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Preface to the Third Edition

I have taken advantage of this new edition of my book on differential equa-
tions to add two batches of new material of independent interest:

First, a fairly substantial appendix at the end of Chapter 1 on the famous 
bell curve. This curve is the graph of the normal distribution func-
tion, with many applications in the natural sciences, the social sciences, 
mathematics—in statistics and probability theory—and engineering. We 
shall be especially interested how the differential equation for this curve 
arises from very simple considerations and can be solved to obtain the equa-
tion of the curve itself.

And second, a brief section on the van der Pol nonlinear equation and its 
historical background in World War II that gave it significance in the devel-
opment of the theory of radar. This consists, in part, of personal recollections 
of the eminent physicist Freeman Dyson.

Finally, I should add a few words on the meaning of the cover design, for 
this design amounts to a bit of self-indulgence.

The chapter on Fourier series is there mainly to provide machinery needed 
for the following chapter on partial differential equations. However, one of 
the minor offshoots of Fourier series is to find the exact sum of the infinite 
series formed from the reciprocals of the squares of the positive integers 
(the first formula on the cover). This sum was discovered by the great Swiss 
mathematician Euler in 1736, and since his time, several other methods for 
obtaining this sum, in addition to his own, have been discovered. This is one 
of the topics dealt with in Sections 34 and 35 and has been one of my own 
minor hobbies in mathematics for many years.

However, from 1736 to the present day, no one has ever been able to find 
the exact sum of the reciprocals of the cubes of the positive integers (the sec-
ond formula on the cover). Some years ago, I was working with the zeroes 
of the Bessel functions. I thought for an exciting period of several days 
that I was on the trail of this unknown sum, but in the end it did not work 
out. Instead, the trail deviated in an unexpected direction and yielded yet 
another method for finding the sum in the first formula. These ideas will be 
found in Section 47.
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xiii

Preface to the Second Edition

“As correct as a second edition”—so goes the idiom. I certainly hope so, and 
I also hope that anyone who detects an error will do me the kindness of let-
ting me know, so that repairs can be made. As Confucius said, “A man who 
makes a mistake and doesn’t correct it is making two mistakes.”

I now understand why second editions of textbooks are always longer 
than first editions: as with governments and their budgets, there is always 
strong pressure from lobbyists to put things in, but rarely pressure to take 
things out.

The main changes in this new edition are as follows: the number of prob-
lems in the first part of the book has been more than doubled; there are 
two new chapters, on Fourier Series and on Partial Differential Equations; 
sections on higher order linear equations and operator methods have been 
added to Chapter 3; and further material on convolutions and engineering 
applications has been added to the chapter on Laplace Transforms.

Altogether, many different one-semester courses can be built on various 
parts of this book by using the schematic outline of the chapters given on 
page xix. There is even enough material here for a two-semester course, if the 
appendices are taken into account.

Finally, an entirely new chapter on Numerical Methods (Chapter 14) has 
been written especially for this edition by Major John S. Robertson of the 
United States Military Academy. Major Robertson’s expertise in these mat-
ters is much greater than my own, and I am sure that many users of this new 
edition will appreciate his contribution, as I do.

McGraw-Hill and I would like to thank the following reviewers for their 
many helpful comments and suggestions: D. R. Arterburn, New Mexico 
Tech; Edward Beckenstein, St. John’s University; Harold Carda, South Dakota 
School of Mines and Technology; Wenxiong Chen, University of Arizona; 
Jerald P. Dauer, University of Tennessee; Lester B. Fuller, Rochester Institute 
of Technology; Juan Gatica, University of Iowa; Richard H. Herman, The 
Pennsylvania State University; Roger H. Marty, Cleveland State University; 
Jean-Pierre Meyer, The Johns Hopkins University; Krzysztof Ostaszewski, 
University of Louisville; James L. Rovnyak, University of Virginia; Alan 
Sharples, New Mexico Tech; Bernard Shiffman, The Johns Hopkins 
University; and Calvin H. Wilcox, University of Utah.

George F. Simmons
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Preface to the First Edition

To be worthy of serious attention, a new textbook on an old subject should 
embody a definite and reasonable point of view which is not represented by 
books already in print. Such a point of view inevitably reflects the experi-
ence, taste, and biases of the author, and should therefore be clearly stated at 
the beginning so that those who disagree can seek nourishment elsewhere. 
The structure and contents of this book express my personal opinions in a 
variety of ways, as follows.

The place of differential equations in mathematics. Analysis has been the 
dominant branch of mathematics for 300 years, and differential equations 
are the heart of analysis. This subject is the natural goal of elementary cal-
culus and the most important part of mathematics for understanding the 
physical sciences. Also, in the deeper questions it generates, it is the source 
of most of the ideas and theories which constitute higher analysis. Power 
series, Fourier series, the gamma function and other special functions, inte-
gral equations, existence theorems, the need for rigorous justifications of 
many analytic processes—all these themes arise in our work in their most 
natural context. And at a later stage they provide the principal motivation 
behind complex analysis, the theory of Fourier series and more general 
orthogonal expansions, Lebesgue integration, metric spaces and Hilbert 
spaces, and a host of other beautiful topics in modern mathematics. I would 
argue, for example, that one of the main ideas of complex analysis is the 
liberation of power series from the confining environment of the real num-
ber system; and this motive is most clearly felt by those who have tried to 
use real power series to solve differential equations. In botany, it is obvious 
that no one can fully appreciate the blossoms of flowering plants without 
a reasonable understanding of the roots, stems, and leaves which nourish 
and support them. The same principle is true in mathematics, but is often 
neglected or forgotten.

Fads are as common in mathematics as in any other human activity, 
and it is always difficult to separate the enduring from the ephemeral in 
the achievements of one’s own time. At present there is a strong current 
of abstraction flowing through our graduate schools of mathematics. This 
current has scoured away many of the individual features of the landscape 
and replaced them with the smooth, rounded boulders of general theo-
ries. When taken in moderation, these general theories are both useful and 
satisfying; but one unfortunate effect of their predominance is that if a 
student doesn’t learn a little while he is an undergraduate about such color-
ful and worthwhile topics as the wave equation, Gauss’s hypergeometric 
function, the gamma function, and the basic problems of the calculus of 
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variations—among many others—then he is unlikely to do so later. The 
natural place for an informal acquaintance with such ideas is a leisurely 
introductory course on differential equations. Some of our current books 
on this subject remind me of a sightseeing bus whose driver is so obsessed 
with speeding along to meet a schedule that his passengers have little or 
no opportunity to enjoy the scenery. Let us be late occasionally, and take 
greater pleasure in the journey.

Applications. It is a truism that nothing is permanent except change; and 
the primary purpose of differential equations is to serve as a tool for the 
study of change in the physical world. A general book on the subject without 
a reasonable account of its scientific applications would therefore be as futile 
and pointless as a treatise on eggs that did not mention their reproductive 
purpose. This book is constructed so that each chapter except the last has 
at least one major “payoff”—and often several—in the form of a classic sci-
entific problem which the methods of that chapter render accessible. These 
applications include

The brachistochrone problem
The Einstein formula E = mc2

Newton’s law of gravitation
The wave equation for the vibrating string
The harmonic oscillator in quantum mechanics
Potential theory
The wave equation for the vibrating membrane
The prey–predator equations
Nonlinear mechanics
Hamilton’s principle
Abel’s mechanical problem

I consider the mathematical treatment of these problems to be among the 
chief glories of Western civilization, and I hope the reader will agree.

The problem of mathematical rigor. On the heights of pure mathematics, 
any argument that purports to be a proof must be capable of withstanding 
the severest criticisms of skeptical experts. This is one of the rules of the 
game, and if you wish to play you must abide by the rules. But this is not the 
only game in town.

There are some parts of mathematics—perhaps number theory and abstract 
algebra—in which high standards of rigorous proof may be appropriate at 
all levels. But in elementary differential equations a narrow insistence on 
doctrinaire exactitude tends to squeeze the juice out of the subject, so that 
only the dry husk remains. My main purpose in this book is to help the 
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student grasp the nature and significance of differential equations; and to 
this end, I much prefer being occasionally imprecise but understandable to 
being completely accurate but incomprehensible. I am not at all interested 
in building a logically impeccable mathematical structure, in which defini-
tions, theorems, and rigorous proofs are welded together into a formidable 
barrier which the reader is challenged to penetrate.

In spite of these disclaimers, I do attempt a fairly rigorous discussion from 
time to time, notably in Chapter 13 and Appendices A in Chapters 5, 6 and 7, 
and B in Chapter 11. I am not saying that the rest of this book is nonrigorous, 
but only that it leans toward the activist school of mathematics, whose pri-
mary aim is to develop methods for solving scientific problems—in contrast 
to the contemplative school, which analyzes and organizes the ideas and 
tools generated by the activists.

Some will think that a mathematical argument either is a proof or is not a 
proof. In the context of elementary analysis I disagree, and believe instead 
that the proper role of a proof is to carry reasonable conviction to one’s 
intended audience. It seems to me that mathematical rigor is like clothing: in 
its style it ought to suit the occasion, and it diminishes comfort and restricts 
freedom of movement if it is either too loose or too tight.

History and biography. There is an old Armenian saying, “He who lacks 
a sense of the past is condemned to live in the narrow darkness of his own 
generation.” Mathematics without history is mathematics stripped of its 
greatness: for, like the other arts—and mathematics is one of the supreme 
arts of civilization—it derives its grandeur from the fact of being a human 
creation.

In an age increasingly dominated by mass culture and bureaucratic imper-
sonality, I take great pleasure in knowing that the vital ideas of mathemat-
ics were not printed out by a computer or voted through by a committee, 
but instead were created by the solitary labor and individual genius of a 
few remarkable men. The many biographical notes in this book reflect my 
desire to convey something of the achievements and personal qualities of 
these astonishing human beings. Most of the longer notes are placed in the 
appendices, but each is linked directly to a specific contribution discussed 
in the text. These notes have as their subjects all but a few of the greatest 
mathematicians of the past three centuries: Fermat, Newton, the Bernoullis, 
Euler, Lagrange, Laplace, Fourier, Gauss, Abel, Poisson, Dirichlet, Hamilton, 
Liouville, Chebyshev, Hermite, Riemann, Minkowski, and Poincaré. As 
T. S. Eliot wrote in one of his essays, “Someone said: ‘The dead writers are 
remote from us because we know so much more than they did.’ Precisely, and 
they are that which we know.”

History and biography are very complex, and I am painfully aware 
that scarcely anything in my notes is actually quite as simple as it may 
appear. I must also apologize for the many excessively brief allusions to 
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mathematical ideas most student readers have not yet encountered. But 
with the aid of a good library, sufficiently interested students should be 
able to unravel most of them for themselves. At the very least, such efforts 
may help to impart a feeling for the immense diversity of classical math-
ematics—an aspect of the subject that is almost invisible in the average 
undergraduate curriculum.

George F. Simmons
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Suggestions for the Instructor

The following diagram gives the logical dependence of the chapters and sug-
gests a variety of ways this book can be used, depending on the purposes 
of the course, the tastes of the instructor, and the backgrounds and needs of 
the students.

9. Laplace transforms

1. The nature of
    differential
    equations, separable
    equations

2. First-order
    equations

12. The calculus of
      variations

10. Systems of first-
      order equations

11. Nonlinear equations

3. Second-order linear
    equations

4. Qualitative
    properties of
    solutions

6. Fourier series and
    orthogonal
    functions

7. Partial differential
    equations and
    boundary value
    problems

8. Some special
    functions of
    mathematical physics

13. Existence and
      uniqueness
      theorems

14. Numerical methods

5. Power series
    solutions and special
    functions



xx Suggestions for the Instructor

The scientist does not study nature because it is useful; he studies it because 
he delights in it, and he delights in it because it is beautiful. If nature were not 
beautiful, it would not be worth knowing, and if nature were not worth knowing, 
life would not be worth living. Of course I do not here speak of that beauty that 
strikes the senses, the beauty of qualities and appearances; not that I undervalue 
such beauty, far from it, but it has nothing to do with science; I mean that pro-
founder beauty which comes from the harmonious order of the parts, and which 
a pure intelligence can grasp.

—Henri Poincaré

As a mathematical discipline travels far from its empirical source, or still more, 
if it is a second or third generation only indirectly inspired by ideas coming from 
“reality,“it is beset with very grave dangers. It becomes more and more purely 
aestheticizing, more and more purely l’art pour l’art. This need not be bad, if 
the field is surrounded by correlated subjects, which still have closer empirical 
connections, or if the discipline is under the influence of men with an excep-
tionally well-developed taste. But there is a grave danger that the subject will 
develop along the line of least resistance, that the stream, so far from its source, 
will separate into a multitude of insignificant branches, and that the discipline 
will become a disorganized mass of details and complexities. In other words, at a 
great distance from its empirical source, or after much “abstract” inbreeding, a 
mathematical subject is in danger of degeneration.

—John von Neumann

Just as deduction should be supplemented by intuition, so the impulse to progres-
sive generalization must be tempered and balanced by respect and love for color-
ful detail. The individual problem should not be degraded to the rank of special 
illustration of lofty general theories. In fact, general theories emerge from consid-
eration of the specific, and they are meaningless if they do not serve to clarify and 
order the more particularized substance below. The interplay between generality 
and individuality, deduction and construction, logic and imagination—this is 
the profound essence of live mathematics. Any one or another of these aspects of 
mathematics can be at the center of a given achievement. In a far-reaching devel-
opment all of them will be involved. Generally speaking, such a development will 
start from the “concrete” ground, then discard ballast by abstraction and rise to 
the lofty layers of thin air where navigation and observation are easy; after this 
flight comes the crucial test of landing and reaching specific goals in the newly 
surveyed low plains of individual “reality.” In brief, the flight into abstract gen-
erality must start from and return to the concrete and specific.

—Richard Courant
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1

Chapter 1
The Nature of Differential 
Equations. Separable Equations

1 Introduction

An equation involving one dependent variable and its derivatives with 
respect to one or more independent variables is called a differential equation. 
Many of the general laws of nature—in physics, chemistry, biology, and 
astronomy—find their most natural expression in the language of differen-
tial equations. Applications also abound in mathematics itself, especially in 
geometry, and in engineering, economics, and many other fields of applied 
science.

It is easy to understand the reason behind this broad utility of differential 
equations. The reader will recall that if y = f(x) is a given function, then its 
derivative dy/dx can be interpreted as the rate of change of y with respect 
to x. In any natural process, the variables involved and their rates of change 
are connected with one another by means of the basic scientific principles 
that govern the process. When this connection is expressed in mathematical 
symbols, the result is often a differential equation.

The following example may illuminate these remarks. According to 
Newton’s second law of motion, the acceleration a of a body of mass m is 
proportional to the total force F acting on it, with 1/m as the constant of pro-
portionality, so that a = F/m or

 ma = F. (1)

Suppose, for instance, that a body of mass m falls freely under the influence 
of gravity alone. In this case the only force acting on it is mg, where g is the 
acceleration due to gravity.1 If y is the distance down to the body from some 
fixed height, then its velocity v = dy/dt is the rate of change of position and its 
acceleration a = dv/dt = d2y/dt2 is the rate of change of velocity. With this nota-
tion, (1) becomes

1 g can be considered constant on the surface of the earth in most applications, and is approxi-
mately 32 feet per second per second (or 980 centimeters per second per second).



2 Differential Equations with Applications and Historical Notes

 
m

d y
dt

mg
2

2 =

or

 

d y
dt

g
2

2 = . (2)

If we alter the situation by assuming that air exerts a resisting force propor-
tional to the velocity, then the total force acting on the body is mg − k(dy/dt), 
and (1) becomes
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Equations (2) and (3) are the differential equations that express the essential 
attributes of the physical processes under consideration.

As further examples of differential equations, we list the following:
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The dependent variable in each of these equations is y, and the independent 
variable is either t or x. The letters k, m, and p represent constants. An ordinary 
differential equation is one in which there is only one independent variable, so 
that all the derivatives occurring in it are ordinary derivatives. Each of these 
equations is ordinary. The order of a differential equation is the order of the 
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highest derivative present. Equations (4) and (6) are first order equations, 
and the others are second order. Equations (8) and (9) are classical, and are 
called Legendre’s equation and Bessel’s equation, respectively. Each has a vast 
literature and a history reaching back hundreds of years. We shall study all 
of these equations in detail later.

A partial differential equation is one involving more than one independent 
variable, so that the derivatives occurring in it are partial derivatives. For 
example, if w = f(x,y,z,t) is a function of time and the three rectangular coordi-
nates of a point in space, then the following are partial differential equations 
of the second order:
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These equations are also classical, and are called Laplace’s equation, the heat 
equation, and the wave equation, respectively. Each is profoundly significant in 
theoretical physics, and their study has stimulated the development of many 
important mathematical ideas. In general, partial differential equations arise 
in the physics of continuous media—in problems involving electric fields, 
fluid dynamics, diffusion, and wave motion. Their theory is very different 
from that of ordinary differential equations, and is much more difficult in 
almost every respect. For some time to come, we shall confine our attention 
exclusively to ordinary differential equations.2

2 The English biologist J. B. S. Haldane (1892–1964) has a good remark about the one-dimen-
sional special case of the heat equation: “In scientific thought we adopt the simplest theory 
which will explain all the facts under consideration and enable us to predict new facts of the 
same kind. The catch in this criterion lies in the word ‘simplest.’ It is really an aesthetic canon 
such as we find implicit in our criticism of poetry or painting. The layman finds such a law as
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w
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w
t
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2

2
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¶

=
¶
¶

 much less simple than ‘it oozes,’ of which it is the mathematical statement. The physicist 
reverses this judgment, and his statement is certainly the more fruitful of the two, so far as 
prediction is concerned. It is, however, a statement about something very unfamiliar to the 
plain man, namely, the rate of change of a rate of change.”
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2 General Remarks on Solutions

The general ordinary differential equation of the nth order is

 
F x y

dy
dx
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dx

d y
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n
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2 0…
æ

è
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ø
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or, using the prime notation for derivatives,

 F(x, y, y′, y″,…,y(n)) = 0.

Any adequate theoretical discussion of this equation would have to be 
based on a careful study of explicitly assumed properties of the function F. 
However, undue emphasis on the fine points of theory often tends to obscure 
what is really going on. We will therefore try to avoid being overly fussy 
about such matters—at least for the present.

It is normally a simple task to verify that a given function y = y(x) is a solu-
tion of an equation like (1). All that is necessary is to compute the derivatives 
of y(x) and to show that y(x) and these derivatives, when substituted in the 
equation, reduce it to an identity in x. In this way we see that

 y = e2x and y = e3x

are both solutions of the second order equation

 y″ − 5y′ + 6y = 0; (2)

and, more generally, that

 y = c1e2x + c2e3x  (3)

is also a solution for every choice of the constants c1 and c2. Solutions of dif-
ferential equations often arise in the form of functions defined implicitly, 
and sometimes it is difficult or impossible to express the dependent variable 
explicitly in terms of the independent variable. For instance,

 xy = log y + c (4)

is a solution of

 

dy
dx

y
xy

=
-

2

1
 (5)
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for every value of the constant c, as we can readily verify by differentiating 
(4) and rearranging the result.3 These examples also illustrate the fact that 
a solution of a differential equation usually contains one or more arbitrary 
constants, equal in number to the order of the equation.

In most cases procedures of this kind are easy to apply to a suspected 
solution of a given differential equation. The problem of starting with a dif-
ferential equation and finding a solution is naturally much more difficult. 
In due course we shall develop systematic methods for solving equations 
like (2) and (5). For the present, however, we limit ourselves to a few remarks 
on some of the general aspects of solutions.

The simplest of all differential equations is

 

dy
dx

f x= ( ), (6)

and we solve it by writing

 
y f x dx c= +ò ( ) . (7)

In some cases the indefinite integral in (7) can be worked out by the methods 
of calculus. In other cases it may be difficult or impossible to find a formula 
for this integral. It is known, for instance, that

 ò òe dx
x

x
dxx– sin2

and

cannot be expressed in terms of a finite number of elementary functions.4 If 
we recall, however, that

 
f x dx( )ò

is merely a symbol for a function (any function) with derivative f(x), then we 
can almost always give (7) a valid meaning by writing it in the form

 

y f t dt c
x

x

= +ò ( )
0

. (8)

3 In calculus the notation In x is often used for the so-called natural logarithm, that is, the func-
tion loge x. In more advanced courses, however, this function is almost always denoted by the 
symbol log x.

4 Any reader who is curious about the reasons for this should consult D. G. Mead, “Integration,” 
Am. Math. Monthly, vol. 68, pp. 152–156 (1961). For additional details, see G. H. Hardy, The 
Integration of Functions of a Single Variable, Cambridge University Press, London, 1916; or J. F. 
Ritt, Integration in Finite Terms, Columbia University Press, New York, 1948.
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The crux of the matter is that this definite integral is a function of the upper 
limit x (the t under the integral sign is only a dummy variable) which always 
exists when the integrand is continuous over the range of integration, and 
that its derivative is f(x).5

The so-called separable equations, or equations with separable variables, are 
at the same level of simplicity as (6). These are differential equations that can 
be written in the form

 

dy
dx

f x g y= ( ) ( ),

where the right side is a product of two functions each of which depends 
on only one of the variables. In such a case we can separate the variables by 
writing

 

dy
g y

f x dx
( )

( )= ,

and then solve the original equation by integrating:

 

dy
g y

f x dx c
( )

( )= +òò .

These are simple differential equations to deal with in the sense that the 
problem of solving them can be reduced to the problem of integration, even 
though the indicated integrations can be difficult or impossible to carry out 
explicitly.

The general first order equation is the special case of (1) which corresponds 
to taking n = 1:

 
F x y

dy
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ç

ö
ø
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We normally expect that an equation like this will have a solution, and 
that this solution—like (7) and (8)—will contain one arbitrary constant. 
However,
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1 0

5 This statement is one form of the fundamental theorem of calculus.
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has no real-valued solutions at all, and

 

dy
dx

yæ
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2
2 0

has only the single solution y = 0 (which contains no arbitrary constants). 
Situations of this kind raise difficult theoretical questions about the exis-
tence and nature of solutions of differential equations. We cannot enter here 
into a full discussion of these questions, but it may clarify matters if we give 
an intuitive description of a few of the basic facts.

For the sake of simplicity, let us assume that (9) can be solved for dy/dx:

 

dy
dx

f x y= ( , ). (10)

We also assume that f(x,y) is a continuous function throughout some rectan-
gle R in the xy plane. The geometric meaning of a solution of (10) can best be 
understood as follows (Figure 1). If P0 = (x0,y0) is a point in R, then the number
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f x y
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FIGURE 1
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determines a direction at P0. Now let P1 = (x1 y1) be a point near P0 in this 
direction, and use

 

dy
dx

f x y
P

æ
è
ç

ö
ø
÷ =

1

1 1( , )

to determine a new direction at P1. Next, let P2 = (x2, y2) be a point near P1 in 
this new direction, and use the number

 

dy
dx

f x y
P

æ
è
ç

ö
ø
÷ =

2

2 2( , )

to determine yet another direction at P2. If we continue this process, we 
obtain a broken line with points scattered along it like beads; and if we now 
imagine that these successive points move closer to one another and become 
more numerous, then the broken line approaches a smooth curve through 
the initial point P0. This curve is a solution y = y(x) of equation (10); for at each 
point (x,y) on it, the slope is given by f(x,y)—and this is precisely the condition 
required by the differential equation. If we start with a different initial point, 
then in general we obtain a different curve (or solution). Thus the solutions 
of (10) form a family of curves, called integral curves.6 Furthermore, it appears 
to be a reasonable guess that through each point in R there passes just one 
integral curve of (10). This discussion is intended only to lend plausibility to 
the following precise statement.

Theorem A. (Picard’s theorem.) If f(x,y) and ∂f/∂y are continuous functions on a 
closed rectangle R, then through each point (x0, y0) in the interior of R there passes a 
unique integral curve of the equation dy/dx = f(x,y).

If we consider a fixed value of x0 in this theorem, then the integral curve 
that passes through (x0, y0) is fully determined by the choice of y0. In this 
way we see that the integral curves of (10) constitute what is called a one-
parameter family of curves. The equation of this family can be written in the 
form

 y = y(x, c), (11)

where different choices of the parameter c yield different curves in the fam-
ily. The integral curve that passes through (x0, y0) corresponds to the value of 

6 Solutions of a differential equation are sometimes called integrals of the equation because the 
problem of finding them is more or less an extension of the ordinary problem of integration.
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c for which y0 = y(x0,c). If we denote this number by c0, then (11) is called the 
general solution of (10), and

 y = y(x, c0)

is called the particular solution that satisfies the initial condition

 y = y0 when x = x0.

The essential feature of the general solution (11) is that the constant c in it can 
be chosen so that an integral curve passes through any given point of the 
rectangle under consideration.

Picard’s theorem is proved in Chapter 13. This proof is quite complicated, 
and is probably best postponed until the reader has had considerable experi-
ence with the more straightforward parts of the subject. The theorem itself 
can be strengthened in various directions by weakening its hypotheses; it can 
also be generalized to refer to nth order equations solvable for the nth order 
derivative. Detailed descriptions of these results would be out of place in the 
present context, and we content ourselves for the time being with this infor-
mal discussion of the main ideas. In the rest of this chapter we explore some 
of the ways in which differential equations arise in scientific applications.

Problems

 1. Verify that the following functions (explicit or implicit) are solutions of 
the corresponding differential equations:

 (a) y = x2 + c y′ = 2x;
 (b) y = cx2 xy′ = 2y;
 (c) y2 = e2x + c yy′ = e2x;
 (d) y = cekx y′ = ky;
 (e) y = c1 sin 2x + c2 cos 2x y″ + 4y = 0;
 (f) y = c1.e2x + c2e−2x y″ − 4y = 0;
 (g) y = c1 sinh 2x + c2 cosh 2x y″ − 4y = 0;

 (h) y = sin−1 xy xy y y x y¢ + = ¢ 1 2 2– ;

 (i) y = x tan x xy′ = y + x2 + y2;

 
(j) x2 = 2y2 log y;

 
¢ =

+
y

xy
x y2 2 ;

 (k) y2 = x2 − cx 2xyy′ = x2 + y2;
 (1) y = c2 + c/x y + xy′ = x4(y′)2;
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 (m) y = cey/x y′ = y2/(xy − x2);
 (n) y + sin y = x (y cos y − sin y + x)y′ = y;
 (o) x + y = tan−1 y 1 + y2 + y2y′ = 0.
 2. Find the general solution of each of the following differential equations:
 (a) y′ = e3x − x;
 (b) xy′ = 1;
 (c) y′ = xex2;
 (d) y′ = sin−1 x;
 (e) (1 + x)y′ = x;
 (f) (1 + x2)y′ = x;
 (g) (1 + x3)y′ = x;
 (h) (1 + x2)y′ = tan−1x;
 (i) xyy′ = y − 1;
 (j) x5y′ + y5 = 0;
 (k) xy′ = (1 − 2x2) tan y;
 (1) y′ = 2xy;
 (m) y′ sin y = x2;
 (n) y′ sin x = 1;
 (o) y′ + y tan x = 0;
 (p) y′ − y tan x = 0;
 (q) (1 + x2) dy + (1 + y2) dx = 0;
 (r) y log y dx − x dy = 0.
 3. For each of the following differential equations, find the particular 

solution that satisfies the given initial condition:
 (a) y′ = xex, y = 3 when x = 1;
 (b) y′ = 2 sin x cos x, y = 1 when x = 0;
 (c) y′ = log x, y = 0 when x = e;
 (d) (x2 − l)y′ = 1, y = 0 when x = 2;
 (e) x(x2 − 4)y′ = 1, y = 0 when x = 1;
 (f) (x + 1)(x2 + l)y′ = 2x2 + x, y = 1 when x = 0.
 4. For each of the following differential equations, find the integral curve 

that passes through the given point:
 (a) y′ = e3x−2y, (0, 0);
 (b) x dy = (2x2 + 1) dx, (1, 1);
 (c) e–y dx + (1 + x2) dy = 0, (0, 0);
 (d) 3 cos 3x cos 2y dx − 2 sin 3x sin 2y dy = 0, (π/12,π/8);



11The Nature of Differential Equations

 (e) y′ = ex cos x, (0,0);
 (f) xyy′ = (x + l)(y + 1), (1,0).

