preferred
outcome.

These results involve the geometric structure of sets
of profiles in profile space. The Borda assertion about
strategic voting, for instance, reflects its symmetry
structure, where the differences between successive
(2,1,0) weights agree. To indicate how this symmetry
plays a role, recall how geometric symmetries reduce
boundary sizes, e.g., of all rectangles with area one, the
rectangle with the smallest boundary (perimeter) is a
square. Similarly, for the set of profiles defining a given
election ranking, the positional rule with the smallest
boundary is the Borda count; this boundary consists
of tie votes. But for a strategic voter to successfully
change an election outcome, the profile’s election out-
come must be nearly a tie, i.e., the profile must be near
a boundary. So, by having the smallest boundary, the
Borda count admits the smallest number of strategic
opportunities. In contrast, the plurality vote, with its
larger boundary, offers the greatest number of strategic

opportunities, which means, as one would expect, that
it is highly susceptible to successful strategic actions.
Notice the troubling conclusion: the voting rule that
is most commonly used to make group decisions—the
plurality vote—is the most likely to have questionable
outcomes, and it is the most susceptible to strategic
actions.

Other results—such as the situation in which receiv-
ing more support hurts a candidate or the situation in
which not voting helps a voter—involve the geometry
of regions of profile space combined with directional
derivative sorts of arguments. As described above, for
instance, the two rules used in a “runoff election” (a
positional rule for the first election, a majority vote for
the runoff) involve different profile structures; this dif-
ference forces the set of all profiles in which a particu-
lar candidate is the “winner” to have dents in its struc-
ture (it is nonconvex). The lack of convexity admits set-
tings in which a winning candidate loses by receiving
more votes; namely, the straight line created by adding
supporting voters moves the new profile outside of the
“winning region.” (This could happen, for example, if
the added support for the previously winning candidate
changed her runoff opponent.)
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Part VIII

Final Perspectives

VIII.1 Mathematical Writing
Timothy Gowers

1 Introduction

The purpose of this article is not to offer advice about
how to write mathematics well. Such advice can be
found in many places. However, I do have three pieces
of very general advice, which inform the rest of the arti-
cle. The first is to be clear about your intended read-
ership; for example, if you want what you write to be
understood by an undergraduate, then do not assume
knowledge of any terminology that is not standardly
taught in undergraduate mathematics courses. The sec-
ond is to aim for this readership to be as wide as pos-
sible. If, with a small amount of extra explanation, you
can make what you write comprehensible to an expert
in another field of mathematics, then put in that extra
effort. Whatever you do, do not worry that experts will
not need the explanation; if that is true (which it often
is not), then they can easily skip it. The third, which
is related to the second, is to set the scene before you
start. Some people who read what you have written will
do so because they want to understand all the techni-
cal details and use them in their own work, but the vast
majority will not. Most readers, including people who
need to make quick judgments that will profoundly
affect your career, will want to read the introduction
quickly to see what you have done and assess how
important it is. However much you might wish every-
one to read what you have written in complete detail,
you should be realistic and cater for readers who just
want to skim it.

For the rest of this article I shall discuss various
choices that one must make when writing a mathemat-
ical document. I will not advocate choosing one way
rather than another, since the choices you should make
depend on what you want to achieve; my final piece
of general advice is merely that you should make the
choices consciously rather than by accident.

2 Formality versus Informality

There are (at least) two goals that one might have when
writing a mathematical document. One is to establish a
mathematical result by whatever means are appropri-
ate to the field; in pure mathematics the usual require-
ment is unambiguous definitions and rigorous proofs,
whereas in applied mathematics other forms of evi-
dence, such as heuristic arguments and experimental
backing, may be acceptable. The other is to convey
mathematical ideas to the reader.

These two goals are often in tension. If a pure math-
ematician discovers a complicated proof of a theorem,
then that proof will be hard to understand. However,
sometimes the apparent complication of a proof is mis-
leading; what is really going on is that the author had
one or two key ideas, and the complication of the argu-
ment is the natural working out of the details of those
ideas. For the expert reader, an informal explanation of
the ideas that drive the proof may well be more valuable
than the proof itself.

Nobody would advocate writing papers with just
informal explanations of ideas, since plausible-looking
ideas often turn out not to work. However, there is still
a choice to make, since it is considered acceptable to
display proofs and not explain the underlying ideas.
There may sometimes be circumstances where this is
appropriate; for example, perhaps the proof is short,
and explaining the ideas that generate it will double
the length of what you are writing and put off readers.
But usually, the advice I gave earlier—to broaden your
readership if it not too difficult to do so—would dic-
tate that technical arguments should be accompanied
by informal explanations.

3 Giving Full Detail versus
Leaving Details to the Reader

When you are writing you need to decide how much
detail to give. If you give too little, then the reader
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you are aiming at will not be able to understand what
you have written. But you also want to avoid making
too many points that the reader will find completely
obvious.

Of these two potential problems, the first is undoubt-
edly more serious. It is much easier for readers to skip
details that they find too obvious to be worth saying
than it is for them to fill in details that they do not find
obvious at all.

The question of how much detail to give is related
to the question of how formal to be, but it is not the
same question. It is true that there is a tendency in
informal mathematical writing to leave out details, but
with even the most formal writing a decision has to be
made about how much detail to give; it is just that in
formal writing one probably wants to signal more care-
fully when details have been left out. This can be done
in various ways. One can use expressions such as “It is
an easy exercise to check that…,” or “The second case
is similar,” which basically say to the reader, “I have
decided not to spell out this part of the argument.”
One can also give small hints, such as “By compact-
ness,” or “An obvious inductive argument now shows
that…,” or “Interchanging the order of summation and
simplifying, we obtain….”

If you do decide to leave out detail, it is a good idea to
signal to the reader how difficult it would be to put that
detail in. A mistake that some writers make is to give
references to other papers for arguments that can eas-
ily be worked out by the reader, without saying that the
particular result that is needed is easy. This is straight-
forwardly misleading; it suggests that the best thing to
do is to go and look up the other paper when in fact the
best thing to do is to work out the argument for oneself.

4 Letters versus Words

The following is problem 10 of book 1 of an English
translation of Diophantus’s Arithmetica.

Given two numbers, to add to the lesser and to subtract
from the greater the same (required) number so as to
make the sum in the first case have to the difference in
the second case a given ratio.

A modern writer would express the same problem more
like this.

Given two numbers a and b and a ratio ρ, find x such
that a+ x = ρ(b − x).

The main difference between these two ways of describ-
ing the problem is that in the second formulation the

numbers under discussion have been given names.
These names take the form of letters, which allow us
to replace wordy expressions such as “the second num-
ber” or “the given ratio” by letters such as “b” and “ρ.”

The advantage of modern notation is that it is much
more concise. This is not just a matter of saving paper;
the extra length of “to make the sum in the first case
have to the difference in the second case a given ratio”
over “such that a+x = ρ(b−x)” makes it significantly
harder to understand because it is difficult to take in
the entire phrase at once.

However, the concision that comes from naming
mathematical objects comes at a cost: one has to learn
the names. In the example above, that is very easy
and the cost is negligible. However, sometimes it is far
from negligible. The following proposition comes from
a paper in Banach space theory.

Proposition. Let 0 � α � 1
2 and 1/p = 1

2 −α. Then

P2(E, F) ⊂ L
(a)
p,∞(E, F)

for all Banach spaces F if and only if E ⊂ Γα.

Just before the proposition, the reader has been told
that P2 is the ideal of 2-summing operators from E to
F , which is a standard definition in the area. As for
L
(a)
p,∞(E, F), this has been defined early in the paper

as follows. (It is not necessary to understand these
definitions to understand the point I am making.)

Given an operator T , the approximation number an(T)
is defined to be inf{‖T − L‖ : rank(L) < n}. Then
L
(a)
s,w(E, F) is the set of operators T such that the

sequence (an(T))∞n=1 belongs to the Marcinkiewicz
space -s,w .

The definition of the Marcinkiewicz space is again stan-
dard in the area. Finally, the set Γα is defined to be the
set of all Banach spaces of weak Hilbert type α. That
is not a standard definition, but it is given earlier on in
the paper.

Thus, another way of stating the proposition is as
follows.

Proposition. Let 0 � α � 1
2 , let 1/p = 1

2 −α, and let E
be a Banach space. Then the following two statements
are equivalent.

(1) For every Banach space F and every 2-summing
operator T : E → F , the sequence (an(T))∞n=1 of
approximation numbers belongs to the Marcinkie-
wicz space -p,∞.

(2) E is a space of weak Hilbert type α.
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This time, it is the wordier definition that places a
smaller burden on the reader’s memory. If you know
what 2-summing operators, approximation numbers,
the Marcinkiewicz space, and weak Hilbert type are,
most of which are standard definitions in the area,
then you can understand without much effort what
the proposition is claiming. With the first formulation,
there is an extra step you have to perform to unpack
the notation into those standard definitions. Another
advantage of the second formulation is that a suffi-
ciently expert reader who is skimming the paper will
be able to understand it without having to look back in
the paper to find out what everything means. The first
formulation does not leave that option open.

Thus, in more complicated mathematical writing,
there is another source of tension. If you use too lit-
tle notation, your sentences will become hopelessly
clumsy and repetitive, but if you use too much, you
are placing excessive demands on the memory of your
readers.

This may be a delicate balance to strike, but there is
one principle that applies universally: if you do decide
to use some nonstandard notation, then make sure that
the reader can easily find where it is defined. This can
be done by means of a section devoted to preliminary
definitions, though it will often be kinder to give defi-
nitions just before they are used. If that is not possible,
one can give reminders of definitions, or at the very
least pointers to where they can be found.

5 Single Long Arguments versus
Arguments Broken Up into Modules

If you are trying to justify a mathematical statement
and the justification is long and complicated, then
what you write may well be hard to understand unless
you can somehow break the argument up into smaller
“modules” that fit together to give you what you want.
In pure mathematics, these modules usually take the
form of lemmas. If you are proving a theorem and
you do not want the proof to become unwieldy, then
you try to identify parts of the argument that can be
extracted and proved separately. One can then simply
quote these results in the main argument. Lemmas play
a role in proofs that is similar to the role of subroutines
in computer programs.

For breaking up an argument to be a good idea, it
greatly helps if the part of the argument you want to
extract is not too context dependent. If the statement of
a lemma requires a long piece of scene setting, then it is

probably better to leave it in the main body of the argu-
ment, where the scene has already been set. However, if
it can be stated without reference to the particular con-
text, which usually means that it is more general than
the particular application needed of it in the main argu-
ment, then it is more appropriate to extract it. Again,
this is a matter of judgment.

A disadvantage of more modular arguments is that
extracting lemmas, or more general modules, forces
you to put them somewhere where they do not arise
naturally. If you put them before the main argument,
so that they will be available when needed, then the
reader is presented with statements of no obvious use
and is expected to remember them. If they are particu-
larly memorable, then that is not a problem, but often
they are not; for instance, they may depend on two or
three slightly odd conditions that just happen to be
satisfied in the later argument. If you put them after
the main argument, then the reader keeps being told,
“We will prove this claim later” and reaches the end
of the argument with the uneasy feeling that the proof
is incomplete. A third possibility is to state and prove
lemmas within an argument, but nested statements of
this kind can be fairly ugly.

With some complicated arguments, there may be
no truly satisfactory solution to these problems. In
that case, the best thing to do may well be to choose
an unsatisfactory solution and mitigate the problems
somehow. The default option is probably to state lem-
mas before they are used. If you choose that option
and the lemmas are somewhat complicated and hard
to remember, then you can always add a few words of
explanation about the role that the lemma will play. If
even that is hard to do, then another option is to advise
the reader to read the main argument first and return to
the lemma only when the need for it has become clear.
(An experienced reader may well do that anyway, but it
is still helpful to be told by the author that it is a good
approach to understanding the argument.)

6 Logical Order versus Order of Discovery

Suppose you wish to present the fact that a sequence
of continuous functions that converges pointwise does
not have to converge uniformly. Here is one way that
you might do it.

Theorem. There exists a sequence of continuous func-
tions fn : [0,1] → [0,1] that converges pointwise but
not uniformly.
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Proof. For each positive integer n and each x ∈ [0,1],
let fn(x) = nxe−nx . Then, for x > 0 we have e−x < 1,
so ne−nx = n(e−x)n → 0 as n → ∞. It follows that
fn(x)→ 0 asn→ ∞. Also, whenx = 0 we have fn(x) =
0 for every n, so again fn(x)→ 0 as n→ ∞. Therefore,
fn(x)→ 0 pointwise.

However, the convergence is not uniform. To see this,
observe that fn(n−1) = e−1 for every n. Thus, for every
n there exists x such that |fn(x)− 0| � e−1.

This proof has a feature that is common in mathe-
matics: it is easier to follow the steps than it is to see
where the steps came from. If you are told to try the
functions fn(x) = nxe−nx , then checking that they
satisfy the conditions is a straightforward exercise, but
what made anybody think of that particular sequence
of functions?

Here is what we might write if we wanted to make the
answer to that last question clearer.

Proof. If fn → f pointwise but not uniformly, then
fn − f → 0 pointwise but not uniformly, so we may as
well look for functions that converge to zero. In order
to ensure that they do not converge uniformly to zero,
we need a positive number θ such that for infinitely
many n there exists x ∈ [0,1] with |fn(x)| � θ. Since
infinitely many of these fn(x) will have the same sign,
and since we can multiply all functions by θ−1, we may
as well look for a sequence of functions fn that con-
verges pointwise to 0 such that for every n there exists
xn with fn(xn) � 1.

Now, if fn(xn) � 1 and fn is continuous, then there
exists an open interval In = (xn −δn,xn +δn) around
xn such that fn(y) � 1

2 for every y ∈ In. We are going
to have to make sure that we do not have infinitely
many of these intervals overlapping in some point u,
since then we would have fn(u) � 1

2 for infinitely many
n, which would imply that fn(u) does not tend to zero.

How can we find infinitely many open intervals with-
out infinitely many of them overlapping? The sim-
plest way of doing it is to take intervals of the form
(a, bn) for a sequence (bn) that converges to a. So, for
example, we could take In to be the interval (0,1/n).

This suggests that we should let fn be a continuous
function that takes the value 1 somewhere inside the
interval (0,1/n) and is small outside that interval. One
way of defining a function that reaches 1 for a small
value of x and then quickly drops back down again is to
take a function that grows rapidly to 1, such as gn(x) =
λx, and multiply it by a function that is roughly 1 for a

little while and then decays rapidly, such as e−μx . The
rapid decay of e−μx starts when x is around 1/μ, which
suggests that we should take μ to be around n. Since
we want gn(x) to reach 1 in the interval (0,1/n), we
should probably take λ to be around n as well.

It is now easy to check that the functions fn(x) =
nxe−nx converge pointwise to zero but not uniformly.

Of course, one might well give a detailed proof that
the functions nxe−nx do the job.

As with the other choices, there are advantages and
disadvantages that need to be weighed up when decid-
ing how much to explain the origin (or at least a possi-
ble origin) of the ideas one presents. If one’s main con-
cern is verification of a result—that is, convincing the
reader of its truth—then it may not matter too much
where the ideas come from as long as they work. But if
the aim is to teach the reader how to solve problems of
a certain kind, then presenting solutions that appear
out of nowhere as if by magic is not helpful. What is
more, demonstrating where the ideas come from gives
the reader a much clearer idea of which features are
essential and which merely incidental. For example, in
the argument above it is clear from the second presen-
tation that there is nothing special about the functions
fn(x) = nxe−nx : for fn(x) one could take any non-
negative function such that fn(0) = 0, fn(1/n) � c
(for some fixed constant c), and fn(x) is small for
every x � 2/n. For instance, one could take a “witch’s
hat” that equals nx when 0 � x � 1/n, 2 − nx when
1/n � x � 2/n, and 0 when 2/n � x � 1.

That is not to say that a diligent reader cannot look
at a presentation of the first kind and work out for
him/herself where the idea might have come from. In
this case, if one sketches the graph of fn(x), one sees
that it grows and shrinks rapidly in a small interval near
0 and is small thereafter, and then it becomes clear why
these functions are suitable. However, one needs expe-
rience to be able to do this with an argument. So the
extent to which you should explain where your argu-
ments come from depends largely on the level of expe-
rience of your intended reader—both generally and in
the specific area you are writing about.

7 Definitions First versus Examples First

Suppose that one wanted to write an explanation of
what a topological manifold is. An obvious approach
would be to start by giving the definition. That could
be done as follows.
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Definition. A d-dimensional topological manifold is a
topological space X such that every point x in X has
a neighborhood that is homeomorphic to a connected
open subset of Rd.

Having done that, one would give a few examples
of topological manifolds, such as spheres and tori, to
illuminate the definition.

An alternative approach is to start with a brief discus-
sion of the examples. One could point out, for instance,
that it is easy to come up with a satisfactory coordinate
system for any small region of the world but that it is
not possible to find a good coordinate system for the
world in its entirety; there will always be annoying prob-
lems such as the poles not having well-defined longi-
tudes. A discussion of that kind will give the reader the
informal concept of a space that is “locally like Rd” and
after that the formal definition is motivated: it is the
formal expression of an informal idea that the reader
already has.

The advantage of the second approach is that an
abstract definition is often much easier to understand
if one has a good idea of what it is abstracting. One will
read the definition with strong expectations of what it
will look like, and all one will have to commit to mem-
ory is the ways in which the definition does not quite fit
those expectations. If the definition is presented first,
then one will be expected to hold the whole thing in
one’s head, rather than what one might think of as
the difference between the definition and one’s prior
expectation of it.

Whether or not this advantage makes it worth pre-
senting examples before giving a definition depends on
how difficult you expect it to be for your reader to grasp
the definition. To give an example where it might not be
worth giving examples first, suppose that you want to
introduce the notion of a commutative ring for a reader
who is already familiar with groups and fields. A natural
way of doing it would be to list the axioms for a com-
mutative ring and make the remark that what you have
listed is very similar to the list of axioms for a field but
you no longer assume that elements have multiplica-
tive inverses, and sometimes you do not even assume
that your rings have multiplicative identities.

Once you have said that, it will still be a very good
idea to give some important examples, such as the ring
Z of all integers, the ring Z[x] of all polynomials with
integer coefficients, and the ring Z[

√
2] of all numbers

of the form a+ b√2 where a and b are integers. How-
ever, the argument for presenting these examples first

is weaker than it was for topological manifolds, for two
reasons.

The first reason is that the definition is easy to grasp:
rings are like fields but without multiplicative inverses.
Therefore, giving the definition straight away does not
place a burden on the reader’s memory. Of course, the
reader will want reassurance that there are interesting
examples, but that can be given immediately after the
definition.

The second reason is that the necessity for this par-
ticular abstraction is less obvious than it is for man-
ifolds. Given examples such as spheres and tori, it is
natural to think that they are all examples of the same
basic “thing” and then to try to work out what that
“thing” is. But the benefits of thinking of the integers
and the polynomials with integer coefficients as exam-
ples of the same underlying algebraic structure are not
clear in advance; they become clear only after one has
developed a considerable amount of theory. So it is
more natural in this case to think of the abstraction
as primary, at least in the first instance.

As ever, the decision about how to present a new
mathematical concept involves a judgment that is
sometimes quite delicate. Broadly speaking, the harder
a definition is to grasp, the more helpful it will be to
the reader to have some examples in mind when read-
ing it. But that depends both on the reader and on
the intrinsic complexity of the definition. However, one
general piece of advice is still possible here, which is at
least to consider the possibility of starting with exam-
ples. It may not always be appropriate to do so, but
many mathematical writers like to start with definitions
under all circumstances, and the result is that many
expositions are harder to understand than they need
to be.

Let me close this section by pointing out that the
examples-first device is quite a general one. Indeed, I
have used it in a number of places in this article; see the
openings of sections 4 and 6 and of this very section.

8 Traditional Methods of Dissemination
versus New Methods

A person who wishes to produce mathematical writing
today faces a choice that did not exist twenty years ago.
Until recently, almost all mathematical writing took the
form of books or journal articles. But now the Internet
has given us new methods of dissemination, which have
already had an impact and are likely to have a much
bigger impact in the future.
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In particular, the existence of the Internet affects
every single one of the considerations discussed in this
article. Let me take them in turn.

8.1 Level of Formality

The main task of each generation of mathematicians is
to add to the body of mathematical knowledge. How-
ever, there is a second task that is almost as important
as the first, and not entirely separate from it, which is
to digest this new knowledge and present it in a form
that subsequent generations will find as easy as pos-
sible to grasp. This process of digestion can of course
happen many times to the same piece of mathematics.

Sometimes, digesting a piece of mathematics is itself
a significant advance in mathematical knowledge. For
example, a theory may be developed that yields quite
easily a number of already existing and seemingly dis-
parate results. The traditional publication system is
well suited to this situation; one can just write an arti-
cle about the theory and get it published in the normal
way.

Sometimes, however, digesting a piece of mathemat-
ics does not constitute a mathematical advance. It can
be something more minor, such as thinking of a way
of looking at an argument that makes it clearer where
the ideas have come from or drawing an informal anal-
ogy between one piece of mathematics and another
that is simpler or better known. Insights of this kind
can be hard earned and extremely valuable to other
mathematicians, but they do not lead to publishable
papers.

With the Internet, there are many ways that more
informal mathematical thoughts can be shared. An
obvious one is to write a conventional mathematical
text and make it available on one’s home page. Another
option, which an increasing number of mathematicians
have adopted, is to have a blog. The advantage of this
is that one obtains feedback from one’s readers, and
experience has shown that the quality of much of this
feedback is very high.

There are other forms of mathematical literature that
would not be conventionally publishable but that could
be extremely valuable. For example, an article about a
serious but failed attempt to solve a problem would not
be accepted by a journal, and the result is a great deal of
duplication of work; if the problem is important and the
attempt looks plausible to begin with, then many peo-
ple will try it. A database of failed proof attempts would
be very useful, and in principle the Internet makes it
easy to set up, though so far nobody has done so.

In general, the Internet allows us much greater free-
dom in choosing the level of formality at which we wish
to write and allows us to publish documents that do not
fit the mould of a standard journal article.

8.2 Level of Detail

Suppose that you use a mathematical result or defini-
tion that will be familiar to some readers but not to oth-
ers. In a print document you have to decide whether to
explain it and, if so, how elaborate an explanation to
give.

In a hyperlinked document on the web, one is no
longer forced to make this choice. One can write a
version for experts, but with certain key words and
phrases underlined, so that readers who need these
words and phrases explained further can click on them
and read explanations. This kind of writing has become
very common on Wikipedia and other wikis.

It also introduces a new balance that needs to
be struck. Sometimes wiki articles are hard to read
because the writers use the existence of links to other
wiki pages as a license not to explain terms that they
might otherwise have explained. The result is that
unless one is familiar with most of the definitions in
the original article, one can get lost in a complicated
graph of linked wiki pages as one finds that the page
that explains an unfamiliar concept itself requires one
to click through to several other pages. So if you are
going to exploit hyperlinks, you need to think carefully
about what the experience of following those links will
be like for your intended readers.

Another inconvenience of hyperlinks is that they
require you to visit an entirely new page, which makes
it easy to forget where you were before (especially if
you backtrack and then follow some other sequence
of links). However, there is plenty of software that gets
round this problem. For example, on some sites one can
incorporate “sliders,” pieces of text that insert them-
selves into what you are reading when you click on
an appropriate box and disappear when you click on
it again. So if, for example, one wrote, “by the second
isomorphism theorem,” one could have a box with the
words “What does that say?” on it, so that readers who
needed it could click on the box and have a short para-
graph about the second isomorphism theorem inserted
into the text. One can have sliders within sliders, so
perhaps within that slider one could have the option of
bringing up a proof of the theorem as well.

The main point is that the Internet has made it pos-
sible to write new kinds of documents where one is no
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longer forced to make choices such as of how much
detail to give. One can leave that decision to the reader.
Such documents have a huge potential to improve the
way mathematics is presented, and this potential will
only increase as technology improves.

8.3 Letters versus Words

I will not say much about this, since most of what I have
to say is very similar to what I have already said about
the level of detail in which a document is written. With
the kinds of electronic documents that are now possi-
ble, one can save the reader the trouble of searching
through a paper to find out what a letter stands for by
incorporating a reminder that appears when you click
on the letter. Perhaps better still, it could appear in a
little box when you hover over the letter. One could
also have condensed statements involving lots of let-
ters with the option of converting them into equivalent
wordier statements. Again, the point is that there are
many more options now.

8.4 Modularity

The kinds of electronic documents I have been dis-
cussing make possible a form of top-down mathemat-
ical writing that would be far less convenient in a
print document. One could write a high-level account
of some piece of mathematics, giving the reader the
option of expanding any part of that high-level account
into a lower-level account that justifies it in more detail.
And there could be many levels of this, so that if
you clicked on everything you would end up with a
presentation of the entire argument in full gory detail.

A less ambitious possibility is one that solves the
problem discussed earlier about where to place a
lemma. The difficulty was that in a print document you
will either put it before the proof where it is used, in
which case it is not adequately motivated, or during the
proof, in which case it looks ugly, or after the proof,
in which case the proof itself leaves you with awkward
promises to fill in gaps later. But with an electronic doc-
ument, putting a lemma exactly where it is needed is no
longer ugly. During the proof, one can say, “We are now
going to make use of the following statement,” and give
the reader a button to click on that will bring up a proof
of that statement.

8.5 Order of Presentation

If you do not want to decide whether to give an abstract
definition first or start with motivating examples, then

you can give the reader the choice. Just start with a page

of headings and invite the reader to decide whether

to click on “Motivating examples” first or “The formal

definition” first.

To some extent, the same goes for the decision about

whether to present arguments in their logical order or

in a way that brings out how they were discovered. If

at some point the logical order requires you to draw a

rabbit out of a hat, you could at the very least introduce

a slider that explains where that rabbit actually came

from.

VIII.2 How to Read and Understand a
Paper
Nicholas J. Higham

Whether you are a mathematician or work in another

discipline and need to use mathematical results, you

will need to read mathematics papers—perhaps lots

of them. The purpose of this article is to give advice

on how to go about reading mathematics papers and

gaining understanding from them.

The advice is particularly aimed at inexperienced

readers. A professional mathematician may read from

tens to hundreds of papers every year, including pub-

lished papers, manuscripts sent for refereeing by jour-

nals, and draft papers written by students and col-

leagues. To a large extent the suggestions I make

here are ones that you naturally adopt after reading

sufficiently many papers.

Mathematics papers fall into two main types: primary

research papers and review papers. Review papers give

an overview of an area and usually contain a substantial

amount of background material. By design they tend to

be easier to read than papers presenting new research,

although they are often longer. The suggestions in this

article apply to both types of papers.

1 The Anatomy of a Paper

Mathematics papers are fairly rigid in format, having

some or all of the following components.

Title. The title should indicate what the paper is about

and give a hint about the paper’s contributions.

Abstract. The abstract describes the problem being

tackled and summarizes the contributions of the

paper. The length and the amount of detail both

vary greatly. The abstract is meant to be able to
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stand alone. Often it is visible to everyone on a jour-
nal’s Web site, while the paper is visible only to
subscribers.

Introduction. The first section of the paper, almost
always called “Introduction,” sets out the context
and problem being addressed in more detail than
the abstract. Depending on how the paper has been
written, the introduction may or may not describe
the results and conclusions. Some papers lend them-
selves to a question being posed in the introduction
but fully answered only in a conclusions section.

Conclusions. Many, but not all, papers contain a final
section with a title such as “Conclusion” or “Conclud-
ing Remarks” that summarizes the main conclusions
of the paper. Omission of such a section indicates
that the conclusions have been stated in the intro-
duction or perhaps at the end of a section describing
experiments, or that no explicit summary has been
provided. This section is often used to identify open
questions and describe areas for future research, and
such suggestions can be very useful if you are looking
for problems to work on.

Appendix. Some papers contain one or more appen-
dices, which contain material deemed best sepa-
rated from the main paper, perhaps because it would
otherwise clutter up the development or because it
contains tedious details.

References. The references section contains a list of
publications that are referred to in the text and that
the reader might want to consult.

Supplementary materials. A relatively new concept in
mathematics is the notion of additional materials
that are available on the publisher’s Web site along
with the paper but are not actually part of the paper.
These might include figures, computer programs,
data, and other further material and might not have
been refereed even if the paper itself has. It is not
always easy to tell if a paper has supplementary
materials, as different journals have different con-
ventions for referring to them. They might be men-
tioned at the end of the paper or in a footnote on
the first page, and they may be referred to with “see
the supplementary materials” or via an item in the
reference list.

2 Deciding Whether to Read a Paper

A common scenario is that you come across a paper
that, based on the title, you think you might need to
read. For example, you may be signed up to receive

alerts from a journal or search engine and become
aware of a new paper on a topic related to your inter-
ests. How do you decide whether to read the paper?
The abstract should contain enough information about
the context of the work and the paper’s results for
you to make a decision. However, abstracts are some-
times very short and are not always well written, so it
may be necessary to skim through the introduction and
conclusions sections of the paper.

The reference list is worth perusing. If few of the
references are familiar, this may mean that the paper
presents a rather different view on the topic than you
expected, perhaps because the authors are from a dif-
ferent field. If papers that you know are relevant are
missing, this is a warning that the authors may not be
fully aware of past work on the problem.

If the main results of the paper are theorems, read
those to see whether it is worth spending further time
on the paper. Consider also the reputation of the jour-
nal and the authors, and, unless the paper is very
recent, check how often (and how, and by whom) it has
been cited in order to get a feel for what other people
think about it. (Citations can be checked using online
tools, such as Google Scholar or one of several other
services, most of which require a subscription.)

3 Getting an Overview

A paper does not have to be read linearly. You may
want to make multiple passes, beginning by reading
the abstract, introduction, and conclusions, as well as
looking at the tables, figures, and references.

Many authors end the introduction with a paragraph
that gives an overview of what appears in each part of
the paper. Sometimes, though, a glance at the paper’s
section headings provides a more easily assimilated
summary of the content and organization.

Another way in which you might get an overview of
the paper is by reading the main results first: the lem-
mas, theorems, algorithms, and associated definitions,
omitting proofs. The usefulness of this approach will
depend on the topic and your familiarity with it.

4 Understanding

It is often hard to understand what you are reading.
After all, research papers are meant to contain original
ideas, and ideas that you have not seen before can be
hard to grasp. You may want to stop and ponder an
argument, perhaps playing with examples.
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I strongly recommend making notes, to help you

understand the text and avoid having to retrace your

steps in grasping a tricky point if you come back to

the paper in the future. It is also a good idea to write a

summary of your overall thoughts on the paper; when

you go back to the paper a few months or years later,

your summary will be the first thing to look at. I rec-

ommend dating your notes and summary, as in the

future it can be useful to know when they were writ-

ten. Indeed, I have papers that I have read several times,

and the notes show how my understanding changed on

each reading. (There exist papers for which multiple

readings are needed to appreciate fully the contents,

perhaps because the paper is deep, because it is badly

written, or both!)

As well as writing notes, it is a good idea to mark

key sentences, theorems, and so on. I do this either by

putting a vertical line in the margin that delineates the

area of interest or by marking the relevant text with a

highlighter pen.

I write my notes on a hard copy of the paper. Many

programs are available that will allow you to annotate

PDF files on-screen, though using mathematical nota-

tion may be problematic; one solution is to handwrite

notes and then scan them in and append them to the

PDF file.

A good exercise, especially if you are inexperienced

at writing papers, is to write your own abstract for the

paper (100–200 words, say).

Writing while you read turns you from a passive

reader into an active one, and being an active reader

helps you to understand and remember the contents.

One useful technique is to try out special cases of

results. If a theorem is stated for analytic functions,

see what it says for polynomials or for the exponen-

tial. If a theorem is stated for n × n matrices, check

it for n = 1,2,3. Another approach is to ask yourself

what would happen if one of the conditions in a theo-

rem were to be removed: where would the proof break

down?

When you reach a point that you do not understand,

it may be best to jump to the end of the argument and

go back over the details later to avoid getting bogged

down. Keep in mind that some ideas and techniques

are so well known to researchers in the relevant field

that they might not be spelled out. If you are new to

the field you may at first need a bit of help from a more

experienced colleague to fill in what appear to be gaps

in arguments.

It is important to keep in mind that what you

are reading may be badly explained or just wrong.

Typographical errors are quite common, especially in

preprints and in papers that have not been copy edited.

Mathematical errors also occur, and even the best jour-

nals occasionally have to print corrections (“errata”) to

previously published articles.

In mathematical writing certain standard phrases are

used that have particular meanings. “It follows that” or

“it is easy to see that” mean that the next statement

can be proved without using any new ideas and that

giving the details would clutter the text. The detail may,

however, be tedious. The shorter “hence,” “therefore,”

or “so” imply a more straightforward conclusion. “It

can be shown that” again implies that details are not

felt to be worth including but is noncommittal about

the difficulty of the proof.

5 Documenting Your Reading

I advise keeping a record of which papers you have

read, even if you have read them only partially. If you

are a beginning Ph.D. student this may seem unnec-

essary, as at first you will be able to keep the papers

in your mind. But at some point you will forget which

papers you have read and having this information

readily available will be very useful.

A few decades ago papers existed only as hard copies,

and one would file them by author or subject. Today,

most papers are obtained as PDF downloads that can be

stored on our computers. Various computer programs

are available for managing collections of papers. One

of those, or a BibTEX database, can serve to record what

you have read and provide links to the PDF files.

6 Screen or Print?

Should you read papers on a computer screen or in

print form? This is a personal choice. People brought

up in the digital publishing era may be happy read-

ing on-screen, but others, such as me, may feel that

they can properly read a paper only in hard copy form.

There is no doubt that hard copy allows easier view-

ing of multiple pages at the same time, while a PDF

file makes it easier to search for a particular term

and can be zoomed to whatever size is most comfort-

able to read. It is important to try both and use what-

ever combination of screen and print works best for

you.
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If you do read on-screen, keep in mind that most PDF
readers allow you to customize the colors. White or yel-
low text on a black background may be less strain on
the eyes than the default black on white. In Adobe Acro-
bat the colors can be changed with the menu option
Preferences–Accessibility–Document Colors Options.

7 Reading for Writing

One of the reasons to read is to become a better writer.
When you read an article that you think is particu-
larly well written, analyze it to see what techniques,
words, and phrases seemed to work so well. Reading
also expands your knowledge and experience, and can
improve your ability to do research. Donald Knuth put
it well when he said:

In general when I’m reading a technical paper . . . I’m
trying to get into the author’s mind, trying to figure
out what the concept is. The more you learn to read
other people’s stuff, the more able you are to invent
your own in the future.

8 What Next?

Having read the paper you should ask yourself not only
what the authors have achieved but also what questions
remain. Can you identify open questions that you could
answer? Can you see how to combine ideas from this
paper with other ideas in a new way? Can you obtain
stronger or more general results?

VIII.3 How to Write a General Interest
Mathematics Book
Ian Stewart

I’ve always wanted to write a book.
Then why don’t you?

—Common party conversation

Popular science is a well-developed genre in its own
right, and popular mathematics is an established sub-
genre. Several hundred popular mathematics books
now appear every year, ranging from elementary intro-
ductions through school-level topics to substantial vol-
umes about research breakthroughs. Writing about
mathematics for the general public can be a rewarding
experience for anyone who enjoys and values commu-
nication. Established authors include journalists, teach-
ers, and research mathematicians; subjects are limited
only by the imagination of authors and publishers’
assessments of what booksellers are willing to stock.

Even that is changing as the growth of e-books opens
the way for less orthodox offerings. The style may be
serious or lighthearted, preferably avoiding extremes
of solemnity or frivolity. On the whole, most academic
institutions no longer look down on “outreach” activi-
ties of this kind, and many place great value on them,
both as publicity exercises and for their educational
aspects. So do government funding bodies.

1 What Is Popular Mathematics?

For many people the phrase is an oxymoron. To them,
mathematics is not popular. Never mind: populariza-
tion is the art of making things popular when they were
not originally. It is also the art of presenting advanced
material to people who are genuinely interested but
do not have the technical background required to read
professional journals. Generally speaking, most popu-
lar mathematics books address this second audience. It
would be wonderful to write a book that would open up
the beauty, power, and utility of mathematics to people
who swore off the subject when they were five, hate it,
and never want to see it or hear about it again—but, by
definition, very few of them would read such a book, so
you would be wasting your time.

Already we see a creative tension between the wishes
of the author and the practicalities of publishing. As e-
books start to take off, the whole publication model is
changing. One beneficial aspect is that new kinds of
book start to become publishable. If an e-book fails
commercially, the main thing wasted is the author’s
time and energy. That may or may not be an issue—an
author with a track record can use his/her time to bet-
ter effect by avoiding things that are likely to fail—but
it will not bankrupt the publisher.

Popular mathematics is a genre, a specific class of
books with common features, attractive to fans and
often repellent to everybody else. In this respect it is
on a par with science fiction, detective novels, roman-
tic fantasy, and bodice rippers. Genres have their own
rules, and although these rules may not be explicit, fans
notice if you break them. If you want to write a popu-
lar mathematics book, it is good preparation to read a
few of them first. Many writers started that way; they
began as fans and ended up as authors, motivated by
the books they enjoyed reading.

Most popular mathematics books fall into a relatively
small number of types. Many fall into several simulta-
neously. The rest are as diverse as human imagination
can make them. The main classifiable types are:
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(1) Children’s books.

(a) Basic school topics.

(b) More exciting things.

(2) History.

(3) Biography.

(4) Fun and games.

(5) Big problems.

(6) Major areas.

(a) Classical.

(b) Modern.

(7) Applications.

(8) Cultural links.

(9) Philosophy.

Children’s books are a special case. They involve many

considerations that are irrelevant to books for adults,

such as deciding which words are simple enough to

include—I will say no more about them, lacking expe-

rience. Histories and biographies have a natural advan-

tage over more technical types of books: there is gen-

erally plenty of human interest. (If not, you chose the

wrong topic or the wrong person.) Books about fun

and games are lighthearted, even if they have a more

serious side. Martin Gardner was the great exponent

of this form of writing. Authors have written in depth

about individual games, while others have compiled

miscellanies of “fun” material.

Big problems, and major areas of mathematical

research, are the core of popular mathematics. Exam-

ples are Fermat’s last theorem, the Poincaré conjec-

ture, chaos, and fractals. To write about such a topic

you need to understand it in more depth than you

will reveal to your readers. That will give you confi-

dence, help you find illuminating analogies, and gen-

erally grease the expository wheels. You should choose

a topic that is timely, has not been exhausted by oth-

ers, and stands some chance of being explained to a

nonexpert. Within both of these subgenres you can

present significant topics from the past—Fourier analy-

sis, say—or you can go for the latest hot research area—

wavelets, maybe. It is possible to combine both if there

is a strong historical thread from past to present.

It is always easier to explain a mathematical idea

if it has concrete applications. People can relate to

the applications when the mathematics alone starts

to become impenetrable. The same goes for cultural

links, such as perspective in Renaissance art and the

construction of musical scales.

Finally, there are deep conceptual issues, “philosoph-
ical” aspects of mathematics: infinity, many dimen-
sions, chance, proof, undecidability, computability.
Even simple ideas like zero or the empty set could form
the basis of a really fascinating book, and have done
so. The main thing is to have something to say that is
worth saying. That is true for all books, but it is espe-
cially vital for philosophical ones, which can otherwise
seem woolly and vague.

2 Why Write a Popular Mathematics Book?

Authors write for many reasons. When Frederik Pohl,
a leading science fiction writer, was being inducted
into the U.S. military he was asked his profession and
replied “writer.” This was received with a degree of con-
cern; writers are often impractical idealists who criti-
cize everything and cause trouble. So Pohl was asked
why he wrote. “To make money,” he replied. This was
received with relief as an entirely sensible and com-
prehensible reason. Another leading American writer,
Isaac Asimov, produced more than 300 books of sci-
ence fiction, popular science, and other genres. When
asked why he wrote so many books, he replied that he
found it impossible to stop. He also went out of his
way not to recommend his prolific approach to anyone
else. Some authors write one book and are satisfied,
even if it becomes a best seller; others keep writing
whether or not they receive commercial success. Some
write one book and vow never to repeat the experience.
Some want to put a message across that strikes them
as being of vital importance—a new area of mathemat-
ics, a social revolution, a political innovation. Some just
like writing. There are no clear archetypes, no hard and
fast rules; everything is diverse and fluid.

The best reason for writing a popular mathematics
book, in my opinion, is that you desperately want to tell
the world about something you find inspiring and inter-
esting. Books work better when the author is excited
and enthusiastic about the topic. The excitement and
enthusiasm will shine through of their own accord, and
it is best not to be too explicit about them. Far too many
television presenters seem to imagine that if they keep
telling the viewers how excited they are, viewers will
also become excited. This is a mistake. Do not tell them
you are excited; show them you are. It is the same with
a book. Tell the story, bring out its inherent interest,
and you are well on the way. Popularization is not about
making mathematics fun (interesting, useful, beautiful,
…); it is about showing people that it already is fun
(interesting, useful, beautiful, …).
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In the past I have called mathematics the Cinderella

science. It does all the hard work but never gets to go to

the ball. Our subject definitely suffers, compared with

many, because of a negative image among a large sec-

tor of the public. One reason for writing mathematics

books for general readers is to combat this image. It

is mostly undeserved, but as a profession, mathemati-

cians do not always help their own cause. Even nowa-

days, when some area of mathematics attracts atten-

tion from the media, some mathematicians immedi-

ately go into demolition mode and complain loudly

about “hype,” exaggeration, and lack of precision.

When James Gleick’s Chaos became a best seller,

and the U.S. government noticed and began consid-

ering increasing the funding for nonlinear dynamics,

a few distinguished mathematicians went out of their

way to inform the government that it was all nonsense

and the subject should be ignored. This might have

been a good idea if they had been right—not about the

popular image of “chaos theory,” which was at best a

vague approximation to the reality, but about the real-

ity itself—but they were wrong. Nonlinear dynamics, of

which chaos is one key component, is one of the great

success stories of the late twentieth century, and it is

powering ahead into the twenty-first. I remember one

letter to a leading mathematics journal claiming that

chaos and fractals had no applications whatsoever at

a time when you could not open the pages of Science

or Nature without finding papers that made excellent

scientific use of these topics. Conclusion: many math-

ematicians have no idea what is going on in the rest of

the scientific world, perhaps because they do not read

Science or Nature.

To ensure that our subject is valued and supported,

we mathematicians need to explain to ordinary people

that mathematics is vital to their society, to their eco-

nomic and social welfare, to their health, and to their

children’s future. No one else is going to do it for us. But

we will not succeed if no one is allowed to mention a

manifold without explaining that it has to be Hausdorff

and paracompact as well as locally Euclidean. We have

to grab our audience’s attention with things they can

understand; that necessarily implies using imprecise

language, making broad-brush claims, and selecting

areas that can be explained simply rather than others

of equal or greater academic merit that cannot.

I am not suggesting that we should mislead the pub-

lic about the importance of mathematics. But whenever

a scientific topic attracts public attention, its media

image is seldom a true reflection of the technical real-
ity. Provided the technical reality is useful and impor-
tant, a bit of overexcitement does no serious harm. By
all means try to calm it down but not at the expense of
ruining the entire enterprise. Grabbing public attention
and then leveraging that (as the bankers would say) into
a more informed understanding is fine. Grabbing public
attention and then self-destructing because a few fine
points have not quite been understood is silly.

3 Choosing a Topic

An article on popular writing is especially appropri-
ate in a companion to applied mathematics because
most people understand mathematics better if they
can see what it is good for. This is one reason why
chaos and fractals have grabbed public attention but
algebraic K-theory has not. This is not a value judg-
ment; algebraic K-theory is core mathematics, hugely
important—it may even be more important than non-
linear dynamics. But there is little point in arguing their
relative merits because each enriches mathematics. We
are not obliged to choose one and reject the other. As
research mathematicians, we probably do not want to
work in both, but it is not terribly sensible to insist that
your own area of mathematics is the only one that mat-
ters. Think how much competition there would be if
everyone moved into your area. This happens quite a
lot in physics, and at times it turns the subject into a
fashion parade.

The key to most popular mathematics books is sim-
ple: tell a story.

In refined literary circles, the role of narrative is
often downplayed. Whatever you think of Finnegans
Wake, few would consider it a rip-roaring yarn. But
popular science, like all genre writing, does not move
in refined literary circles. What readers want, what
authors must supply, is a story. Well, usually: all rules
in this area have exceptions. In genre writing, humans
are not Homo sapiens, wise men. They are Pan narrans,
storytelling apes. Look at the runaway success of The
Da Vinci Code—all story and little real sense.

A story has structure. It has a beginning, a middle,
and an end. It often involves a conflict and its eventual
resolution. If there are people in it, that is a plus; it is
what made Simon Singh’s Fermat’s Last Theorem a best
seller. But the protagonist of your book could well be
the monster simple group or the four-color theorem.
Human interest helps, in some subgenres, but it is not
essential.
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4 How to Write for the General Public

I wish I knew.

The standard advice to would-be authors is to ask,
Who am I writing for? In principle, that is sound advice,
but in practice there is a snag: it is often impossible
to know. You may be convinced you are writing for
conscientious parents who want to help their teenage
children pass mathematics exams. The buying pub-
lic may decide, by voting with their wallets, that the
correct audience for your book is retired lawyers and
bank managers who always regretted not knowing a
bit more mathematics and have spotted an opportu-
nity to bone up on the subject now that they have got
the time.

Some books are aimed at specific age groups—young
children, teenagers, adults—and of course you need to
bear the age of your readers in mind if you are writing
that kind of book. But for the majority of popular math-
ematics books, the audience turns out to be very broad,
not concentrated in any very obvious demographic, and
difficult to characterize. “The sort of people who buy
popular math books” is about as close as you can get,
so I do not think you should worry too much about your
audience.

The things that matter most are audience indepen-
dent. Write at a consistent level. If the first chapter of
your book assumes the reader does not know what a
fraction is and chapter two is aboutp-adic cohomology,
you may be in trouble. The traditional advice to col-
loquium lecturers—start with something easy so that
everyone can follow; then plough into the technicali-
ties for the experts—was always bad advice even for
colloquia because it lost most of the audience after five
minutes of trivia. It is a complete disaster for a popular
mathematics book.

