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Chapter I.1

Who Needs It?

Who needs quantum field theory?

Quantum field theory arose out of our need to describe the ephemeral nature of
life.

No, seriously, quantum field theory is needed when we confront simultaneously
the two great physics innovations of the last century of the previous millennium:
special relativity and quantum mechanics. Consider a fast moving rocket ship close
to light speed. You need special relativity but not quantum mechanics to study its
motion. On the other hand, to study a slow moving electron scattering on a proton,
you must invoke quantum mechanics, but you don’t have to know a thing about
special relativity.

It is in the peculiar confluence of special relativity and quantum mechanics that
a new set of phenomena arises: Particles can be born and particles can die. It is
this matter of birth, life, and death that requires the development of a new subject
in physics, that of quantum field theory.

Let me give a heuristic discussion. In quantum mechanics the uncertainty
principle tells us that the energy can fluctuate wildly over a small interval of time.
According to special relativity, energy can be converted into mass and vice versa.
With quantum mechanics and special relativity, the wildly fluctuating energy can
metamorphose into mass, that is, into new particles not previously present.

Write down the Schrödinger equation for an electron scattering off a proton.
The equation describes the wave function of one electron, and no matter how you
shake and bake the mathematics of the partial differential equation, the electron
you follow will remain one electron. But special relativity tells us that energy
can be converted to matter: If the electron is energetic enough, an electron and a
positron (“the antielectron”) can be produced. The Schrödinger equation is simply
incapable of describing such a phenomenon. Nonrelativistic quantum mechanics
must break down.

You saw the need for quantum field theory at another point in your education.
Toward the end of a good course on nonrelativistic quantum mechanics the inter-
action between radiation and atoms is often discussed. You would recall that the
electromagnetic field is treated as a field; well, it is a field. Its Fourier components
are quantized as a collection of harmonic oscillators, leading to creation and an-
nihilation operators for photons. So there, the electromagnetic field is a quantum
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4 I. Motivation and Foundation

Figure I.1.1

field. Meanwhile, the electron is treated as a poor cousin, with a wave function
�(x) governed by the good old Schrödinger equation. Photons can be created or
annihilated, but not electrons. Quite aside from the experimental fact that electrons
and positrons could be created in pairs, it would be intellectually more satisfying
to treat electrons and photons, as they are both elementary particles, on the same
footing.

So, I was more or less right: Quantum field theory is a response to the ephemeral
nature of life.

All of this is rather vague, and one of the purposes of this book is to make
these remarks more precise. For the moment, to make these thoughts somewhat
more concrete, let us ask where in classical physics we might have encountered
something vaguely resembling the birth and death of particles. Think of a mattress,
which we idealize as a 2-dimensional lattice of point masses connected to each
other by springs (Fig. I.1.1) For simplicity, let us focus on the vertical displacement
[which we denote by qa(t)] of the point masses and neglect the small horizontal
movement. The index a simply tells us which mass we are talking about. The
Lagrangian is then

L= 1
2 (
∑
a

mq̇2
a

−
∑
a ,b

kabqaqb −
∑
a ,b ,c

gabcqaqbqc − . . .) (1)

Keeping only the terms quadratic in q (the “harmonic approximation”) we have
the equations of motion mq̈a = −∑

b kabqb. Taking the q’s as oscillating with
frequency ω, we have

∑
b kabqb =mω2qa . The eigenfrequencies and eigenmodes

are determined, respectively, by the eigenvalues and eigenvectors of the matrix
k. As usual, we can form wave packets by superposing eigenmodes. When we
quantize the theory, these wave packets behave like particles, in the same way that
electromagnetic wave packets when quantized behave like particles called photons.
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Since the theory is linear, two wave packets pass right through each other. But
once we include the nonlinear terms, namely the terms cubic, quartic, and so forth
in the q’s in (1), the theory becomes anharmonic. Eigenmodes now couple to each
other. A wave packet might decay into two wave packets. When two wave packets
come near each other, they scatter and perhaps produce more wave packets. This
naturally suggests that the physics of particles can be described in these terms.

Quantum field theory grew out of essentially these sorts of physical ideas.
It struck me as limiting that even after some 75 years, the whole subject of

quantum field theory remains rooted in this harmonic paradigm, to use a dreadfully
pretentious word. We have not been able to get away from the basic notions of
oscillations and wave packets. Indeed, string theory, the heir to quantum field
theory, is still firmly founded on this harmonic paradigm. Surely, a brilliant young
physicist, perhaps a reader of this book, will take us beyond.

Condensed matter physics

In this book I will focus mainly on relativistic field theory, but let me mention
here that one of the great advances in theoretical physics in the last 30 years
or so is the increasingly sophisticated use of quantum field theory in condensed
matter physics. At first sight this seems rather surprising. After all, a piece of
“condensed matter” consists of an enormous swarm of electrons moving nonrel-
ativistically, knocking about among various atomic ions and interacting via the
electromagnetic force. Why can’t we simply write down a gigantic wave function
�(x1, x2, . . . , xN), where xj denotes the position of the j th electron and N is
a large but finite number? Okay, � is a function of many variables but it is still
governed by a nonrelativistic Schrödinger equation.

The answer is yes, we can, and indeed that was how solid state physics was first
studied in its heroic early days, (and still is in many of its subbranches.)

Why then does a condensed matter theorist need quantum field theory? Again,
let us first go for a heuristic discussion, giving an overall impression rather than
all the details. In a typical solid, the ions vibrate around their equilibrium lattice
positions. This vibrational dynamics is best described by so-called phonons, which
correspond more or less to the wave packets in the mattress model described above.

This much you can read about in any standard text on solid state physics.
Furthermore, if you have had a course on solid state physics, you would recall that
the energy levels available to electrons form bands. When an electron is kicked
(by a phonon field say) from a filled band to an empty band, a hole is left behind
in the previously filled band. This hole can move about with its own identity as a
particle, enjoying a perfectly comfortable existence until another electron comes
into the band and annihilates it. Indeed, it was with a picture of this kind that Dirac
first conceived of a hole in the “electron sea” as the antiparticle of the electron, the
positron.

We will flesh out this heuristic discussion in subsequent chapters.
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Marriages

To summarize, quantum field theory was born of the necessity of dealing with the
marriage of special relativity and quantum mechanics, just as the new science of
string theory is being born of the necessity of dealing with the marriage of general
relativity and quantum mechanics.



Chapter I.2

Path Integral Formulation
of Quantum Physics

The professor’s nightmare: a wise guy in the class

As I noted in the preface, I know perfectly well that you are eager to dive into
quantum field theory, but first we have to review the path integral formalism
of quantum mechanics. This formalism is not universally taught in introductory
courses on quantum mechanics, but even if you have been exposed to it, this chapter
will serve as a useful review. The reason I start with the path integral formalism
is that it offers a particularly convenient way of going from quantum mechanics
to quantum field theory. I will first give a heuristic discussion, to be followed by a
more formal mathematical treatment.

Perhaps the best way to introduce the path integral formalism is by telling a
story, certainly apocryphal as many physics stories are. Long ago, in a quantum
mechanics class, the professor droned on and on about the double-slit experiment,
giving the standard treatment. A particle emitted from a source S (Fig. I.2.1) at time
t = 0 passes through one or the other of two holes, A1 and A2, drilled in a screen
and is detected at time t = T by a detector located atO. The amplitude for detection
is given by a fundamental postulate of quantum mechanics, the superposition
principle, as the sum of the amplitude for the particle to propagate from the source
S through the hole A1 and then onward to the point O and the amplitude for the
particle to propagate from the source S through the hole A2 and then onward to
the point O.

Suddenly, a very bright student, let us call him Feynman, asked, “Professor,
what if we drill a third hole in the screen?” The professor replied, “Clearly, the
amplitude for the particle to be detected at the point O is now given by the sum
of three amplitudes, the amplitude for the particle to propagate from the source S
through the hole A1 and then onward to the pointO, the amplitude for the particle
to propagate from the source S through the hole A2 and then onward to the point
O, and the amplitude for the particle to propagate from the source S through the
hole A3 and then onward to the point O.”

The professor was just about ready to continue when Feynman interjected again,
“What if I drill a fourth and a fifth hole in the screen?” Now the professor is visibly
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Figure I.2.1

losing his patience: “All right, wise guy, I think it is obvious to the whole class that
we just sum over all the holes.”

To make what the professor said precise, denote the amplitude for the particle
to propagate from the source S through the hole Ai and then onward to the point
O as A(S → Ai →O). Then the amplitude for the particle to be detected at the
point O is

A(detected at O)=
∑
i

A(S → Ai →O) (1)

But Feynman persisted, “What if we now add another screen (Fig. I.2.2) with
some holes drilled in it?” The professor was really losing his patience: “Look, can’t
you see that you just take the amplitude to go from the source S to the hole Ai in
the first screen, then to the hole Bj in the second screen, then to the detector atO ,
and then sum over all i and j?”

Feynman continued to pester, “What if I put in a third screen, a fourth screen,
eh? What if I put in a screen and drill an infinite number of holes in it so that the

S

O
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A2

A3
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Figure I.2.2
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screen is no longer there?” The professor sighed, “Let’s move on; there is a lot of
material to cover in this course.”

But dear reader, surely you see what that wise guy Feynman was driving at.
I especially enjoy his observation that if you put in a screen and drill an infinite
number of holes in it, then that screen is not really there. Very Zen! What Feynman
showed is that even if there were just empty space between the source and the
detector, the amplitude for the particle to propagate from the source to the detector
is the sum of the amplitudes for the particle to go through each one of the holes
in each one of the (nonexistent) screens. In other words, we have to sum over the
amplitude for the particle to propagate from the source to the detector following
all possible paths between the source and the detector (Fig. I.2.3).

A(particle to go from S to O in time T ) =∑
(paths)

A
(
particle to go from S to O in time T following a particular path

)
(2)

Now the mathematically rigorous will surely get anxious over how
∑
(paths) is

to be defined. Feynman followed Newton and Leibniz: Take a path (Fig. I.2.4),
approximate it by straight line segments, and let the segments go to zero. You can
see that this is just like filling up a space with screens spaced infinitesimally close
to each other, with an infinite number of holes drilled in each screen.

S

O

Figure I.2.4



10 I. Motivation and Foundation

Fine, but how to construct the amplitude A(particle to go from S toO in time T
following a particular path)? Well, we can use the unitarity of quantum mechanics:
If we know the amplitude for each infinitesimal segment, then we just multiply
them together to get the amplitude of the whole path.

In quantum mechanics, the amplitude to propagate from a point qI to a point qF
in time T is governed by the unitary operator e−iHT, whereH is the Hamiltonian.
More precisely, denoting by |q〉 the state in which the particle is at q, the amplitude
in question is just 〈qF | e−iHT |qI 〉. Here we are using the Dirac bra and ket
notation. Of course, philosophically, you can argue that to say the amplitude is
〈qF | e−iHT |qI 〉 amounts to a postulate and a definition of H . It is then up to
experimentalists to discover that H is hermitean, has the form of the classical
Hamiltonian, et cetera.

Indeed, the whole path integral formalism could be written down mathemat-
ically starting with the quantity 〈qF | e−iHT |qI 〉, without any of Feynman’s jive
about screens with an infinite number of holes. Many physicists would prefer a
mathematical treatment without the talk. As a matter of fact, the path integral for-
malism was invented by Dirac precisely in this way, long before Feynman.