 5. Show that y e ex
x

t= ò
2 2

0

–  dt is a solution of y′ = 2xy + 1.

 6. For the differential equation (2), namely,

 y″ − 5y′ + 6y = 0,

  carry out the detailed calculations needed to verify the assertions in 
the text that

 (a) y = e2x and y = e3x are both solutions; and
 (b)  y = c1e2x + c2e3x is a solution for every choice of the constants c1 and c2. 

Remark: In studying a book like this, a student should never slide 
past assertions of this kind—involving such phrases as “we see” 
or “as we can readily verify”—without personally checking their 
validity. The mere fact that something is in print does not mean it 
is necessarily true. Cultivate skepticism as a healthy state of mind, 
as you would physical fitness; accept nothing on the authority 
of this writer or any other until you have understood it fully for 
yourself.

 7. In the spirit of Problem 6, verify that (4) is a solution of the differential 
equation (5) for every value of the constant c.

 8. For what values of the constant m will y = emx be a solution of the dif-
ferential equation

 2 5 2 0¢¢¢ + ¢¢ - ¢ + =y y y y ?

  Use the ideas in Problem 6 to find a solution containing three arbitrary 
constants c1, c2, c3.

3 Families of Curves. Orthogonal Trajectories

We have seen that the general solution of a first order differential equa-
tion normally contains one arbitrary constant, called a parameter. When this 
parameter is assigned various values, we obtain a one-parameter family of 
curves. Each of these curves is a particular solution, or integral curve, of the 
given differential equation, and all of them together constitute its general 
solution.

Conversely, as we might expect, the curves of any one-parameter family 
are integral curves of some first order differential equation. If the family is

 f(x, y, c) = 0, (l)
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then its differential equation can be found by the following steps. First, dif-
ferentiate (1) implicitly with respect to x to get a relation of the form

 
g x y

dy
dx

c, , ,æ
è
ç

ö
ø
÷ = 0. (2)

Next, eliminate the parameter c from (1) and (2) to obtain

 
F x y

dy
dx

, ,æ
è
ç

ö
ø
÷ = 0  (3)

as the desired differential equation. For example,

 x2 + y2 = c2 (4)

is the equation of the family of all circles with centers at the origin (Figure 2). 
On differentiation with respect to x this becomes

 
2 2 0x y

dy
dx

+ = ;

y

x

FIGURE 2
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and since c is already absent, there is no need to eliminate it and

 
x y

dy
dx

+ = 0  (5)

is the differential equation of the given family of circles. Similarly,

 x2 + y2 = 2cx (6)

is the equation of the family of all circles tangent to the y-axis at the origin 
(Figure 3). When we differentiate this with respect to x, we obtain

 
2 2 2x y

dy
dx

c+ =

or

 
x y

dy
dx

c+ =  (7)

x

y

FIGURE 3
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The parameter c is still present, so it is necessary to eliminate it by combining 
(6) and (7). This yields

 

dy
dx

y x
xy

=
2 2

2
–  (8)

as the differential equation of the family (6).
As an interesting application of these procedures, we consider the prob-

lem of finding orthogonal trajectories. To explain what this problem is, we 
observe that the family of circles represented by (4) and the family y = mx of 
straight lines through the origin (the dotted lines in Figure 2) have the fol-
lowing property: each curve in either family is orthogonal (i.e., perpendicu-
lar) to every curve in the other family. Whenever two families of curves 
are related in this way, each is said to be a family of orthogonal trajectories of 
the other. Orthogonal trajectories are of interest in the geometry of plane 
curves, and also in certain parts of applied mathematics. For instance, if 
an electric current is flowing in a plane sheet of conducting material, then 
the lines of equal potential are the orthogonal trajectories of the lines of 
current flow.

In the example of the circles centered on the origin, it is geometrically 
obvious that the orthogonal trajectories are the straight lines through the 
origin, and conversely. In order to cope with more complicated situations, 
however, we need an analytic method for finding orthogonal trajectories. 
Suppose that

 

dy
dx

f x y= ( , )  (9)

is the differential equation of the family of solid curves in Figure 4. These 
curves are characterized by the fact that at any point (x,y) on any one of 
them the slope is given by f(x,y). The dotted orthogonal trajectory through 
the same point, being orthogonal to the first curve, has as its slope the nega-
tive reciprocal of the first slope. Thus, along any orthogonal trajectory, we 
have dy/dx = −1/f(x,y) or

 
- =

dx
dy

f x y( , ).  (10)

Our method of finding the orthogonal trajectories of a given family of curves 
is therefore as follows: first, find the differential equation of the family; next, 
replace dy/dx by –dx/dy to obtain the differential equation of the orthogonal 
trajectories; and finally, solve this new differential equation.
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If we apply this method to the family of circles (4) with differential equa-
tion (5), we get

 
x y

dx
dy

+
æ

è
ç

ö

ø
÷ =– 0

or

 

dy
dx

y
x

=
 

(11)

as the differential equation of the orthogonal trajectories. We can now sepa-
rate the variables in (11) to obtain

 

dy
y

dx
x

= ,

which on direct integration yields

 log y = log x + log c

or

 y = cx

as the equation of the orthogonal trajectories.

(x, y)

Slope = f (x, y)

Slope = –1/f (x, y)

FIGURE 4
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It is often convenient to express the given family of curves in terms of polar 
coordinates. In this case we use the fact that if ψ is the angle from the polar 
radius to the tangent, then tan ψ = r dθ/dr (Figure 5). By the above discussion, 
we replace this expression in the differential equation of the given family 
by its negative reciprocal, –dr/r dθ, to obtain the differential equation of the 
orthogonal trajectories. As an illustration of the value of this technique, we 
find the orthogonal trajectories of the family of circles (6). If we use rect-
angular coordinates, it follows from (8) that the differential equation of the 
orthogonal trajectories is

 

dy
dx

xy
x y

=
2
2 2–

. (12)

Unfortunately, the variables in (12) cannot be separated, so without addi-
tional techniques for solving differential equations we can go no further in 
this direction. However, if we use polar coordinates, the equation of the fam-
ily (6) can be written as

 r = 2c cos θ.  (13)

y

dr

ψ

dθ

rdθ

θ
x

r

FIGURE 5
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From this we find that

 

dr
d

c
q

q= – sin2 , (14)

and after eliminating c from (13) and (14) we arrive at

 

rd
dr

q q
q

= –
cos
sin

as the differential equation of the given family. Accordingly,

 

rd
dr

q q
q

=
sin
cos

is the differential equation of the orthogonal trajectories. In this case the 
variables can be separated, yielding

 

dr
r

d
=

cos
sin

q q
q
 

;

and after integration this becomes

 log r = log (sin θ) + log 2c,

so that

 r = 2c sin θ  (15)

is the equation of the orthogonal trajectories. It will be noted that (15) is the 
equation of the family of all circles tangent to the x-axis at the origin (see the 
dotted curves in Figure 3).

In Chapter 2 we develop a number of more elaborate procedures for 
solving first order equations. Since our present attention is directed more 
at applications than formal techniques, all the problems given in this 
chapter are solvable by the method of separation of variables illustrated 
above.

Problems

 1. Sketch each of the following families of curves, find the orthogonal tra-
jectories, and add them to the sketch:

 (a) xy = c;
 (b) y = cx2;
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 (c) r = c (1 + cos θ);
 (d) y = cex.
 2. What are the orthogonal trajectories of the family of curves (a) y = cx4; 

(b) y = cxn where n is any positive integer? In each case, sketch both 
families of curves. What is the effect on the orthogonal trajectories of 
increasing the exponent n?

 3. Show that the method for finding orthogonal trajectories in polar coor-
dinates can be expressed as follows. If dr/dθ = F(r, θ) is the differential 
equation of the given family of curves, then dr/dθ = –r2/F(r, θ) is the dif-
ferential equation of the orthogonal trajectories. Apply this method to 
the family of circles r = 2c sin θ.

 4. Use polar coordinates to find the orthogonal trajectories of the family 
of parabolas r = c/(1 − cos θ), c > 0. Sketch both families of curves.

 5. Sketch the family y2 = 4c(x + c) of all parabolas with axis the x-axis and 
focus at the origin, and find the differential equation of the family. 
Show that this differential equation is unaltered when dy/dx is replaced 
by –dx/dy. What conclusion can be drawn from this fact?

 6. Find the curves that satisfy each of the following geometric conditions:
 (a)  The part of the tangent cut off by the axes is bisected by the point of 

tangency.
 (b)  The projection on the x-axis of the part of the normal between (x,y) 

and the x-axis has length 1.
 (c)  The projection on the x-axis of the part of the tangent between (x,y) 

and the x-axis has length 1.
 (d)  The part of the tangent between (x, y) and the x-axis is bisected by 

the y-axis.
 (e)  The part of the normal between (x, y) and the y-axis is bisected by 

the x-axis.
 (f)  (x, y) is equidistant from the origin and the point of intersection of 

the normal with the x-axis.
 (g)  The polar angle θ equals the angle ψ from the polar radius to the 

tangent.
 (h) The angle ψ from the polar radius to the tangent is constant.
 7. A curve rises from the origin in the xy-plane into the first quadrant. 

The area under the curve from (0, 0) to (x, y) is one-third the area of the 
rectangle with these points as opposite vertices. Find the equation of 
the curve.

 8. Three vertices of a rectangle of area A lie on the x-axis, at the origin, 
and on the y-axis. If the fourth vertex moves along a curve y = y(x) in the 
first quadrant in such a way that the rate of change of A with respect to 
x is proportional to A, find the equation of the curve.
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 9. A saddle without a saddle-horn (pommel) has the shape of the sur-
face z = y2 − x2. It is lying outdoors in a rainstorm. Find the paths along 
which raindrops will run down the saddle. Draw a sketch and use it to 
convince yourself that your answer is reasonable.

 10. Find the differential equation of each of the following one-parameter 
families of curves:

 (a) y = x sin (x + c);
 (b) all circles through (1, 0) and (−1, 0);
 (c) all circles with centers on the line y = x and tangent to both axes;
 (d)  all lines tangent to the parabola x2 = 4y (hint: the slope of the tangent 

line at (2a, a2) is a);
 (e) all lines tangent to the unit circle x2 + y2 = 1.
 11. In part (d) of Problem 10, show that the parabola itself is an integral 

curve of the differential equation of the family of all its tangent lines, 
and that therefore through each point of this parabola there pass two 
integral curves of this differential equation. Do the same for the unit 
circle in part (e) of Problem 10.

4 Growth, Decay, Chemical Reactions, and Mixing

We remind the student that the number e is often defined by the limit
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1 ,

or slightly more generally (put h = 1/n), by the limit

 
e h

h

h= +
®

lim( )
0

11 . (1)

In words, this says that e is the limit of 1 plus a small number, raised to 
the power of the reciprocal of the small number, as that small number 
approaches 0.

We recall from calculus that the importance of the number e lies 
mainly in the fact that the exponential function y = ex is unchanged by 
differentiation:

 

d
dx

e ex x= .
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An equivalent statement is that y = ex is a solution of the differential 
equation

 

dy
dx

y= .

More generally, if k is any given nonzero constant, then all of the functions 
y = cekx are solutions of the differential equation

 

dy
dx

ky= . (2)

This is easy to verify by differentiation, and can also be discovered by sepa-
rating the variables and integrating:

 

dy
y

k dx y kx c y e e e cekx c c kx kx= = + = = =+, log ,0
0 0 .

Further, it is not difficult to show that these functions are the only solu-
tions of equation (2) [see Problem 1]. In this section we discuss a surpris-
ingly wide variety of applications of these facts to a number of different 
sciences.

Example 1. Continuously compounded interest. If P dollars is depos-
ited in a bank that pays an interest rate of 6 percent per year, compounded 
semiannually, then after t years the accumulated amount is

 A = P (1 + 0.03)2t.

More generally, if the interest rate is 100k percent (k = 0.06 for 6 percent), 
and if this interest is compounded n times a year, then after t years the 
accumulated amount is

 
A P

k
n

nt

= +æ
è
ç

ö
ø
÷1 .

If n is now increased indefinitely, so that the interest is compounded 
more and more frequently, then we approach the limiting case of con-
tinuously compounded interest.7 To find the formula for A under these 
circumstances, we observe that (1) yields

7 Many banks pay interest daily, which corresponds to n = 365. This number is large enough to 
make continuously compounded interest a very accurate model for what actually happens.
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so

 A = Pekt. (3)

We describe this situation by saying that the amount A grows exponen-
tially, or provides an example of exponential growth. To understand the 
meaning of the constant k from a different point of view, we differentiate 
(3) to obtain

 

dA
dt

Pke kAkt= = .

If we write this differential equation for A in the form

 

dA A
dt

k= ,

then we see that k can be thought of as the fractional change in A per unit 
time, and 100k is the percentage change in A per unit time.

Example 2. Population growth. Suppose that x0 bacteria are placed in 
a nutrient solution at time t = 0, and that x = x(t) is the population of the 
colony at a later time t. If food and living space are unlimited, and if 
as a consequence the population at any moment is increasing at a rate 
proportional to the population at that moment, find x as a function of t.8

Since the rate of increase of x is proportional to x itself, we can write 
down the differential equation

 

dx
dt

kx= .

By separating the variables and integrating, we get

 

dx
x

k dt x kt c= = +, log .

Since x = x0 when t = 0, we have c = logx0, so log x = kt + log x0 and

 x = x0ekt. (4)

We therefore have another example of exponential growth.

8 Briefly, this assumption about the rate means that we expect twice as many “births” in a 
given short interval of time when twice as many bacteria are present.
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To make these ideas more concrete, let us assume for the sake of dis-
cussion that the total human population of the earth grows in this way. 
According to the United Nations demographic experts, this population 
is increasing at an overall rate of approximately 2 percent per year, so 
k = 0.02 = 1/50 and (4) becomes

 x = x0et/50. (5)

To find the “doubling time” T, that is, the time needed for the total num-
ber of people in the world to increase by a factor of 2, we replace (5) by

 2x0 = x0eT/50.

This yields T/50 = log 2, so

 T = 50 log 2 ≅ 34.65 years,

since log 2 ≅ 0.693.9

Example 3. Radioactive decay. If molecules of a certain kind have a ten-
dency to decompose into smaller molecules at a rate unaffected by the 
presence of other substances, then it is natural to expect that the num-
ber of molecules of this kind that will decompose in a unit of time will 
be proportional to the total number present. A chemical reaction of this 
type is called a first order reaction.

Suppose, for instance, that x0 grams of matter are present initially, and 
decompose in a first order reaction. If x is the number of grams present 
at a later time t, then the principle stated above yields the following dif-
ferential equation:

 
– , .

dx
dt

kx k= > 0  (6)

[Since dx/dt is the rate of growth of x, –dx/dt is its rate of decay, and (6) 
says that the rate of decay is proportional to x.] If we separate the vari-
ables in (6) and integrate, we obtain

 

dx
x

k dt x kt c= = +– , log – .

9 It is worth mentioning that the population of the industrialized nations is increasing at a 
rate somewhat less than 2 percent, while that of the third world nations is increasing at a rate 
greater than 2 percent. From the point of view of the development of the human race and 
its social and political institutions over the next several centuries, this is perhaps the most 
important single fact about our contemporary world.
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The initial condition

 x = x0 when t = 0 (7)

gives c = log x0, so log x = –kt + log x0 and

 x = x0e–kt. (8)

This function is therefore the solution of the differential equation (6) 
that satisfies the initial condition (7). Its graph is given in Figure 6. 
The positive constant k is called the rate constant, for its value is clearly 
a measure of the rate at which the reaction proceeds. As we know 
from Example 1, k can be thought of as the fractional loss of x per unit 
time.

Very few first order chemical reactions are known, and by far the 
most important of these is radioactive decay. It is convenient to express 
the rate of decay of a radioactive element in terms of its half-life, which 
is the time required for a given quantity of the element to diminish by 
a factor of one-half. If we replace x by x0/2 in formula (8), then we get 
the equation

 

x
x e kT0

0
2

= –

for the half-life T, so

 kT = log 2.

If either k or T is known from observation or experiment, this equation 
enables us to find the other.

The situation discussed here is an example of exponential decay. This 
phrase refers only to the form of the function (8) and the manner in 
which the quantity x diminishes, and not necessarily to the idea that 
something or other is disintegrating.

x0

T

x

t

½ x0

FIGURE 6
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Example 4. Mixing. A tank contains 50 gallons of brine in which 75 
pounds of salt are dissolved. Beginning at time t = 0, brine containing 3 
pounds of salt per gallon flows in at the rate of 2 gallons per minute, and 
the mixture (which is kept uniform by stirring) flows out at the same 
rate. When will there be 125 pounds of dissolved salt in the tank? How 
much dissolved salt is in the tank after a long time?

If x = x(t) is the number of pounds of dissolved salt in the tank at time 
t ≥ 0, then the concentration at that time is x/50 pounds per gallon. The 
rate of change of x is

 dx
dt

= rate at which salt enters tank − rate at which salt leaves tank.

Since

 rate of entering = 3 · 2 = 6 lb/min

and

 
rateof leaving b= × =( ) minx

x
50 2

25
1 ,

we have

 

dx
dt

x x
= =6

25
150

25
–

–
.

Separating variables and integrating give

 

dx
x

dt x t c
150

1
25

150
1
25–

log( – ) –= = +and .

Since x = 75 when t = 0, we see that c = log 75, so

 
log( ) log150

1
25

75- = - +x t ,

and therefore

 150 − x = 75e–t/25 or x = 75(2 − e–/t25).

This tells us that x = 125 implies et/25 = 3 or t/25 = log 3. We conclude that 
x = 125 pounds after

 t = 25 log 3 ≅ 27.47 minutes,

since log 3 ≅ 1.0986. Also, when t is large we see that x is nearly 75 ∙ 2 = 150 
pounds, as common sense tells us without calculation.
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The ideas discussed in Example 3 are the basis for a scientific tool of fairly 
recent development which has been of great significance for geology and 
archaeology. In essence, radioactive elements occurring in nature (with known 
half-lives) can be used to assign dates to events that took place from a few thou-
sand to a few billion years ago. For example, the common isotope of uranium 
decays through several stages into helium and an isotope of lead, with a half-
life of 4.5 billion years. When rock containing uranium is in a molten state, as 
in lava flowing from the mouth of a volcano, the lead created by this decay 
process is dispersed by currents in the lava; but after the rock solidifies, the 
lead is locked in place and steadily accumulates alongside the parent uranium. 
A piece of granite can be analyzed to determine the ratio of lead to uranium, 
and this ratio permits an estimate of the time that has elapsed since the critical 
moment when the granite crystallized. Several methods of age determination 
involving the decay of thorium and the isotopes of uranium into the various 
isotopes of lead are in current use. Another method depends on the decay 
of potassium into argon, with a half-life of 1.3 billion years; and yet another, 
preferred for dating the oldest rocks, is based on the decay of rubidium into 
strontium, with a half-life of 50 billion years. These studies are complex and 
susceptible to errors of many kinds; but they can often be checked against one 
another, and are capable of yielding reliable dates for many events in geologi-
cal history linked to the formation of igneous rocks. Rocks tens of millions of 
years old are quite young, ages ranging into hundreds of millions of years are 
common, and the oldest rocks yet discovered are upwards of 3 billion years 
old. This of course is a lower limit for the age of the earth’s crust, and so for 
the age of the earth itself. Other investigations, using various types of astro-
nomical data, age determinations for minerals in meteorites, and so on, have 
suggested a probable age for the earth of about 4.5 billion years.10

The radioactive elements mentioned above decay so slowly that the meth-
ods of age determination based on them are not suitable for dating events 
that took place relatively recently. This gap was filled by Willard Libby’s dis-
covery in the late 1940s of radiocarbon, a radioactive isotope of carbon with a 
half-life of about 5600 years. By 1950 Libby and his associates had developed 
the technique of radiocarbon dating, which added a second hand to the slow-
moving geological clocks described above and made it possible to date events 
in the later stages of the Ice Age and some of the movements and activities of 
prehistoric man. The contributions of this technique to late Pleistocene geol-
ogy and archaeology have been spectacular.

In brief outline, the facts and principles involved are these. Radiocarbon is 
produced in the upper atmosphere by the action of cosmic ray neutrons on 
nitrogen. This radiocarbon is oxidized to carbon dioxide, which in turn is 
mixed by the winds with the nonradioactive carbon dioxide already present. 
Since radiocarbon is constantly being formed and constantly decomposing 

10 For a full discussion of these matters, as well as many other methods and results of the sci-
ence of geochronology, see F. E. Zeuner, Dating the Past, 4th ed., Methuen, London, 1958.
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back into nitrogen, its proportion to ordinary carbon in the atmosphere has 
long since reached an equilibrium state. All air-breathing plants incorporate 
this proportion of radiocarbon into their tissues, as do the animals that eat 
these plants. This proportion remains constant as long as a plant or animal 
lives; but when it dies it ceases to absorb new radiocarbon, while the supply 
it has at the time of death continues the steady process of decay. Thus, if a 
piece of old wood has half the radioactivity of a living tree, it lived about 
5600 years ago, and if it has only a fourth this radioactivity, it lived about 
11,200 years ago. This principle provides a method for dating any ancient 
object of organic origin, for instance, wood, charcoal, vegetable fiber, flesh, 
skin, bone, or horn. The reliability of the method has been verified by apply-
ing it to the heartwood of giant sequoia trees whose growth rings record 
3000 to 4000 years of life, and to furniture from Egyptian tombs whose age is 
also known independently. There are technical difficulties, but the method 
is now felt to be capable of reasonable accuracy as long as the periods of time 
involved are not too great (up to about 50,000 years).

Radiocarbon dating has been applied to thousands of samples, and labo-
ratories for carrying on this work number in the dozens. Among the more 
interesting age estimates are these: linen wrappings from the Dead Sea scrolls 
of the Book of Isaiah, recently found in a cave in Palestine and thought to 
be first or second century b.c., 1917 ± 200 years; charcoal from the Lascaux 
cave in southern France, site of the remarkable prehistoric paintings, 15,516 ± 
900 years; charcoal from the prehistoric monument at Stonehenge, in southern 
England, 3798 ± 275 years; charcoal from a tree burned at the time of the volca-
nic explosion that formed Crater Lake in Oregon, 6453 ± 250 years. Campsites 
of ancient man throughout the Western Hemisphere have been dated by using 
pieces of charcoal, fiber sandals, fragments of burned bison bone, and the like. 
The results suggest that human beings did not arrive in the New World until 
about the period of the last Ice Age, roughly 25,000 years ago, when the level of 
the water in the oceans was substantially lower than it now is and they could 
have walked across the Bering Straits from Siberia to Alaska.11

Problems

 1. If k is a given nonzero constant, show that the functions y = cekx are the 
only solutions of the differential equation

 

dy
dx

ky= .

11 Libby won the 1960 Nobel Prize for chemistry as a consequence of the work described above. 
His own account of the method, with its pitfalls and conclusions, can be found in his book 
Radiocarbon Dating, 2d ed., University of Chicago Press, 1955.
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 Hint: Assume that f(x) is a solution of this equation and show that 
f(x)/ekx is a constant.

 2. Suppose that P dollars is deposited in a bank that pays interest at an 
annual rate of r percent compounded continuously.

 (a)  Find the time T required for this investment to double in value as a 
function of the interest rate r.

 (b)  Find the interest rate that must be obtained if the investment is to 
double in value in 10 years.

 3. A bright young executive with foresight but no initial capital makes 
constant investments of D dollars per year at an annual interest rate of 
100k percent. Assume that the investments are made continuously and 
that interest is compounded continuously.

 (a) Find the accumulated amount A at any time t.
 (b)  If the interest rate is 6 percent, what must D be if 1 million dollars is 

to be available for retirement 40 years later?
 (c)  If the bright young executive is bright enough to find a safe invest-

ment opportunity paying 10 percent, what must D be to achieve 
the same result of 1 million dollars 40 years later? (It is worth notic-
ing that if this amount of money is simply squirreled away with-
out interest each year for 40 years, the grand total will be less than 
$80,000.)

 4. A newly retired person invests total life savings of P dollars at an interest 
rate of 100k percent per year, compounded continuously. Withdrawals 
for living expenses are made continuously at a rate of W dollars per 
year.

 (a) Find the accumulated amount A at any time t.
 (b) Find the withdrawal rate W0 at which A will remain constant.
 (c)  If W is greater than the value W0 found in part (b), then A will 

decrease and ultimately disappear. How long will this take?
 (d) Find the time in part (c) if the interest rate is 5 percent and W = 2W0.
 5. A certain stock market tycoon has a fortune that increases at a rate 

proportional to the square of its size at any time. If he had 10 million 
dollars a year ago, and has 20 million dollars today, how wealthy will 
he be in 6 months? In a year?

 6. A bacterial culture of population x is known to have a growth rate pro-
portional to x itself. Between 6 p.m. and 7 p.m. the population triples. At 
what time will the population become 100 times what it was at 6 p.m.?

 7. The population of a certain mining town is known to increase at a 
rate proportional to itself. After 2 years the population doubled, and 
after 1 more year the population was 10,000. What was the original 
population?
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 8. It is estimated by experts on agriculture that one-third of an acre of 
land is needed to provide food for one person on a continuing basis. It 
is also estimated that there are 10 billion acres of arable land on earth, 
and that therefore a maximum population of 30 billion people can be 
sustained if no other sources of food are known. The total world popu-
lation at the beginning of 1970 was 3.6 billion. Assuming that the popu-
lation continues to increase at the rate of 2 percent per year, when will 
the earth be full? What will be the population in the year 2000?

 9. A mold grows at a rate proportional to the amount present. At the 
beginning the amount was 2 grams. In 2 days the amount has increased 
to 3 grams.

 (a) If x = x(t) is the amount of the mold at time t, show that x = 2(3/2)t/2.
 (b) Find the amount at the end of 10 days.
 10. In Example 2, assume that living space for the colony of bacteria is 

limited and food is supplied at a constant rate, so that competition 
for food and space acts in such a way that ultimately the population 
will stabilize at a constant level x1 (x1 can be thought of as the larg-
est population sustainable by this environment). Assume further that 
under these conditions the population grows at a rate proportional to 
the product of x and the difference x1 − x, and find x as a function of t. 
Sketch the graph of this function. When is the population increasing 
most rapidly?

 11. Nuclear fission produces neutrons in an atomic pile at a rate propor-
tional to the number of neutrons present at any moment. If n0 neutrons 
are present initially, and n1 and n2 neutrons are present at times t1 and 
t2, show that
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 12. If half of a given quantity of radium decomposes in 1600 years, what 
percentage of the original amount will be left at the end of 2400 years? 
At the end of 8000 years?

 13. If the half-life of a radioactive substance is 20 days, how long will it take 
for 99 percent of the substance to decay?

 14. A field of wheat teeming with grasshoppers is dusted with an insecti-
cide having a kill rate of 200 per 100 per hour. What percentage of the 
grasshoppers are still alive 1 hour later?