It is common for the level of difficulty to ramp up
gradually as the book progresses. After all, your reader
is gaining insight into the topic as your limpid prose
passes through their eyeballs to their brain. Chapter 10
ought to be a bit more challenging than chapter 1; if it
is not, you are not doing your job properly.

One useful technique—when writing anything, be it
for the public or for the editors and readers of the
Annals of Mathematics—is self-editing. You need to
develop an editor’s instincts and apply them to your
own work. You can do it as you go, rejecting poor sen-
tences before your fingers touch the keyboard, but I
find that slows me down and can easily lead to “writer’s
block.” I hardly ever suffer from that affliction because

I leave the Maoist self-criticism sessions for later. The
great mathematical expositor Paul Halmos always said
that the key to writing a book was to write it—however
scruffily, however badly organized. When you have got
most of it down on paper, or in the computer, you can
go through the text systematically and decide what is
good, what is bad, what is in the wrong place, what is
missing, or what is superfluous. It is much easier to
sort out these structural issues if you have something
concrete to look at.

Word processors have made this process much eas-
ier. I generally write 10–15% more words than the book
needs and then throw the excess away. I find it is
quicker if I do that than if I agonize over each sen-
tence as I type it. As George Bernard Shaw wrote: “I’m
sorry this letter is so long, I didn’t have time to make it
shorter.” When editing your work, here are a few things
to watch out for.

• If you are using a term that you have not explained
already, and it seems likely to puzzle readers, find
a place to set it up. It might be a few chapters back;
it might be just before you use it. Whatever you do,
do not put it in the middle of the thing you are using
it for; that can be distracting: “Poincaré conjec-
tured that if a three-dimensional manifold (that is,
a space … [several sentences] … three coordinates,
that is, numbers that … [several sentences] … a
kind of generalized surface) such that every closed
loop can be shrunk to a point…” is unreadable.

• If some side issue starts to expand too much, as you
add layer upon layer of explanation, ask whether
you really need it. David Tall and I spent ten years
struggling to explain the basics of homology in a
complex analysis book for undergraduates without
getting into algebraic topology as such. Eventually
we realized we could omit that chapter altogether,
whereupon we finished the book in two weeks.

• If you are really proud of the classy writing in some
section, worry that it might be overwritten and dis-
tracting. Cut it out (saving it in case you decide to
put it back later) and reread the result. Did you
need it? “Fine writing” can be the enemy of effective
communication.

• Above all, try to keep everything simple. Put your-
self in the shoes of your reader. What would they
want you to explain? Do you need the level of detail
you have supplied? Would something less specific
do the same job? Do not start telling them about
the domain and range of a function if all they need
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to know is that a function is a rule for turning one
number into another. They are not going to take an
exam.

• Do not forget that many ideas that are bread and
butter to you (increment cliché count) are things
most people have never heard of. You know what a
factorial is; they may not. You know what an equiv-
alence relation is; most of your readers do not.
They can grasp how to compose two loops, or even
homotopy classes, if you tell them to run along one
and then the other but not if you give them the
formula.

• It is said that the publishers of Stephen Hawking’s
A Brief History of Time told him to avoid equa-
tions, every one of which would allegedly “halve his
sales.” To some extent this advice was based on the
publisher’s hang-ups rather than on what readers
could handle. Look at Roger Penrose’s The Road to
Reality, a huge commercial success with equations
all over most pages. However, Hawking’s publish-
ers had a point: do not use an equation if you can
say the same thing in words or pictures.

Your main aims, to which any budding author of pop-
ular science should aspire, are to keep your read-
ers interested, entertain them, inform them, and—the
ultimate—make them feel like geniuses. Do that, and
they will think that you are a genius.

5 Technique

Every author develops his or her own characteristic
style. The style may be different for different kinds of
books, but there is not some kind of universal house
style that is perfect for a book of a given kind. Some
people write in formal prose, some are more conversa-
tional in style (my own preference), some go for excite-
ment, some like to keep the story smooth and calm.
On the whole, it is best to write in a natural style—one
that you feel comfortable with—otherwise you spend
most of the time forcing words into what for you are
unnatural patterns when you should be concentrating
on telling the story.

There are, however, some useful guidelines. You do
not need to follow them slavishly; the main point here
is to illustrate the kinds of issues that an author should
be aware of.

Use correct grammar. If in doubt, consult a stan-
dard reference such as Fowler’s Modern English Usage.
Bear in mind that some aspects of English usage have
changed since his day. Be aware that informal language

is often grammatically impure, but even when writing
informally, be a little conservative in that respect. For
example, it is impossible nowadays to escape phrases
like “the team are playing well.” Technically, “team” is
singular, and the correct phrase is “the team is playing
well.” Sometimes the technically correct usage sounds
so pedantic and awkward that it might be better not
to use it, but on the whole it is better to be correct. At
all costs avoid being inconsistent: “the team is playing
well and they have won nine of its last ten games.”

I have some pet hates. “Hopefully” is one. It can be
used correctly, meaning “with hope,” but much more
often it is used to mean “I hope that,” which is wrong.
“The fact that” is another: it is almost always a sign
of sloppy sentence construction, and most of the time
it is verbose and unnecessary. Replace “in view of the
fact that” and similar phrases by the simple English
word “because.” Try deleting “the fact” and leaving just
“that.” If that fails to work, you can usually see an easy
way to fix things up. Another unnecessarily convoluted
phrase is “the way in which.” Plain “how” usually does
the same job, better.

Avoid Latin abbreviations: e.g., i.e., etc. They are obso-
lete even in technical mathematical writing—Latin is
no longer the language of science—and they certainly
have no place in popular writing. Replace with plain
English. The writing will be easier to understand and
less clumsy. Avoid clichés (Wikipedia has links to lists),
but bear in mind that it is impossible to avoid them
altogether. Attentive readers will find some in this arti-
cle: “bear in mind” for example! Stay away from crass
ones like “run it up the flagpole,” and keep your cliché
quotient small.

Metaphors and analogies are great … provided they
work. “DNA is a double helix, like two spiral staircases
winding around each other” conveys a vivid image—
although it is perilously close to being a cliché. Do not
mix metaphors: I once wrote “the Galois group is a vital
weapon in the mathematician’s toolkit” and a helpful
editor explained that weapons belong in an armory and
“vital” they are not. The human mind is a metaphor
machine; it grasps analogies intuitively, and its demand
for understanding can often be satisfied by finding an
analogy that goes to the heart of the matter. A well-
chosen analogy can make an entire book. A poor one
can break it.

Those of us with an academic background need to
work very hard to avoid standard academic reflexes.
“First tell them what you are going to tell them, then
tell them, then tell them what you have told them”
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is fine for teaching—and a gesture in that direction
can help readers make sense of a chapter, or even
an entire book—but the reflex can easily become for-
mulaic. Worse, it can destroy the suspense. Imagine
if Romeo and Juliet opened with “Behold! Here comes
Romeo! He will take a sleeping potion and fair Juliet
will think him dead and kill herself.”

Some sort of road map often helps readers under-
stand what you are doing. My recent Mathematics of
Life opens with this:

Biology used to be about plants, animals, and insects,
but five great revolutions have changed the way scien-
tists think about life.

A sixth is on its way.
The first five revolutions were the invention of

the microscope, the systematic classification of the
planet’s living creatures, evolution, the discovery of
the gene, and the structure of DNA. Let’s take them in
turn, before moving on to my sixth, more contentious,
revolution.

The reader, thus informed, understands why the next
few chapters, in a book ostensibly about mathematics,
are about historical high points of biology. Notice that I
did not tell them what revolution six is. It is mathemat-
ics, of course, and if they have read the blurb on the
back of the book they will know that, but you do not
need to rub it in.

Writing a popular science book is not like writing a
textbook; it is closer to fiction. You are telling a story,
not teaching a course. You need to think about pacing
the story and about what to reveal up front and what to
keep up your sleeve. Your reader may need to know that
a manifold is a multidimensional analogue of a surface,
and you may have to simplify that to “curved many-
dimensional space.” Do not start talking about charts
and atlases and C∞ overlap maps; avoid all mention
of “paracompact” and “Hausdorff.” To some extent, be
willing to tell lies: lies of omission, white lies that slide
past technical considerations that would get in the way
if they were mentioned. Jack Cohen and I call this tech-
nique “lies to children.” It is an educational necessity:
what experts need to know is different from what the
public needs to know.

Above all, remember that you are not trying to teach
a class. You are trying to give an intelligent but unin-
formed person some idea of what is going on.

6 How Do I Get My Book Published?

Experienced writers know how to do this. If you are
a new writer, it is probably better at present to work

with a recognized publisher. However, this advice could
well become obsolete as e-books grow in popularity.
A publisher will bear the cost of printing the book,
organize publicity and distribution, and deal with the
publication process. In return it will keep most of the
income, passing on about 10% to the author in the
form of royalties. An alternative is to publish the book
yourself through Web sites that print small quanti-
ties of books at competitive prices. The stigma that
used to be attached to “vanity publishing” is fast dis-
appearing as more and more authors cut out the mid-
dle man. You will have to handle the marketing, prob-
ably using a Web site, but distribution is no longer
a great problem thanks to the Internet. An even sim-
pler method is to publish your work as an e-book.
Amazon offers a simple publishing service; the author
need do little more than register, upload a Word file,
proofread the result, and click the “publish” button.
At the moment the author gets 70% of all revenue.
Many authors’ societies are starting to recommend this
method of publication.

Assuming that you follow the traditional route, you
will need to make contact with one or more publish-
ers. An agent will know which publishers to approach
and will generally make this process quicker and
more effective. The agency fee (between 10% and 20%)
is usually outweighed by improved royalty rates or
advances, where the publisher pays an agreed sum that
is set against subsequent royalties. The advance is not
refundable provided the book appears in print, but you
will not receive further payment until the book “earns
out.” Advice about finding an agent (and much else) can
be obtained from authors’ societies. In the absence of
an agent, find out which publishers have recently pro-
duced similar types of books. Send an outline and per-
haps a sample chapter, with a short covering letter. If
the publisher is interested, an editor will reply, typically
asking for further information. This may take a while;
if so, be patient, but not if it is taking months.

If a publisher accepts your book, it will send a con-
tract. It always looks official, but you should not hes-
itate to tear it to pieces and scribble all over it. By
all means negotiate with the publisher about these
changes, but if you do not like it, do not sign it. Read the
contract carefully, even if your agent is supposed to do
this for you. Delete any clauses that tie your hands on
future books, especially “this will be the author’s next
book.” A few publishers routinely demand an option on
your next work: authors should equally routinely cross
out that clause. Try to keep as many subsidiary rights
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(translations, electronic, serializations, and so on) as
you can, but be aware that you may have to grant them
all to the publisher before it agrees to accept your book.
Some compromises are necessary.

7 Organization

Different authors write in different ways. Some set
themselves a specific target of, say, 2000 words per day.
Some write when they are in the mood and keep going
until the feeling disappears. Some start at the front and
work their way through the book page by page. Some
jump in at random, writing whichever section appeals
to them at the time, filling in the gaps later.

A plan, even if it is a page of headings, is almost indis-
pensable. Planning a book in outline helps you decide
what it is about and what should go in it. Popular sci-
ence books usually tell a story, so it is a good idea to
sort out what the main points of the story are going to
be. However, most books evolve as they are being writ-
ten, so you should think of your plan as a loose guide,
not as a rigid constraint. Be willing to redesign the plan
as you proceed. Your book will talk to you; listen to
what it says.

To avoid writer’s block—a common malady in which
the same page is rewritten over and over again, get-
ting worse every time, until the author grids to a
halt, depressed—avoid rewriting material until you
have completed a rough draft of the entire book. You
will have a far better idea of how to rewrite chap-
ter 1 when you have finished chapter 20. When you
are about halfway through, the rest is basically down-
hill and the writing often gets easier. Do not put off
that feeling by being needlessly finicky early on. Once
you know you have a book, tidying it up and improv-
ing it becomes a pleasure. Terry Pratchett called this
“scattering fairydust.”

8 What Else You Will Have to Do

Your work is not finished when you submit the final
manuscript (typescript, Word file, LATEX file, whatever).
It will be read by an editor, who may suggest broad
changes: “move chapter 4 after chapter 6,” “cut chap-
ter 14 in half,” “add two pages about the origin of
topology,” and so on. There will also be a copy edi-
tor, whose main job is to prepare the manuscript for
the printer and to correct typographical, factual, and
grammatical errors. Some of them may suggest minor
changes: “Why not put in a paragraph telling readers

what a Möbius band is?” Many will change your punctu-
ation, paragraphing, and choice of words. If they seem
to be overdoing this—this is happening when you feel
they are imposing their own style, instead of prepar-
ing yours for the printer—ask them to stop and change
everything back the way it was. It is your book.

After several months proofs will arrive, to be read
and corrected. Often the time allowed will be short. The
publisher will issue guidelines about this process, such
as which symbols to use and which color of ink. (Many
still work with paper copy. Others will send a PDF file,
or a Word file with “track changes” enabled, and explain
how they want you to respond.) Avoid making further
changes to the text, unless absolutely necessary, even
if you have just thought of a far better way to explain
what cohomology is. You may be charged for excessive
alterations that are not typesetting errors—see your
contract, about 25 sections in.

With the proofs corrected, you might think that you
have done your bit and can relax: you would be mis-
taken. Nowadays, books are released alongside a bar-
rage of publicity material: podcasts, webcasts, blogs,
tweets, and articles for printed media like New Scientist
or newspapers. Your publisher’s publicity department
will try to get you on radio or television, and it will
expect you to turn up for interviews if anyone bites.
You may be asked to give public lectures, especially
at literary festivals and science festivals. Your contract
may oblige you to take part in such activities unless you
have good reason not to or the demands become exces-
sive. It is part of the job, so do not be surprised. If it
seems to be getting out of hand, talk to your publisher.
It won’t be in the publisher’s best interest to wear you
out or take away too much time from writing another
book it can publish.

Always wanted to write a book? Then do so. Just be
aware of what you are letting yourself in for.

VIII.4 Workflow
Nicholas J. Higham

Workflow refers to everything involved in producing a
mathematical paper other than the actual research. It is
about the practicalities of how to do things, including
how best to use different kinds of software for differ-
ent tasks. The characteristics of a good workflow are
that it allows the end result to be achieved efficiently,
repeatably, and in a way that allows easy recovery from
mistakes.
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1 Typesetting: TEX and LATEX

In the days before personal computers, articles would
be handwritten, then typed on a typewriter by a secre-
tary, and ultimately typeset by a publisher. Nowadays,
almost every author prepares the article herself or him-
self on a computer, and the publisher works from the
author’s files. In many areas of academia it is the cus-
tom to use Microsoft Word, or an open-source equiv-
alent. In mathematics, computer science, and physics
LATEX has become the de facto standard.

TEX is a typesetting system invented by Donald Knuth
in the late 1970s that has a particular strength in han-
dling mathematics. LATEX is a macro package, written
originally by Leslie Lamport, that sits on top of TEX. A
TEX or LATEX file is an ASCII (plain text) file that contains
commands that specify how the output is to be format-
ted, and it must be compiled to produce the final output
(nowadays usually a Portable Document Format (PDF)
file). This contrasts with a WYSIWYG (“what you see is
what you get”) word processor, such as Microsoft Word,
that displays on the screen a representation of what
the output will look like. TEX allows finer control than
word processors (the latter are sometimes described as
“what you see is all you get”), and the ability of LATEX to
use style files that set various typesetting parameters
makes it very easy to adjust the format of an article
to match a particular journal. LATEX is also well suited
to large projects such as books. Indeed, this volume is
typeset in LATEX, and the editors and production editor
find it hard to imagine having produced the volume in
any other way.

Figure 1 shows some LATEX source code. Although how
the code is formatted makes no difference to the out-
put, it is good practice to make the source as readable
as possible, with liberal use of spaces. I like to start
new sentences on new lines, which makes it easier to
cut and paste them during editing.

TEX and LATEX are open-source software and are avail-
able in various distributions. In particular, the TEX Live
distribution is available for Windows, Linux, and Mac
systems (and as the augmented MacTEX for the latter).

How does one go about using LATEX? There are two
approaches. The first is to edit the LATEX source in a
general-purpose text editor such as Emacs, Vim, or a
system-specific text editor. Ideally, the editor is cus-
tomized so that its syntax highlights the LATEX source,
can directly compile the document, can pinpoint the
location of compilation errors in the source, and can
invoke a preview of the compiled document with two-

Polynomials are one of the simplest and most
familiar classes of functions and they find
wide use in applied mathematics.
A degree $n$ \py\
$$

p_n(x) = a_0 + a_1 x + \cdots + a_n xˆn
$$
is defined by its $n+1$ coefficients
$a_0,\dots,a_n \in \C$ (with $a_n \ne 0$).

Figure 1 LATEX source for part of the language of applied

mathematics [I.2 §14]. \py and \C are user-defined macros.
\cdots and \dots are built-in TEX macros. Dollar signs
delimit mathematics mode.

way synchronization between the location of the cur-
sor in the source and the page of the preview. I use
Emacs together with the AUCTEX and RefTEX packages,
which provides an extremely powerful LATEX environ-
ment; indeed I use Emacs for all my editing tasks, rang-
ing from programming to writing emails. A popular
alternative is to use a program designed specifically for
editing LATEX documents, which typically comes with an
integrated previewer. Such programs tend to be system
specific.

TEX compiles to its own DVI (device independent) file
format, which can then be translated into PostScript,
a file format commonly used for printing. The stan-
dard format for distributing documents is now PDF.
While PostScript can be converted to PDF, versions of
TEX and LATEX that compile directly to PDF are available
(typically invoked as pdftex and pdflatex). Whether
one is using the DVI-based or PDF-based versions of
LATEX affects how one generates graphics files for inclu-
sion in figures. For DVI, included figures are typically
in encapsulated PostScript format, whereas for PDF
graphics files are typically in PDF or JPEG format and
PostScript files are not allowed. I use a PDF workflow,
though the Companion itself uses DVI and PostScript,
because many of the figures in the book needed fine-
tuning and this is more easily done in PostScript than
in PDF. It is important to note that the Adobe Acrobat
program is not suitable for use as a PDF previewer in
the edit–compile–preview cycle as it does not refresh
the view when a PDF file is updated on disk. Various
open-source alternatives are available that do not have
this limitation.

2 Preparing a Bibliography

A potentially time-consuming and error-prone part of
writing a paper is preparing the bibliography, which
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@book{knut86,
author = "Donald E. Knuth",
title = "The {\TeX\ book}",
publisher = "Addison-Wesley",
address = "Reading, MA, USA",
year = 1986,
pages = "ix+483",
isbn = "0-201-13448-9"}

Figure 2 An example of a BibTEX bibliography entry.

contains the bibliographic details of the articles that
are cited. In a LATEX document the bibliography entries
are cited with a command of the form \cite{smit65},
where smit65 is a key that uniquely specifies the
entry in a bibliography environment that contains
the item being cited. LATEX has a companion program
called BibTEX that extracts bibliography entries from
a database contained in a bib file (an ASCII file of a
special structure with a .bib extension) and automati-
cally creates the bibliography environment. Figure 2
shows an example of a bib file entry. Using BibTEX is
a great time-saver and ensures accurate bibliographies,
assuming that the bib file is accurate and kept up to
date. Most journal Web sites allow BibTEX entries for
papers to be downloaded, so it is easy to build up a
personal bib file. There exist open-source BibTEX refer-
ence managers (such as JabRef) that facilitate creating
and maintaining bib files.

A digital object identifier (DOI) is a character string
that uniquely identifies an electronic document. It can
be resolved into a uniform resource locator (URL) by
preceding it with the string http://dx.doi.org/. Nowa-
days most papers (and many books) have DOIs and
many older papers have been assigned DOIs. A DOI
remains valid even if the location of the document
changes, provided that the publisher updates the meta-
data. It is recommended to record DOIs in BibTEX
databases, and it is then possible with the use of a suit-
able BibTEX style file and the LATEX hyperref package
to include clickable links in a paper’s bibliography (for
example, from a paper’s title).

3 Graphics

Mathematics papers often contain figures that plot
functions, depict physical setups, or graph experimen-
tal results. These can be produced in many different
ways. In a LATEX workflow one can generate a graphic
outside LATEX and then include it as an external JPEG,
PostScript, or PDF file or generate it from within LATEX.

The most popular LATEX packages for graphics are TikZ

and PGFPlots, which are built on top of the low-level

primitives provided by the PGF (portable graphics for-

mat) package. Most of the figures in part I of this vol-

ume were generated using these packages. A major

benefit of them is that they can incorporate LATEX com-

mands and fonts, thus providing consistency with the

main text. These powerful packages are not easy to

use, but one can usually find an example online that

provides a starting point for modification.

4 Version Control and Backups

Every good workflow contains procedures for making

regular backups of files and recording a history of dif-

ferent versions of the files. Backups store one or more

copies of the current version of key files on a separate

disk or machine, so that a hard disk failure or the loss

of a complete machine does not result in loss of files.

Version control serves a different purpose, which is to

record in a repository intermediate states of files so

that authors can revert to an earlier version of a file or

reinstate part of one. The use of the plural in “authors”

refers to the fact that version control systems allow

more than one user to contribute to a repository and

allow any user to check out the latest versions of files.

Although version control originated in software devel-

opment, it is equally useful for documents. As long as

the repository is kept on a different disk or machine,

version control also provides a form of backup.

Of course a simple version control system is to regu-

larly copy a file to another directory, renaming it with a

version number (paper1.tex, paper2.tex, . . . ). However,

this is tedious and error prone. A proper version con-

trol system keeps files in a database and stores only the

lines that have changed between one version and the

next. Popular version control systems include Git and

Subversion (SVN). Although these are command based

and can be difficult to learn, graphical user interfaces

(GUIs) are available that simplify their usage.

Microsoft Word’s “track changes” feature provides

annotations of who made what changes to a document

(and is a primitive and widely used form of version con-

trol). In LATEX a similar effect can be achieved by using

the latexdiff command-line program provided with

some LATEX distributions, which takes as input two dif-

ferent version of a LATEX file and produces a third LATEX

file that marks up the differences between them; see

figure 3 for an example.

http://dx.doi.org/
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Figure 3 Example of output from latexdiff.

5 Computational Experiments

In papers that involve computational experiments, one
needs to include figures or tables summarizing the
results. It is typical that as a paper is developed the
experiments are refined and repeated. One therefore
needs an efficient way to regenerate tables and figures.
Cutting and pasting the output of a program into the
paper is not a good approach. It is much better to make
the program output the results in a form that can be
directly included in the paper (e.g., via an \input com-
mand in LATEX). literate programming [VII.11] tech-
niques allow program code to be included within the
source code for a paper, and they automate the run-
ning of the programs and the insertion of the results
back into the paper source code.

6 Putting It All Together

Here are the things I do when I start to write a paper.
I create a directory (folder) with a name that denotes
the project in question. In that directory I copy a file
paper.tex from a recent paper that I have written and
use it as a template. I delete most of the content of
paper.tex but keep the macros and some of the basic
structural commands. I set up a repository in my ver-
sion control system and commit paper.tex to it. I cre-
ate a subdirectory for the computer programs I will
write and a subdirectory named figs into which the
PDF figures will be placed.

7 Presentations

As well as writing a paper about a piece of research, one
may want to give a presentation about it in a seminar
or at a conference. This will normally involve preparing
slides or a poster, although it is still sometimes possible
to give a blackboard talk. LATEX has excellent tools for
preparing slides and posters.

The Beamer class is the most widely used way to pre-
pare slides in LATEX. It can create overlays, allowing a

Figure 4 A Beamer slide.

slide to change dynamically (perhaps as an equation

is built up, a piece at a time). Slide color and back-

ground, and elements such as a header (which may con-

tain a mini-table of contents) and a footer, are all readily

customized. Figure 4 shows an example slide.

Various LATEX packages are available for producing

posters, at up to A0 paper size. A popular one is the

beamerposter package built on Beamer.

8 Collaboration

In the early days of the Internet the most common way

for authors to collaborate was to email documents back

and forth. A regularly encountered problem was that

Unix mailers would insert a greater than sign in front of

any word “from” that appeared at the start of a line of a

plain text message, so LATEX files would often have stray

> characters. For many people, email still serves as a

useful mechanism for collaborative writing, but more

sophisticated approaches are available. A file-hosting

service such as Dropbox enables a group of users to

share and synchronize a folder on their disks via the

cloud. Version control based on a shared repository

hosted on the Internet is the most powerful approach;

it is widely used by programmers (e.g., on sites such as

GitHub and SourceForge) and is increasingly popular

with authors of papers.

9 Workflow for This Book

I wrote my articles using Emacs and TEX Live, with all

files under version control with Git. I edited some of

my figures in Adobe Photoshop. The production editor/

typesetter, Sam Clark, used WinEdt and TEX Live with a
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PostScript-based workflow, editing PostScript figures in
Adobe Illustrator.

I produced a draft index for the articles that I
authored using LATEX indexing commands and the Make-
Index program. A professional indexer then expanded
the index to cover the whole book.

The font used for this book is Lucida Bright, which
has a full set of mathematical symbols that work well
in TEX. It is from the same family as the Lucida Grande
sans serif font that was used throughout the Mac OS X
user interface up until version 10.9.

Further Reading

Of the many good references on LATEX I recommend Grif-
fiths and D. J. Higham (1997) for a brief introduction
and Kopka and Daly (2004) for a more comprehensive
treatment. Knuth (1986) continues to be worth read-
ing, even for those who use only LATEX. Various aspects
of workflow are covered in Higham (1998). Version con-
trol is best explored with the many freely available Web
resources.

A good place to start looking for information about
TEX and LATEX is the Web site of the TEX Users Group,
http://tug.org. A large collection of LATEX packages is
available at the Comprehensive TeX Archive Network
(CTAN), http://www.ctan.org.

Griffiths, D. F., and D. J. Higham. 1997. Learning LATEX.
Philadelphia, PA: SIAM.

Higham, N. J. 1998. Handbook of Writing for the Mathemat-
ical Sciences, 2nd edn. Philadelphia, PA: SIAM.

Knuth, D. E. 1986. The TEXbook. Reading, MA: Addison-
Wesley.

Kopka, H., and P. W. Daly. 2004. Guide to LATEX, 4th edn.
Boston, MA: Addison-Wesley.

VIII.5 Reproducible Research in the
Mathematical Sciences
David L. Donoho and Victoria Stodden

1 Introduction

Traditionally, mathematical research was conducted
via mental abstraction and manual symbolic manipu-
lation. Mathematical journals published theorems and
completed proofs, while other sorts of evidence were
gathered privately and remained in the shadows. For
example, long after Riemann had passed away, his-
torians discovered that he had developed advanced
techniques for calculating the Riemann zeta function

and that his formulation of the Riemann hypothesis—
often depicted as a triumph of pure thought—was actu-
ally based on painstaking numerical work. In fact, Rie-
mann’s computational methods remained far ahead of
what was available to others for decades after his death.
This example shows that mathematical researchers
have been “covering their (computational) tracks” for
a long time.

Times have been changing. On the one hand, mathe-
matics has grown into the so-called mathematical sci-
ences, and in this larger endeavor, proposing new com-
putational methods has taken center stage and doc-
umenting the behavior of proposed methods in test
cases has become an important part of research activ-
ity (witness current publications throughout the mathe-
matical sciences, including statistics, optimization, and
computer science). On the other hand, even pure math-
ematics has been affected by the trend toward compu-
tational evidence; Tom Hales’s brilliant article “Math-
ematics in the age of the Turing machine” points to
several examples of important mathematical regulari-
ties that were discovered empirically and have driven
much subsequent mathematical research, the Birch and
Swinnerton-Dyer conjecture being his lead example.
This conjecture posits deep relationships between the
zeta function of elliptic curves and the rank of elliptic
curves, and it was discovered by counting the number
of rational points on individual elliptic curves in the
early 1960s.

We can expect that, over time, an ever-increasing
fraction of what we know about mathematical struc-
tures will be based on computational experiments,
either because our work (in applied areas) is explicitly
about the behavior of computations or because (in pure
mathematics) the leading questions of the day concern
empirical regularities uncovered computationally.

Indeed, with the advent of cluster computing, cloud
computing, graphics processing unit boards, and other
computing innovations, it is now possible for a re-
searcher to direct overwhelming amounts of computa-
tional power at specific problems. With mathematical
programming environments like Mathematica, MAT-
LAB, and Sage, it is possible to easily prototype algo-
rithms that can then be quickly scaled up using the
cloud. Such direct access to computational power is an
irresistible force. Reflect for a moment on the fact that
the Birch and Swinnerton-Dyer conjecture was discov-
ered using the rudimentary computational resources of
the early 1960s. Research in the mathematical sciences
can now be dramatically more ambitious in scale and

http://tug.org
http://www.ctan.org
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Figure 1 The number of lines of code published in ACM
Transactions on Mathematical Software, 1960–2012, on a
log scale. The proportion of articles that published code
remained roughly constant at about a third, with standard
error of about 0.12, and the journal consistently published
around thirty-five articles each year.

scope. This opens up very exciting possibilities for dis-

covery and exploration, as explained in experimental

applied mathematics [VIII.6].

The expected scaling up of experimental and com-

putational mathematics is, at the same time, problem-

atic. Much of the knowledge currently being generated

using computers is not of the same quality as tra-

ditional mathematical knowledge. Mathematicians are

very strict and demanding when it comes to under-

standing the basis of a theorem, the assumptions used,

the prior theorems on which it depends, and the chain

of inference that establishes the theorem. As it stands,

the way in which evidence based on computations is

typically published leaves “a great deal to the imagi-

nation,” and computational evidence therefore simply

does not have the same epistemological status as a

rigorously proved theorem.

Algorithms are becoming ever more complicated. Fig-

ure 1 shows the number of lines of code published in

the journal ACM Transactions on Mathematical Soft-

ware from 1960 to 2012. The number of lines has

increased exponentially, from 875 in 1960 to nearly

5 million in 2012, including libraries. The number

of articles in the journal that contain code has been

roughly constant; individual algorithms are requiring

ever more code, even though modern languages are

ever more expressive.

Algorithms are also being combined in increas-

ingly complicated processing pipelines. Individual algo-

rithms of the kind that have traditionally been docu-

mented in journal articles increasingly represent only

a small fraction of the code making up a computational

science project. Scaling up projects to fully exploit
the potential of modern computing resources requires
complex workflows to pipeline together numerous
algorithms, with problems broken into pieces and
farmed out to be run on numerous processors and
the results harvested and combined in project-specific
ways. As a result, a given computational project may
involve much infrastructure not explicitly described
in journal articles. In that environment, journal arti-
cles become simply advertisements: pointers to a com-
plex body of software development, experimental out-
comes, and analyses, in which there is really no hope
that “outsiders” can understand the full meaning of
those summaries.

The computational era seems to be thrusting the
mathematical sciences into a situation in which math-
ematical knowledge in the wide sense, also includ-
ing solidly based empirical discoveries, is broader and
more penetrating but far less transparent and far less
“common property” than ever. Individual researchers
report that over time they are becoming increasingly
uncertain about what other researchers have done and
about the strength of evidence underlying the results
those other researchers have published.

The phrase mathematical sciences contains a key to
improving the situation. The traditional laboratory sci-
ences evolved, over hundreds of years, a set of pro-
cedures for enabling the reproducibility of findings in
one laboratory by other laboratories. As the mathe-
matical sciences evolve toward ever-heavier reliance on
computation, they should likewise develop a discipline
for documenting and sharing algorithms and empirical
mathematical findings. Such a disciplined approach to
scholarly communication in the mathematical sciences
offers two advantages: it promotes scientific progress,
and it resolves uncertainties and controversies that
spread a “fog of uncertainty.”

2 Reproducible Research

We fully expect that in two decades there will be
widely accepted standards for communication of find-
ings in computational mathematics. Such standards are
needed so that computational mathematics research
can be used and believed by others.

The raw ingredients that could enable such standards
seem to already be in place today. Problem solving envi-
ronments (PSEs) like MATLAB, R, IPython, Sage, and
Mathematica, as well as open-source operating systems
and software, now enable researchers to share their
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code and data with others. While such sharing is not

nearly as common as it should be, we expect that it

soon will be.

In a 2006 lecture, Randall J. LeVeque described well

the moment we are living through. On the one hand,

many computational mathematicians and computa-

tional scientists do not work reproducibly:

Even brilliant and well-intentioned computational sci-
entists often do a poor job of presenting their work
in a reproducible manner. The methods are often very
vaguely defined, and even if they are carefully defined
they would normally have to be implemented from
scratch by the reader in order to test them. Most mod-
ern algorithms are so complicated that there is little
hope of doing this properly.

On the other hand, LeVeque continues, the ingredients

exist:

The idea of “reproducible research” in scientific com-
puting is to archive and make publicly available all of
the codes used to create the figures or tables in a paper
in such a way that the reader can download the codes
and run them to reproduce the results. The program
can then be examined to see exactly what has been
done. The development of very high level programming
languages has made it easier to share codes and gen-
erate reproducible research.. . . These days many algo-
rithms can be written in languages such as MATLAB in
a way that is both easy for the reader to comprehend
and also executable, with all details intact.

While the technology needed for reproducible re-

search exists today, mathematical scientists do not yet

agree on exactly how to use this technology in a dis-

ciplined way. At the time of writing, there is a great

deal of activity to define and promote standards for

reproducible research in computational mathematics.

A number of publications address reproducibility

and verification in computational mathematics; top-

ics covered include computational scale and proof

checking, probabilistic model checking, verification of

numerical solutions, standard methods in uncertainty

quantification, and reproducibility in computational

research. This is not an exhaustive account of the liter-

ature in these areas, of course, merely a starting point

for further investigation.

In this article we review some of the available tools

that can enable reproducible research and conclude

with a series of “best-practice” recommendations based

on modern examples and research methods.

3 Script Sharing Based on PSEs

3.1 PSEs Offer Power and Simplicity

A key precondition for reproducible computational
research is the ability for researchers to run the
code that generated results in some published paper
of interest. Traditionally, this has been problematic.
Researchers were often unprepared or unwilling to
share code, and even if they did share it, the impact
was minimal as the code depended on a specific com-
putational environment (hardware, operating system,
compiler, etc.) that others could not access.

PSEs like R, Mathematica, and MATLAB have, over the
last decade, dramatically simplified and uniformized
much computational science.

Each PSE offers a high-level language for describing
computations, often a language that is very compat-
ible with standard mathematical notation. PSEs also
offer graphics capabilities that make it easy to pro-
duce often quite sophisticated figures for inclusion in
research papers. The researcher is gaining extreme ease
of access to fundamental capabilities like matrix alge-
bra, symbolic integration and optimization, and sta-
tistical model fitting; in many cases, a whole research
project, involving a complex series of variations on
some basic computation, can be encoded in a few
compact command scripts.

The popularity of this approach to computing is
impressive. Figure 2 shows that the PSEs with the
most impact on research (by number of citations) are
the commercial closed-source packages Mathematica
and MATLAB, which revolutionized technical comput-
ing in the 1980s and 1990s. However, these systems are
no longer rapidly growing in impact, while the recent
growth in popularity of R and Python is dramatic.

3.2 PSEs Facilitate Reproducibility

As LeVeque pointed out in the quote above, a side effect
of the power and compactness of coding in PSEs is that
reproducible research becomes particularly straight-
forward, as the original researcher can supply some
simple command scripts to interested researchers, who
can then rerun the experiment or variations of it pri-
vately in their own local instances of the relevant
PSE.

In some fields, authors of research papers are already
heavily committed to a standard of reproducing results
in published papers by sharing PSE scripts. In statistics,
for example, papers often seek to introduce new tools
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Figure 2 The total number of hits on Google Scholar for
each of the four search terms: (a) “R software”, (b) MATLAB,
(c) Python, and (d) Mathematica. The search was carried out
for each year in the decade 2004–13. Note that the y-axes
are on different scales to show the increase or decrease
in software use over time. R and Python are open source,
whereas MATLAB and Mathematica are not.

that scientists can apply to their data. Many authors

would like to increase the visibility and impact of such

methodological papers and are persuaded that a good

way to do this is to make it as easy as possible for users

to try the newly proposed tools. Traditional theoretical

statistics journal papers might be able to expect cita-

tions in the single or low double digits; there are numer-

ous recent examples of articles that were supplemented

by easy access to code and that obtained hundreds

of readers and citations. It became very standard for
authors in statistics to offer access to code using pack-
ages in one specific PSE, R. To build such a package,
authors document their work in a standard LATEX for-
mat and bundle up the R code and documentation in
a defined package structure. They post their package
on CRAN, the Comprehensive R Archive Network. All
R users can access the code from within R by simple
invocations (require("package_name")) that direct
R to locate, download, and install the package from
CRAN. This process takes only seconds. Consequently,
all that a user needs to know today to begin applying
a new methodology is the name of the package. CRAN
offered 5519 packages as of May 8, 2014. A side effect
of authors making their methodology available in order
to attract readers is, of course, that results in their
original articles may become easily reproducible.1

3.3 Notebooks for Sharing Results

A notebook interface to a PSE stores computer instruc-
tions alongside accompanying narrative, which can
include mathematical expressions, and allows the user
to execute the code and store the output, including fig-
ures, all in one document. Because all the steps leading
to the results are saved in a single file, notebooks can
be shared online, which provides a way to communicate
reproducible computational results.

The Jupyter Notebook (formerly known as the IPy-
thon Notebook), provides an interface to back-end com-
putations, for example in Python or R, that displays
code and output, including figures, with LATEX used to
typeset mathematical notation (see figure 3). A Jupyter
Notebook permits the researcher to track and docu-
ment the computational steps that generate results and
can be shared with others online using nbviewer (see
http://nbviewer.ipython.org).

4 Open-Source Software: A Key Enabler

PSEs and notebook interfaces are having a very substan-
tial effect in promoting reproducibility, but they have
their limits. They make many research computations

1. In fields like statistics, code alone is not sufficient to reproduce
published results. Computations are performed on data sets from spe-
cific scientific projects; the data may result from experiments, surveys,
or costly measurements. Increasingly, data repositories are being used
by researchers to share such data across the Internet. Since 2010, arXiv
has partnered with Data Conservancy to facilitate external hosting of
data associated with publications uploaded to arXiv (see, for example,
http://arxiv.org/abs/1110.3649v1, where the data files are accessible
from the paper’s arXiv page). Such practices are not yet widespread,
but they are occurring with increasing frequency.

http://nbviewer.ipython.org
http://arxiv.org/abs/1110.3649v1
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Figure 3 A snapshot of the interactive Jupyter Notebook.

convenient and easy to share with others, but ambi-
tious computations often demand more capability than
they can offer. Historically, this would have meant that
ambitious projects had to be idiosyncratically coded
and difficult to export to new computing environments.

The open-source revolution has largely changed this.
Today, it is often possible to develop all of an ambitious
computational project using code that is freely avail-
able to others. Moreover, this code can be hosted on an
open-source operating system (Linux) and run within a
standard virtual machine that hides hardware details.
The open-source “spirit” also makes researchers more
open to sharing code; attribution-only open-source
licenses may also allow them to do this while retain-
ing some assurance that the shared code will not be
misappropriated.

Several broad classes of software are now being
shared in ways that we describe in this section. These
various classes of software are becoming, or have
already become, part of the standard approaches to
reproducible research.

4.1 Fundamental Algorithms and Packages

In table 1 we consider some of the fundamental prob-
lems that underly modern computational mathemat-
ics, such as fast fourier transforms [II.10], lin-

ear equations [IV.10], and nonlinear optimization

[IV.11], and we give examples of some of the many
families of open-source codes that have become avail-
able for enabling high-quality mathematical computa-
tion. The table includes the packages’ inception dates,

their current release numbers, and the total numbers of
citations that the packages have garnered since incep-
tion.2 The different packages within each section of the
table may offer very different approaches to the same
underlying problem. As the reader can see, a stagger-
ing amount of basic functionality is being developed
worldwide by many teams and authors in particular
subdomains, and it is being made available for broad
use. The citation figures in the table testify to the sig-
nificant impact these enablers are having on published
research.

4.2 Specialized Systems

The packages tabulated in table 1 are broadly useful
in computational mathematics; it is perhaps not sur-
prising that developers would rise to the challenge of
creating such broadly useful tools. We have been sur-
prised to see the rise of systems that attack very spe-
cific problem areas and offer extremely powerful envi-
ronments to formulate and solve problems in those
narrow domains. We give three examples.

4.2.1 Hyperbolic Partial Differential Equations (PDEs)

Clawpack is an open-source software package designed
to compute numerical solutions to hyperbolic PDEs
using a wave propagation approach. According to the
system’s lead author, Randall J. LeVeque, “the devel-
opment and use of the Clawpack software implement-
ing [high-resolution finite-volume methods for solving
hyperbolic PDEs] serves as a case study for a more gen-
eral discussion of mathematical aspects of software
development and the need for more reproducibility in
computational research.”

The package has been used in the creation of repro-
ducible mathematical research. For example, the fig-
ures for LeVeque’s book Finite Volume Methods for
Hyperbolic Problems were generated using Clawpack;
instructions are provided for recreating those figures.

Clawpack is now a framework that offers numerous
extensions including PyClaw (with a Python interface to
a number of advanced capabilities) and GeoClaw (devel-
oped for tsunami modeling [V.19] and the modeling
of other geophysical flows). Open-source software prac-
tices have apparently enabled not only reproducibility
but also code extension and expansion into new areas.

2. The data for citation counts was collected via Google Scholar in
August 2013. Note that widely used packages such as LAPACK, FFTW,
ARPACK, and Suitesparse are built into other software (e.g., MATLAB),
which do not generate citations for them directly.
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Table 1 Software for some fundamental problems
underlying modern computational mathematics.

Year of Current
Package inception release Citations

Dense linear algebra
LAPACK 1992 3.4.2 7600
JAMA 1998 1.0.3 129
IT++ 2006 4.2 14
Armadillo 2010 3.900.7 105
EJML 2010 0.23 22
Elemental 2010 0.81 51

Sparse-direct solvers
SuperLU 1997 4.3 317
MUMPS 1999 4.10.0 2029
Amesos 2004 11.4 104
PaStiX 2006 5.2.1 114
Clique 2010 0.81 12

Krylov-subspace eigensolvers
ARPACK 1998 3.1.3 2624
SLEPc 2002 3.4.1 293
Anasazi 2004 11.4 2422
PRIMME 2006 1.1 61

Fourier-like transforms
FFTW 1997 3.3.3 1478
P3DFFT 2007 2.6.1 14
DIGPUFFT 2011 2.4 17
DistButterfly 2013 27
PNFFT 2013 215

Fast multipole methods
KIFMM3d 2003 1780
Puma-EM 2007 0.5.7 32
PetFMM 2009 29
GemsFMM 2010 16
ExaFMM 2011 28

PDE frameworks
PETSc 1997 3.4 2695
Cactus 1998 4.2.0 669
deal.II 1999 8.0 576
Clawpack 2001 4.6.3 131
Hypre 2001 2.9.0 384
libMesh 2003 0.9.2.1 260
Trilinos 2003 11.4 3483
Feel++ 2005 0.93.0 405
Lis 2005 1.4.11 29

Finite-element analysis
Code Aster 11.4.03 48
CalculiX 1998 2.6 69
deal.II 1999 8.0 576
DUNE 2002 2.3 325
Elmer 2005 6.2 97
FEniCS Project 2009 1.2.0 418
FEBio 2010 1.6.0 32

Table 1 (Continued.)

Year of Current
Package inception release Citations

Optimization
MINUIT/MINUIT2 2001 94.1 2336
CUTEr 2002 r152 1368
IPOPT 2002 3.11.2 1517
CONDOR 2005 1.11 1019
OpenOpt 2007 0.50.0 24
ADMB 2009 11.1 175

Graph partitioning
Scotch 1992 6.0.0 435
ParMeTIS 1997 4.0.3 4349
kMeTIS 1998 1.5.3 3449
Zoltan-HG 2008 r362 125
KaHIP 2011 0.52 71

Adaptive mesh refinement
AMRClaw 1994 4.6.3 4800
PARAMESH 1999 4.1 409
SAMRAI 1998 185
Carpet 2001 4 579
BoxLib 2000 155
Chombo 2000 3.1 198
AMROC 2003 1.1 342
p4est 2007 0.3.4.1 227

4.2.2 Parabolic and Elliptic PDEs: DUNE

The Distributed and Unified Numerics Environment
(DUNE) is an open-source modular software toolbox
for solving PDEs using grid-based methods. It was
developed by Mario Ohlberger and other contributors
and supports the implementation of methods such as
finite elements, finite volumes, finite differences, and
discontinuous Galerkin methods.

DUNE was envisioned to permit the integrated use
of both legacy libraries and new ones. The software
uses modern C++ programming techniques to enable
very different implementations of the same concepts
(i.e., grids, solvers, linear algebra, etc.) using a com-
mon interface with low overhead, meaning that DUNE
prioritizes efficiency in scientific computations and
supports high-performance computing applications.
DUNE has a variety of downloadable modules including
various grid implementations, linear algebra solvers,
quadrature formulas, shape functions, and discretiza-
tion modules.

DUNE is based on several main principles: the separa-
tion of data structures and algorithms by abstract inter-
faces, the efficient implementation of these interfaces
using generic programming techniques, and reuse of
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existing finite-element packages with a large body of
functionality. The finite-element codes UG, ALBERTA,
and ALUGrid have been adapted to the DUNE frame-
work, showing the value of open-source development
not only for reproducibility but for acceleration of
discovery through code reuse.3

4.2.3 Computer-Aided Theorem Proving

computer-aided theorem proving [VII.3] has made
extremely impressive strides in the last decade. This
progress ultimately rests on the underlying computa-
tional tools that are openly available and that a whole
community of researchers is contributing to and using.
Indeed, one can only have justified belief in a compu-
tationally enabled proof with transparent access to the
underlying technology and broad discussion.

There are, broadly speaking, two approaches to
computer-aided theorem-proving tools in experimen-
tal mathematics. The first type encompasses machine–
human collaborative proof assistants and interactive
theorem-proving systems to verify mathematics and
computation, while the second type includes automatic
proof checking, which occurs when the machine verifies
previously completed human proofs or conjectures.