A necessary word about notation even though it interrupts the narrative flow: We
denote the coordinates transverse to the axis connecting the source to the detector
by q , rather than x , for a reason which will emerge in a later chapter. For notational
simplicity, we will think of q as 1-dimensional and suppress the coordinate along
the axis connecting the source to the detector.

Dirac’s formulation

Let us divide the time T into N segments each lasting δt = T/N . Then we write

〈qF | e−iHT |qI 〉 = 〈qF | e−iHδte−iHδt . . . e−iHδt |qI 〉
Now use the fact that |q〉 forms a complete set of states so that

∫
dq |q〉〈q| = 1.

Insert 1 between all these factors of e−iHδt and write

〈qF | e−iHT |qI 〉

= (
N−1∏
j=1

∫
dqj)〈qF | e−iHδt |qN−1〉〈qN−1| e−iHδt |qN−2〉 . . .

. . . 〈q2| e−iHδt |q1〉〈q1| e−iHδt |qI 〉 (3)

Focus on an individual factor 〈qj+1| e−iHδt |qj〉. Let us take the baby step
of first evaluating it just for the free-particle case in which H = p̂2/2m. The
hat on p̂ reminds us that it is an operator. Denote by |p〉 the eigenstate of p̂,
namely p̂ |p〉 = p |p〉. Do you remember from your course in quantum mechanics
that 〈q|p〉 = eipq? Sure you do. This just says that the momentum eigenstate is
a plane wave in the coordinate representation. (The normalization is such that∫
(dp/2π) |p〉〈p| = 1.) So again inserting a complete set of states, we write
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〈qj+1| e−iδt (p̂2/2m) |qj〉 =
∫
dp

2π
〈qj+1| e−iδt (p̂2/2m) |p〉〈p|qj〉

=
∫
dp

2π
e−iδt (p2/2m)〈qj+1|p〉〈p|qj〉

=
∫
dp

2π
e−iδt (p2/2m)eip(qj+1−qj )

Note that we removed the hat from the momentum operator in the exponential:
Since the momentum operator is acting on an eigenstate, it can be replaced by its
eigenvalue.

The integral overp is known as a Gaussian integral, with which you may already
be familiar. If not, turn to Appendix 1 to this chapter.

Doing the integral over p, we get

〈qj+1| e−iδt (p̂2/2m) |qj〉 =
(−i2πm

δt

) 1
2
e[im(qj+1−qj )2]/2δt

=
(−i2πm

δt

) 1
2
eiδt (m/2)[(qj+1−qj )/δt]2

Putting this into (3) yields

〈qF | e−iHT |qI 〉 =
(−i2πm

δt

)N
2
N−1∏
j=0

∫
dqje

iδt (m/2) N−1
j=0 [(qj+1−qj )/δt]2

with q0 ≡ qI and qN ≡ qF .
We can now go to the continuum limit δt → 0. Newton and Leibniz taught us

to replace [(qj+1 − qj)/δt]2 by q̇2, and δt
∑N−1
j=0 by

∫ T
0 dt . Finally, we define the

integral over paths as

∫
Dq(t)= lim

N→∞

(−i2πm
δt

)N
2
N−1∏
j=0

∫
dqj .

We thus obtain the path integral representation

〈qF | e−iHT |qI 〉 =
∫
Dq(t) e

i
∫ T

0
dt 1

2mq̇
2

(4)

This fundamental result tells us that to obtain 〈qF | e−iHT |qI 〉 we simply inte-
grate over all possible paths q(t) such that q(0)= qI and q(T )= qF .

As an exercise you should convince yourself that had we started with the
Hamiltonian for a particle in a potential H = p̂2/2m + V (q̂) (again the hat on
q̂ indicates an operator) the final result would have been

〈qF | e−iHT |qI 〉 =
∫
Dq(t) e

i
∫ T

0
dt[ 1

2mq̇
2−V (q)] (5)
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We recognize the quantity 1
2mq̇

2 − V (q) as just the Lagrangian L(q̇ , q). The
Lagrangian has emerged naturally from the Hamiltonian. In general, we have

〈qF | e−iHT |qI 〉 =
∫
Dq(t) e

i
∫ T

0
dtL(q̇ ,q) (6)

To avoid potential confusion, let me be clear that t appears as an integration variable
in the exponential on the right-hand side. The appearance of t in the path integral
measure Dq(t) is simply to remind us that q is a function of t (as if we need
reminding). Indeed, this measure will often be abbreviated toDq . You might recall
that

∫ T
0 dtL(q̇ , q) is called the action S(q) in classical mechanics. The action S is

a functional of the function q(t).
Often, instead of specifying that the particle starts at an initial position qI and

ends at a final position qF , we prefer to specify that the particle starts in some
initial state I and ends in some final state F . Then we are interested in calculating
〈F | e−iHT |I 〉, which upon inserting complete sets of states can be written as∫

dqF

∫
dqI 〈F |qF 〉〈qF | e−iHT |qI 〉〈qI |I 〉,

which mixing Schrödinger and Dirac notation we can write as∫
dqF

∫
dqI�F(qF )

∗〈qF | e−iHT |qI 〉�I(qI).

In most cases we are interested in taking |I 〉 and |F 〉 as the ground state, which
we will denote by |0〉. It is conventional to give the amplitude 〈0| e−iHT |0〉 the
name Z.

At the level of mathematical rigor we are working with, we count on the

path integral
∫
Dq(t) e

i
∫ T

0
dt[ 1

2mq̇
2−V (q)] to converge because the oscillatory phase

factors from different paths tend to cancel out. It is somewhat more rigorous to
perform a so-called Wick rotation to Euclidean time. This amounts to substituting
t → −it and rotating the integration contour in the complex t plane so that the
integral becomes

Z =
∫
Dq(t) e

−
∫ T

0
dt[ 1

2mq̇
2+V (q)], (7)

known as the Euclidean path integral. As is done in Appendix 1 to this chapter with
ordinary integrals we will always assume that we can make this type of substitution
with impunity.

One particularly nice feature of the path integral formalism is that the classical
limit of quantum mechanics can be recovered easily. We simply restore Planck’s
constant � in (6):

〈qF | e−(i/�)HT |qI 〉 =
∫
Dq(t) e

(i/�)
∫ T

0
dtL(q̇ ,q)
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and take the � → 0 limit. Applying the stationary phase or steepest descent method

(if you don’t know it see Appendix 2 to this chapter) we obtain e(i/�)
∫ T

0
dtL(q̇c ,qc),

where qc(t) is the “classical path” determined by solving the Euler-Lagrange
equation (d/dt)(δL/δq̇)− (δL/δq)= 0 with appropriate boundary conditions.

Appendix 1

I will now show you how to do the integral G≡ ∫ +∞
−∞ dxe

− 1
2 x

2
. The trick is to square the

integral, call the dummy integration variable in one of the integrals y, and then pass to polar
coordinates:

G2 =
∫ +∞

−∞
dx e

− 1
2 x

2
∫ +∞

−∞
dy e

− 1
2 y

2 = 2π
∫ +∞

0
dr re

− 1
2 r

2

= 2π
∫ +∞

0
dw e−w = 2π

Thus, we obtain ∫ +∞

−∞
dx e

− 1
2 x

2 = √
2π (8)

Believe it or not, a significant fraction of the theoretical physics literature consists
of performing variations and elaborations of this basic Gaussian integral. The simplest
extension is almost immediate:

∫ +∞

−∞
dx e

− 1
2 ax

2 =
(

2π

a

) 1
2

(9)

as can be seen by scaling x → x/
√
a.

Acting on this repeatedly with −2(d/da) we obtain

〈x2n〉 ≡
∫ +∞
−∞ dx e

− 1
2 ax

2
x2n∫ +∞

−∞ dx e
− 1

2 ax
2

= 1

an
(2n− 1)(2n− 3) . . . 5 · 3 · 1 (10)

The factor 1/an follows from dimensional analysis. To remember the factor (2n− 1)!! ≡
(2n− 1)(2n− 3) . . . 5 · 3 · 1 imagine 2n points and connect them in pairs. The first point
can be connected to one of (2n− 1) points, the second point can now be connected to one of
the remaining (2n− 3) points, and so on. This clever observation, due to Gian Carlo Wick,
is known as Wick’s theorem in the field theory literature. Incidentally, field theorists use the
following graphical mnemonic in calculating, for example, 〈x6〉 : Write 〈x6〉 as 〈xxxxxx〉
and connect the x’s, for example

〈 〉xxxxxx

The pattern of connection is known as a Wick contraction. In this simple example, since
the six x’s are identical, any one of the distinct Wick contractions gives the same value
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a−3 and the final result for 〈x6〉 is just a−3 times the number of distinct Wick contractions,
namely 5 · 3 · 1= 15. We will soon come to a less trivial example, in which we have distinct
x’s, in which case distinct Wick contraction gives distinct values.

An important variant is the integral

∫ +∞

−∞
dx e

− 1
2 ax

2+Jx =
(

2π

a

) 1
2
eJ

2/2a (11)

To see this, take the expression in the exponent and “complete the square”: −ax2/2 + Jx =
−(a/2)(x2 − 2Jx/a)= −(a/2)(x − J/a)2 + J 2/2a. The x integral can now be done by

shifting x→ x + J/a, giving the factor of (2π/a)
1
2 . Check that we can also obtain (10) by

differentiating with respect to J repeatedly and then setting J = 0.
Another important variant is obtained by replacing J by iJ :

∫ +∞

−∞
dx e

− 1
2 ax

2+iJ x =
(

2π

a

) 1
2
e−J 2/2a (12)

To get yet another variant, replace a by −ia:

∫ +∞

−∞
dx e

1
2 iax

2+iJ x =
(

2πi

a

) 1
2
e−iJ 2/2a (13)

Let us promote a to a real symmetric N by N matrix Aij and x to a vector xi (i , j =
1, . . . , N). Then (11) generalizes to

∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1dx2

. . . dxN e
− 1

2 x·A·x+J ·x =
(
(2π)N

det[A]

) 1
2

e
1
2 J ·A−1·J (14)

where x · A · x = xiAijxj and J · x = Jixi (with repeated indices summed.) To see this,
diagonalize A by an orthogonal transformationO: A=O−1 ·D ·O whereD is a diagonal
matrix. Call yi =Oijxj . In other words, we rotate the coordinates in the N dimensional
Euclidean space over which we are integrating. Using

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1

. . . dxN =
∫ +∞

−∞
. . .

∫ +∞

−∞
dy1

. . . dyN

we factorize the left-hand side of (14) into a product ofN integrals of the form in (11). The
result can then be expressed in terms of D−1, which we write as O · A−1 ·O−1. (To make
sure you got it, try this explicitly for N = 2.)

Putting in some i’s (A→ −iA, J → iJ ), we find the generalization of (13)

∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1dx2

. . . dxN e
(i/2)x·A·x+iJ ·x

=
(
(2πi)N

det[A]

) 1
2

e−(i/2)J ·A−1·J (15)

The generalization of (10) is also easy to obtain. We differentiate (14) with respect to J
repeatedly and then setting J → 0. We find
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〈xixj . . . xkxl〉 =
∑
Wick

(A−1)ab . . . (A−1)cd (16)

where we have defined

〈xixj . . . xkxl〉

=
∫ +∞
−∞

∫ +∞
−∞ . . .

∫ +∞
−∞ dx1dx2

. . . dxN e
− 1

2 x·A·x
xixj . . . xkxl∫ +∞

−∞
∫ +∞
−∞ . . .