 15. Uranium-238 decays at a rate proportional to the amount present. If x1 
and x2 grams are present at times t1 and t2, show that the half-life is
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.
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 16. Suppose that two chemical substances in solution react together to 
form a compound. If the reaction occurs by means of the collision and 
interaction of the molecules of the substances, then we expect the rate 
of formation of the compound to be proportional to the number of colli-
sions per unit time, which in turn is jointly proportional to the amounts 
of the substances that are untransformed. A chemical reaction that pro-
ceeds in this manner is called a second order reaction, and this law of 
reaction is often referred to as the law of mass action. Consider a second 
order reaction in which x grams of the compound contain ax grams of 
the first substance and bx grams of the second, where a + b = 1. If there 
are aA grams of the first substance present initially, and bB grams of the 
second, and if x = 0 when t = 0, find x as a function of the time t.12

 17. Many chemicals dissolve in water at a rate which is jointly proportional 
to the amount undissolved and to the difference between the concen-
tration of a saturated solution and the concentration of the actual solu-
tion. For a chemical of this kind placed in a tank containing G gallons 
of water, find the amount x undissolved at time t if x = x0 when t = 0 and 
x = when t = t1, and if S is the amount dissolved in the tank when the 
solution is saturated.

 18. Suppose that a given population can be divided into two groups: those 
who have a certain infectious disease, and those who do not have it but 
can catch it by having contact with an infected person. If x and y are the 
proportions of infected and uninfected people, then x + y = 1. Assume 
that (1) the disease spreads by the contacts just mentioned between sick 
people and well people, (2) that the rate of spread dx/dt is proportional 
to the number of such contacts, and (3) that the two groups mingle 
freely with each other, so that the number of contacts is jointly propor-
tional to x and y. If x = x0 when t = 0, find x as a function of t, sketch the 
graph, and use this function to show that ultimately the disease will 
spread through the entire population.

 19. A tank contains 100 gallons of brine in which 40 pounds of salt are dis-
solved. It is desired to reduce the concentration of salt to 0.1 pounds per 
gallon by pouring in pure water at the rate of 5 gallons per minute and 
allowing the mixture (which is kept uniform by stirring) to flow out at 
the same rate. How long will this take?

 20. An aquarium contains 10 gallons of polluted water. A filter is attached 
to this aquarium which drains off the polluted water at the rate of 5 gal-
lons per hour and replaces it at the same rate by pure water. How long 
does it take to reduce the pollution to half its initial level?

12 Students who are especially interested in first and second order chemical reactions will 
find a much more detailed discussion by Linus Pauling, probably the greatest chemist of 
the twentieth century, in his book General Chemistry, 3d ed., W. H. Freeman and Co., San 
Francisco, 1970. See particularly the chapter “The Rate of Chemical Reactions,” which is 
Chapter 16 in the 3d edition.
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 21. A party is being held in a room that contains 1800 cubic feet of air which 
is originally free of carbon monoxide. Beginning at time t = 0 several 
people start smoking cigarettes. Smoke containing 6 percent carbon 
monoxide is introduced into the room at the rate of 0.15 cubic feet/min, 
and the well-circulated mixture leaves at the same rate through a small 
open window. Extended exposure to a carbon monoxide concentration 
as low as 0.00018 can be dangerous. When should a prudent person 
leave this party?

 22. According to Lambert’s law of absorption, the percentage of incident light 
absorbed by a thin layer of translucent material is proportional to the 
thickness of the layer.13 If sunlight falling vertically on ocean water is 
reduced to one-half its initial intensity at a depth of 10 feet, at what 
depth is it reduced to one-sixteenth its initial intensity? Solve this prob-
lem by merely thinking about it, and also by setting up and solving a 
suitable differential equation.

 23. If sunlight falling vertically on lake water is reduced to three-fifths its 
initial intensity I0 at a depth of 15 feet, find its intensity at depths of 30 
feet and 60 feet. Find the intensity at a depth of 50 feet.

 24. Consider a column of air of cross-sectional area 1 square inch extend-
ing from sea level up to “infinity.” The atmospheric pressure p at an 
altitude h above sea level is the weight of the air in this column above 
the altitude h. Assuming that the density of the air is proportional to 
the pressure, show that p satisfies the differential equation

 

dp
dh

cp c= - >, ,0

 and obtain the formula p = p0e−ch, where p0 is the atmospheric pressure 
at sea level.

 25. Assume that the rate at which a hot body cools is proportional to the 
difference in temperature between it and its surroundings (Newton’s 
law of cooling14). A body is heated to 110°C and placed in air at 10°C. 
After 1 hour its temperature is 60°C. How much additional time is 
required for it to cool to 30°C?

 26. A body of unknown temperature is placed in a freezer which is kept 
at a constant temperature of 0°F. After 15 minutes the temperature of 

13 Johann Heinrich Lambert (1728–1777) was a Swiss–German astronomer, mathematician, 
physicist, and man of learning. He was mainly self-educated, and published works on the 
orbits of comets, the theory of light, and the construction of maps. The Lambert equal-area 
projection is well known to all cartographers. He is remembered among mathematicians for 
having given the first proof that π is irrational.

14 Newton himself applied this rule to estimate the temperature of a red-hot iron ball. So little 
was known about the laws of heat transfer at that time that his result was only a rough 
approximation, but it was certainly better than nothing.
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the body is 30°F and after 30 minutes it is 15°F. What was the initial 
temperature of the body? Solve this problem by merely thinking about 
it, and also by solving a suitable differential equation.

 27. A pot of carrot-and-garlic soup cooling in air at 0°C was initially boil-
ing at 100°C and cooled 20° during the first 30 minutes. How much will 
it cool during the next 30 minutes?

 28. For obvious reasons, the dissecting-room of a certain coroner is kept 
very cool at a constant temperature of 5°C (= 41°F). While doing an 
autopsy early one morning on a murder victim, the coroner himself is 
killed and the victim’s body is stolen. At 10 a.m. the coroner’s assistant 
discovers his chief’s body and finds its temperature to be 23°C, and at 
noon the body’s temperature is down to 18.5°C. Assuming the coroner 
had a normal temperature of 37°C (= 98.6°F) when he was alive, when 
was he murdered?15

 29. The radiocarbon in living wood decays at the rate of 15.30 disintegra-
tions per minute (dpm) per gram of contained carbon. Using 5600 years 
as the half-life of radiocarbon, estimate the age of each of the following 
specimens discovered by archaeologists and tested for radioactivity in 
1950:

 (a)  a piece of a chair leg from the tomb of King Tutankhamen, 10.14 
dpm;

 (b)  a piece of a beam of a house built in Babylon during the reign of 
King Hammurabi, 9.52 dpm;

 (c)  dung of a giant sloth found 6 feet 4 inches under the surface of the 
ground inside Gypsum Cave in Nevada, 4.17 dpm;

 (d)  a hardwood atlatl (spear-thrower) found in Leonard Rock Shelter in 
Nevada, 6.42 dpm.

5 Falling Bodies and Other Motion Problems

In this section we study the dynamical problem of determining the motion 
of a particle along a given path under the action of given forces. We con-
sider only two simple cases: a vertical path, in which the particle is fall-
ing either freely under the influence of gravity alone, or with air resistance 
taken into account; and a circular path, typified by the motion of the bob of 
a pendulum.

15 The idea for this problem is due to James F. Hurley, “An Application of Newton’s Law of 
Cooling,” The Mathematics Teacher, vol. 67 (1974), pp. 141–2.
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Free fall. The problem of a freely falling body was discussed in Section 1, 
and we arrived at the differential equation

 

d y
dt

g
2

2 =  (1)

for this motion, where y is the distance down to the body from some fixed 
height. One integration yields the velocity,

 
v

dy
dt

gt c= = + 1. (2)

Since the constant c1 is clearly the value of v when t = 0, it is the initial velocity 
v0, and (2) becomes

 
v

dy
dt

gt v= = + 0. (3)

On integrating again we get

 
y gt v t c= + +

1
2

2
0 2.

The constant c2 is the value of y when t = 0, or the initial position y0, so we 
finally have

 
y gt v t y= + +

1
2

2
0 0  (4)

as the general solution of (1). If the body falls from rest starting at y = 0, so that 
v0 = y0 = 0, then (3) and (4) reduce to

 
v gt y gt= =and

1
2

2.

On eliminating t we have the useful equation

 v gy= 2  (5)

for the velocity attained in terms of the distance fallen. This result can also 
be obtained from the principle of conservation of energy, which can be stated 
in the form
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 kinetic energy + potential energy = a constant.

Since our body falls from rest starting at y = 0, the fact that its gain in kinetic 
energy equals its loss in potential energy gives

 

1
2

2mv mgy= ,

and (5) follows at once.

Retarded fall. If we assume that air exerts a resisting force proportional 
to the velocity of our falling body, then the differential equation of the 
motion is

 

d y
dt

g c
dy
dt

2

2 = – , (6)

where c = k/m [see Equation 1–(3)]. If dy/dt is replaced by v, this becomes

 

dv
dt

g cv= – . (7)

On separating variables and integrating, we get

 

dv
g cv

dt
–

=

and

 
– log( – ) ,

1
1

c
g cv t c= +

so

 g − cv = c2e−ct.

The initial condition v = 0 when t = 0 gives c2 = g, so

 
v

g
c

e ct= - -( )1 . (8)
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Since c is positive, v → g/c as t → ∞. This limiting value of v is called the ter-
minal velocity. If we wish, we can now replace v by dy/dt in (8) and perform 
another integration to find y as a function of t.

The motion of a pendulum. Consider a pendulum consisting of a bob of 
mass m at the end of a rod of negligible mass and length a. If the bob is pulled 
to one side through an angle α and released (Figure 7), then by the principle 
of conservation of energy we have

 

1
2

2mv mg a= -( )  cos cosq aa . (9)

Since s = aθ and v = ds/dt = a(dθ/dt), this equation gives

 

1
2

2
2

a
d
dt

ga
q q aæ

è
ç

ö
ø
÷ = -(cos cos ); (10)

and on solving for dt and taking into account the fact that θ decreases as t 
increases (for small t), we get

 
dt

a
g

d= -
-2
q

q acos cos
.
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θ

α

FIGURE 7
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If T is the period, that is, the time required for one complete oscillation, then

 

T a
g

d
4 2

0

=
-ò–

cos cos
q

q a
a

or

 

T
a
g

d=
-ò4

2
0

q
q a

a

cos cos
. (11)

The value of T in this formula clearly depends on α, which is the reason why 
pendulum clocks vary in their rate of keeping time as the bob swings through 
a larger or smaller angle.16 Formula (11) for the period can be expressed more 
satisfactorily as follows. Since by one of the half-angle formulas of trigonom-
etry we have

 
cos sinq

q
= -1 2

2
2

and

 
cos sina

a
= -1 2

2
2 ,

we can write

 

T
a
g

d

a
g

d

k
k

=
-

=
-

=

ò

ò

2
2 2

2
2 2

2 2
0

2 2
0

q

a q

q

q

a

a

a

sin ( ) sin ( )

sin ( )
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/ /

/
..  (12)

We now change the variable from θ to ϕ by putting sin (θ/2) = k sin ϕ, so that 
ϕ increases from 0 to π/2 as θ increases from 0 to α, and

 

1
2 2

cos cos
q q f fd k d=
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k d k d
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f f
q
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sin/
/

.

16 This dependence of the period on the amplitude of the swing is what is meant by the “circu-
lar error” of pendulum clocks.



36 Differential Equations with Applications and Historical Notes

This enables us to write (12) in the form
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where

 

F k
d

k
( , )

sin
f f

f

f

=
-ò

0
2 21

is a function of k and ϕ called the elliptic integral of the first kind.17 The elliptic 
integral of the second kind,

 

E k k d( , ) sin ,f f f
f

= -ò
0

2 21

arises in connection with the problem of finding the circumference of an 
ellipse (see Problem 9). These elliptic integrals cannot be evaluated in terms 
of elementary functions. Since they occur quite frequently in applications to 
physics and engineering, their values as numerical functions of k and ϕ are 
often given in mathematical tables.

Our discussion of the pendulum problem up to this point has focused on 
the first order equation (10). For some purposes it is more convenient to deal 
with the second order equation obtained by differentiating (10) with respect 
to t:

 
a

d
dt

g
2

2

q q= – sin . (14)

If we now recall that sin θ is approximately equal to θ for small values of θ, 
then (14) becomes (approximately)

 

d
dt

g
a

2

2 0
q q+ = . (15)

17 It is customary in the case of elliptic integrals to violate ordinary usage by allowing the same 
letter to appear as the upper limit and as the dummy variable of integration.
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It will be seen later (in Section 11) that the general solution of the important 
second order equation

 

d y
dx

k y
2

2
2 0+ =

is

 y = c1 sin kx + c2 cos kx,

so (15) yields

 
q = +c

g
a

t c
g
a

t1 2sin cos . (16)

The requirement that θ = α and dθ/dt = 0 when t = 0 implies that c1 = 0 and 
c2 = α, so (16) reduces to

 
q a= cos

g
a

t. (17)

The period of this approximate solution of (14) is 2p a g . It is interesting to 
note that this is precisely the value of T obtained from (13) when k = 0, which 
is approximately true when the pendulum oscillates through very small 
angles.

Problems

 1. If the air resistance acting on a falling body of mass m exerts a retard-
ing force proportional to the square of the velocity, then equation (7) 
becomes

 

dv
dt

g cv= – 2,

 where c = k/m. If v = 0 when t = 0, find v as a function of t. What is the 
terminal velocity in this case?

 2. A torpedo is traveling at a speed of 60 miles/hour at the moment it 
runs out of fuel. If the water resists its motion with a force proportional 
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to the speed, and if 1 mile of travel reduces its speed to 30 miles/hour, 
how far will it coast?18

 3. A rock is thrown upward from the surface of the earth with initial 
velocity 128 feet/second. Neglecting air resistance and assuming that 
the only force acting on the rock is a constant gravitational force, find 
the maximum height it reaches. When does it reach this height, and 
when does it hit the ground? Answer these questions if the initial 
velocity is v0.

 4. A mass m is thrown upward from the surface of the earth with initial 
velocity v0. If air resistance is assumed to be proportional to velocity, 
with constant of proportionality k, and if the only other force acting 
on the mass is a constant gravitational force, show that the maximum 
height attained is
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k

m g
k

kv
mg

0
2

2
01- +

æ

è
ç

ö

ø
÷log .

 Use l’Hospital’s rule to show that this quantity ® v g0
2 2 , in accordance 

with the result of Problem 3.
 5. The force that gravity exerts on a body of mass m at the surface of the 

earth is mg. In space, however, Newton’s law of gravitation asserts that 
this force varies inversely as the square of the distance to the earth’s 
center. If a projectile fired upward from the surface is to keep traveling 
indefinitely, and if air resistance is neglected, show that its initial veloc-
ity must be at least 2gR , where R is the radius of the earth (about 4000 
miles). This escape velocity is approximately 7 miles/second or 25,000 
miles/hour. Hint: If x is the distance from the center of the earth to the 
projectile, and v = dx/dt is its velocity, then

 

d x
dt

dv
dt

dv
dx

dx
dt

v
dv
dx

2

2 = = = .

 6. In Problem 5, if ve denotes the escape velocity and v0 < ve, so that the 
projectile rises high but does not escape, show that

 
h

v v
v v
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e
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-
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0

2

0
21

/
/

 is the height it attains before it falls back to earth.

18 In the treatment of dynamical problems by means of vectors, the words velocity and speed 
are sharply distinguished from one another. However, in the relatively simple situations we 
consider, it is permissible (and customary) to use them more or less interchangeably, as we 
do in everyday speech.
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 7. Apply the ideas in Problem 5 to find the velocity attained by a body 
falling freely from rest at an initial altitude 3R above the surface of the 
earth down to the surface. What will be the velocity at the surface if the 
body falls from an infinite height?

 8. Inside the earth, the force of gravity is proportional to the distance 
from the center. If a hole is drilled through the earth from pole to pole, 
and a rock is dropped into the hole, with what velocity will it reach the 
center?

 9. (a)  Show that the length of the part of the ellipse x2/a2 + y2/b2 = 1 (a > b) 
that lies in the first quadrant is

 0

2 2 2

2 2

a
a e x
a x

dxò –
–

,

where e is the eccentricity,
 (b)  Use the change of variable x = a sin ϕ to transform the integral in (a) 

into

 

a e d aE e
0

2

2 21 2
p

f f p
/

sin ( , / ),ò - =

so that the complete circumference of the ellipse is 4aE(e, π/2).
 10. Show that the length of one arch of y = sin x is 2 2 1 2 2E( , )p .
 11. Show that the total length of the lemniscate r2 = a2 cos 2θ is 4 2 4aF( , )p .
 12. Given the cylinder and sphere whose equations in cylindrical coordi-

nates are r = a sin θ and r2 + z2 = b2, with a ≤ b, show that:
 (a)  The area of the part of the cylinder that lies inside the sphere is 

4abE(a/b,π/2).
 (b)  The area of the part of the sphere that lies inside the cylinder is 

2b2[π − 2E(a/b,π/2)].
 13. Establish the following evaluations of definite integrals in terms of 

elliptic integrals:

 (a) 
dx

x
F

sin
,

0

2

2 1 2 2
p

pò = ( ) [hint: put x = π/2–y, then cos y = cos2 ϕ];

 (b)  cos , ,
/

x dx E F= ( ) - ( )ò 2 2 1 2 2 2 1 2 2
0

2

/ / / /p p
p

 [hint: put cos x = 

cos2 ϕ];

 (c) 1 4 5 4 5 22

0

2

+ = ( )ò sin ,x dx E p
p

 [hint: put x = π/2 − ϕ].
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6 The Brachistochrone. Fermat and the Bernoullis

Imagine that a point A is joined by a straight wire to a lower point B in 
the same vertical plane (Figure 8), and that a bead is allowed to slide with-
out friction down the wire from A to B. We can also consider the case in 
which the wire is bent into an arc of a circle, so that the motion of the bead 
is the same as that of the descending bob of a pendulum. Which descent 
takes the least time, that along the straight path, or that along the circular 
path? Since the straight wire joining A and B is clearly the shortest path, 
we might guess that this wire also yields the shortest time. However, a 
moment’s consideration of the possibilities will make us more skeptical 
about this conjecture. There might be an advantage in having the bead 
slide down more steeply at first, thereby increasing its speed more quickly 
at the beginning of the motion; for with a faster start, it is reasonable to 
suppose that the bead might reach B in a shorter time, even though it trav-
els over a longer path. For these reasons, Galileo believed that the bead 
would descend more quickly along the circular path, and probably most 
people would agree with him.

Many years later, in 1696, John Bernoulli posed a more general problem. 
He imagined that the wire is bent into the shape of an arbitrary curve, and 
asked which curve among the infinitely many possibilities will give the 
shortest possible time of descent. This curve is called the brachistochrone 
(from the Greek brachistos, shortest + chronos, time). Our purpose in this 

A

B

FIGURE 8
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section is to understand Bernoulli’s marvelous solution of this beautiful 
problem.

We begin by considering an apparently unrelated problem in optics. 
Figure 9a illustrates a situation in which a ray of light travels from A to P 
with velocity v1 and then, entering a denser medium, travels from P to B with 
a smaller velocity v2. In terms of the notation in the figure, the total time T 
required for the journey is given by

 
T

a x
v

b c x
v

= + +
+ -2 2

1

2 2

2

( )
.

If we assume that this ray of light is able to select its path from A to B by way 
of P in such a way as to minimize T, then dT/dx = 0 and by the methods of 
elementary calculus we find that
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or

 

sin sina a1

1

2

2v v
= .

This is Snell’s law of refraction, which was originally discovered experimen-
tally in the less illuminating form sin α1/sin α2 = a constant.19 The assump-
tion that light travels from one point to another along the path requiring the 
shortest time is called Fermat’s principle of least time. This principle not only 
provides a rational basis for Snell’s law, but can also be applied to find the 
path of a ray of light through a medium of variable density, where in general 
light will travel along curves instead of straight lines. In Figure 9b we have 
a stratified optical medium. In the individual layers the velocity of light is 
constant, but the velocity decreases from each layer to the one below it. As 
the descending ray of light passes from layer to layer, it is refracted more and 
more toward the vertical, and when Snell’s law is applied to the boundaries 
between the layers, we obtain

 

sin sin sin sina a a a1

1

2

2

3

3

4

4v v v v
= = = .

If we next allow these layers to grow thinner and more numerous, then in 
the limit the velocity of light decreases continuously as the ray descends, and 
we conclude that

 

sin a
v

= aconstant.

This situation is indicated in Figure 9c, and is approximately what happens 
to a ray of sunlight falling on the earth as it slows in descending through 
atmosphere of increasing density.

Returning now to Bernoulli’s problem, we introduce a coordinate system 
as in Figure 10 and imagine that the bead (like the ray of light) is capable of 
selecting the path down which it will slide from A to B in the shortest pos-
sible time. The argument given above yields

 

sin a
v

a= constant . (1)

19 Willebrord Snell (1591–1626) was a Dutch astronomer and mathematician. At the age of 
twenty-two he succeeded his father as professor of mathematics at Leiden. His fame rests 
mainly on his discovery in 1621 of the law of refraction, which played a significant role in the 
development of both calculus and the wave theory of light.
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By the principle of conservation of energy, the velocity attained by the bead 
at a given level is determined solely by its loss of potential energy in reach-
ing that level, and not at all by the path that brought it there. As in the pre-
ceding section, this gives

 v gy= 2 . (2)

From the geometry of the situation we also have

 

sin cos
sec tan ( )

a b
b b

= = =
+

=
+ ¢

1 1

1

1

12 2y
. (3)

On combining equations (1), (2), and (3)—obtained from optics, mechanics, 
and calculus—we get

 y[1 + (y′)2] = c (4)

as the differential equation of the brachistochrone.
We now complete our discussion, and discover what curve the brachisto-

chrone actually is, by solving (4). When y′ is replaced by dy/dx and the vari-
ables are separated, (4) becomes

 
dx

y
c y

dy=
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è
ç
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ø
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/1 2

. (5)
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At this point we introduce a new variable ϕ by putting

 

y
c y–

tan
/

æ

è
ç

ö

ø
÷ =

1 2

f, (6)

so that y = c sin2 ϕ, dy = 2c sin ϕ cos ϕ dϕ, and

 dx = tan ϕ dy

 = 2c sin2 ϕ dϕ

 = c(1 − cos2ϕ) dϕ.

Integration now yields

 
x

c
c= - +

2
2 2 1( sin )f f .

Our curve is to pass through the origin, so by (6) we have x = y = 0 when ϕ = 0, 
and consequently c1 = 0. Thus

 
x

c= -
2

2 2( sin )f f  (7)

and

 
y c

c= = -sin ( cos )2

2
1 2f f . (8)

If we now put a = c/2 and θ = 2ϕ, then (7) and (8) become

 x a y a= - = -( sin ) ( cos )q q qand 1 . (9)

These are the standard parameteric equations of the cycloid shown in Figure 
11, which is generated by a point on the circumference of a circle of radius a 
rolling along the x-axis. We note that there is a single value of a that makes 
the first arch of this cycloid pass through the point B in Figure 10; for if a is 
allowed to increase from 0 to ∞, then the arch inflates, sweeps over the first 
quadrant of the plane, and clearly passes through B for a single suitably cho-
sen value of a.

Some of the geometric properties of the cycloid are perhaps familiar to 
the reader from elementary calculus. For example, the length of one arch is 
4 times the diameter of the generating circle, and the area under one arch is 
3 times the area of this circle. This remarkable curve has many other interest-
ing properties, both geometric and physical, and some of these are described 
in the problems below.
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We hope that the necessary details have not obscured the wonderful imag-
inative qualities in Bernoulli’s brachistochrone problem and his solution of it, 
for this whole structure of thought is a work of intellectual art of a very high 
order. In addition to its intrinsic interest, the brachistochrone problem has a 
larger significance: it was the historical source of the calculus of variations—a 
powerful branch of analysis that in modern times has penetrated deeply into 
the hidden simplicities at the heart of the physical world. We shall discuss 
this subject in Chapter 12, and develop a general method for obtaining equa-
tion (4) that is applicable to a wide variety of similar problems.

Note on Fermat. Pierre de Fermat (1601–1665) was perhaps the greatest math-
ematician of the seventeenth century, but his influence was limited by his 
lack of interest in publishing his discoveries, which are known mainly from 
letters to friends and marginal notes in the books he read. By profession he 
was a jurist and the king’s parliamentary counselor in the French provin-
cial town of Toulouse. However, his hobby and private passion was math-
ematics. In 1629 he invented analytic geometry, but most of the credit went to 
Descartes, who hurried into print with his own similar ideas in 1637. At this 
time—13 years before Newton was born—Fermat also discovered a method 
for drawing tangents to curves and finding maxima and minima, which 
amounted to the elements of differential calculus. Newton acknowledged, 
in a letter that became known only in 1934, that some of his own early ideas 
on this subject came directly from Fermat. In a series of letters written in 
1654, Fermat and Pascal jointly developed the fundamental concepts of the 
theory of probability. His discovery in 1657 of the principle of least time, and 
its connection with the refraction of light, was the first step ever taken in the 
direction of a coherent theory of optics. It was in the theory of numbers, how-
ever, that Fermat’s genius shone most brilliantly, for it is doubtful whether his 
insight into the properties of the familiar but mysterious positive integers has 
ever been equaled. We mention a few of his many discoveries in this field.
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 1. Fermat’s two squares theorem: Every prime number of the form 4n + 1 
can be written as the sum of two squares in one and only one way.

 2. Fermat’s theorem: If p is any prime number and n is any positive inte-
ger, then p divides np − n.

 3. Fermat’s last theorem: If n > 2, then xn + yn = zn cannot be satisfied by 
any positive integers x, y, z.

He wrote this last statement in the margin of one of his books, in connec-
tion with a passage dealing with the fact that x2 + y2 = z2 has many integer 
solutions. He then added the tantalizing remark, “I have found a truly won-
derful proof which this margin is too narrow to contain.” Unfortunately no 
proof has ever been discovered by anyone else, and Fermat’s last theorem 
remains to this day one of the most baffling unsolved problems of math-
ematics. Finding a proof would confer instant immortality on the finder, but 
the ambitious student should be warned that many able mathematicians 
(and some great ones) have tried in vain for hundreds of years.

(This is the way things were, until Andrew Wiles of Princeton University 
proved Fermat’s Last Theorem in 1994–95; see Annals of Mathematics 
141(3):443–551. This proof required 108 pages, and it’s been said that no more 
than about a dozen people in the world are able to understand it. The way is 
wide open for someone to rediscover the one- or one-and-a-half-page proof 
that Fermat discovered but didn’t bother to write down.)

Note on the Bernoulli Family. Most people are aware that Johann Sebastian 
Bach was one of the greatest composers of all time. However, it is less well 
known that his prolific family was so consistently talented in this direction 
that several dozen Bachs were eminent musicians from the sixteenth to the 
nineteenth centuries. In fact, there were parts of Germany where the very word 
bach meant a musician. What the Bach clan was to music, the Bernoullis were 
to mathematics and science. In three generations this remarkable Swiss fam-
ily produced eight mathematicians—three of them outstanding—who in turn 
had a swarm of descendants who distinguished themselves in many fields.

James Bernoulli (1654–1705) studied theology at the insistence of his father, 
but abandoned it as soon as possible in favor of his love for science. He taught 
himself the new calculus of Newton and Leibniz, and was professor of math-
ematics at Basel from 1687 until his death. He wrote on infinite series, stud-
ied many special curves, invented polar coordinates, and introduced the 
Bernoulli numbers that appear in the power series expansion of the function 
tan x. In his book Ars Conjectandi he formulated the basic principle in the 
theory of probability known as Bernoulli’s theorem or the law of large numbers: 
if the probability of a certain event is p, and if n independent trials are made 
with k successes, then k/n → p as n → ∞. At first sight this statement may 
seem to be a trivality, but beneath its surface lies a tangled thicket of philo-
sophical (and mathematical) problems that have been a source of controversy 
from Bernoulli’s time to the present day.
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James’s younger brother John Bernoulli (1667–1748) also made a false start 
in his career, by studying medicine and taking a doctor’s degree at Basel in 
1694 with a thesis on muscle contraction. However, he also became fasci-
nated by calculus, quickly mastered it, and applied it to many problems in 
geometry, differential equations, and mechanics. In 1695 he was appointed 
professor of mathematics and physics at Groningen in Holland, and on 
James’s death he succeeded his brother in the professorship at Basel. The 
Bernoulli brothers sometimes worked on the same problems, which was 
unfortunate in view of their jealous and touchy dispositions. On occasion 
the friction between them flared up into a bitter and abusive public feud, as 
it did over the brachistochrone problem. In 1696 John proposed the problem 
as a challenge to the mathematicians of Europe. It aroused great interest, 
and was solved by Newton and Leibniz as well as by the two Bernoullis. 
John’s solution (which we have seen) was the more elegant, while James’s— 
though rather clumsy and laborious—was more general. This situation 
started an acrimonious quarrel that dragged on for several years and was 
often conducted in rough language more suited to a street brawl than a 
scientific discussion. John appears to have been the more cantankerous of 
the two; for much later, in a fit of jealous rage, he threw his own son out of 
the house for winning a prize from the French Academy that he coveted 
for himself.