Interactive theorem-proving systems include coq,
Mizar, HOL4, HOL Light, Isabelle, LEGO, ACL2, Veritas,
NuPRL, and PVS. Such systems have been used to verify
the four-color theorem and to reprove important clas-
sical mathematical results. Thomas Hales’s Flyspeck
project is currently producing a formal proof of the
Kepler conjecture, using HOL Light and Isabelle. The
software produces machine-readable code that can be
reused and repurposed into other proof efforts. Exam-
ples of open-source software for automatic theorem
proving include E and Prover9/Mace 4.

5 Scientific Workflows

Highly ambitious computations today often go beyond
single algorithms to combine different pieces of soft-
ware in complex pipelines. Moreover, modern research
often considers a whole pipeline as a single object
of study and makes experiments varying the pipeline
itself. Experiments involving many moving parts that
must be combined to produce a complete result are
often called workflows.

Kepler is an open-source project structured around
scientific workflows: “an executable representation of

3. See also FEniCS (http://fenicsproject.org) for another example of
an open-source finite-element package.

Figure 4 An example of the Kepler interface, showing a
workflow solving the classic Lotka–Volterra predator–prey
dynamics model.

the steps required to generate results,” or the capture
of experimental details that permit others to repro-
duce computational findings. Kepler provides a graphi-
cal interface that allows users to create and share these
workflows. An example of a Kepler workflow is given
in figure 4, solving a model of two coupled differen-
tial equations and plotting the output. Kepler main-
tains a component repository where workflows can
be uploaded, downloaded, searched, and shared with
the community or designated users, and it contains a
searchable library with more than 350 processing com-
ponents. Kepler operates on data stored in a variety of
formats, locally and over the Internet, and can merge
software from different sources such as R scripts and
compiled C code by linking in their inputs and outputs
to perform the desired overall task.

6 Dissemination Platforms

Dissemination platforms are Web sites that serve spe-
cialized content to interested visitors. They offer an
interesting method for facilitating reproducibility; we
describe here the Image Processing OnLine (IPOL)
project and ResearchCompendia.org.

IPOL is an open-source journal infrastructure de-
veloped in Python that publishes relevant image-pro-
cessing and image-analysis algorithms. The journal
peer reviews article contributions, including code, and

http://fenicsproject.org
http://www.ResearchCompendia.org
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Figure 5 An example IPOL publication. The three panels from left to right include the
manuscript, the cloud-executable demo, and the archive of all previous executions.

publishes accepted papers in a standardized format
that includes

• a manuscript containing a detailed description of
the algorithm, its bibliography, and documented
examples;

• a downloadable software implementation of the
algorithm;

• an online demo, where the algorithm can be tested
on data sets, for example images, uploaded by the
users; and

• an archive containing a history of the online exper-
iments.

Figure 5 displays these components for a sample IPOL
publication.

ResearchCompendia, which one of the authors is
developing, is an open-source platform designed to link
the published article with the code and data that gen-
erated the results. The idea is based on the notion of
a “research compendium”: a bundle including the arti-
cle and the code and data needed to recreate the find-
ings. For a published paper, a Web page is created that
links to the article and provides access to code and data
as well as metadata, descriptions, and documentation,
and code and data citation suggestions. Figure 6 shows
an example compendium page.

ResearchCompendia assigns a Digital Object Iden-
tifier (DOI) to all citable objects (code, data, com-
pendium page) in such a way as to enable bidirectional

Figure 6 An example compendium page on Research-
Compendia.org. The page links to a published article and
provides access to the code and data that generated the
published results.

linking between related digital scholarly objects, such
as the publication and the data and code that gen-
erated its results (see www.stm-assoc.org/2012_06_
14_STM_DataCite_Joint_Statement.pdf). DOIs are well-
established and widely used unique persistent identi-
fiers for digital scholarly objects. There are other PSE-
independent methods of sharing such as via GitHub
(which can now assign DOIs to code: https://guides.git
hub.com/activities/citable-code) and via supplemen-
tary materials on journal Web sites. A DOI is affixed to a

http://www.stm-assoc.org/2012_06_14_STM_DataCite_Joint_Statement.pdf
https://guides.github.com/activities/citable-code
http://www.stm-assoc.org/2012_06_14_STM_DataCite_Joint_Statement.pdf
https://guides.github.com/activities/citable-code
http://www.ResearchCompendia.org
http://www.ResearchCompendia.org
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certain version of software or data that generates a cer-
tain set of results. For this reason, among others, ver-

sion control [VIII.4 §4] for scientific codes and data
is important for reproducibility.4

7 Best Practices for Reproducible
Computational Mathematics

Best practices for communicating computational math-
ematics have not yet become standardized. The work-
shop “Reproducibility in Computational and Experi-
mental Mathematics”, held at the Institute for Com-
putational and Experimental Research in Mathematics
(ICERM) at Brown University in 2012, recommended the
following for every paper in computational mathemat-
ics.

• A precise statement of assertions made in the
paper.

• A statement of the computational approach and
why it constitutes a rigorous test of the hypothe-
sized assertions.

• Complete statements of, or references to, every
algorithm employed.

• Salient details of auxiliary software (both research
and commercial software) used in the computation.

• Salient details of the test environment, including
hardware, system software, and the number of
processors utilized.

• Salient details of data-reduction and statistical-
analysis methods.

• Discussion of the adequacy of parameters such as
precision level and grid resolution.

• A full statement (or at least a valid summary) of
experimental results.

• Verification and validation tests performed by the
author(s).

• Availability of computer code, input data, and out-
put data, with some reasonable level of documen-
tation.

• Curation. Where are code and data available? With
what expected persistence and longevity? Is there
a site for future updates, e.g., a version control
repository of the code base?

• Instructions for repeating computational experi-
ments described in the paper.

4. Other reasons include good coding practices enabling reuse,
assigning explicit credit for bug fixing and code extensions or applica-
tions, efficiency in code organization and development, and the ability
to join collaborative coding communities such as GitHub.

• Terms of use and licensing. Ideally code and data
“default to open,” i.e., a permissive reuse license, if
nothing opposes it.

• Avenues of exploration examined throughout de-
velopment, including information about negative
findings.

• Proper citation of all code and data used, including
that generated by the authors.

These guidelines can, and should, be adapted to dif-
ferent research contexts, but the goal is to provide
readers with the information (such as metadata includ-
ing parameter settings and workflow documentation),
data, and code they require to independently verify
computational findings.

8 The Outlook

The recommendations of the ICERM workshop listed in
the previous section are the least we would hope for
today. They commendably propose that authors give
enough information for readers to understand at some
high level what was done.

They do not actually require sharing of all code and
data in a form that allows precise reexecution and
reproduction of results, and as such, the recommenda-
tions are very far from where we hope to be in twenty
years.

One can envision a day when every published re-
search document will be truly reproducible in a deep
sense, where others can repeat published computations
utterly mechanically. The reader of such a reproducible
research article would be able to deeply study any spe-
cific figure, for example, viewing the source code and
data that underlie a figure, recreating the original figure
from scratch, examining input parameters that define
this particular figure, and even changing their settings
in order to study the effect on the resulting figure.

Reproducibility at this ambitious level would enable
more than just individual understanding; it would
enable metaresearch. Consider the “dream applica-
tions” mentioned in Gavish and Donoho (2012), where
robots automatically crawl through, reproduce, and
vary research results. Reproducible work can be auto-
matically extended and generalized; it can be opti-
mized, differentiated, extrapolated, and interpolated.
A reproducible data analysis can be statistically boot-
strapped to automatically place confidence statements
on the whole analysis.

Coming back down to earth, what is likely to happen
in the near future? We confidently predict increasing
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computational transparency and increasing computa-
tional reproducibility in coming years. We imagine that
PSEs will continue to be very popular and that authors
will increasingly share their scripts and data, if only
to attract readership. Specialized platforms like Claw-
pack and DUNE will come to be seen as standard plat-
forms for whole research communities, who will nat-
urally then be able to reproduce work in those areas.
We expect that as the use of cloud computing grows
and workflows become more complex, researchers will
increasingly document and share the workflows that
produce their most ambitious results. We expect that
code will be developed on common platforms and will
be stored in the cloud, enabling the code to run for
many years after publication.

We expect that over the next two decades such prac-
tices will become standard and will be based on tools
of the kind discussed in this article. The direction of
increasing transparency and increasing sharing seem
clear, but it is still unclear which combinations of tools
and approaches will come to be standard.
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VIII.6 Experimental Applied
Mathematics
David H. Bailey and
Jonathan M. Borwein

1 Introduction

“Experimental applied mathematics” is the name given
to the use of modern computer technology as an active
agent of research. It is used for gaining insight and intu-
ition, for discovering new patterns and relationships,
for testing conjectures, and for confirming analytically
derived results, in much the same spirit that labora-
tory experimentation is employed in the physical sci-
ences. It is closely related to what is known as “exper-
imental mathematics” in pure mathematics, as has
been described elsewhere, including in The Princeton
Companion to Mathematics.

In one sense, most applied mathematicians have for
decades aggressively integrated computer technology
into their research. What is meant here is computa-
tionally assisted applied mathematical research that
features one or more of the following characteristics:

(i) computation for exploration and discovery;
(ii) symbolic computing;

(iii) high-precision arithmetic;
(iv) integer relation algorithms;
(v) graphics and visualization;

(vi) connections with nontraditional mathematics.

Depending on the context, the role of rigorous proof
in experimental applied mathematics may be either
much reduced or unchanged from that of its pure
sister. There are many complex applied problems for
which there is little point in proving the validity of a
minor component rather than finding strong evidence
for the appropriateness of the general method.

High-Precision Arithmetic

Most work in scientific or engineering computing relies
on either 32-bit IEEE floating-point arithmetic

[II.13] (roughly 7-decimal-digit precision) or 64-bit IEEE
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floating-point arithmetic (roughly 16-decimal-digit pre-
cision). But for an increasing body of applied mathe-
matical studies, even 16-digit arithmetic is not suffi-
cient. The most common form of high-precision arith-
metic is “double–double” or “quad” precision, which is
equivalent to roughly 31-digit precision. Other studies
require hundreds or thousands of digits.

Algorithms for performing arithmetic and evalu-
ating common transcendental functions with high-
precision data structures have been known for some
time, although challenges remain. Mathematical soft-
ware packages such as Maple and Mathematica typ-
ically include facilities for arbitrarily high precision,
but for some applications researchers rely on Internet-
available software, such as the GNU multiprecision
package.

Integer Relation Detection

Given a vector of real or complex numbersxi, an integer
relation algorithm attempts to find a nontrivial set of
integers ai such that a1x1 + a2x2 + · · · + anxn = 0.
One common application of such an algorithm is to find
new identities involving computed numeric constants.

For example, suppose one suspects that an integral
(or any other numerical value) x1 might be a linear sum
of a list of terms x2, x3, . . . , xn. One can compute the
integral and all the terms to high precision (typically
several hundred digits) and then provide the vector
(x1, x2, . . . , xn) to an integer relation algorithm. It will
either determine that there is an integer-linear relation
among these values, or it will provide a lower bound
on the Euclidean norm of any integer relation vector
(ai) that the input vector might satisfy. If the algorithm
does produce a relation, then solving it for x1 produces
an experimental identity for the original integral. The
most commonly employed integer relation algorithm is
the “PSLQ” algorithm of mathematician–sculptor Hela-
man Ferguson, although the Lenstra–Lenstra–Lovasz
algorithm can also be adapted for this purpose.

2 Historical Examples

The best way to clarify what is meant by experimental
applied mathematics is to show some examples of the
paradigm in action.

Gravitational Boosting

One interesting space-age example is the unexpect-
ed discovery of gravitational boosting by Michael Min-
ovitch at NASA’s Jet Propulsion Laboratory in 1961.

Minovitch described how he discovered that Hohmann
transfer ellipses were not, as was then believed, the
minimum-energy way to reach the outer planets. In-
stead, he discovered computationally that spacecraft
orbits that pass close to other planets could gain a sub-
stantial boost in speed (compensated by an extremely
small change in the orbital velocity of the planet)
on their way to a distant location via a “slingshot
effect.” Until this demonstration, “most planetary mis-
sion designers considered the gravity field of a target
planet to be somewhat of a nuisance, to be cancelled
out, usually by onboard Rocket thrust.”

Without such a boost from Jupiter, Saturn, and
Uranus, the Voyager mission would have taken more
than 30 years to reach Neptune; instead, Voyager
reached Neptune in only 10 years. Indeed, without grav-
itational boosting we would still be waiting! We would
have to wait much longer still for Voyager to leave the
solar system, as it now appears to be doing.

Fractals and Chaos

One prime example of twentieth-century applied exper-
imental mathematics is the development of fractal
theory, as exemplified by the works of Benoit Mandel-
brot. Mandelbrot studied numerous examples of fractal
sets, many of them with direct connections to nature.
Applications include analyses of the shapes of coast-
lines, mountains, biological structures, blood vessels,
galaxies, even music, art, and the stock market. For
example, Mandelbrot found that the coast of Australia,
the west coast of Britain, and the land frontier of Por-
tugal all satisfy shapes given by a fractal dimension of
approximately 1.75.

In the 1960s and early 1970s, applied mathemati-
cians began to computationally explore features of
chaotic iterations that had previously been studied
by analytic methods. May, Lorenz, Mandelbrot, Feigen-
baum, Ruelle, York, and others led the way in utiliz-
ing computers and graphics to explore this realm, as
chronicled for example in Gleick’s Chaos: Making a New
Science.

The Uncertainty Principle

We finish this section with a principle that, while dis-
covered early in the twentieth century by conventional
formal reasoning, could have been discovered much
more easily with computational tools.

Most readers have heard of the uncertainty prin-

ciple [IV.23] from quantum mechanics, which is often
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expressed as the fact that the position and momen-

tum of a subatomic particle cannot simultaneously be

prescribed or measured to arbitrary accuracy. Others

may be familiar with the uncertainty principle from sig-

nal processing theory, which is often expressed as the

fact that a signal cannot simultaneously be both “time-

limited” and “frequency-limited.” Remarkably, the pre-

cise mathematical formulations of these two principles

are identical.

Consider a real, continuously differentiable, L2 func-

tion f(t), which satisfies |t|3/2+εf (t) → 0 as |t| → ∞
for some ε > 0. (This ensures convergence of the inte-

grals below.) For convenience, we assume f(−t) =
f(t), so the Fourier transform f̂ (x) of f(t) is real,

although this is not necessary. Define

E(f) =
∫∞

−∞
f 2(t)dt, V(f ) =

∫∞

−∞
t2f 2(t)dt,

f̂ (x) =
∫∞

−∞
f(t)e−itx dt, Q(f) = V(f)

E(f)
V(f̂ )
E(f̂ )

.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(1)

Then the uncertainty principle is the assertion that

Q(f) � 1
4 , with equality if and only if f(t) = ae−(bt)

2/2

for real constants a and b. The proof of this fact is

not terribly difficult but is hardly enlightening (see, for

example, Borwein and Bailey 2008, pp. 183–88).

Let us approach this problem as an experimen-

tal mathematician might. It is natural when studying

Fourier transforms (particularly in the context of signal

processing) to consider the “dispersion” of a function

and to compare this with the dispersion of its Fourier

transform. Noting what appears to be an inverse rela-

tionship between these two quantities, we are led to

consider Q(f) in (1). With the assistance of Maple or

Mathematica, one can explore examples, as shown in

table 1. Note that each of the entries in the last column

is in the range ( 1
4 ,

1
2 ). Can one get any lower?

To further study this problem experimentally, note

that the Fourier transform f̂ of f(t) can be closely

approximated with a fast Fourier transform, after suit-

able discretization. The integrals V and E can also be

evaluated numerically.

One can then adopt a search strategy to minimize

Q(f), starting, say, with a “tent function,” then per-

turbing it up or down by some ε on a regular grid with

spacing δ, thus creating a continuous, piecewise-linear

function. When, for a given δ, a minimizing function

f(t) has been found, reduce ε and δ and repeat. Ter-

minate when δ is sufficiently small: say, 10−6 or so. (For

details, see Borwein and Bailey (2008).)

Table 1 Q values for various functions.

f(t) Interval f̂ (x) Q(f)

1 − t sgn t [−1,1]
2(1 − cosx)

x2
3
10

1 − t2 [−1,1]
4(sinx − x cosx)

x3
5
14

1
1 + t2 [−∞,∞] π exp(−x sgnx) 1

2

e−|t| [−∞,∞] 2
1 + x2

1
2

1 + cos t [−π,π] 2 sin(πx)
x − x3

1
9 (π

2 − 15
2 )
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Figure 1 Q-minimizer and matching Gaussian.

The resulting function f(t) is shown in figure 1.
Needless to say, its shape strongly suggests a Gauss-
ian probability curve. Figure 1 shows both f(t) and
the function e−(bt)

2/2, where b = 0.45446177; to the
precision of the plot, they are identical!

In short, it is a relatively simple matter, using twenty-
first-century computational tools, to numerically “dis-
cover” the uncertainty principle. Doubtless the same
is true of many other historical principles of physics,
chemistry, and other fields.

3 Twenty-First-Century Studies

It is fair to say that the computational–experimental
approach in applied mathematics has greatly accel-
erated in the twenty-first century. We present a few
specific illustrative examples here. These include sev-
eral by the present authors because we are familiar
with them. There are doubtless many others that we
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are not aware of that are similarly exemplary of the
experimental paradigm.

3.1 Chimera States in Oscillator Arrays

One interesting example of experimental applied math-
ematics was the 2002 discovery by Kuramoto, Bat-
togtokh, and Sima of “chimera” states, which arise in
arrays of identical oscillators, where individual oscilla-
tors are correlated with oscillators some distance away
in the array. These systems can arise in a wide range of
physical systems, including Josephson junction arrays,
oscillating chemical systems, epidemiological models,
neural networks underlying snail shell patterns, and
“ocular dominance stripes” observed in the visual cor-
tex of cats and monkeys. In chimera states—named
for the mythological beast that incongruously com-
bines features of lions, goats, and serpents—the oscil-
lator array bifurcates into two relatively stable groups:
the first composed of coherent, phased-locked oscilla-
tors, and the second composed of incoherent, drifting
oscillators.

According to Abrams and Strogatz, who subse-
quently studied these states in detail, most arrays of
oscillators quickly converge into one of four typical
patterns:

(i) synchrony, with all oscillators moving in unison;
(ii) solitary waves in one dimension or spiral waves

in two dimensions, with all oscillators locked in
frequency;

(iii) incoherence, where phases of the oscillators vary
quasiperiodically, with no global spatial structure;
and

(iv) more complex patterns, such as spatiotemporal
chaos and intermittency.

In chimera states, however, phase locking and incoher-
ence are simultaneously present in the same system.

The simplest governing equation for a continuous
one-dimensional chimera array is

∂φ
∂t
=ω−

∫ 1

0
G(x − x′) sin[φ(x, t)−φ(x′, t)+α]dx′,

(2)

whereφ(x, t) specifies the phase of the oscillator given
by x ∈ [0,1) at time t, and G(x − x′) specifies
the degree of nonlocal coupling between the oscilla-
tors x and x′. A discrete, computable version of (2)
can be obtained by replacing the integral with a sum

π

π−

φ

Figure 2 Phase of oscillations for a chimera system.
The x-axis runs from 0 to 1 with periodic boundaries.

over a one-dimensional array (xk, 0 � k < N), where
xk = k/N . Kuramoto and Battogtokh took G(x −x′) =
C exp(−κ|x − x′|) for constant C and parameter κ.

Specifying κ = 4, α = 1.457, array size N = 256, and
time step size Δt = 0.025, and starting from φ(x) =
6 exp[−30(x − 1/2)2]r(x), where r is a uniform ran-
dom variable on [− 1

2 ,
1
2 ), gives rise to the phase pat-

terns shown in figure 2. Note that the oscillators near
x = 0 and x = 1 appear to be phase-locked, mov-
ing in near-perfect synchrony with their neighbors, but
those oscillators in the center drift wildly in phase,
with respect to both their neighbors and the locked
oscillators.

Numerous researchers have studied this phenome-
non since its initial numerical discovery. Abrams and
Strogatz studied the coupling function given byG(x) =
(1 + A cosx)/(2π), where 0 � A � 1, for which they
were able to solve the system analytically, and then
extended their methods to more general systems. They
found that chimera systems have a characteristic life
cycle: a uniform phase-locked state, followed by a spa-
tially uniform drift state, then a modulated drift state,
then the birth of a chimera state, followed by a period
of stable chimera, then a saddle–node bifurcation, and
finally an unstable chimera state.

3.2 Winfree Oscillators

One development closely related to chimera states
is the resolution of the Quinn–Rand–Strogatz (QRS)
constant. Quinn, Rand, and Strogatz had studied the
Winfree model of coupled nonlinear oscillators, namely

θ̇i =ωi +
κ
N

N∑
j=1

−(1 + cosθj) sinθi (3)

for 1 � i � N , where θi(t) is the phase of oscillator i at
time t, the parameter κ is the coupling strength, and the
frequencies ωi are drawn from a symmetric unimodal
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density g(w). In their analyses, they were led to the
formula

0 =
N∑
i=1

(
2
√

1 − s2(1 − 2(i− 1)/(N − 1))2

− 1√
1 − s2(1 − 2(i− 1)/(N − 1))2

)
,

implicitly defining a phase offset angle φ = sin−1 s due
to bifurcation. The authors conjectured, on the basis
of numerical evidence, the asymptotic behavior of the
N-dependent solution s to be

1 − sN ∼ c1

N
+ c2

N2
+ c3

N3
+ · · · ,

where c1 = 0.60544365 . . . is now known as the QRS
constant.

In 2008, the present authors together with Richard
Crandall computed the numerical value of this constant
to 42 decimal digits, obtaining

c1 ≈ 0.60544365719673274947892284244 . . . .

With this numerical value in hand, it was possible to
demonstrate that c1 is the unique zero of the Hurwitz
zeta function ζ( 1

2 ,
1
2z) on the interval 0 � z � 2. What

is more, they found that c2 = −0.104685459 . . . is given
analytically by

c2 = c1 − c2
1 − 30

ζ(− 1
2 ,

1
2c1)

ζ( 3
2 ,

1
2c1)

.

3.3 High-Precision Dynamics

Periodic orbits form the “skeleton” of a dynamical sys-
tem and provide much useful information, but when
the orbits are unstable, high-precision numerical inte-
grators are often required to obtain numerically mean-
ingful results.

For instance, figure 3 shows computed symmetric
periodic orbits for the (7 + 2)-ring problem using dou-
ble and quadruple precision. The (n + 2)-body ring
problem describes the motion of an infinitesimal par-
ticle attracted by the gravitational field of n+ 1 pri-
mary bodies, n of which are in the vertices of a regular
polygon rotating in its own plane about its center with
constant angular velocity. Each point corresponds to
the initial conditions of one symmetric periodic orbit,
and the gray areas correspond to regions of forbidden
motion (delimited by the limit curve). To avoid “false”
initial conditions it is useful to check if the initial con-
ditions generate a periodic orbit up to a given toler-
ance level; but for highly unstable periodic orbits, dou-
ble precision is not enough, resulting in gaps in the
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Figure 3 Symmetric periodic orbits (m denotes the mul-
tiplicity of the periodic orbit) in the most chaotic zone of
the (7 + 2)-ring problem using (a) double and (b) quadru-
ple precision. Note the “gaps” in the double precision plot.
(Reproduced by permission of Roberto Barrio.)

figure that are not present in the more accurate quad
precision run.

Hundred-digit precision arithmetic plays a funda-
mental role in a 2010 study of the fractal properties of
the lorenz attractor [III.20]; see figure 4. The first
plot in the figure shows the intersection of an arbi-
trary trajectory on the Lorenz attractor with the section
z = 27, in a rectangle in the xy-plane. All subsequent
plots zoom in on a tiny region (too small to be seen by
the unaided eye) at the center of the red rectangle of
the preceding plot to show that what appears to be a
line is in fact many lines.

The Lindstedt–Poincaré method for computing peri-
odic orbits is based on Lindstedt–Poincaré perturba-
tion theory, Newton’s method for solving nonlinear sys-
tems, and Fourier interpolation. Viswanath has used
this in combination with high-precision libraries to
obtain periodic orbits for the Lorenz model at the clas-
sical Saltzman parameter values. This procedure per-
mits one to compute, to high accuracy, highly unsta-
ble periodic orbits more efficiently than with conven-
tional schemes, in spite of the additional cost of high-
precision arithmetic. For these reasons, high-precision
arithmetic plays a fundamental role in the study of
the fractal properties of the Lorenz attractor (see fig-
ures 4 and 5) and in the consistent formal development
of complex singularities of the Lorenz system using
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Figure 4 The fractal property of the Lorenz attractor. (Reproduced by permission of Divakar Viswanath.)

infinite series. (For additional details and references,
see Bailey et al. (2012).)

3.4 Ising Integrals

The previously mentioned study employed 100-digit
arithmetic. Much higher precision has proven essen-
tial in studies with Richard Crandall (see Borwein and
Bailey 2008; Bailey and Borwein 2011) of the following
integrals that arise in the Ising theory of mathematical
physics and in quantum field theory:

Cn = 4
n!

∫∞

0
· · ·

∫∞

0

1

(
∑n
j=1(uj + 1/uj))2

dU,

Dn = 4
n!

∫∞

0
· · ·

∫∞

0

∏
i<j((ui −uj)/(ui +uj))2
(
∑n
j=1(uj + 1/uj))2

dU,

En = 2
∫ 1

0
· · ·

∫ 1

0

( ∏
1�j<k�n

uk −uj
uk +uj

)2

dT ,

where

dU = du1

u1
· · · dun

un
, dT = dt2 · · ·dtn, uk =

k∏
i=1

ti.

Note that En � Dn � Cn.
Direct computation of these integrals from their

defining formulas is very difficult, but for Cn it can be
shown that

Cn = 2n

n!

∫∞

0
pKn0 (p)dp,

where K0 is the modified bessel function [IV.7 §9].
Thousand-digit numerical values so computed were
used with the PSLQ algorithm to deduce results such
as C4 = 7

12ζ(3) and furthermore to discover that

lim
n→∞Cn = 0.63047350 · · · = 2e−2γ,
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Figure 5 Computational relative error versus (a) CPU time
and (b) number of iterations in a 1000-digit computation
of the periodic orbits LR and LLRLR of the Lorenz model.
(Reproduced by permission of Roberto Barrio.)
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with additional higher-order terms in an asymptotic
expansion. One intriguing experimental result (that has
not yet been proven) is the following:

E5
?= 42 − 1984 Li4( 1

2 )+
189
10 π

4 − 74ζ(3)

− 1272ζ(3) log 2 + 40π2 log2 2 − 62
3 π

2

+ 40
3 π

2 log 2 + 88 log4 2 + 464 log2 2 − 40 log 2.

This was found by a multi-hour computation on a
highly parallel computer system and confirmed to 250-
digit precision. Here, Li4(z) =

∑
k�1 zk/k4 is the stan-

dard order-4 polylogarithm.

3.5 Ramble Integrals and Short Walks

Consider, for complex s, the n-dimensional ramble
integrals (Bailey and Borwein 2012)

Wn(s) =
∫
[0,1]n

∣∣∣∣ n∑
k=1

e2πxki
∣∣∣∣s dx, (4)

which occur in the theory of uniform random walk inte-
grals in the plane, where at each step a unit step is
taken in a random direction, as first studied by Pear-
son, Rayleigh, and others 100 years ago. Integrals such
as (4) are the sth moment of the distance to the origin
aftern steps. As is well known, various types of random
walks arise in fields as diverse as aviation, ecology, eco-
nomics, psychology, computer science, physics, chem-
istry, and biology.

Walks and Measures

In work from 2010 by Borwein, Straub, Wan, and
Zudilin, using a combination of analysis and high-
precision numerical computation, results such as

W ′
n(0) = −n

∫∞

0
log(x)Jn−1

0 (x)J1(x)dx

were obtained, where Jn(x) denotes the Bessel func-
tion of the first kind and γ denotes Euler’s constant.
These results, in turn, lead to various closed forms
and have been used to confirm, to 600-digit precision,
the following Mahler measure conjecture adapted from
Villegas:

W ′
5(0)

?=
(

15
4π2

)5/2 ∫∞

0
{η3(e−3t)η3(e−5t)

+ η3(e−t)η3(e−15t)}t3 dt,

where the Dedekind eta-function can be computed from

η(q) = q1/24
∏
n�1

(1 − qn)

= q1/24
∞∑

n=−∞
(−1)nqn(3n+1)/2.
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Figure 6 The “shark-fin” density of a four-step walk.

There are remarkable connections between diverse
parts of pure, applied, and computational mathemat-
ics lying behind these results. As is often the case,
there is a fine interplay between developing better com-
putational tools—especially for special functions and
polylogarithms—and discovering new structure.

Densities of Short Walks

One of the deepest related discoveries is the following
closed form for the radial density of a four-step uni-
form random walk in the plane: for 2 � α � 4 one has
the real hypergeometric form

p4(α) = 2
π2

√
16 −α2

α 3F2

( 1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣∣ (16 −α2)3

108α4

)
.

Remarkably, the real part of the right-hand side of
this identity is valid everywhere on [0,4], as plotted in
figure 6. This was an entirely experimental discovery—
involving at least one fortunate error—but is now fully
proven.

3.6 Moments of Elliptic Integrals

The study on ramble integrals that was discussed in
the previous subsection also led to a comprehensive
analysis of moments of elliptic integral functions of the
form ∫ 1

0
xn0Kn1(x)K′n2(x)En3(x)E′n4(x)dx,

where the elliptic functions K and E and their comple-
mentary versions are given by

K(x) =
∫ 1

0

dt√
(1 − t2)(1 − x2t2)

,

E(x) =
∫ 1

0

√
1 − x2t2√

1 − t2 dt,

K′(x) = K(
√

1 − x2),

E′(x) = E(
√

1 − x2).
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Computations of these integrals to 3200-digit preci-
sion, combined with searches for relations using the
PSLQ algorithm, yielded thousands of unexpected rela-
tions among these integrals (see Bailey and Borwein
2012). The scale of the computation was required due
to the number of integrals under investigation.

3.7 Snow Crystals

Computational experimentation has even been use-
ful in the study of snowflakes. In a 2007 study,
Janko Gravner and David Griffeath used a sophisticated
computer-based simulator to study the process of for-
mation of these structures, known in the literature as
snow crystals and informally as snowfakes. Their model
simulated each of the key steps, including diffusion,
freezing, and attachment, and thus enabled researchers
to study dependence on melting parameters. Snow
crystals produced by their simulator vary from simple
stars, to six-sided crystals with plate-ends, to crystals
with dendritic ends, and they look remarkably similar
to natural snow crystals. Among the findings uncov-
ered by their simulator is the fact that these crystals
exhibit remarkable overall symmetry, even in the pro-
cess of dynamically changing parameters. Their simula-
tor is publicly available at http://psoup.math.wisc.edu/
Snowfakes.htm.

4 Limits of Computation

Developments such as the above have led to reexam-
ination of the role of computation in formal math-
ematical work. To begin with, a legitimate question
is whether one can truly trust—in the mathematical
sense—the result of a computation, since there are
many possible sources of errors: unreliable numeri-
cal algorithms; bug-ridden computer programs imple-
menting these algorithms; system software or compiler
errors; hardware errors, either in processing or storage;
insufficient numerical precision; and obscure errors of
hardware, software, or programming that surface only
in particularly large or difficult computations.

As a single example of the sorts of difficulties that
can arise, the present authors found that neither Maple
nor Mathematica was able to numerically evaluate con-
stants of the form

1
2π

∫ 2π

0
f(eiθ)dθ,

where

f(θ) = Li1(θ)m Li(1)1 (θ)p Li1(θ +π)n Li(1)1 (θ −π)q

(form,n,p, q � 0 integers), to high precision in reason-
able run time. In part this was because of the challenge
of computing polylogs and polylog derivatives (with
respect to order) for complex arguments. The version
of Mathematica that we were using was able to numer-
ically compute ∂ Lis(z)/∂s to high precision, which is
required here, but such evaluations were not only many
times slower than computation of Lis(z) itself but in
some cases did not even return a tenth of the requested
number of digits correctly.

For such reasons, experienced programmers of math-
ematical or scientific computations routinely insert
validity checks into their code. Typically, such checks
take advantage of known high-level mathematical facts,
such as the fact that the product of two matrices used
in the calculation should always give the identity or
that the results of a convolution of integer data, done
using a fast Fourier transform, should all be very close
to integers.

For instance, Kanada’s 2002 computation of π to
1.3 trillion decimal digits involved first computing
slightly over one trillion hexadecimal (base-16) digits.
He found that the 20 hex digits of π beginning at
position 1012 + 1 are

B4466E8D21 5388C4E014.

Kanada then calculated these hex digits using the
“Bailey–Borwein–Plouffe” algorithm. The result was

B4466E8D21 5388C4E014,

dramatically confirming that both results are almost
certainly correct. While one cannot rigorously assign
a “probability” to this event, the chances that two ran-
dom strings of 20 hex digits perfectly agree is one in
1620 ≈ 1.2089 × 1024.

Even so, researchers are well advised to be cautious
with experimentation. Consider∫∞

0
cos(2x)

∞∏
n=1

cos(x/n)dx

= 0.3926990816987241548078304229

09937860524645434187231595926 . . . . (5)

At first glance, this appears to be π/8, but upon
comparison with the numerical value,

π/8 = 0.3926990816987241548078304229

09937860524646174921888227621 . . . ,

the two values disagree after the 42nd digit! Richard
Crandall later explained this mystery via a physically
motivated analysis of running out of fuel random walks.

http://psoup.math.wisc.edu/Snowfakes.htm
http://psoup.math.wisc.edu/Snowfakes.htm
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He found the following very rapidly convergent series
expansion, of which formula (5) is the first term:

π
8

=
∞∑
m=0

∫∞

0
cos[2(2m+ 1)x]

∞∏
n=1

cos(x/n)dx.

Two series terms suffice for 500-digit agreement.

As a final sobering example, consider

σp =
∞∑

n=−∞
sinc(n/2) sinc(n/3) · · · sinc(n/p)dx

?=
∫∞

−∞
sinc(x/2) sinc(x/3) · · · sinc(x/p)dx,

where in each line the divisors range over all primes up
to p. Provably, the following is true. The “sum equals
integral” identity for σp remains valid at least for p
among roughly the first 10176 primes; but it stops hold-
ing after some larger prime, and thereafter the “sum
less the integral” is strictly positive, but they always dif-
fer by much less than one part in a googolplex = 1010100

.
An even stronger estimate is possible assuming the
generalized Riemann hypothesis.
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VIII.7 Teaching Applied Mathematics

How can we enthuse the next generation of students

about applied mathematics? The four contributors to

this group of articles, who have all thought deeply

about this question, were asked to give their personal

views. The resulting articles provide a variety of per-

spectives and will be of interest to anyone who wishes

to inspire their students to pursue the subject.

I. David Acheson: What’s the Big Picture?

Let A and B be two teachers of applied mathematics (at

any level) and suppose that, generally speaking, A is a

much better teacher than B.

Why is A’s teaching so much better? Even without any

further information, can we at least hazard a guess?

I wonder, for instance, if you might be prepared to

bet that A is more trained in “communication skills”? Or

perhaps A knows more mathematics than B or is nearer

to the cutting edge of research? Then again, maybe A

just has a more lively personality?

All these things can be advantageous, of course, but

I would not actually bet on any of them.

In fact, in the absence of any further information,

there is only one thing that I would be prepared to bet

good money on. I would be prepared to bet that A’s

teaching is so much better—so inspirational, at best—

mainly because A wants it to be that way, for reasons

that we will probably never learn and that A may not

even know.

This is only an opinion, of course, but it comes from

thinking back to my own inspirational teachers when

I was young. Some were notable for their scholarship,

some for their eccentricity, but—so far as I can see—

they only really had one thing in common: they had a

great story to tell, and they really wanted to tell it.
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“Removing Some of the Rubbish…”

It is simple common sense with applied mathematics
teaching—and possibly with mathematics teaching of
any kind—to start with the basics and work up. In other
words, “Don’t try to run before you can walk.”

But I believe it is a terrible mistake not to also bear
in mind a very different piece of advice: namely, “If
you have no idea where you are going, do not be too
surprised if you never get there.”

This is, I suspect, what the author John Ward meant
a long time ago, in his Plain and Easie Introduction to
the Mathematicks (1729), when he wrote:

Tis Honour enough for me to be accounted as one of
the under Labourers in Clearing the Ground a little, and
Removing some of the Rubbish that lies in the way to
Knowledge.

In any event, I believe that a major difficulty with
mathematics, at all levels, is that people can easily get
bogged down in things of little consequence instead of
engaging with things that really matter.

And what could help them, more than anything else,
is some kind of “big picture.”

My own big picture of mathematics starts with won-
derful theorems, by which I mean major results, usually
with considerable generality and often an element of
surprise. Secondly, beautiful proofs, i.e., concise deduc-
tive arguments, possibly containing a truly “lightbulb”
moment when all suddenly becomes clear. And finally,
great applications, particularly to physics, and hence to
our understanding of how the world really works.

I would argue, in fact, that mathematics is at its very
best when you get all three things at once. That, in my
view, is when you should really open the champagne.

More controversially, perhaps, I believe that we can,
and should, offer some such big picture to virtually any-
one, including very young children and the rest of the
general public.

Nonetheless, the majority of my teaching experience
has been with university students, and that is where I
would like to turn next.

Lectures and Classes

One way of bringing a student lecture to life is through
a picture or video, but best of all, perhaps, is a live
experiment, and my own subject, fluid dynamics, lends
itself particularly well to this.

As an example, take two glass plates and put a blob
of dishwashing liquid on one of them. (I dye the blob

Figure 1 Viscous fingering.

red, with food coloring, for dramatic effect.) Now press
down with the other plate, so that the narrowing gap
causes the blob to spread out in a nice, symmetric
fashion, with a more or less circular boundary.

But if we now gradually pull the plates apart again,
the reverse motion is hopelessly unstable; tiny ripples
appear in the boundary, for no apparent reason, and
grow rapidly into long viscous fingers (see figure 1).

If performed on an overhead projector or visualizer,
this experiment can often make an audience gasp with
astonishment.

But my real point here is a little more subtle. For
why do a demonstration like this only in an advanced
course on fluid mechanics, along with all the associated
theory? Why not stimulate interest by first showing it
much earlier, perhaps even in an elementary course on
particle dynamics, as soon as the whole idea of stability
and instability first arises?

Another way of helping people see the “big picture”
is through the history of the subject, provided that
the history in question has some real scholarship and
depth to it.

In a first course on particle dynamics, for example,
my experience is that students find it genuinely inter-
esting to actually see, with their own eyes, that their
textbook treatment of planetary motion is spectacu-
larly different from the one in Newton’s Principia and
that it was not until about sixty years later, in the sub-
sequent works of Euler and others, that dynamics came
to be done in more or less the way it is done today.

To take a more lightweight example, my own research
in fluid mechanics once gave a new twist to a hundred-
year-old problem in vortex motion, first studied by
Augustus Love in 1894. And whenever I present this
(as a short diversion) in student lectures, I am con-
vinced that it is enlivened by snippets from Love’s
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original paper, to say nothing of an early photograph of
Love and his striking Victorian moustache (which was
apparently much admired at the time).

But there is another, possibly more unusual, way in
which it is possible to bring student lectures to life.

Imagine, if you will, that you have just arrived at
what you perceive to be the high point of the lecture,
where the next line in the mathematical argument is
very clever or inventive in some way. (I would even
include here taking the curl of the momentum equation
in fluid mechanics, to eliminate the pressure.)

For many years now, whenever this happens I tend to
ask the audience whether they have any idea what the
next, clever step might be.

Now, conventional wisdom is, I think, that if you can
do this sort of thing at all, you can do it only with very
small audiences. In my experience, however, even with
audiences of 200 or more, once they realize that no one
can possibly be expected to know the answer and that
they are being invited—just for a moment—to more or
less put themselves in the shoes of some genius like
Newton or Euler, the suggestions will start coming if
you hold your nerve.

Like so many things of this kind, it all depends on
just how much you want to do it.

Books

A well-known publisher once said:

Everybody has a book inside them. And it should
usually stay there.

However true that may be, it could be argued that the
sheer impact and reach of a sufficiently original book
can completely dwarf what its author might ever hope
to achieve through direct, face-to-face teaching, and I
am a great optimist about the future of books in the
teaching of applied mathematics.

And while, as far as I can tell, it takes considerable
imagination and skill to write either an outstanding
textbook or a successful popular mathematics book,
I have long wondered if a real breakthrough in the
future may instead come from some thoroughly origi-
nal approach that combines the best elements of both.

Public Engagement

One of the most striking developments in recent years
has been the rapid increase in popular mathematics
lectures for either school students or the wider public.

I count myself fortunate to have been involved in
several mathematical shows of this kind, mainly for
teenagers. They are often held in mainstream city cen-
ter theaters, with all the paraphernalia of stage lighting,
sound technicians, etc., and the pressure to be enter-
taining as well as informative is therefore intense. So,
to illustrate applied mathematics, I often use the for-
mula for the frequency of a vibrating string, thereby
smuggling in a practical demonstration of harmonics
(and a self-composed tune!) on my electric guitar.

But so-called community lectures (which are usu-
ally held in the evening) can be even more rewarding
because the age range at them can be enormous: from
grandparents to very young children indeed. All you
can really assume on these occasions is that each fam-
ily group includes at least one person who is good at
sums.

It was at one of these events, at a school in North
London, that I was midway through a “proof by pizza”
(for the sum of an infinite series) when I happened to
notice a particular little boy, age about ten, in the audi-
ence. A split-second after delivering the punch line of
my proof—at the moment when a deep idea suddenly
becomes almost obvious—I practically saw the “light-
bulb” go on in his head, and he got so excited that he
fell off his chair.

And, in a sense, that fleeting moment says it all.
For mathematics at its best, at any level, lifts the

human spirit, by showing us that the world—whether
the world of the mind or the actual physical world in
which we live—is an even more weird and wonderful
place than we thought.

II. Peter R. Turner: Computation,
Modeling, and Projects

Introduction

This article presents a personal philosophy for teach-
ing applied, and particularly computational, mathemat-
ics at the undergraduate level. It is largely drawn from
my own experience over more than 40 years, mostly
at three institutions in the United Kingdom and the
United States.

That experience has been enhanced by my activities
on the Society for Industrial and Applied Mathematics
(SIAM) Education Committee, including four years as
vice president for education. During this time, I have
gained awareness of broader aspects of the role of
applied mathematics education at the undergraduate
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level. It is important here to note that I am not a math-
ematics education specialist but a mathematician who
is interested in education.

Important among these broader aspects was the
February 2012 report from the President’s Council of
Advisors on Science and Technology entitled Engage to
Excel: Producing One Million Additional College Gradu-
ates with Degrees in Science, Technology, Engineering,
and Mathematics, which emphasized the role of a good
and relevant applied mathematics education within the
framework of STEM (science, technology, engineering,
and mathematics) education. The national emphasis in
the United States on STEM has been a hallmark of recent
education policy development.

One of the key points raised was the “math gap.”
This is a term used to highlight the difficulty in transi-
tion from high school to undergraduate study in STEM
disciplines—a problem that is exacerbated by what the
colleges perceive as a lack of mathematical preparation
in high school. There is a gap between colleges’ expec-
tations and reality. The fundamental thesis is that this
can be addressed through a stronger founding in math-
ematical modeling of real-world situations, and the
solution, analysis, and validation of these models using
computational and theoretical applied mathematics.

The issue of college mathematics, or broader STEM,
readiness has been an area of interest for many
people—some at a local and highly detailed level and
others at a broader big-picture level, such as the studies
carried out by the Mathematical Association of Amer-
ica. The rest of this article addresses a few ideas about
how applied and computational mathematics might
improve the situation. My basic thesis is that the use of
projects that in turn require some modeling and (com-
putational) problem solving enhances almost all (not
just applied) mathematics teaching in all mathemat-
ics classes. For example, calculus can be taught with
applied projects replacing endless drills once basic
skills are acquired.

Use of Projects in Numerical Methods Classes

Well over a decade ago, the basic structure of my un-
dergraduate numerical methods/scientific computing
courses changed to being entirely based on projects.
The topical syllabus remained essentially unaltered,
covering the fundamentals of nonlinear equations,
linear systems, polynomial and spline interpolation,
quadrature and numerical solution of ordinary dif-
ferential equations, with each major theme being
approached through an extended project.

The scheme was modified to incorporate more home-
work assignments to avoid the issue of procrastina-
tion. The homework assignments included some of
the theoretical background and some of the prelimi-
nary steps in addressing the projects. The motivation
for the changes was an (oversimplistic but illustrative)
model that can explain why good students often found
their first computational course difficult. To a faculty
member, the class had the beauty of bringing together
much of the students’ prior experience in calculus, lin-
ear algebra, differential equations, and perhaps model-
ing, too—together with drawing on their programming
skills, or even learning some algorithmic programming
for the first time.

This same set of properties was the primary source
of difficulty for the students. Suddenly, and for the
first time, students were required to synthesize meth-
ods and solutions from multiple courses. Furthermore,
their mathematical and programming experience had
typically been totally disjoint up to that point. Thus we
had an audience who may have been “good B students”
in both their mathematical and programming ability,
but simplistically multiplying these independent 0.85
probabilities (the middle of the common B grade range),
we had a success rate of only 61%. In other words, these
good students were struggling to get a D in numerical
methods.

More importantly, the effect on students’ attitudes to
the course was impacted by a failure to see the wood/
forest for the trees. The perception was of a required
course they had to endure rather than an exciting cul-
mination of all that had gone before. The use of projects
was broadly successful in countering this.

The particular choice of projects is one that is impor-
tant to the success of the course but also one that can
be tailored to the individual instructor and audience.
The initial set of topics I chose (and which have been
modified successively over the years, both by me and
by others who have taken over the immediate teaching
responsibility) is described briefly here and illustrates
the linkage to the main syllabus topics.

The Length of a Telephone Cable

A cable above even ground, and with physical param-
eters in the model simplified to a specified sag, intro-
duces iterative solution of a single nonlinear equation.
The full project referred to a multi-loop cable above
undulating ground with a profile determined by geo-
graphic data, connected with a simple cubic spline. The
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problem for each loop is then a nonlinear system of two
equations, and the solutions over different pieces have
to be matched to ensure continuity of the cable.