∫ +∞
−∞ dx1dx2

. . . dxN e
− 1

2 x·A·x (17)

and where the set of indices {a , b, . . . , c, d} represent a permutation of the set of indices
{i , j , . . . , k , l}. The sum in (16) is over all such permutations or Wick contractions. It is
easiest to explain (16) for a simple example 〈xixjxkxl〉. We connect the x’s in pairs (Wick
contraction) and write a factor (A−1)ab if we connect xa to xb . Thus,

〈xixjxkxl〉 = (A−1)ij (A
−1)kl + (A−1)il(A

−1)jk + (A−1)ik(A
−1)jl (18)

(Recall that A and thus A−1 are symmetric.) Note that since 〈xixj 〉 = (A−1)ij , the right-
hand side of (16) can also be written in terms of objects such as 〈xixj 〉. Please work out
〈xixjxkxlxmxn〉; you will become an expert on Wick contractions. Of course, (16) reduces
to (10) for N = 1.

Perhaps you are like me and do not like to memorize anything, but some of these formulas
might be worth memorizing as they appear again and again in theoretical physics (and in
this book).

Appendix 2

To do an exponential integral of the form I = ∫ +∞
−∞ dqe−(1/�)f (q) we often have to resort

to the steepest-descent approximation, which I will now review for your convenience.
In the limit of � small, the integral is dominated by the minimum of f (q). Expanding
f (q)= f (a)+ 1

2f
′′(a)(q − a)2 +O[(q − a)3] and applying (9) we obtain

I = e−(1/�)f (a)
(

2π�

f ′′(a)

) 1
2
e−O(�

1
2 ) (19)

For f (q) a function of many variables q1, . . . , qN and with a minimum at qj = aj , we
generalize immediately to

I = e−(1/�)f (a)
(

2π�

det f ′′(a)

) 1
2
e−O(�

1
2 ) (20)

Here f ′′(a) denotes theN byN matrix with entries [f ′′(a)]ij ≡ (∂2f/∂qi∂qj)|q=a . In many
situations, we do not even need the factor involving the determinant in (20). If you can derive
(20) you are well on your way to becoming a quantum field theorist!

Exercises

I.2.1. Verify (5).

I.2.2. Derive (16).



Chapter I.3

From Mattress to Field

The mattress in the continuum limit

The path integral representation

Z ≡ 〈0| e−iHT |0〉 =
∫
Dq(t) e

i
∫ T

0
dt[ 1

2mq̇
2−V (q)] (1)

which we derived for the quantum mechanics of a single particle, can be general-
ized almost immediately to the case of N particles with the Hamiltonian

H =
∑
a

1

2ma
p̂2
a
+ V (q̂1, q̂2, . . . , q̂N). (2)

We simply keep track mentally of the position of the particles qa with a= 1, 2, . . . ,
N . Going through the same steps as before, we obtain

Z ≡ 〈0| e−iHT |0〉 =
∫
Dq(t) eiS(q) (3)

with the action

S(q)=
∫ T

0
dt
(∑
a

1
2maq̇

2
a

− V [q1, q2, . . . , qN ]
)
.

The potential energy V (q1, q2, . . . , qN) now includes interaction energy between
particles, namely terms of the form v(qa − qb), as well as the energy due to an
external potential, namely terms of the form w(qa). In particular, let us now write
the path integral description of the quantum dynamics of the mattress described in
Chapter I.1, with the potential

V (q1, q2, . . . , qN)=
∑
ab

1

2
kabqaqb + . . .

We are now just a short hop and skip away from a quantum field theory! Suppose
we are only interested in phenomena on length scales much greater than the lattice
spacing l (see Fig. I.1.1). Mathematically, we take the continuum limit l → 0. In

16
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this limit, we can replace the label a on the particles by a two-dimensional position
vector �x , and so we write q(t , �x) instead of qa(t). It is traditional to replace the
Latin letter q by the Greek letter ϕ . The function ϕ(t , �x) is called a field.

The kinetic energy
∑
a

1
2maq̇

2
a

now becomes
∫
d2x 1

2σ(∂ϕ/∂t)
2. We replace∑

a by 1/l2
∫
d2x and denote the mass per unit area ma/l

2 by σ . We take all
the ma’s to be equal; otherwise σ would be a function of �x , the system would be
inhomogeneous, and we would have a hard time writing down a Lorentz-invariant
action (see later).

We next focus on the first term in V =∑
ab

1
2kabqaqb + . . .. Write 2qaqb =

(qa − qb)2 − q2
a

− q2
b

. Assume for simplicity that kab connect only nearest neigh-
bors on the lattice. For nearest-neighbor pairs (qa − qb)2 � l2(∂ϕ/∂x)2 + . . . in
the continuum limit; the derivative is obviously taken in the direction that joins the
lattice sites a and b.

Putting it together then, we have

S(q)→ S(ϕ)≡
∫ T

0
dt

∫
d2xL(ϕ)

=
∫ T

0
dt

∫
d2x

1

2

{
σ

(
∂ϕ

∂t

)2

− ρ
[(
∂ϕ

∂x

)2

+
(
∂ϕ

∂y

)2
]

−τϕ2 − ςϕ4 + . . .
}

(4)

where the parameters ρ and τ are determined by kab and l . The precise relations
do not concern us.

Henceforth in this book, we will take the T → ∞ limit so that we can integrate
over all of spacetime in (4).

We can clean up a bit by writing ρ = σc2 and scaling ϕ → ϕ/
√
σ , so that

the combination (∂ϕ/∂t)2 − c2[(∂ϕ/∂x)2 + (∂ϕ/∂y)2] appears in the Lagrangian.
The parameter c evidently has the dimension of a velocity and defines the phase
velocity of the waves on our mattress. It is interesting that Lorentz invariance, with
c playing the role of the speed of light, emerges naturally.

We started with a mattress for pedagogical reasons. Of course nobody believes
that the fields observed in Nature, such as the meson field or the photon field, are
actually constructed of point masses tied together with springs. The modern view,
which I will call Landau-Ginzburg, is that we start with the desired symmetry, say
Lorentz invariance if we want to do particle physics, decide on the fields we want
by specifying how they transform under the symmetry (in this case we decided on
a scalar field ϕ), and then write down the action involving no more than two time
derivatives (because we don’t know how to quantize actions with more than two
time derivatives).

We end up with a Lorentz-invariant action (setting c = 1)

S =
∫
ddx

[
1

2
(∂ϕ)2 − 1

2
m2ϕ2 − g

3!
ϕ3 − λ

4!
ϕ4 + . . .

]
(5)
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where various numerical factors are put in for later convenience. The relativistic
notation (∂ϕ)2 ≡ ∂µϕ∂µϕ = (∂ϕ/∂t)2 − (∂ϕ/∂x)2 − (∂ϕ/∂y)2 was explained in
the note on convention. The dimension of spacetime, d , clearly can be any integer,
even though in our mattress model it was actually 3. We often write d =D + 1
and speak of a (D + 1)-dimensional spacetime.

We see here the power of imposing a symmetry. Lorentz invariance together
with the insistence that the Lagrangian involve only at most two powers of ∂/∂t
immediately tells us that the Lagrangian can only have the form1 L = 1

2 (∂ϕ)
2 −

V (ϕ) with V a polynomial in ϕ . We will have a great deal more to say about
symmetry later. Here we note that, for example, we could insist that physics
is symmetric under ϕ → −ϕ , in which case V (ϕ) would have to be an even
polynomial.

Now that you know what a quantum field theory is, you realize why I used the
letter q to label the position of the particle in the previous chapter and not the more
common �x . In quantum field theory, �x is a label, not a dynamical variable. The �x
appearing in ϕ(t , �x) corresponds to the label a in qa(t) in quantum mechanics.
The dynamical variable in field theory is not position, but the field ϕ . The variable
�x simply specifies which field variable we are talking about. I belabor this point
because upon first exposure to quantum field theory some students, used to thinking
of �x as a dynamical operator in quantum mechanics, are confused by its role here.

In summary, we have the table

q → ϕ

a → �x
(6)

qa(t)→ ϕ(t , �x)= ϕ(x)∑
a

→ ∫
dDx

Thus we finally have the path integral defining a scalar field theory in d = (D + 1)
dimensional spacetime:

Z =
∫
Dϕe

i
∫
ddx( 1

2 (∂ϕ)
2−V (ϕ)) (7)

Note that a (0 + 1)-dimensional quantum field theory is just quantum
mechanics.

1 Strictly speaking, a term of the formU(ϕ)(∂ϕ)2 is also possible. In quantum mechanics,
a term such as U(q)(dq/dt)2 in the Lagrangian would describe a particle whose mass
depends on position. We will not consider such “nasty” terms until much later.
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The classical limit

As I have already remarked, the path integral formalism is particularly convenient
for taking the classical limit. Remembering that Planck’s constant � has the dimen-
sion of energy multiplied by time, we see that it appears in the unitary evolution
operator e(−i/�)HT. Tracing through the derivation of the path integral, we see that
we have to simply divide the overall factor i by � to get

Z =
∫
Dϕe

(i/�)
∫
d4xL(ϕ) (8)

In the limit with � much smaller than the relevant action we are considering,
we can evaluate the path integral using the stationary phase (or steepest descent)
approximation, as I explained in the previous chapter in the context of quantum
mechanics. We simply determine the extremum of

∫
d4xL(ϕ). According to the

usual Euler-Lagrange variational procedure, this leads to the equation

∂µ
δL

δ(∂µϕ)
− δL

δϕ
= 0 (9)

We thus recover the classical field equation, exactly as we should, which in our
scalar field theory reads

(∂2 +m2)ϕ(x)+ g

2
ϕ(x)2 + λ

6
ϕ(x)3 + . . . = 0 (10)

The vacuum

In the point particle quantum mechanics discussed in Chapter I.2 we wrote the path
integral for 〈F | eiHT |I 〉, with some initial and final state, which we can choose
at our pleasure. A convenient and particularly natural choice would be to take
|I 〉 = |F 〉 to be the ground state. In quantum field theory what should we choose
for the initial and final states? A standard choice for the initial and final states
is the ground state or the vacuum state of the system, denoted by |0〉, in which,
speaking colloquially, nothing is happening. In other words, we would calculate
the quantum transition amplitude from the vacuum to the vacuum, which would
enable us to determine the energy of the ground state. But this is not a particularly
interesting quantity, because in quantum field theory we would like to measure
all energies relative to the vacuum and so, by convention, would set the energy
of the vacuum to zero (possibly by having to subtract an infinite constant from
the Lagrangian). Incidentally, the vacuum in quantum field theory is a stormy sea
of quantum fluctuations, but for this initial pass at quantum field theory, we will
not examine it in any detail. We will certainly come back to the vacuum in later
chapters.
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Figure I.3.1

Disturbing the vacuum

We would like to do something more exciting than watching a boiling sea of
quantum fluctuations. We would like to disturb the vacuum. Somewhere in space,
at some instant in time, we would like to create a particle, watch it propagate for
a while, and then annihilate it somewhere else in space, at some later instant in
time. In other words, we want to create a source and a sink (sometimes referred to
collectively as sources) at which particles can be created and annihilated.

To see how to do this, let us go back to the mattress. Bounce up and down
on it to create some excitations. Obviously, pushing on the mass labeled by a
in the mattress corresponds to adding a term such as Ja(t)qa to the potential
V (q1, q2, . . . , qN). More generally, we can add

∑
a Ja(t)qa . When we go to field

theory this added term gets promoted to J (x)ϕ(x) in the field theory Lagrangian,
according to the promotion table (6).