This son, Daniel Bernoulli (1700–1782), studied medicine like his father 
and took a degree with a thesis on the action of the lungs; and like his father 
he soon gave way to his inborn talent and became a professor of mathematics 
at St. Petersburg. In 1733 he returned to Basel and was successively professor 
of botany, anatomy, and physics. He won 10 prizes from the French Academy, 
including the one that infuriated his father, and over the years published 
many works on physics, probability, calculus, and differential equations. In 
his famous book Hydrodynamica he discussed fluid mechanics and gave the 
earliest treatment of the kinetic theory of gases. He is considered by many to 
have been the first genuine mathematical physicist.

Problems

 1. It is stated in the text that the length of one arch of the cycloid (9) is 4 
times the diameter of the generating circle (Wren’s theorem20). Prove 
this.

20 Christopher Wren (1632–1723), the greatest of English architects, was an astronomer and 
mathematician—in fact, Savilian Professor of Astronomy at Oxford—before the Great Fire 
of London in 1666 gave him his opportunity to build St. Paul’s Cathedral, as well as dozens 
of smaller churches throughout the city.



48 Differential Equations with Applications and Historical Notes

 2. It is stated in the text that the area under one arch of the cycloid (9) is 
3 times the area of the generating circle (Torricelli’s theorem21). Prove 
this.

 3. Obtain equations (9) for the cycloid by direct integration from the inte-
grated form of equation (5),

 
x

y
c y

dy= ò –
,

 by starting with the algebraic substitution u2 = y/(c − y) and continuing 
with a natural trigonometric substitution.

 4. Consider a wire bent into the shape of the cycloid (9), and invert it as in 
Figure 10. If a bead is released at the origin and slides down the wire 
without friction, show that p a g  is the time it takes to reach the point 
(πa,2a) at the bottom.

 5. Show that the number p a g  in Problem 4 is also the time the bead 
takes to slide to the bottom from any intermediate point, so that the 
bead will reach the bottom in the same time no matter where it is 
released. This is known as the tautochrone property of the cycloid, from 
the Greek tauto, the same + chronos, time.22

 6. At sunset a man is standing at the base of a dome-shaped hill where 
it faces the setting sun. He throws a rock straight up in such a manner 
that the highest point it reaches is level with the top of the hill. As the 
rock rises, its shadow moves up the surface of the hill at a constant 
speed. Show that the profile of the hill is a cycloid.

21 Evangelista Torricelli (1608–1647) was an Italian physicist and mathematician and a disciple 
of Galileo, whom he served as secretary. In addition to discovering and proving the theorem 
stated above, he advanced the first correct ideas—which were narrowly missed by Galileo—
about atmospheric pressure and the nature of vacuums, and invented the barometer as an 
application of his theories. See James B. Conant, Science and Common Sense, Yale University 
Press, New Haven, 1951, pp. 63–71. The geometric theorems of Wren and Torricelli stated in 
Problems 1 and 2 are straightforward calculus exercises for us. It is interesting to consider 
how they might have been discovered and proved at a time when the powerful methods of 
calculus did not exist.

22 The tautochrone property of the cyloid was discovered by the great Dutch scientist 
Christiaan Huygens (1629–1695). He published it in 1673 in his treatise on the theory of pen-
dulum clocks, and it was well-known to all European mathematicians at the end of the sev-
enteenth century. When John Bernoulli published his discovery of the brachistochrone in 
1696, he expressed himself in the following exuberant language (in Latin, of course): “With 
justice we admire Huygens because he first discovered that a heavy particle falls down 
along a common cycloid in the same time no matter from what point on the cycloid it begins 
its motion. But you will be petrified with astonishment when I say that precisely this cycloid, 
the tautochrone of Huygens, is our required brachistochrone.”
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Miscellaneous Problems for Chapter 1

 1. It began to snow on a certain morning, and the snow continued to 
fall steadily throughout the day. At noon a snowplow started to clear 
a road at a constant rate in terms of the volume of snow removed per 
hour. The snowplow cleared 2 miles by 2 p.m. and 1 more mile by 
4 p.m. When did it start snowing?

 2. A mothball whose radius was originally 
1
4

 inch is found to have 

a radius of 
1
8

 inch after 1 month. Assuming that it evaporates at a 

rate proportional to its surface, find the radius as a function of time. 
After how many more months will it disappear altogether?

 3. A tank contains 100 gallons of pure water. Beginning at time t = 0, brine 
containing 1 pound salt/gallon flows in at the rate of 1 gallon/minute, 
and the mixture (which is kept uniform by stirring) flows out at the 
same rate. When will there be 50 pounds of dissolved salt in the tank?

 4. A large tank contains 100 gallons of brine in which 200 pounds of 
salt are dissolved. Beginning at time t = 0, pure water flows in at the 
rate of 3 gallons/minute, and the mixture (which is kept uniform by 
stirring) flows out at the rate of 2 gallons/minute. How long will it 
take to reduce the amount of salt in the tank to 100 pounds?

 5. A smooth football having the shape of an ellipsoid 12 inches long 
and 6 inches thick is lying outdoors in a rainstorm. Find the paths 
along which water will run down its sides.

 6. If c is a positive constant and a is a positive parameter, then

 

x
a

y
a c

2

2

2

2 2 1+ =
–

 is the equation of the family of all ellipses (a > c) and hyperbolas 
(a < c) with foci at the points (±c, 0). Show that this family of confocal 
conics is self-orthogonal (see Problem 3–2).

 7. According to Torricelli’s law, water in an open tank will flow out 
through a small hole in the bottom with the speed it would acquire 
in falling freely from the water level to the hole. A hemispherical 
bowl of radius R is initially full of water, and a small circular hole 
of radius r is punched in the bottom at time t = 0. How long will the 
bowl take to empty itself?

 8. The clepsydra, or ancient water clock, was a bowl from which water 
was allowed to escape through a small hole in the bottom. It was 
often used in Greek and Roman courts to time the speeches of law-
yers, in order to keep them from talking too much. Find the shape it 
should have if the water level is to fall at a constant rate.
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 9. Two open tanks with identical small holes in the bottom drain in the 
same time. One is a cylinder with a vertical axis and the other is a 
cone with vertex down. If they have equal bases and the height of the 
cylinder is h, what is the height of the cone?

 10. A cylindrical can partly filled with water is rotated about its axis 
with constant angular velocity ω. Show that the surface of the water 
assumes the shape of a paraboloid of revolution. (Hint: The centrip-
etal force acting on a particle of water of mass m at the free surface is 
mxω2 where x is its distance from the axis, and this is the resultant of 
the downward gravitational force mg and the normal reaction force 
R due to other nearby particles of water.)

 11. Consider a bead at the highest point of a circle in a vertical plane, 
and let that point be joined to any lower point on the circle by a 
straight wire. If the bead slides down the wire without friction, show 
that it will reach the circle in the same time regardless of the position 
of the lower point.

 12. A chain 4 feet long starts with 1 foot hanging over the edge of a table. 
Neglect friction, and find the time required for the chain to slide off 
the table.

 13. Experience tells us that a man holding one end of a rope wound 
around a wooden post can restrain with a small force a much greater 
force at the other end. Quantitatively, is is not difficult to see that 
if T and T + ∆T are the tensions in the rope at angles θ and θ + ∆θ 
in Figure 12, then a normal force of approximately T ∆θ is exerted 
by the rope on the post in the region between θ and θ + ∆θ. It fol-
lows from this that if μ is the coefficient of friction between the rope 
and the post, then ∆T is approximately µT ∆θ. Use this statement to 

T + ΔT

Δθ

θ

T0

T

FIGURE 12
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formulate the differential equation relating T and θ, and solve this 
equation to find T as a function of θ, µ, and the force T0 exerted by the 
man.

 14. A load L is supported by a tapered circular column whose material 
has density a. If the radius of the top of the column is r0, find the 
radius r at a distance x below the top if the areas of the horizontal 
cross sections are proportional to the total loads they bear.

 15. The President and the Prime Minister order coffee and receive cups 
of equal temperature at the same time. The President adds a small 
amount of cool cream immediately, but does not drink his coffee 
until 10 minutes later. The Prime Minister waits 10 minutes, and 
then adds the same amount of cool cream and begins to drink. Who 
drinks the hotter coffee?

 16. A destroyer is hunting a submarine in a dense fog. The fog lifts for 
a moment, discloses the submarine on the surface 3 miles away, and 
immediately descends. The speed of the destroyer is twice that of 
the submarine, and it is known that the latter will at once dive and 
depart at full speed in a straight course of unknown direction. What 
path should the destroyer follow to be certain of passing directly 
over the submarine? Hint: Establish a polar coordinate system with 
the origin at the point where the submarine was sighted.

 17. Four bugs sit at the corners of a square table of side a. At the same 
instant they all begin to walk with the same speed, each moving 
steadily toward the bug on its right. If a polar coordinate system is 
established on the table, with the origin at the center and the polar 
axis along a diagonal, find the path of the bug that starts on the 
polar axis and the total distance it walks before all bugs meet at the 
center.

Appendix A: Some Ideas From the Theory of 
Probability: The Normal Distribution Curve (or 
Bell Curve) and Its Differential Equation

Suppose a measurement or experiment is performed many times, and that 
its result is a number. We can think, for example, of weighing the babies born 
in a certain hospital during a given year, or of measuring the annual rainfall 
in a certain city over a number of years. Suppose the possible results of our 
measurement or experiment are numbers x that lie in an interval a ≤ x ≤ b. To 
record our results we can divide the interval [a, b] into n subintervals of equal 
length, say a = x0 < x1 < x2 < … < xn = b, and then count the number of times 
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mk that our result is a number between xk−1 and xk. When this way of arrang-
ing the data is represented by a step function whose height is mk over the kth 
subinterval, the resulting graph is called a histogram.

In Figure 13 the birth weight data in the table on the left—taken from gen-
uine vital statistics—is displayed in the histogram on the right. The total 
number of babies born in this hospital in this year was 2555. To find the aver-
age birth weight directly, we would have to calculate the number

 

sum of all birth weights
total number of babies

.

But our table doesn’t provide individual birth weights, so without access to 
the original data this calculation is beyond our power. However, by using 
the midpoint of each weight interval, we find that the sum of all the birth 
weights is approximately

 

1 5 12 2 5 18 3 5 46 4 5 158

5 5 422 6 5 8

. . . .

. .

( )( ) + ( )( ) + ( )( ) + ( )( )

+ ( )( ) + ( ) 228 7 5 491 8 5 429

9 5 133 1 5 18 17 419 5

( ) + ( )( ) + ( )( )

+ ( )( ) + ( )( ) =

. .

. . , .0   lb.  (1)

The average birth weight, also called the mean, is therefore approximately 
17,419.5/2555 = 6.82 lb. In the histogram each term of the sum (1) is the product 
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of x-coordinate of the midpoint of a subinterval and the area of the corre-
sponding rectangle.

If we reconstruct our histogram by using a larger and larger number of 
smaller and smaller subintervals, we expect the graph to approach the graph 
of a smooth function f(x). We can now adjust the unit of length along the 
vertical axis so that the total area under the curve is 1. This gives a func-
tion y = f(x) called the frequency density. This function has two characteristic 
properties:

 

f x f x dx
a

b

( ) ( )³ =ò0 1and  . (2)

Also, if a ≤ c < d ≤ b, then the integral

 

f x dx
c

d

( ) ò  (3)

gives the ratio of number of times the measurement produces a value between 
c and d to the total number of measurements, that is, the relative frequency of 
the result c ≤ x ≤ d. In the same way, f(x) dx can be thought of as the proportion 
of results that lie between x and x + dx. From this point of view, the integral 
(3) can be interpreted as the probability that a randomly chosen measure-
ment will have a result between c and d, and f(x) is then called a probability 
density function.

In order to gain further insight into these concepts, let us for a moment 
think of f(x) as the mass density function of a rod of total mass 1 that lies 
along the x-axis between x = a and x = b. Then f(x) dx is the element of mass, 
xf(x) dx is the moment of this element of mass about the origin, and the 
integral

 

x xf x dx
a

b

= ò ( )  (4)

is the center of mass of the rod, since f x dx
a

b

( ) =ò 1. Also, the integral

 

I x x f x dx
a

b

= ò ( ) ( )- 2   (5)
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is the moment of inertia of the rod about the line x x=  as axis. We know from 
our experience in studying calculus that this quantity is small if most ele-
ments of mass are nestled close to the axis and larger otherwise.

In the case of a general probability density f(x) with properties (2), the inte-
gral corresponding to (4),

 

m xf x dx
a

b

= ò ( ) ,

is called the mean. As we know, the mean m is the point on the x-axis where 
the region under the probability density graph, if it were made out of card-
board and placed in a horizontal position, would balance on the line x = m. 
The square root of the integral corresponding to (5),

 
s = ò ( ) ( )x m f x dx

a

b

- 2  ,

is called the standard deviation. If σ is small, the results of our measurements 
cluster around the mean m; and if σ is large, then a significant portion of 
these results are farther away from m.

In the general mathematical theory of probability of which these ideas are 
only a hint, it is customary to consider probability densities that are defined 
for all x, so that no limitations are placed on the possible results of the mea-
surement or experiment under consideration. A probability density is then 
defined to be any function that satisfies the conditions

 

f x f x dx( ) ( )³ =
¥

¥

ò0 1and  
-

, (6)

and the mean m and standard deviation σ are defined by

 

m xf x dx x m f x dx= =
¥

¥

¥

¥

ò ò( ) ( ) ( ) and
- -

-s2 2 . (7)

Of course, these integrals are improper integrals in the sense discussed in 
calculus courses.

Several Important Improper Integrals. To reach our goal of understanding 
the normal distribution we must first consider several properties of the func-
tion y f x e x= =( ) - 2

, whose bell-shaped graph is sketched in Figure 14. We 
begin by pointing out that this function is even, which means that f(–x) = f(x), 
so the graph is symmetric about the y-axis. Also, the values of the function 
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are all positive, it has a maximum y = 1 at x = 0, and the graph has two points 
of inflection at x = ± 1

2 2  (check this by calculating y″). It is clear that

 
lim
x

xe
®±¥

=- 2
0, (8)

because e ex x- 2 2

1=  and ex2
® ¥ as x→ ± ∞. Also

 
lim
x

xxe
®±¥

=- 2
0, (9)

because for |x| > 1 we have xe x e x ex x x- - -2 2 22= < , and we know that 

lim limx
x

z
zx e ze®±¥ ®¥= =2 2

0- - .
It is a remarkable fact that the area under the curve y e x= - 2

 has the finite 
value

 

e dxx-

-

2
=

¥

¥

ò p, (10)

because

 

e dxx- 2

0

1
2

¥

ò = p. (11)

This astonishing formula connecting e and π is best established by using 
double integration in polar coordinates. To understand this, write

 

I e dyy=
¥

ò - 2

0

.

y

x

1

y = e–x2

FIGURE 14
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Since it doesn’t matter what letter we use for the variable of integration, we 
have

 

I e dx e dyx y2

0 0

2 2
=

æ

è

ç
ç

ö

ø

÷
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æ

è

ç
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ö

ø

÷
÷

¥ ¥
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By moving the first factor past the second integral sign, this can be written 
in the form

 

I e dx e dy e e dx dyx y x y2
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2 2 2 2
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This double integral is extended over the entire first quadrant of the xy-
plane. In polar coordinates it becomes

 

I e r dr d e d dr2
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2

0 0

2

0

2
2 21

2
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ù
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,

so I =
1
2

p , which is (11),

Next, since the integrand is an odd function, which means that f(–x) = –f(x) 
it is clear that

 

xe dxx-

-

2
0

¥

¥

ò = . (12)

Finally, an integration by parts with u = x, dv xe dxx= - 2
 gives

 
x e dx xe e dxx x x2 2 2 21

2
1
2ò ò= +- - -- ,

so

 

x e dx te e dxx

t

t x

t

2

0 0

2 2 21
2

1
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By (9) and (11) we now have
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Since the integrand x e x2 2-  is an even function, we conclude that

 

x e dxx2 2 1
2

-

-¥

¥

ò = p . (13)

The Normal Curve. Let m be any number and σ any positive number. Then 
the function

 
f x e x m( ) ( )= 1

2

2 22

s p
s- -  (14)

is called the normal probability density function with mean m and standard 
deviation σ. Since clearly f(x) > 0 for all x, to verify what is implicitly stated 
here we must show that

 

f x dx( ) =
¥

¥

ò 1
-

. (15)

 

xf x dx m( ) =
¥

¥

ò
-

, (16)

and

 

( ) ( )x m f x dx- =
¥

¥

ò 2 2s
-

. (17)
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To prove these facts we use the change of variable t x m= ( )- s 2 , so that t 
varies from –∞ to ∞ as x varies from –∞ to ∞ and

 
x m t dx dt f x e t= + = =s s

s p
2 2

1
2

2
, , ( ) - .

By using (10), (12), and (13) we establish (15), (16), and (17) as follows:
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The graph of (14) is called the normal curve with mean m and standard devia-
tion σ. It is symmetric about the line x = m, because the function (14) has the 
same values for x1 = m + a and x2 = m − a. Also, the curve is bell shaped, and the 
function assumes its maximum value of 1 2 0 399s p s@ .  at x = m. Further, 
the curve has two points of inflection at the points x = m + σ and x = m − σ. To 
see this we calculate
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This formula tells us that the second derivative is positive for |x − m| > σ 
and negative for |x − m| > σ, which proves the statement about points of 
inflection.

Normal curves with σ = 1 and m = 0, 2, −2 are shown on the left in Figure 15, 
and with m = 0 and σ = 1/2, 1, 2 on the right. We observe that these curves are 
wide and flat for large σ, and narrow and peaked for small σ. For the special 
case in which m = 0 and σ = 1, we obtain the important standard normal prob-
ability density

 
f

p
( ) /x e x= -1

2

2 2. (18)

The graph of this function is shown in Figure 16. We notice that for −1 ≤ x 
≤ 1 (within one standard deviation of the mean) we obtain 68.2 percent of 
the area under the curve, and for −2 ≤ x ≤ 2 (within two standard devia-
tions of the mean) we obtain 95.4 percent of the area under the curve. It is 
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Changes in f(x) as m varies and as σ varies.
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an interesting fact that these percentages hold for the areas under all normal 
curves within one or two standard deviations of the mean.

When f(x) is any probability density, the function of t defined by

 

F t f x dx
t

( ) ( )=
-¥
ò

is called its distribution function. According to our previous interpretation, 
F(t) is the probability that x lies in the interval (–∞, t]. In particular, the normal 
distribution function (or simply the normal distribution) with mean m and stan-
dard deviation σ is the function
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In the simplest special case, in which m = 0 and σ = 1, it is customary to denote 
this by
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and to refer to it as the standard normal distribution. Tables have been con-
structed for the function Ф(t) by the methods of numerical integration, and 
these tables can be used to solve many problems in science and mathemat-
ics involving probability and statistics. Students who wish to explore these 
important ideas are urged to take an advanced course on mathematical 
probability.

We have hinted at a procedure here, and it might be helpful to give a brief 
explanation of how this procedure works. To say that the quantity x is nor-
mally distributed means that its density function is well approximated by (14) 
for suitable choices of m and σ. The probability that x lies in the interval a ≤ x 
≤ b is denoted by P(a ≤ x ≤ b) and is given by
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If we make the substitution t = (x − m)/σ, then a and b become
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and the integral just written is transformed into
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This quantity can now be calculated by using tables to look up the numerical 
values of Ф(b′) and Ф(a′).

Many phenomena in science and society are normally distributed, and can 
therefore be modeled and calculated by using this machinery—for instance, 
the heights of men of the same age in a large population, the speeds of mol-
ecules in a gas, the results of measuring a physical quantity many times, and 
so on.

Example 1. The mean annual rainfall in New York City is 42 in. The 
annual rainfall over many years is closely approximated by the normal 
density function with m = 42 and standard deviation σ = 2,

 
f x e x( ) .( ) /= - -1

2 2
42 82

p

A sketch of this normal curve is shown in Figure 17. Use this information 
to compute the proportion of years with rainfall between (a) 40 and 44 
in; (b) 38 and 46 in.

Solution (a) The proportion of years with rainfall between 40 and 44 in is
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With the change of variable t = (x − 42)/2—and access to table of values 
of Φ(t)—this becomes
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0.8413 0.1587 0.6826.

(b) Similarly, the proportion of years with rainfall between 38 and 46 in 
is (with the same change of variable)
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Example 2. An examination in school is sometimes considered to have 
done its job of spreading student grades fairly if the frequency histo-
gram of grades can be approximated by a normal density function. Some 
teachers who go to this trouble then use this histogram and approximat-
ing curve to estimate m and σ, and assign the letter grade A to grades 
greater than m + σ, B to grades between m and m + σ, C to grades between 
m − σ and m, D to grades between m − 2σ and m − σ, and F to grades 
below m − 2σ. This is what is meant (or used to be meant) by grading on 
the curve. This approach to calculating grades is probably almost extinct 
in the modern era of grade inflation.

The Differential Equation. How does it happen that these probability dis-
cussions are saturated with various forms of the function e x- 2

? We attempt 
to answer this question by showing how the normal probability density 
function (14) can be derived from simple and reasonable assumptions 
leading to a differential equation.

Consider the experiment of a marksman repeatedly shooting at a target 
whose bull’s eye is the origin of the xy-plane (Figure 18), and suppose that 
we are only interested in the x-coordinates of the points of impact. These 
x-coordinates provide an ideally simple example of quantities distributed in 
the pattern we wish to examine, being bunched together around x = 0 and 
tapering off symmetrically to the sides.

If f(x) is the probability density function of these x-coordinates, then f(x) 
dx is the probability for any particular shot that its x-coordinate lies in the 
interval from x to x + dx. Similarly the probability of the y-coordinate lying in 
the interval from y to y + dy is g(y) dy, where g(y) is the probability density in 
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the y-direction. Now, assuming that the x- and y-deviations from the bull’s 
eye are independent of each other, then the product of the two probabilities,

 [f(x) dx][g(y) dy] = f(x)g(y) dx dy = f(x)g(y) dA,

is the probability that the bullet hits the element of area dA shown in the 
figure. Assuming further that the experiment possesses circular symmetry, 
this probability will be the same for any equal element of area at the same 
distance r in any direction from the bull’s eye. This amount to assuming that 
f(x)g(y) is a function only of r2,

 f(x)g(y) = h(r2), (22)

where r2 = x2 + y2.
Differentiating both sides of (22) first with respect to x and then with 

respect to y gives

 f′(x)g(y) = h′(r2) ∙ 2x and f(x)g′(y) = h′(r2) ∙ 2y.

By eliminating h′(r2) from these equation we obtain

 

¢
=

¢f x g y
x

f x g y
y

( ) ( ) ( ) ( )
2 2

or

 

¢
=

¢f x
xf x

g y
yg y

( )
( )

( )
( )2 2

. (23)

y

dy

y

r

x

dx

x

dA = dx dy

FIGURE 18
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Since the left side is a function of x alone, and the right side is a function of y 
alone, (23) implies that both sides are constant, in particular

 

¢
=

¢
=

f x
xf x

c
f x
f x

cx
( )
( )

( )
( )2

2or ,

and this is our desired differential equation. Integration now gives

 log f(x) = cx2 + d

or

 f x e e Ded cx cx( ) = × =
2 2

 (24)

where D = ed. But f(x) is a probability density function, so we must have

 

f x dx( )
-¥

¥

ò = 1, (25)

and this implies that c must be negative. We are free to write c in the form 
c = −1/2σ2 for a positive constant σ, and (24) now becomes

 f x De x( ) /= - 2 22s .

By integrating this from −∞ to ∞, changing the variable of integration from x 
to t x= s 2 , and using (10) and (25), we obtain

 

D e dx D e dt Dx t-

-¥

¥

-

-¥

¥

ò ò= = =
2 2 22 2 2 1/ s s s p .

Therefore D = 1 2s p and our function takes its final form,

 
f x e x( ) /= -1

2

2 22

s p
s ,

which is the normal probability density (14) with mean m = 0.
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Chapter 2
First Order Equations

7 Homogeneous Equations

Generally speaking, it is very difficult to solve first order differential equa-
tions. Even the apparently simple equation

 

dy
dx

f x y= ( , )

cannot be solved in general, in the sense that no formulas exist for obtaining 
its solution in all cases. On the other hand, there are certain standard types 
of first order equations for which routine methods of solution are available. 
In this chapter we shall briefly discuss a few of the types that have many 
applications. Since our main purpose is to acquire technical facility, we shall 
completely disregard questions of continuity, differentiability, the possible 
vanishing of divisors, and so on. The relevant problems of a purely math-
ematical nature will be dealt with later, when some of the necessary back-
ground has been developed.

The simplest of the standard types is that in which the variables are 
separable:

 

dy
dx

g x h y= ( ) ( ).

As we know, to solve this we have only to write it in the separated form 
dy/h(y) = g(x) dx and integrate:

 

dy
h y

g x dx c
( )

( )= +òò  .

We have seen many examples of this procedure in the preceding chapter.
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At the next level of complexity is the homogeneous equation. A function 
f (x,y) is called homogeneous of degree n if

 f(tx, ty) = tnf (x, y)

for all suitably restricted x, y, and t. This means that if x and y are replaced 
by tx and ty, tn factors out of the resulting function, and the remaining factor 
is the original function. Thus x2 + xy, x y2 2+ , and sin (x/y) are homogeneous 
of degrees 2, 1, and 0. The differential equation

 M (x, y) dx + N(x, y) dy = 0

is said to be homogeneous if M and N are homogeneous functions of the same 
degree. This equation can then be written in the form

 

dy
dx

f x y= ( , )
 

(1)

where f(x, y) = − M(x, y)/N(x, y) is clearly homogeneous of degree 0. The proce-
dure for solving (1) rests on the fact that it can always be changed into an equa-
tion with separable variables by means of the substitution z = y/x, regardless 
of the form of the function f(x, y). To see this, we note that the relation

 f(tx, ty) = t0f(x, y) = f(x, y)

permits us to set t = 1/x and obtain

 f(x, y) = f(1, y/x) = f(1, z).

Then, since y = zx and

 

dy
dx

z x
dz
dx

= + ,
 

(2)

equation (1) becomes

 
z x

dz
dx

f z+ = ( , )1 ,

and the variables can be separated:

 

dz
f z z

dx
x( , )1 -

= .

We now complete the solution by integrating and replacing z by y/x.
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Example 1. Solve (x + y) dx − (x − y) dy = 0.
We begin by writing the equation in the form suggested by the above 

discussion:

 

dy
dx

x y
x y

=
+
–

.

Since the function on the right is clearly homogeneous of degree 0, 
we know that it can be expressed as a function of z = y/x. This is easily 
accomplished by dividing numerator and denominator by x:

 

dy
dx

y x
y x

z
z

=
+

=
+1

1
1
1

/
/- -

.

We next introduce equation (2) and separate the variables, which gives

 

( )1
1 2

- z dz
z

dx
x+

= .