Rats in a Maze

Based on simple psychology experiments on rats’ learn-
ing abilities, this was an open-ended project that intro-
duced iterative solution of linear systems. Even a sim-
ple rectangular, say 6 × 5, maze results in a 30 × 30 lin-
ear system. This is an eye-opener for many students,
who rarely see systems much larger than 3 × 3 in intro-
ductory linear algebra. The basic problem is to com-
pute the probability of a rat successfully finding food
at some set of exits of the maze from an arbitrary start-
ing point. These results provide the baseline against
which to measure the rats’ success at learning the maze
by comparing actual performance with the simulated
random decisions.

Students are then required to modify the maze
in ways of their choosing: adding diagonal passages,
removing certain links, adding a second level, and mod-
ifying the decision model from purely random to some
bias (perhaps to go straight ahead) are all variations
that students came up with and solved. One even tried
to apply some artificial intelligence to simulate the rat
learning.

Reproduce a Picture

Although the concept of splines had been mentioned in
the telephone cable problem, this project was the real
introduction to interpolation. The objective was simply
to reproduce a chosen picture or line drawing using
interpolation. Polynomial interpolation was explored
and usually quickly discarded for all but the simplest of
shapes. Splines and other functions were introduced. A
more modern treatment would probably extend this to
using subdivision surfaces.

The Gamma Function

When I started this project-based course, most stu-
dents were concurrently enrolled in an applied statis-
tics course—hence the choice of computing the gamma
function as the quadrature-based project. One benefit
is that this necessarily requires modification of con-
ventional quadrature routines to handle both singu-
larities and an infinite range of integration. The basic
idea was simply to find appropriate bounds for the infi-
nite tail and a region close to the singularity, and then
to compute the major contribution from the result-
ing bounded integral. Using the recurrence to reduce

the need to compute for all values of the argument
α improved computational efficiency but necessitated
introducing careful, though fairly simple, error analysis
to control the required accuracy.

Human Cannonball

A shooting problem for a projectile with nonlinear
air resistance was the vehicle for the introduction of
numerical solution of differential equations. The set-
ting was finding the appropriate launch angle in order
to hit a specified target (described as an escape window
to escape from the course).

The particular list of projects above is certainly
not intended to be prescriptive. Many improvements
have been made, while other changes have, of course,
proved less successful! The list here is only intended
to illustrate the feasibility of such an approach and
advance my thesis that project-based learning can sig-
nificantly enhance the success of introductory scientific
computing courses.

Modeling across the Curriculum

The emphases on projects, computation, and model-
ing have combined more recently in a general “model-
ing across the curriculum” philosophy. This started to
take shape in the work of a SIAM Education Committee
working group, which led to a 2011 SIAM Review paper
on undergraduate computational science and engineer-
ing (CSE) programs. The report emphasized that cur-
riculum design needs to fit local conditions, but it
also stressed student experiences such as internships.
Other key points in the paper concerned the role that
undergraduate CSE education plays in regard to both
industrial expectations for graduates and feeding the
educational pipeline.

Undergraduate CSE programs can take many forms.
A few are full-fledged undergraduate majors in Com-
putational X, where X could be physics, biology, or
finance, for example. More common is some form of
minor that accompanies an undergraduate major in
either (applied) mathematics or some field of science
or engineering. The latter model seems better suited to
ensuring some depth in a core discipline while main-
taining the breadth that such a minor introduces to the
program.

Undergraduate education in applied and computa-
tional mathematics feeds the K-12 (preschool through
completion of high school) education system, indus-
trial appointments, and, of course, graduate schools in
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all areas of science and engineering as well as in applied
mathematics itself.

One of the main obstacles here is that teacher educa-
tion in mathematics in the United States is often very
light in applied content (including statistics), and good
programs of continuing education and professional
development for teachers are therefore a necessary pre-
cursor to any real change. With colleagues, I have been
involved in a very successful design-based summer
activity for middle and high school students, includ-
ing some professional development for their teach-
ers. Students, and their teachers, are introduced to
the mathematics and physics of designing a physi-
cal roller coaster and to modeling software to simu-
late their design. This has been successful in bringing
appropriately adapted real-world applications and rele-
vance to mathematics education. An increasing propor-
tion of these students, mostly from economically dis-
advantaged backgrounds or other under-represented
groups, have subsequently entered STEM college pro-
grams, demonstrating the benefit of exposure to such
applied content. The benefit is realized not just in
their mathematics but also in the science that accom-
panies it.

Final Thoughts

The main point I am making is that students learn bet-
ter when they perceive their studies as being relevant
to their lives and future careers. In the case of math-
ematics, this provides a strong motivation to increase
the applied and computational content at all stages of
a student’s development.

Early emphasis on problem solving leads to more
advanced projects and full-scale modeling experiences
as the students’ abilities and background knowledge
develop. This essay addresses some of those issues at
a “big-picture” level rather than in detail because the
details have to be right for the combination of institu-
tional philosophy, instructor, and students where they
are to be applied.

Understanding applied mathematics is inherently
difficult because of the combined demands of the
theoretical basis, the modeling and understanding of
the application field, and the computational abilities
that are needed to solve the problems. Determining that
a “solution” really addresses the original issue, and if
necessary refining it and solving again, are important
aspects that only add to the inherent difficulty of the
subject.

In my opinion, these difficulties oblige the educa-
tional community to address them throughout the cur-
riculum. For example, I believe that the call for more
emphasis on modeling and applications in the K-12 cur-
riculum needs to be heard and that this move should be
implemented soon. This must continue into the under-
graduate program to help to address the “math gap”
identified in the President’s Council of Advisors on Sci-
ence and Technology report. In summary, “early and
often” is perhaps not sufficient to achieve the desired
improvements. I advocate, instead, “early and always”
for modeling and applications throughout the STEM
curriculum.
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III. Gilbert Strang: What to Teach and How?

In expressing these brief but strongly held thoughts
about teaching, I would like to distinguish between two
separate questions.

• What should we teach?
• How should we teach it?

http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-engage-to-excel-final_2-25-12.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-engage-to-excel-final_2-25-12.pdf
http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-engage-to-excel-final_2-25-12.pdf
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What to Teach?

In my experience, a good decision on what to teach tells
students that you care about them: you are thinking
about them and their needs. This sincerity of effort—
what you are contributing and what you want for
them—is the most important message you could send
to students. We all respond favorably to sincerity.

The teacher may think that he or she has no freedom.
In calculus that may be partly true (and partly untrue).
In applied mathematics, the syllabus is seldom so rigid.
Our subject is extremely large! There is no hope of pre-
senting or comprehending all the important directions,
so there is an opening for independent thought. And a
teacher who thinks independently will pass on an all-
important message to students: that they can begin to
work by themselves and think for themselves.

I will compare and contrast my thoughts about lin-
ear algebra and about computational science. Linear
algebra in 1970 was in a very abstract and unsatisfac-
tory state as a basic undergraduate course. Its enor-
mous importance in practice was quite unappreciated
by many of the standard textbooks. Finite-Dimensional
Vector Spaces by Paul Halmos, for example, was written
carefully and concisely, but it was written for mathe-
matics students—stronger ones or weaker ones—and
not for the much larger number who needed to use the
subject.

Outside the classroom, every year brought new appli-
cations of linear algebra. Matrices became part of the
core language of science and engineering and eco-
nomics. To solve differential equations or to study large
networks, linearity is the first step. At the same time,
a flood of data began to arrive from much better sen-
sors, and it often came in matrix form. The challenge
was (and still is) to interpret that data and extract what
is useful.

Along with these big external changes came, inev-
itably, a new set of options for our teaching. Exam-
ples became more important. Instead of inventing sub-
spaces to study, the subspaces came from the matrices
themselves: the row space and the column space of A
and AT. The ideas of basis and dimension and orthogo-
nality apply to those concrete subspaces. The abstrac-
tion of a linear transformation need not come first!

Instead of starting with the abstract case, under-
standing emerged from the examples themselves. This
is how most mathematicians think and learn. Why
should the minds of our students not work in the same
way?

There is certainly a danger that the new approach
could also become too rigid. There seems to be general
acceptance of an overall syllabus by textbook authors
and textbook choosers. Algebraic ideas like indepen-
dence, basis, and dimension combine with algorithms
like LU and Gram–Schmidt. Eigenvalues are introduced
for a purpose: to decouple the variables and make the
matrix diagonal. Computing A and eAt then becomes a
one-dimensional problem. Factorizations of A express
the essential facts: A = LU , A = QR, A = SΛS−1, A =
UΣVT. Matrices that are important in practice (reflec-
tions, rotations, differences) provide genuine examples.

This subject is still partly driven by what happens
outside the classroom. Further changes in the syllabus
will come. In all of this renaissance I want to empha-
size that the beautiful ideas of this subject are not sup-
pressed! The very opposite, in fact; they become better
understood and appreciated.

Now for the comparison and contrast with applied
mathematics and computational science as a whole.
This is a vast subject and our classroom time is so lim-
ited. I do not see rapid convergence to one fully devel-
oped core curriculum. My own course did converge over
a twenty-five-year period to focus on key ideas, and
those ideas went into a textbook. But more examples
keep emerging, and new codes. Courses on applied and
engineering mathematics are still in a (healthy) state of
flux.

How to Teach?

The heading here is a question and not a statement!
Teaching is far too difficult, and success is too uncer-
tain and ill-conditioned, to give an algorithm for suc-
cess. I will give suggestions below, not rules.

A key point: the subject is to be uncovered, not
covered.

It is natural to prepare for a class by deciding on
a plan. Start with a question that it is important to
answer. What is the inverse of a matrix and which
matrices have inverses?

The requirements A−1A = I and AA−1 = I are
straightforward. But those are only letters! Examples
are needed right away. Write down[

0 1

1 0

]
,

[
1 1

1 1

]
,

[
1 1

0 1

]
,

[
a b
c d

]
.

Invert the first and third of these and describe A−1 in
words. Show that the second matrix is not invertible.
(The best way to do this is to see a specific vector x in
the nullspace.) The fourth case above can reduce to a
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test for parallel rows or parallel columns. Determinants
can be mentioned, as can nonzero pivots. Multiple ways
of recognizing invertibility or its opposite are highly
valuable.

The important point is that in working with simple
examples you are giving the students a chance. The key
is to build their confidence as active users of mathemat-
ics. The teacher has to be saying, in many ways but not
in so many words, you can do it.

In an applied mathematics course, a correspondingly
simple question might be the following.

What are the solutions to d2y/dx2 = λy(x)?

Here we are looking for eigenfunctions. The matrix in
Ay = λy is replaced by the second derivative. No
boundary conditions have been imposed so far.

Now add the conditions y(0) = 0 and y(1) = 0.
That should leave only the eigenfunctions y = sinkπx
with their eigenvalues λ = −k2π2. The goal is to make
the idea of an “eigenfunction” familiar. The answer was
already known, and it illuminates the question.

I would like to emphasize the importance of the
teacher’s voice. All of us watch for verbal signals from
a speaker: “This is exciting.” “This is very ordinary.”
“Pay attention to this!” Boredom or enthusiasm come
through so clearly. We are virtually announcing low
expectations or raised expectations. If we are not inter-
ested ourselves, that message overrides our words. And
fortunately, if our own curiosity about where a particu-
lar example leads is aroused, students understand what
applied mathematics mostly is: following an example to
the end.

Instead of consulting published references, I recom-
mend a severe critique of lecture videos. You can find
the author’s own courses on the OpenCourseWare site
(ocw.mit.edu): 18.06 (linear algebra) and 18.085 (com-
putational science). The version 18.06SC of the for-
mer involves brief lectures on problem solving by six
teaching assistants. What is it that makes each of them
succeed or fail?

If only we knew more about teaching, we could define
success.

IV. Rachel Levy: Industrial Mathematics
Inspires Mathematical Modeling Tasks

Motivation

A common refrain from high school mathematics stu-
dents goes something like this: “We have to learn this

stuff for twelve years! Nobody ever even uses it!” As
a mathematics professor and former middle and high
school mathematics teacher, I am sadly unsurprised.
Much of the mathematics written in textbooks, even
when it is framed as practical, can strike students as
overly academic and divorced from reality. Real prob-
lems require skills that most students never have the
opportunity to practice. In this article I outline a set
of skills that we can incorporate into assignments—
initially one at a time, and eventually all together—to
prepare students for the types of problems they will
face in the real world, especially in science, technol-
ogy, engineering, and mathematics fields. While I have
compiled the list below with undergraduate students
in mind, students would ideally have opportunities
to practice simple versions of these skills throughout
their mathematics education.

I used to think modeling meant story problems. And
why not? After all, story problems come from real sit-
uations. But they do not ring true because they are
too neat. Traditional story problems provide the task,
the methodology, and the exact information needed to
complete the task. Real problems are messy. Someone
actually cares whether we solve them or not. We do not
usually know how to solve them a priori. To prepare
students to solve ill-defined, messy problems, we need
to increase the cognitive demand we place on students
by incorporating genuine and engaging modeling prob-
lems into our curricula. By cognitive demand I mean
the complexity of the tasks and the degree of decision
making required.

What types of mathematical modeling tasks can we
provide? Of course, as modelers we might start with a
model of modeling itself. Modeling can be viewed as
an iterative process in which assumptions are made
and then questioned, models are proposed and then
refined, and data from real situations help to test the
validity of the model through multiple versions of the
solution. Models generally balance simplicity with real-
ism, just as computations must often balance efficiency
with accuracy. Every step of the modeling process may
not be necessary and the process may not always pro-
ceed in the same order, but the spirit is one of iteration
and balance.

With this iterative process in mind, we can begin to
design tasks that enable students to practice model-
ing in meaningful ways. My ideas about mathematical
modeling stem from my experience in modeling camps,
British-style industrial mathematics study groups, and
the Harvey Mudd College Mathematics Clinic. In these

http://www.ocw.mit.edu
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intensive experiences, groups of faculty and students
gather to solve problems posed by companies, gov-
ernmental organizations, and sometimes individuals.
Rather than create a hierarchical taxonomy, I will sug-
gest elements that can be incorporated into model-
ing tasks to increase their cognitive demand and make
problems richer and more realistic.

The Modeling Tasks

The order of the tasks below roughly follows one itera-
tion of the modeling process. However, individual ele-
ments can be incorporated into assignments, to pro-
vide practice with various challenges from real-world
mathematics.

Tackle realistic problems. Problems that can be de-
scribed as “real,” of course, are ones that have not yet
been solved. The task of identifying interesting prob-
lems with an appropriate level of challenge that are still
tractable could be an interesting assignment for stu-
dents, or it could fall to the faculty. Many businesses
have problems that they need to solve or processes they
would like to better understand.

Interact with a vested party. Ideally, the modeling
problem will have been posed by a party who cares
about the outcome. When students interact with the
problem sponsors (e.g., from a company) and end users
of a project, they can practice professional communica-
tion and negotiation. If the students communicate with
the sponsor on a regular basis, the solution will be more
likely to satisfy the sponsor. The sponsor can provide
realistic constraints—such as time, money, hardware,
and software limitations—as well as information about
company/sponsor culture and policy. Communication
with the sponsor can motivate the students, since the
problem they must solve matters to someone outside
the classroom.

Define the problem statement. When a problem is
first proposed in writing, the ideas put down on paper
may not reflect exactly what the sponsor wants. Some-
times the sponsor will have omitted critical informa-
tion or constraints that necessitate a specific approach.
The suggested method of solution may not be the best
approach for the proposed problem. After researching
background on the problem, students can propose rea-
sonable goals and their preferred approach. This often
involves negotiation among the students about how to
proceed as well as with the sponsor about the approach
and final deliverables.

Disregard extraneous information. Modeling proj-
ects often begin with a literature search, in which stu-
dents seek relevant approaches, data, or parameter val-
ues. The variety and scope of digitally available infor-
mation can both facilitate and overwhelm problem-
solving efforts. Sophisticated search strategies, such
as those taught by librarians, can help students nav-
igate the information overload. Students need to be
given an opportunity to decide which of the avail-
able information about a problem should be used to
develop their solution. Few textbook problems con-
tain extraneous information, whereas with a real prob-
lem any available information (data, mathematical tech-
niques, approaches) can be brought to bear. Students
must determine which ideas and information are most
salient to the problem at hand.

Cope with messy data. Textbooks (as well as many
models) assume that data are normally distributed or
that they follow some other distinguishable distribu-
tion, pattern, or trend. Real data often do not fall into a
nice category and furthermore contain outliers, faulty
entries, and missing values that need to be identified. In
addition, the governing principles underlying the data
may not be known.

Define and justify assumptions. Models simplify
reality via assumptions. Even when students are pre-
sented with a model, they can discern and question the
model’s assumptions. They can also predict what might
happen if the various assumptions are relaxed. When
students do have the opportunity to make modeling
assumptions, they can learn to identify ways to simplify
problems and to balance generality with specificity.

Choose an approach. When we present mathematical
models in lectures, we often have a particular approach
in mind and actively steer the discussion in that direc-
tion. For example, when I introduce the mass–spring
system in a differential equations class, I know which
equation I want the students to use to model the sys-
tem. Ideally, students will tackle modeling problems for
which a variety of approaches could succeed. When that
is not possible, students who debate the motivations
for a particular approach can begin to see modeling as
a set of choices based on underlying principles rather
than an application of absolute and obvious laws.

Combine mathematical, statistical, and computation-
al skills. In academic classes, students generally learn
to apply a specific set of skills designated by the current
text/topic, chapter, and problem set. In many texts,
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the title of the section will indicate which technique

to use. Real problems leave more to the imagination.

In addition, for most industrial problems, mathematics

students must bring their programming skills to bear,

including collaborative coding, version control, com-

menting, testing, validating, and debugging. Projects

sometimes also require proficiency in and use of a par-

ticular piece of software, even if the students have a

different preferred platform or solution.

Validate and test results. Once students have run

their models, how can they conduct a sanity check on

their results? If they have used data to create a model or

algorithm, did they reserve some data for testing pur-

poses? Under what circumstances should the results be

most accurate? What metrics best define a good solu-

tion? Can the model run in a reasonable amount of

time? Does the solution meet the requirements of the

sponsor? Students must report the accuracy and relia-

bility of their data, assumptions, and model as well as

estimate the error introduced by the parameter values

and data and methods they have used.

Iterate to refine the solution. Iteration can begin at

many stages, as rethinking becomes necessary. Prelim-

inary results may uncover unnecessary assumptions or

new model requirements. While iteration is always a

potentially useful step in the process, it is less likely to

be feasible for short-term projects.

Draw conclusions. Once students have designed,

refined, and run their model, they must decide what

conclusions they can draw from the results. The con-

clusions will of course depend on the assumptions and

choices that were made in the previous parts of the

modeling process, and on the results.

Communicate results to both general and techni-

cal audiences. Deliverables can provide opportunities

for students to practice mathematical writing, software

documentation, peer review, and public speaking, as

well as visual communication of key ideas and relation-

ships. People interested in the results of their model

will likely have various levels of understanding of the

problem and its solution. Students will need to be able

to communicate effectively with managers and officers

as well as with technical teams. Regular communication

with a sponsor, mid-project oral updates, and periodic

written reports can all provide opportunities to practice

these skills before deliverables are due.

Practical Matters

Typical textbook story problems rarely require any of
the skills discussed above, even though many of the
tasks may be required in jobs that involve mathematical
modeling. Modeling camps, study groups, and indus-
trial mathematics workshops provide opportunities to
practice combinations of the skills, but not every stu-
dent will have those opportunities or be prepared to
fully participate. As a way to provide practice, one or
more of the skills can be incorporated into a mathemat-
ics course through class activities, projects, and home-
work problems. In this way students can benefit from
practicing each skill in isolation before attempting to
combine them.

A simple place to start might be to incorporate some
extraneous information into a problem set. Another
possibility would be to give students a raw data set and
ask them how they would approach the information to
draw a conclusion. Governmental organizations, such
as the U.S. Environmental Protection Agency, make
data and models available online. A third option could
require students to analyze a problem and suggest a
course of action. The Mathematical Contest in Model-
ing provides 10 years of online example problems and
winning papers.

Long-term projects, such as the year-long Mathemat-
ics Clinic at Harvey Mudd College, require students to
practice all of the skills above. With long-term projects
students have the opportunity to work in teams and
practice project management. With some guidance, stu-
dents can learn to prepare reasonable time lines, plan
for failure and other contingencies, and assign tasks so
that each team member contributes to the solution.

As we design modeling activities for students, we
should consider how much iteration is feasible. Ide-
ally, we would discuss the rationale for iteration with
students even when they do not have time to imple-
ment the iteration themselves. As we teach mathemat-
ical modeling and provide mentoring, we also need to
decide how much scaffolding we will provide to lead
their modeling efforts in a desirable direction. Cogni-
tive research in mathematics education supports the
idea that in the early stages of learning, worked exam-
ples can promote skill acquisition, but problem solv-
ing is superior during later stages. While we may want
to provide students with a framework for approach-
ing particular problems, scaffolding can unintention-
ally reduce the cognitive demand of the task. Students
need to struggle in order to develop strategies for real,
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messy problems. Therefore, as students advance, we
must gradually take away the scaffolding and make
sure that the problems are tackled by the students
rather than being demonstrated to them.

As we teach mathematical modeling, the tasks out-
lined above can provide students with opportunities to
develop individual skills they can apply to real prob-
lems. When they can combine the skills, work well indi-
vidually or in teams, and produce relevant results for
real unsolved problems, they will be ready to make
valuable contributions to modeling problems in sci-
ence, technology, engineering, and mathematics fields.
We can provide these challenges through problems
with high cognitive demand, inspired by industrial
mathematics.
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VIII.8 Mediated Mathematics:
Representations of Mathematics
in Popular Culture and
Why These Matter
Heather Mendick

1 Introduction

As geek becomes increasingly chic, media representa-
tions of mathematics and mathematicians proliferate.
Writing this from England, I can currently tune into
regular television episodes of U.S. mathematics-solves-
crime drama Numb3rs and U.S. sitcom The Big Bang

Theory, which features three physicists and an engineer
among its five central characters. In 2012 U.K. comedy
channel Dave launched a new show called Dara Ó Bri-
ain: School of Hard Sums, in which host and mathemat-
ical physics graduate Ó Briain competes against fellow
comedians at tasks set by professor of mathematics
(and occasional television presenter) Marcus du Sautoy,
with two mathematics undergraduates in the studio as
backup problem solvers. In this article I will be explor-
ing such popular cultural texts, analyzing the ways in
which they portray mathematics and mathematicians.

First, something about me. It feels strange to be writ-
ing for the Princeton Companion to Applied Mathemat-
ics. Although my first degree was in mathematics and
I taught it for more than seven years, as an academic I
identify and work as a sociologist of education. The edi-
tors kindly agreed that I be excused from the require-
ment to use LATEX, a program of which I was previously
ignorant. My move from mathematics to sociology has
been accompanied by many changes. For example, my
hair is no longer waist length and unstyled but short
and dyed a vivid shade of red. My epistemological view
has also shifted. In their book The Mathematical Expe-
rience, Philip Davis and Reuben Hersh joke that “the
typical working mathematician is a Platonist on week-
days and a formalist on Sundays.” Indeed, when I stud-
ied and taught mathematics I took a Platonic position:
I felt that I was experiencing and relating to absolute,
objective knowledge. Now I see mathematics, like all
knowledge, as a social construct arising from human
action in the world rather than being external to it.

So, following this approach, mathematics comes into
being through the constellations of meanings that cir-
culate about it, the stories that we (choose to) tell about
it, and the ways in which people take up positions
within those stories and are positioned by them. Look-
ing at it this way, the idea that mathematical knowledge
is absolute is a story about mathematics, albeit one that
is very powerful and that I used to make sense of what
I was doing for about the first thirty years of my life.
This story undoubtedly had the social function of bind-
ing me to an “imagined community” of mathematicians,
who had the ability to access this unique form of know-
ledge. This story about mathematics is thus also one
about who I am (and who I am not); it is part of the
way that I constructed myself (and the story that I am
telling here, of moving away from this, is part of how I
construct myself now). Looking back, I wonder how this
impacted on my views of other people and other ways
of knowing. Perhaps this story had a psychic function:
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what role did this conception of certain knowledge, and

the promise of control that it offers, play for me?

Thus, my intellectual project now is to identify the

stories we tell about mathematics—the meanings that

we give to mathematics—and to understand their pat-

terning and their effects. We can, of course, find these

meanings in workplaces, school classrooms, and uni-

versity lecture halls. But, in contemporary society, the

media are a primary site for the circulation of mean-

ings, so this too is a good place to look for mathemat-

ics. My purpose in identifying media stories is to open

up different ways of thinking about, engaging with,

and teaching mathematics. This article is split into four

main parts. The first two focus on two types of mathe-

matics (everyday and esoteric) playing out in media rep-

resentations and the identities associated with these.

And in the next two I focus on tracking popular repre-

sentations of mathematics via key emotions: pleasure

and excitement, fear and boredom. I show that, while

all are held responsible for learning mathematics, not

all are perceived to have mathematical ability. I end by

offering some brief reflections on using popular culture

within university mathematics education.

2 The Paradox of Relevance—or Do
We All Use Mathematics Every Day?

In a reflective mood, Abraham Lincoln, played by Daniel

Day Lewis in Lincoln, Hollywood’s 2013 film account

of the abolition of slavery in the United States, recalls

reading Euclid’s Elements:

Euclid’s first common notion is this: “things which are
equal to the same thing are equal to each other.” That’s
a rule of mathematical reasoning. It’s true because it
works. Has done and always will do. In this book, Euclid
says this is “self evident.” You see, there it is, even in
that 2000-year-old book of mechanical law. It is a self-
evident truth that things which are equal to the same
thing are equal to each other.

Here, Lincoln is presented as using Euclid to support

the obviousness of race equality. While there is no evi-

dence that he actually did this, what is interesting is

that a Hollywood movie associates mathematics with

empathy and justice. This is a common association in

popular mathematics. My favorite example comes from

the classic teen comedy Mean Girls from 2004. In an

interschool competition for teams of “mathletes,” the

film’s heroine, Cady Heron (played by Lindsay Lohan), is

in the sudden-death round of the final. Standing at the

podium she has a revelation. Her internal monologue
during this runs:

Calling somebody else fat won’t make you any skinnier.
Calling someone stupid doesn’t make you any smarter.
And ruining [frenemy] Regina George’s life definitely
didn’t make me any happier. All you can do in life is
try to solve the problem in front of you.

This insight is part of the reasoning process through
which Cady secures the right answer to the limit prob-
lem in front of her, thereby securing victory for her
team.

In these examples, mathematics is constructed as
part of our common humanity, intrinsic to our everyday
being and reasoning. There are many popular examples
that do this in other related ways. Game shows (such as
Countdown, Deal or No Deal, and Who Wants to Be a Mil-
lionaire) present mathematics as part of “general know-
ledge” rather than being the province of only a lucky
(or unlucky) few. The success of puzzles like sudokus
and kakuros, and of computer games like Tetris and
Dr Kawashima’s Brain Training, bring mathematics into
people’s lives, as does interacting with mathematics
in magazine quizzes and through sporting events (try
working out finishes in a game of darts, for example).
Via the media, we are continually shown or told that
mathematics is useful or even necessary for familiar
everyday practices such as calculating profits (in chil-
dren’s fantasy Matilda) and counting calories (in Mean
Girls) or for unfamiliar but important ones such as
winning wars (in World War II films Enigma and Dam-
busters and Cold War movie A Beautiful Mind), crimi-
nal activity (in glamorous film Ocean’s 11), and crime
fighting (in television series Numb3rs).

Given the ubiquity and utility of mathematics in
popular culture, we may expect this to have resolved
what Ole Skovsmose refers to as the paradox of rele-
vance: that “on the one hand, mathematics has a perva-
sive social influence and, on the other hand, students
and children are unable to recognise this relevance.”
However, recent research shows that this paradox per-
sists. I think this is because of the many contradic-
tions in how popular mathematics is woven into our
“life-worlds.” Some of these are evident when news-
papers reassure people that sudokus are not mathe-
matics or when the normally erudite presenter Melvyn
Bragg describes himself as “blinking in the face of this
[mathematical] assault” and “completely intrigued by
this out of space thought that you mathematicians go
in for.” Mathematics is both everyday activity and “out
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Figure 1 The Eppes brothers, Charlie and Don, show
off their contrasting approaches to fighting crime.

of space thinking”; it is both for all and the special-

ized province of “you mathematicians.” Now I want to

explore these contradictions by looking in detail at the

television series Numb3rs.

Numb3rs (2005–10) ran for six seasons (118 episodes

in all) in the United States on the CBS network and con-

tinues to be shown in the United Kingdom on the sta-

tion 5USA. The narrative centers on two brothers. Older

brother Don Eppes (Rob Morrow) is the lead Federal

Bureau of Investigation (FBI) agent at the Los Angeles

violent crime squad, while his younger brother Charlie

(David Krumholtz) works as a professor of mathemat-

ics at the local university, the California Institute of Sci-

ence (CalSci). Each episode shows Don and Charlie join-

ing forces to solve a new crime. They work alongside

Alan (their self-proclaimed “FBI dad”), Don’s FBI team,

and two of Charlie’s CalSci colleagues: Amita Ramanu-

jan, initially his doctoral student and later his colleague

and girlfriend, and quirky physicist Larry Fleinhardt.

Numb3rs contains perhaps the most blatant and ped-

agogic instance of popular culture presenting mathe-

matics as an everyday activity undertaken by all: the

voice-over during the credits sequence for the first two

seasons (after this, the show followed the increasing

trend of eliminating the opening credits). The season

one voice-over insists:

We all use math every day: to forecast weather; to
handle money. We also use math to analyze crime:
reveal patterns; predict behaviors. Using numbers we
can solve the biggest mysteries we know.

This plays out in the show, as mathematical “genius”

Charlie seems to spend as much time in the FBI offices

as at his university, appearing largely unencumbered

by the seminars and meetings that fill my working

life as an academic. He is therefore always on hand

to provide an application of mathematics. His uses of

mathematics go beyond analyzing, and inevitably solv-

ing, crime after crime. In a notable example, in season

four, Charlie writes a self-help book on the mathemat-

ics of friendship (The Attraction Equation) that quickly

becomes a best-seller. Later, in season five, he, Larry,

and Amita apply mathematics and physics to basket-

ball in an attempt to halt CalSci’s entrenched losing

streak.

Throughout the seasons we see Charlie—and to a

lesser extent, Amita, Larry, and other characters—

talking about mathematics. But each episode also con-

tains some distinct “math-bits.” These focus on the use

of analogies to convey a mathematical idea. For exam-

ple, in an episode where a supercomputer is suspected

of murder, a math-bit is used to explain the Turing test

via an analogy between computers and roses. Roses

may be real or artificial or they may be genetically mod-

ified so as to be artificial but indistinguishable from

real, hence passing the Turing test for roses (if one

existed). While the rest of the series has a common real-

istic visual style looking much like any mainstream U.S.

crime series, these math-bits look very different. They

feature selective use of vivid colors against a black and

white three-dimensional grid-like background; images

of objects and formulas move around rapidly as if

choreographed in time, with a voice-over from Charlie

(or occasionally, in later seasons, another character). In

an interesting move, the transitions into and out of the

ads, and some other scenes, use the three-dimensional

grid-like graphic from these math-bits. This has the

effect of encouraging us to frame the evolving events as

manipulable mathematically, which can be understood

as an instance of what Skovsmose calls the formatting

power of mathematics. This names the way “that math-

ematics produces new inventions in reality, not only in

the sense that new insights may change interpretations,

but also in the sense that mathematics colonises part

of reality and reorders it.”

Watching the math-bits, even when I follow the analo-

gies, while they help me understand what mathemat-

ics can do, they give me no access to the mathematics

itself. Charlie is repeatedly referred to as a genius, and

these math-bits seem to be intended to provide us with

insights into mathematical minds like his rather than

to indicate something that all minds could do. So ren-

dering the everyday mathematical requires both a pro-

cess of transformation and a person to conduct that

transformation. In this way even the idea of mathemat-

ics as within the everyday relies on a construction of
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mathematics as an esoteric skill carried out by an elite,
something I now discuss.

3 The Mathematical Mystery Tour

In the last section I showed that a tension runs through
popular culture and, more widely, between stories of
mathematics as everyday and accessible to all and as
esoteric and accessible only to an elite. By looking at
Numb3rs I showed that the same text can tell both sto-
ries simultaneously by suggesting that mathematics is
useful to all but inaccessible to most. In Numb3rs, while
Charlie and the others who do mathematics may occa-
sionally express uncertainty and need help, the math-
ematics itself has no similar vulnerabilities; it is hard,
absolute, certain. This idea of mathematics has become
common sense. It is perhaps most explicitly stated by
G. H. Hardy in his book A Mathematician’s Apology :

A chair or a star is not the least like what it seems
to be; the more we think of it, the fuzzier its outlines
become in the haze of sensation which surrounds it;
but “2” or “317” has nothing to do with sensation,
and its properties stand out the more closely we scru-
tinize it … 317 is a prime, not because we think so,
or because our minds are shaped in one way rather
than another, but because it is so [original emphasis],
because mathematical reality is built in that way.

As I said above, this is not a position I share. But I am
not concerned here with arguing against it; instead, I
want to look at how this story (of mathematics as abso-
lute and objective) is told within popular culture and
at what effects it has. In particular, I want to track its
relationship with mathematical elitism.

In popular culture, the absoluteness of mathemat-
ics is often supported by associations with spirituality,
mystery, or magic. For example, in Dan Brown’s 2003
novel The Da Vinci Code, cryptographer Sophie Neveu
(played in the film version by Audrey Tatou) is revealed
to be a direct descendant of Jesus and Mary Magda-
lene, an embodiment of the “sacred feminine,” some-
thing that must remain in balance with the masculine.
In the Darren Aronofsky film Pi (from 1998), a Jewish
follower of Kabbalah believes that the lost name of God
can be found within the decimal expansion of π . While
(as I discuss further below) in Michael Crichton’s 1991
novel (and Crichton and Steven Spielberg’s 1993 film)
Jurassic Park, the predictive power of the mathematics
of chaos takes on a magical quality.

This leads to a representation of those who can
access the secrets of mathematics as gifted and special.

For example, Charlie Eppes (of Numb3rs) was five years
ahead of his age at school, entered Princeton at thir-
teen, and got his first journal article published at the
tender age of fourteen. Indeed, the mathematicians
we see on big and small screens are nearly always
“geniuses,” from the Nobel laureate John Nash (played
by Russell Crowe) in the 2001 biopic A Beautiful Mind to
Pi ’s Max Cohen (played by Sean Gullette), who searches
for patterns inπ . This specialness is reinforced by their
presentation as unstable, with Nash suffering from life-
long schizophrenia and Max pursuing his work beyond
obsession. These mental-health problems are often
directly linked to their mathematical “gifts.” Scenes
showing people doing mathematics usually involve fre-
netic scribbling on any available surface, including mir-
rors and windows when the more usual whiteboards
and blackboards are unavailable. For me, the most
striking example of a direct link between madness and
mathematics is a fantasy sequence in which Max is
depicted applying an electric drill to his own head,
metaphorically excising the mathematical “gift” from
his brain before he can go on to a happier and more
relational future, but one in which he has lost both the
desire and the ability to calculate. For these and the
other big- and small-screen geniuses, mathematics is
viewed as defining their whole personality and infusing
every aspect of their lives. In an extreme but not atyp-
ical example, the married pedophile mathematician in
Kate Atkinson’s 2005 novel Case Histories:

didn’t really feel the need for another person in his life,
in fact he found the concept of “sharing” a life bizarre.
He had mathematics, which filled up his time almost
completely, so he wasn’t entirely sure what he wanted
with a wife. Women seemed to him to be in posses-
sion of all kinds of undesirable properties, chiefly mad-
ness, but also a multiplicity of physical drawbacks—
blood, sex, children—which were unsettling and other
[original emphasis].

This also makes explicit how, despite mathematics
being represented as absolute and therefore outside
of society (or perhaps even because of it), the default
mathematician is a (white, middle-class, heterosexual)
man.

This gendering of mathematics is apparent in the
only scene in A Beautiful Mind where we see some
actual mathematics: Nash’s work on game theory. Here
is a brief description.

The scene is a bar with upbeat music playing. The cam-
era focuses on a tall blonde (among a group of women)
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and then on a group of male mathematics graduate stu-
dents staring at her. The exception is John Nash, who is
working, surrounded by papers and books, piled hap-
hazardly and with a pint of beer. His fellow students
draw his attention to “the blonde.” They look at the
group of young women, who then look back at them.
Nash looks uncomfortable. One student, Martin, makes
reference to Adam Smith’s theory that “in competition,
individual ambition serves the common good.” “The
blonde” looks at Nash. His fellow students joke about
Nash’s lack of success with women. There is a change in
Nash’s posture and a change from upbeat jazzy music
to softer piano music. He smiles and says “Adam Smith
needs revision.” He explains that if they all go for “the
blonde” they will block each other and upset the other
women; however, if they cooperate, and none of them
go for “the blonde,” they can all be successful. Dur-
ing this exposition the images become surreal and blur
slightly, as if the characters are puppets illustrating
Nash’s conjectures. We get an aerial view where, in a
geometrical pattern, we see all the men going for “the
blonde,” then going for the other women. The cam-
era pans from a close up of Nash to his mathematical
“visions.” This happens alongside changes in Nash’s
tone of voice, from nervous to authoritative, and the
loss of his bodily twitches. This sequence ends with
Nash saying, “that’s the only way we win, that’s the
only way we all get laid,” as the music returns to jazzy.
Hastily, Nash gathers his papers and leaves. He pauses
by “the blonde,” says “thank you,” and rushes out. She
looks puzzled.

There are close links between this and the math-
bits in Numb3rs, as we leave the realistic space of the
drama and enter the figurative space of the mathemat-
ical model. Paying attention to how women are posi-
tioned within this narrative raises questions about who
is represented as being able to do mathematics. “The
blonde” acts as the silent muse for the creativity of the
great male genius. This positioning of women as hand-
maidens to, and inspiration for, creativity, but not as
creative agents in their own right, is common in texts; it
speaks to the ways in which our very notions of creative
(mathematical) thought are gendered, a theme that is
explored in detail in the work of Valerie Walkerdine.

There are women doing mathematics in popular
drama but they mostly exist, like Amita in Numb3rs,
as daughters, students, and/or love interests of more
central/established male mathematicians. Even Amita’s
surname, Ramanujan, suggests her heritage from a
male mathematician. I have already briefly mentioned
Cady Heron from Mean Girls, one of an emerging gen-
eration of screen “smart girls.” Yet she spends most
of the film pretending to be bad at mathematics in

order to attract the attention of Aaron Samuels, the

best-looking boy in her calculus class. In the mathlete-

sudden-death scene discussed earlier, Cady has to lit-

erally and metaphorically see past Aaron, the object of

her desire, in order to get her question right. He is a dis-

traction from mathematics rather than an inspiration

and support for it; he also gets both a name and a voice,

unlike “the blonde” in A Beautiful Mind. Numb3rs does

briefly introduce a senior woman, Mildred Finch, but

she operates largely as a manager rather than a mathe-

matician and is a love interest for the more established

male character of Alan Eppes. After nine episodes she

disappears from the series without explanation.

Turning to social class, the 1997 film Good Will Hunt-

ing contains a rare example of a mathematical genius,

Will Hunting (played by Matt Damon), from a working-

class Irish–American background. Will, entirely self-

taught, works as a janitor at the Massachusetts Insti-

tute of Technology (MIT), and the film tells the conse-

quences of his “discovery” by MIT mathematics pro-

fessor and Fields medallist Gerald Lambeau (played by

Stellan Skarsgård). Will is depicted differently from the

middle-class mathematicians. As Marie-Pierre Moreau,

Debbie Epstein, and I noted in 2009:

There is a scene when he loses control reacting with
severe violence when he meets a man who abused him
as a child. The element of physical violence in the way
Will expresses his emotions contrasts with [Numb3rs]
Charlie’s (more middle-class) ways. This incident hap-
pens prior to Will entering the mathematical commu-
nity, embarking on a course of therapy, and falling in
love with a wealthy Harvard student, thus suggesting
that the story of Will is also one of redemption through
incorporation of middle-class practices.

So Good Will Hunting is very much the story of Will’s

“middle-classification,” as, in becoming a mathemati-

cian, he is required to embrace the values of the mid-

dle class and to leave his (working-class) neighborhood,

friends, and job behind. Will—like Charlie Eppes, Max

Cohen, and John Nash—reinforce the association of

mathematics with whiteness. We know that this white

male middle-class image is easily called up when young

people are asked to imagine a mathematician. In the

next two sections I want to continue tracking who is

positioned as “un/able” to do mathematics in popular

culture by turning to the dominant emotions evoked in

relation to mathematics in that space. I have crudely

divided them into the positive emotions of pleasure

and excitement and the negative emotions of boredom
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and fear, although, as I hope to show, things are more
mixed up than that taxonomy suggests.

4 Pleasure, Excitement, and the
“Ability” to Do Mathematics

If you are reading this, you are probably more likely
than most to find pleasure and excitement in math-
ematics. However, such feelings are often laced with
fear. In my own research into advanced mathemat-
ics in England, I vividly remember one young woman,
who had chosen to continue with the subject and was
doing well at it, saying “sometimes I dread going into
[mathematics]”; while Robert Early (1992, p. 15), in his
research into students’ feelings about mathematical
challenge, quotes one powerful and terrifying account:
“I felt as though I was jumping rope on a razor blade,
and with each jump blood trickled onto the blank
paper below me.” In some ways, the greater the per-
sonal investment in the subject, the greater the fear,
for there is more to be gained, or lost, by success or
failure. I look at how these and other fears are mobi-
lized in popular culture in the next section. Here, I
focus on representations of mathematical pleasure and
excitement.

As illustrated above, while lots of people do math-
ematics in popular culture, there is very little actual
mathematics. Sound and vision indicate mathematics
as beautiful and pattern oriented but avoid details; for-
mulas abound but without any indication of how to
read them. Indeed, I have written elsewhere about the
problems that people have in seeing mathematics as
enjoyable, showing how they usually construct it as the
opposite of music and other forms of popular enter-
tainment. This polarization is evident in how those who
do enjoy mathematics are positioned as being a partic-
ular type of person. As I have shown, they are usually
geniuses, and they are also usually nerds or geeks.

These terms are difficult to define precisely and
to distinguish from one another; they intersect with
genius. Essentially, they capture a figure who is male
but often physically weak and/or overweight, hetero-
sexual but awkward with women, white (or occasionally
East or South Asian), and academically intelligent but
socially incompetent. The Urban Dictionary Web site
offers a range of definitions, the pithiest and most
highly rated of which is: “The people you pick on in
high school and wind up working for as an adult.” This
captures the tension between awe and derision within
the cultural gaze on geeks, a tension that reaches its

apotheosis in “geek chic.” Here are three definitions of
“geek chic,” also taken from Urban Dictionary:

An obvious oxymoron, “geek chic” emerges from oxy-
gen deprived hallucination in which geeks evolve into
actual existence as a sort of technocracy radiating the
holy aura of cool. You will find no more crushing an
argument against geek chic than Bill Gates, who despite
being the richest man in the world sports an apparent
$5 coiffure and birth control glasses.

Clothing or accessories that are very geeky/nerdy and
yet, at the same time, says [sic] “I’m cool because I’m
proud of the fact that I’m a nerd, and am not afraid to
dress the part.”

Geek Chic within it’s self [sic] is an oxymoron and ironic
twist of events by people who are generally not geeks,
attractive men and women who want to act like geeks
but don’t actually have the passion for geeky hobbies
or the intellect. Real geeks got picked on, and were
proud to call themselves geeks because they could con-
struct their own PCs or were very good at math or
something, not because they spend massive abouts
[sic] of times [sic] on Xbox play [sic] Call Of Duty or
in [sic] some consumer electronic [sic] like an iPod or
iPhone. Real geeks consider iPods and iPhones basic
shit.

In the first definition we see the intensity of the hatred
that can be directed at geeks via a strong objection
to the claim that geeks could ever be chic. Contrast-
ing with this, the next two definitions are written from
geek positions’ they both locate value in geeks for
being proud of who they are despite others teasing
and bullying. The first and third definitions assert that
“geek chic” is oxymoronic but for different reasons: one
rejects geek chic, asserting geeks’ inbuilt inferiority;
the other constructs an authentic geekness, asserting
geeks’ superiority over those who have the desire to
be “real geeks” but lack the passion and intelligence.
All three definitions support the construction of math-
ematics and those who do this as “special.” They differ
on whether it is good to be a geek or not, but they agree
that you either are one or you are not. There is no sense
of engaging with and enjoying mathematics or technol-
ogy as one might other school subjects, like history or
Spanish, as an interested, informed amateur.

The most successful series to capitalize on the rise
of geek chic is the sitcom The Big Bang Theory (2007–).
The program centers on four male geeks and their
unlikely friendship with the blonde, stylish, sociable,
would-be actress Penny. Although they are physicists
and engineers, they are often shown doing mathemat-
ics. Three are white (one of whom is Jewish) and one
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Figure 2 Howard, Sheldon, Leonard, Penny, and Raj (left to
right) pictured in the apartment that Sheldon and Leonard
share.

is Indian. Leonard, the most conventional and sexually
successful of the four, is the most ashamed of his geek-
iness. For example, he conceals the fact that he plays
word games in the science-fiction language Klingon. He
suffers from a range of health problems and nervous
disorders including lactose intolerance, sleep apnoea,
migraines, carsickness, nose bleeds, and asthma. He
tilts his head when he talks and has a tendency to
whine; he regularly applies excessive hair gel and wears
mismatched clothing. At the other extreme is Sheldon,
who is unashamedly geeky. He interprets everything lit-
erally (needing to be taught to recognize irony), feels
compelled to order his surroundings (even when this
involves breaking into his new neighbor’s flat), and wor-
ries that massaging his own shoulders involves exces-
sive physical contact. In between these two on the geek-
iness scale are Howard, who lives with his overbearing
mother, and Raj, who cannot talk to women while sober.
Women have a strange position in the show, as Moreau
and I noted in Debates in Mathematics Education:

Most of the female characters, like Penny, exist to con-
trast with the male geeks, and implicitly emphasise
their heterosexuality. The two female geeks are periph-
eral characters introduced as potential love interests
for the men. They stand out like the one female geek
and one gay geek included in a total of 42 geeks featur-
ing across five seasons of US Reality TV show Beauty
and the Geek.