This so-called source function J (t , �x) describes how the mattress is being
disturbed. We can choose whatever function we like, corresponding to our freedom
to push on the mattress wherever and whenever we like. In particular, J (x) can
vanish everywhere in spacetime except in some localized regions.

By bouncing up and down on the mattress we can get wave packets going off
here and there (Fig. I.3.1). This corresponds precisely to sources (and sinks) for
particles. Thus, we really want the path integral

Z =
∫
Dϕe

i
∫
d4x[ 1

2 (∂ϕ)
2−V (ϕ)+J (x)ϕ(x)] (11)
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Free field theory

The functional integral in (11) is impossible to do except when

L(ϕ)= 1
2 [(∂ϕ)2 −m2ϕ2] (12)

The corresponding theory is called the free or Gaussian theory. The equation of
motion (9) works out to be (∂2 +m2)ϕ = 0, known as the Klein-Gordon equation.2

Being linear, it can be solved immediately to give ϕ(�x , t)= ei(ωt−�k·�x) with

ω2 = �k2 +m2 (13)

In the natural units we are using, � = 1 and so frequency ω is the same as energy
�ω and wave vector �k is the same as momentum ��k. Thus, we recognize (13) as
the energy-momentum relation for a particle of massm, namely the sophisticate’s
version of the layperson’s E = mc2. We expect this field theory to describe a
relativistic particle of mass m.

Let us now evaluate (11) in this special case:

Z =
∫
Dϕe

i
∫
d4x{ 1

2 [(∂ϕ)2−m2ϕ2]+Jϕ} (14)

Integrating by parts under the
∫
d4x and not worrying about the possible contri-

bution of boundary terms at infinity (we implicitly assume that the fields we are
integrating over fall off sufficiently rapidly), we write

Z =
∫
Dϕe

i
∫
d4x[− 1

2ϕ(∂
2+m2)ϕ+Jϕ] (15)

You will encounter functional integrals like this again and again in your study
of field theory. The trick is to imagine discretizing spacetime. You don’t actu-
ally have to do it: Just imagine doing it. Let me sketch how this goes. Replace
the function ϕ(x) by the vector ϕi = ϕ(ia) with i an integer and a the lattice
spacing. (For simplicity, I am writing things as if we were in 1-dimensional space-
time. More generally, just let the index i enumerate the lattice points in some
way.) Then differential operators become matrices. For example, ∂ϕ(ia)→ (1/a)
(ϕi+1 − ϕi) ≡∑

j Mijϕj , with some appropriate matrix M . Integrals become

sums. For example,
∫
d4xJ (x)ϕ(x)→ a4 ∑

i Jiϕi .
Now, lo and behold, the integral (15) is just the integral we did in (I.2.15)

2 The Klein-Gordon equation was actually discovered by Schrödinger before he found
the equation that now bears his name. Later, in 1926, it was written down independently by
Klein, Gordon, Fock, Kudar, de Donder, and Van Dungen.
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∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dq1dq2

. . . dqN e
(i/2)q·A·q+iJ ·q

=
(
(2πi)N

det[A]

) 1
2

e−(i/2)J ·A−1·J (16)

The role of A in (16) is played in (15) by the differential operator −(∂2 +m2).
The defining equation for the inverse A ·A−1 = I or AijA

−1
jk = δik becomes in the

continuum limit

−(∂2 +m2)D(x − y)= δ(4)(x − y) (17)

We denote the continuum limit of A−1
jk by D(x − y) (which we know must be a

function of x − y , and not of x and y separately, since no point in spacetime is
special). Note that in going from the lattice to the continuum Kronecker is replaced
by Dirac. It is very useful to be able to go back and forth mentally between the
lattice and the continuum.

Our final result is

Z(J )= Ce
−(i/2)

∫∫
d4xd4yJ (x)D(x−y)J (y) ≡ CeiW(J ) (18)

withD(x) determined by solving (17). The overall factor C, which corresponds to
the overall factor with the determinant in (16), does not depend on J and, as will
become clear in the discussion to follow, is often of no interest to us. As a rule I
will omit writing C altogether. Clearly, C = Z(J = 0) so thatW(J) is defined by

Z(J )≡ Z(J = 0)eiW(J ) (19)

Observe that

W(J)= − 1

2

∫ ∫
d4xd4yJ (x)D(x − y)J (y) (20)

is a simple quadratic functional of J . In contrast, Z(J ) depends on arbitrarily high
powers of J . This fact will be of importance in Chapter I.7.

Free propagator

The function D(x), known as the propagator, plays an essential role in quantum
field theory. As the inverse of a differential operator it is clearly closely related to
the Green’s function you encountered in a course on electromagnetism.

Physicists are sloppy about mathematical rigor, but even so, they have to be
careful once in a while to make sure that what they are doing actually makes sense.
For the integral in (15) to converge for large ϕ we replace m2 →m2 − iε so that
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the integrand contains a factor e−ε
∫
d4xϕ2

, where ε is a positive infinitesimal3 we
will let tend to zero later.

We can solve (17) easily by going to momentum space and recalling the repre-
sentation of the Dirac delta function

δ(4)(x − y)=
∫

d4k

(2π)4
eik(x−y) (21)

The solution is

D(x − y)=
∫

d4k

(2π)4
eik(x−y)

k2 −m2 + iε (22)

which you can check by plugging into (17). Note that the so-called iε prescription
we just mentioned is essential; otherwise the k integral would hit a pole.

To evaluate D(x) we first integrate over k0 by the method of contours. De-

fine ωk = +
√�k2 +m2. The integrand has two poles in the complex k0 plane, at

±
√
ω2
k − iε, which in the ε→ 0 limit is equal to +ωk − iε and −ωk + iε. For x0

positive we can extend the integration contour that goes from −∞ to +∞ on the
real axis to include the infinite semicircle in the upper half-plane, thus enclosing
the pole at −ωk + iε and giving −i ∫ [d3k/(2π)32ωk]e

i(ωkt−�k·�x). For x0 negative
we close the contour in the lower half-plane. Thus

D(x)= −i
∫

d3k

(2π)32ωk
[e−i(ωkt−�k·�x)θ(x0)+ ei(ωkt−�k·�x)θ(−x0)] (23)

Physically,D(x) describes the amplitude for a disturbance in the field to prop-
agate from the origin to x . We expect drastically different behavior depending
on whether x is inside or outside the lightcone. Without evaluating the inte-
gral we can see roughly how things go. For x = (t , 0) with, say, t > 0, D(x)=
−i ∫ [d3k/(2π)32ωk]e

−iωkt is a superposition of plane waves and thus we should
have oscillatory behavior. In contrast, for x0 = 0, we have, upon interpreting
θ(0) = 1

2 , D(x) = −i ∫ [d3k/(2π)32
√�k2 +m2

]
e−i�k·�x and the square root cut

starting at ±im leads to an exponential decay ∼ e−m|�x|, as we would expect. Clas-
sically, a particle cannot get outside the lightcone, but a quantum field can “leak”
out over a distance of the order m−1.

Exercises

I.3.1. Verify that D(x) decays exponentially for spacelike separation.

I.3.2. Work out the propagator D(x) for a free-field theory in (1 + 1)-dimensional
spacetime and study the large x1 behavior for x0 = 0.

3 As is customary, ε is treated as generic, so that ε multiplied by any positive number is
still ε.



Chapter I.4

From Field to Particle to Force

From field to particle

In the previous chapter we obtained for the free theory

W(J)= − 1

2

∫ ∫
d4xd4yJ (x)D(x − y)J (y) (1)

which we now write in terms of the Fourier transform J (k)≡ ∫
d4xe−ikxJ (x):

W(J)= − 1

2

∫
d4k

(2π)4
J (k)∗ 1

k2 −m2 + iε J (k) (2)

[Note that J (k)∗ = J (−k) for J (x) real.]
We can jump up and down on the mattress any way we like. In other words, we

can choose any J (x) we want, and by exploiting this freedom of choice, we can
extract a remarkable amount of physics.

Consider J (x)= J1(x)+ J2(x), where J1(x) and J2(x) are concentrated in two
local regions 1 and 2 in spacetime (Fig. I.4.1). ThenW(J) contains four terms, of
the form J ∗

1 J1, J ∗
2 J2, J ∗

1 J2, and J ∗
2 J1. Let us focus on the last two of these terms,

one of which reads

W(J)= − 1

2

∫
d4k

(2π)4
J2(k)

∗ 1

k2 −m2 + iε J1(k) (3)

We see thatW(J) is large only if J1(x) and J2(x) overlap significantly in their
Fourier transform and if in the region of overlap in momentum space k2 − m2

almost vanishes. There is a “resonance type” spike at k2 =m2, that is, if the energy-
momentum relation of a particle of massm is satisfied. (We will use the language of
the relativistic physicist, writing “momentum space” for energy-momentum space,
and lapse into nonrelativistic language only when the context demands it, such as
in “energy-momentum relation.”)

We thus interpret the physics contained in our simple field theory as follows:
In region 1 in spacetime there exists a source that sends out a “disturbance in the
field,” which is later absorbed by a sink in region 2 in spacetime. Experimentalists
choose to call this disturbance in the field a particle of mass m. Our expectation

24
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Figure I.4.1

based on the equation of motion that the theory contains a particle of mass m is
fulfilled.

A bit of jargon: When k2 =m2, k is said to be on mass shell. Note, however,
that in (3) we integrate over all k , including values of k far from the mass shell.
For arbitrary k, it is a linguistic convenience to say that a “virtual particle” of
momentum k propagates from the source to the sink.

From particle to force

We can now go on to consider other possibilities for J (x) (which we will refer
to generically as sources), for example, J (x) = J1(x) + J2(x), where Ja(x) =
δ(3)(�x − �xa). In other words, J (x) is a sum of sources that are time-independent
infinitely sharp spikes located at �x1 and �x2 in space. (If you like more mathematical
rigor than is offered here, you are welcome to replace the delta function by lumpy
functions peaking at �xa. You would simply clutter up the formulas without gaining
much.) More picturesquely, we are describing two massive lumps sitting at �x1 and
�x2 on the mattress and not moving at all [no time dependence in J (x)].

What do the quantum fluctuations in the field ϕ , that is, the vibrations in the
mattress, do to the two lumps sitting on the mattress? If you expect an attraction
between the two lumps, you are quite right.

As before, W(J) contains four terms. We neglect the “self-interaction” term
J1J1 since this contribution would be present in W regardless of whether J2 is
present or not. We want to study the interaction between the two “massive lumps”
represented by J1 and J2. Similarly we neglect J2J2.

Plugging into (1) and doing the integral over d3x and d3ywe immediately obtain
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W(J)= −
∫ ∫

dx0dy0
∫
dk0

2π
eik

0(x−y)0
∫

d3k

(2π)3
ei

�k·( �x1− �x2)

k2 −m2 + iε (4)

(The factor 2 comes from the two terms J2J1 and J1J2. ) Integrating over y0 we
get a delta function setting k0 to zero (so that k is certainly not on mass shell, to
throw the jargon around a bit). Thus we are left with

W(J)=
(∫

dx0
) ∫

d3k

(2π)3
ei

�k·( �x1− �x2)

�k2 +m2
(5)

Note that the infinitesimal iε can be dropped since the denominator �k2 + m2 is
always positive.