On integration this yields

 
tan log(. ) log- - + = +1 21

2
1z z x c;

and when z is replaced by y/x, we obtain

 
tan log- = + +1 2 2y

x
x y c

as the desired solution.

Problems

 1. Verify that the following equations are homogeneous, and solve them:
 (a) (x2 − 2y2) dx + xy dy = 0;
 (b) x2y′ − 3xy − 2y2 = 0;
 (c) x y x y

y
x

xy2 2 2 13¢ -= + +( ) tan ;
 

(d)
 

x
y
x

dy
dx

y
y
x

xsin sin= + ;
 (e) xy′ = y + 2xe–y/x;
 (f) (x − y) dx − (x + y) dy = 0;



68 Differential Equations with Applications and Historical Notes

 (g) xy′ = 2x + 3y;

 (h) xy x y¢ = +2 2 ;

 (i) x2y′ = y2 + 2xy;
 (j) (x3 + y3) dx − xy2 dy = 0.
 2. Use rectangular coordinates to find the orthogonal trajectories of the 

family of all circles tangent to the y-axis at the origin.
 3. Show that the substitution z = ax + by + c changes

 y′ = f (ax + by + c)

 into an equation with separable variables, and apply this method to 
solve the following equations:

 (a) y′ = (x + y)2;
 (b) y′ = sin2 (x − y + 1).
 4. (a)  If ae ≠ bd, show that constants h and k can be chosen in such a way 

that the substitutions x = z − h, y = w − k reduce

 

dy
dx

F
ax by c
dx ey f

=
+ +
+ +

æ

è
ç

ö

ø
÷

to a homogeneous equation.
 (b) If ae = bd, discover a substitution that reduces the equation in (a) to 

one in which the variables are separable.
 5. Solve the following equations:

 (a) dy
dx

x y
x y

=
+ + 4

6– –
;

 (b)
 

dy
dx

x y
x y

=
+ +
+

4
6–

;

 (c) (2x − 2y) dx + (y − 1) dy = 0;

 
(d)

 

dy
dx

x y
x y

=
+

+ +
– 1

4 2
;

 (e) (2x + 3y − 1) dx − 4(x + 1) dy = 0.
 6. By making the substitution z = y/xn or y = zxn and choosing a conve-

nient value of n, show that the following differential equations can be 
transformed into equations with separable variables, and thereby solve 
them:

 (a) 
dy
dx

xy
x y

=
1
2

2

2

– ;
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(b)

 dy
dx

xy
x y

=
+2 3
4

2

2 ;

 (c) 
dy
dx

y xy
x x y

=
+
– 2

2 .

 7. Show that a straight line through the origin intersects all integral 
curves of a homogeneous equation at the same angle.

 8. Let y′ = f(x, y) be a homogeneous differential equation, and prove the 
following geometric fact about its family of integral curves: If the xy-
plane is stretched from (or contracted toward) the origin in such a way 
that each point (x, y) is moved to a new point (x1, y1) which is k times 
its original distance from the origin, with its direction from the ori-
gin unchanged, then every integral curve C is carried into an integral 
curve C1. Hint: x1 = kx and y1 = ky.

 9. Let y′ = f(x, y) be a differential equation whose family of integral curves 
has the geometric property of invariance under stretching which is 
stated in Problem 8, and prove that the equation is homogeneous.

 10. Let a family of curves be integral curves of a differential equation 
y′ = f(x, y). Let a second family have the property that at each point 
P = (x, y) the angle from the curve of the first family through P to the 
curve of the second family through P is α. Show that the curves of the 
second family are solutions of the differential equation

 
¢ =

+
y

f x y
f x y

( , ) tan
( , ) tan

a
a1-

.

 11. Use the result of the preceding problem to find the curves that form the 
angle π/4 with

 (a) all straight lines through the origin;
 (b) all circles x2 + y2 = c2;
 (c) all hyperbolas x2 − 2xy − y2 = c.

8 Exact Equations

If we start with a family of curves f(x, y) = c, then its differential equation can 
be written in the form df = 0 or

 

¶
¶

+
¶
¶

=
f
x

dx
f
y

dy 0.
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For example, the family x2y3 = c has 2xy3 dx + 3x2y2 dy = 0 as its differential 
equation. Suppose we turn this situation around, and begin with the dif-
ferential equation

 M(x, y) dx + N(x, y) dy = 0. (1)

If there happens to exist a function f(x, y) such that

 

¶
¶

=
¶
¶

=
f
x

M
f
y

Nand ,
 

(2)

then (1) can be written in the form

 

¶
¶

+
¶
¶

= =
f
x

dx
f
y

dy df0 0or

and its general solution is

 f(x, y) = c.

In this case the expression M dx + N dy is said to be an exact differential, and 
(1) is called an exact differential equation.

It is sometimes possible to determine exactness and find the function f by 
mere inspection. Thus the left sides of

 
y dx x dy

y
dx

x
y

dy+ = =0
1

02and –

are recognizable as the differentials of xy and x/y, respectively, so the general 
solutions of these equations are xy = c and x/y = c. In all but the simplest cases, 
however, this technique of “solution by insight” is clearly impractical. What 
is needed is a test for exactness and a method for finding the function f. We 
develop this test and method as follows.

Suppose that (1) is exact, so that there exists a function f satisfying equa-
tions (2). We know from elementary calculus that the mixed second partial 
derivatives of f are equal:

 

¶
¶ ¶

=
¶

¶ ¶

2 2f
y x

f
x y  

.1

 
(3)

1 The reader should be aware that equation (3) is true whenever both sides exist and are contin-
uous, and that these conditions are satisfied by almost all functions that are likely to arise in 
practice. Our blanket hypothesis throughout this chapter (see the first paragraph in Section 7) 
is that all the functions we discuss are sufficiently continuous and differentiable to guarantee 
the validity of the operations we perform on them.
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This yields

 

¶
¶

= ¶
¶

M
y

N
x

,
 

(4)

so (4) is a necessary condition for the exactness of (1). We shall prove that it 
is also sufficient by showing that (4) enables us to construct a function f that 
satisfies equations (2). We begin by integrating the first of equations (2) with 
respect to x:

 f M dx g y=   + ò ( ). (5)

The “constant of integration” occurring here is an arbitrary function of y 
since it must disappear under differentiation with respect to x. This reduces 
our problem to that of finding a function g(y) with the property that f as 
given by (5) satisfies the second of equations (2). On differentiating (5) with 
respect to y and equating the result to N, we get

 

¶
¶

¢ =òy
M dx g y N  + ( ) ,

so

 
¢ = ¶

¶ òg y N
y

M dx( ) - .

This yields

 
g y N

y
M dx dy( ) = ¶

¶
æ

è
ç

ö

ø
÷ò ò- ,

 
(6)

provided the integrand here is a function only of y. This will be true if the 
derivative of the integrand with respect to x is 0; and since the derivative in 
question is

 

¶
¶

¶
¶

æ

è
ç

ö

ø
÷ = ¶

¶
¶

¶ ¶

= ¶
¶

¶
¶ ¶

= ¶
¶

¶

ò ò

ò

x
N

y
M dx

N
x x y

M dx

N
x y x

M dx

N
x

M

– –

–

–

2

2

¶¶y
,

an appeal to our assumption (4) completes the argument.
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In summary, we have proved the following statement: equation (1) is exact 
if and only if ∂M/∂y = ∂N/∂x; and in this case, its general solution is f(x, y) = c, 
where f is given by (5) and (6). Two points deserve emphasis: it is the equation 
f(x, y) = c, and not merely the function f, which is the general solution of (1); 
and it is the method embodied in (5) and (6), not the formulas themselves, 
which should be learned.

Example 1. Test the equation ey dx + (xey + 2y) dy = 0 for exactness, and 
solve it if it is exact.

Here we have

 M = ey  and  N = xey + 2y,

so

 

¶
¶

=
¶
¶

=
M
y

e
N
x

ey yand .

Thus condition (4) is satisfied, and the equation is exact. This tells us that 
there exists a function f(x, y) such that

 

¶
¶

=
¶
¶

= +
f
x

e
f
y

xe yy yand 2 .

Integrating the first of these equations with respect to x gives

 
f e dx g y xe g yy y= + = +ò ( ) ( ),

so

 

¶
¶

= +
f
y

xe g yy ¢( ).

Since this partial derivative must also equal xey + 2y, we have g′(y) = 2y, 
so g(y) = y2 and f = xey + y2. All that remains is to note that

 xey + y2 = c

is the desired solution of the given differential equation.

Problems

Determine which of the following equations are exact, and solve the ones 
that are.
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 1. x
y

dy y dx+
æ

è
ç

ö

ø
÷ + =2

0 .

 2. (sin x tan y + 1) dx + cos x sec2y dy = 0.
 3. (y − x3) dx + (x + y3) dy = 0.
 4. (2y2 − 4x + 5) dx = (4 − 2y + 4xy) dy.
 5. (y + y cos xy) dx + (x + x cos xy) dy = 0.
 6. cos x cos2 y dx + 2 sin x sin y cos y dy = 0.
 7. (sin x sin y − xey) dy = (ey + cos x cos y) dx.

 8. – sin sin
1

02y
x
y

dx
x
y

x
y

dy+ = .

 9. (1 + y) dx + (1 − x) dy = 0.
 10. (2xy3 + y cos x) dx + (3x2y2 + sin x) dy = 0.

 11. dx
y
x y

dx
x
x y

dy= +
1 12 2 2 2– –

.

 12. (2xy4 + sin y) dx + (4x2y3 + x cos y) dy = 0.

 13. 
y dx x dy

x y
x dx

+
1

02 2–
+ = .

 14. 2 1 2 2x x y dx x y dy+( ) =- - .

 15. (x log y + xy) dx + (y log x + xy) dy = 0.

 16. ( csc csc ) ( csc cot cot )e y x dx xye y y x dyy y2 22 2 0- -+ = .

 17. (1 + y2 sin 2x) dx − 2y cos2 x dy = 0.

 18. 
x dx

x y
y dy

x y
  

( ) ( )2 2 3 2 2 2 3 2 0
+

+
+

= .

 19. 3 1 2 02
3

x y dx
x
y

y dy( log )+ +
æ

è
ç

ö

ø
÷ =- .

 20. Solve

 

y dx x dy
x y

dy dx
–

( )+
+ =2

 as an exact equation in two ways, and reconcile the results.
 21. Solve

 

4 2
4

8
4

0
2 2

2 3

2 2

3 2

y x
xy x

dx
y x
y x y

dy
–
–

–
–

+ =

 (a) as an exact equation;
 (b) as a homogeneous equation.
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 22. Find the value of n for which each of the following equations is exact, 
and solve the equation for that value of n:

 (a) (xy2 + nx2y) dx + (x3 + x2y) dy = 0;
 (b) (x + ye2xy) dx + nxe2xy dy = 0.

9 Integrating Factors

The reader has probably noticed that exact differential equations are com-
paratively rare, for exactness depends on a precise balance in the form of the 
equation and is easily destroyed by minor changes in this form. Under these 
circumstances, it is reasonable to ask whether exact equations are worth dis-
cussing at all. In the present section we shall try to convince the reader that 
they are.

The equation

 y dx + (x2y − x) dy = 0 (1)

is easily seen to be nonexact, for ∂M/∂y = 1 and ∂N/∂x = 2xy − 1. However, if 
we multiply through by the factor 1/x2, the equation becomes

 

y
x

dx y
x

dy2

1
0+ æ

è
ç

ö
ø
÷ =– ,

which is exact. To what extent can other nonexact equations be made exact in 
this way? In other words, if

 M(x, y) dx + N(x, y) dy = 0 (2)

is not exact, under what conditions can a function µ(x, y) be found with the 
property that

 μ(M dx + N dy) = 0

is exact? Any function µ that acts in this way is called an integrating factor for 
(2). Thus 1/x2 is an integrating factor for (1). We shall prove that (2) always has 
an integrating factor if it has a general solution.

Assume then that (2) has a general solution

 f(x, y) = c,
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and eliminate c by differentiating:

 

¶
¶

+
¶
¶

=
f
x

dx
f
y

dy 0.
 

(3)

It follows from (2) and (3) that

 

dy
dx

M
N

f x
f y

= =
¶ ¶
¶ ¶

– –
/
/

,

so

 
¶ ¶ ¶ ¶

=
f x f y
M N
/ / .

 
(4)

If we denote the common ratio in (4) by μ (x, y), then

 

¶
¶

=
¶
¶

=
f
x

M
f
y

Nm mand .

On multiplying (2) by μ, it becomes

 µM dx + µN dy = 0

or

 

¶
¶

+
¶
¶

=
f
x

dx
f
y

dy 0,

which is exact. This argument shows that if (2) has a general solution, then it 
has at least one integrating factor μ. Actually it has infinitely many integrat-
ing factors; for if F( f) is any function of f, then

 
mF f M dx N dy F f df d F f df( )( ) ( ) ( )+ = = é

ëê
ù
ûúò ,

so μF( f) is also an integrating factor for (2).
Our discussion so far has not considered the practical problem of finding 

integrating factors. In general this is quite difficult. There are a few cases, 
however, in which formal procedures are available. To see how these proce-
dures arise, we consider the condition that μ be an integrating factor for (2):

 

¶
¶

= ¶
¶

( ) ( )m mM
y

N
x

.
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If we write this out, we obtain

 
m m m m¶

¶
+ ¶

¶
= ¶

¶
+ ¶

¶
M
y

M
y

N
x

N
x

or

 

1
m

m m
N

x
M

y
M
y

N
x

¶
¶

¶
¶

æ

è
ç

ö

ø
÷ = ¶

¶
¶
¶

– – .
 

(5)

It appears that we have “reduced” the problem of solving the ordinary dif-
ferential equation (2) to the much more difficult problem of solving the par-
tial differential equation (5). On the other hand, we have no need for the 
general solution of (5) since any particular solution will serve our purpose. 
And from this point of view, (5) is more fruitful than it looks. Suppose, for 
instance, that (2) has an integrating factor μ which is a function of x alone. 
Then ∂µ/∂x = dµ/dx and ∂µ/∂y = 0, so (5) can be written in the form

 

1
m

du
dx

M y N x
N

=
¶ ¶ ¶ ¶/ /-

. (6)

Since the left side of this is a function only of x, the right side is also. If we put

 

¶ ¶ ¶ ¶
=

M y N x
N

g x
/ /-

( ),

then (6) becomes

 

1
m

du
dx

g x= ( )

or

 

d
dx

g x
(log )

( )
m

= ,

so

 
log ( )m = ò g x dx

and

 m = òe
g x dx( )

. (7)
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This reasoning is obviously reversible: if the expression on the right side of (6) 
is a function only of x, say g(x), then (7) yields a function μ that depends only 
on x and satisfies equation (5), and is therefore an integrating factor for (2).

Example 1. In the case of equation (1) we have

 

¶ ¶ ¶ ¶
= = =

M y N x
N

xy
x y x

xy
x xy x

/ /- - -
-

- -
-

-
1 2 1 2 1

1
2

2

( ) ( )
( ) ,

which is a function only of x. Accordingly,

 μ = e∫–(2/x) dx = e−2 log x = x−2

is an integrating factor for (1), as we have already seen.

Similar reasoning gives the following related procedure, which is appli-
cable whenever (2) has an integrating factor depending only on y: if the 
expression

 

¶ ¶ ¶ ¶M y N x
M

/ /-
-

 (8)

is a function of y alone, say h(y), then

 
m = òe

h y dy( )

 
(9)

is also a function only of y which satisfies equation (5), and is consequently 
an integrating factor for (2).

There is another useful technique for converting simple nonexact equa-
tions into exact ones. To illustrate it, we again consider equation (1), rear-
ranged as follows:

 x2y dy − (x dy − y dx) = 0. (10)

The quantity in parentheses should remind the reader of the differential 
formula

 
d

y
x

x dy y dx
x

æ
è
ç

ö
ø
÷ =

–
2 , (11)
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which suggests dividing (10) through by x2. This transforms the equation 
into y dy − d(y/x) = 0, so its general solution is evidently

 

1
2

2y
y
x

c– = .

In effect, we have found an integrating factor for (1) by noticing in it the 
combination x dy − y dx and using (11) to exploit this observation. The fol-
lowing are some other differential formulas that are often useful in similar 
circumstances:

 
d

x
y

y dx x dy
y

æ

è
ç

ö

ø
÷ =

–
2 ; (12)

 d(xy) = x dy + y dx; (13)

 d(x2 + y2) = 2(x dx + y dy); (14)

 
d

x
y

y dx x dy
x y

tan- -1
2 2

æ

è
ç

ö

ø
÷ =

+
; (15)

 
d

x
y

y dx x dy
xy

log
æ

è
ç

ö

ø
÷ =

-
. (16)

We see from these formulas that the very simple differential equation y dx − 
x dy = 0 has 1/x2, 1/y2, l/(x2 + y2), and 1/xy as integrating factors, and thus can 
be solved in this manner in a variety of ways.

Example 2. Find the shape of a curved mirror such that light from a 
source at the origin will be reflected in a beam of rays parallel to the 
x-axis.

By symmetry, the mirror will have the shape of the surface of revolu-
tion generated by revolving a curve APB (Figure 19) about the x-axis.

It follows from the law of reflection that α = 2β. By the geometry of the 
situation, ϕ = β and θ = α + ϕ = 2β. Since tan θ = y/x and

 
tan tan

tan
tan

q b
b

b
= =2

2
1 2-

,
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we have

 

y
x

dy dx
dy dx

=
2

1 2

/
/- ( )

.

Solving this quadratic equation for dy/dx gives

 

dy
dx

x x y

y
=

± +– 2 2

or

 
x dx y dy x y dx  +   =  ± +2 2 .

By using (14), we get

 

±
+

+
=

d x y

x y
dx

( )2 2

2 22
,

so

 
± + = +x y x c2 2 .

On simplification this yields

 y2 = 2cx + c2,

which is the equation of the family of all parabolas with focus at the ori-
gin and axis the x-axis. It is often shown in elementary calculus that all 
parabolas have this so-called focal property. The conclusion of this exam-
ple is the converse: parabolas are the only curves with this property.

A

y

P

B

x

β

α

θ

FIGURE 19
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Problems

 1. Show that if (∂M/∂y − ∂N/∂x)/(Ny − Mx) is a function g(z) of the product 
z = xy, then

 μ = e∫ g(z) dz

 is an integrating factor for equation (2).
 2. Solve each of the following equations by finding an integrating factor:
 (a) (3x2 − y2) dy − 2xy dx = 0;
 (b) (xy − 1) dx + (x2 − xy) dy = 0;
 (c) x dy + y dx + 3x3y4 dy = 0;
 (d) ex dx + (ex cot y + 2y csc y) dy = 0;
 (e) (x + 2) sin y dx + x cos y dy = 0;
 (f) y dx + (x − 2x2y3) dy = 0;
 (g) (x + 3y2) dx + 2xy dy = 0;
 (h) y dx + (2x − yey) dy = 0;
 (i) (y log y − 2xy) dx + (x + y) dy = 0;
 (j) (y2 + xy + 1) dx + (x2 + xy + 1) dy = 0;
 (k) (x3 + xy3) dx + 3y2 dy = 0.
 3. Under what circumstances will equation (2) have an integrating factor 

that is a function of the sum z = x + y?
 4. Solve the following equations by using the differential formulas 

(12)–(16):
 (a) x dy − y dx = (1 + y2) dy;
 (b) y dx − x dy = xy3 dy;
 (c) x dy = (x5 + x3y2 + y) dx;
 (d) (y + x) dy = (y − x) dx;
 (e) x dy = (y + x2 + 9y2) dx;
 (f) (y2 − y) dx + x dy = 0;
 (g) x dy − y dx = (2x2 − 3) dx;

 (h) x dy y dx xy dy    =  + ;
 (i) (y − xy2) dx + (x + x2y2) dy = 0;
 (j) x dy − y dx = x2y4(x dy + y dx);
 (k) x dy + y dx + x2y5 dy = 0;
 (l) (2xy2 − y) dx + x dy = 0;

 (m) dy
y
x

dx x dx+ = sin  .
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 5. Solve the following equation by making the substitution z = y/xn or 
y = xnz and choosing a convenient value for n:

 

dy
dx

y
x

x
y

x
y
x

= + +
2 3

2tan .

 6. Find the curve APB in Example 2 by using polar coordinates instead of 
rectangular coordinates. Hint: ψ + α = π.

10 Linear Equations

The most important type of differential equation is the linear equation, 
in which the derivative of highest order is a linear function of the lower order 
derivatives. Thus the general first order linear equation is

 

dy
dx

p x y q x= +( ) ( ),

the general second order linear equation is

 

d y
dx

p x
dy
dx

q x y r x
2

2 = + +( ) ( ) ( ),

and so on. It is understood that the coefficients on the right in these expres-
sions, namely, p(x), q(x), r(x), etc., are functions of x alone.

Our present concern is with the general first order linear equation, which 
we write in the standard form

 

dy
dx

P x y Q x+ =( ) ( ).
 

(1)

The simplest method of solving this depends on the observation that

 

d
dx

e y e
dy
dx

yPe e
dy
dx

Py
P dx P dx P dx P dx    òæ

è
ç

ö
ø
÷ = ò + ò = ò +æ

è
ç

ö
ø
÷.

 
(2)

Accordingly, if (1) is multiplied through by e∫P dx, it becomes

 
d

dx
e y Qe

P dx P dxòæ
è
ç

ö
ø
÷ = ò  

 . (3)
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Integration now yields

 
e y Qe dx c

P dx P dx  ò = ò +ò ,

so

 
y e Qe dx c

P dx P dx
= ò ò +æ

è
ç

ö
ø
÷ò–

 
(4)

is the general solution of (1).

Example 1. Solve 
dy
dx x

y x+ =
1

3 .

This equation is obviously linear with P = l/x, so we have

 
P dx

x
dx x e e x

P dx x and
 

= = ò = =òò 1
log log .

On multiplying through by x and remembering (3), we obtain

 

d
dx

xy x( ) = 3 2,

so

 xy = x3 + c or y = x2 + cx−1.

As the method of this example indicates, one should not try to learn the 
complicated formula (4) and apply it mechanically in solving linear equa-
tions. Instead, it is much better to remember and use the procedure by which 
(4) was derived: multiply by e∫P  dx and integrate. One drawback to the above 
discussion is that everything hinges on noticing the fact stated in (2). In other 
words, the integrating factor e∫P dx seems to have been plucked mysteriously 
out of thin air. In Problem 1 below we ask the reader to discover it for himself 
by the methods of Section 9.

Problems

 1. Write equation (1) in the form M dx + N dy = 0 and use the ideas of 
Section 9 to show that this equation has an integrating factor μ that is a 
function of x alone. Find μ and obtain (4) by solving μM dx + μ N dy = 0 
as an exact equation.



83First Order Equations

 2. Solve the following as linear equations:

 (a) x
dy
dx

y x- =3 4;

 (b) ¢ + =
+

y y
e x

1
1 2 ;

 (c) (1 + x2) dy + 2xy dx = cot x dx;

 (d) y′ + y = 2xe–x + x2;

 (e) y′ + y cot x = 2x csc x;

 (f) (2y − x3) dx = x dy;

 (g) y − x + xy cot x + xy′ = 0;

 (h) 
dy
dx

xy xex- =2 6
2
;

 (i) (x log x)y′ + y = 3x3;

 (j) (y − 2xy − x2) dx + x2dy = 0.
 3. The equation

 

dy
dx

P x y Q x yn+ =( ) ( ) ,

 which is known as Bernoulli’s equation, is linear when n = 0 or 1. Show 
that it can be reduced to a linear equation for any other value of n by the 
change of variable z = y1−n, and apply this method to solve the following 
equations:

 (a) xy′ + y = x4y3;

 (b) xy2y′ + y3 = x cos x;

 (c) x dy + y dx = xy2dx.
 4. The usual notation dy/dx implies that x is the independent variable and 

y is the dependent variable. In trying to solve a differential equation, 
it is sometimes helpful to replace x by y and y by x and work on the 
resulting equation. Apply this method to the following equations:

 (a) (ey − 2xy)y′ = y2;

 (b) y − xy′ = y′y2ey;

 (c) xy′ + 2 = x3(y − l)y′;

 (d) f y
dx
dy

f y f y x f y( ) ( ) ( ) ( )2 3+ ¢ = ¢ .

 5. Find the orthogonal trajectories of the family of curves

 (a) y = x + ce–x;

 (b) y2 = cex + x + 1.
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 6. We know from (4) that the general solution of a first order linear equa-
tion is a family of curves of the form

 y = cf(x) + g(x).

 Show, conversely, that the differential equation of any such family is 
linear.

 7. Show that y′ + Py = Qy log y can be solved by the change of variable 
z = log y, and apply this method to solve xy′ = 2x2y + y log y.

 8. One solution of y′ sin 2x = 2y + 2 cos x remains bounded as x → π/2. 
Find it.

 9. A tank contains 10 gallons of brine in which 2 pounds of salt are dis-
solved. Brine containing 1 pound of salt per gallon is pumped into the 
tank at the rate of 3 gallons/minute, and the stirred mixture is drained 
off at the rate of 4 gallons/minute. Find the amount x = x(t) of salt in the 
tank at any time t.

 10. A tank contains 40 gallons of pure water. Brine with 3 pounds of salt 
per gallon flows in at the rate of 2 gallons/minute, and the stirred mix-
ture flows out at 3 gallons/minute.

 (a)  Find the amount of salt in the tank when the brine in it has been 
reduced to 20 gallons.

 (b) When is the amount of salt in the tank largest?
 11. (a)  Suppose that a given radioactive element A decomposes into a 

second radioactive element B, and that B in turn decomposes into 
a third element C. If the amount of A present initially is x0, if the 
amounts of A and B present at a later time t are x and y, respectively, 
and if k1 and k2 are the rate constants of these two reactions, find y 
as a function of t.

 (b)  Radon (with a half-life of 3.8 days) is an intensely radioactive gas 
that is produced as the immediate product of the decay of radium 
(with a half-life of 1600 years). The atmosphere contains traces of 
radon near the ground as a result of seepage from soil and rocks, all 
of which contain minute quantities of radium. There is concern in 
some parts of the American West about possibly dangerous accu-
mulations of radon in the enclosed basements of houses whose 
concrete foundations and underlying ground contain apprecia-
bly greater quantities of radium than normal because of nearby 
uranium mining. If the rate constants (fractional losses per unit 
time, in years) for the decay of radium and radon are k1 = 0.00043 
and k2 = 66, use the result of part (a) to determine how long after 
the completion of a basement the amount of radon will be at a 
maximum.
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11 Reduction of Order

As we have seen, the general second order differential equation has the form

 F(x, y, y′, y″) = 0.

In this section we consider two special types of second order equations that 
can be solved by first order methods.

Dependent variable missing. If y is not explicitly present, our equation can 
be written

 f(x, y′, y″) = 0. (1)

In this case we introduce a new dependent variable p by putting

 
¢ = ¢¢ =y p y

dp
dx

and . (2)

This substitution transforms (1) into the first order equation

 
f x p

dp
dx

, ,æ
è
ç

ö
ø
÷ = 0. (3)

If we can find a solution for (3), we can replace p in this solution by dy/dx and 
attempt to solve the result. This procedure reduces the problem of solving 
the second order equation (1) to that of solving two first order equations in 
succession.

Example 1. Solve xy″ − y′ = 3x2.
The variable y is missing from this equation, so (2) reduces it to

 
x

dp
dx

p x– = 3 2

or

 

dp
dx x

p x–
1

3= ,
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which is linear. On solving this by the method of Section 10, we obtain

 
p

dy
dx

x c x= = +3 2
1 ,

so

 
y x c x c= + +3

1
2

2
1
2

is the desired solution.

Independent variable missing. If x is not explicitly present, our second 
order equation can be written

 g(y, y′, y″) = 0. (4)

Here we introduce our new dependent variable p in the same way, but this 
time we express y″ in terms of a derivative with respect to y:

 
¢ = ¢¢ = = =y p y

dp
dx

dp
dy

dy
dx

p
dp
dy

and .
 