While mathematics may be depicted as neutral know-
ledge, geek stories like those of geniuses reinforce the
idea that the “ability” to do mathematics belongs in par-
ticular bodies. In these and other shows, popular cul-

ture makes jokes with and about geeks but also values
them for being intelligent and unafraid of being dif-
ferent. In The Big Bang Theory, Penny clearly enjoys
hanging out with the geek gang and she dates Leonard
and has a one-night stand with Raj. Their ability to find
fun in mathematics, science, and technology seems to
extend into other areas.

From Howard’s dependence on his mother to Leon-
ard’s preponderance of childhood illnesses, there is a
boyishness to the way geeks are depicted. All of The Big
Bang Theory ’s characters own a large number of comic,
fantasy, and science-fiction themed toys and memo-
rabilia and are regularly shown playing games. How-
ever, their skills are also depicted as being immensely
valuable, securing significant government funding; this
is exemplified when Howard’s technical expertise wins
him a place on a space mission despite his physi-
cal inadequacies when compared with the other astro-
nauts. Within popular culture, this power of mathemat-
ical knowledge is inseparable from excitement.

I end this section with one last example of power and
excitement: Jurassic Park, which also contains perhaps
the only screen example of a “cool” mathematician. In
both the book and film versions, genetic engineering
has been used to manufacture live dinosaurs in order
to create a prehistoric amusement park. The narrative
takes place on a weekend inspection of this project
prior to opening by two paleontologists, a lawyer, and
a mathematician, Ian Malcolm, accompanied by the
park’s driving force, John Hammond, his two grand-
children, and other park employees. Malcolm, played
by Jeff Goldblum in the film, wears black throughout
(including shades and a leather jacket), flirts outra-
geously, and “suffers from a deplorable excess of per-
sonality, especially for a mathematician.” He is clearly
able to use chaos theory to predict the ultimate failure
of Jurassic Park and its end in disaster and death. Even
when he is told that all the dinosaurs are female, he cor-
rectly predicts that they will sexually reproduce: “life
will find a way.” This predictive power is most appar-
ent in the book, where each section is introduced by a
quotation from Malcolm and by a growing image of a
fractal:

At the earliest drawings of the fractal curve, few clues
to the underlying mathematical structure will be seen.

With subsequent drawings of the fractal curve, sudden
changes may appear.

Details emerge more clearly as the fractal curve is
redrawn.
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Inevitably, underlying instabilities begin to appear.

Flaws in the system will now become severe.

System recovery may prove impossible.

Increasingly, the mathematics will demand the courage
to face its implications.

In the book, and to a lesser extent in the film, Malcolm
articulates a critique of scientific progress. He com-
pares the actions of Hammond at Jurassic Park to those
of a child with his father’s gun: since he and his sci-
entists did not work for the knowledge they are using,
they exercise no responsibility in relation to it. He ques-
tions the value of discovery, calling it a violent and
penetrative act and comparing it to rape. But even as
“progress” is radically challenged, this is undermined
by the role that mathematics plays in understanding
and ultimately controlling events. The unknowing audi-
ence look on in wonder and relief at both the dinosaurs
and at the power of mathematics and of the “mathema-
gician” who wields it. In the final section of this article
I consider the way in which popular culture portrays
those of us in the audience looking on.

5 Boredom, Fear, and the
Responsibility to Do Mathematics

In the “Brotherhood” episode of television drama series
Six Feet Under, teenager Claire Fisher is shown in a
high school algebra class, unable to explain the for-
mula on the board. Her teacher reprimands her, “well
maybe if you paid attention in class instead of reading.”
Claire responds, “well maybe if you talked about some-
thing that was actually gonna be useful to me I would,”
and returns to reading her book. Her teacher persists:
“Oh algebra is useless. Hmm, know a lot of physicists
who’d beg to differ.” Claire, sullenly looking up, replies,
“well I don’t want to be a physicist.” Her teacher, arms
unfolded, speaks lyrically: “algebra forces your mind to
solve problems logically, it’s one of the only perfect sci-
ences.” Claire interrupts: “Do you think the world runs
on logic? Open your eyes.” Her teacher’s final sally is
“ok, I’ll see you after class Miss Fisher.” At this point
Claire stares very intensely at her teacher from whose
head steam is beginning to rise; her head then explodes,
and Claire laughs.

Here we see a familiar trope in popular culture:
teenage alienation. Mathematics stands for all that is
most boring and pointless about education. The scene
offers a vivid dramatization of the failure of mathemat-
ics to resolve the paradox of relevance—the juxtaposi-
tion of a personal feeling of the futility of mathematics

with a generalized belief in its utility. Here and else-
where mathematics figures as a counterpoint to imagi-
nation and creativity. When asked to draw a teacher, the
most common response of primary-school children is
to draw someone smartly dressed, standing behind a
desk and/or in front of a blackboard, and teaching for-
mal mathematics. In another example taken from the
“Bart the Genius” episode of The Simpsons, ten-year-old
Bart, faced with a mathematics test, spends the whole
of the allocated time engaged in a daydream provoked
by the first test question: a word problem about two
trains headed in opposite directions. Both these exam-
ples suggest that the boredom response is not simply
about the dullness of mathematics but also indicates
a fear of engaging with the subject. Perhaps boredom
partly serves as a defense against failure in mathemat-
ics. To understand why such a defense is so impor-
tant to so many people, we need to look at the status
conferred upon mathematics.

In the example from Six Feet Under, we can also see
the obligation placed upon Claire, by her teacher and
by society more widely, to learn mathematics. Policy
and public discourses commonly present mathematics
as a key to both national progress (economic and scien-
tific/technological) and individual progress (empower-
ment, employment, and success). For example, in 2004
Adrian Smith was commissioned by the U.K. govern-
ment to undertake a major enquiry into mathematics
education after the age of fourteen. Near the start of his
report (published under the title “Making mathematics
count”) he states:

It has been widely recognised that mathematics occu-
pies a rather special position. It is a major intellec-
tual discipline in its own right, as well as providing the
underpinning language for the rest of science and engi-
neering and, increasingly, for other disciplines in the
social and medical sciences. It underpins major sec-
tors of modern business and industry, in particular,
financial services and ICT. It also provides the individ-
ual citizen with empowering skills for the conduct of
private and social life and with key skills required at
virtually all levels of employment.

Here we can see how individual fears associated with
mathematics (of individual failure, social exclusion,
being judged) are brought together with national fears
(of national failure, economic exclusion, being uncom-
petitive). Mathematics can bring together these fears
because it serves as a signifier of intelligence and tech-
nological progress. The books Do You Panic about
Mathematics? (1981) and Overcoming Math Anxiety
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(1978) by Laurie Buxton and Sheila Tobias, respectively,

tracked how mathematics anxiety and panic derive

from people’s feelings of being judged via mathemat-

ics and found wanting. Research has shown that the

introduction of national testing into primary schools

in England has meant that ever-younger children are

exposed to high-stakes assessment and to grouping by

“ability” in mathematics, thereby increasing the anxiety

and fear attached to the subject.

Government advertising to promote take-up of adult

mathematics provision has played on these fears. In

these advertising campaigns, we find people who are

unable to do mathematics and who are urged to take up

the opportunity to “get rid of your mathematics grem-

lin” and “become mathematics confident.” Thus I end

this overview of popular culture with a discussion of

advertisements from the two most prominent recent

U.K. adult numeracy campaigns. The first is called “Bad

Dad” (it can be viewed online at www.youtube.com/

watch?v=CzQvD9oBx-0) and comes from a series of ads

that use gremlins as a metaphor for people’s gaps in

mathematical and English skills. It is filmed with very

little color, perhaps suggesting the darkness of igno-

rance, in which its central character resides, the epony-

mous “bad dad.” It opens with the camera on him:

white, aged 35–40, overweight, casually dressed, sit-

ting on a drab sofa, watching television. This figure

draws on clichés of the “feckless working class,” whose

unhealthy bodies are imagined to be permanently stuck

in front of the television.

The camera turns to his daughter, about ten years
old, with neatly combed hair, wearing a school uni-
form, who calls from the next room: “Can you help me
with my maths?” At this her dad’s face shows panic
and we see his ugly grey gremlin lounging on the sofa
with pointy ears and nose. The gremlin speaks with
obvious disdain: ‘You. Maths. That’s a good one.” The
camera focuses on dad’s worried face as he suggests:
“Ask your mother.” When his daughter tells him “She’s
out,” the gremlin taunts, “Oooooh! She’s gone out.
What are you going to do now?” Dad, becoming more
panicked, seems out of breath (again suggesting his
unhealthy body), asks: “Why don’t you use your calcula-
tor?” Daughter: “That’s cheating!” The gremlin scolds:
“Bad dad. Very bad dad!” The daughter enters the room
and looks at the television screen with confusion: “Dad.
I need to do it now!” Her dad looks ashamed.

The contrast between the hard-working, neat girl and

her lazy, untidy dad is striking. It directly invokes fears

of being a bad parent, who cannot support their child’s

Figure 3 Beryl as a school girl “too scared” to put
up her hand and ask about mathematics.

education and fails to inspire them to “high” aspi-
rations. The solution offered is to take advantage of
the available adult education classes and so transform
oneself.

The second ad centers on a woman called Beryl, a
name associated in England with elderly working-class
women (this can be viewed online at www.youtube
.com/watch?v=-xrQoU6qZLU). Although her name is
not revealed in the ad itself, her age and social class
are indicated visually via her hair curlers, cup of tea,
and other signs of “ordinariness.” All the characters
are created using hand puppetry and a small number
of props.

Beryl describes her difficult and troubling experiences
with mathematics when she was at school: “Well you
know looking back I know the exact time and place
where I lost my confidence with mathematics. It was
back in class 4C and I lost my ways with times tables.”
A male teacher, carrying glasses and wearing a mor-
tarboard and bow tie (both symbols of middle-class
teacherly authority), appears in order to chant times
tables: “Seven eights are fifty six, eight eights are sixty
four, ….” Beryl goes on to explain how taking the adult
mathematics course has helped to improve her confi-
dence: “I was too scared to put my hand up and say
it’s all gobbledygook to me. But I’ve just taken this
free adult mathematics course at my local college. They
start you at the point where you got lost and now my
fear of mathematics has just gone away.”

The contrasts between the teacher and Beryl emphasize
her social class and gender.

In both these ads an obligation is placed on the
individual to repair the damage done by school or by
their own earlier irresponsibility, otherwise they are
failing: failing their child, failing themselves, failing
their nation. Wider fears of mathematics are deliber-
ately invoked to motivate action. The gender and class
positions of the characters in these ads are almost

http://www.youtube.com/watch?v=CzQvD9oBx-0
http://www.youtube.com/watch?v=-xrQoU6qZLU
http://www.youtube.com/watch?v=CzQvD9oBx-0
http://www.youtube.com/watch?v=-xrQoU6qZLU
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opposites of those of the geniuses and geeks we met
earlier. In this way some people are presented as always
and already failures in relation to mathematics, in need
of remediation, but also as having a personal respon-
sibility to take up the offered support. Others are pre-
sented as self-taught, ahead of their age: our hope for
the future.

6 Conclusion

In this article I have surveyed some of the many ways
in which mathematics and people doing mathemat-
ics are represented in contemporary popular culture.
I have tried to draw out the contradictions, notably
those between, on the one hand, mathematics as acces-
sible, open, useful, and exciting and, on the other hand,
mathematics as hard, closed, useless, and boring. In
2004 Sarah Greenwald and Andrew Nestler offered
some helpful examples of how to use the popular
when teaching mathematics within universities, show-
ing how this can provide more points of engagement
and identification for students as they interact math-
ematically with characters and storylines. In the inter-
vening decade there has been an increase in the possi-
bilities for such an approach, with the proliferation of
mathematics within the popular, including much mate-
rial on YouTube (from Web series “Maths Warriors,”
through quirky educational channel “Numberphile,” to
another channel (from missionastar) that attempts to
teach quadratics via a Bollywood spoof). However, pop-
ular culture can include some and exclude others. For,
as I have shown, while society confers on all a respon-
sibility to become mathematically literate, it suggests
that only a special few possess mathematical “ability.”
It overwhelmingly depicts this ability as belonging in
white, male, middle-class, heterosexual bodies. Thus,
its use requires care and thought. I return to Numb3rs
briefly to suggest what such care and thought entail.

Texas Instruments have produced materials for high
school teachers to use to explore the mathematics in
Numb3rs, and the Wolfram Web site has produced
something similar for teachers of undergraduate math-
ematics. But ethically, can we talk about the mathe-
matics and not about the politics of how mathemati-
cians are represented in the series? Can we use these
materials without endorsing the excessive and glamor-
ized violence on the program? Or without taking into
account the difficult topics it tackles (sexual violence,
war, terrorism, stalking), which students or members of
their families may have experienced? In one episode,

Charlie persuades the FBI to buy up all supplies of a
new drug and so manipulate the market in such a way
as to reduce demand to zero. Charlie intends this as
a way to cut off crime at its source rather than sim-
ply dealing with the symptoms of crime. At the end of
the episode he briefly reflects that even this success
is meaningless since another drug will always be wait-
ing in the wings to fill the gap. However, this discus-
sion quickly leads to a play fight between Charlie and
Don, and there’s no space to think more broadly about
the underlying causes of drug crime (racism, poverty,
inequality) or to discuss alternative approaches to tack-
ling drug addiction, such as decriminalization. What
is lost, and gained, by extracting and abstracting the
mathematics used in the show without addressing the
wider questions raised by its use? Whether and in what
ways these questions are part of mathematics goes to
the heart of why we teach mathematics and what we
want people to learn as a result.
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VIII.9 Mathematics and Policy

The continued success of mathematics as a subject of
study and research depends on its importance being
appreciated by those who control the funding that sup-
ports it, as well as those who are in a position to make
use of mathematics-based advice in formulating policy.
Mathematicians arguably find it more difficult to make
the case for their subject than colleagues in other “more
practical” disciplines, such as biology, chemistry, and
engineering, yet the case for mathematics is continually
being made, and with much success. The four contribu-
tors to this group of articles, from four different coun-
tries, were asked to give their perspective on how to
influence government as a mathematician. Their anec-
dotes and advice should be of interest to all, and in par-
ticular to those who wish to be involved in promoting
mathematics to politicians.

I. Ya-xiang Yuan: How Chinese
Mathematicians Influence Government

The longest-running television program in the United
Kingdom, The Sky at Night (first broadcast in 1957),
is on astronomy. However, the public’s appetite for
astronomy was not so great prior to the second half
of the twentieth century. In the preface to the third vol-
ume of his classic Science and Civilisation in China pub-
lished in 1959, Josef Needham (1912–96) included the
following quote from Franz Kohnert (Vienna, 1888):

Probably another reason why many Europeans con-
sider the Chinese such barbarians is on account of
the support they give to their Astronomers—people
regarded by our cultivated Western mortals as com-
pletely useless. Yet there they rank with Heads of
Departments and Secretaries of State. What frightful
barbarism!

In ancient times almost all astronomers were also
mathematicians. China therefore has a long tradition
of mathematicians being well respected, and famous
mathematicians are often put into high-ranking posi-
tions in government. For example, Hua Loo Geng (1910–
85) was a vice chairman of the Chinese People’s Political
Consultative Conference (China’s top advisory body),
and Ding Shi Sun (1927–), former president of Peking
University, was a vice president of the National Peo-
ple’s Congress of China (the Chinese parliament). An
interesting phenomenon is that many university presi-
dents in China are mathematicians, but this is unusual

in the West. Another example of the popularity of math-

ematicians in China is that two of their number, Hua

Loo Geng and Chen Jing Run (1933–96), were chosen

by China Central Television (the official Chinese gov-

ernment television station) when it ran a competition to

select the 100 most deserving winners of the “Touching

China” award between 1949 and 2009.

During the great Cultural Revolution in the 1960s,

Hua Loo Geng was able to convince Chairman Mao

Zedong (1893–1976) that mathematics could help the

country to modernize. Hua traveled all over China

teaching the golden section search method—a method

for maximizing a unimodal function in an interval by

successively reducing the length of the interval by

the golden ratio ( 1
2 (

√
5 − 1))—and other operational

research techniques in factories, coal mines, and oil

fields. The Chinese Academy of Sciences sent many

research teams to the countryside to solve practical

problems in the areas of transportation and produc-

tion planning. A few years earlier, during the Great Leap

Forward (1958–60), Chinese scientists were encouraged

to solve real-world problems to help Chairman Mao’s

ambitious campaign to rapidly transform the country

from an agrarian economy into a modern communist

society. In 1960, twenty-six-year-old Mei-Ko Kwan, a

young lecturer at Shangdong Normal University, pub-

lished the famous “Chinese postman problem” in graph

theory.

In 2002 the Chinese Mathematical Society hosted the

International Congress of Mathematicians (ICM) in Bei-

jing. As the general secretary of that congress, along

with other mathematicians in China I had the chance

to lobby government officials to support the meet-

ing. We emphasized that sciences are vitally impor-

tant for China’s economic development and that math-

ematics is the foundation of all other sciences. The

president of the People’s Republic of China at that

time, Jiang Zemin, attended the opening ceremony and

handed the medals to the Fields Medal winners Lau-

rent Lafforgue and Vladimir Voevodsky. The success of

ICM 2002 promoted mathematics research, increased

public awareness of mathematics, and attracted more

young talented people to study mathematics in China.

Chinese mathematicians are very influential in sci-

ence and technology policy making in the country.

For example, in the 1980s the late Shiing S. Chern

(1911–2004) was able to persuade the Chinese gov-

ernment to increase its support of mathematics, and

this resulted in the establishment of the Tian Yuan
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Foundation within the National Natural Science Foun-
dation of China (NSFC). Following recommendations
from many famous Chinese mathematicians, such as
Shiing S. Chern, Shing Tung Yau, Lo Yang, and Gang
Tian, the Chinese government has spent an enormous
amount of money in the past twenty years setting up
a number of mathematical centers in China. These
include the Shiing S. Chern Institute of Mathematics
at Nankai University, the Morningside Center of Math-
ematics at the Chinese Academy of Sciences, the Bei-
jing International Center for Mathematical Research
at Peking University, and the Shanghai Mathematics
Center at Fudan University.

The main source of funding for mathematicians in
China is the NSFC, which is very similar to the National
Science Foundation in the United States. The NSFC
splits its programs into three categories: research pro-
motion, talent fostering, and infrastructure construc-
tion for basic research. The category of research pro-
motion is further subdivided into programs called the
General Program, the Key Program, the Major Program,
the Major Research Plan, and the Joint Funds to Interna-
tional Joint Research Program. General Program grants
are open to any application, while Key Program, Major
Program, and Major Research Plan grants are for appli-
cations relating to specific topics. Mathematicians have
to lobby the NSFC if they want a particular topic to be
listed as part of the Key Program or the Major Program
or if they want to set up a Major Research Plan.

Since my return to China from the University of Cam-
bridge in 1988 I have been involved in events that have
given me the honor of witnessing firsthand the ways in
which mathematicians are able to influence the Chinese
government. In the late 1980s and the early 1990s, the
late Feng Kang (1920–93) was able to convince the gov-
ernment to develop scientific computing. Due to his ini-
tiative and the proposals he put forward, the Ministry of
Science and Technology of China founded the State Key
Laboratory of Scientific and Engineering Computing in
1991 and, in the same year, launched the National Key
Research Project “Large Scale Scientific and Engineering
Computing.” The latter project eventually developed
into the huge National Basic Research Project of China
(also known as the 973 Program) and was approved by
Chinese leader Deng Xiaoping in March 1997.

Mathematicians also played an important role in
stimulating China’s success in developing high-perfor-
mance computing (HPC) hardware. In December 2002
China’s supercomputer DeepComp 1800 ranked forty-
third in the worldwide TOP500 list (www.top500.org).

This breakthrough marked the beginning of China’s
ascent in the field of HPC hardware development, and
in 2012 China built what was for a time the world’s
most powerful supercomputer: Tianhe-1A. The rapid
development of HPC hardware in China in turn stim-
ulated HPC research in the country, and in 2012 the
NSFC launched a four-year Major Research Plan called
“Algorithms for high performance scientific computing
and computable modeling” with a budget of 180 million
Chinese yuans (about US$30 million).

In recent years the economic systems of developing
countries such as China have been rapidly and dras-
tically reformed in response to economic globaliza-
tion, and new and challenging problems have there-
fore been raised in energy, transportation, telecommu-
nication, financial engineering, urban planning, health
care, environmental pollution, natural resource con-
sumption, and transnational logistics. I am sure that
mathematics will play an increasingly important role
in modeling and solving these practical problems.

II.Maria Esteban: A Personal Experience
in France and Europe of How to
Influence Government as a
Mathematician

I am a Basque–French mathematician currently working
in France, the president-elect of the International Coun-
cil for Industrial and Applied Mathematics, past pres-
ident of the Société de Mathématiques Appliquées et
Industrielles, and past chair of the Applied Mathemat-
ics Committee of the European Mathematical Society. In
recent years I have been involved with a European Sci-
ence Foundation Forward Look project on “Mathemat-
ics and Industry.” These three activities have helped
to shape my views about how mathematicians can (or
cannot) influence government science policy.

In this article I will not only relate my personal expe-
rience but will also describe how European colleagues
have fared in their interactions with officials from their
own governments and from European institutions. To
avoid overgeneralization, it is important to bear in
mind that the opportunities that a scientist has to influ-
ence government policies and initiatives depend very
much on which country they operate in: its size; its his-
tory; and how knowledgeable, on average, its politicians
are about science.

In France, scientists have a long history of close rela-
tionships with politicians. It is usually straightforward

http://www.top500.org
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for us to gain access to members of the government or
to members of parliament and regional politicians. This
is not the case for every mathematician, of course, but it
is reasonably easy for those in leadership positions who
invest the necessary time and energy in building con-
tacts. Prominent scientists (Fields Medalists and recip-
ients of Nobel Prizes, for example) may be contacted
directly by politicians. Ministers of research or higher
education and other top government officials may ask
these scientists for meetings to exchange ideas or to
receive advice on important decisions concerning sci-
ence. Additionally, there are mathematicians who have
been appointed to important positions: as managers of
institutes or big projects, and as chairs or members of
committees created to advise the government on par-
ticular issues of scientific or technological importance,
such as high-performance computing, the treatment of
nuclear waste, food safety, and so on. Mathematicians
who have been invited to participate in the crafting of
advisory documents have influence on the government
through these documents but also through personal
meetings and discussions with government officials.

The presidents of the mathematical societies, to-
gether with mathematicians who are involved with the
management of institutions relevant to the mathemat-
ics community at a high or national level, can gain
access to policy makers if they need to pass on infor-
mation or intervene in an important issue. Contact does
not usually start at the highest level; one often starts
by talking to ministerial advisors. On the other hand, if
the matter is important, it is relatively easy to arrange
a meeting with someone at a higher level. It needs to be
said, though, that talking to politicians does not nec-
essarily translate into success in convincing them of
what (in our opinions) is good for mathematics or for
science; but it is a start.

All this may make it sound as if France is a par-
adise for mathematicians, especially when it comes to
their relationships with politicians and decision mak-
ers. While it is true that the situation in France is much
better than in many other European countries, it is not
always easy to convey our achievements or what our
community needs or is looking for. By talking to pol-
icy makers, however, we build relationships that make
further contact and exchanges of views easier.

A recent example of how mathematicians in France
have managed to change something of importance
to them is their contribution to the call, initiated
three years ago, for the creation of centers of excel-
lence. When the project was about to be launched, a

senior official in the Ministry of Higher Education and
Research learned about two projects dear to math-
ematicians that would not be covered by the origi-
nal wording of the initiative. One of the projects per-
tained to the French Institutes of Mathematics: the
Institut Henri Poincaré, which hosts thematic three-
month programs; the Institut des Hautes Études Sci-
entifiques, a high-level research institution south of
Paris; the Centre International de Rencontres Mathé-
matiques, an international center near Marseille that
hosts mathematics conferences; and the Centre Inter-
national de Mathématiques Pures et Appliquées, which
promotes mathematical research in developing coun-
tries. The other project was concerned with the cre-
ation of an agency designed to facilitate relationships
between mathematicians and industry. When the offi-
cial learned about these two projects he thought them
interesting enough to ask for a slight change in the
wording of the policy document. The result of this was
that these two projects were covered in the initial delib-
erations and were indeed both selected and funded.
This would not have happened without the interven-
tion of the mathematicians. Of course, for this to have
happened, information had to be available and (some)
mathematicians needed to keep up to date with news
about official projects. This is a big task and requires a
lot of time and effort. Fortunately, in France most math-
ematicians in positions of power are willing to play
the collaborative game, sharing information and jointly
developing strategies. Collaboration is very important
for achieving mathematicians’ desired outcomes.

I do not have firsthand knowledge about other Euro-
pean countries, only impressions gleaned from con-
versations with colleagues and observations made dur-
ing joint projects when colleagues from various coun-
tries tried to reach their politicians for input or advice.
The situation that mathematicians face clearly varies by
country; as with many other issues in Europe, there is
unfortunately no unified approach to scientists’ inter-
actions with their governments. There are countries
like France where mathematicians have managed to
influence high-level politicians and decision makers,
and where scientists are often consulted when new
decisions concerning science and scientific programs
need to be made. On the other hand, there are other
countries where mathematicians do not seem to have
any access to politicians and decision makers, at least
at an institutional level.

Whether mathematicians can influence the European
decision makers is a very different story. I have had
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several negative experiences in this regard, and other

mathematicians I know have echoed this sentiment.

Mathematics is almost entirely absent from European

scientific policy decision making. In the last European

framework program, mathematics was invisible. When

asked about this, European officials would say, “But

what are you saying? Mathematics is everywhere; math-

ematics is linked to so many scientific fields that are

explicitly part of the European programs!” But because

mathematics is “everywhere,” when it comes to fund-

ing it is nowhere. Mathematics does not seem to be a

priority for the European Union, which chooses not to

fund general scientific fields, funding only applied, con-

crete fields, like life sciences or nanotechnology. The

only exception to this is the European Research Coun-

cil, which funds excellence through various programs

such as “Starting Grants” and “Advanced Grants.” Math-

ematics is clearly present there, as are other scientific

fields.

The European Mathematical Society has tried to open

a dialogue with Brussels for many years, and it has

tried more intensely still in the last six years or so.

Several mathematicians have had meetings with high-

level officials in Brussels and in the European Parlia-

ment and have tried to explain our community’s sit-

uation and its needs. Sometimes it has seemed like

the officials were really listening to them, but the final

outcome has never been positive. For instance, it is

clear that in order to build important infrastructure

at the European level (concerning digital mathematics,

publishing, mathematics and industry, etc.), European

funding is very important, but up to this point very lit-

tle (almost nothing) has been forthcoming, despite the

best efforts of the mathematicians and many promises

from Brussels.

Up to now I have discussed only direct interactions

between mathematicians and politicians, but there

could be, indeed must be, other ways for mathemati-

cians to influence government. For instance, we should

not forget the important role that the media can play

in educating the public about the contributions of

mathematics to science and to society, about impor-

tant mathematical results and their implications and

possible applications. A case in point is the broad

attention French media have devoted in recent years

to French mathematicians when they receive impor-

tant international prizes. Politicians pay close atten-

tion to the media and the ideas it promotes. The pres-

ence of mathematics in the media can therefore help

mathematicians reach beyond their own community to
the spheres of power.

Mathematicians may also influence public opinion
and policy makers by taking action when news cov-
erage misrepresents mathematics and its applications.
For example, statistics is often used to justify decisions
concerning health and drug design, but the statistical
methods that are used are often incorrect and unrea-
sonable. I know of several recent cases where statisti-
cians have strongly attacked such misuse of statistics.
This is an excellent way of defending the quality label
that mathematics can provide and to refuse to let the
subject be misused. In drug and food safety, the inter-
vention of statisticians has been widely acknowledged,
and statisticians have consequently been appointed to
supervisory committees that give advice to decision
makers.

Of course, you need to be good at what you do to have
influence. Only a well-organized mathematics commu-
nity with high scientific standards will have a societal
impact. The commitment of this community to scien-
tific excellence also gives mathematicians the author-
ity to exert their influence at the educational level. The
mathematics community has to participate in educa-
tion programs, and it needs to shape the training of
mathematics teachers as well as the way mathemat-
ics is being taught in schools. Education and research
are the pillars on which the mathematics community is
built, and mathematicians should therefore be involved
with all committees and at all levels where decisions on
these subjects are made.

In closing, let me stress that all these activities can
be time-consuming for the individuals involved. Build-
ing networks, being well informed, and keeping infor-
mation channels open take time and energy. But if we
mathematicians want to be able to influence govern-
ments in terms of both the projects they promote that
could affect the organization and funding of our com-
munity and their perception of the ways in which math-
ematics can advance society, there is no way around the
fact that some of us will have to be ready to spend the
necessary time trying to promote our goals.

III. James M. Crowley: SIAM and Science
Policy in the United States

The Society for Industrial and Applied Mathematics
(SIAM), founded in 1952, is an international organi-
zation based in Philadelphia, Pennsylvania. Since the
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mid-1990s, SIAM has actively engaged in science pol-
icy and advocacy on behalf of the mathematical sci-
ences and computing from the perspective of applied
mathematics and computational science.

Science Policy and Funding in the United States

Perhaps more so than in Europe and other parts of the
world, in the United States science policy and funding
is distributed across many agencies and involves many
players. This leads to a system that is robust but that
is sometimes difficult to understand in all its facets.

Many different agencies affect science policy and
funding in the United States in the areas of the math-
ematical and computational sciences. For traditional
areas of mathematics, the National Science Founda-
tion (NSF) certainly plays the lead role, but in applied
and computational mathematics, the Department of
Energy’s Office of Science, the various Department of
Defense funding agencies (the Air Force Office of Scien-
tific Research, the Office of Naval Research, the Army
Research Office, and the Defense Advanced Research
Projects Agency), and parts of the National Institutes
of Health are also important players. More recently, pri-
vately funded foundations, like the Simons Foundation,
have also played an increasing role.

“Mission agencies” like the Department of Energy and
the Department of Defense generally place a greater
emphasis on research that contributes to solving spe-
cific application problems of interest to that agency;
therefore, they make grants to the areas within the
mathematical sciences that they deem to be most rel-
evant. NSF grants, on the other hand, tend to cover
the whole spectrum of the mathematical sciences, from
research deep within a core area of the discipline
to multidisciplinary research taking in other areas of
science or engineering. However, in both cases there
is a spectrum of grants in each agency’s portfolio:
from those that include very basic research within a
given field to those that are research motivated and
driven by application goals. In the case of the NSF, for
example, multidisciplinary research can team applied
mathematicians with scientists in other disciplines to
simultaneously advance mathematical/computational
methods as well as applications.

The funding agencies are staffed by program man-
agers: a mix of permanent employees and “rotators”—
people from the research community who come to the
agency for a two- or three-year period. Normally, both
groups (permanent staff and rotators) are experts in the

fields they manage (typically they have a related doctor-
ate). The permanent staff provide stability and mem-
ory; rotators provide new ideas and immediate contact
with the research community from which they came. In
mathematical sciences at the NSF, for example, the mix
of permanent staff to rotators is roughly 50:50.

Program managers in mission agencies may have
more discretion over funding decisions because they
are able to factor in the relevance of the proposal to
the agency’s mission and also to consider the likelihood
of application. The NSF relies most heavily on external
peer review from the scientific community, but most
funding agencies rely on peer advice to some degree.

To get a sense of the scale of funding by the various
agencies, consider the fiscal year 2011 (the fiscal year
for the federal government in the United States runs
from October 1 to September 30). The budget for the
NSF Division of Mathematical Sciences that year was
$240 million, of which approximately a third supports
applied and computational mathematics. The Depart-
ment of Energy contributed another $99 million to the
mathematical sciences, much of this in applied and
computational mathematics. The various agencies of
the Department of Defense also supported $118 mil-
lion in basic research in the mathematical sciences. Esti-
mates were not available for the National Institutes of
Health.

What distinguishes funding in the United States from
that in Canada and in many parts of Europe is the
importance of individual grants to single researchers or
to small groups, as opposed to block grants to depart-
ments or universities. Such grants can provide funding
for a researcher’s summer salary (typically one month,
but possibly two) and/or for graduate student support.
Such grants also provide funds for travel. Research
grants to individuals and small groups account for
the majority of funding in the mathematical sciences.
Individual/small-group grants are also a major part
of the applied mathematics program at the Depart-
ment of Energy’s Office of Science, although recent pol-
icy seems to indicate a shift toward more large-scale
grants. Block grants to academic departments or to
institutes account for only a small portion of the NSF
Division of Mathematical Sciences portfolio, and they
play little or no role in the portfolios of other agencies.

Within the mathematics portfolio at the NSF, insti-
tutes play a significant role. While accounting for only
10% or so of the mathematical sciences budget at the
NSF, the eight NSF Mathematical Sciences Institutes
involve a large number of postdocs and visitors from
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within the community in their programs each year
(6000 in fiscal year 2011).

The Budget Process

In the United States, Congress has the power to appro-
priate funds while the administration implements the
spending of the funds through individual agencies.
The federal budget is determined on an annual cycle
through presidential and congressional action.

Each year, the president issues a budget proposal to
fund all the agencies of the federal government for the
following year. The administration arrives at this bud-
get request after a lengthy process during which each
agency is charged with developing its budget with guid-
ance from the Office of Management and Budget, which
reviews each agency’s request and assembles all of the
agency plans into the president’s budget request.

Congress then reviews the president’s budget (or the
“request”) and develops legislation to fund the agen-
cies called appropriations bills. These bills sometimes
provide money at the agency or subagency level and at
other times determine the specific amount available to
individual programs or spell out other directives about
the budget. Once appropriations bills are passed, agen-
cies can then spend the funding to support research.
In many years Congress fails to pass appropriations
bills and instead passes a “continuing resolution” that
enables an agency to continue to spend a designated
amount of funds but generally prevents the beginning
of new programs or initiatives.

Advocacy

Due to the very distributed system of budget devel-
opment and appropriations, there are many points of
access for scientific societies to interact with the pro-
cess. Societies, including SIAM, play an important role
in providing information, advice, and feedback from
the communities they represent to those with respon-
sibility for the budget and policy in the administration,
in Congress, and across agencies.

SIAM has a Committee on Science Policy (CSP) that
regularly meets with key leaders to both gather infor-
mation for our community and to provide feedback
from the community to officials. Key points of contact
include leaders within the funding agencies, congres-
sional staffers and members of Congress, and repre-
sentatives of the White House Office of Science Tech-
nology Policy and Office of Management and Budget.

SIAM presidents and the executive director also regu-
larly provide testimony and meet with staff from rel-
evant congressional committees, such as the House
Appropriations Subcommittee on Commerce, Justice,
and Science.

CSP discussions with government officials often
focus on the budget in applied and computational
mathematics but may from time to time also take
in specific policy issues. The House Science, Space,
and Technology Committee, for example, has in the
past asked the CSP to discuss issues related to high-
performance computing and the role of computational
science in developing new models and computational
methods for solving grand challenge problems on
emerging computer architectures.

Another example of policy discussions was SIAM par-
ticipation in 2012 debates on undergraduate education,
which led to the President’s Council of Advisors on
Science and Technology issuing the report “Engage to
Excel: Producing One Million Additional College Gradu-
ates with Degrees in Science, Technology, Engineering,
and Mathematics,” which called for a national initia-
tive to promote science, technology, engineering, and
mathematics (STEM) education in the first two years of
college. A key finding of the report is that mathemat-
ics education is a critical component of all undergrad-
uate STEM degrees and that it is the current deficien-
cies in mathematics learning that are partly to blame
for the loss of STEM majors in the early college years.
However, many SIAM members expressed reservations
about a suggestion in the report that nonmathemati-
cians should be engaged in the teaching of undergrad-
uate mathematics for nonmajors. In response to the
report, and to defend the role of mathematicians in
mathematics education, the SIAM Education Commit-
tee in partnership with the CSP prepared a formal white
paper. The white paper highlights the importance of
collaboration for effective mathematics education and
makes recommendations on ways to strengthen K-16
(kindergarten to four-year degree) mathematics educa-
tion. The white paper was sent to the Office of Science
and Technology Policy and the NSF.

SIAM’s History in Advocacy

In the late 1970s, the major mathematics societies in
the United States (the American Mathematical Society
(AMS), the Mathematical Association of America (MAA),
and SIAM) jointly supported a congressional fellow, an
individual from the community who served in a con-
gressional office (or related position) for a year in order
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to obtain experience in science policy and funding

issues.

However, it was not until the publication of the David

Report in May 1984 that mathematics in general, and

SIAM in particular, became seriously involved in the

arena of science policy. The report, titled “Renewing

U.S. Mathematics: Critical Resource for the Future,”

proved pivotal in energizing funding support for the

mathematical sciences and for propelling mathematics

societies into engaging in science policy discussions.

The report was produced by the Ad Hoc Committee

on Resources for the Mathematical Sciences, chaired by

Edward David of Exxon Research and Engineering Com-

pany and with Kenneth Hoffman as executive director

of the committee; it was the result of a project commis-

sioned by the National Research Council and supported

by SIAM and the AMS, along with six companies and five

government funding agencies.

Following completion of the David Report in the sum-

mer of 1983, the Ad Hoc Committee on Resources for

the Mathematical Sciences was terminated, but Kenneth

Hoffman agreed to continue activities in Washington

and submitted a budget to the three major societies (the

AMS, the MAA, and SIAM) to support those activities.

The SIAM board approved their share of this budget at

their June 1983 meeting.

Hoffman became the Executive Secretary for National

Affairs under the aegis of the Joint Policy Board for

Mathematics (JPBM) in 1984. In March 1985 the JPBM

contracted Kathleen Holmay and Associates to do

public relations for the public understanding of sci-

ence (specifically mathematical sciences). This led to a

decade or more of discussion among the members of

the SIAM board about the role of SIAM in science policy.

Seeking more oversight of the activities of the JPBM

that it helped fund, the SIAM board asked the SIAM

Committee on Relations with the Federal Government

to play this role and changed the name of the commit-

tee to the SIAM Committee on Science Policy in October

1985.

In the late 1980s the name of the office within the

JPBM was changed to the Office of Governmental and

Public Affairs, and by 1989 this had grown to become

an office employing a full-time director, two adminis-

trative assistants, a legislative liaison, and a public rela-

tions consultant. SIAM’s degree of support wavered at

times during the late 1980s and early 1990s over vari-

ous issues, but the JPBM remained SIAM’s sole presence

in Washington.

SIAM used the JPBM as its forum for discussions
with funding agencies and legislative staffers on issues
related to science policy and funding in areas of interest
to SIAM.

When the AMS created its own Washington office,
support for the JPBM waned, and in 1999 it was restruc-
tured to become a coordinating body among mem-
ber societies (eliminating its paid staff), a role that it
continues to play today.

With the elimination of the JPBM’s legislative liai-
son (which had been a full-time staff position) and its
public affairs consultant, SIAM sought to grow its own
voice in science policy through its CSP. The CSP meets
twice a year in Washington and coordinates the writ-
ing of white papers and other policy activities through-
out the year. To enable the CSP to carry out its role,
in 2001 SIAM contracted Lewis-Burke Associates LLC,
a government relations firm that specializes in science
and technology policy, to provide support for its policy
activities.

SIAM, through the CSP, now regularly engages in dis-
cussions with various federal agencies on issues related
to applied mathematics and computational science.

IV. Alistair D. Fitt: Making the Case for
U.K. Mathematics Research in a
Rapidly Changing Environment

The Need to Make the Case
(and Not Just for Funding)

First, we have to be clear, in the U.K. system there is no
alternative to “making the case for mathematics.” We all
need to show in as many ways as possible that math-
ematics research is a key contributor to the nation’s
overall success. As always, perhaps the most impor-
tant issue is research funding. It is a long time since
public money was handed out to universities and they
were simply trusted to do a good job with it (a system
that still remains in surprisingly many nations), and
there seems no chance of those days (or the minute
academic salaries that went with them) ever returning.
Public funding for science (and universities in general)
increased significantly during the long tenure of the
1997–2010 Labour government, but it has been more
uncertain since. This period of uncertainty has neces-
sitated much more involvement from the community to
ensure that funding streams are protected. In addition,
2011 saw the biggest change for decades in the way in
which the U.K. higher-education sector is funded, and
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by many financial definitions, universities in the United
Kingdom are now close to being private, rather than
public, ventures.

Virtually all that is left of the public funding that used
to allow us to charge relatively low student fees is the
research money, currently about £5 billion per annum.
Though by all measures our “dual research funding sys-
tem” (where about two-thirds of the money is given out
by the funding councils and the other third is allot-
ted as a result of a research assessment exercise of
some sort) has served us well since its introduction in
1986, funding for mathematics research has certainly
not increased. In fact, there is a case (depending on who
you believe) for saying that the share of the research
funding that finds its way to mathematics has shrunk
considerably. This makes it all the more crucial to be
sure that our subject is seen as being worth supporting.

Furthermore, a new overriding political mission has
evolved in the United Kingdom: transparency. The pub-
lic should be able to hold the spending of public money
to account and readily observe that their taxes have
been well spent. This is a potential problem for our
discipline, for mathematics is one of the very few sub-
jects where many members of the public take proud
delight in proclaiming the depths of their ignorance.
Even those whose school experience was more positive
are unlikely to have much real understanding of what
mathematics research consists of. This means that it is
absolutely crucial for us to have a portfolio of stories,
arguments, citations, and reasons why we contribute
so much to what is so horribly called U.K. PLC. Though
it will prove hard to make the case to the public, we
can influence politicians and governments, and these
are the people who make the important decisions.

A Single Point of Contact

Now that we have agreed that “making the case” is
unavoidable if mathematics is to thrive, we have to con-
sider the best way of influencing government (by which
I mean politicians, civil servants, funding agencies, and
anybody else who might be in a position of power).
Undoubtedly we need individuals who are skilled influ-
encers, but this alone is not enough; we also need the
people who matter in government to want to hear us
and to actively seek our views. One of the hardest prob-
lems for ministers to deal with is knowing who to turn
to when they want information or wish to solicit views.
Experience has shown that politicians and civil servants
like to have a small number of trusted contacts who

they regard as their key “go-to” people. Professional
and learned societies are important, but having too
many of them to canvass is distinctly unhelpful. We cur-
rently have four learned societies in the mathematical
sciences in England (the Institute of Mathematics and
its Applications, the London Mathematical Society, the
Royal Statistical Society, and the Operational Research
Society), and there is also the Edinburgh Mathematical
Society and possibly others too. The Council for Math-
ematical Sciences does a valiant job in trying to synthe-
size consensus from its member societies to present a
single face to influencers in the outside world. Though
the Council for Mathematical Sciences has undoubtedly
had successes, a structure that involves so many differ-
ent societies is hard for outsiders to understand. The
result of the fragmentation of mathematical learned
societies (and their unwillingness to merge and become
a single voice) is that mathematics as a discipline is
unable to exert the traction that, for example, the Royal
Society of Chemistry or the Institute of Physics can, as
single and well-known voices in their disciplines.

Others will no doubt disagree that we need a single
society, but there is ample evidence to suggest that,
where the ability to influence government is key, a
single point of contact is extremely important.

What Works Best

The rules for how to influence government have not
changed: they are timeless and constant. Nevertheless,
they do not tend to sit easily with the nature of mathe-
matics as a discipline. Bluntly put, the most important
detailed points are as follows.

Limit your number of messages. Ministers are del-
uged with information. You can probably afford to
get only one or two points across, so do not over-
complicate and risk confusing the minister.

Be clear and concise in your points. Mathematicians
tend to worry about detail, and detail rarely matters
when it comes to influence. Do not obfuscate, and do
not dilute the main points that you are making.

Use a few “killer” statistics and stories again and

again. Ministers like simple one-line facts to remem-
ber, and they will have to be told them again and
again. Prepare your ammunition well in advance, and
decide carefully what the minister needs to know and
will want to use again.

Offer help. There is no future in complaining or being
grudging. Government officials spend much of their
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lives under attack, so offer them assistance rather
than criticism.

Concentrate on what is good first; then point out the
threats. Even if you are vehemently against every
one of the government’s policies, you need to begin
with some positives. You can mention the possible
difficulties and threats later.

Understand the political difficulties. The government
may want to help you but be unable to for political
reasons. You need to understand these before you
can have a good idea of what might reasonably be
achieved.

Speak for mathematics, not your own university or
department. The government wants a broad view.
If you are seen to be acting from any kind of self-
interest, you will rapidly be discarded.

Use the media to make your case. Politicians see the
news media as a vital barometer of public opin-
ion and are much more likely to be influenced by
something that attracts headlines.

Get included on missions abroad. Traveling with gov-
ernment officials on delegations abroad can provide
a considerable opportunity to talk in detail to the
people that matter.

Hire people. Ministers and “their people” are very
used to dealing with publicists and professional lob-
byists. There is no reason why we cannot spend hard

cash hiring professional influencers who know how
to deal with the government and how to get results.

Fact: We Do Not Do It Very Well

This short article gives plenty of suggestions and solu-
tions for how to influence government, so how success-
ful have we been in this area in the United Kingdom?
Unfortunately, the answer in my view is simple: not
very. If we are brutally honest, we have to admit that,
as a profession, too often we do not take a strategic
view, we fight among ourselves, and we give the overall
appearance of a bunch of whingers who do not under-
stand the wider agenda. Is this lack of success confined
to the United Kingdom? Other articles in this volume
will allow the reader to judge whether mathematicians
in the rest of the world are better influencers than we
are, but notable successes seem to me to be well hidden.