The factor (
∫
dx0) should have filled us with fear and trepidation: an integral

over time, it seems to be infinite. Fear not! Recall that in the path integral formalism
Z = C eiW(J ) represents 〈0| e−iHT |0〉 = e−iET, where E is the energy due to the
presence of the two sources acting on each other. The factor (

∫
dx0) produces

precisely the time interval T. All is well. Setting iW = iET we obtain from (5)

E = −
∫

d3k

(2π)3
ei

�k·( �x1− �x2)

�k2 +m2
(6)

This energy is negative! The presence of two delta function sources, at �x1 and
�x2, has lowered the energy. In other words, the two sources attract each other by
virtue of their coupling to the field ϕ . We have derived our first physical result in
quantum field theory!

We identifyE as the potential energy between two static sources. Even without
doing the integral we see that as the separation �x1 − �x2 between the two sources
becomes large, the oscillatory exponential cuts off the integral. The characteristic
distance is the inverse of the characteristic value of k , which ism. Thus, we expect
the attraction between the two sources to decrease rapidly to zero over the distance
1/m.

The range of the attractive force generated by the field ϕ is determined inversely
by the mass m of the particle described by the field. Got that?

The integral is done in the appendix to this chapter and gives

E = − 1

4πr
e−mr (7)

The result is as we expected: The potential drops off exponentially over the distance
scale 1/m. Obviously, dE/dr > 0: The two massive lumps sitting on the mattress
can lower the energy by getting closer to each other.

What we have derived was one of the most celebrated results in twentieth-
century physics. Yukawa proposed that the attraction between nucleons in the
atomic nucleus is due to their coupling to a field like the ϕ field described here.
The known range of the nuclear force enabled him to predict not only the existence
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of the particle associated with this field, now called the π meson1 or the pion, but
its mass as well. As you probably know, the pion was eventually discovered with
essentially the properties predicted by Yukawa.

Origin of force

That the exchange of a particle can produce a force was one of the most profound
conceptual advances in physics. We now associate a particle with each of the known
forces: for example, the photon with the electromagnetic force and the graviton
with the gravitational force; the former is experimentally well established and the
latter while it has not yet been detected experimentally hardly anyone doubts its
existence. We will discuss the photon and the graviton in the next chapter, but
we can already answer a question smart high school students often ask: Why do
Newton’s gravitational force and Coulomb’s electric force both obey the 1/r2 law?

We see from (7) that if the massm of the mediating particle vanishes, the force
produced will obey the 1/r2 law. If you trace back over our derivation, you will see
that this comes about from the fact that the Lagrangian density for the simplest field
theory involves two powers of the spacetime derivative ∂ (since any term involving
one derivative such asϕ ∂ϕ is not Lorentz invariant). Indeed, the power dependence
of the potential follows simply from dimensional analysis:

∫
d3k(ei

�k·�x/k2)∼ 1/r .

Connected versus disconnected

We end with a couple of formal remarks of importance to us only in Chapter I.7.
First, note that we might want to draw a small picture Fig.(I.4.2) to represent the
integrand J (x)D(x − y)J (y) inW(J): A disturbance propagates from y to x (or
vice versa). In fact, this is the beginning of Feynman diagrams! Second, recall that

Z(J )= Z(J = 0)
∞∑
n=0

[iW(J ))n]

n!

For instance, the n= 2 term in Z(J )/Z(J = 0) is given by

1

2!

(
− i

2

)2 ∫ ∫ ∫ ∫
d4x1d

4x2d
4x3d

4x4D(x1 − x2)

D(x3 − x4)J (x1)J (x2)J (x3)J (x4)

The integrand is graphically described in Figure I.4.3. The process is said to be
disconnected: The propagation from x1 to x2 and the propagation from x3 to x4

1 The etymology behind this word is quite interesting (A. Zee, Fearful Symmetry: see pp.
169 and 335 to learn, among other things, the French objection and the connection between
meson and illusion).
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proceed independently. We will come back to the difference between connected
and disconnected in Chapter I.7.

Appendix

Writing �x ≡ ( �x1 − �x2) and u≡ cos θ with θ the angle between �k and �x, we evaluate the
integral in (6) spherical coordinates (with k = |�k| and r = |�x|) to be

I ≡ 1

(2π)2

∫ ∞

0
dk k2

∫ +1

−1
du

eikru

k2 +m2
= 2i

(2π)2ir

∫ ∞

0
dk k

sin kr

k2 +m2
(8)

Since the integrand is even, we can extend the integral and write it as

1

2

∫ ∞

−∞
dk k

sin kr

k2 +m2
= 1

2i

∫ ∞

−∞
dk k

1

k2 +m2
eikr .

Since r is positive, we can close the contour in the upper half-plane and pick up the pole at
+im, obtaining (1/2i)(2πi)(im/2im)e−mr = (π/2)e−mr . Thus, I = (1/4πr)e−mr .

Exercise

I.4.1. Calculate the analog of the inverse square law in a (2 + 1)-dimensional universe,
and more generally in a (D + 1)-dimensional universe.



Chapter I.5

Coulomb and Newton:
Repulsion and Attraction

Why like charges repel

We suggested that quantum field theory can explain both Newton’s gravitational
force and Coulomb’s electric force naturally. Between like objects Newton’s force
is attractive while Coulomb’s force is repulsive. Is quantum field theory “smart
enough” to produce this observational fact, one of the most basic in our under-
standing of the physical universe? You bet!

We will first treat the quantum field theory of the electromagnetic field, known
as quantum electrodynamics or QED for short. In order to avoid complications
at this stage associated with gauge invariance (about which much more later) I
will consider instead the field theory of a massive spin 1 meson, or vector meson.
After all, experimentally all we know is an upper bound on the photon mass,
which although tiny is not mathematically zero. We can adopt a pragmatic attitude:
Calculate with a photon mass m and set m= 0 at the end, and if the result does
not blow up in our faces, we will presume that it is OK.1

Recall Maxwell’s Lagrangian for electromagnetism L = − 1
4FµνF

µν, where
Fµν ≡ ∂µAν − ∂νAµ with Aµ(x) the vector potential. You can see the reason for
the important overall minus sign in the Lagrangian by looking at the coefficient
of (∂0Ai)

2, which has to be positive, just like the coefficient of (∂0ϕ)
2 in the

Lagrangian for the scalar field. This says simply that time variation should cost
a positive amount of action.

I will now give the photon a small mass by changing the Lagrangian to L =
− 1

4FµνF
µν + 1

2m
2AµA

µ + AµJµ. (The mass term is written in analogy to the
mass term m2ϕ2 in the scalar field Lagrangian; we will see later that it is indeed
the photon mass.) I have also added a source Jµ(x) ,which in this context is more
familiarly known as a current. We will assume that the current is conserved so that
∂µJ

µ = 0.

1 When I took a field theory course as a student with Sidney Coleman this was how he
treated QED in order to avoid discussing gauge invariance.

30
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Well, you know that the field theory of our vector meson is defined by the path
integral Z = ∫

DA eiS(A) ≡ eiW(J ) with the action

S(A)=
∫
d4xL =

∫
d4x{ 1

2Aµ[(∂2 +m2)gµν − ∂µ∂ν]Aν + AµJµ} (1)

The second equality follows upon integrating by parts [compare (I.3.15)].
By now you have learned that we simply apply (I.3.16). We merely have to find

the inverse of the differential operator in the square bracket; in other words, we
have to solve

[(∂2 +m2)gµν − ∂µ∂ν]Dνλ(x)= δµλ δ(4)(x) (2)

As before [compare (I.3.17)] we go to momentum space by defining

Dνλ(x)=
∫

d4k

(2π)4
Dνλ(k)e

ikx

Plugging in, we find that [−(k2 −m2)gµν + kµkν]Dνλ(k)= δµλ , giving

Dνλ(k)= −gνλ + kνkλ/m2

k2 −m2
(3)

This is the photon, or more accurately the massive vector meson, propagator. Thus

W(J)= − 1

2

∫
d4k

(2π)4
Jµ(k)∗

−gµν + kµkν/m2

k2 −m2 + iε J ν(k) (4)

Since current conservation ∂µJ
µ(x)= 0 gets translated into momentum space

as kµJ
µ(k)= 0, we can throw away the kµkν term in the photon propagator. The

effective action simplifies to

W(J)= 1

2

∫
d4k

(2π)4
Jµ(k)∗ 1

k2 −m2 + iε Jµ(k) (5)

No further computation is needed to obtain a profound result. Just compare this
result to (I.4.2). The field theory has produced an extra sign. The potential energy
between two lumps of charge density J 0(x) is positive. The electromagnetic force
between like charges is repulsive!

We can now safely let the photon mass m go to zero thanks to current conser-
vation, [Note that we could not have done that in (3).] Indeed, referring to (I.4.7)
we see that the potential energy between like charges is

E = 1

4πr
e−mr → 1

4πr
(6)

To accommodate positive and negative charges we can simply write Jµ =
Jµ
p

− Jµ
n

. We see that a lump with charge density J 0
p

is attracted to a lump with

charge density J 0
n

.
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Bypassing Maxwell

Having done electromagnetism in two minutes flat let me now do gravity. Let us
move on to the massive spin 2 meson field. In my treatment of the massive spin 1
meson field I took a short cut. Assuming that you are familiar with the Maxwell
Lagrangian, I simply added a mass term to it and took off. But I do not feel com-
fortable assuming that you are equally familiar with the corresponding Lagrangian
for the massless spin 2 field (the so-called linearized Einstein Lagrangian, which
I will discuss in a later chapter). So here I will follow another strategy.

I invite you to think physically, and together we will arrive at the propagator
for a massive spin 2 field. First, we will warm up with the massive spin 1 case.

In fact, start with something even easier: the propagator D(k)= 1/(k2 −m2)

for a massive spin 0 field. It tells us that the amplitude for the propagation of a
spin 0 disturbance blows up when the disturbance is almost a real particle. The
residue of the pole is a property of the particle. The propagator for a spin 1 field
Dνλ carries a pair of Lorentz indices and in fact we know what it is from (3):

Dνλ(k)= −Gνλ
k2 −m2

(7)

where for later convenience we have defined

Gνλ(k)≡ gνλ − kνkλ

m2
(8)

Let us now understand the physics behind Gνλ. I expect you to remember the
concept of polarization from your course on electromagnetism. A massive spin
1 particle has three degrees of polarization for the obvious reason that in its rest
frame its spin vector can point in three different directions. The three polarization
vectors ε(a)

µ
are simply the three unit vectors pointing along the x , y , and z axes,

respectively (a = 1, 2, 3): ε(1)
µ

= (0, 1, 0, 0), ε(2)
µ

= (0, 0, 1, 0), ε(3)
µ

= (0, 0, 0, 1).
In the rest frame kµ = (m, 0, 0, 0) and so

kµε(a)
µ

= 0 (9)

Since this is a Lorentz invariant equation, it holds for a moving spin 1 particle as
well. Indeed, with a suitable normalization condition this fixes the three polariza-
tion vectors ε(a)

µ
(k) for a particle with momentum k.