(5)

This enables us to write (4) in the form

 
g y p p

dp
dy

, ,
æ

è
ç

ö

ø
÷ = 0; (6)

and from this point on we proceed as above, solving two first order equa-
tions in succession.

Example 2. Solve y″ + k2y = 0.
With the aid of (5), we can write this in the form

 
p

dp
dy

k y p dp k y dy+ = + =2 20 0or   .

Integration yields

 p2 + k2y2 = k2a2,
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so

 
p

dy
dx

k a y= = ± 2 2–

or

 

dy

a y
k dx

2 2–
= ± .

A second integration gives

 
sin-1 y

a
kx b= ± + ,

so

 y = a sin (±kx + b) or y = A sin (kx + B).

This general solution can also be written as

 y = c1 sin kx + c2 cos kx, (7)

by expanding sin (kx + B) and changing the form of the constants.

The equation solved in Example 2 occurs quite often in applications (see 
Section 5). It is linear, and its solution (7) will be fitted into the general theory 
of second order linear equations in the next chapter.

Problems

 1. Solve the following equations:
 (a) yy″ + (y′)2 = 0;
 (b) xy″ = y′ + (y′)3;
 (c) y″ − k2y = 0;
 (d) x2y″ = 2xy′ + (y′)2;
 (e) 2yy″ = 1 + (y′)2;
 (f) yy″ − (y′)2 = 0;
 (g) xy″ + y′ = 4x.
 2. Find the specified particular solution of each of the following equations:
 (a) (x2 + 2y′)y″ + 2xy′ = 0, y = 1 and y′ = 0 when x = 0;
 (b) yy″ = y2y′ + (y′)2, y = − 1/2 and y′ = 1 when x = 0;
 (c) y″ = y′ey, y = 0 and y′ = 2 when x = 0.
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 3. Solve each of the following equations by both methods of this section, 
and reconcile the results:

 (a) y″ = 1 + (y′)2;
 (b) y″ + (y′)2 = 1.
 4. In Problem 5–8 we considered a hole drilled through the earth from 

pole to pole and a rock dropped into the hole. This rock will fall through 
the hole, pause at the other end, and return to its starting point. How 
long will this complete round trip take?

 5. Consider a wire bent into the shape of the cycloid whose parametric 
equations are x = a(θ − sin θ) and y = a(1 − cos θ), and invert it as in Figure 
10. If a bead is released on the wire and slides without friction and 
under the influence of gravity alone, show that its velocity v satisfies 
the equation

 4 2
0
2 2av g s s= ( )- ,

 where s0 and s are the arc lengths from the bead’s lowest point to the 
bead’s initial position and its position at any later time, respectively. By 
differentiation obtain the equation

 

d s
dt

g
a

s
2

2 4
0+ = ,

 and from this find s as a function of t and determine the period of the 
motion. Note that these results establish once again the tautochrone 
property of the cycloid discussed in Problem 6–5.

12 The Hanging Chain. Pursuit Curves

We now discuss several applications leading to differential equations that 
can be solved by the methods of this chapter.

Example 1. Find the shape assumed by a flexible chain suspended 
between two points and hanging under its own weight.

Let the y-axis pass through the lowest point of the chain (Figure 20), let 
s be the arc length from this point to a variable point (x, y), and let w(s) be 
the linear density of the chain. We obtain the equation of the curve from 
the fact that the portion of the chain between the lowest point and (x, y) 
is in equilibrium under the action of three forces; the horizontal tension 
T0 at the lowest point; the variable tension T at (x, y), which acts along 



89First Order Equations

the tangent because of the flexibility of the chain; and a downward force 
equal to the weight of the chain between these two points. Equating the 
horizontal component of T to T0 and the vertical component of T to the 
weight of the chain gives

 

T T T w s ds
s

 cos  =      and     q q0

0

sin ( )= ò .

It follows from the first of these equations that

 
T T T

dy
dx

 sin  =  q q0 0tan = ,

so

 

T y w s ds
s

0

0

¢ = ò ( ) .

We eliminate the integral here by differentiating with respect to x:

 

T y
d

dx
w s ds

d
ds

w s ds
ds
dx

w s y

s s

0

0 0

21

¢¢ = =

= + ¢

ò ò( ) ( )

( ) ( ) .

y

s

T0

x

T

(x, y) θ

FIGURE 20
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Thus

 
T y w s y0

21¢¢ = + ¢( ) ( )
 

(1)

is the differential equation of the desired curve, and the curve itself is 
found by solving this equation. To proceed further, we must have defi-
nite information about the function w(s). We shall solve (1) for the case in 
which w(s) is a constant wo so that

 
¢¢ = + ¢ =y a y a

w
T

1 2 0

0
( ) , . (2)

On substituting y′ = p and y″ = dp/dx, as in Section 11, equation (2) 
reduces to

 

dp

p
a dx

1 2+
=  . (3)

We now integrate (3) and use the fact that p = 0 when x = 0 to obtain

 
log p p ax+ +( ) =1 2 .

Solving for p yields

 
p

dy
dx

e eax ax= =
1
2

( )- - .

If we place the x-axis at the proper height, so that y = 1/a when x = 0, 
we get

 
y

a
e e

a
axax ax= + =

1
2

1
( ) cosh-

as the equation of the curve assumed by a uniform flexible chain hang-
ing under its own weight. This curve is called a catenary, from the Latin 
word for chain, catena. Catenaries also arise in other interesting prob-
lems. For instance, it will be shown in Chapter 12 that if an arc joining 
two given points and lying above the x-axis is revolved about this axis, 
then the area of the resulting surface of revolution is smallest when the 
arc is part of a catenary.
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Example 2. A point P is dragged along the xy-plane by a string PT of 
length a. If T starts at the origin and moves along the positive y-axis, and 
if P starts at (a, 0), what is the path of P? This curve is called a tractrix 
(from the Latin tractum, meaning drag).

It is easy to see from Figure 21 that the differential equation of the 
path is

 

dy
dx

a x
x

= –
–2 2

.

On separating variables and integrating, and using the fact that y = 0 
when x = a, we find that

 

y a
a a x

x
a x=

+æ

è
ç
ç

ö

ø
÷
÷

log
2 2

2 2–
– –

is the equation of the tractrix. This curve is of considerable importance 
in geometry, because the trumpet-shaped surface obtained by revolving 
it about the y-axis is a model for Lobachevsky’s version of non-Euclidean 
geometry, since the sum of the angles of any triangle drawn on the sur-
face is less than 180°. Also, in the context of differential geometry this 
surface is called a pseudosphere, because it has constant negative curva-
ture as opposed to the constant positive curvature of a sphere.

(a, 0) x

x

a

T

y

P = (x, y)

a2 – x2√

FIGURE 21
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Example 3. A rabbit starts at the origin and runs up the y-axis with 
speed a. At the same time a dog, running with speed b, starts at the point 
(c, 0) and pursues the rabbit. What is the path of the dog?

At time t, measured from the instant both start, the rabbit will be at the 
point R = (0, at) and the dog at D = (x, y) (Figure 22). Since the line DR is 
tangent to the path, we have

 

dy
dx

y at
x

xy y at= ¢ =
–

– –or . (4)

To eliminate t, we begin by differentiating (4) with respect to x, which 
gives

 
xy a

dt
dx

¢¢ = – . (5)

Since ds/dt = b, we have

 

dt
dx

dt
ds

ds
dx b

y= = - + ¢1
1 2( ) , (6)

where the minus sign appears because s increases as x decreases. When 
(5) and (6) are combined, we obtain the differential equation of the path:

 
xy k y k

a
b

¢¢ = + ¢1 2( ) ,  = . (7)

(c, 0) x

s

D = (x, y)

R = (0, at)

y

FIGURE 22
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The substitution y′ = p and y″ = dp/dx reduces (7) to

 

dp

p
k

dx
x1 2+

= ;

and on integrating and using the initial condition p = 0 when x = c, we find 
that

 
log log p p

x
c

k

+ +( ) = æ
è
ç

ö
ø
÷1 2 .

This can readily be solved for p, yielding

 

p
dy
dx

x
c

c
x

k k

= = æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

1
2

– .

In order to continue and find y as a function of x, we must have further 
information about k. We ask the reader to explore some of the possibili-
ties in Problem 8.

Example 4. The y-axis and the line x = c are the banks of a river whose 
current has uniform speed a in the negative y-direction. A boat enters 
the river at the point (c,0) and heads directly toward the origin with 
speed b relative to the water. What is the path of the boat?

The components of the boat’s velocity (Figure 23) are

 

dx
dt

b
dy
dt

a b= - = - + cos andq qsin ,

so

 

dy
dx

a b
b

a b y x y

b x x y

a x y by

bx

=
+

=
+ +( )

+( )
=

+ +

– sin
–

– –

–

.

q
qcos

/

/

2 2

2 2

2 2

This equation is homogeneous, and its solution as found by the method 
of Section 7 is

 
c y x y xk k+ +( ) = +2 2 1,
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where k = a/b. It is clear that the fate of the boat depends on the relation 
between a and b. In Problem 9 we ask the reader to discover under what 
circumstances the boat will be able to land, and where.

Problems

 1. In Example 1, show that the tension T at an arbitrary point (x,y) on the 
chain is given by w0 y.

 2. If the chain in Example 1 supports a load of horizontal density L(x), 
what differential equation should be used in place of (1)?

 3. What is the shape of a cable of negligible density [so that w(s) = 0] that 
supports a bridge of constant horizontal density given by L(x) = L0?

 4. If the length of any small portion of an elastic cable of uniform density 
is proportional to the tension in it, show that it assumes the shape of a 
parabola when hanging under its own weight.

 5. A curtain is made by hanging thin rods from a cord of negligible den-
sity. If the rods are close together and equally spaced horizontally, and 
if the bottom of the curtain is trimmed to be horizontal, what is the 
shape of the cord?

 6. What curve lying above the x-axis has the property that the length of 
the arc joining any two points on it is proportional to the area under 
that arc?

a

(x, y)

–y

θ
x

x
(c, 0)

y

FIGURE 23
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 7. Show that the tractrix in Example 2 is orthogonal to the lower half of 
each circle with radius a and center on the positive y-axis.

 8. (a)  In Example 3, assume that a < b (so that k < 1) and find y as a func-
tion of x. How far does the rabbit run before the dog catches him?

 (b)  Assume that a = b and find y as a function of x. How close does the 
dog come to the rabbit?

 9. In Example 4, solve the equation of the path for y and determine con-
ditions on a and b that will allow the boat to reach the opposite bank. 
Where will it land?

13 Simple Electric Circuits

In the present section we consider the linear differential equations that gov-
ern the flow of electricity in the simple circuit shown in Figure 24. This cir-
cuit consists of four elements whose action can be understood quite easily 
without any special knowledge of electricity.

 A. A source of electromotive force (emf) E—perhaps a battery or gen-
erator—which drives electric charge and produces a current I. 
Depending on the nature of the source, E may be a constant or a 
function of time.

E

I R

L

C Q

FIGURE 24
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 B. A resistor of resistance R, which opposes the current by producing a 
drop in emf of magnitude

 ER = RI.

 This equation is called Ohm’s law.2

 C. An inductor of inductance L, which opposes any change in the cur-
rent by producing a drop in emf of magnitude

 
E L

dI
dt

L = .

 D. A capacitor (or condenser) of capacitance C, which stores the 
charge Q. The charge accumulated by the capacitor resists the inflow 
of additional charge, and the drop in emf arising in this way is

 
E

C
QC =

1
.

  Furthermore, since the current is the rate of flow of charge, and 
hence the rate at which charge builds up on the capacitor, we have

 
I

dQ
dt

= .

Students who are unfamiliar with electric circuits may find it helpful to 
think of the current I as analogous to the rate of flow of water in a pipe. 
The electromotive force E plays the role of a pump producing pressure (volt-
age) that causes the water to flow. The resistance R is analogous to friction 
in the pipe, which opposes the flow by producing a drop in the pressure. 
The inductance L is a kind of inertia that opposes any change in the flow 
by producing a drop in pressure if the flow is increasing and an increase in 
pressure if the flow is decreasing. The best way to think of the capacitor is to 
visualize a cylindrical storage tank that the water enters through a hole in 
the bottom: the deeper the water is in the tank (Q), the harder it is to pump 
more water in; and the larger the base of the tank is (C) for a given quantity 

2 Georg Simon Ohm (1787–1854) was a German physicist whose only significant contribution 
to science was his discovery of the law stated above. When he announced it in 1827 it seemed 
too good to be true, and was not believed. Ohm was considered unreliable because of this, 
and was so badly treated that he resigned his professorship at Cologne and lived for several 
years in obscurity and poverty before it was recognized that he was right. One of his pupils 
in Cologne was Peter Dirichlet, who later became one of the most eminent German mathema-
ticians of the nineteenth century.
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of stored water, the shallower the water is in the tank and the easier it is to 
pump more water in.

These circuit elements act together in accordance with Kirchhoff’s law, 
which states that the algebraic sum of the electromotive forces around a 
closed circuit is zero.3 This principle yields

 E − ER − EL − EC = 0

or

 
E RI L

dI
dt C

Q– – –
1

0= ,

which we rewrite in the form

 
L

dI
dt

RI
C

Q E+ + =
1

.
 

(1)

Depending on the circumstances, we may wish to regard either I or Q as the 
dependent variable. In the first case, we eliminate Q by differentiating (1) 
with respect to t and replacing dQ/dt by I:

 
L

d I
dt

R
dI
dt C

I
dE
dt

2

2

1+ + = .
 

(2)

In the second case, we simply replace I by dQ/dt:

 
L

d Q
dt

R
dQ
dt C

Q E
2

2

1+ + = .
 

(3)

We shall consider these second order linear equations in more detail later. 
Our concern in this section is primarily with the first order linear equation

 
L

dI
dt

RI E+ =
 

(4)

obtained from (1) when no capacitor is present.

3 Gustav Robert Kirchhoff (1824–1887) was another German scientist whose work on electric 
circuits is familiar to every student of elementary physics. He also established the principles 
of spectrum analysis and paved the way for the applications of spectroscopy in determining 
the chemical constitution of the stars.
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Example 1. Solve equation (4) for the case in which an initial current I0 
is flowing and a constant emf E0 is impressed on the circuit at time t = 0.

For t ≥ 0, our equation is

 
L

dI
dt

RI E+ = 0.

The variables can be separated, yielding

 

dI
E RI L

dt
0

1
–

= .

On integrating and using the initial condition I = I0 when t = 0, we get

 
log( ) log( )E RI

R
L

t E RI0 0 0- = - + - ,

so

 
I

E
R

I
E
R

e Rt L= + æ
è
ç

ö
ø
÷

0
0

0– – / .

Note that the current I consists of a steady-state part E0/R and a transient 
part (I0 − E0/R)e–Rt/L that approaches zero as t increases. Consequently, 
Ohm’s law E0 = RI is nearly true for large t. We also observe that if I0 = 0, 
then

 
I

E
R

e Rt L= 0 1( )/- - ,

and if E0 = 0, then I = I0e–Rt/L.

Problems

 1. In Example 1, with I0 = 0 and E0 ≠ 0, show that the current in the circuit 
builds up to half its theoretical maximum in (L log 2)/R seconds.

 2. Solve equation (4) for the case in which the circuit has an initial current 
I0 and the emf impressed at time t = 0 is given by

 (a) E = E0e–kt;
 (b) E = E0 sin ωt.
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 3. Consider a circuit described by equation (4) and show that:
 (a)  Ohm’s law is satisfied whenever the current is at a maximum or 

minimum.
 (b)  The emf is increasing when the current is at a minimum and 

decreasing when it is at a maximum.
 4. If L = 0 in equation (3), and if Q = 0 when t = 0, find the charge buildup 

Q = Q(t) on the capacitor in each of the following cases:
 (a) E is a constant E0;
 (b) E = E0e–t;
 (c) E = E0 cos ωt.
 5. Use equation (1) with R = 0 and E = 0 to find Q = Q(t) and I = I(t) for the 

discharge of a capacitor through an inductor of inductance L, with ini-
tial conditions Q = Q0 and I = 0 when t = 0.

Miscellaneous Problems for Chapter 2

Among the following 50 differential equations are representatives of all 
the types discussed in this chapter, in random order. Many are solvable by 
several methods. They are presented for the use of students who wish to 
practice identifying the method or methods applicable to a given equation, 
without having the hint provided by the title of the section in which the 
equation occurs.

 1. yy″ = (y′)2.
 2. (1 − xy)y′ = y2.
 3. (2x + 3y + 1) dx + (2y − 3x + 5) dy = 0.

 4. xy x y¢ = +2 2 .
 5. y2dx = (x3 − xy) dy.
 6. (x2y3 + y)dx = (x3y2 − x) dy.
 7. yy″ + (y′)2 − 2yy′ = 0.
 8. x dy + y dx = x cos x dx.
 9. xy dy = x2 dy + y2 dx.
 10. (ex − 3x2y2)y′ + yex = 2xy3.
 11. y″ + 2x(y′)2 = 0.
 12. (x2 + y) dx =x dy.
 13. xy′ + y = x2 cos x.
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 14. (6x + 4y + 3) dx + (3x + 2y + 2) dy = 0.
 15. cos (x + y) dx = x sin (x + y) dx + x sin (x + y) dy.
 16. x2y″ + xy′ = 1.
 17. (y2exy + cos x) dx + (exy + xyexy) dy = 0.
 18. y′ log (x − y) = 1 + log (x − y).
 19. ¢ + =y xy e x2

2– .
 20. (y2 − 3xy − 2x2) dx = (x2 − xy) dy.
 21. (1 + x2) y′ + 2xy = 4x3.
 22. ex sin y dx + ex cos y dy = y sin xy dx + x sin xy dy.
 23. (1 + x2)y″ + xy′ = 0.
 24. (xey + y − x2) dy = (2xy − ey − x) dx.
 25. ex(1 + x) dx = (xex − yey) dy.
 26. (x2y4 + x6) dx − x3y3 dy = 0.
 27. y′ = 1 + 3y tan x.

 28. 
dy
dx

y
x

y
x

= + æ
è
ç

ö
ø
÷1

2

– .

 29. 
dy
dx
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=
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2
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2

2 22 2 2
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.

 30. 
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 31. 3 02
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 32. 
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 33. 
y x
x y

dx
x

x y
dy

–
( )

–
( )+ +

=3 3

2
0.

 34. (xy2 + y) dx + x dy = 0.
 35. x2y″ = y′(3x − 2y′).
 36. (3x2y − y3) dx − (3xy2 − x3) dy = 0.
 37. x(x2 + 1)y′ + 2y = (x2 + 1)3.

 38. 
dy
dx

x y
x y

=
+

– – –
–

3 2 1
2 3 1

.

 39. e x y dx x e dyx y x y2 2
1 2 02 3( )+ =  + .

 40. (3x2ey − 2x) dx + (x3ey − sin y) dy = 0.
 41. y2y″ + (y′)3 = 0.
 42. (3xy + y2) dx + (3xy + x2) dy = 0.
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 43. x2y′ = x2 + xy + y2.
 44. xy′ + y = y2log x.

 45. 
cos

sin log ( )
y

x
dx y x

y
dy

+
+

æ

è
ç

ö

ø
÷ =

3
5 15

1
0- -

 46. x2y″ + (y′)2 = 0.
 47. (xy + y − 1) dx + x dy = 0.
 48. x2y′ − y2 = 2xy.
 49. y″ = 2y(y′)3.

 50. 
dx
dy

x y y+ = cot sec .

 51. A tank contains 50 gallons of brine in which 25 pounds of salt are 
dissolved. Beginning at time t = 0, water runs into this tank at the 
rate of 2 gallons/minute, and the mixture flows out at the same rate 
through a second tank initially containing 50 gallons of pure water. 
When will the second tank contain the greatest amount of salt?

 52. A natural extension of the first order linear equation

 y′ = p(x) + q(x)y

 is the Riccati equation4

 y′ = p(x) + q(x)y + r(x)y2.

 In general, this equation cannot be solved by elementary methods. 
However, if a particular solution y1(x) is known, then the general solu-
tion has the form

 y(x) = y1(x) + z(x)

4 Count Jacopo Francesco Riccati (1676–1754) was an Italian savant who wrote on mathematics, 
physics, and philosophy. He was chiefly responsible for introducing the ideas of Newton to 
Italy. At one point he was offered the presidency of the St. Petersburg Academy of Sciences, 
but understandably he preferred the leisure and comfort of his aristocratic life in Italy to 
administrative responsibilities in Russia. Though widely known in scientific circles of his 
time, he now survives only through the differential equation bearing his name. Even this 
was an accident of history, for Riccati merely discussed special cases of this equation without 
offering any solutions, and most of these special cases were successfully treated by various 
members of the Bernoulli family. The details of this complex story can be found in G. N. 
Watson, A Treatise on the Theory of Bessel Functions, 2d ed., pp. 1–3, Cambridge University 
Press, London, 1944. The special Riccati equation y′ + by2 = cxm is known to be solvable in finite 
terms if and only if the exponent m is −2 or of the form −4k/(2k + 1) for some integer k (see 
problem 47–8).
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 where z(x) is the general solution of the Bernoulli equation

 z′ − (q + 2ry1)z = rz2.

 Prove this, and find the general solution of the equation

 
¢ = +y

y
x

x y x3 2 5– ,

 which has y1(x) = x as an obvious particular solution.
 53. The propagation of a single act in a large population (for example, buy-

ing a Japanese- or German-made car) often depends partly on exter-
nal circumstances (price, quality, and frequency-of-repair records) and 
partly on a human tendency to imitate other people who have already 
performed the same act. In this case the rate of increase of the propor-
tion y(t) of people who have performed the act can be expressed by the 
formula

 

dy
dt

y s t Iy= +( )[ ( ) ]1- , (*)

 where s(t) measures the external stimulus and I is a constant called the 
imitation coefficient.5

 (a)  Notice that (*) is a Riccati equation and that y = 1 is an obvious solu-
tion, and use the result of Problem 52 to find the Bernoulli equation 
satisfied by z(t).

 (b)  Find y(t) for the case in which the external stimulus increases 
steadily with time, so that s(t) = at for a positive constant a. Leave 
your answer in the form of an integral.

 54. (a)  If Riccati’s equation in Problem 52 has a known solution y1(x), show 
that the general solution has the form of the one-parameter family 
of curves

 
y

cf x g x
cF x G x

=
+
+

( ) ( )
( ) ( )

.

 (b)  Show, conversely, that the differential equation of any one-parame-
ter family of this form is a Riccati equation.

5 See Anatol Rapoport, “Contribution to the Mathematical Theory of Mass Behavior: I. The 
Propagation of Single Acts,” Bulletin of Mathematical Biophysics, Vol. 14, pp. 159–169 (1952).
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 Dynamical problems with variable mass. In the preceding pages, we 
have considered many applications of Newton’s second law of motion 
in the form given in Section 1:

 F = ma,

 where F is the force acting on a body of mass m whose acceleration 
is a. It should be realized, however, that this formulation applies only 
to situations in which the mass is constant. Newton’s law is actually 
somewhat more general, and states that when a force F acts on a body 
of mass m, it produces momentum (mv, where v is the velocity) at a rate 
equal to the force:

 
F

d
dt

mv= ( ).

 This equation reduces to F = ma when m is constant. In applying this 
form of the law to a moving body with variable mass, it is necessary 
to distinguish momentum produced by F from momentum produced 
by mass joining the body from an outside source. Thus, if mass with 
velocity v + w (so that w is its velocity relative to m) is being added to 
m at the rate dm/dt, the effect of F in increasing momentum must be 
supplemented by (v + w) dm/dt, giving

 
( ) ( )v w

dm
dt

F
d
dt

mv+ + = ,

 which simplifies to

 
w

dm
dt

F m
dv
dt

+ = .

 We note that dm/dt is positive or negative according as the body is gain-
ing or losing mass, and that w is positive or negative depending on the 
motion of the mass gained or lost relative to m. The following problems 
provide several illustrations of these ideas.

 55. A rocket of structural mass m1 contains fuel of initial mass m2. It is fired 
straight up from the surface of the earth by burning fuel at a constant 
rate a (so that dm/dt = –a where m is the variable total mass of the rocket) 
and expelling the exhaust products backward at a constant velocity 
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b relative to the rocket. Neglecting all external forces except a gravi-
tational force mg, where g is assumed constant, find the velocity and 
height attained at the moment when the fuel is exhausted (the burnout 
velocity and burnout height).6

 56. A spherical raindrop, starting from rest, falls under the influence of 
gravity. If it gathers in water vapor (assumed at rest) at a rate propor-
tional to its surface, and if its initial radius is 0, show that it falls with 
constant acceleration g/4.

 57. If the initial radius of the raindrop in Problem 56 is r0 and r is its radius 
at time t, show that its acceleration at time t is

 

g r
r4

1
3 0

4

4+
æ

è
ç

ö

ø
÷.

 Thus the acceleration is constant—with value g/4—if and only if the 
raindrop has zero initial radius.

 58. A spherical raindrop, starting from rest, falls through a uniform mist. If 
it gathers in water droplets in its path (assumed at rest) as it moves, and 
if its initial radius is 0, show that it falls with constant acceleration g/7.

 59. Einstein’s special theory of relativity asserts that the mass m of a par-
ticle moving with velocity v is given by the formula

 
m

m

v c
= 0

2 21 – /
, (*)

 where c is the velocity of light and m0 is the rest mass.
 (a)  If the particle starts from rest in empty space and moves for a long 

time under the influence of a constant gravitational field, find v as a 
function of time by taking w = –v, and show that v → c as t → ∞.7

6 The experience of engineering experts strongly suggests that no foreseeable combination of 
fuel and rocket design will enable a rocket, starting from rest, to acquire a burnout velocity as 
large as the escape velocity 2gR . This means that single-stage rockets of this kind cannot be 
used for journeys into space from the surface of the earth, and all such journeys will continue 
to require the multistage rockets familiar to us from recent decades.

7 Enrico Fermi has suggested that the phenomenon described here, transferred to the case of 
charged particles of interstellar dust accelerated by the magnetic fields of stars, can account 
in part for the origin of primary cosmic rays.
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 (b)  Let M = m − m0 be the increase in the mass of the particle. If the cor-
responding increase E in its energy is taken to be the work done on 
it by the prevailing force F, so that

 

E F dx
d
dt

mv dx v d mv
vvv

= = = òòò    ( ) ( ),
000

verify that

 E = Mc2. (**)

 (c) Deduce (*) from (**).
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Chapter 3
Second Order Linear Equations

14 Introduction

In the preceding chapters we studied a few restricted types of differential 
equations that can be solved in terms of familiar elementary functions. 
The methods we developed require considerable skill in the techniques of 
integration, and their many interesting applications have a tasty flavor of 
practicality. Unfortunately, however, it must be admitted that this part of the 
subject tends to be a miscellaneous bag of tricks, and conveys little insight 
into the general nature of differential equations and their solutions. In the 
present chapter we discuss an important class of equations with a rich and 
far-reaching theory. We shall see that this theory can be given a coherent and 
satisfying structure based on a few simple principles.

The general second order linear differential equation is

 
d y
dx

P x
dy
dx

Q x y R x
2

2 + + =( ) ( ) ( ) ,

or, more simply,

 y″ + P(x)y′ + Q(x)y = R(x). (1)

As the notation indicates, it is understood that P(x), Q(x), and R(x) are func-
tions of x alone (or perhaps constants). It is clear that no loss of generality 
results from taking the coefficient of y″ to be 1, since this can always be 
accomplished by division. Equations of this kind are of great significance 
in physics, especially in connection with vibrations in mechanics and the 
theory of electric circuits. In addition—as we shall see in later chapters—
many profound and beautiful ideas in pure mathematics have grown out of 
the study of these equations.