Of course, influencing the government is very hard
work. Politics is a transitory business, and it is frus-
trating to build good connections only to see them van-
ish as a new election sweeps new faces into power.
However, though politicians change, the civil servants
that are so important to them normally remain. We
can influence these people, and we should be think-
ing about this aspect of our subject and doing a much
better job.
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reacting flows, 348–50; uncertainty
quantification in, 340–41

computed tomography. See X-ray
computed tomography (CT)

computer: high-performance com-
puting, 839–43, 840f; historical
impact of, 56–59, 73, 75–77
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computer-aided proofs, 790–95, 922
computer arithmetic, 6–7. See also

floating-point arithmetic
computer graphics. See digital

imaging; image processing;
visualization

computer vision, 225
concave function, 12, 90
condensed matter physics, random

matrices in, 427
condition number, 26, 50, 263–64; of

discretized operator, 343; distance
to singularity and, 266; error
analysis and, 27, 53; for matrix
eigenvalues, 268; of random
matrices, 426

conductivity, effective: electrical,
500–501, 504; percolation theory
and, 698, 701

conductivity, electrical: from bound-
ary measurements, 334–35; effect-
ive, 500–501, 504; in impedance
imaging, 733–34; in impedance
tomography, 334–35; in Ohm’s
law, 477

conductivity, thermal, rapidly
oscillating, 103, 120

cone: convex, 90; definition of, 90
cones, retinal, 808
configuration model of random

graphs, 366–69
configuration space, 379, 382
confluent hypergeometric functions,

232
conformal invariance, 85
conformal mapping, 84–86, 156, 179;

in analysis of insect wing move-
ment, 745

congruence transformation, 271
conical functions, 234
conic optimization, 90, 283, 285, 290
conjugate gradient (CG) method,

276–77; for inversion of X-ray
tomographic data, 867; for
unconstrained optimization, 288

conjugate subgroups, 408
conjugate transpose of matrix, 21,

263
connected graph, 361, 557
connection, 581, 583
connection coefficients, 129, 144
connectivity: algebraic, 370; of node,

361–62
conservation laws, 86–88, 122–24; in

continuum mechanics, 449–51;
finite-volume methods and,
314–16; invariants and, 106–12;

Noether’s theorem and, 107–9,
381–82, 405; pattern formation
and, 466–67; scalar, 191–92, 196,
198–99, 316; symmetries and,
107–11, 381–82, 405. See also
angular momentum: conservation
of; energy conservation; momen-
tum conservation

conservative forces, 376
conservative vector fields, 156
consistency, in Tikhonov theory, 329
consistency + stability = conver-

gence, 75, 298, 309, 462
constitutive equations, 150, 451–53,

458; for composite medium, 699;
for granular materials, 666–67,
671–72

constitutive modeling of biological
materials, 610–11

constrained frontier, 650
constrained materials, 452
constraint qualification, 39
constraints, 281–82, 285–86; in

Internet design decisions, 886
continuation, 37; numerical, for

polynomial system, 574–75, 769
continued fractions, algorithms for

evaluating, 47
continuity, 11
continuity equation: for incompress-

ible fluid, 156; in weather
prediction, 706

continuous-flow stirred-tank reactor,
630

continuous groups of transform-
ations, 107

continuous optimization, 281–93;
basic principles of, 285–86; conic,
283, 285, 290; nonlinear program-
ming, 283, 290–92; in portfolio
theory, 649–51; with uncertain
objective or constraints, 292–93;
unconstrained, 283, 285, 288–90.
See also linear programming;
optimization

continuum mechanics, 446–58;
biological materials and, 610–11;
current research in, 455–58;
essential structure of, 448–53;
granular materials and, 665–66;
history of, 3, 62–64; introduction
to, 446; localization arguments in,
450; phenomena in, 453–55; solid
mechanics and, 506; tensor analy-
sis for, 447–48. See also elasticity;
fluid dynamics; granular flows

contour integrals, 175–76, 178–80

contravariant components, 128–29
control systems, 88–89, 523–33;

dimension reduction of, 117–19;
fundamental limitations of,
526–28; general structure for,
524–26; historical background of,
523–24; linear quadratic Gaussian,
529–30; Lyapunov equation and,
168; Lyapunov functions and,
531–33; modeled as hybrid sys-
tems, 104; nonlinear, 530–32;
ongoing research in, 532–33;
optimizing multivariable control-
lers of, 528–29; Riccati equation
and, 165–66, 530; simple example
of, 524. See also optimal control

convection: atmospheric, 488–89;
bioconvection, 615; Lorenz
equations and, 158–59; Rayleigh–
Bénard, 384, 458–59, 463, 476.
See also advection

convective derivative, 162, 697, 786,
852

convergence: consistency + stability
and, 75, 298, 309, 462; of function
or series to limit, 11; of iteration,
34, 50–51, 346; of mathematical
model, 248; of numerical solution
of ODE, 298–99; of numerical
solution of PDE, 309–10, 317; of
powers of matrix, 113; in vector
spaces, 24

convergent series, 11, 174–75; vs.
asymptotic expansion, 211–12

conversion to a different problem,
35–37

convex analysis, duality in, 224
convex cone, 90
convex curve, Grayson theorem and,

116
convex entropy, 123
convex function, 12, 90; in calculus

of variations, 222
convex hull, 90; in algebraic geom-

etry, 572, 576; in color spaces, 812;
in combinatorial optimization,
570; in matrix field of values, 268

convex inequalities, 552
convexity, 89–90; voting profile

structures and, 895
convexity constraint, 873
convex optimization, 283, 285, 524;

affine functions in, 10; of utility
function, 869

convex quadratic programming, 282,
288

convex risk measures, 322, 326
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convex set, 12, 89–90
convolution, 105, 244; fast Fourier

transform and, 95; of vectors, 18
Cooley, James, 76–77, 94, 94n
coordinate systems, 9; Lagrangian

mechanics and, 380
coordinate transformations, in

tensor calculus, 580
Coriolis effect, 490–95, 498–99; in

climate models, 697; in weather
prediction, 706–7

Coriolis force, 381
correlation matrix: nearest, 654; in

portfolio theory, 653–54; from
time series, 426

cosmological constant, 582, 588
cosmology, 125, 587–90
cost function, in variational

assimilation, 708–9
Couette flow, 470, 475
Coulomb force, 377–78, 415;

in plasmas, 433, 435
Coulomb friction, 667–68, 670
Coulomb gas, 426
Coulomb gauge, 161
countercurrent multiplication, 623
counting problems, 553
coupling of models, 350
Courant, Richard, 1, 71–74, 306,

310–11, 337, 719
Courant–Fischer theorem, 134, 269
Courant–Friedrichs–Lewy (CFL)

criterion, 708, 719
covariance matrix: ATCA framework

and, 665; estimation of, 652–55; in
mean–variance portfolio analysis,
648–51; in signal processing,
538–39, 542

covariance principle, 107, 109–10;
tensors and, 128–30

covariant components, 128–29
covariant derivative, 129, 581
Cramer’s rule, 44
Crank–Nicolson method, 310
credit default swaps, 643
critical points: of conformal mapping,

179; of nonlinear system of ODEs,
37–38

cross product, 27
crystal lattice: defects in, 850;

electronic structure of, 848–51;
nonlinear, solitons in, 150–51;
symmetries of, 404

crystalline surface structure, 220
CT. See X-ray computed tomography

(CT)
curl, 27

curse of dimensionality, 28–29, 261,
339–40, 642

curvature, 129; in foams, 737;
minimal surfaces and, 198;
space-time, 579, 581–82

curvature scalar, 129
cutting-plane method, 570; for

traveling salesman problem, 780
cycle, in graph, 557
cyclic groups, 405
cyclomatic complexity, 836
cyclonic flow, 494, 497
cylinder functions. See Bessel

functions
cylindrical coordinates, 9

Dahlquist, Germund, 75, 294,
298–300

d’Alembert, Jean, 55f, 62–63, 448;
wave equation and, 171, 193

d’Alembert paradox, 146–47
d’Alembert’s equation, 683
d’Alembert’s formula, 171, 193–94
Dale’s principle, 876–77
damped Duffing oscillator, 186, 186n
damped harmonic oscillator, 378
Dantzig, George, 73, 89, 283, 287,

780
Dara Ó Briain: School of Hard Sums

(TV series), 943
Darboux, Jean-Gaston, 182, 575,

637–38, 871
Darcy’s law, 697
dark adaptation, Lambert W function

and, 153–54
dark matter, 771–74
Darrieus–Landau instability, 854, 856
data analysis, 350–60; data repre-

sentation in, 351–54; dimension
reduction in, 28, 351, 354–55; as
fourth paradigm of science, 336;
future of, 359–60; history of,
351–52; pattern recognition in,
351, 355–59

data assimilation, 133
data compression, 547–52; by

singular value decomposition,
126–27. See also image
compression

data mining, 351. See also data
analysis; text mining

data repositories, 919n
data transmission, 547–49
data types, in programming

languages, 836
data visualization, 843–47
Dawson’s integral, 35

DCT (discrete cosine transform), 814
Deborah number, 666–67
de Bruijn sequences, 563–64
decision-feedback equalizer, 541
decision making under uncertainty,

133
decision trees, 356–57
Dedekind eta-function, 931
defective matrix, 112–13
deficiency zero theorem, 633–34
definite integral, 14
definitions first versus examples

first, 900–901, 903
deformation, 448; homogeneous,

509. See also strain
deformation gradient, 449, 508–9;

tissue growth and, 614
deformation rate of granular

materials, 666, 671–72
de Giorgi–Nash theorem, 432
de Giorgi’s minimizing movements,

226
degree of node, 361–62
degree of vertex, 557
degrees of freedom, 379
delay differential equations, 17, 53;

in epidemiology, 691; Lambert W
function and, 154

delta function, 139–41; Green func-
tions and, 85, 140; position oper-
ator and, 413

delta-function well, 414
DEM (distinct element method),

667–70
density functional theory, 847, 851
dependency problem, of interval

arithmetic, 105
dependent variables, 10, 181
depletion interaction, 517
depth-averaged systems of PDEs,

714–15
depth-first search, 758
derivative-free optimization

methods, 28, 289–90
derivative markets, 640–44
derivatives, 12–14; chain rule for, 14;

of complex functions, 174; frac-
tional, 18; product rule for, 14.
See also automatic differentiation;
partial derivatives

derogatory matrix, 113
descriptor systems, 88, 118
detection theory, 544
determinants, 21–22; computational

complexity of, 46; rarely com-
puted, 264

deviatoric deformation, 666, 670
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deviatoric stress, 511
DFE (disease-free equilibrium), 689,

691, 693
DFT. See discrete Fourier transform

(DFT)
diagonalizable matrices, 112–13;

unitarily diagonalizable, 277
diagonally dominant matrices, 263,

275–76, 279, 345
diagonal matrix, 21; max-plus, 797
diameter of graph, 361, 363, 366–67
Dido’s isoperimetric problem, 219
difference equations, 18; of control

system, 88; logistic map, 157–58,
398–99, 401

differential–algebraic equations, 18,
88

differential equations, 14–18;
complex analysis and, 179–80;
symmetry and, 190, 407–10. See
also delay differential equations;
fractional differential equations;
ordinary differential equations
(ODEs); partial differential equa-
tions (PDEs); stochastic differential
equations

differential inclusions, 770
differential operators: Schrödinger

operators, 241–43, 245, 848–51;
spectrum of, 240

diffusion: in flames, 854; linear
elliptic equations and, 198. See
also reaction–diffusion equations

diffusion–advection–reaction prob-
lems, 312

diffusion (heat) equation, 16–17, 142,
156, 192, 241; attempted micro-
scopic derivation of, 443; behavior
of solution of, 195; Black–Scholes
equation and, 137–38, 142;
Burgers equation and, 138;
coupled pair of, in capillary-fill
device model, 864–65; Gaussian
filter and, 353; Green’s theorem
and, 857–59; ill-posed example of,
204–5; initial-value problem for,
193; unsteady, 307, 310

diffusion in living organisms, 609;
across renal capillary, 622; in
heart, 625–26; membrane ion
channels and, 618

diffusion tensor: cardiac, 625–26;
visualization of, 845

digital imaging, 5–6; color spaces
and, 808–13; compressed sensing
in, 825–26; dimension reduction
in, 28. See also image processing

Digital Library of Mathematical
Functions, 227

digital message or medium, 546–47
digital object identifier (DOI), 914,

923–24
dihedral groups, 405
Dijkstra’s algorithm, 758–59, 807
dilation, symmetry of, 404
dimensional analysis, 90–93
dimension of vector space, 22
dimension reduction, 28–29, 117–19;

bifurcations and, 395–96; of com-
plex systems, 84; in computational
fluid dynamics, 599; in data analy-
sis, 28, 351, 354–55; of dynamical
systems, 28, 118, 387–88, 395–96;
in uncertainty quantification, 132.
See also compressed sensing

Dingle, Robert, 637–39
Dirac delta function. See delta

function
Dirac equation, 142–44, 675
Dirac notation, 412
directed graph, 101–2, 563–64
Dirichlet boundary conditions, 16,

192; finite-difference method and,
308–10; for Laplace’s equation,
156, 201–2

Dirichlet-to-Neumann map, 334
discrepancy principle, 205
discrete cosine transform (DCT), 814
discrete Fourier transform (DFT),

94–95, 105, 265, 534–35;
diagonalization of circulant
matrices by, 244

discrete optimization, 568–69;
traveling salesman problem, 565,
568, 778–81. See also
combinatorial optimization

discrete spectrum of self-adjoint
operator, 240; of Schrödinger
operator, 242

discretization, 95–96, 307–8
disease-free equilibrium (DFE), 689,

691, 693
dispersion of waves, 194–95; in

tsunami modeling, 719; in
waveguide, 678

dispersion relation, for Swift–
Hohenberg equation, 460

displacement, 506–7
dissemination platforms, for

research, 922–24
dissipation inequalities, 198–99
dissipative systems, 378. See also

drag; friction; viscosity

distance: between nodes of graph,
361, 364. See also norms

distinct element method (DEM),
667–70

distributed control, 532–33
distributional solutions, 199
distributions. See generalized

functions (distributions)
divergence of vector field, 27, 191
divergence theorem, 27; integration

by parts and, 197
divergent series, 81, 212, 634–40
divide and conquer algorithms,

42–44, 569
DNA: knots and links of, 752–54;

systems approach to, 880
DOI (digital object identifier), 914,

923–24
domain monotonicity, 240–41
dominant balance, principle of,

213–14, 217–18
dot product, 27
double bubble conjecture, 791
double pendulum, 384, 391
double poles, 177–78
doubling map, 384–85, 390
downward continuation, 857, 859–60
drag, 378, 746–47; on golf ball,

746–49
drag crisis, 747–49
drum: hearing the shape of, 17, 246;

vibrational modes of, 137
dual decomposition, 532
duality: in calculus of variations, 224;

in linear programming, 286–88,
567–69; in nonlinear optimization,
283, 569, 662; in semidefinite
programming, 290

dual space, 99
Duffing oscillator: conservative, 190;

damped, 186, 186n
dynamical systems, 185–90, 383–93;

data assimilation for, 133; dimen-
sion reduction of state space of,
28, 118, 387–88, 395–96; double
pendulum, 384, 391; doubling
map, 384–85, 390; equivariant,
392; high-precision computations,
929–30; historical background of,
57, 383–84; linearization of, 386,
393–94; nonsmooth, 769–71;
piecewise-smooth, 401–2, 769–71.
See also bifurcation theory; chaos;
flows

dynamic programming, 530–31,
569–70; investment theory and,
645
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dynamic programming languages,
831–32

dynamic programming principle,
322–23

dynamos, magnetohydrodynamic,
481–83

Eady problem, 497–98
earth mover’s distance, 355
earthquakes, tsunamis caused by,

713, 715–18
Earth system dynamics, 485–500;

atmospheric properties in, 487–89;
dynamical processes in, 492–98;
fluid dynamics of atmosphere and
oceans in, 490–92; introduction to,
485; ocean–atmosphere coupling
in, 498–500; oceanic properties in,
489–90; outlook for, 500; sea-
surface temperatures in, 498–500;
temperature of atmosphere in,
487–89, 491, 495; temperature of
surface in, 485–88

Eckart–Young theorem, 126
Eckhaus instability, 463
ECMWF global model, 710–11
economics, 868–73; Leontief’s input–

output models in, 279. See also
finance

eddies, 492, 494, 497. See also
turbulence; vortices

Eddington–Finkelstein coordinates,
584–86

edge detection, 353
edge of graph, 101, 557
effective medium theories, 500–505;

bubbles in, 737. See also composite
materials; homogenization

efficiency, economic, 870–72
efficient frontier, 648–52, 654, 657
Eiffel, Alexandre Gustave, 747
eigenfunctions, 17, 236; generalized,

848; Mathieu functions, 159–60;
of Sturm–Liouville problem, 185

eigenvalue problems: generalized,
271–72; of integral equations, 17;
of matrices, 267–72; nonlinear,
247; of PDEs, 17; quadratic, 247,
272; Sturm–Liouville, 16, 185;
in text mining, 889–90

eigenvalues of linear operator, 25,
236; calculation of, 243–45;
divergent series and, 639;
generalized, 848. See also
Schrödinger operators; spectral
theory

eigenvalues of matrix, 267–72; of
Hermitian matrix, 25, 267–72, 848;
of KKT matrix, 662; of max-plus
matrix, 798–99; multiplicity of,
112; of nonnegative irreducible
matrix, 279; polynomial roots found
as, 36; of random matrix, 420–28;
sensitivity to perturbation, 268

eigenvector centrality, 364
eigenvectors, 25, 236; calculated from

nonlinear system of equations, 36;
of KKT matrix, 662; of max-plus
matrix, 798–99; in quantum theory,
241, 412–13; of random matrix,
420; Rayleigh–Ritz approximation
of, 134

Einstein–de Sitter universe, 588–89
Einstein’s field equations, 144–46,

579, 582–88; well-posedness of,
683. See also general relativity

Einstein summation convention, 128,
130, 580

Einstein tensor, 145, 680
Ekman pumping, 495, 499–500
elastic–ideally plastic response, 511,

513
elasticity: calculus of variations and,

224–25; constitutive relation of,
452–53; examples of, 513–15;
Hooke’s law and, 149–50, 513;
incremental loading and, 37; iso-
tropic, 452, 454–55, 511; linear, 511;
in liquid crystals, 522–23; of mem-
branes, 521; plastic deformation
and, 511; polymer structure and,
519; stresses in cracked object
and, 125. See also solid mechanics

elasticity number of granular flow,
667–68

elasticity of utility, 645
elastic modulus of granular materials,

666–67
elastic reciprocity, 514
elastic regime of granular materials,

668
elastoplastic regime of granular

materials, 668–70, 672
electrical circuits: ATCA framework

and, 663; mechanical analogies to,
605–8; neuronal membrane repre-
sented by, 874; RLC circuit, 15

electrical impedance tomography,
334–35

electric field, 377–78; biological,
visualization of, 846; membrane
transport and, 618; of radar,
861–63

electricity pricing, 646
electric permittivity: effective, 501–4,

698–99, 701–2; of free space, 161,
377

electric potential, 377
electromagnetic field tensor, 580
electromagnetic potentials, 156, 161
electromagnetic waves, 673–74; in

composite medium, 699
electromagnetism, classical, 377–78.

See also Maxwell’s equations
electronic structure of solids, 847–51
electron-to-atom (e/a) ratio, 456
elementary functions, 19; implicitly

elementary, 153; polynomial
approximations of, 759–61

elliptic coordinates, wave equation
in, 160

elliptic functions, 20
elliptic integrals, 230; moments of,

931–32
elliptic PDEs, 17, 198, 306–7; finite-

difference methods for, 307–10;
finite-element methods for,
311–13; software for, 921–22;
uniformly elliptic, 306, 317.
See also Laplace’s equation

El Niño, 499–500
Emacs, 828, 837, 913
emergent properties, 84, 374, 597,

616; of Internet, 885; systems
biology and, 879

emulsions, 520–21
energy: of bending, 220; Cahn–Hilli-

ard equation and, 138; in contin-
uum mechanics, 451; control
system stability and, 531; diffusive
term of PDE and, 138; elasticity
and, 224; in general relativity,
145–46; homogenization and, 225;
minimum principles for, 663; in
Newtonian mechanics, 376; in
quantum mechanics, 111, 142,
167, 411–12, 414–15, 417–19; in
special relativity, 110–11, 142; in
turbulence, 726–31; Willmore, 220

energy balance in combustion, 852
energy conservation, 107, 109, 147;

in general relativity, 582, 588; in
Hamiltonian systems, 295, 297,
302, 405; in Lagrangian mechanics,
381; in Newtonian mechanics, 376;
shock wave and, 721; wave equa-
tion and, 197; in weather predic-
tion, 706

energy-efficient algorithms, 842
energy-efficient buildings, 763–67
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energy estimates, in solving PDEs,
197

energy levels, 241, 848; in crystals,
849

energy–momentum–stress tensor,
582

energy–momentum tensor, 144–46
energy norm for elliptic boundary-

value problem, 313
energy of activation, for combustion,

852–54
engineering: historical background

of, 56, 59, 63–71, 73; spectra of
vibrations in, 236–37

ensemble learning, 358
ensembles, matrix, 420. See also

random matrices
EnsembleVis framework, 846
enthalpy: shock wave and, 721; in

vortex sound equation, 786
entire function, 176
entropy, 431–33; of colloid, 516;

convex, 123; inequalities related
to, 437–38; of information, 549–51;
maximum entropy principle,
131–32; of polymer, 519; shock
wave and, 720–21, 723; topological,
390, 483

entropy estimates, for conservation
laws, 198–99

enzyme kinetics, 617, 629
Eötvös number, 736
epidemiology, 687–94; network

analysis in, 368–69, 372
equation of state: in general relativ-

ity, 582, 588; in weather predic-
tion, 706

Equatorial Counter Current, 499
equilibrium point: as minimum of

potential energy, 376; of nonlinear
system of ODEs, 37–38, 185–90,
386. See also fixed point of
dynamical system

equilibrium problems, 293; coupled,
345–46; ATCA framework for,
662–63

equioscillation, 30, 259. See also
Remez algorithm

equivalent martingale measure, 321
equivariance, 392, 407
Erdös number, 363
Erdös–Rényi model, 365–66, 801
ergodicity, 83; of random-matrix

eigenvalues, 425; turbulent flows
and, 726

ergodic theorem, 851
ergodic theory, 83, 392

error analysis: backward, 26–27, 75,
275; forward, 26–27; in numerical
linear algebra, 274–75. See also
rounding errors

error-correcting codes, 548, 555–57
error function, 19, 230; complemen-

tary, 81, 230
errors in modeling, classification of,

53
essential spectrum of linear

operator, 240
Euclidean space: mechanics in,

107–8; n-dimensional, 22–23
Euler, Leonhard, 59, 62, 64, 183, 635,

773
Euler–Bernoulli equation, 17
Euler buckling, 514–15
Euler equations, 146–47, 163, 192; in

aerodynamics, 472; in fluid dynam-
ics of sport, 599; of gas dynamics,
316; shallow-water variant of,
167–68

Eulerian circuit, 562–63
Eulerian description in continuum

mechanics, 448–51, 457; granular
materials and, 667, 671

Eulerian tour, 562–63
Euler–Lagrange equations, 134, 147,

197–98, 220–21, 223, 379–81;
derivation of, 379; numerical
solution of ODEs and, 303–4

Euler limit of Reynolds number,
471–72

Euler methods: with finite differ-
ences, 310; for numerical solution
of ODEs, 293–98, 300–301, 303

Euler numbers, 91, 93, 227
Euler–Poisson–Darboux equation,

170
Euler’s constant, 148, 228, 931
Euler’s formula, 9, 173
European mathematicians and

government policy, 954–56
evanescent waves, 674–75
even function, 10
event horizon, 585–87, 686
evolutionarily stable state, 593
evolution equations, 16–17, 241;

coupled, 345–47; for granular
materials, 672; in kinetic theory,
430, 433; Korteweg–de Vries
equation as, 150

exchange of stability, 394
excitable cells, 619–20; of heart,

623–27
expectation value, in quantum

mechanics, 411, 413

experimental applied mathematics,
925–33; examples of, 926–32;
introduction to, 925–26; limits of,
932–33. See also computational
experiments

explicit Euler method, 293–96, 298
exponential function: polynomial

approximations of, 759–60; power
series for, 20. See also matrix
exponential

exponential integral, 32
exponential integrators, 301
exponentially small function, 211
exponential random graphs, 367
externalities, market, 871–72
extreme points, 90

fabric tensor, 672
factor analysis, in covariance matrix

estimation, 652–53
factorial function, 18. See also

gamma function; Stirling’s
approximation

Falkner–Skan equation, 473
Faraday’s law, 477
Faraday tensor, 162
fast Fourier transform (FFT), 94–95;

in digital signal processing, 535,
543; historical background of,
75–76, 94; matrix factorization
and, 265

fast multipole method, 775–78
FBP. See filtered back-projection (FBP)

algorithm
fear of mathematics, 950–52
feasible point, 38, 282, 285–86
feasible region, 286
feasible set, 282, 285–87; convex, 283
feasible solutions, 565
feature selection techniques, 354–55
feedback, 88–89, 523–24; in cellular

regulation, 881; in communication
systems, 551. See also control
systems

Feigenbaum constant, 399
Feigin maps, 770
Fenchel transform, 224
Fermi–Dirac distribution, 416
Fermi level, 850
fermions, 416
Feynman, Richard, 380
Feynman–Kac formula, 642
Ffowcs Williams–Hawkings equation,

785
FFT. See fast Fourier transform (FFT)
fiber tractography, 845
Fibonacci heap, 758
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Fibonacci numbers, 18; algorithms
for computing, 43

Fick’s law, 618
fictitious forces, 380–81. See also

Coriolis effect
Fiedler eigenvector, 665
field equations: for granular mater-

ials, 666, 668, 670. See also
Einstein’s field equations

field of values, for eigenvalues of
matrix, 268

Filippov system, 769–70
filtered back-projection (FBP)

algorithm, 818–23, 868
filtering problem, in stochastic

analysis, 325–26
filters: for dimension reduction,

354–55; in image processing, 353;
in nonlinear programming, 292;
in signal processing (see signal
processing)

finance, 640–48; stochastic analysis
in, 320–21, 326, 641–42, 644–45,
647. See also portfolio theory

financial crisis of 2008, 640–41,
644–46

financialization of commodity
markets, 646

financial networks, 372–73
finite-difference methods: in cardiac

modeling, 626; historical back-
ground of, 75; for PDEs, 307–10,
337; stability properties of,
309–10; in tsunami modeling, 718;
in weather prediction, 707–8

finite differences, 95–96, 272
finite-element methods, 96, 310–14;

for calculating eigenvalues, 245;
conforming, 313; discontinuous
Galerkin, 313, 315f, 718; historical
background of, 73–74; mixed, 313,
662; optimization and, 662; soft-
ware for, 921–22; in solid mech-
anics, 513; stabilized, 312–13

finite impulse response (FIR) filter,
533–34, 536, 540, 543

finite-volume methods, 314–16; in
tsunami modeling, 718

first-digit law, 135–37
first law of thermodynamics, and

atmosphere, 488–89, 491, 706
first principles, working from, 33–34
Fisher information matrix, 594
Fisher metric tensor, 594
Fisher’s equation, 17
Fisher’s exact test, 577

Fisher’s fundamental theorem of
natural selection, 592–93

five-body problem, 774, 792
fixed-income markets, 642–43
fixed-point iteration, 34–35, 37, 346
fixed point of dynamical system,

386–88, 393; neuronal, 874–75,
877. See also equilibrium point

fixed point of market, 871
flames, 852–57; introduction to,

852–53; multidimensional laminar,
853–55; planar adiabatic, 853;
turbulent, 348–50, 852, 855–56

floating-point arithmetic, 96–97; high-
precision, 835–36, 841, 925–26,
929–32; IEEE standard for, 6–7, 97,
105, 835; programming languages
and, 835–36; summation algo-
rithms and, 41, 843. See also
rounding errors

floor function, 42, 830
flops, 43, 267, 839, 839n
flow map, 383, 387
flow on graph, maximizing, 558–60,

564–65
flows, 187–88, 393; Hamiltonian, 401;

numerical methods and, 302–3;
phase space and, 382, 401; of
piecewise-smooth systems, 769–70

fluid dynamics, 467–76; aircraft
noise and, 783–86; of atmosphere
and oceans, 490–92; biological
systems and, 610; Cauchy–Riemann
equations and, 139; of compress-
ible flow, 87–88; computer graph-
ics for, 844; contact line paradox
in, 169; enlivening lectures on,
934–35; historical development of,
62; historical development of
simulation in, 338; instabilities in,
474–76; introduction to, 467–68;
kinematics in, 449, 468–69; level
set method in, 116; Maxwell’s kin-
etic theory and, 431; scaling law
for pressure drop in, 91, 93;
shocks in, 122–24; singularities in,
125; of sport, 598–604; Tricomi
equation in, 170; two-phase flows
in, 116; velocity potential in, 156;
vorticity in, 469–72 (see also
vortices). See also aerodynamics;
boundary layer; continuum
mechanics; Euler equations;
magnetohydrodynamics; Navier–
Stokes equations; Reynolds
number; shallow-water equations;
turbulence

fluorescence capillary-fill device,
864–66

flux expulsion, 479
flux freezing, 478
flux function, 314–15
foam drainage, 739
foams, 737–41. See also bubbles
focus–focus, 397–98
Fokker–Planck equations, 434–36,

438, 440, 443; for distribution of
algae, 615

Föppl–von Kármán equations, 614
force: in biological systems, 610, 613,

615; in continuum mechanics,
450–51; in Newtonian mechanics,
375–78; in turbulent dynamics,
727. See also fictitious forces;
stress

force dipole, 615
force-directed graph drawing, 103
Ford–Fulkerson algorithm, 559–60
forest, 102
Formula 1 racing cars, 598, 605,

608–9
Forth, 834, 838t
Fortran, 828–32, 834–39
forward and backward linear

prediction, 540, 543
forward difference, 95–96
forward error, 26–27
forward map, 327–28
forward problem, 50, 336
forward propagation of uncertainty,

132
four-body problem, 774, 792–94
four-color map theorem, 562
Fourier–Galerkin spectral method,

317–18
Fourier series, 23, 196, 260–61
Fourier transform, 104–5; in digital

FIR filters, 534; evaluated by
Cauchy’s residue theorem, 178–79;
Lebesgue spaces and, 99–100;
optical fields and, 674–75, 679;
short-time, 100; in solving PDEs,
196, 244. See also discrete Fourier
transform (DFT); fast Fourier
transform (FFT)

fractal dimension, of Arctic melt
ponds, 704

fractal properties, of Lorenz
attractor, 929–30

fractal theory: development of, 926;
in popular culture, 949–50

fractional differential equations, 18
fractional Gaussian noise, in Internet

traffic, 885
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fracture mechanics, 125, 515
Frank free energy, 522–23
Fréchet derivative, 13
Fredholm alternative, 26, 202–3, 213
Fredholm integral equations, 17, 200,

202–3
Fredholm operators, 246
free boundary conditions, of

quantum graph, 247
free boundary problems, 196, 221,

325; of flame propagation, 854–55
free discontinuity problems, 221, 225
free particle, quantum mechanical,

414
French mathematicians and

government policy, 954–55
frequencies, distributing among

phone towers, 561
frequency of oscillation, 236
Fresnel diffraction formula, 675–76
Fresnel propagator, 676–77
friction, 378; in granular mechanics,

667–68, 670; swimming microorgan-
ism and, 615; in weather predic-
tion, 706. See also drag; viscosity

Friedmann equation, 588–89
Friedmann–Lemaître universes,

588–89
friendship paradox, 367
Frobenius, method of, 180
Frobenius norm, 25, 266
Froude number, 853
Fuchsian ODE, 184
full orthogonalization method, 276
full waveform inversion (FWI),

332–34
functional analysis, 99–101, control

theory and, 529; integral equations
and, 203; spectral theory and,
236–248

functional programming language,
828, 831

functionals, 134; calculus of
variations and, 219

functions, 10–11. See also elementary
functions

function spaces, 99–101
fundamental solution of PDE, 125
fundamental theorem of algebra, 18,

250, 571
fundamental theorem of calculus, 14
funding of mathematics, making the

case for, 953–61

gain matrix, 709
galactic dynamics, mean-field theory

in, 433–35, 444

galaxy formation, 590
galaxy mass, 772
Galerkin methods: discontinuous,

313, 315f, 718; projection, 118;
spectral, 316–17; for tsunami
modeling, 718

Galerkin orthogonality property, 312
Galilean group, 109, 111, 375
Galilean invariance, 107, 109–10
Galileo, 61, 109–10, 336, 374, 505
game theory: adaptation and,

593–94, 596; control systems and,
530–31; equilibrium problems in,
293; financial markets and, 647;
utility maximization and, 870

Γ -convergence, 222–25
gamma distribution, 231
Gamma driver condition, 685
Gamma freezing condition, 685
gamma function, 19–20, 148, 174,

228–29; analytic continuation of,
179; confluent hypergeometric
function and, 232; hypergeometric
function and, 229; Riemann zeta
function and, 229

GAMS (General Algebraic Modeling
System), 838

gas dynamics equations: finite-
volume methods for, 315–16

gauge: Coulomb, 161; Lorenz, 161;
in numerical relativity, 683, 686

gauge transformations, 161–62
Gauss, Carl Friedrich, 63, 65, 76, 94,

227, 229, 231, 244
Gaussian basis functions, 261
Gaussian beam, 676
Gaussian curvature, 220; leaf growth

and, 614
Gaussian (normal) distribution, 230;

in likelihood function, 659;
random matrices from, 420, 824;
turbulent flows and, 726;
uncertainty principle and, 927

Gaussian elimination (GE), 35, 264;
backward error analysis and, 75,
275, 337; for banded matrices,
272; computational cost of, 44,
267; with partial pivoting, 265,
273; for sparse matrices, 273

Gaussian ensembles of random
matrices (GOE and GUE), 420–25

Gaussian filter, 353
Gaussian noise: in Bayesian example,

660; fractional, in Internet traffic,
885; in linear quadratic optimal
control, 529–30; in signal process-
ing, 536–37, 544–45

Gaussian wave packet, 414
Gauss methods, for numerical

solution of ODEs, 300, 302–5
Gauss–Seidel iteration, 276, 279
Gauss–Seidel multiphysics coupling,

345, 348
gene action and regulation, 880
General Algebraic Modeling System

(GAMS), 838
generalized coordinates, 380–82
generalized eigenvalue problem,

271–72, 848
generalized functions (distributions),

140–41; Banach spaces of, 100–101
generalized harmonic formalism,

683–84, 686
generalized minimal residual

(GMRES) method, 276
generalized momenta, 380, 382
general relativity, 107, 111, 129–30,

579–90; basic structure of, 579–83;
black holes and, 585–87, 684,
686–87; Cauchy problem in, 436;
cosmology and, 587–90; field equa-
tions in, 144–46, 579, 582–88, 683;
further issues in, 590; numerical
studies of, 145, 582–83, 680–87;
Schwarzschild solution in, 583–87,
684

general solution of ODE, 182
generating function, for Bessel

functions, 137
genetic algorithms, for traveling

salesman problem, 781
genomics, comparative visualization

tool for, 845–46
geodesic deviation equation, 582
geodesics, 129, 144, 581; calculus of

variations and, 219; of network,
361, 364

Geoduck, 787–90
geometric mean, for Hermitian

positive-definite matrices, 280
geometric modeling, 575–76, 787–90
geometric series, 174, 229
geophysical inversion for near-

surface properties, 327, 331–34
geopotential, 491, 494
geostrophic balance, 493–97
Gerchberg–Saxton iterative

algorithm, 677
Gershgorin’s theorem, 263, 267–68
giant component of graph, 361, 366,

368–69
Gibbard–Satterthwaite theorem, 893,

895
Ginibre ensemble, 420
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Gini index, 357
Ginzburg–Landau equation, 462–65,

467
Ginzburg–Landau theory, 148–49,

225
Givens rotations, 265
glide reflection, 403
global optimization, 285, 795; in

networks, 886–87
global warming: sea ice and, 694–95.

See also greenhouse effect
gluing bifurcation, 400
GMRES (generalized minimal

residual) method, 276
GNU MPC library, 835
GNU MPFR library, 835
GNU Octave, 832
golden ratio, 18
Golden–Thompson inequality, 280
Goldman–Hodgkin–Katz equation,

617–18
Goldstine, Herman, 62–63, 73, 426
Goldstone modes, 463, 466
golf ball flight, 746–49; dimples and,

749
gonorrhea, 691–92
Good Will Hunting (film), 947
Google PageRank algorithm, 4, 48,

276, 364, 755–57
Gould, Stephen Jay, 591
governmental policy, 953–61
GPUs (graphics processing units), 832
gradient flow equation, nonlinear,

198
gradient flows, 226
gradient operator, 27, 115
gradient projection, 291
gradients, natural, 593–94
gradient vector, 14, 27, 191; auto-

matic computation of, 751
Gragg’s method, 298
Gram–Schmidt orthogonalization,

265
grand mean, 655
granular flows, 665–73; multipolar

effects in, 672–73; regimes of,
667–71; size segregation in, 668,
672–73

granular materials, 665–66; foams
and, 738–39

graph coloring, 561
graph databases, 373–74
graph density, 361
graphical user interfaces (GUIs),

830–31
graphics for research papers, 914,

918

graphics processing units (GPUs), 832
graph theory, 101–3, 552–53,

557–64; basic concepts of, 557;
combinatorial optimization and,
564–65; complex systems analyzed
with, 84; Laplacian matrices in,
662, 664–65; searching a graph
and, 757–59; spectral analysis and,
246–47; web graph and, 755–57.
See also network analysis

graph traversal, 757–59
gravitational boosting, 926
gravitational field: Green’s theorem

and, 857–59; linear, 108; Poisson’s
equation for, 307, 857

gravitational potential, 775
gravitational redshift, 583–85
gravitational waves, 145–46, 582–83,

687
gravity: bubbles and, 736; as conser-

vative force, 156, 377; in fluid
dynamics of Earth, 490–91;
Newtonian, 376–77, 771–72, 775.
See also general relativity

Grayson theorem, 116
grazing bifurcations, 770–71
greatest lower bound, 11
greedy algorithms: for cheap net-

work problem, 558; for com-
pressed sensing, 825; not gener-
alizable, 566; for spanning tree
problem, 566

Greek alphabet, 8, 9t
Green functions, 140, 858–60; for

Laplace equation, 85, 125; for
Poisson equation, 125, 140; for
radar source, 861; resonances of
Schrödinger operators and, 243;
for unit disk, 85

greenhouse effect, 486–88; energy-
efficient buildings and, 763;
regulation of CO2 emissions and,
646. See also global warming

Green’s theorem, 857–60
Gröbner basis, 573–74, 577;

Buchberger’s algorithm for, 35
Gross–Pitaevskii equation, 151
group theory, 404–5; voting

paradoxes and, 894–95
growth factor, in Gaussian

elimination, 275
GUIs (graphical user interfaces),

830–31
gyres, ocean, 492–96
gyroscope, reduced-order model of,

119

gyroscopic sensor of fruit fly, 744,
746

gyroscopic system, 272

H2-norm, 529–30
H∞-norm, 529–31, 539
Haar condition, 256–57, 259, 261
Haar measure, 420
Hadamard, Jacques, 50, 72, 204, 328
Hadamard matrix product, 801
Hadley circulation, 491–92, 499
half-planes, 9
Hall’s marriage theorem, 560
hallucinations, visual, 878
Halmos, Paul, 3, 909, 939
Hamilton, William Rowan, 64, 66, 374
Hamilton circuit, 564, 779
Hamiltonian: in classical mechanics,

109, 382; Dirac, 143; in Hamilton–
Jacobi equation, 191; of network,
367; in optimal control problem,
323

Hamiltonian flows, 401
Hamiltonian matrix, 21; algebraic

Riccati equation and, 165–66
Hamiltonian mechanics, 382
Hamiltonian operator, 167, 411–12,

847–48; approximation methods
using, 418–19; modeled by random
matrix, 427; for multi-electron
atom, 417; periodic, 849, 851

Hamiltonian systems: integral curves
of, 183; Noether’s theorem for,
405; numerical solution of differ-
ential equations for, 295–97,
302–4; orbits of, 189–90, 401;
oscillatory behavior in, 304;
Painlevé equations written as, 164

Hamilton–Jacobi–Bellman equation,
198, 322; in portfolio theory, 320,
644–45

Hamilton–Jacobi equation, 191, 199
Hamilton’s equations, 295, 382;

bifurcation theory and, 401
Hamilton’s principle, 380
Hamming code, 548, 555–57
Hankel matrices, 254–55
Hankel’s loop integral, 179
hapten, 864, 864n
Hardy, G. H., 3, 70, 72, 579, 636, 946
Hardy space, real, 100
Hardy–Weinberg equilibrium, 578–79
harmonic analysis: approximation

theory and, 255; in image process-
ing, 815; kinetic theory and, 437

harmonic coordinates, 683
harmonic functions, 155–56, 201–2
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harmonic oscillator, 376; damped,
378; quantum mechanical, 185,
231, 412, 848

Hartman–Grobman theorem, 186
Hartmann flow, 480
Hashin–Shtrikman bounds, 702
heap, of graph traversal algorithm,

758–59
heaps of pieces model, 797–800
heart, 623–27, 846
heat. See thermal energy of combustion
heat conduction: backward, 204–5;

in composite medium, 103
heat equation. See diffusion (heat)

equation
heat flux, in continuum mechanics,

451
Heaviside, Oliver, 59, 66, 70, 635, 673
Heaviside function, 850
heavy-ball methods, 288
heavy-tailed distributions, in Internet

traffic, 885–87
Hebbian plasticity, 878–79
Heisenberg uncertainty principle, 57,

413
Helfrich–Canham free energy, 520–21
helicity: conservation of, 472;

magnetic, 478, 482–83
Helmholtz, Hermann von, 472, 475,

808
Helmholtz equation, 156, 207–8, 233,

307, 674; modified with refractive
index, 678

Helmholtz’s laws of vortex motion,
472

herd immunity, 689–90
Herglotz function, 699, 702
Herglotz wave function, 208
Hermite equation, 185
Hermite–Gaussian beams, 676
Hermite polynomials, 122, 231–32; in

optics, 676; and quantum mechan-
ical harmonic oscillator, 231, 412

Hermitian matrices, 21; eigenvalues
of, 25, 267–72, 848; inequalities
on, 280; Lanczos iterative method
for, 277; positive-definite, factor-
ization of, 264–66, 273; in
quantum mechanics, 412–13;
Rayleigh quotient of, 134. See also
self-adjoint matrices

Hertzian elastic contact, 515, 668
Hessenberg matrix. See upper

Hessenberg matrix
Hessian matrix, 14, 90, 285; in

Hamiltonian systems, 304; in
nonlinear optimization, 289, 291

heteroclinic orbits, 189–90, 384, 387,
393, 464

hierarchical organization, in
networks, 363

high contact (smooth fit) principle,
324–25

high-frequency trading, 646–47
high-performance computing,

839–43, 840f; in China, 954
high-precision arithmetic, 835–36,

841, 925–26, 929–32
Hilbert’s Nullstellensatz, 571
Hilbert spaces, 24; functionals on,

134; in quantum physics, 107, 167,
412–13; reproducing kernel, 100;
spectral theory in, 238–39

Hilbert’s sixteenth problem, 630
history of applied mathematics,

55–78; classroom use of, 934–35;
before Industrial Revolution,
59–63; introduction to, 55–59; late
nineteenth century to World War II,
66–72; mathematical tables and,
66, 74–75; in nineteenth century,
63–66; periods of, 59; pioneers in,
58–59; during and after World
War II, 72–78

HITS (hyperlink-induced topic
search) algorithm, 4–5, 756

HIV/AIDS, 692–94; viral image
reconstruction, 815

Hodgkin–Huxley model, 874–76
Hohmann transfer ellipses, 926
holomorphic functions. See analytic

functions
holonomy, 581
homoclinic bifurcations, 190, 393,

396–98, 400–401
homoclinic orbits, 190, 384, 387
homoclinic snaking, 401
homoclinic tangencies, 398
homoclinic tangles, 398
homogeneous material, 510–11
homogenization, 103, 120, 193, 225,

501; biological tissues and, 611;
bubbles and, 737; granular mater-
ials and, 665; inverse, 702–3; sea
ice microstructure and, 697–98,
703. See also effective medium
theories

homotopy. See continuation
Hooke’s law, 149–50, 376, 505, 513
Hopf bifurcation, 388–89, 395, 400;

in epidemiology, 691; in Hodgkin–
Huxley model, 875; Lorenz equa-
tions and, 159; pattern formation
and, 462–63; symmetry and,

409–10; van der Pol oscillator and,
189

Horner’s method, 46–47, 760–61
horseshoe, Smale, 190, 384, 390–91
hospitals, optimal sensor location in,

763–67
Householder reflectors, 265
H theorem, 431–32, 441
Hubble parameter, 587
hubs, 362–64, 369–70
hull. See convex hull
Hurwitz zeta function, 929
Huygens’s principle, 676
hybrid models, of cell-to-cell

communications, 882
hybrid systems, 103–4; piecewise-

smooth, 401–2, 769–70
hydraulic jump, 715, 718
hydrodynamic distribution, 431–32
hydrodynamic instability, of flames,

854–56
hydrodynamic limit of Boltzmann

equation, 443
hydrodynamics. See fluid dynamics
hydrodynamic theory of flame

propagation, 855–56
hydrogen atom, 237, 415
hydrostatic balance, in atmosphere,

487, 489, 494
hydrostatic models, in weather

prediction, 706
hydrostatic pressure, in tsunami

modeling, 715–16
hyperasymptotics, 638–40
hyperbolic conservation laws, 86–88,

122–24
hyperbolic fixed point, 386–87
hyperbolic PDEs, 17, 307; nonlinear,

in tsunami modeling, 715–16, 718;
in numerical relativity, 682–86;
quasilinear, 86–87, 122–24; soft-
ware for, 920. See also wave
equation

hyperbolic solution, of dynamical
system, 394

hypercube, volume of, 29
hypergeometric equation, 184–85
hypergeometric functions, 19, 185,

229–30, 233; confluent, 232
hypersphere, volume of, 28–29
hypocoercivity, 438, 443
hypoellipticity, 438, 443
hypoplastic models, 667, 671–72

ice. See sea ice
ice ages, 487
ice–albedo feedback, 695–96, 703
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ideal gas law, 516–17
ideals, 571
identity matrix, 21
identity transformation, 405
IIR (infinite impulse response) filter,