The amplitude for a particle with momentum k and polarization a to be created
at the source is proportional to ε(a)λ (k), and the amplitude for it to be absorbed
at the sink is proportional to ε(a)

ν
(k). We multiply the amplitudes together to get

the amplitude for propagation from source to sink, and then sum over the three
possible polarizations. Now we understand the residue of the pole in the spin 1
propagator Dνλ(k): It represents

∑
a ε

(a)
ν
(k) ε

(a)
λ (k) . To calculate this quantity,

note that by Lorentz invariance it can only be a linear combination of gνλ and kνkλ.
The condition kµε(a)

µ
= 0 fixes the combination as gνλ − kνkλ/m2. We evaluate

the left-hand side for k at rest with ν = λ= 1, for instance, and fix the overall and
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all-crucial sign to be −1. Thus

∑
a

ε(a)
ν
(k)ε

(a)
λ (k)= −Gνλ(k)≡ −

(
gνλ − kνkλ

m2

)
(10)

We have thus constructed the propagator Dνλ(k) for a massive spin 1 particle,
bypassing Maxwell. Onward to spin 2! We want to similarly bypass Einstein.

Bypassing Einstein

A massive spin 2 particle has 5 (2 · 2 + 1= 5, remember?) degrees of polarization,
characterized by the five polarization tensors ε(a)

µν
(a = 1, 2, . . . , 5) symmetric in

the indices µ and ν satisfying

kµε(a)
µν

= 0 (11)

and the tracelessness condition

gµνε(a)
µν

= 0 (12)

Let’s count as a check. A symmetric Lorentz tensor has 4 · 5/2 = 10 components.
The four conditions in (11) and the single condition in (12) cut the number of com-
ponents down to 10 − 4 − 1 = 5, precisely the right number. (Just to throw some
jargon around, remember how to construct irreducible group representations? If
not, read Appendix C.) We fix the normalization of εµν by setting the positive

quantity
∑
a ε
(a)

12 (k)ε
(a)

12 (k)= 1.

So, in analogy with the spin 1 case we now determine
∑
a ε

(a)
µν
(k)ε

(a)
λσ (k). We

have to construct this object out of gµν and kµ, or equivalently Gµν and kµ. This
quantity must be a linear combination of terms such as GµνGλσ , Gµνkλkσ , and
so forth. Using (11) and (12) repeatedly (Exercise I.5.1) you will easily find that∑

a

ε(a)
µν
(k)ε

(a)
λσ (k)= (GµλGνσ +GµσGνλ)− 2

3GµνGλσ (13)

The overall sign and proportionality constant are determined by evaluating both
sides for µ= λ= 1 and ν = σ = 2, for instance.

Thus, we have determined the propagator for a massive spin 2 particle

Dµν , λσ (k)=
(GµλGνσ +GµσGνλ)− 2

3GµνGλσ

k2 −m2
(14)

Why we fall

We are now ready to understand one of the fundamental mysteries of the universe:
Why masses attract.
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Recall from your courses on electromagnetism and special relativity that the
energy or mass density out of which mass is composed is part of a stress-energy
tensor T µν . For our purposes, in fact, all you need to remember is that it is a
symmetric tensor and that the component T 00 is the energy density.

To couple to the stress-energy tensor, we need a tensor field ϕµν symmetric in
its two indices. In other words, the Lagrangian of the world should contain a term
like ϕµνT

µν . This is in fact how we know that the graviton, the particle responsible
for gravity, has spin 2, just as we know that the photon, the particle responsible for
electromagnetism and hence coupled to the current Jµ, has spin 1. In Einstein’s
theory, which we will discuss in a later chapter, ϕµν is of course part of the metric
tensor.

Just as we pretended that the photon has a small mass to avoid having to discuss
gauge invariance, we will pretend that the graviton has a small mass to avoid having
to discuss general coordinate invariance.2 Aha, we just found the propagator for a
massive spin 2 particle. So let’s put it to work.

In precise analogy to (4)

W(J)= − 1

2

∫
d4k

(2π)4
Jµ(k)∗

−gµν + kµkν/m2

k2 −m2 + iε J ν(k) (15)

describing the interaction between two electromagnetic currents, the interaction
between two lumps of stress energy is described by

W(T )=

− 1

2

∫
d4k

(2π)4
T µν(k)∗

(GµλGνσ +GµσGνλ)− 2
3GµνGλσ

k2 −m2 + iε T λσ (k)
(16)

From the conservation of energy and momentum ∂µT
µν(x) = 0 and hence

kµT
µν(k)= 0, we can replace Gµν in (16) by gµν .

Now comes the punchline. Look at the interaction between two lumps of energy
density T 00. We have from (16) that

W(T )= − 1

2

∫
d4k

(2π)4
T 00(k)∗

1 + 1 − 2
3

k2 −m2 + iε T
00(k) (17)

Comparing with (5) and using the well-known fact that (1 + 1 − 2
3) > 0, we see

that while like charges repel, masses attract. Trumpets, please!

2 For the moment, I ask you to ignore all subtleties and simply assume that in order to
understand gravity it is kosher to let m→ 0. I will give a precise discussion of Einstein’s
theory of gravity in Chapter VIII.1.
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The universe

It is difficult to overstate the importance (not to speak of the beauty) of what we
have learned: The exchange of a spin 0 particle produces an attractive force, of
a spin 1 particle a repulsive force, and of a spin 2 particle an attractive force,
realized in the hadronic strong interaction, the electromagnetic interaction, and the
gravitational interaction, respectively. The universal attraction of gravity produces
an instability that drives the formation of structure in the early universe.3 Denser
regions become denser yet. The attractive nuclear force mediated by the spin
0 particle eventually ignites the stars. Furthermore, the attractive force between
protons and neutrons mediated by the spin 0 particle is able to overcome the
repulsive electric force between protons mediated by the spin 1 particle to form a
variety of nuclei without which the world would certainly be rather boring. The
repulsion between likes and hence attraction between opposites generated by the
spin 1 particle allow electrically neutral atoms to form.

The world results from a subtle interplay among spin 0, 1, and 2.
In this lightning tour of the universe, we did not mention the weak interaction.

In fact, the weak interaction plays a crucial role in keeping stars such as our sun
burning at a steady rate.

Degrees of freedom

Now for a bit of cold water: Logically and mathematically the physics of a particle
with mass m �= 0 could well be different from the physics with m = 0. Indeed,
we know from classical electromagnetism that an electromagnetic wave has 2
polarizations, that is, 2 degrees of freedom. For a massive spin 1particle we can go
to its rest frame, where the rotation group tells us that there are 2·1+ 1= 3 degrees
of freedom. The crucial piece of physics is that we can never bring the massless
photon to its rest frame. Mathematically, the rotation group SO(3) degenerates into
SO(2), the group of 2-dimensional rotations around the direction of the photon’s
momentum.

We will see in Chapter II.7 that the longitudinal degree of freedom of a massive
spin 1 meson decouples as we take the mass to zero. The treatment given here
for the interaction between charges (6) is correct. However, in the case of gravity,
the 2

3 in (17) is replaced by 1 in Einstein’s theory, as we will see Chapter VIII.1.
Fortunately, the sign of the interaction given in (17) does not change. Mute the
trumpets a bit.

3 A good place to read about gravitational instability and the formation of structure in
the universe along the line sketched here is in A. Zee, Einstein’s Universe (formerly known
as An Old Man’s Toy).



36 I. Motivation and Foundation

Appendix

Pretend that we never heard of the Maxwell Lagrangian. We want to construct a relativistic
Lagrangian for a massive spin 1 meson field. Together we will discover Maxwell. Spin
1 means that the field transforms as a vector under the 3-dimensional rotation group.
The simplest Lorentz object that contains the 3-dimensional vector is obviously the 4-
dimensional vector. Thus, we start with a vector field Aµ(x).

That the vector field carries mass m means that it satisfies the field equation

(∂2 +m2)Aµ = 0 (18)

A spin 1 particle has 3 degrees of freedom [remember, in fancy language, the representation
j of the rotation group has dimension (2j + 1); here j = 1.] On the other hand, the field
Aµ(x) contains 4 components. Thus, we must impose a constraint to cut down the number
of degrees from 4 to 3. The only Lorentz covariant possibility (linear in Aµ) is

∂µA
µ = 0 (19)

It may also be helpful to look at (18) and (19) in momentum space, where they read
(k2 − m2)Aµ(k) = 0 and kµA

µ(k) = 0. The first equation tells us that k2 = m2 and the

second that if we go to the rest frame kµ = (m, �0) then A0 vanishes, leaving us with 3
nonzero components Ai with i = 1, 2, 3.

The remarkable observation is that we can combine (18) and (19) into a single equation,
namely

(gµν∂2 − ∂µ∂ν)Aν +m2Aµ = 0 (20)

Verify that (20) contains both (18) and (19). Act with ∂µ on (20). We obtainm2∂µA
µ= 0,

which implies that ∂µA
µ = 0 . (At this step it is crucial that m �= 0 and that we are not

talking about the strictly massless photon.) We have thus obtained (19 ); using (19) in (20)
we recover (18).

We can now construct a Lagrangian by multiplying the left-hand side of (20) by + 1
2Aµ

(the 1
2 is conventional but the plus sign is fixed by physics, namely the requirement of

positive kinetic energy); thus

L = 1
2Aµ[(∂2 +m2)gµν − ∂µ∂ν]Aν (21)

Integrating by parts, we recognize this as the massive version of the Maxwell Lagrangian.
In the limit m→ 0 we recover Maxwell.

A word about terminology: Some people insist on calling only Fµν a field and Aµ a
potential. Conforming to common usage, we will not make this fine distinction. For us, any
dynamical function of spacetime is a field.

Exercises

I.5.1. Write down the most general form for
∑
a ε
(a)
µν
(k)ε

(a)
λσ (k) using symmetry repeat-

edly. For example, it must be invariant under the exchange {µν↔ λσ }. You might
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end up with something like

AGµνGλσ + B(GµλGνσ +GµσGνλ)+ C(Gµνkλkσ + kµkνGλσ )
+D(kµkλGνσ + kµkσGνλ + kνkσGµλ + kνkλGµσ)+ Ekµkνkλkσ (22)

with various unknown A, . . . , E . Apply kµ
∑
a ε

(a)
µν
(k)ε

(a)
λσ (k)= 0 and find out

what that implies for the constants. Proceeding in this way, derive (13).



Chapter I.6

Inverse Square Law and the
Floating 3-Brane

Why inverse square?

In your first encounter with physics, didn’t you wonder why an inverse square
force law and not, say, an inverse cube law? You now have the deep answer. When a
massless particle is exchanged between two particles, the potential energy between
the two particles goes as

V (r)∝
∫
d3k ei

�k·�x 1
�k2

∝ 1

r
(1)

The spin of the exchanged particle controls the overall sign, but the 1/r follows
just from dimensional analysis, as I remarked earlier. Basically, V (r) is the Fourier
transform of the propagator. The �k2 in the propagator comes from the (∂iϕ ·
∂iϕ) term in the action, where ϕ denotes generically the field associated with
the massless particle being exchanged, and the (∂iϕ · ∂iϕ) form is required by
rotational invariance. It couldn’t be �k or �k3 in (1); �k2 is the simplest possibility.
So you can say that in some sense ultimately the inverse square law comes from
rotational invariance!

Physically, the inverse square law goes back to Faraday’s flux picture. Consider
a sphere of radius r surrounding a charge. The electric flux per unit area going
through the sphere varies as 1/4πr2. This geometric fact is reflected in the factor
d3k in (1).

Brane world

Remarkably, with the tiny bit of quantum field theory I have exposed you to, I can
already take you to the frontier of current research, current as of the writing of this
book. In string theory, our (3 + 1)-dimensional world could well be embedded in
a larger universe, the way a (2 + 1)-dimensional sheet of paper is embedded in our
everyday (3 + 1)-dimensional world. We are said to be living on a 3 brane.