We should not be misled by the fact that first order linear equations are 
easily solved by means of formulas. In general, (1) cannot be solved explic-
itly in terms of known elementary functions, or even in terms of indicated 
integrations. To find solutions, it is commonly necessary to resort to infinite 
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processes of one kind or another, usually infinite series. Many special equa-
tions of particular importance in applications, for instance those of Legendre 
and Bessel mentioned in Section 1, have been studied at great length; and the 
theory of a single such equation has often been found so complicated as to 
constitute by itself an entire department of analysis. We shall discuss these 
matters in Chapters 5 and 8.

In this chapter our detailed consideration of actual methods for solving 
(1) will be restricted, for the most part, to the special case in which the coef-
ficients P(x) and Q(x) are constants. It should also be emphasized that most 
of the ideas and procedures we discuss can be generalized at once to linear 
equations of higher order, with no change in the underlying principles but 
only an increasing complexity in the surrounding details. By restricting our-
selves for the most part to second order equations, we attain as much sim-
plicity as possible without distorting the main ideas, and yet we still have 
enough generality to include all the linear equations of greatest interest in 
mathematics and physics.

Since in general it is not possible to produce an explicit solution of (1) for 
inspection, our first order of business is to assure ourselves that this equa-
tion really has a solution. The following existence and uniqueness theorem 
is proved in Chapter 13.

Theorem A. Let P(x), Q(x), and R(x) be continuous functions on a closed interval 
[a,b].1 If x0 is any point in [a,b], and if y0 and ¢y0 are any numbers whatever, then equa-
tion (1) has one and only one solution y(x) on the entire interval such that y(x0) = y0 
and ¢ = ¢y x y( )0 0.

Thus, under these hypotheses, at any given point x0 in [a,b] we can arbitrarily 
prescribe the values of y(x) and y′(x), and there will then exist precisely one 
solution of (1) on [a,b] that assumes the prescribed values at the given point; 
or, more geometrically, (1) has a unique solution on [a,b] that passes through 
a specified point (x0,y0) with a specified slope ¢y0. In our general discussions 
through the remainder of this chapter, we shall always assume (without nec-
essarily saying so explicitly) that the hypotheses of Theorem A are satisfied.

Example 1. Find the solution of the initial value problem

 y″ + y = 0, y(0) and y′(0) = 1.

We know that y = sin x, y = cos x, and more generally y = c1 sin x + c2 cos x 
for any constants c1 and c2, are all solutions of the differential equation. 

1 If a and b are real numbers such that a < b, then the symbol [a,b] denotes the interval consist-
ing of all real numbers x that satisfy the inequalities a ≤ x ≤ b. This interval is called closed 
because it contains its endpoints. The open interval resulting from the exclusion of the end-
points is denoted by (a,b) and is defined by the inequalities a < x < b.
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Also, y = sin x clearly satisfies the initial conditions, because sin 0 = 0 and 
cos 0 = 1. By Theorem A, y = sin x is the only solution of the given initial 
value problem, and is therefore completely characterized as a function 
by this problem. In just the same way, the function y = cos x is easily seen 
to be a solution, and therefore the only solution, of the corresponding 
initial value problem

 y″ + y = 0, y(0) = 1, and y′(0) = 0.

Since all of trigonometry can be regarded as the development of the 
properties of these two functions, it follows that all of trigonometry is 
contained by implication (as the acorn contains the oak tree) within the 
two initial value problems stated above. We shall examine this remark-
able idea in greater detail in Chapter 4.

We emphasize again that in Theorem A the initial conditions that determine 
a unique solution of equation (1) are conditions on the value of the solution 
and its first derivative at a single fixed point x0 in the interval [a,b]. In contrast 
to this, the problem of finding a solution of equation (1) that satisfies condi-
tions of the form y(x0) = y0 and y(x1) = y1, where x0 and x1 are different points 
in the interval, is not covered by Theorem A. Problems of this kind are called 
boundary value problems, and are discussed in Chapter 7.

The term R(x) in equation (1) is isolated from the others and written on the 
right because it does not contain the dependent variable y or any of its deriv-
atives. If R(x) is identically zero, then (1) reduces to the homogeneous equation

 y″ + P(x)y′ + Q(x)y = 0. (2)

(This traditional use of the word homogeneous should not be confused with 
the equally traditional but totally different use given in Section 7.) If R(x) is 
not identically zero, then (1) is said to be nonhomogeneous.

In studying the nonhomogeneous equation (1) it is necessary to consider 
along with it the homogeneous equation (2) obtained from it by replacing 
R(x) by 0. Under these circumstances (1) is often called the complete equation, 
and (2) the reduced equation associated with it. The reason for this linkage 
between (1) and (2) is easy to understand, as follows.

Suppose that in some way we know that yg(x,c1,c2) is the general solution of 
(2)—we expect it to contain two arbitrary constants since the equation is of 
the second order—and that yp(x) is a fixed particular solution of (1). If y(x) is 
any solution whatever of (1), then an easy calculation shows that y(x) − yp(x) 
is a solution of (2):

 

( ) ( )( ) ( )( )
[ ( ) ( ) ] [

y y P x y y Q x y y

y P x y Q x y y P
p p p

p

- ¢¢ + - ¢ + -
¢¢ + ¢ + - ¢¢ += (( ) ( ) ]
( ) ( ) .

x y Q x y

R x R x
p p¢ +

- == 0  (3)
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Since yg(x,c1,c2) is the general solution of (2), it follows that y(x) − yp(x) = 
yg(x, c1,c2) or

 y(x) = yg(x,c1,c2) + yp(x)

for a suitable choice of the constants c1 and c2. This argument proves the fol-
lowing theorem.

Theorem B. If yg is the general solution of the reduced equation (2) and yp is any 
particular solution of the complete equation (1), then yg + yp is the general solution 
of (1).

We shall see in Section 19 that if yg is known, then a formal procedure is 
available for finding yp. This shows that the central problem in the theory of 
linear equations is that of solving the homogeneous equation. Accordingly, 
most of our attention will be devoted to studying the structure of yg and 
investigating various ways of determining its explicit form—none of which 
is effective in all cases.

The first thing we should notice about the homogeneous equation (2) is 
that the function y(x) which is identically zero—that is, y(x) = 0 for all x—is 
always a solution. This is called the trivial solution, and is usually of no inter-
est. The basic structural fact about solutions of (2) is given in the following 
theorem.

Theorem C. If y1(x) and y2(x) are any two solutions of (2), then

 c1y1(x) + c2y2(x)  (4)

is also a solution for any constants c1 and c2.

Proof. The statement follows immediately from the fact that

 

( ) ( )( ) ( )( )
(

c y c y P x c y c y Q x c y c y

c y c
1 1 2 2 1 1 2 2 1 1 2 2

1 1 2
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1 2 2 2 2

1 20 0 0
+ ¢¢ + ¢ +

× + × ==  (5)

where the multipliers of c1 and c2 are zero because, by assumption, y1 and y2 
are solutions of (2).

For reasons connected with the elementary algebra of vectors, the solution (4) 
is commonly called a linear combination of the solutions y1(x) and y2(x). If we 
use this terminology, Theorem C can be restated as follows: any linear combi-
nation of two solutions of the homogeneous equation (2) is also a solution.
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Suppose that by some means or other we have managed to find two solu-
tions of equation (2). Then this theorem provides us with another which 
involves two arbitrary constants, and which therefore may be the general 
solution of (2). There is one difficulty: if either y1 or y2 is a constant multiple 
of the other, say y1 = ky2, then

 c1y1 + c2y2 = c1ky2 + c2y2 = (c1k + c2)y2 = cy2,

and only one essential constant is present. On this basis we have reasonable 
grounds for hoping that if neither y1 nor y2 is a constant multiple of the other, 
then

 c1y1(x) + c2y2(x)

will be the general solution of (2). We shall prove this in the next section.
Occasionally the special form of a linear equation enables us to find simple 

particular solutions by inspection or by experimenting with power, expo-
nential, or trigonometric functions.

Example 2. Solve

 y″ + y′ = 0.

By inspection we see that y1 = 1 and y2 = e−x are solutions. It is obvious 
that neither function is a constant multiple of the other, so (assuming the 
theorem stated above, but not yet proved) we conclude that

 y = c1 + c2e−x

 is the general solution.

Example 3. Solve

 x2y″ + 2xy′ − 2y = 0.

Since differentiating a power pushes down the exponent by one unit, 
the form of this equation suggests that we look for possible solutions 
of the type y = x″. On substituting this in the differential equation and 
dividing by the common factor x″, we obtain the quadratic equation 
n(n − 1) + 2n − 2 = 0 or n2 + n − 2 = 0. This has roots n = 1, −2, so y1 = x and 
y2 = x−2 are solutions and

 y = c1x + c2x−2

is the general solution on any interval not containing the origin.
It is worth remarking at this point that a large part of the theory 

of linear equations rests on the fundamental properties stated in 
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Theorems B and C. An inspection of the calculations (3) and (5) will 
show at once that these properties in turn depend on the linearity of dif-
ferentiation, that is, on the fact that

 [αf (x) + βg(x)]′ = αf′(x) + βg′(x)

for all constants α and β and all differentiable functions f(x) and g(x).

Problems

In the following problems, assume the fact stated above (but not yet proved), 
that if y1(x) and y2(x) are two solutions of (2) and neither is a constant multiple 
of the other, then c1y1(x) + c2y2(x) is the general solution.

 1. (a)  Verify that y1 = 1 and y2 = x2 are solutions of the reduced equation 
xy″ − y′ = 0, and write down the general solution.

 (b)  Determine the value of a for which yp = ax3 is a particular solution 
of the complete equation xy″ − y′ = 3x2. Use this solution and the 
result of part (a) to write down the general solution of this equation. 
(Compare with Example 1 in Section 11.)

 (c) Can you discover y1, y2, and yp by inspection?
 2. Verify that y1 = 1 and y2 = log x are solutions of the equation xy″ + y′ = 0, 

and write down the general solution. Can you discover y1 and y2 by 
inspection?

 3. (a)  Show that y1 = e−x and y2 = e2x are solutions of the reduced equation 
y″ − y′ − 2y = 0. What is the general solution?

 (b)  Find a and b so that yp = ax + b is a particular solution of the complete 
equation y″ − y′ − 2y = 4x. Use this solution and the result of part (a) 
to write down the general solution of this equation.

 4. Use inspection or experiment to find a particular solution for each of 
the following equations:

 (a) x3y″ + x2y′ + xy = 1;
 (b) y″ − 2y′ = 6;
 (c) y″ − 2y = sin x.
 5. In each of the following cases, use inspection or experiment to find 

particular solutions of the reduced and complete equations and write 
down the general solution:

 (a) y″ = ex;
 (b) y″−2y′ = 4;
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 (c) y″− y = sin x;
 (d) (x − 1)y″ − xy′ + y = 0;
 (e) y″ + 2y′ = 6ex.
 6. By eliminating the constants c1 and c2, find the differential equation of 

each of the following families of curves:
 (a) y = c1x + c2x2;
 (b) y = c1ekx + c2e–kx;
 (c) y = c1 sin kx + c2 cos kx;
 (d) y = c1 + c2e−2x;
 (e) y = c1x + c2 sin x;
 (f) y = c1ex + c2xex;
 (g) y = c1ex + c2e−3x;
 (h) y = c1x + c2x−1.
 7. Verify that y = c1x−1 + c2x5 is a solution of

 x2y″ − 3xy − 5y = 0

 on any interval [a,b] that does not contain the origin. If x0 ≠ 0, and if y0 
and ¢y0 are arbitrary, show directly that c1 and c2 can be chosen in one 
and only one way so that y(x0) = y0 and ¢ = ¢y x y( )0 0.

 8. Show that y = x2 sin x and y = 0 are both solutions of

 x2y″ − 4xy′ + (x2 + 6)y = 0,

 and that both satisfy the conditions y(0) = 0 and y′(0) = 0. Does this con-
tradict Theorem A? If not, why not?

 9. If a solution of equation (2) on an interval [a,b] is tangent to the x-axis at 
any point of this interval, then it must be identically zero. Why?

 10. If y1(x) and y2(x) are two solutions of equation (2) on an interval [a,b], 
and have a common zero in this interval, show that one is a constant 
multiple of the other. [Recall that a point x0 is said to be a zero of a func-
tion f(x) if f(x) = 0.]

15 The General Solution of the Homogeneous Equation

If two functions f(x) and g(x) are defined on an interval [a,b] and have the 
property that one is a constant multiple of the other, then they are said to 
be linearly dependent on [a,b]. Otherwise—that is, if neither is a constant mul-
tiple of the other—they are called linearly independent. It is worth noting that 
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if f(x) is identically zero, then f(x) and g(x) are linearly dependent for every 
function g(x), since f(x) = 0 · g(x).

Our purpose in this section is to prove the following theorem.

Theorem A. Let y1(x) and y2(x) be linearly independent solutions of the homoge-
neous equation

 y″ + P(x)y′ + Q(x)y = 0 (1)

on the interval [a,b]. Then

 c1y1(x) + c2y2(x) (2)

is the general solution of equation (1) on [a,b], in the sense that every solution of (1) 
on this interval can be obtained from (2) by a suitable choice of the arbitrary constants 
c1 and c2.

The proof will be given in stages, by means of several lemmas and auxiliary 
ideas.

Let y(x) be any solution of (1) on [a,b]. We must show that constants c1 and 
c2 can be found so that

 y(x) = c1y1(x) + c2y2(x)

for all x in [a,b]. By Theorem 14-A, a solution of (1) over all of [a,b] is com-
pletely determined by its value and the value of its derivative at a single 
point. Consequently, since c1y1(x) + c2y2(x) and y(x) are both solutions of (1) on 
[a,b], it suffices to show that for some point x0 in [a,b] we can find c1 and c2 so 
that

 c1y1(x0) + c2y2(x0) = y(x0)

and

 c y x c y x y x1 1 0 2 2 0 0¢ + ¢ = ¢( ) ( ) ( ).

For this system to be solvable for c1 and c2, it suffices that the determinant

 

y x y x

y x y x
y x y x y x y x

1 0 2 0

1 0 2 0
1 0 2 0 2 0 1 0

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
¢ ¢

= ¢ - ¢

have a value different from zero. This leads us to investigate the function of 
x defined by

 W y y y y y y( , ) ,1 2 1 2 2 1= ¢ - ¢
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which is known as the Wronskian2 of y1 and y2, with special reference to 
whether it vanishes at x0. Our first lemma simplifies this problem by show-
ing that the location of the point x0 is of no consequence.

Lemma 1. If y1(x) and y2(x) are any two solutions of equation (1) on [a,b], then their 
Wronskian W = W(y1,y2) is either identically zero or never zero on [a,b].

Proof. We begin by observing that

 

¢ = ¢¢ + ¢ ¢ ¢¢ ¢ ¢
¢¢ ¢¢

W y y y y y y y y

y y y y
1 2 1 2 2 1 2 1

1 2 2 1

– –
– .=

Next, since y1 and y2 are both solutions of (1), we have

 ¢¢ + ¢ + =y Py Qy1 1 1 0

and

 ¢¢ + ¢ + =y Py Qy2 2 2 0.

On multiplying the first of these equations by y2 and the second by y1, and 
subtracting the first from the second, we obtain

 ( ) ( )y y y y P y y y y1 2 2 1 1 2 2 1 0¢¢ - ¢¢ + ¢ - ¢ =

or

 

dW
dx

PW+ = 0.

The general solution of this first order equation is

 W ce
P dx

= ò– ; (3)

and since the exponential factor is never zero we see that W is identically 
zero if the constant c = 0, and never zero if c ≠ 0, and the proof is complete.3

This result reduces our overall task of proving the theorem to that of 
showing that the Wronskian of any two linearly independent solutions of (1) 

2 Hoëné Wronski (1778–1853) was an impecunious Pole of erratic personality who spent most 
of his life in France. The Wronskian determinant mentioned above was his sole contribu-
tion to mathematics. He was the only Polish mathematician of the nineteenth century whose 
name is remembered today, which is a little surprising in view of the many eminent men in 
this field whom Poland has given to the twentieth century.

3 Formula (3) is due to the great Norwegian mathematician Niels Henrik Abel (see Appendix B 
in Chapter 9), and is called Abel’s formula.
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is not identically zero. We accomplish this in our next lemma, which actually 
yields a bit more than is needed.

Lemma 2. If y1(x) and y2(x) are two solutions of equation (1) on [a,b], then they are lin-
early dependent on this interval if and only if their Wronskian W y y y y y y( , )1 2 1 2 2 1= ¢ - ¢ 
is identically zero.

Proof. We begin by assuming that y1 and y2 are linearly dependent, and we 
show as a consequence of this that y y y y1 2 2 1 0¢ - ¢ = . First, if either function 
is identically zero on [a,b], then the conclusion is clear. We may therefore 
assume, without loss of generality, that neither is identically zero; and it fol-
lows from this and their linear dependence that each is a constant multiple of 
the other. Accordingly we have y2 = cy1 for some constant c, so ¢ = ¢y cy2 1. These 
equations enable us to write

 

y y y y y cy cy y1 2 2 1 1 1 1 1¢ - ¢ = ¢ - ¢( ) ( )
= 0,

which proves this half of the lemma.
We now assume that the Wronskian is identically zero and prove linear 

dependence. If y1 is identically zero on [a,b], then (as we remarked at the 
beginning of the section) the functions are linearly dependent. We may there-
fore assume that y1 does not vanish identically on [a,b], from which it follows 
by continuity that y1 does not vanish at all on some subinterval [c,d] of [a,b]. 
Since the Wronskian is identically zero on [a,b], we can divide it by y1

2 to get

 

y y y y
y

1 2 2 1

1
2 0

¢ ¢
=

–

on [c,d]. This can be written in the form (y2/y1)′ = 0, and by integrating we 
obtain y2/y1 = k or y2(x) = ky1(x) for some constant k and all x in [c,d]. Finally, 
since y2(x) and ky1(x) have equal values in [c,d], they have equal derivatives 
there as well; and Theorem 14-A allows us to infer that

 y2(x) = ky1(x)

for all x in [a,b], which concludes the argument.
With this lemma, the proof of Theorem A is complete.

Ordinarily, the simplest way of showing that two solutions of (1) are lin-
early independent over an interval is to show that their ratio is not constant 
there, and in most cases this is easily determined by inspection. On occasion, 
however, it is convenient to employ the formal test embodied in Lemma 2: 
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compute the Wronskian, and show that it does not vanish. Both procedures 
are illustrated in the following example.

Example 1. Show that y = c1 sin x + c2 cos x is the general solution of 
y″ + y = 0 on any interval, and find the particular solution for which 
y(0) = 2 and y′(0) = 3.

The fact that y1 = sin x and y2 = cos x are solutions is easily verified by 
substitution. Their linear independence on any interval [a,b] follows 
from the observation that y1/y2 = tan x is not constant, and also from the 
fact that their Wronskian never vanishes:

 
W y y

x x

x x
x x( , )

sin cos
cos sin

sin cos1 2
2 2 1=

-
= - - = - .

Since P(x) = 0 and Q(x) = 1 are continuous on [a,b], it now follows from 
Theorem A that y = c1 sin x + c2 cos x is the general solution of the given 
equation on [a,b]. Furthermore, since the interval [a,b] can be expanded 
indefinitely without introducing points at which P(x) or Q(x) is discon-
tinuous, this general solution is valid for all x. To find the required par-
ticular solution, we solve the system

 c1 sin 0 + c2 cos 0 = 2,

 c1 cos 0 − c2 sin 0 = 3.

This yields c2 = 2 and c1 = 3, so y = 3 sin x + 2 cos x is the particular solution 
that satisfies the given conditions.

The concepts of linear dependence and independence are significant in a 
much wider context than appears here. As the reader is perhaps already 
aware, the important branch of mathematics known as linear algebra is in 
essence little more than an abstract treatment of these concepts, with many 
applications to algebra, geometry, and analysis.

Problems

In Problems 1 to 7, use Wronskians to establish linear independence.

 1. Show that ex and e−x are linearly independent solutions of y″ − y = 0 on 
any interval.

 2. Show that y = c1x + c2x2 is the general solution of

 x2y″ − 2xy′ + 2y = 0

 on any interval not containing 0, and find the particular solution for 
which y(1) = 3 and y′(1) = 5.
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 3. Show that y = c1ex + c2e2x is the general solution of

 y″ − 3y′ + 2y = 0

 on any interval, and find the particular solution for which y(0) = −1 and 
y′(0) = 1.

 4. Show that y = c1e2x + c2xe2x is the general solution of

 y″ − 4y′ + 4y = 0

 on any interval.
 5. By inspection or experiment, find two linearly independent solutions 

of x2y″ − 2y = 0 on the interval [1,2], and determine the particular solu-
tion satisfying the initial conditions y(1) = 1, y′(1) = 8.

 6. In each of the following, verify that the functions y1(x) and y2(x) are 
linearly independent solutions of the given differential equation on 
the interval [0,2], and find the solution satisfying the stated initial 
conditions:

 (a) ¢¢ + ¢ = = = = ¢ =y y y y e y e y yx x– , , ( ) ( )–2 0 0 8 0 21 2
2and and ;

 (b) ¢¢ + ¢ = = = = ¢ =-y y y y e y e y yx x– , , ( ) ( )2 0 1 0 1 01 2
2and and ;

 (c) ¢¢ + ¢ + = = = = ¢ =- -y y y y e y e y yx x5 6 0 0 1 0 11
2

2
3, , ( ) ( )and and ;

 (d) ¢¢ + ¢ = = = = ¢ =- -y y y y e y y ex0 1 2 0 21 2
2, , ( ) ( )and and .

 7. (a)  Use one (or both) of the methods described in Section 11 to find all 
solutions of ¢¢ + ¢ =y y( )2 0.

 (b)  Verify that y1 = 1 and y2 = log x are linearly independent solutions of 
the equation in part (a) on any interval to the right of the origin. Is 
y = c1 + c2 log x the general solution? If not, why not?

 8. Use the Wronskian to prove that two solutions of the homogeneous 
equation (1) on an interval [a,b] are linearly dependent if

 (a) they have a common zero x0 in the interval (Problem 14–10);
 (b) they have maxima or minima at the same point x0 in the interval.
 9. Consider the two functions f(x) = x3 and g(x) = x2 |x| on the interval 

[−1, 1].
 (a) Show that their Wronskian W( f, g) vanishes identically.
 (b) Show that f and g are not linearly dependent.
 (c) Do (a) and (b) contradict Lemma 2? If not, why not?
 10. It is clear that sin x, cos x and sin x, sin x − cos x are two distinct pairs of 

linearly independent solutions of y″ + y = 0. Thus, if y1 and y2 are linearly 
independent solutions of the homogeneous equation
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 y″ + P(x)y′ + Q(x)y = 0,

 we see that y1 and y2 are not uniquely determined by the equation.
 (a) Show that

 
P x

y y y y
W y y

( )
( , )

= -
¢¢ - ¢¢1 2 2 1

1 2

and

 
Q x

y y y y
W y y

( )
( , )

,=
¢ ¢¢ - ¢ ¢¢1 2 2 1

1 2

 so that the equation is uniquely determined by any given pair of 
linearly independent solutions.

 (b)  Use (a) to reconstruct the equation yʺ + y = 0 from each of the two 
pairs of linearly independent solutions mentioned above.

 (c)  Use (a) to reconstruct the equation in Problem 4 from the pair of 
linearly independent solutions e2x, xe2x.

 11. (a)  Show that by applying the substitution y = uv to the homogeneous 
equation (1) it is possible to obtain a homogeneous second order lin-
ear equation for v with no v′ term present. Find u and the equation 
for v in terms of the original coefficients P(x) and Q(x).

 (b)  Use the method of part (a) to find the general solution of 
y″ + 2xy′ + (1 + x2)y = 0.

16 The Use of a Known Solution to find Another

As we have seen, it is easy to write down the general solution of the homo-
geneous equation

 y″ + P(x)y′ + Q(x)y = 0 (1)

whenever we know two linearly independent solutions y1(x) and y2(x). But 
how do we find y1 and y2? Unfortunately there is no general method for 
doing this. However, there does exist a standard procedure for determin-
ing y2 when y1 is known. This is of considerable importance, for in many 
cases a single solution of (1) can be found by inspection or some other 
device.

To develop this procedure, we assume that y1(x) is a known nonzero solu-
tion of (1), so that cy1(x) is also a solution for any constant c. The basic idea is 
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to replace the constant c by an unknown function v(x), and then to attempt to 
determine v in such a manner that y2 = vy1 will be a solution of (1). It isn’t at 
all clear in advance that this approach will work, but it does. To see how we 
might think of trying it, recall that the linear independence of the two solu-
tions y1 and y2 requires that the ratio y2/y1 must be a nonconstant function 
of x, say v; and if we can find v, then since we know y1 we have y2 and our 
problem is solved.

We assume, then, that y2 = vy1 is a solution of (1), so that

 ¢¢ + ¢ + =y Py Qy2 2 2 0, (2)

and we try to discover the unknown function v(x). On substituting y2 = vy1 
and the expressions

 ¢ = ¢ + ¢ ¢¢ = ¢¢ + ¢ ¢ + ¢¢y vy v y y vy v y v y2 1 1 2 1 1 12and

into (2) and rearranging, we get

 v y Py Qy v y v y Py( ) ( )¢¢ + ¢ + + ¢¢ + ¢ ¢ + =1 1 1 1 1 12 0.

Since y1 is a solution of (1), this reduces to

 ¢¢ + ¢ ¢ + =v y v y Py1 1 12 0( )

or

 

¢¢
¢

= -
¢v

v
y
y

P2 1

1
– .

An integration now gives

 
log log¢ = - - òv y Pdx2 1 ,

so

 
¢ = ò-

v
y

e
Pdx1

1
2

and

 
v

y
e dx

Pdx
= òò 1

1
2

–
. (3)
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All that remains is to show that y1 and y2 = vy1, where v is given by (3), actu-
ally are linearly independent as claimed; and this we leave to the reader in 
Problem 1.4

Example 1. y1 = x is a solution of x2y″ + xy′ − y = 0 which is simple enough 
to be discovered by inspection. Find the general solution.

We begin by writing the given equation in the form of (1):

 
¢¢ + ¢ - =y

x
y

x
y

1 1
02 .

Since P(x) = 1/x, a second linearly independent solution is given by 
y2 = vy1, where

 
v

x
e dx

x
e dx x dx

xx dx x= ò = = =ò ò ò1 1
22

1

2
3

2
– ( / ) – log –

–

–
.

This yields y2 = (−1/2)x−1, so the general solution is y = c1x + c2x−1.

Problems

 1. If y1 is a nonzero solution of equation (1) and y2 = vy1 where v is given by 
formula (3), is the second solution found in the text, show by computing 
the Wronskian that y1 and y2 are linearly independent.

 2. Use the method of this section to find y2 and the general solution of 
each of the following equations from the given solution y1:

 (a) y″ + y = 0, y1 = sin x;
 (b) y″ − y = 0, y1 = ex.
 3. The equation xy″ + 3y′ = 0 has the obvious solution y1 = 1. Find y2 and the 

general solution.
 4. Verify that y1 = x2 is one solution of x2y″ + xy′ − 4y = 0, and find y2 and the 

general solution.
 5. The equation (1 − x2)y″ − 2xy′ + 2y = 0 is the special case of Legendre’s 

equation

 (1 − x2)y″ − 2xy′ + p(p + 1)y = 0

 corresponding to p = 1. It has y1 = x as an obvious solution. Find the gen-
eral solution.

4 Formula (3) is due to the eminent French mathematician Joseph Liouville (see the note at the 
end of Section 43).
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 6. The equation x2y″ + xy′ + (x2 − 
1
4

‚)y = 0 is the special case of Bessel’s 
equation

 x2y″ + xy′ + (x2 − p2)y = 0

 corresponding to p = 1
2

. Verify that y1 = x−1/2 sin x is one solution over 

any interval including only positive values of x, and find the general 
solution.