536, 540–41
ill-conditioned problems, 26; inverse

problems as, 328–29
ill-posed problems, 26, 50; inverse

problems as, 201, 204–5, 328–29;
regularization methods for, 205–6,
208, 329, 867

image compression, 28, 813–14; by
singular value decomposition,
126–27. See also JPEG compression

image denoising, 814–15
image inpainting, 225, 814–15. See

also cloning, in image retouching
image processing, 813–16; calculus

of variations in, 225, 815; cloning
tools for, 5–6; color and, 813; for
data representation, 353–54;
dimension reduction in, 28; IPOL
project for publishing about,
922–23; level set method in, 116;
wavelets in, 31. See also digital
imaging; visualization

Image Processing OnLine (IPOL),
922–23

imaginary part, 8, 173
imaginary unit, 8, 173
imitation, 596
immersed interface method, 745
impedance imaging, 733–34
impedance tomography, 334–35
implicit differential equations,

181–82
implicit Euler method, 294–96, 300
implicit Euler scheme, gradient flow

and, 226
implicitization problem, 571–72, 576
Inada conditions, 645
incidence matrix, edge–node, 664
inclusion principle, in interval

analysis, 105–6, 791
incomplete beta function, 231
incomplete gamma functions, 231
incompressibility constraint, 598
incompressible flow. See Navier–

Stokes equations
incompressible materials, 450
incremental loading, 37
indefinite integral, 14
independence, model of, 577
independent-component analysis,

543
independent variable, 10, 181

index contraction, 128
indicial equation, 184–85
induced norm, 24–25
industrial mathematics: airport bag-

gage screening, 866–68; history of,
57–59, 66, 70, 72, 78; pregnancy
testing kit modeling, 864–66;
teaching and, 940–43

inerters, 604–9
inertia, and gravitational force, 579,

581
inertial frames, 107, 109–11, 130,

375
inertia number of granular flow,

667–68
inertia of Hermitian matrix, 271
inertia tensor, 130
infectious diseases, 368–69, 372,

687–94
infimum (inf), 11
infinite eigenvalues, 271
infinite impulse response (IIR) filter,

536, 540–41
infinite series, 175; convergence of,

11, 174–75. See also power series
infix notation, 833
inflection points. See saddle points
influenza, 689–91
information asymmetry, 872–73
information geometry, 592–93
information measures, 549–50, 552
information retrieval, 355–56
information theory, 73, 545–52;

adaptation and, 593, 595; kinetic
theory and, 437–38, 441; sampling
rate in, 826–27

initial conditions: for ODEs, 15; for
PDEs, 16, 192

initial-value problem, 15, 182, 187,
293

inner multiplication, 128
inner product, 22
inner product space, 22; norm on, 23
insect flight, 743–46
insertion algorithm, 41
integer linear optimization, 568–69
integer relation detection, 926
integrable differential equations,

151, 193, 384
integral, 14; Cauchy integral, 180;

Cauchy principal-value integral,
180

integral equations, 17, 200–208;
computerized tomography and,
206–7; coupled Volterra of second
kind, 865; historical background
on, 201–3; ill-posed problems and,

204–6; introduction to, 200–201;
inverse scattering and, 207–8;
numerical solution of, 203–4;
singular, 180; stochastic, 319

integral transforms, 104–5; for solv-
ing PDEs, 196. See also Fourier
transform; Laplace transform

integrated circuit design, 804–8
integrating factors, 183
integration by parts, 14, 197
integro-differential equations, 17;

coupled nonlinear Volterra, 865;
in kinetic theory, 433; for neuron
firing rates, 877

interferometric synthetic-aperture
radar, 863

interior-point methods: in conic
optimization, 290; in linear
programming, 287–88; in non-
linear programming, 291

intermittency in dynamical systems,
400–401

Internet: architecture of, 883–87;
collaboration using, 915; writing
for, 901–3. See also web page
ranking; Web sites

Internet traffic, long-range
dependence in, 885–86

interpolation, 29–30, 248–55; for
model order reduction, 118–19;
multivariate, 261–62; orthogonal
basis functions for, 257–58

interpreter, 830
interval, space-time, 110
interval analysis, 105–6; computer-

aided proofs via, 790–95
interval arithmetic, 105, 790
interval bisection, 791–94
invariance properties, 51–52
invariant manifolds, 383, 386–87
invariant probability measure, 83
invariants, and conservation laws,

106–12
invariant set of map, 83
invariant subspace, 25
inverse iteration, 270
inverse of square matrix, 21
inverse problems, 50, 200–201,

327–35; in baggage screening,
866–68; Bayesian approach to, 133,
329–30; for composite materials,
504–5; concepts of, 327–30; as
data fitting, 328, 332; of electrical
impedance tomography, 334–35;
geophysical, for near-surface prop-
erties, 327, 331–34; ill-conditioned,
328–29; ill-posedness of, 328–29;
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inverse problems (continued):
integral equations in, 201, 204–8;
level set method for, 116; linear
and nonlinear, 328; outlook for,
335; a priori information and
preferences in, 329; of scattering,
207–8, 327, 335; in spectral theory,
236; Tikhonov regularization in,
329; for tsunami source estima-
tion, 716–17; uncertainty quanti-
fication in, 132–33, 330; of X-ray
computed tomography, 206–7,
327, 330. See also tomography

inverse scattering transform, 151
inverse-square law, 377–78
inverse synthetic-aperture radar

(ISAR), 862, 864
involutory matrix, 265
ion channels, 617–20, 624–25, 627;

of neurons, 874
IPOL (Image Processing OnLine),

922–23
iPython. See Project Jupyter
irreducible matrix, 279
irrotational fields, 156
Ising integrals, 930–31
isolated essential singularity, 177
isomonodromy problem, 164
isoperimetric inequality, 89
isoperimetric problems, 219–20, 224
isosurface extraction, 844
isothermal chemical network, 630,

634
isotropic elasticity, 452, 454–55, 511
isotropic material, 510–11
isotropic space, 156
isotropy group, 510
isotropy subgroups, 408–10
iteration, 34–35; convergence of, 34,

50–51
iterative algorithms, 48
iterative hard thresholding, 825
iterative methods in numerical linear

algebra, 275–77, 279
iterative refinement, 264, 342, 841
Itô processes, 319–20, 641

Jacobian matrix, 37, 121; computa-
tion of, by automatic differenti-
ation, 750–52; of coupled system,
345–48; finite difference approxi-
mation to, 122, 347; linearization
of dynamical system using, 37–38,
121–22, 186, 386–88, 393–94, 397;
transformation of tensor compo-
nents and, 129

Jacobi iteration, 34, 276, 279

jamming, 739
Jaumann derivative, 666, 671
Java, 829f, 831, 836, 838
Jeffery–Hamel flow, 470
Jensen’s inequality, 90
John’s ultrahyperbolic equation, 867
Jordan block, 238
Jordan canonical form, 112–13; func-

tions of matrices in terms of, 98
Jordan curve theorem, 562
Joukowski mapping, 86
JPEG compression, 28, 547, 812–15,

823
Julia, 829f, 831, 832f, 833, 835, 838
Jupyter Notebook, 832f, 833, 919
Jurassic Park (film), 949–50

Kac, Mark, 17, 75, 246, 434, 436–37,
439–40

Kadomtsev–Petviashvili equation,
151

Kalman–Bucy filtering theorem, 326
Kalman filter, 529–30, 545; optimal

sensor location and, 763–64
Kalman gain vector, 539
Kantorovich, Leonid, 56, 68, 72, 89,

225–26, 750
Kantorovich condition, 791
Kantorovich inequality, 280
Karatsuba algorithm, 43–44
Karmarkar’s algorithm, 287
k-core of graph, 361, 363
Kedem–Katchalsky equation, 622
Keldysh equation, 170
Keller–Segel model, 465
Kelvin, Lord (William Thomson), 66,

446, 472, 752
Kelvin–Helmholtz instability, 474–75,

728
Kelvin mode, 475
Kelvin problem, 740
Kelvin waves, 498, 500
Kepler conjecture, 791, 922
Kepler interface, 922
Kepler’s third law, 772
kernel: of integral equation, 200; of

integral transform, 104
kets, 412
kidneys, 620–23
kidney transplants, matching for,

555
Killing vector fields, 111, 582, 587
kinematics, 448–49; algebraic geom-

etry of, 574–75, 767–69
kinematic viscosity, 469
kinetic energy, 376; in quantum

mechanics, 411

kinetics, chemical, 627–34
kinetic theory, 428–46; birth of,

428–31; challenges for, 442–44;
collisional relaxation and, 431–34,
443; collisionless relaxation and,
433–34, 443; entropy in, 431–33,
437–38; Landau damping and,
433–34, 440, 442; landmarks of,
440–42; mathematical tools and
trends in, 437–39; models in,
435–37; problems that drive the
field of, 434–35

Kirchhoff boundary conditions, 247
Kirchhoff’s formula, 193–94
Kirchhoff’s law of thermal radiation,

486–87
Kirchhoff’s voltage and current laws,

15, 662–63, 665; percolation and,
698

KKT (Karush–Kuhn–Tucker) condi-
tions, 285–88

KKT matrix, 661–65
Klein, Felix, xi, 59, 65–67, 69
Klein four-group, and voting

systems, 894
Klein–Gordon equation, 142–44; dis-

persion relationship for, 194–95
k-means algorithm, 358
knapsack problem, 565, 568, 570
knots and links, 752; of

macromolecules, 752–55
Knudsen number, 438, 667, 670, 672
Knuth, Donald, 48, 837, 906, 913
Kohn–Sham model, 847, 851
Korteweg–de Vries equation, 17,

150–51, 192, 195; Painlevé
equations and, 164; spectral
properties of, 247

Kretschmann scalar, 584
Kronecker delta, 10t
Kruskal diagram, 586
Kruskal–Szekeres coordinates,

585–87
Krylov subspace methods, 276–77;

computational complexity and,
341; in multiphysics problems,
346–48; Newton’s method and,
122, 346–47; in solving differential
equations, 301, 308

Krylov subspaces, 113–14, 118
Kuhn length, 518
Kullback–Leibler divergence, 355,

593–95
Kummer functions, 232
Kuramoto–Sivashinsky equation,

138, 640
Kuratowski’s theorem, 562
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Kutta–Joukowski hypothesis, 473
k-way tensor, 578

L2-norm, 23; least-squares approxi-
mation with, 30

L∞ approximation, 30, 259–60
L∞-norm, 23
Lp-norm, 23
LAB color space, 811–12
Lady Windermere’s fan, 296–97
Lagrange, Joseph Louis, 62–65, 773
Lagrange form of interpolating

polynomial, 249
Lagrange multipliers, 38–39, 221;

constrained least squares and,
662; in continuous optimization,
285–86, 290–92; in portfolio
optimization, 649–50

Lagrange strain, 508
Lagrangian, 108, 147, 379; symmetry

of, 381
Lagrangian density function, 197
Lagrangian derivative, 162, 490
Lagrangian description in continuum

mechanics, 448–50; granular
materials and, 667

Lagrangian duality, 569
Lagrangian function, 39, 285–86,

291, 662
Lagrangian mechanics, 108–9,

379–82; generalized to special
relativity, 110

Lagrangian relaxation, 808, 825
Laguerre–Gaussian beams, 676, 678
Laguerre polynomials, 122, 231–32;

in optics, 676; in wave functions,
415

λ-matrices, 272
Lambert W function, 17, 20, 151–55
Lamé constants, 521
laminar flame speed, 853
laminar flows, 724; in transition to

turbulence, 728
Lanczos algorithm, 277; in latent

semantic indexing, 890
Landau damping, 433–34, 440, 442
Landau equations, 461–62
landslides, 668, 719
Langlands program, 591
La Niña, 499
LAPACK, 280, 832, 838
Laplace, Pierre Simon, 63
Laplace–Beltrami operator, 220, 240,

246
Laplace operator, 306. See also

Laplacian
Laplace–Runge–Lenz vector, 377

Laplace’s equation, 16, 155–56,
191–92; analytic functions and,
174; bounded solution in unit
sphere, 234; Cauchy–Riemann
equations and, 139; coordinate
systems for separability of, 234;
eigenvalue problem for, 17; as
elliptic PDE, 17, 307; Green func-
tion for, 85, 125; integral equa-
tions and, 201–2; for irrotational
flow, 146; marginal sea ice zone
and, 703; ocean surface waves and,
493; singular behavior of, 124–25;
transport problems governed by,
500–501

Laplace transform, 105, 174; inverted
using Cauchy’s residue theorem,
179; in time variable of PDEs, 196

Laplacian, 16, 27, 155, 191; nonlinear
variants of, 156; in PDEs other
than Laplace’s equation, 156

Laplacian matrices, 370, 662, 664–65
lapse rate, adiabatic, 489
laser beams, 676
Las Vegas algorithm, 48
latent semantic indexing, 888–90
LATEX, 42, 838, 913–16, 919
latexdiff, 914, 915f
lattice: Banach, 100; symmetries of,

404. See also crystal lattice
Laurent’s theorem, 176–77
Lax, Peter, 1, 76–78, 338
Lax equivalence theorem, 299, 310
Lax–Milgram theorem, 311
Lax pair, 151, 164
leaky integrate-and-fire model, 876
leapfrog scheme, 707
learning, neural correlates of, 878–79
least action, principle of, 379–80
least-mean-squares algorithm, 539
least-squares approximation, 30,

256–57; Chebyshev series for,
258–59; Fourier series in, 260–61

least-squares problem: constrained,
662; linear, 273–74, 277, 538–39

least upper bound, 11
Lebesgue constant, 249, 254, 260
Lebesgue measure, and stochastic

analysis, 319
Lebesgue spaces, 99–100
lectures for the public, 935
Lefschetz, Solomon, 57–58, 76
Legendre–Fenchel transform, 663
Legendre functions, 233–34;

associated, 414
Legendre–Galerkin spectral

approximation, 317

Legendre polynomials, 23, 122,
231–32, 257; in approximating
solutions of PDEs, 316–17

Legendre’s equation, 233
lemmas, 899, 903
Leonardo da Vinci, 505
Leonardo’s paradox, 736
Leontief’s input–output models, 279
Leslie matrices, 278–79
level set method, 114–16; for data

visualization, 844; for PDEs, 194
Lie algebra: of Killing vector fields,

582; in normal form theory, 388;
of special unitary group SU(2), 413

Lie bracket, 21
Lie groups, 405
Liesegang patterns, 459, 466
lift, 746–47
Lighthill, James, 722, 783–86
Lighthill stress tensor, 784–85
likelihood: in algebraic statistics,

577; in Bayesian inference, 596,
658–59, 661. See also maximum-
likelihood estimate

limit: commutativity of, 82; of func-
tion, 11; of sequence, 11; of
sequence in a normed vector
space, 24

limit cycles, 189, 389, 391; of
van der Pol equation, 388

Lincoln (film), 944
Lindstedt–Poincaré perturbation

theory, 929
linear algebra, 25–26; teaching of,

939–40. See also linear systems;
matrix; numerical linear algebra
and matrix analysis; vector spaces

linear congruential pseudorandom
numbers, 762

linear convergence of iteration, 34
linear function, 10
linear functional, 99
linear independence, 22
linearization, 37–38; of dynamical

systems, 386
linear least-squares problem, 273–74,

277, 538
linear momentum. See momentum
linear multistep methods, for

numerical solution of ODEs,
298–300

linear operators, 24–25; bounded, 25,
238; in continuum mechanics,
447–48; in quantum mechanics,
411–13 (see also Schrödinger
operators)
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linear programming, 282, 286–88; in
compressed sensing, 825; as conic
optimization, 290; as convex opti-
mization, 285; duality in, 286–88,
567–69; historical development of,
56, 72–73, 89; (mixed-) integer,
568–69; integer problems in,
567–69; relaxations in, 570; for
traveling salesman problem, 780.
See also continuous optimization

linear stability analysis, 38, 185–87
linear systems: computational cost of

solving, 44–45, 267, 272–73; condi-
tion number and, 26; criteria for
existence of solution, 26; matrix
inversion and, 21, 273; in max-plus
semifield, 797; overdetermined
and underdetermined, 273–74;
sparse, 272–73. See also Gaussian
elimination (GE); numerical linear
algebra and matrix analysis

linear time-invariant (LTI) operators,
533–36

linear transformations. See linear
operators

lines, method of, 194
linkage classes of chemical network,

633–34
linkages, 574–75
links (in knot theory), 752; of macro-

molecules, 752–54
links (in robotics), 767–69
LINPACK, 280, 830, 832
Liouville equation, 438
Liouville measure, 430–31
Liouville’s theorem, 176
Lipschitz condition, 11, 35, 187;

one-sided, 294
liquid crystals, 521–23
Lisp, 828–29, 833–34, 838
literate programming, 837, 915
lithotripsy, 724
little-oh notation, 12, 211–12
local search, 569
logarithm, 173–75; principal, 10
log-Euclidean mean, 280
logistic equation, 52–53, 156–58,

691; solutions of, 183, 187–88;
stochastic, 325

logistic map, 18, 157–58, 398–99,
401–2

log-optimal portfolio, 552
loop shaping, 526
Lorentz force, 161–62, 377, 380, 382;

in magnetohydrodynamics,
476–77, 479–80

Lorentz group, 110

Lorentz transformations, 110, 130,
580; of Maxwell’s equations, 162

Lorenz attractor: existence of, 791;
fractal properties of, 929–30

Lorenz equations, 158–59, 391
Lorenz gauge, 161
Lorenz maps, 391–92, 397, 399
lossless compression, 547–49, 814
lossy compression, 547–50, 812
Lotka–Volterra system: as competi-

tion model, 188; as predator–prey
model, 15–16, 71

lower bound, 11
lower semicontinuity, 222
lower triangular matrix, 21
Löwner (partial) ordering, 280
low-rank approximation, in fast

multipole method, 776, 778
LSQR algorithm, 277
LTI (linear time-invariant) operators,

533–36
lubrication theory, 169
LU factorization, 264–65, 275. See

also Gaussian elimination (GE)
Lyapunov, Aleksandr, 57, 69
Lyapunov equation, 166, 168–69
Lyapunov exponents, 83; in max-plus

model, 799–800
Lyapunov functions: for adaptation,

593–94; in chemical reaction net-
work theory, 634; control systems
and, 531–33; for neuron network
model, 877; stability of endemic
state and, 692–93

Lyapunov–Schmidt reduction,
395–96

Lyapunov-stable equilibrium, 186,
386

Mach, Ernst, 720
Mach angle, 723
Mach number, 721–22; aircraft noise

and, 783–86
Mach reflection, 722
Mach surface, 722
Mach wave, 722
Maclaurin expansion, 175
macromolecules, knotting and

linking of, 752–55
magnetic buoyancy, 479, 483–84
magnetic diffusivity, 477
magnetic field, 377–78; of Earth, 481;

gravitational collapse and, 478; of
sun, 476, 479–81, 483

magnetic helicity, 478
magnetic induction equation,

476–78, 481–83

magnetic pressure, 479
magnetic reconnection, 479
magnetic resonance imaging (MRI),

816, 826; visualization methods
for, 845

magnetic Reynolds number, 477–79,
482–84

magnetic tension, 480, 484
magnetoacoustic waves, 480–81
magnetohydrodynamics, 476–85;

current state of, 484; instabilities
in, 483–84; of perfectly conducting
fluids, 478

magnetohydrodynamic waves,
480–81

magnetorotational instability, 484
Mahler measure, 931
Maier–Saupe theory, 521–22
Malthusian matrix, 592–93
Mandelbrot, Benoit, 885, 926
manifolds, 127–30
Maple, 33, 832, 932
mappings, 10–11
maps: with a gap, 770; piecewise-

linear, 770–71; piecewise-smooth,
769–71

Marčenko–Pastur law, 423, 426
market portfolio, 651–52, 656
markets, 871; failures of, 871–72
Markov chain Monte Carlo

algorithms, 661
Markov chains, 116–17; Bayesian

application of, 133; communica-
tion network and, 801; homoge-
neous, 116–17; PageRank scores
and, 755–56

Markovian control process, 322
Markovian stochastic differential

equations, 642
Markowitz, Harry, 273, 648, 651
Markowitz pivoting, in Gaussian

elimination, 273
Markstein length, 854, 856
Marmousi model, 333–34
martingales: commodities modeled

as, 646; moral hazard and, 873;
optimal control and, 324; option
pricing and, 321

mass, dark matter and, 771–74
mass action, law of, 616
mass action kinetics, 628–30, 633–34;

Bayesian approach to rate constant
of, 659–60

mass balance, 449–50, 457–58, 666;
of fuel in combustion, 852

mass conservation: in atmosphere
and ocean, 491, 494–95; in



Index 981

Navier–Stokes equations, 598; in
reaction network, 632; shock wave
and, 721; in tsunami modeling,
715; in weather prediction, 706

mass density, 506
mass transport, 225–26
matching: as linear program, 567–68;

maximum, 565, 567; stable,
553–55; of workers to jobs, 560

matching-pursuit algorithm, 825
material constants, 451–52
material frame indifference, principle

of, 453–54, 666
material properties, in ATCA

framework, 663
Mathematica, 33, 833, 838t, 932
mathematical modeling. See

modeling
mathematical programming, 283
Mathieu functions, 159–60
Mathieu’s equation, 159–60, 184, 234
MATLAB, 33, 40, 106, 269, 273,

832–34, 836; backslash operator,
47, 833

matrix, 20–22; banded, 272; bidiag-
onal, 271; circulant, 21, 244, 268;
companion, 36, 268–69; condition
number for, 26, 263–64; defective,
112–13; derogatory, 113; diagonal,
21; diagonalizable, 112–13, 277;
diagonally dominant, 263, 275–76,
279, 345; eigenvalues of (see eigen-
values of matrix); functions of,
97–99; Hamiltonian, 21; Hermitian
(see Hermitian matrices); Hessen-
berg (see upper Hessenberg ma-
trix); Hessian (see Hessian matrix);
historical background of, 66, 68,
70, 73, 75, 263; identity, 21; ill-
conditioned, 263; inverse of, 21
(see also matrix inversion); invo-
lutory, 265; irreducible, 279;
Jacobian (see Jacobian matrix);
Jordan canonical form of, 112–13;
λ-matrices, 272; Laplacian, 370,
662, 664–65; Leslie, 278–79; lower
triangular, 21; minimal polynomial
of, 112–13; M-matrices, 279; non-
derogatory, 269; nonnegative,
278–79; nonnormal, 277–78; non-
self-adjoint, 238; nonsingular, 21,
26, 263, 266–67; normal, 238, 268,
277; orthogonal (see orthogonal
matrices); permanent of, 22, 45–46;
positive-definite, 21; powers of,
113; pseudo-unitary, 278; random
(see random matrices); rank of, 26,

126, 578; reducible, 279; self-
adjoint (see self-adjoint matrices);
similarity transformation of, 112;
spark of, 824–25; sparse, 272–73;
stochastic, 116, 279; symmetric
(see symmetric matrices); symplec-
tic, 166; Toeplitz, 21, 51, 538, 543;
transition, 116–17, 756; transpose
of, 21; triangular (see upper tri-
angular matrix); tridiagonal, 270,
272; unitary (see unitary matrices);
upper Hessenberg, 113–14, 270;
upper trapezoidal, 264; upper tri-
angular, 21, 43; Vandermonde,
255, 824; well-conditioned, 263

matrix absolute value, 266, 280
matrix analysis. See numerical linear

algebra and matrix analysis
matrix completion problems, 280,

827
matrix decomposition, 264n
matrix ensembles, 420. See also

random matrices
matrix exponential, 38, 97–98, 107,

184, 293, 301; inequalities involv-
ing, 280

matrix factorizations, 264–66; non-
negative, 890. See also singular
value decomposition (SVD)

matrix inequalities, 279–80
matrix inversion: avoidance of, in

solving linear system, 21, 273;
computational cost of, 44, 273;
condition number for, 26, 263

matrix logarithm, 98
matrix monotone function, 280
matrix multiplication, 21; computa-

tional complexity of, 12, 44–45,
267, 578

matrix norms, 25, 263; unitarily
invariant, 266

matrix polynomials, 272
matrix sign function, 98, 166
matroids, 566, 569
max-flow min-cut problem, 558–60,

564–67
max-flow min-cut theorem, 566–68
maximum entropy principle, 131–32
maximum-likelihood estimate, 660,

708; in PET scan reconstruction,
821–22. See also likelihood

maximum norm, 23
maximum of function, 13; of n vari-

ables, 14
maximum principle for stochastic

control problem, 323–24

maximum principles for PDEs, 17,
198

max-plus algebra, 795–800
Maxwell, James Clerk, 66, 429–31,

523, 773–74, 808
Maxwell–Boltzmann distribution, 416
Maxwell conditions, 430
Maxwell fluid, 666–67, 671
Maxwell Garnett formula, 501–3
Maxwellian distributions, 431
Maxwell multipole, 155
Maxwell’s equations, 160–62, 192;

in curved space-time, 581; Dirac
equation and, 143–44; wave solu-
tions of, 673–74

McCabe complexity, 836
mean-field theory, 84, 433–36, 439,

443; communication networks and,
801; of electronic structure of
solids, 851; in magnetohydro-
dynamics, 482–83; neuron net-
works and, 876

mean filter, 353
Mean Girls (film), 944, 947
mean-value theorem, 13
measles, 689
measure differential inclusions, 770
medical imaging, 327, 816–23. See

also magnetic resonance imaging
(MRI); positron emission tomog-
raphy (PET); ultrasound imaging;
X-ray computed tomography (CT)

Mehler–Fock transform, 234
Melnikov methods, 398
membrane ion channels, 617–20,

624–25, 627; of neurons, 874
membrane potential, 619–20;

cardiac, 624–25
membranes, 520–21; semipermeable,

in kidney, 621–23
memory: long-term, 878–79; working,

877–78
Menger’s theorem, 567
Mersenne twister, 762
Merton, Robert, 320–21, 323, 641,

643–45, 649
mesoscopic scale, 429–30
metals: deformation of, 511; liquid,

magnetic fields in, 476, 480–83
metamaterials, 502
metric, 24; in general relativity,

144–45, 680; on Riemannian
manifold, 127

metric space, 24
metric tensor, 128–30; in general

relativity, 580, 582
Michaelis–Menten kinetics, 617, 629
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microgyroscope, reduced-order
model of, 119

Millennium Bridge, 236
min-cut, and chip design, 806
minimal polynomial of matrix,

112–13
minimal residual (MINRES) method,

276
minimal surface equation, 198
minimal surfaces, 89, 198, 219–20,

737, 740, 791
minimax approximation, 259–60
minimax methods, 221
minimax theorem, 662
minimum cut, 560
minimum-degree algorithm, 273
minimum dissipation theorem, for

Stokes flows, 471
minimum mean cycle problem, 808
minimum of function, 13; of n

variables, 14
minimum principles, symmetric

framework for, 661–65
Minkowski space-time, 107, 110–11,

130; Einstein’s field equations and,
145–46, 685

Minkowski tensor, 130
minor of matrix, 22
MINRES (minimal residual) method,

276
mixed-integer linear optimization,

568–69
mixed mathematics, 55, 55f, 59–61,

63–66
mixed-mode oscillations, 400–401
mixed-norm Lp spaces, 100
MizBee, 845–46
M-matrices, 279
mock-Chebyshev interpolation, 250
modeling, 2, 52–54; historical devel-

opment of, 56, 71–72, 77; multi-
physics, 53–54, 345–50; philo-
sophical reflection about, 58; in
teaching applied mathematics,
935–38, 940–43

mode locking, 395, 400
model-predictive control, 530, 532
model reduction, 117–19. See also

dimension reduction
models: Bayesian parameter estima-

tion for, 658–61; coupling of, 350;
for inverse problems, 327; in net-
work analysis, 365–68; for optimi-
zation problems, 281–82; symmet-
ries of, 404; uncertainties relating
to, 658; validation of, 2, 54, 131,
340, 343

modularity, of graph partition, 365,
367

modulation equations, 462–63, 467
modulation spaces, 100
modulus of complex number, 9, 173
molecular dynamics, 456–58
Moler, Cleve, 830, 832–33
moment map, algebraic, 572, 577,

579
momentum: canonical, 108; in

continuum mechanics, 450–51,
454, 457; generalized, 380, 382;
in Newtonian mechanics, 375;
in quantum mechanics, 411,
413–14; in special relativity, 663.
See also angular momentum

momentum balance, 450–51, 666;
in fluid dynamics, 469, 598

momentum conservation, 108, 111,
381, 405, 450–51; in general rela-
tivity, 582; in solid mechanics, 506;
in tsunami modeling, 715

momentum space wave function, 414
Monge, Gaspard, 59, 63, 65, 225
Monge–Ampère equation, 307,

309–10
monomial basis, 30
monotone systems, control of,

532–33
Monte Carlo methods, 48; in Bayes-

ian inference, 661; development of,
57; in finance, 642; random graphs
and, 367; random number gener-
ation for, 761–62; in uncertainty
quantification, 132–33, 340

Moore–Penrose pseudoinverse, 274,
809

Moore’s law, 337, 340, 804, 839
moral hazard, 872–73
Morris–Lecar model, 619–20
mortgage-backed securities, 644
motifs: of biological models, 84; of

networks, 361–63
Motz problem, 125
mountain pass lemma, 221
MPEG compression, 547
MRI. See magnetic resonance imaging

(MRI)
Mullins–Sekerka problem, 139
multichannel filtering, 543–44
multigraph, 101
multigrid methods, 277, 308, 766
multi-index, 306
multiphysics modeling, 53–54,

345–50
multiple-precision arithmetic. See

high-precision arithmetic

multiple-recursive pseudorandom
numbers, 762

multiple scales, perturbation method
of, 216–17

multiplication operator, 239, 244
multipole expansion, 775
multipulse homoclinic orbits, 398
multiresolution analysis, 31
multiscale modeling, 53–54, 103,

119–20, 225; of biological systems,
882

multiscale problem, in continuum
mechanics, 455–58

multivalued functions, 10
multivariate functions, 11; approxi-

mation of, 261–62
Mumford–Shah model, 225
MUSIC direction-of-arrival algorithm,

542
mutation in populations, 595
mutual information, 550, 552

nabla, 14
narrow-band level set methods, 115
Nash, John, 946–47
Nash equilibrium, 593, 647, 870
natural gradients, 593–95
natural selection, 591–93
Navier–Stokes equations, 162–63,

192, 452, 467–70; biological sys-
tems and, 610, 612, 615–16;
boundary layer and, 748–49; Bur-
gers equation and, 138; contact
line paradox and, 169; difficulties
with, 469–70; divergent series and,
640; Euler equations and, 146, 163;
exact solutions of, 470; for flame
propagation, 852, 854–55; golf ball
dimples and, 748–49; Hooke’s law
and, 150; insect flight and, 743–45;
in modeling sports, 598–602; non-
dimensional version of, 93; quasi-
static limit of, 471; Taylor–Couette
flow and, 406–7, 410; turbulence
and, 727; turbulent flame simula-
tion and, 349; in weather predic-
tion, 706

Navier–Stokes fluid, 451–53, 468
N-body problem: central configur-

ations and, 773–74; continuum
model and, 772–73; dark matter
and, 771–74; fast multipole simu-
lation of, 775–78; interval analysis
applied to, 792–94; relative equi-
libria in, 792–94

(n+ 2)-body ring problem, 929
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n-dimensional Euclidean space, 22;
norm in, 23

nearest-neighbor method, in classi-
fication, 356

neighborhood of vertex, 557
Neimark–Sacker bifurcation, 395
nematic phase of liquid crystal, 522
Nernst–Planck equation, 618
Nernst potential, 617–19, 625
network analysis, 360–74; applica-

tions of, 370–74, 557–64; consen-
sus formation in, 370; definitions
and notation for, 361; heterogen-
eity in, 362, 365, 368–70; models
in, 365–68; outlook for, 374; pro-
cesses in, 368–70; properties in,
361–65; robustness in, 369–70;
software tools for, 373–74; spread-
ing in, 368–69, 371–72. See also
graph theory

networks: of chemical reactions,
628–34; electrical and mechanical
analogies of, 605–8; of neurons,
876–78; timetables for rail, 796.
See also electrical circuits

Neumann boundary conditions, 16,
192; approximate solution of ellip-
tic PDE with, 317; for Laplace’s
equation, 156

neural network algorithms, 357
neuroscience, mathematical, 873–79;

introduction to, 873–74; networks
in, 876–78; piecewise-linear map
in, 770; plasticity in, 878–79; single-
cell dynamics in, 874–76. See also
brain

neutral theory of evolution, 595
neutron star, 478, 484, 687
Newell–Whitehead–Segel equation,

462
Newton, Isaac, 62
Newton–Cartan space-time, 111
Newton form for interpolating

polynomial, 249
Newtonian fluid, 469, 612, 666
Newtonian gravity, 376–77, 771–72,

775
Newtonian mechanics, 374–78
Newton–Kantorovich theorem, 37
Newton–Krylov methods, 346–48
Newton polygon, 89
Newton’s first law of motion, 375
Newton’s method, 34, 37, 120–22,

293; in algebraic geometry, 574;
for algebraic Riccati equations,
166, 168; for coupled systems,
346–47; implementation issues, 40;

inexact, 346–47; interval version of,
791–92; in numerical solution of
ODEs, 301, 304–5; in optimization,
288–91; periodic orbits and, 929;
for pth root of unity, 51

Newton’s second law of motion, 181,
375; in rotating frame of reference,
490–91

Newton’s third law of motion, 375
NIST Handbook of Mathematical

Functions, 137, 227, 235
nodes of graph, 101; degree of,

361–62
Noether’s theorem, 107–9, 381–82,

405
noise: in biological systems, 882;

bubble-associated, 737; white, 325.
See also aircraft noise; Gaussian
noise

nominal stress, 509
nonautonomous ODEs, 182, 182n,

184
nonderogatory matrix, 269
nonhyperbolic equilibria, 186–87
nonlinear equations: interval analysis

for solution of, 791–92; Newton’s
method and, 120–22, 293

nonlinear inclusions, computer-aided
solutions of, 794–95

nonlinear optimization, and adaptive
dynamics, 593–94, 596

nonlinear programming, 283, 290–92.
See also continuous optimization

nonlinear Schwarz method, 347–48
nonnegative matrices, 278–79
nonnegative matrix factorization,

890
non-Newtonian fluids, shear local-

ization in, 739
nonnormal matrices, 277–78
non-self-adjoint matrices, 238
nonsingular matrices, 21, 263; condi-

tion number and, 26; testing for,
266–67

nonsmooth dynamics, 769–71
nonsmooth optimization, 283, 286
Nordmark map, 770–71
Nordsieck vector, 298
normal distribution. See Gaussian

(normal) distribution
normal equations, 30, 256, 274, 277,

538–39; weighted, 662
normal form theory, 388, 400; pat-

tern formation and, 462, 464
normal matrices, 238, 268, 277
normal stress, 510

norms, 23–25, 99–100; H2 and
H∞-norms, 529. See also Frobenius
norm

notation, 8, 9t–10t; in mathematical
writing, 898–99, 903; programming
language influences on, 833–34

notification tree, 558
NP (complexity class), 45–46
NP-complete problems, 45
NP-hard problems, 45; of combina-

torial optimization, 565, 567–69,
886; in compressed sensing, 822;
of graph partitioning, 364; Hamil-
ton circuit and, 779; Steiner trees
and, 807; traveling salesman prob-
lem as, 778, 780

Npath metric, 836
nuclear fusion, 476
nullclines, 188
null space, 25–26
null-space method, 662
null-space property, and compressed

sensing, 824
Nullstellensatz, 571
Numb3rs (TV series), 943–47, 952
numerical algebraic geometry, 574
numerical analysis: historical devel-

opment of, 62–63, 72–75, 77, 337;
in kinetic theory, 439; in spectral
theory, 245. See also approxima-
tion of functions; computational
science; continuous optimization;
numerical linear algebra and
matrix analysis; numerical solu-
tion of ODEs; numerical solution
of PDEs

numerical linear algebra and matrix
analysis, 263–81; computational
cost in, 44–45, 267, 272–73, 841;
condition numbers in, 263–64,
266, 268; distance to singularity in,
126, 266–67; eigenvalue problems
in, 267–72; error analysis in,
274–75; iterative methods in,
275–77; matrix factorizations in,
264–66; matrix inequalities in,
279–80; nonnormality in, 277–78;
nonsingularity in, 263, 266–67;
notation for, 263; outlook for, 281;
overdetermined and underdeter-
mined systems in, 273–74; pseudo-
spectra in, 277–78; software for,
280, 832, 921t; sparse systems in,
272–73; structured matrices in,
278–79

numerical relativity, 145, 582–83,
680–87
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numerical solution of ODEs, 293–305;
for boundary-value problems,
304–5; consistency of, 294, 298;
global error in, 296–97; local error
in, 295–97; nonstiff problems in,
297–99; stiff problems in, 294–96,
298–302; structure-preserving
methods in, 302–4

numerical solution of PDEs, 194,
306–19; adaptivity in, 313–14;
finite-difference methods in,
307–10, 337; finite-element
methods in, 310–14; finite-volume
methods in, 314–16; software for,
920–22; spectral methods in,
316–18

numerical stability, 26–27; historical
background of, 72, 75, 77, 337–38;
recurrence relations and, 38; of
signal-processing algorithms, 540

numerical weather prediction, 705–12
Nyquist rate, 533, 542

objective function, 281–82, 285–87
object-oriented programming, 831,

833
observables, quantum mechanical,

412–13
obstacle problem, 196, 221
ocean. See Earth system dynamics;

sea ice
ocean waves, 167–68, 493; bubble-

associated noise in, 737
octree structure, 776
odd function, 10
ODEs. See ordinary differential

equations (ODEs)
Ohm’s law, 477, 663–65; cardiac

diffusion tensor and, 625; modi-
fied for ion channels, 617–18

Okada model, 716
open ball, 12
open disk, 12
open set, 12
open-source software, 919–22
operations research, 56, 72, 75
operator norm, 25, 238
operators, 24–25; adjoint, 205;

bounded, 25, 238; quantum
mechanical, 411–13 (see also
Schrödinger operators); self-
adjoint, 239–41, 412, 848

optical fibers, 678–79
optics, 673–80; free-space propa-

gation in, 673–78; frequency-
dependent properties in, 679–80;
of guided waves, 678–79;

phase retrieval in, 677–78, 827;
ray model in, 676–77; time
dependence in, 679–80

optimal control, 524; economic
theory and, 869–70; large-scale
systems and, 532–33; linear
quadratic Gaussian, 529–30;
nonlinear systems and, 531–32;
sensor location problem and,
764; stochastic, 322–24. See
also control systems

optimal interpolation, 708–9
optimal stopping, of stochastic

process, 324–25
optimal stopping theorem, 324–25
optimal transport, 439
optimal truncation of divergent

series, 635–38, 640
optimization: in digital chip design,

804–8; finite-element methods and,
662; global, 795; in image process-
ing, 815; in Internet design deci-
sions, 886–87; in nonnegative
matrix factorization, 890; of
portfolio, 320–21; software for,
284, 838, 921t; uncertainty
quantification for, 133. See also
adaptation; combinatorial opti-
mization; continuous optimiza-
tion; discrete optimization

option pricing, 320–21, 641–42
orbits, planetary, 377
orbits of dynamical systems: dense,

389–92; heteroclinic, 189–90, 384,
387, 393, 464; homoclinic, 190,
384, 387. See also dynamical
systems

order: of numerical method for
ODEs, 297; of ODE, 15; of PDE, 191.
See also big-oh notation; little-oh
notation

order notation, 12
order reduction. See dimension

reduction
order stars, 300
ordinary differential equations

(ODEs), 14–16, 181–90; in ATCA
framework, 663; autonomous,
36–38, 182–83, 187, 189; boundary
conditions for, 15; boundary-value
problems for, 16, 185, 304–5;
dynamical systems of, 383 (see
also dynamical systems); equilibria
of, 37–38, 185–90, 386; existence
and uniqueness of solutions of, 35,
187, 439; first-order, 15, 182–83;
higher-order converted to first-

order, 36, 182; linear, 15, 183–84;
with rough coefficients, 439;
singular points of, 184–85, 235;
symmetry for, 407. See also
numerical solution of ODEs

orthogonal functions, 22–23; as basis
functions for approximation,
257–58; Mathieu functions as, 160

orthogonal group O(2), 405
orthogonal invariant ensemble, 420
orthogonal matching pursuit algo-

rithm, 825
orthogonal matrices, 21; nearest to

given matrix, 266; polar decom-
position and, 266; preference for,
in numerical algorithms, 263; in
robotics, 767

orthogonal polynomials, 22–23, 122,
231–32; least-squares approxima-
tion with, 30, 257–58; in numerical
solution of PDEs, 316–18; random-
matrix eigenvalue distributions
and, 424–25

orthogonal Procrustes problem, 266
orthogonal transformations, of ran-

dom matrices, 420
orthogonal vectors, 22; Cauchy–

Schwarz inequality and, 23
orthonormal set of vectors, 22
oscillations, eigenvalues and, 236–37
oscillator: Duffing, 186, 186n, 190;

harmonic, 376, 378; quantum
harmonic, 185, 231, 412, 848;
van der Pol, 189, 384; weakly
anharmonic, 216–17; Winfree,
928–29

oscillator arrays, chimera states in,
928

outer multiplication, 128
output variables, 88

P (complexity class), 45–46
#P (complexity class), 46
Padé approximants, 19, 47, 252–55;

implicit Runge–Kutta methods
and, 300

Padé–Laplace method, 255
PageRank algorithm, 4, 48, 276, 364,

755–57
Painlevé equations, 163–65, 180, 185,

235; random-matrix eigenvalues
and, 424–25; WKB analysis and,
639

Painlevé property, 163, 235
Palais–Smale compactness condition,

221
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paper, mathematical: reading and
understanding, 903–6; workflow
for producing, 912–16; writing,
897–903

parabolic PDEs, 17, 307; software
for, 921–22; spectral collocation
method for, 318

parallel computing, 831–32
parallel transport, 129, 581
parameter estimation: in signal

processing, 544–45; solving
nonlinear inclusions for, 794–95

parameter-fitting problem, 658
paraxial approximation, 675–78
paraxial wave equation, 675, 678
Pareto condition, 893
Pareto optimum, 870–71
Parlett recurrence, 99
partial derivatives, 14; automatic

computation of, 750–51; finite-
difference approximation of, 96

partial differential equations (PDEs),
16–17, 190–200; in ATCA frame-
work, 663; behavior of solutions
of, 194–96; boundary or initial
conditions for, 16, 192; classifica-
tion of, 17, 306–7; of continuum
mechanics, 446–47; divergent
series and, 640; exact solutions of,
193; historical background of, 62,
72, 74–75, 77; homogenization of,
103, 193; in image processing, 5–6,
815–16; important examples of,
16–17, 191–92, 306–7; integrable,
151, 193; mixed elliptic–hyperbolic,
307; nonlinear, 17, 151; notation
for, 191; perturbation methods
for, 193–94; propagation speeds
associated with, 195; quasilinear
hyperbolic, 86–87, 122–24; soft-
ware for, 838, 920–22; technical
methods for, 196–99; well-posed
problems of, 199. See also bound-
ary-value problems for PDEs;
calculus of variations; numerical
solution of PDEs

partial fractions, 19
partial sums, 11
Pascal, 829–30, 834, 838t
path, 361, 557
path integrals, 380, 427, 676
pattern formation, 458–67; in bio-

logical tissues, 881–82; PDEs and,
195, 459–60, 462, 464; symmetry
and, 405–7, 409–10, 460–62

pattern recognition, 351, 355–59

pattern-search optimization
methods, 289

Pauli exclusion principle, 416–17,
848

Pauli spin matrices, 142–43, 413
PDEs. See partial differential

equations (PDEs)
PDF (Portable Document Format), 31,

905–6, 913–15
Pearson, Karl, 57, 66, 68, 931
penalty functions, 292
penalty term, of inverse problem, 329
pencil, 271
pendulum: double, 384, 391; Hamil-

tonian equations for, 295; inverted,
741–43

perceptron, 357
percolation theory, 698; composite

material and, 503; sea ice and,
700–701, 703–5; spreading in
networks and, 368

period-adding cascade, 770–71
period-doubling bifurcations, 157,

395, 398–99; cardiac, 626
periodic orbits, 189, 389; in chaotic

system, 389; Lindstedt–Poincaré
method for computing, 929; for
Lorenz model, 929; in (n+ 2)-body
ring problem, 929; of van der Pol
equation, 388

permanent of matrix, 22; computa-
tional complexity of, 45–46

permittivity. See electric permittivity
permittivity tensor, 698–99
permutations, 404–5, 553; voting

paradoxes and, 894
Perron–Frobenius theorem, 279
Perron vector, 279
perturbation theory, 208–18; asymp-

totic expansions and, 210–12,
244–45; basic example of, 209–10;
convergent and divergent series in,
212; for eigenvalues, 244–45,
268–69; in numerical linear
algebra, 266–68; for PDEs, 193;
in quantum mechanics, 419; for
regular perturbation problems,
212–13; for singular perturbation
problems, 213–18

PET (positron emission tomography),
816–23

phase, of complex number, 173
phase locking, in oscillator arrays,

928
phase-plane analysis, 188–89
phase portrait, 385–86
phase retrieval, 677–78, 827

phase separation in binary alloys,
138–39

phase space, 182, 382; in kinetic
theory, 429, 431

phase transitions: Γ -convergence
and, 222–23; in melting of Arctic
sea ice, 704; in percolation theory,
698; in superconductivity, 225

philosophy of mathematics, 58
photonic crystals, 502
photoreceptors, 808
Photoshop, Adobe, 6, 31, 812
physiology, 616–23
Picard iteration, 35, 346
Picard–Lindelöf theorem, 187
piecewise polynomials, 30–31,