So suppose there are n extra dimensions, with coordinates x4, x5, . . . , xn+3.
Let the characteristic scales associated with these extra coordinates be R. I can’t

38
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go into the different detailed scenarios describing what R is precisely. For some
reason I can’t go into either, we are stuck on the 3 brane. In contrast, the graviton
is associated intrinsically with the structure of spacetime and so roams throughout
the (n+ 3 + 1)-dimensional universe.

All right, what is the gravitational force law between two particles? It is surely
not your grandfather’s gravitational force law: We Fourier transform

V (r)∝
∫
d3+nk ei�k·�x 1

�k2
∝ 1

r1+n (2)

to obtain a 1/r1+n law.
Doesn’t this immediately contradict observation?
Well, no, because Newton’s law continues to hold for r � R. In this regime,

the extra coordinates are effectively zero compared to the characteristic length
scale r we are interested in. The flux cannot spread far in the direction of the n
extra coordinates. Think of the flux being forced to spread in only the three spatial
directions we know, just as the electromagnetic field in a wave guide is forced to
propagate down the tube. Effectively we are back in (3 + 1)-dimensional spacetime
and V (r) reverts to a 1/r dependence.

The new law of gravity (2) holds only in the opposite regime r � R. Heuris-
tically, when R is much larger than the separation between the two particles, the
flux does not know that the extra coordinates are finite in extent and thinks that it
lives in an (n+ 3 + 1)-dimensional universe.

Because of the weakness of gravity, Newton’s force law has not been tested
to much accuracy at laboratory distance scales, and so there is plenty of room for
theorists to speculate in:R could easily be much larger than the scale of elementary
particles and yet much smaller than the scale of everyday phenomena. Incredibly,
the universe could have “large extra dimensions”! (The word “large” means large
on the scale of particle physics.)

Planck mass

To be quantitative, let us define the Planck massMPl by writing Newton’s law more
rationally as V (r) = GNm1m2(1/r) = (m1m2/M

2
P l
)(1/r). Numerically, MPl �

1019 Gev. This enormous value obviously reflects the weakness of gravity.
In fundamental units in which � and c are set to unity, gravity defines an

intrinsic mass or energy scale much higher than any scale we have yet explored
experimentally. Indeed, one of the fundamental mysteries of contemporary particle
physics is why this mass scale is so high compared to anything else we know of. I
will come back to this so-called hierarchy problem in due time. For the moment,
let us ask if this new picture of gravity, new in the waning moments of the last
century, can alleviate the hierarchy problem by lowering the intrinsic mass scale
of gravity.

Denote the mass scale characteristic of gravity in the (n+ 3 + 1)-dimensional
universe by MPl(n+3+1) so that the gravitational potential between two objects of
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masses m1 and m2 separated by a distance r � R is given by

V (r)= m1m2

[MPl(n+3+1)]2+n
1

r1+n

Note that the dependence on MPl(n+3+1) follows from dimensional analysis: two
powers to cancel m1m2 and n powers to match the n extra powers of 1/r . For
r � R , as we have argued, the geometric spread of the gravitational flux is cut off
by R so that the potential becomes

V (r)= m1m2

[MPl(n+3+1)]2+n
1

Rn

1

r

Comparing with the observed law V (r)= (m1m2/M
2
Pl)(1/r) we obtain

M2
Pl(n+3+1) =

M2
Pl

[MPl(n+3+1)R]n
(3)

If MPl(n+3+1)R can be make large enough, we have the intriguing possibility that
the fundamental scale of gravity MPl(n+3+1) is much lower than what we have
always thought.

Thus, R is bounded on one side by our desire to lower the fundamental scale
of gravity and on the other by experiments.

Exercise

I.6.1. Putting in the numbers show that the case n= 1 is already ruled out. For help, see
S. Nussinov and R. Schrock, Phys. Rev. D59: 105002, 1999.
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Feynman Diagrams

Feynman brought quantum field theory to the masses.

—J. Schwinger

Anharmonicity in field theory

The free field theory we studied in the last few chapters was easy to solve because
the defining path integral (I.3.14) is Gaussian, so we could simply apply (I.2.15).
(This corresponds to solving the harmonic oscillator in quantum mechanics.) As
I noted in Chapter I.3, within the harmonic approximation the vibrational modes
on the mattress can be linearly superposed and thus they simply pass through each
other. The particles represented by wave packets constructed out of these modes
do not interact:1 hence the term free field theory. To have the modes scatter off
each other we have to include anharmonic terms in the Lagrangian so that the
equation of motion is no longer linear. For the sake of simplicity let us add only
one anharmonic term − λ

4!ϕ
4 to our free field theory and, recalling (I.3.11), try to

evaluate

Z(J )=
∫
Dϕ e

i
∫
d4x{ 1

2 [(∂ϕ)2−m2ϕ2]− λ
4!ϕ

4+Jϕ} (1)

(We suppress the dependence of Z on λ.)
Doing quantum field theory is no sweat, you say, it just amounts to doing the

functional integral (1). But the integral is not easy! If you could do it, it would be
big news.

1 A potential source of confusion: Thanks to the propagation of ϕ , the sources coupled
to ϕ interact, as was seen in Chapter I.4, but the particles associated with ϕ do not interact
with each other. This is like saying that charged particles coupled to the photon interact, but
(to leading approximation) photons do not interact with each other.

41
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Feynman diagrams made easy

As an undergraduate, I heard of these mysterious little pictures called Feynman
diagrams and really wanted to learn about them. I am sure that you too have
wondered about those funny diagrams. Well, I want to show you that Feynman
diagrams are not such a big deal: Indeed we have already drawn little spacetime
pictures in Chapters I.3 and I.4 showing how particles can appear, propagate, and
disappear.

Feynman diagrams have long posed somewhat of an obstacle for first-time
learners of quantum field theory. To derive Feynman diagrams, traditional texts
typically adopt the canonical formalism (which I will introduce in the next chapter)
instead of the path integral formalism used here. As we will see, in the canonical
formalism fields appear as quantum operators. To derive Feynman diagrams, we
would have to solve the equation of motion of the field operators perturbatively in
λ. A formidable amount of machinery has to be developed.

In the opinion of those who prefer the path integral, the path integral formalism
derivation is considerably simpler (naturally!). Nevertheless, the derivation can
still get rather involved and the student could easily lose sight of the forest for the
trees. There is no getting around the fact that you would have to put in some effort.

I will try to make it as easy as possible for you. I have hit upon the great
pedagogical device of letting you discover the Feynman diagrams for yourself.
My strategy is to let you tackle two problems of increasing difficulty, what I call
the baby problem and the child problem. By the time you get through these, the
problem of evaluating (1) will seem much more tractable.

A baby problem

The baby problem is to evaluate the ordinary integral

Z(J )=
∫ +∞

−∞
dqe− 1

2m
2q2− λ

4!q
4+Jq (2)

evidently a much simpler version of (1).
First, a trivial point: we can always scale q → q/m so that Z =m−1F( λ

m4 , J
m
),

but we won’t.
For λ = 0 this is just one of the Gaussian integrals done in the appendix of

chapter I.2. Well, you say, it is easy enough to calculate Z(J ) as a series in λ :
expand

Z(J )=
∫ +∞

−∞
dqe− 1

2m
2q2+Jq

[
1 − λ

4!
q4 + 1

2 (
λ

4!
)2q8 + . . .

]

and integrate term by term. You probably even know one of several tricks for com-

puting
∫ +∞
−∞ dqe− 1

2m
2q2+Jqq4n: you write it as ( d

dJ
)4n

∫ +∞
−∞

dqe− 1
2m

2q2+Jq and refer to (I.2.11). So
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Figure I.7.1

Z(J )= (1 − λ

4!
(
d

dJ
)4 + 1

2
(
λ

4!
)2(

d

dJ
)8 + . . .)

∫ +∞

−∞
dqe−

1
2m

2q2+Jq (3)

= e− λ
4!(

d
dJ
)4
∫ +∞

−∞
dqe−

1
2m

2q2+Jq = (2π
m2
)

1
2 e−

λ
4!(

d
dJ
)4e

1
2m2 J

2

(4)

(There are other tricks, such as differentiating
∫ +∞
−∞ dqe− 1

2m
2q2+Jq with respect

to m2 repeatedly, but I want to discuss a trick that will also work for field the-
ory.) By expanding the two exponentials we can obtain any term in a double
series expansion of Z(J ) in λ and J . [We will often suppress the overall factor

(2π/m2)
1
2 = Z(J = 0, λ = 0) ≡ Z(0, 0) since it will be common to all terms.

When we want to be precise, we will define Z̃ = Z(J )/Z(0, 0).]
For example, suppose we want the term of order λ and J 4 in Z̃. We extract

the order J 8 term in eJ
2/2m2

, namely, [1/4!(2m2)4]J 8, replace e−(λ/4!)(d/dJ )4

by −(λ/4!)(d/dJ )4, and differentiate to get [8!(−λ)/(4!)3(2m2)4]J 4. Another
example: the term of order λ2 and J 6 is 1

2 (λ/4!)2(d/dJ )8[1/7!(2m2)7]J 14 =
[14!(−λ)2/(4!)26!7!2(2m2)7]J 6. A third example: The term of order λ2 and J 4

is [12!(−λ)2/(4!)33!(2m2)6]J 4. Finally, the term of order λ and J 0 is [1/2(2m2)2]
(−λ).

You can do this as well as I can! Do a few more and you will soon see a pattern. In
fact, you will eventually realize that you can associate diagrams with each term and
codify some rules. Our four examples are associated with the diagrams in Figures
I.7.1–I.7.4, respectively. You can see, for a reason you will soon understand, that
each term can be associated with several diagrams. I leave you to work out the rules
carefully to get the numerical factors right (but trust me, the “future of democracy”
is not going to depend on them). The rules go something like this: (1) diagrams
are made of lines and vertices at which four lines meet; (2) for each vertex assign
a factor of (−λ); (3) for each line assign 1/m2; and (4) for each external end
assign J (e.g., Figure I.7.2 has seven lines, two vertices, and six ends, giving
∼ [(−λ)2/(m2)7]J 6.) (Did you notice that twice the number of lines is equal to
four times the number of vertices plus the number of ends? We will meet relations
like that in Chapter III.2.)
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Figure I.7.2

For obvious reasons, some diagrams (e.g., Figure I.7.1a, I.7.2a) are known as
tree2 diagrams and others (e.g., Figs. I.7.1b and I.7.3a) as loop diagrams.

Do as many examples as you need until you feel thoroughly familiar with what
is going on, because we are going to do exactly the same thing in quantum field
theory. It will look much messier, but only superficially. Be sure you understand
how to use diagrams to represent the double series expansion of Z̃(J ) before
reading on. Please. In my experience teaching, students who have not thoroughly
understood the expansion of Z̃(J ) have no hope of understanding what we are
going to do in the field theory context.

Wick contraction

It is more obvious than obvious that we can expand Z(J ) in powers of J , if we
please, instead of in powers of λ. As you will see, particle physicists like to classify
in power of J . In our baby problem, we can write

Z(J )=
∞∑
s=0

1

s!
J s
∫ +∞

−∞
dqe−

1
2m

2q2−(λ/4!)q4
qs ≡ Z(0, 0)

∞∑
s=0

1

s!
J sG(s) (5)

2 The Chinese character for tree (A. Zee, Swallowing Clouds) is shown in Fig. I.7.5. I
leave it to you to figure out why this diagram does not appear in our Z(J ).
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The coefficient G(s), whose analogs are known as “Green’s functions” in field
theory, can be evaluated as a series in λ with each term determined by Wick
contraction (I.2.10). For instance, the O(λ) term in G(4) is

1

(4!)2
(−λ)

∫ +∞

−∞
dqe−

1
2m

2q2
q8 = 7!!

(4!)2
1

m8

which of course better be equal3 to what we obtained above for the λJ 4 term in Z̃.
Thus, there are two ways of computing Z : you expand in λ first or you expand in
J first.

Figure I.7.4

3 As a check on the laws of arithmetic we verify that indeed 7!!/(4!)2 = 8!/(4!)324.
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Figure I.7.5

Connected versus disconnected

You will have noticed that some Feynman diagrams are connected and others are
not. Thus, Figure I.7.2a is connected while 2b is not. I presaged this at the end of
Chapter I.4 and in Figures I.4.2 and I.4.3. Write

Z(J , λ)= Z(J = 0, λ)eW(J ,λ) = Z(J = 0, λ)
∞∑
N=0

1

N !
[W(J , λ)]N (6)

By definition, Z(J = 0, λ) consists of those diagrams with no external source
J , such as the one in Figure I.7.4. The statement is that W is a sum of con-
nected diagrams while Z contains connected as well as disconnected diagrams.
Thus, Figure I.7.2b consists of two disconnected pieces and comes from the term
(1/2!)[W(J , λ)]2 in (6), the 2! taking into account that it does not matter which of
the two pieces you put “on the left or on the right.” Similarly, Figure I.7.2c comes
from (1/3!)[W(J , λ)]3. Thus, it is W that we want to calculate, not Z. If you’ve
had a good course on statistical mechanics, you will recognize that this business
of connected graphs versus disconnected graphs is just what underlies the relation
between free energy and the partition function.

Propagation: from here to there

All these features of the baby problem are structurally the same as the correspond-
ing features of field theory and we can take over the discussion almost immediately.
But before we graduate to field theory, let us consider what I call a child problem,
the evaluation of a multiple integral instead of a single integral:

Z(J )=
∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dq1dq2

. . . dqN e
− 1

2 q·A·q−(λ/4!)q4+J ·q (7)

with q4 ≡∑
i q

4
i

. Generalizing the steps leading to (3) we obtain
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Z(J )=
[
(2π)N

det[A]

] 1
2

e
−(λ/4!)

∑
i
(∂/∂Ji)

4
e

1
2 J ·A−1·J (8)

Alternatively, just as in (5) we can expand in powers of J

Z(J )=
∞∑
s=0

1

s!
Ji1

. . . Jis

∫ +∞

−∞

(∏
l

dql

)
e−

1
2 q·A·q−(λ/4!)q4

qi1
. . . qis

= Z(0, 0)
∞∑
s=0

1

s!
Ji1

. . . JisG
(s)
i1...is (9)

which again we can expand in powers of λ and evaluate by Wick contracting.
The one feature the child problem has that the baby problem doesn’t is prop-

agation “from here to there”. Recall the discussion of the propagator in Chapter
I.3. Just as in (I.3.16) we can think of the index i as labeling the sites on a lattice.
Indeed, in (I.3.16) we had in effect evaluated the “2-point Green’s function” G(2)ij
to zeroth order in λ (differentiate (I.3.16) with respect to J twice):

G
(2)
ij (λ= 0)=

[∫ +∞

−∞

(∏
l

dql

)
e−

1
2 q·A·qqiqj

]
/Z(0, 0)= (A−1)ij

(see also the appendix to Chapter I.2). The matrix element (A−1)ij describes
propagation from i to j . In the baby problem, each term in the expansion of Z(J )
can be associated with several diagrams but that is no longer true with propagation.

Let us now evaluate the “4-point Green’s function” G(4)ijkl to order λ :

G
(4)
ijkl =

∫ +∞

−∞

(∏
m

dqm

)
e−

1
2 q·A·qqiqjqkql

[
1 − λ

4!

∑
n

q4
n

+O(λ2)

]
/Z(0, 0)

= (A−1)ij (A
−1)kl + (A−1)ik(A

−1)jl + (A−1)il(A
−1)jk

− λ
∑
n

(A−1)in(A
−1)jn(A

−1)kn(A
−1)ln +O(λ2) (10)

The first three terms describe one excitation propagating from i to j and another
propagating from k to l , plus the two possible permutations on this “history.” The
order λ term tells us that four excitations, propagating from i to n, from j to n,
from k to n, and from l to n, meet at n and interact with an amplitude proportional
to λ, where n is anywhere on the lattice or mattress. By the way, you also see why
it is convenient to define the interaction (λ/4!)ϕ4 with a 1/4! : qi has a choice of
four qn’s to contract with, qj has three qn’s to contract with, and so on, producing
a factor of 4! to cancel the (1/4!).
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Perturbative field theory

You should now be ready for field theory!
Indeed, the functional integral in (1) (which I repeat here)

Z(J )=
∫
Dϕ e

i
∫
d4x{ 1

2 [(∂ϕ)2−m2ϕ2]−(λ/4!)ϕ4+Jϕ} (11)

has the same form as the ordinary integral in (2) and the multiple integral in (7).
There is one minor difference: there is no i in (2) and (7), but as I noted in Chapter
I.2 we can Wick rotate (11) and get rid of the i, but we won’t. The significant
difference is that J and ϕ in (11) are functions of a continuous variable x, while
J and q in (2) are not functions of anything and in (7) are functions of a discrete
variable. Aside from that, everything goes through the same way.

As in (3) and (8) we have

Z(J )= Z(0, 0)e−(i/4!)λ
∫
d4w[δ/iδJ (w)]4

∫
Dϕe

i
∫
d4x{ 1

2 [(∂ϕ)2−m2ϕ2]+Jϕ}

= Z(0, 0)e−(i/4!)λ
∫
d4w[δ/iδJ (w)]4

e
−(i/2)

∫∫
d4xd4yJ (x)D(x−y)J (y) (12)

The structural similarity is total.
The role of 1/m2 in (3) and of A−1 (8) is now played by the propagator

D(x − y)=
∫

d4k

(2π)4
eik·(x−y)

k2 −m2 + iε
Incidentally, if you go back to Chapter I.3 you will see that if we were in d-
dimensional spacetime, D(x − y) would be given by the same expression with
d4k/(2π)4 replaced by ddk/(2π)d . The ordinary integral (2) is like a field theory
in 0-dimensional spacetime: if we set d = 0, there is no propagating around and
D(x − y) collapses to −1/m2. You see that it all makes sense.

We also know that J (x) corresponds to sources and sinks. Thus, if we expand
Z(J ) as a series in J , the powers of J would indicate the number of particles
involved in the process. (Note that in this nomenclature the scattering process
ϕ + ϕ → ϕ + ϕ counts as a 4-particle process: we count the total number of
incoming and outgoing particles.) Thus, in particle physics it often makes sense to
specify the power of J . Exactly as in the baby and child problems, we can expand
in J first:

Z(J )= Z(0, 0)
∞∑
s=0

1

s!
J (x1) . . . J (xs)G

(s)(x1, . . . , xs)

=
∞∑
s=0

1

s!
J (x1) . . . J (xs)

∫
Dϕ e

i
∫
d4x{ 1

2 [(∂ϕ)2−m2ϕ2]−(λ/4!)ϕ4}

ϕ(x1) . . . ϕ(xs) (13)
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In particular, we have the 2-point Green’s function

G(x1, x2)≡ 1

Z(0, 0)

∫
Dϕ e

i
∫
d4x{ 1

2 [(∂ϕ)2−m2ϕ2]−(λ/4!)ϕ4}
ϕ(x1)ϕ(x2) (14)

the 4-point Green’s function,

G(x1, x2, x3, x4)≡ 1

Z(0, 0)

∫
Dϕ e

i
∫
d4x{ 1

2 [(∂ϕ)2−m2ϕ2]−(λ/4!)ϕ4}

ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) (15)

and so on. [Sometimes Z(J ) is called the generating functional as it generates
the Green’s functions.] Obviously, by translation invariance, G(x1, x2) does not
depend on x1 and x2 separately, but only on x1 − x2. Similarly, G(x1, x2, x3, x4)

only depends on x1 − x4, x2 − x4, and x3 − x4. For λ= 0, G(x1, x2) reduces to
iD(x1 − x2), the propagator introduced in Chapter I.3. WhileD(x1 − x2) describes
the propagation of a particle between x1 and x2 in the absence of interaction,
G(x1 − x2) describes the propagation of a particle between x1 and x2 in the
presence of interaction. If you understood our discussion ofG(4)ijkl, you would know
that G(x1, x2, x3, x4) describes the scattering of particles.

In some sense, there are two ways of doing field theory, what I might call the
Schwinger way (12) or the Wick way (13).

Thus, to summarize, Feynman diagrams are just an extremely convenient way
of representing the terms in a double series expansion of Z(J ) in λ and J .

As I said in the preface, I have no intention of turning you into a whiz at
calculating Feynman diagrams. In any case, that can only come with practice.
Besides, there are excellent texts devoted to the evaluation of diagrams. Instead, I
tried to give you as clear an account as I can muster of the concept behind this
marvellous invention of Feynman’s, which as Schwinger noted rather bitterly,
enables almost anybody to become a field theorist. For the moment, don’t worry
too much about factors of 4! and 2!

Collision between particles

As I already mentioned, I described in chapter I.4 the strategy of setting up sources
and sinks to watch the propagation of a particle (which I will call a meson)
associated with the field ϕ. Let us now set up two sources and two sinks to watch
two mesons scatter off each other. The setup is shown in Figure I.7.6. The sources
localized in regions 1 and 2 both produce a meson, and the two mesons eventually
disappear into the sinks localized in regions 3 and 4. It clearly suffices to find in Z
a term containing J (x1)J (x2)J (x3)J (x4). But this is just G(x1, x2, x3, x4).

Let us be content with first order in λ. Going the Wick way we have to evaluate
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Figure I.7.6

1

Z(0, 0)

(
− iλ

4!

) ∫
d4w

∫
Dϕ e

i
∫
d4x{ 1

2 [(∂ϕ)2−m2ϕ2]}

ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)ϕ(w)
4 (16)

Just as in (10) we Wick contract and obtain

(−iλ)
∫
d4wD(x1 − w)D(x2 − w)D(x3 − w)D(x4 − w) (17)

As a check, let us also derive this the Schwinger way. Replace e−(i/4!)λ∫
d4w(δ/δJ (w))4 by (i/4!)λ

∫
d4w(δ/δJ (w))4 and e−(i/2)

∫∫
d4xd4yJ (x)D(x−y)J (y)

by

i4

4!24

[∫ ∫
d4xd4yJ (x)D(x − y)J (y)

]4

.

To save writing, it would be sagacious to introduce the abbreviations Ja for J (xa),∫
a

for
∫
d4xa , andDab forD(xa − xb). Dropping overall numerical factors, which

I invite you to fill in, we obtain

∼ iλ
∫
w

(
δ

δJw
)4
∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

DaeDbfDcgDdhJaJbJcJdJeJf JgJh (18)

The four (δ/δJw)’s hit the eight J ’s in all possible combinations producing many
terms, which again I invite you to write out. Two of the three terms are discon-
nected. The connected term is