251–52, 258, 305, 313–14
piecewise-smooth dynamical

systems, 401–2, 769–71
Π-numbers, 91–93
pitchfork bifurcation, 395
pivoting, 265; in Cholesky factoriza-

tion, 265; in Gaussian elimination,
265, 273, 275; in QR factorization,
265, 274

planar graph, 561–62
Planck constant, and perturbation

theory, 208–9
Planck equation, 415
planetary orbits, 377
plane waves, 194–95, 207–8, 674–75
plasma-β, 479–80
plasma physics: mean-field theory

in, 433–36, 443; oscillating gas
bubble and, 736. See also
magnetohydrodynamics

plasmon resonance, 502
plasmons, surface, 679
plastic deformation, 511, 513; of

granular materials, 667–68, 670–71
plasticity, synaptic, 878–79
Plateau borders, 737, 740
Plateau problem, 219–20, 737
PL/I, 829f, 830, 838t
p-norms, 23, 99–100
Pochhammer’s symbol, 229
Poincaré, Henri, 57, 69–70, 189–90,

383–84, 393, 428, 432, 591, 635
Poincaré–Bendixson theorem, 189;

van der Pol equation and, 389
Poincaré group, 110–11
Poincaré map, 388–89, 391–92;

piecewise-linear, 770
point at infinity, 173, 571
Poiseuille flow, 470; in biological

systems, 612, 615; instability in,
474
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Poisson distribution: of degrees in
network, 366; of radioactive decay,
817–18, 821–22

Poisson’s equation, 16, 155, 307; dis-
cretized, cost of solving, 45; for
electrostatic potential in crystal,
851; for gravitational field, 307,
857; Green function for, 125, 140;
in image manipulation, 6; non-
linear, 197; with square integrable
Laplacian, 197

Poisson’s formula, 193
Poisson’s ratio, 511
polar coordinates, 9
polar decomposition, 265–66; in

continuum mechanics, 449, 452
poles, 177–78, 235; of rational func-

tion, 19; of transfer function, 524
policy, governmental, 953–61
Polish notation, 833
Pólya, George, 39, 404
polyalgorithms, 47, 341–42
polymers, 518–20
polynomials, 18–19; algorithms for

evaluating, 46–47; approximation
with, 29–31, 248–52, 759–61;
computing roots of, 36, 269;
matrix polynomials, 272. See also
algebraic geometry; Chebyshev
polynomials; orthogonal poly-
nomials; piecewise polynomials

polynomial time (class P), 45–46
polytopes, convex hull as, 90
Pontryagin maximum principle, 869
popular culture, mathematics in,

943–52
popular mathematics books, writing,

906–12
population genetics, 592, 594–95
population models, logistic equation

in, 156–57, 183
porous medium equation, 195, 199
Portable Document Format (PDF), 31,

905–6, 913–15
portfolio theory, 320–23, 640,

644–45, 648–57; basic mean–
variance analysis in, 648–52;
extended mean–variance analysis
in, 656–57; information theory
and, 552; practical techniques in,
652–57

positive-definite matrix, 21;
eigenvalues of, 25; Hermitian,
factorization of, 264–65, 273

positive-real function, 606
positive systems, control of, 532–33

positron emission tomography (PET),
816–23

posterior distribution, 658–60
poster preparation, 915
PostScript, 834, 838t, 913–14, 916
potential: in classical mechanics, 147,

376; of conservative vector field,
156; electric, 377; electromagnetic,
156, 161; gravitational, 775; in
Schrödinger operator, 242, 245;
Schrödinger’s equation with, 167

potential energy, 376
potential theory: electrical imped-

ance tomography and, 334;
integral equations and, 201–3

power law: for degree distribution of
network, 84, 362, 368; for Internet
router topology, 885–86; for Inter-
net traffic, 885

power method for computing
eigenvalues, 270, 275; HITS
algorithm and, 4–5; PageRank
scores and, 756

power series, 20, 174–75
Prandtl, Ludwig, 59, 66, 68, 70–71,

82, 725, 731, 748
Prandtl–Karman theory, 724–25, 731
preconditioning of linear systems,

276–77, 308–9, 341, 344; for
coupled systems, 346–48

predator–prey model, Lotka–
Volterra, 15–16, 188, 922f

preferential-attachment model,
367–68

prefix notation, 833
pregnancy testing kit, 864–66
primal–dual methods: in linear pro-

gramming, 286–88; in nonlinear
programming, 291, 662; in semi-
definite programming, 290

principal component analysis, 28,
354, 542

principal part of Laurent expansion,
177–78

principal rates of strain, 468
principal value of complex function,

175
principle of dominant balance,

213–14, 217–18
principle of least action, 379–80
principle of material frame

indifference, 453–54, 666
principle of virtual work, 512–13
prior distribution, 659–60
prisoner’s dilemma, 594
probability and statistics: historical

impact of, 56–57, 66, 70, 72;

uncertainty quantification and,
131–33. See also statistics

probability functions, 230–31
probability invariant vector, of

Markov chain, 117
probability theory, and stochastic

analysis, 319
problem-solving environments

(PSEs), 832–33, 917–20
problem specification, 27–28
Procrustes problem, orthogonal, 266
programming languages, 828–39;

complex arithmetic in, 834–35;
early days of, 828–30; high-
precision arithmetic in, 835–36;
modern era of, 829f, 830–31;
parallel computing and, 831–32;
pitfalls for user of, 834–35;
problem-solving environments,
832–33, 917–20; timeline of and
influences between, 829f. See also
algorithms; software

projective space, 571
projective varieties, 571
Project Jupyter, 832f, 833, 919, 920f
proof: computer-aided, 790–95, 922;

by contradiction, 40. See also
writing about mathematics

propagation speeds, PDEs and, 195
propagator, 140
prospect theory, 869–70
proteins, knotted, 754–55
Prüfer code, 558
PSEs (problem-solving environments),

832–33, 917–20
pseudocode, 41, 833
pseudograph, 101
pseudoinverse, Moore–Penrose, 274,

809
pseudorandom numbers, 761–62,

842
pseudo-Riemannian manifold, 107,

111, 127, 130, 144
pseudospectral radius, 278
ε-pseudospectrum, 238, 277–78
pseudo-unitary matrices, 278
publications in applied mathematics,

55; history of journals in, 63–64,
69, 74

public goods, 872
pure shear flow, 469
Python, 8, 33, 829f, 831, 833–35,

837–39

q-quadratic convergence, 121–22
QR algorithm, 270–71, 275
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QR factorization, 264–65; for
overdetermined and under-
determined systems, 274

QRS (Quinn–Rand–Strogatz)
constant, 928–29

q-superlinear convergence, 122
quadratic convergence, 34
quadratic drag, 378
quadratic eigenvalue problem, 247,

272
quadratic equation: approximating

solutions of, 37; cancellation in
formula for solutions of, 97;
evaluating discriminant of, 835

quadratic programming, 282;
sequential, 291

quadrupole sound sources, 784
quantum chaos, 422, 426–28
quantum chemistry, 237
quantum electrodynamics, 144, 162,

419
quantum field theory, 111, 144,

419; Ising integrals in, 930–31;
Langlands program and, 591

quantum graphs, 247
quantum information theory, 552
quantum mechanics, 411–19;

approximation methods in,
418–19, 456; bound states in, 241,
414–15, 848, 851; controversial
issues in, 418; Dirac equation in,
142–44; divergent series and, 639;
measurement in, 412–13, 418; for
multiple-particle systems, 416–17;
spectral lines and, 237, 415; statis-
tical interpretation of, 411–13, 418;
summary of, 417–18; symmetries
in, 107, 416; transitions between
states in, 419. See also Schrödinger
operators; Schrödinger’s equation

quantum numbers, 415
quantum waveguides, 242, 247
quasiconvexity, 222
quasigeostrophic flow, 496–98
quasilinear hyperbolic PDEs, 86–87,

122–24
quasi-Newton methods, 121–22, 289,

291
quasispecies equation, 595
quicksort algorithm, 48
QZ algorithm, 272

R, 833–34, 837, 838t
racing cars, Formula 1, 598, 605,

608–9
radar, 543–44, 826–27
radar imaging, 860–64

Radau methods, 300–301
radial basis functions, 261–62
radiative forcing, 488
radio signals: Heaviside’s divergent

series and, 635; information theory
and, 546; processing of, 540–41;
sub-Nyquist sampling of, 826

radius of convergence, 20, 174–75
Radon transform, 206–7, 330,

862–63, 868
rainbow, 233, 635–36
rainbow color map, 811–12
ramble integrals, 931
random graphs, 365–68
randomized algorithms, 48
random matrices, 419–28; charac-

teristic polynomial of, 425; for
compressed sensing, 824–25;
condition number of, 426; for
covariance matrix estimation,
653–54; eigenvalues of, 423–25

random number generation, 551,
761–62, 842

random Schrödinger operators,
850–51

random walks: of Escherichia coli,
615; experimental results on, 931;
on integers, 116–17; polymer con-
figurations and, 518–20; in popula-
tion dynamics, 595; random-matrix
eigenvalue distributions and, 426

range of linear transformation, 25–26
range reduction, in approximation of

functions, 760
rank: ideal basis and, 341; of matrix,

26, 126, 578; of reaction network,
631–32, 634; of tensor, 129, 578

Rankine–Hugoniot relations, 122–24,
721, 854

rarefaction shock, 123
rate-of-strain tensor, 449, 468–69;

flame propagation and, 854
rational functions, 19; approximation

with, 248, 252–55
rational interpolation methods,

118–19
rational Krylov methods, 277
rational mechanics, 3, 59, 61–64
Raychaudhuri equation, 583, 588
Rayleigh, Lord (John William Strutt),

1, 66, 502
Rayleigh–Bénard convection, 384,

458–59, 463, 476
Rayleigh criterion for centrifugal

instability, 475, 484
Rayleigh number, 476; Lorenz

equations and, 158

Rayleigh–Plesset equation, 735
Rayleigh quotient, 134
Rayleigh range, 676
Rayleigh–Ritz approximation, 134,

240; in density functional theory,
851

Rayleigh–Schrödinger series, 213
Rayleigh–Taylor instability, 474;

of bubbles, 736
reachability problem, 104
reaction–diffusion equations, 16–17,

192, 630; pattern formation and,
195, 459, 463–66; in tissue
modeling, 881

reaction network, chemical, 628–34
reaction rate functions, 628–29
reaction rate in combustion, 852
reaction vectors, 631
reading and understanding a paper,

903–6
real part, 8, 173
real-time tomography, 866–68
rearrangement invariant spaces, 100
rebinning methods, in real-time

tomography, 868
receding-horizon control, 530, 532
recombination in populations, 595
rectangle packing problem, 805
recurrence relations, 18, 38
recurrence relations, three-term for

orthogonal polynomials, 22–23,
122, 231

recursive least-squares algorithms,
539–40

recursive summation, 41
recursive utility, 322
redshift: cosmological, 589;

gravitational, 583–85
reduced-order models. See

dimension reduction
reducible matrix, 279
reflectional symmetries, 403–5
reflectivity function, 861–62
refractive index, 678–80
regression techniques in pattern

recognition, 356–57
regular graph, 557
regularity theory, 197; calculus of

variations and, 223
regularization methods, 205–6, 208,

329, 867
regular singular point, of ODE,

184–85
reinforcement learning, 596–97
relative entropy, 550, 552, 593
relativity. See general relativity;

special relativity



988 Index

relaxation: algebraic, 571; in com-
binatorial optimization, 567,
569–70

relaxation oscillations, 218
relaxation rate, of viscoelastic fluid,

666
relevant dimensions, 92–93
Remez algorithm, 30, 259, 759–60
replicator equation, 592–96
representation theorem, 858–59
representation theory, 405
reproducible research in computa-

tional mathematics, 54, 837,
916–25

resampling of efficient frontier, 657
ResearchCompendia, 923–24
residues, 177–78
resolvent, 278
resonances of Schrödinger operators,

243
restricted isometry property, 824–26
resurgence, 638–39
return map, 384, 391, 396–97
return to asset, definition of, 648
reverse Polish notation (RPN), 833–34
reversible reaction network, 633
Reynolds number, 82, 91, 93, 378,

452, 469; in aerodynamics, 474; for
arterial flow, 612; golf ball flight
and, 747–49; high limit of, 471–72;
insect flight and, 743–44; low limit
of, 471; magnetic, 477–79, 482–84;
perturbation theory and, 208–9;
for swimming microorganism, 615;
turbulence and, 724–25, 727–30

RGB color space, 810–13
Riccati equation, 15, 165–67; filtering

problem and, 326; in linear quad-
ratic control, 530; optimal sensor
location and, 764–66; Sylvester and
Lyapunov equations in solving,
168; WKB method using, 214

Ricci curvature, 130, 439
Ricci identity, 581
Ricci scalar, 581
Ricci tensor, 129, 144–45, 581–83,

587; in cardiac modeling, 626
Richardson, Lewis Fry, 75, 337, 485,

706–7, 725, 730
Richardson extrapolation, 298, 301
Riemann curvature tensor, 129,

144–45, 581
Riemann, Georg Friedrich Bernhard,

175, 219, 229, 316, 916
Riemann–Hilbert problem, 180–81;

eigenvalue distribution functions
and, 424

Riemann hypothesis, 229, 237
Riemannian geometry, and general

relativity, 580–83
Riemannian manifold, 127–30;

cardiac anisotropy as, 626;
eigenvalues of Laplace–Beltrami
operator and, 246; isometric
embedding problem of, 170

Riemann mapping theorem, 85, 179
Riemann problem, 316
Riemann sheet, 173
Riemann sphere, 571–72
Riemann zeta function, 20, 175, 229;

analytic continuation of, 179;
eigenvalues of random Hermitian
matrix and, 237; Riemann’s
computational methods for, 916

rigid body motion: of boat, 600;
material frame indifference and,
666

rigid motions of the plane, 403–4
rings of Saturn, 773–74
risk, systemic, in financial markets,

645–46
risk aversion, in microeconomics,

869
RLC electric circuit, 15
road network, 757
Robertson–Walker metric, 587–89
Robinson, Julia, 778, 780
robotics, 767–69
robust optimization, 133, 292
Rodrigues formula, 231–32
Rosenbrock methods, 301
Rossby number, 493, 495–96
Rossby radius, 498
Rossby waves, 498, 500
rotating coordinate systems, 380–81,

490–91. See also Coriolis effect
rotational joints, 767–68
rotational momentum. See angular

momentum
rotational symmetries, 403–5
rotation matrix, in robotics, 767–68
rotations of inertial frames, 375
rotation tensor, 449
rounding, 7, 96–97; in combinatorial

optimization, 570
rounding errors, 7, 41, 53, 96–97,

275, 337, 835; historical back-
ground of, 73, 75, 77, 274–75;
interval arithmetic and, 105, 790

route planning, 757–59
rowing, Olympic, 601–2
RPN (reverse Polish notation), 833–34
rule of fives, 697, 700–701, 704

Runge, Carl, 56, 62, 66–68, 75, 250,
297

Runge–Kutta methods, 297–303
Runge’s phenomenon, 250

saddle, 186, 188–90
saddle–focus, 397–98
saddle–node bifurcation, 394,

400–401, 928
saddle-point matrix, 661–62, 665
saddle points, 13–14, 386; in calculus

of variations, 221
Sage, 833
sailing yacht design, 599–601
sample variance, accurate

computation of, 46
sampling rate: Shannon–Nyquist

theorem and, 826; sub-Nyquist,
826–27

Samuelson, Paul, 641
Scala, 829f, 831, 838
scalar, 20, 129
scalar fields, visualization of, 844
scalar potential, 377; electromag-

netic, 161; gravitational, 775
scalar product, 27
scale-free networks, 84, 362, 367–68,

373, 886
scaling: in combinatorial optimiza-

tion, 570; dimensional, 90–93
scattering: from bounded scatterer,

207; inverse problem of, 207–8,
327, 335; in kinetic theory, 430,
433, 436; quantum chaotic, 428;
from radar target, 861–64; in
seismic exploration, 331; spectral
implications of, 242–43

scattering states, quantum
mechanical, 414–15, 848

scheduling of tasks, with max-plus
methods, 796–99

Scheme, 829, 838t, 839
Schrödinger operators, 241–43, 245,

848; periodic, 849, 851; random,
850–51

Schrödinger’s equation, 156, 167,
192, 411–12, 414; Dirac equation
and, 142–43, 675; as evolution
equation, 241; Green’s theorem
and, 857–59; for harmonic oscil-
lator, 185, 231, 412; nonlinear,
151, 164, 167; Painlevé equations
and, 164; perturbation methods
for, 212–16; scattering theory for,
242–43; solid state physics and,
847; in three dimensions, 414–15;
WKB methods for solving, 214–16
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Schur complement, 347–48, 661–62
Schur decomposition, 270, 272, 277
Schur vectors, and algebraic Riccati

equation, 165–66
Schwarz–Christoffel mappings,

85–86
Schwarzschild solution, 583–87;

for black hole, 684
Schwarz symmetrization, 223–24
scientific computing, 336, 350. See

also computational science
Scilab, 832
sea ice, 505; climate models and,

695–98, 704; multiscale structure
of, 696; percolation theory and,
700–701, 703; permeability of, 697,
701; surface geometry of, 703–5;
weather prediction and, 712

searching text, 887–91
secant methods, 121–22
secant variety, 578
second-difference matrix, 272, 279
second law of thermodynamics,

431–32, 451. See also entropy
secrecy of information, 551, 556–57
secular terms, in asymptotic

expansion, 216–17
segmentation, in image processing,

353, 814–15
Segre variety, 573, 577–78
Segre–Veronese variety, 573, 576
seismic exploration, 327, 331–34
seismic imaging, 857–60
seismic travel-time tomography,

330–31
seismic waves, for tsunami source

inversion, 716
self-adjoint matrices, 21; spectral

theorem for, 239; spectra of, 238,
247. See also Hermitian matrices

self-adjoint operators, 239–41, 412,
848

self-concordancy, 290
self-consistent field algorithm, 851
self-similar fluid flows, 470
self-similar Internet traffic rates,

885–87
semicircle law, 423–25
semiclassical analysis, 244–45
semiclassical limit, 427–28, 438
semiconductors, doped, 850
semidefinite programming, 283, 290
semidefinite relaxations, 570
semifields, 795–800
semiflow, 188–89
semigroup arguments, in kinetic

theory, 438

sensitive dependence on initial con-
ditions, 82–83, 158–59, 384–85,
389, 391–92; weather and, 485

sensitivity analysis, 132, 248, 842; of
rational interpolant, 254. See also
condition number

sensitivity function, 525–28
sensitivity index, 132
sensitivity matrix, 304
sensor location, optimal, 763–67
separation of variables: in ODE, 183;

in PDE, 185, 234
sequence: asymptotic, 211; Cauchy,

24; limit of, 11, 24
sequential quadratic programming,

291
series solutions, 31–32, 179–80, 184
set cover, minimizing, 565, 568
sets, 12
set-valued arithmetic. See interval

arithmetic
shallow-water equations, 167–68;

numerical solution of, 718–19;
in tsunami modeling, 715–16,
718–19. See also Korteweg–
de Vries equation

Shannon, Claude, 73, 432, 438,
545–46, 548–49, 551

Shannon–Nyquist theorem, 826
shape design, level set method for,

116
shape feature of images, 353–54
shape parameter, in multivariate

approximation, 261–62
Sharkovskii’s theorem, 157–58, 402
Sharpe ratio, 645, 650–51, 657
shear, simple, 454–55
shear bands: in foams, 739; in granu-

lar materials, 668–70, 672–73
shear flow: pure, 469; in transition to

turbulence, 728–29, 731
shear localization, in non-Newtonian

fluids, 739
shear modulus, of foam, 738
shear strain, 508, 511; in granular

materials, 667–68
shear stress, 510–11; in blood

vessels, 612; in foams, 739; in
granular materials, 667–68, 670

shear viscosity, 666
shell theory, and leaf growth, 614
Sherman–Morrison formula, 266
Sherman–Morrison–Woodbury

formula, 266, 539
shift-register pseudorandom

numbers, 762
Shilnikov flows, 397–98

shock-capturing methods, 718
shocks (shock waves), 122–24,

195–96, 720–24; of Burgers
equation, 138, 196; Clausius–
Duhem inequality and, 451;
examples of, 723–24; normal,
720–22; oblique, 721–23; scalar
conservation laws and, 196, 199,
720–21; shallow-water equations
and, 715, 718

shooting method, 304–5
shrinkage estimators, Bayesian, 653
SIAM. See Society for Industrial and

Applied Mathematics (SIAM)
sideband instability, 461, 463,

465–67
signal processing, 533–45; adaptive

beamforming in, 541–44; adaptive
filters in, 537–41, 544; algorithmic
implementation of, 539–40;
analog-to-digital conversion for,
533; Bayesian, 541, 544; broad-
band beamforming in, 543–44;
channel equalization in, 540–41;
compressed sensing and, 824;
correlation in, 536–37; Fourier
transforms in, 534–35, 543; Gauss-
ian noise in, 536–37, 544–45;
impulse response filtering in,
533–34, 536; multichannel filtering
in, 543–44; parameter estimation
in, 544–45; tracking in, 545;
uncertainty principle in, 927;
z-transforms in, 535–36, 543

signal transduction, cellular, 880–81
signature of the metric, 130
similarity transformation: condition

number and, 263; definition of,
112; to Jordan canonical form,
112–13; unitary, 270

simple harmonic motion, 149
simple poles, 177–78
simple shear, 454–55
simplex method: computational cost

of, 44, 284, 287; derivative-free,
289–90; history of, 283

simulation. See computational
science

single-pixel camera, 825–26
single-scattering approximation,

861–62
singulant, 638
singular integral equation, 180
singularities, 124–25; of complex

functions, 124, 174, 177–79
singularities, space-time, 125, 583–89;

in numerical relativity, 683–86
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singular matrices, distance to, 126,
266–67

singular perturbation theory, 32,
213–18, 467; neuronal dynamics
and, 875–76, 878

singular points of ODEs, 184–85, 235
singular solution of ODE, 182
singular value decomposition (SVD),

28, 126–27, 265, 578; computation
of, 271; ill-conditioning and, 329;
in latent semantic indexing, 888–90;
in linear least-squares problem, 274;
polar decomposition and, 266; for
principal components analysis, 354;
regularization scheme using,
205–6

sinks, 386, 391
SIR (susceptible–infectious–removed)

models, 368, 688–91
SIS (susceptible–infectious–susceptible)

models, 688, 691–92
Six Feet Under (TV series), 950
skewness of random variable, 725–26
The Sky at Night (TV series), 953
slack variable, 282
slide preparation, 915
sliding vector field, 770
slip surfaces, 722
Slutsky relations, 869, 871
Smale, Steven, 190, 383–84, 390, 428,

574, 792
Smale’s horseshoe, 190, 384, 390–91
small-scene approximation, 862
small-world model, 367
small-world property, 363–64,

366–68, 372–73
smectic phase of liquid crystal,

522–23
smooth curve, in complex plane, 175
smoothed analysis, 44
smooth fit (high contact) principle,

324–25
smooth functions, 13–14; function

spaces and, 100
snow crystals, 932
Sobel operators, 353
Sobolev inequalities, 432, 438
Sobolev spaces, 100; in calculus of

variations, 219–20; Einstein’s field
equations and, 145; in kinetic
theory, 441

social networks, 371–72; behavior
contagion in, 369–70, 372; clus-
tering coefficients of, 362–63;
evolving, 800–803; friendship
paradox in, 367; small-world
phenomenon in, 363

Society for Industrial and Applied
Mathematics (SIAM), 7–8, 956–59

soft matter, 516–23
software: for network analysis,

373–74; for numerical linear
algebra, 280, 832, 921t; open-
source, 919–22; for optimization,
284, 838, 921t; for PDEs, 838,
920–22; writing stage of, 2. See
also algorithms; programming
languages

Sokhotski–Plemelj formula, 180
solid mechanics, 505–16; conceptual

map of, 506; fundamental con-
cepts of, 507–10; global formula-
tions of, 512–13; governing equa-
tions in, 510–12; historical back-
ground of, 505–6; material studied
by, 506; selected examples of,
513–16. See also continuum
mechanics; elasticity

solids, electronic structure of,
847–51

solitary waves, 150–51; in foam drain-
age, 739; homoclinic snaking and,
401; in oscillator arrays, 928

solitons, 151, 195; Painlevé equations
and, 164

solvents, 272
solving equations, 49–51
Sommerfeld radiation condition, 207
sonar, passive, 543
sonoluminescence, 736
SOR (successive overrelaxation)

iteration, 75, 276
sound: aircraft noise, 783–86;

bubbles and, 735–37
source, in dynamical system, 386
source coding, 547
source coding theorem, quantum

version of, 552
Southern Oscillation, 499–500
space-time curvature, 579, 581–82
space-time metric, 680
spanning tree problem, 564, 566
span of set of vectors, 22
spark of matrix, 824–25
sparse interpolation, 254–55
sparse matrices, 272–73; ideal basis

and, 341
sparse modeling, 815
sparse vector, 823, 825. See also

compressed sensing
spatial filters, 542
spatiotemporal symmetry, 409
special functions, 19–20, 227–35;

areas of active research in, 235;

Painlevé equations and, 164, 235;
as solutions of second-order linear
ODEs, 184–85

special orthogonal group SO(2), 405
special relativity, 107, 110–11, 130,

580; Dirac equation and, 142;
Maxwell’s equations and, 162

species-formation-rate function,
629–32

spectral abscissa, 277
spectral convergence, 317
spectral decomposition, 270
spectral gaps, 849–50
spectral geometry, 246
spectral measure in Stieltjes integral

representation, 698–700, 702
spectral methods for PDEs, 316–18;

in weather prediction, 708, 710
spectral norm, 25
spectral projection, 239
spectral radius, 25, 238; convergence

of stationary iteration and, 279;
matrix norms and, 268;M-matrices
and, 279; powers of matrix and,
113

spectral theorem, 239
spectral theory, 25, 236–48; applica-

tions of, 236–38, 246–47; calcula-
ting eigenvalues and, 243–45;
introduction to, 236; kinetic theory
and, 437; nonlinear, 247; Schrö-
dinger operators in, 241–43, 848;
of self-adjoint operators, 848

spectroscopic lines, 237, 415
spectrum of Hermitian matrix, 848
spectrum of linear operator, 25,

238–39; classification of, 240
spectrum of random modes, 726,

728–29
spectrum of self-adjoint operator,

848
sphere packing, 517–18
spherical coordinates, 9
spherical harmonics, 233–34, 414–15;

in weather prediction, 708
spin angular momentum, 415–16
spinors, 413; Dirac, 142–43
spiral waves, 463–64; in heart, 624,

626–27; in oscillator arrays, 928
spline interpolation, 251–52
splines, 31, 251–52; in geometric

modeling, 787–90
splittings: of Hamiltonian, 303; of

matrix, 275–76, 279; of objective
function in optimization, 292; of
operator, 345–46; of space-time,
681
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sport: fluid dynamics of, 598–604;
network analysis of, 373

spotlight synthetic-aperture radar,
863

spring constant, 149
spring system with damping, 15
Squire–Landau jet, 470
stability: convergence and, 75, 298,

309, 462; of matrices, 279; struc-
tural, of dynamical systems, 384,
387–88; of vibrations, 236–37. See
also equilibrium point; fixed point
of dynamical system; numerical
stability

stable manifolds, 189–90
stable manifold theorem, 387
stable matching, 553–55
stagnation point flow: in fluid

dynamics, 470; in magneto-
hydrodynamics, 478–79, 483

state space: of control system, 88;
of dynamical system, 118

state variables, 88, 383
stationary iterative methods, 275–76,

279
stationary points, 13–14, 393
statistical distribution over phase

space, 429
statistical mechanics: distributions

of, 416; random-matrix eigenvalue
distributions and, 426

statistics: algebraic, 576–78; online
access to code for, 918–19. See also
probability and statistics

steady fluid flow, 468
steady state vector, of Markov chain,

117
steepest-descent methods, 288–89,

291, 637
steering vectors, 542–43
Stefan–Boltzmann law, 486–87
Stefan problem, 196, 221
Stegun, Irene, 74–75, 227
Stein equation, 168
Steiner symmetrization, 223–24
Steiner trees, in digital chip design,

807–8
Stieltjes integral representation for

effective parameter, 698–700
stiff differential equations, 294–96,

298–302
stiffness matrix, 662–63
Stirling numbers, 227–28
Stirling’s approximation, 12, 81, 153,

228, 635
stochastic analysis, 319–26; applica-

tions to finance, 320–21, 326,

641–42, 644–45, 647; filtering
theory in, 325–26; likelihood
function derived from, 661;
optimal control and, 322–24;
optimal stopping and, 324–25;
PDEs of nonnegative form in,
307; random-matrix eigenvalue
distributions and, 426; in systems
biology, 880

stochastic block models of random
graphs, 367

stochastic differential equations, 319,
321–22, 326, 641–43. See also
stochastic analysis

stochastic gradient methods, 290,
292–93

stochastic matrices, 116; M-matrices
and, 279

stochastic optimization, 198, 290,
292–93; financial markets and, 647

stochastic processes. See Brownian
motion; Markov chains

stocks. See finance; portfolio theory
stoichiometric compatibility class,

633–34
stoichiometric subspace, 631–34
Stokes, George, 66, 446, 471, 635–36,

639
Stokes equations, 471, 615, 697
Stokes flows, 471
Stokes line, 636–40
Stokes multiplier, 639
Stokes number, 667
Stokes phenomenon, 636, 638–39
Stokes’s theorem, 27
stopping time, 324
storage functions, 531
Störmer–Verlet method, 302–4
strain, 149, 506–9, 511. See also

deformation
strain compatibility, 512
strain ellipsoid, 449
strain-rate tensor, 449, 468–69;

flame propagation and, 854
strange attractors, 391–92; homo-

clinic tangencies and, 398
Strassen’s method for matrix

multiplication, 44, 54, 578
stream function, 307, 468–69
streamline-diffusion finite-element

method, 312–13
streamlines, 468–69
strength of materials. See solid

mechanics
stress, 149–50, 506, 509–10; concen-

trated at a hole, 513–14; on elastic
materials, 452–55, 511, 513–14;

molecular basis of, 458; residual, in
living tissues, 614; viscous, 727–28

stress–energy tensor, 680
stress equilibrium, 511–12
stress tensor, 451, 469, 509; Light-

hill, 784–85; Navier–Stokes equa-
tions and, 598; remodeling of bone
and, 613; symmetric, 666; viscous,
784, 852

stretching tensor, 449, 451
stretch ratio, 508–10
stretch tensors, 449
stripmap synthetic-aperture radar,

863
structural stability, 384, 387–88
structure, preserving, 51–52
structured programming, 829, 837
Sturm–Liouville problem, 16, 185;

Mathieu functions and, 160; for
quantum harmonic oscillator, 185

Sturm sequences, 271
subdifferential, 286
subgraph, 101
subgroup, 405
subordinate norm, 25
subspace of vector space, 22
successive approximation, method

of, 35
successive overrelaxation (SOR)

iteration, 75, 276
summation, algorithms for, 40–42
summation convention, 128, 130,

163, 379, 507, 580, 784
sun: magnetic field of, 476, 479–81,

483; mass of, 771–72; Schwarzs-
child solution and, 583; tempera-
ture of Earth and, 485–87, 491;
three-body problem and, 773

superasymptotics, 635–37
superconductivity, 148–49, 225
support vector machines, 357
supremum (sup), 11
supremum norm, 23, 99
Surface Evolver, 738, 740
surface plasmons, 679
surface rebinning, 868
surface tension, 736–37, 739
SVD. See singular value

decomposition (SVD)
Sverdrup balance, 496
Swift–Hohenberg equation, 401,

459–62, 464–65, 467
swimming microorganisms, 614–16
swimsuits, high-tech, 602–4
Sylvester equation, 40, 166, 168–69
Sylvester’s inertia theorem, 271
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symbolic computing, 32–33, 828;
hybrid symbolic–numeric, 787–90

symbolic dynamics, 390
symmetric groups, 405
symmetric linear operators, 239
symmetric matrices, 21; diagonaliza-

tion of, 112; eigenvalues of, 25;
random ensembles of, 420. See
also Hermitian matrices

symmetrization, in calculus of
variations, 223–24

symmetry, 402–10; conservation
laws and, 107–11, 381–82, 405;
in continuum mechanics, 452;
definition of, 404; differential
equations and, 190, 407–10;
dynamical systems and, 392; of the
Lagrangian, 381; problem solving
with, 39; in quantum mechanics,
107, 416; reflectional, 403–5; of
tensor indices, 580, 582; voting
systems and, 894–95

symmetry breaking, 111, 405, 407–10
symmetry-breaking bifurcation, 878
symmetry groups, 404–5; voting

paradoxes and, 894–95
Symm’s integral equation, 202
symplectic flow, 302
symplectic matrix, and algebraic

Riccati equation, 166
symplectic methods for numerical

solution of ODEs: for Hamiltonian
systems, 302–3; symplectic Euler
method, 295–97, 303

synteny, 845
synthetic-aperture radar (SAR), 862–64
systems biology, 879–83

Takens–Bogdanov bifurcations,
399–400

Tam–Danielson window, 866–67
tangent bifurcation, 394
tangles, 754
Taussky, Olga, 75
tautochrone, 201
taxi cab norm, 23
Taylor–Couette flow, 406–7, 410
Taylor–Proudman theorem, 494
Taylor series, 13–14; for complex

function, 20, 175; to linearize an
inverse problem, 328; with matrix
argument, 98; in numerical
solution of ODEs, 293–95, 297;
optimization techniques using,
285, 288–90; remainder term
for truncated series, 13, 29

Taylor’s theorem, 175

Taylor vortices, 474, 476, 728
TCP/IP (transmission control protocol/

Internet protocol), 884, 886–87
teaching applied mathematics,

933–43; SIAM input to policy
on, 958

temperature distribution: in compos-
ite materials, 103, 120; in sea ice,
697. See also Earth system
dynamics

temporal graphs, 361
tendencies, in evolution problem,

345–46
tensile instability, 515–16
tensor decomposition, 578
tensor fields, 448; visualization of,

844–45
tensor product patch, 576
tensor product splines, 787–89
tensors, 127–30; in continuum

mechanics, 447–48; in general
relativity, 580

terminant integrals, 638–39
terrorism, 803
TEX, 837–38, 913, 915–16
text mining, 887–91
Theorema Egregium, 521, 614
thermal creep effect, 431
thermal energy of combustion,

852–53
thermal expansion, 511
thermal wind, 495
thermodynamics. See first law of

thermodynamics; second law of
thermodynamics

thermostat: optimal location of,
763–67; piecewise-smooth system
controlled by, 769–70

thin-film equation, 169–70
Thomas–Fermi equation, 16
three-body problem, 377, 773–74
through variable, 605
tidal forces, 579, 582, 585
Tikhonov regularization, 206, 208,

329, 867
time irreversibility, 432, 456–57
time-periodic solutions, 409
time reversal invariance, and fields in

interior, 857, 859–60
time series: correlations in, 426. See

also signal processing
time-stepping schemes, 707, 719
TIOBE Programming Community

Index, 838
tissues, biological: cardiac, 625–26;

growth of, 613–14; modeling the
properties of, 611

Toeplitz matrices, 21, 51; in signal
processing, 538, 543

Toeplitz operators, 246
tomography: borehole electrical, 505;

electrical impedance, 334–35;
positron emission (PET), 816–23;
seismic travel-time, 330–31; for
X-ray baggage screening, 866–68;
X-ray computed (CT), 206–7, 327,
330, 816–17

TOP500, 280, 337, 954
topological entropy, 390, 483
topology: in image processing, 815.

See also knots and links
toric models, 577
toric varieties, 572–73, 576–78
toroidal harmonics, 234
torque, 376
total variation, 814–15
tour, 778. See also traveling salesman

problem
tower of exponentials, 154
trace, 25
tracking, 545
traction, 450–51, 509–10, 512–13
traffic, conservation law for, 88
transcendental functions, 19, 164,

227, 759, 926
transcription of genetic code, 880
transcritical bifurcation, 394
transfer functions: in control theory,

524–26, 528–29; in data visualiza-
tion, 844; optical, 674–75, 679

transformation optics, 335, 733–34
transition matrix, of Markov chain,

116–17, 756
transitivity of network. See clustering

coefficient
translational symmetries, 403–5
translation of genetic code, 880
transport: collisional, 433; collision-

less, 433–34; linear elliptic equa-
tions and, 198

transportation network, 557
transport equation, 307, 433–39
transport properties of composite

materials, 500–505, 698–700
transpose of matrix, 21
traveling salesman problem, 565,

568, 778–81
travel-time tomography, 330–31
tree function, 153–54
trees, 102, 557; enumerating, 558; of

graph traversal algorithms, 758;
spanning tree minimization
problem, 564, 566

Trefethen, Lloyd N., 75, 77, 277
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trefoil knot, 752
triangle inequality, 23–24; error

estimation with, 340; traveling
salesman problem and, 779–80

triangular matrix. See upper
triangular matrix

triangular truncation, 708
Tricomi equation, 17, 170–71, 307
tridiagonal matrix, 270, 272
tropical mathematics, 795–96
Truesdell, Clifford, 3, 62, 446
true stress, 509–10
tsunami deposits, 717–18
tsunami modeling, 493, 712–20;

numerical, 718–19; uses of, 716–18
Tukey, John, 76–77, 94, 94n
turbo equalization, 541
turbulence, 724–32; aircraft noise

and, 784, 786; bacterial, 615–16; in
boundary layer, 748; cardiac, 626;
decay law of, 729; dynamics of,
727–28; in fluid dynamics of sport,
598–99; homogeneous, 728–30;
inhomogeneous, 730–32; instabili-
ties leading to, 475; in pattern-
forming systems, 465, 467; random-
ness and structure in, 725–27;
transition to, 728; transporting
angular momentum from accreting
mass, 484. See also vortices

turbulent bore, 715–16, 718
turbulent flames, 348–50, 852, 855–56
turbulent reacting flows, 348–50
turbulent wave front of tsunami,

715–17
Turing, Alan, 56, 72–73, 76
Turing bifurcation, 878
Turing instabilities, 459–60, 463–65,

802
turning points: of Airy’s equation,

233; in bifurcation theory, 398–99;
in WKB method, 214–16, 639–40

twiddles, 12
typesetting, 913

U.K. mathematicians and
government policy, 959–61

ultrasound imaging, 826–27
unbounded linear operator, 238–39
uncertainty principle, 57, 413,

926–27
uncertainty quantification, 131–33,

340–41, 658; in inverse problems,
132–33, 330; tsunami hazard
assessment as, 717

unconstrained optimization, 283,
285, 288–90

uncoupling, 35–36
uniform asymptotic expansions, 82
uniform distribution function, 761
uniformly elliptic PDE, 306, 317
uniformly hyperbolic PDE, 307
uniformly parabolic PDE, 307
uniform norm, 23
uniform pseudorandom numbers,

762
uniform random numbers, 761
unitarily invariant norm, 266
unitary matrices, 21; preference for,

in numerical algorithms, 263; in
QR factorization, 264–65; random
ensembles of, 420

unitary transformations, stable
algorithms using, 275

unit roundoff, 41, 97, 275, 835
unwinding number, 152
upper bound, 11
upper Hessenberg matrix, 113–14,

270
upper trapezoidal matrix, 264
upper triangular matrix, 21;

algorithm for inverse of, 43
upward continuation, 859
urinary concentration, 622–23
U.S. science policy and funding,

957–58
utility function: collective choice and,

870–71; maximizing, 868–70; port-
folio optimization and, 320–21,
644–45, 650

validation of model, 2, 54, 131, 340,
343

value function: of optimal stochastic
control problem, 322; of optimal
stopping problem, 324; in port-
folio theory, 650

Vandermonde determinant, 33–34;
random-matrix eigenvalue
distributions and, 423–24, 426

Vandermonde matrix: in compressed
sensing, 824; in sparse interpola-
tion, 255

van der Pol, Balthasar, 57, 59, 70
van der Pol equation, 189, 384,

388–89
van der Waals–Cahn–Hilliard theory

of phase transitions, 223
variance: of sample, accurate compu-

tation of, 46; sensitivity analysis
and, 132

variational assimilation, 708–9
variational methods in spectral

theory, 240–41

variational principle, 134; Einstein’s
field equations and, 145; in quan-
tum mechanics, 418. See also cal-
culus of variations; Euler–Lagrange
equations

variational problems: elliptic bound-
ary-value problem restated as, 313;
PDEs in, 197–98; variational
inequality problems, 325

variation of parameters, method of,
184

varieties, algebraic, 570–79
vector calculus, 27; historical

background of, 69
vector fields: conservative, 156; in

continuum mechanics, 447–48;
of dynamical systems, 383, 387;
on manifolds, 127; of ODEs, 182,
187–89; sliding, 770; in solid
mechanics, 507; visualization
of, 844

vector potential, electromagnetic,
161, 380

vector product, 27
vectors, 20–21; angle between, 23
vector space model, for text retrieval,

888–89
vector spaces, 22–24
vector triple product, 27
vehicle suspensions, 607–9
velocity estimation, 860
verification, 54, 340, 343, 531, 900,

918; of weather forecasts, 711
Veronese variety, 573, 576
version control, 914–16, 924, 942
vertex covers, 568
vertex of graph, 103, 557
vibrations, eigenvalues and, 236–37
virial expansion, 517
virtual work, principle of, 512–13
virus dynamics of HIV, 693–94
viscoelastic fluids, 453–54, 666, 671
visco-elastoplasticity, 667, 671
viscoplasticity, 670–71
viscosity: aircraft noise and, 784; of

blood, 612–13; boundary layer and,
82; drag due to, 378; Euler equa-
tions and, 146–47; of flame, 852;
kinematic, 469, 724; Maxwell’s
kinetic theory and, 431; Navier–
Stokes equations and, 163, 451,
468–69; quasilinear hyperbolic
PDEs and, 124; Reynolds number
and, 378; thin-film equation and,
169; turbulence and, 724, 727–28,
731. See also Reynolds number
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viscosity number of granular flow,
667

viscosity solution: of Hamilton–
Jacobi equation, 199; of Monge–
Ampère equation, 310

viscous conservation law, 198–99
viscous fingering, 934
visualization, 843–47. See also digital

imaging; image processing
Vlasov equation and its variants,

433–39, 441–43
volatility models, in finance, 642
Volterra integro-differential equa-

tions, coupled nonlinear, 865
volume rendering, direct, 844
von Kármán, Theodore, 59, 67, 69,

71, 73, 720, 725
von Kármán flow, 470
von Mises, Richard, 59, 67, 69–70,

720
von Neumann, John: applied math-

ematics and, 56–59, 73; computa-
tional science and, 336–37, 350;
economics and, 71, 644, 650, 869;
error analysis and, 77; foams and,
740; Monte Carlo method and, 57;
random number generation and,
762; shock waves and, 720; spec-
tral theory and, 239–40, 426

vortex ring, 471–72
vortex shedding, 726, 786
vortex sheet, 474–75
vortex sound equation, 785–86
vortices: in atmosphere, 492, 496;

Burgers vortex, 470; in heart, 624;
mean-field system of, 434; optical
phase, 675; superconductivity and,
225; in Taylor–Couette system,
406–7, 410; Taylor vortices, 474,
476, 728; transient instability
leading to, 475

vorticity, 469, 786; dynamics of,
471–72; in flames, 855; potential,
quasigeostrophic, 496–98; shock
waves in fluids and, 722; turbu-
lence and, 727

vorticity equation, 469, 473;
barotropic, 707

vorticity vector, 727
voting systems, 891–95. See also

collective choice
Voyager mission, 926

walk, 562–63
Walker circulation, 499

Wasserstein metric, 355
wave equation, 16–17, 156, 171, 192,

241; behavior of solutions of, 194;
coordinate systems for separability
of, 234; in elliptic coordinates, 160;
energy estimates and, 197; exact
solutions of, 193; as linearized
shallow-water equation, 168; uni-
formly hyperbolic, 307. See also
acoustic wave equation

wavefronts in neuronal populations,
877

wave function, quantum mechanical,
167, 411–16

waveguides, 242, 247, 678–79
wavelets, 31; function spaces and,

100; image processing and, 812,
814–15, 823, 826

wavelike solutions of PDEs, 194–95
wave packet, 414
wave phenomena, 134
weakly reversible reaction network,

633–34
weather, 485, 491–92; Lorenz

equations and, 158–59
weather prediction, numerical,

705–12; historical background of,
75, 706–7; visualization of, 846

Weather Research and Forecasting
Model, 711

Weber functions, used in WKB
method, 215

Weber number, 736
Weber parabolic cylinder functions,

232
web page ranking, 755–57; with

Google PageRank, 4, 48, 276, 364,
755–57; with HITS algorithm, 4–5,
756

Web sites: dissemination platforms,
922–24; images displayed on, 28,
812

Weierstrass’s theorem, 29
weighted graph, 103; spanning tree

minimization problem for, 564,
566

weighted network, 361–62
weighted spaces, 100
weight function: in inner product, 22;

for orthogonal basis functions,
257–58

Weil, André, 70, 591
well-conditioned problems, 26
well-posed problems, 50, 72, 199, 204,

328; in numerical relativity, 682–83

Weyl’s law, 240–41, 246
Weyl tensor, 582–83, 587
white noise, 325
Whittaker functions, 232
Wiener, Norbert, 71, 319, 545, 641
Wiener–Hopf equations, 538
Wiener–Hopf technique, 181
Wiener integral, 319
Wiener–Kinchene theorem, 537
Wiener process, 319. See also

Brownian motion
Wiener solution, 538–39
Wigner random matrices, 420,

422–23, 425–27
Wilkinson, James, 56, 73, 75, 77,

275
Willmore surfaces, 220
Winfree oscillators, 928–29
Wishart ensemble, 420, 422–24, 426
witness set, 574
WKB (Wentzel, Kramers, Brillouin)

methods, 214–16, 637, 639–40
workflow in producing a math-

ematical paper, 912–16
workflows for computational

research, 922
working memory, neural correlate

of, 877–78
wormhole, gravitational, 587, 685
wrapper approach to feature

selection, 354–55
Wright ω function, 152
writing about mathematics, 897–903;

for the general public, 906–12;
workflow for a paper, 912–16

Wulff shape, 220

Xampling, 826–27
X-ray computed tomography (CT),

206–7, 327, 330, 816–17; for
baggage screening, 866–68

X-ray transform, 817–19, 867
XYZ color space, 810–12

yacht design, 599–601
yield surface, 511
Youla parametrization, 528–29
Young, Thomas, 636, 808
Young–Laplace law, 520
Young’s modulus, 149, 511

zebrafish, 459
Zeno solution, 104
z-transform, 535–36, 543
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