 7. Use the fact that y1 = x is an obvious solution of each of the following 
equations to find their general solutions:

 (a) ¢¢ ¢ + =y
x

x
y

x
y–

– –1
1

1
0;

 (b) x2y″ + 2xy′ − 2y = 0;
 (c) x2y″ − x(x + 2)y′ + (x + 2)y = 0.
 8. Find the general solution of y″ − xf(x)y′ + f(x)y = 0.
 9. Verify that one solution of xy″ − (2x + 1)y′ + (x + 1)y = 0 is given by y1 = ex, 

and find the general solution.
 10. (a) If n is a positive integer, find two linearly independent solutions of

 xy″ − (x + n)y′ + ny = 0.

 (b)  Find the general solution of the equation in part (a) for the cases 
n = 1, 2, 3.

 11. Find the general solution of y″ − f(x)y′ + [f(x) − 1]y = 0.
 12. For another, faster approach to formula (3), show that 

¢ = ¢ =v y y W y y y( ) ( , )2 1 1 2 1
2 and use Abel’s formula in Section 15 to 

obtain v.

17 The Homogeneous Equation with Constant Coefficients

We are now in a position to give a complete discussion of the homogeneous 
equation y″ + P(x)y′ + Q(x)y = 0 for the special case in which P(x) and Q(x) are 
constants p and q:

 y″ + py′ + qy = 0. (1)

Our starting point is the fact that the exponential function emx has the prop-
erty that its derivatives are all constant multiples of the function itself. This 
leads us to consider

 y = emx (2)
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as a possible solution for (1) if the constant m is suitably chosen. Since y′ = memx 
and y″ = m2emx, substitution in (1) yields

 (m2 + pm + q)emx = 0; (3)

and since emx is never zero, (3) holds if and only if m satisfies the auxiliary 
equation

 m2 + pm + q = 0. (4)

The two roots m1 and m2 of this equation, that is, the values of m for which (2) 
is a solution of (1), are given by the quadratic formula:

 
m m

p p q
1 2

2 4
2

, =
- ± -

. (5)

Further development of this situation requires separate treatment of the 
three possibilities inherent in (5).

Distinct real roots.5 It is clear that the roots m1 and m2 are distinct real num-
bers if and only if p2 − 4q > 0. In this case we get the two solutions

 e em x m x1 2and .

Since the ratio

 

e
e

e
m x

m x
m m x

1

2

1 2= -( )

is not constant, these solutions are linearly independent and

 y c e c em x m x= +1 2
1 2  (6)

is the general solution of (1).

Distinct complex roots. The roots m1 and m2 are distinct complex numbers if 
and only if p2 − 4q < 0. In this case m1 and m2 can be written in the form a ± ib; 
and by Euler’s formula

 eiθ = cos θ + i sin θ (7)

5 We take it for granted that the reader is acquainted with the elementary algebra of complex 
numbers. Euler’s formula (7) is—or ought to be—a standard part of any reasonably satisfac-
tory course in calculus.
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our two solutions of (1) are

 e e e e e bx i bxm x a ib x ax ibx ax1 = = = ++( ) (cos sin )  (8)

and

 e e e e e bx i bxm x a ib x ax ibx ax2 = = = -- -( ) (cos sin ). (9)

Since we are interested only in solutions that are real-valued functions, we 
can add (8) and (9) and divide by 2, and subtract and divide by 2i, to obtain

 eax cos bx and eax sin bx. (10)

These solutions are linearly independent, so the general solution of (1) in this 
case is

 y = eax(c1 cos bx + c2 sin bx). (11)

We can look at this matter from another point of view. A complex-valued 
function w(x) = u(x) + iv(x) satisfies equation (1), in which p and q are real num-
bers, if and only if u(x) and v(x) satisfy (1) separately. Accordingly, a complex 
solution of (1) always contains two real solutions, and (8) yields the two solu-
tions (10) at once.

Equal real roots. It is evident that the roots m1 and m2 are equal real num-
bers if and only if p2 − 4q = 0. Here we obtain only one solution y = emx with 
m = –p/2. However, we can easily find a second linearly independent solution 
by the method of the preceding section: if we take y1 = e(−p/2)x, then

 
v

y
e dx

e
e dx x

pdx

px
px= ò = =ò ò -

1 1

1
2

– –

and y2 = vy1 = xemx. In this case (1) has

 y = c1emx + c2xemx (12)

as its general solution.
In summary, we have three possible forms—given by formulas (6), (11), 

and (12)—for the general solution of the homogeneous equation (1) with 
constant coefficients, depending on the nature of the roots m1 and m2 of 
the auxiliary equation (4). It is clear that the qualitative nature of this gen-
eral solution is fully determined by the signs and relative magnitudes of 
the coefficients p and q, and can be radically changed by altering their 
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numerical values. This matter is important for physicists concerned with 
the detailed analysis of mechanical systems or electric circuits described by 
equations of the form (1). For instance, if p2 < 4q, the graph of the solution 
is a wave whose amplitude increases or decreases exponentially according 
as p is negative or positive. This statement and others like it are obvious 
consequences of the above discussion, and are given exhaustive treatment 
in books dealing more fully with the elementary physical applications of 
differential equations.

The ideas of this section are primarily due to Euler. A brief sketch of a 
few of the many achievements of this great scientific genius is given in 
Appendix A.

Problems

 1. Find the general solution of each of the following equations:
 (a) y″ + y′ − 6y = 0;
 (b) y″ + 2y′ + y = 0;
 (c) y″ + 8y = 0;
 (d) 2y″ − 4y′ + 8y = 0;
 (e) y″ − 4y′ + 4y = 0;
 (f) y″ − 9y′ + 20y = 0;
 (g) 2y″ + 2y′ + 3y = 0;
 (h) 4y″ − 12y′ + 9y = 0;
 (i) y″ + y′ = 0;
 (j) y″ − 6y′ + 25y = 0;
 (k) 4y″ + 20y′ + 25y = 0;
 (l) y″ + 2y′ + 3y = 0;
 (m) y″ = 4y;
 (n) 4y″ − 8y′ + 7y = 0;
 (o) 2y″ + y′ − y = 0;
 (p) 16y″ − 8y′ + y = 0;
 (q) y″ + 4y′ + 5y = 0;
 (r) y″ + 4y′ − 5y = 0.
 2. Find the solutions of the following initial value problems:
 (a) y″ − 5y′ + 6y = 0, y(1) = e2 and y′(1) = 3e2;
 (b) y″ − 6y′ + 5y = 0, y(0) = 3 and y′(0) = 11;
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 (c) y″ − 6y′ + 9y = 0, y(0) = 0 and y′(0) = 5;
 (d) y″ + 4y′ + 5y = 0, y(0) = 1 and y′(0) = 0;
 (e) y″ + 4y′ + 2y = 0, y y( ) ( )0 1 0 2 3 2= - ¢ = + and ;
 (f) y″ + 8y′ − 9y = 0, y(1) = 2 and y′(1) = 0.
 3. Show that the general solution of equation (1) approaches 0 as x → ∞ if 

and only if p and q are both positive.
 4. Without using the formulas obtained in this section, show that the 

derivative of any solution of equation (1) is also a solution.
 5. The equation

 x2y″ + pxy′ + qy = 0,

 where p and q are constants, is called Euler’s equidimensional equa-
tion.6 Show that the change of independent variable given by x = ez 
transforms it into an equation with constant coefficients, and apply 
this technique to find the general solution of each of the following 
equations:

 (a) x2y″ + 3xy′ + 10y = 0;
 (b) 2x2y″ + 10xy′ + 8y = 0;
 (c) x2y″ + 2xy′ − 12y = 0;
 (d) 4x2y″ − 3y = 0;
 (e) x2y″ − 3xy′ + 4y = 0;
 (f) x2y″ + 2xy′ − 6y = 0;
 (g) x2y″ + 2xy′ + 3y = 0;
 (h) x2y″ + xy′ − 2y = 0;
 (i) x2y″ + xy′ − 16y = 0.
 6. In Problem 5 certain homogeneous equations with variable coefficients 

were transformed into equations with constant coefficients by chang-
ing the independent variable from x to z = log x. Consider the general 
homogeneous equation

 y″ + P(x)y′ + Q(x)y = 0, (*)

 and change the independent variable from x to z = z(x), where z(x) is an 
unspecified function of x. Show that equation (*) can be transformed 
in this way into an equation with constant coefficients if and only if 

(Q′ + 2PQ)/Q3/2 is constant, in which case z Q x dx= ò ( )  will effect the 
desired result.

6 It is also known as Cauchy’s equidimensional equation. Euler’s researches were so extensive that 
many mathematicians try to avoid confusion by naming equations, formulas, theorems, etc., 
for the person who first studied them after Euler.
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 7. Use the result of Problem 6 to discover whether each of the following 
equations can be transformed into an equation with constant coefficients 
by changing the independent variable, and solve it if this is possible:

 (a) xy″ + (x2 − 1)y′ + x3y = 0;
 (b) y″ + 3xy′ + x2y = 0.
 8. In this problem we present another way of discovering the second lin-

early independent solution of (1) when the roots of the auxiliary equa-
tion are real and equal.

 (a) If m1 ≠ m2, verify that the differential equation

 y″ − (m1 + m2)y′ + m1m2y = 0

 has

 
y

e e
m m

m x m x

=
1 2

1 2

–
–

 as a solution.
 (b)  Think of m2 as fixed and use l’Hospital’s rule to find the limit of the 

solution in part (a) as m1 → m2.
 (c)  Verify that the limit in part (b) satisfies the differential equation 

obtained from the equation in part (a) by replacing m1 by m2.

18 The Method of Undetermined Coefficients

In the preceding two sections we considered several ways of finding the gen-
eral solution of the homogeneous equation

 y″ + P(x)y′ + Q(x)y = 0. (1)

As we saw, these methods are effective in only a few special cases: when 
the coefficients P(x) and Q(x) are constants, and when they are not constants 
but are still simple enough to enable us to discover one nonzero solution 
by inspection. Fortunately these categories are sufficiently broad to cover a 
number of significant applications. However, it should be clearly understood 
that many homogeneous equations of great importance in mathematics and 
physics are beyond the reach of these procedures, and can only be solved by 
the method of power series developed in Chapter 5.

In this and the next section we turn to the problem of solving the nonho-
mogeneous equation

 y″ + P(x)y′ + Q(x)y = R(X) (2)
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for those cases in which the general solution yg(x) of the corresponding 
homogeneous equation (1) is already known. By Theorem 14-B, if yp(x) is any 
particular solution of (2), then

 y(x) = yg(x) + yp(x)

is the general solution of (2). But how do we find yp? This is the practical prob-
lem that we now consider.

The method of undetermined coefficients is a procedure for finding yp 
when (2) has the form

 y″ + py′ + qy = R(x), (3)

where p and q are constants and R(x) is an exponential, a sine or cosine, a 
polynomial, or some combination of such functions. As an example, we 
study the equation

 y″ + py′ + qy = eax. (4)

Since differentiating an exponential such as eax merely reproduces the func-
tion with a possible change in the numerical coefficient, it is natural to guess 
that

 yp = Aeax (5)

might be a particular solution of (4). Here A is the undetermined coefficient 
that we want to determine in such a way that (5) will actually satisfy (4). On 
substituting (5) into (4), we get

 A(a2 + pa + q)eax = eax,

so

 
A

a pa q
=

+ +
1

2 . (6)

This value of A will make (5) a solution of (4) except when the denominator on 
the right of (6) is zero. The source of this difficulty is easy to understand, for the 
exception arises when a is a root of the auxiliary equation

 m2 + pm + q = 0, (7)

and in this case we know that (5) reduces the left side of (4) to zero and can-
not possibly satisfy (4) as it stands, with the right side different from zero.
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What can be done to continue the procedure in this exceptional case? We 
saw in the previous section that when the auxiliary equation has a double 
root, the second linearly independent solution of the homogeneous equation 
is obtained by multiplying by x. With this as a hint, we take

 yp = Axeax (8)

as a substitute trial solution. On inserting (8) into (4), we get

 A(a2 + pa + q)xeax + A(2a + p)eax = eax.

The first expression in parentheses is zero because of our assumption that a 
is a root of (7), so

 
A

a p
=

+
1

2
. (9)

This gives a valid coefficient for (8) except when a = –p/2, that is, except when 
a is a double root of (7). In this case we hopefully continue the successful pat-
tern indicated above and try

 yp = Ax2eax. (10)

Substitution of (10) into (4) yields

 A(a2 + pa + q)x2eax + 2A(2a + p)xeax + 2Aeax = eax.

Since a is now assumed to be a double root of (7), both expressions in paren-
theses are zero and

 
A =

1
2

. (11)

To summarize: If a is not a root of the auxiliary equation (7), then (4) has a 
particular solution of the form Aeax; if a is a simple root of (7), then (4) has 
no solution of the form Aeax but does have one of the form Axeax; and if a is a 
double root, then (4) has no solution of the form Axeax but does have one of 
the form Ax2eax. In each case we have given a formula for A, but only for the 
purpose of clarifying the reasons behind the events. In practice it is easier to 
find A by direct substitution in the equation at hand.

Another important case where the method of undetermined coefficients 
can be applied is that in which the right side of equation (4) is replaced by 
sin bx:

 y″ + py′ + qy = sin bx. (12)
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Since the derivatives of sin bx are constant multiples of sin bx and cos bx, we 
take a trial solution of the form

 yp = A sin bx + B cos bx. (13)

The undetermined coefficients A and B can now be computed by substi-
tuting (13) into (12) and equating the resulting coefficients of sin bx and 
cos bx on the left and right. These steps work just as well if the right side 
of equation (12) is replaced by cos bx or any linear combination of sin bx 
and cos bx, that is, any function of the form α sin bx + β cos bx. As before, 
the method breaks down if (13) satisfies the homogeneous equation cor-
responding to (12). When this happens, the procedure can be carried 
through by using

 yp = x(A sin bx + B cos bx) (14)

as our trial solution instead of (13).

Example 1. Find a particular solution of

 y″ + y = sin x. (15)

The reduced homogeneous equation y″ + y = 0 has y = c1 sin x + c2 cos x as 
its general solution, so it is useless to take yp = A sin x + B cos x as a trial 
solution for the complete equation (15). We therefore try yp = x(A sin x + 
B cos x). This yields

 
¢ = + + -y A x B x x A x B xp sin cos ( cos sin )

and

 
¢¢ = - + - -y A x B x x A x B xp 2 2cos sin ( sin cos ),

and by substituting in (15) we obtain

 2A cos x − 2B sin x = sin x.

This tells us that the choice A = 0 and B − 
1
2

 satisfies our requirement, so 

yp = −
1
2

x cos x is the desired particular solution.

Finally, we consider the case in which the right side of equation (4) is replaced 
by a polynomial:

 y py qy a a x a xn
n² + ¢ + = + + +0 1 � . (16)
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Since the derivative of a polynomial is again a polynomial, we are led to seek 
a particular solution of the form

 y A A x A xp n
n= + + +0 1 � . (17)

When (17) is substituted into (16), we have only to equate the coefficients of 
like powers of x to find the values of the undetermined coefficients A0, A1,…, 
An. If the constant q happens to be zero, then this procedure gives xn−1 as the 
highest power of x on the left of (16), so in this case we take our trial solution 
in the form

 yp = x(A0 + A1x + … + Anxn)

 = A0x + A1x2 + … +Anxn+1 (18)

If p and q are both zero, then (16) can be solved at once by direct integration.

Example 2. Find the general solution of

 y″ − y′ − 2y = 4x2. (19)

The reduced homogeneous equation y″ − y′ − 2y =0 has m2 − m − 2 = 0 or 
(m − 2)(m + 1) = 0 as its auxiliary equation, so the general solution of the 
reduced equation is yg = c1e2x + c2e−x.

Since the right side of the complete equation (19) is a polynomial of the 
second degree, we take a trial solution of the form yp = A + Bx + Cx2 and 
substitute it into (19):

 2C − (B + 2Cx) − 2(A + Bx + Cx2) = 4x2.

Equating coefficients of like powers of x gives the system of linear 
equations

 2C − B − 2A = 0,

 − 2C − 2B = 0,

 −2C = 4.

We now easily see that C = −2, B = 2, and A = −3, so our particular solution 
is yp = − 3 + 2x − 2x2 and

 y = c1e2x + c2e–x − 3 + 2x − 2x2

is the general solution of the complete equation (19).

The above discussions show that the form of a particular solution of equa-
tion (3) can often be inferred from the form of the right-hand member R(x). 
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In general this is true whenever R(x) is a function with only a finite number 
of essentially different derivatives. We have seen how this works for expo-
nentials, sines and cosines, and polynomials. In Problem 3 we indicate a 
course of action for the case in which R(x) is a sum of such functions. It is also 
possible to develop slightly more elaborate techniques for handling various 
products of these elementary functions, but for most practical purposes this 
is unnecessary. In essence, the whole matter is simply a question of intelli-
gent guesswork involving a sufficient number of undetermined coefficients 
that can be tailored to fit the circumstances.

Problems

 1. Find the general solution of each of the following equations:
 (a) y″ + 3y′ − 10y = 6e4x;
 (b) y″ + 4y = 3 sin x;
 (c) y″ + 10y′ + 25y = 14e−5x;
 (d) y″ − 2y′ + 5y = 25x2 + 12;
 (e) y″ − y′ − 6y = 20e−2x;
 (f) y″ − 3y′ + 2y = 14 sin 2x − 18 cos 2x;
 (g) y″ + y = 2 cos x;
 (h) y″ − 2y′ = 12x − 10;
 (i) y″ − 2y′ + y = 6ex;
 (j) y″ − 2y′ + 2y = ex sin x;
 (k) y″ + y′ = 10x4 + 2.
 2. If k and b are positive constants, find the general solution of

 y″ + k2y = sin bx.

 3. If y1(x) and y2(x) are solutions of

 y″ + P(x)y′ + Q(x)y = R1(x)

 and

 y″ + P(x)y′ + Q(x)y = R2(x),

 show that y(x) = y1(x) + y2(x) is a solution of

 y″ + P(x)y′ + Q(x)y = R1(x) + R2(x).
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 This is called the principle of superposition. Use this principle to find the 
general solution of

 (a) y″ + 4y = 4 cos 2x + 6 cos x + 8x2 − 4x;
 (b) y″ + 9y = 2 sin 3x + 4 sin x − 26e−2x + 27x3.

19 The Method of Variation of Parameters

The technique described in Section 18 for determining a particular solution 
of the nonhomogeneous equation

 y″ + P(x)y′ + Q(x)y = R(x)  (1)

has two severe limitations: it can be used only when the coefficients P(x) and 
Q(x) are constants, and even then it works only when the right-hand term 
R(x) has a particularly simple form. Within these limitations, however, this 
procedure is usually the easiest to apply.

We now develop a more powerful method that always works—regardless 
of the nature of P, Q, and R—provided only that the general solution of the 
corresponding homogeneous equation

 y″ + P(x)y′ + Q(x)y = 0 (2)

is already known. We assume, then, that in some way the general solution

 y(x) = c1y1(x) + c2y2(x) (3)

of (2) has been found. The method is similar to that discussed in Section 16; 
that is, we replace the constants c1 and c2 by unknown functions v1(x) and 
v2(x), and attempt to determine v1 and v2 in such a manner that

 y = v1y1 + v2y2 (4)

will be a solution of (1).7 With two unknown functions to find, it will be nec-
essary to have two equations relating these functions. We obtain one of these 
by requiring that (4) be a solution of (1). It will soon be clear what the second 
equation should be. We begin by computing the derivative of (4), arranged 
as follows:

 ¢ = ¢ + ¢ + ¢ + ¢y v y v y v y v y( ) ( )1 1 2 2 1 1 2 2 . (5)

7 This is the source of the name variation of parameters: we vary the parameters c1 and c2.
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Another differentiation will introduce second derivatives of the unknowns 
v1 and v2. We avoid this complication by requiring the second expression in 
parentheses to vanish:

 ¢ + ¢ =v y v y1 1 2 2 0. (6)

This gives

 ¢ = ¢ + ¢y v y v y1 1 2 2 ,  (7)

so

 ¢¢ = ¢¢ + ¢ ¢ + ¢¢ + ¢ ¢y v y v y v y v y1 1 1 1 2 2 2 2. (8)

On substituting (4), (7), and (8) into (1), and rearranging, we get

 v y Py Qy v y Py Qy v y v y R x1 1 1 1 2 2 2 2 1 1 2 2( ) ( ) ( )¢¢ + ¢ + + ¢¢ + ¢ + + ¢ ¢ + ¢ ¢ = . (9)

Since y1 and y2 are solutions of (2), the two expressions in parentheses are 
equal to 0, and (9) collapses to

 ¢ ¢ + ¢ ¢ =v y v y R x1 1 2 2 ( ). (10)

Taking (6) and (10) together, we have two equations in the two unknowns ¢v1 
and ¢v2:

 

¢ + ¢ =
¢ ¢ + ¢ ¢ =

v y v y

v y v y R x
1 1 2 2

1 1 2 2

0,
( ).

These can be solved at once, giving

 
¢ = ¢ =v

y R x
W y y

v
y R x

W y y
1

2

1 2
2

1

1 2

– ( )
( , )

( )
( , )

and . (11)

It should be noted that these formulas are legitimate, for the Wronskian in 
the denominators is nonzero by the linear independence of y1 and y2. All that 
remains is to integrate formulas (11) to find v1 and v2:

 
v

y R x
W y y

dx v
y R x

W y y
dx1

2

1 2
2

1

1 2
= =ò ò– ( )

( , )
( )

( , )
and . (12)

We can now put everything together and assert that

 
y y

y R x
W y y

dx y
y R x

W y y
dx= +ò ò1

2

1 2
2

1

1 2

– ( )
( , )

( )
( , )

 (13)

is the particular solution of (1) we are seeking.
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The reader will see that this method has disadvantages of its own. In par-
ticular, the integrals in (12) may be difficult or impossible to work out. Also, 
of course, it is necessary to know the general solution of (2) before the process 
can even be started; but this objection is really immaterial because we are 
unlikely to care about finding a particular solution of (1) unless the general 
solution of (2) is already at hand.

The method of variation of parameters was invented by the French math-
ematician Lagrange in connection with his epoch-making work in analytical 
mechanics (see Appendix A in Chapter 12).

Example 1. Find a particular solution of y″ + y = csc x.
The corresponding homogeneous equation y″ + y = 0 has y(x) = c1 sin x + 

c2 cos x as its general solution, so y1 = sin x, ¢ =y x1 cos , y2 = cos x, and 
¢ =y x2 – sin . The Wronskian of y1 and y2 is

 W y y y y y y x x( , ) sin cos1 2 1 2 2 1
2 2 1= ¢ - ¢ = - - = - ,

so by (12) we have

 
v

x x
dx

x
x

dx x1
1

= = =ò ò– cos csc
–

cos
sin

log(sin )

and

 
v

x x
dx x2

1
=

-
= -ò sin csc

.

Accordingly,

 y = sin x log (sin x) − x cos x

is the desired particular solution.

Problems

 1. Find a particular solution of

 y″ − 2y′ + y = 2x,

 first by inspection and then by variation of parameters.
 2. Find a particular solution of

 y″ − y′ − 6y = e−x,

 first by undetermined coefficients and then by variation of parameters.
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 3. Find a particular solution of each of the following equations:
 (a) y″ + 4y = tan 2x;
 (b) y″ + 2y′ + y = e−x log x;
 (c) y″ − 2y′ − 3y = 64xe−x;
 (d) y″ + 2y′ + 5y = e−x sec 2x;
 (e) 2y″ + 3y′ + y = e−3x;
 (f) y″ − 3y′ + 2y = (1 + e−x)−1.
 4. Find a particular solution of each of the following equations:
 (a) y″ + y = sec x;
 (b) y″ + y = cot2x;
 (c) y″ + y = cot 2x;
 (d) y″ + y = x cos x;
 (e) y″ + y = tan x;
 (f) y″ + y = sec x tan x;
 (g) y″ + y = sec x csc x.
 5. (a)  Show that the method of variation of parameters applied to the 

equation y″ + y = f(x) leads to the particular solution

 

y x f t x t dtp

x

( ) ( )sin( )= -ò
0

.

 (b)  Find a similar formula for a particular solution of the equation 
y″ + k2y = f(x), where k is a positive constant.

 6. Find the general solution of each of the following equations:
 (a) (x2 − 1)y″ − 2xy′ + 2y = (x2 − 1)2;
 (b) (x2 + x)y″ + (2 − x2)y′ − (2 + x)y = x(x + 1)2;
 (c) (1 − x)y″ + xy′ − y = (1 − x)2;
 (d) xy″ − (1 +x)y′ + y = x2e2x;
 (e) x2y″ − 2xy′ + 2y = xe−x

20 Vibrations in Mechanical and Electrical Systems

Generally speaking, vibrations occur whenever a physical system in stable 
equilibrium is disturbed, for then it is subject to forces tending to restore its 
equilibrium. In the present section we shall see how situations of this kind 
can lead to differential equations of the form
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d x
dt

p
dx
dt

qx R t
2

2 + + = ( ),

and also how the study of these equations sheds light on the physical 
circumstances.

Undamped simple harmonic vibrations. As a continuing example, we 
consider a cart of mass M attached to a nearby wall by means of a spring 
(Figure  25). The spring exerts no force when the cart is at its equilibrium 
position x = 0. If the cart is displaced by a distance x, then the spring exerts 
a restoring force Fs = –kx, where k is a positive constant whose magnitude is 
a measure of the stiffness of the spring. By Newton’s second law of motion, 
which says that the mass of the cart times its acceleration equals the total 
force acting on it, we have

 
M

d x
dt

Fs

2

2 =  (1)

or

 

d x
dt

k
M

x
2

2 0+ = . (2)

It will be convenient to write this equation of motion in the form

 

d x
dt

a x
2

2
2 0+ = , (3)

where a k M= , and its general solution can be written down at once:

 x = c1 sin at + c2 cos at. (4)

x

M

FIGURE 25 
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If the cart is pulled aside to the position x = x0 and released without any ini-
tial velocity at time t = 0, so that our initial conditions are

 
x x v

dx
dt

t= = = =0 0 0and when , (5)

then it is easily seen that c1 = 0 and c2 = x0, so (4) becomes

 x = x0 cos at. (6)

The graph of (6) is shown in Figure 26. The amplitude of this simple harmonic 
vibration is x0; and since its period T is the time required for one complete 
cycle, we have aT = 2π and

 
T

a
M
k

= =2
2

p p . (7)

Its frequency f is the number of cycles per unit time, so fT = 1 and

 
f

T
a k

M
= = =1

2
1

2p p
. (8)

It is clear from (8) that the frequency of this vibration increases if the stiffness 
of the spring is increased or if the mass of the cart is decreased, as our com-
mon sense would have led us to predict.

Damped vibrations. As our next step in developing this physical problem, 
we consider the additional effect of a damping force Fd due to the viscos-
ity of the medium through which the cart moves (air, water, oil, etc.). We 

x

T

t

x0

FIGURE 26 
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make the specific assumption that this force opposes the motion and has 
magnitude proportional to the velocity, that is, that Fd = –c(dx/dt), where c 
is a positive constant measuring the resistance of the medium. Equation (1) 
now becomes

 
M

d x
dt

F Fs d

2

2 = + , (9)

so

 

d x
dt

c
M

dx
dt

k
M

x
2

2 0+ + = . (10)

Again for the sake of convenience, we write this in the form

 

d x
dt

b
dx
dt

a x
2

2
22 0+ + = , (11)

where b = c/2M and a k M= . The auxiliary equation is

 m2 + 2bm + a2 = 0, (12)

and its roots m1 and m2 are given by

 
m m

b b a
b b a1 2

2 2
2 22 4 4

2
, = - ± - = - ± - . (13)

The general solution of (11) is of course determined by the nature of the 
numbers m1 and m2. As we know, there are three cases, which we consider 
separately.

CASE A. b2 − a2 > 0 or b > a. In loose terms this amounts to assuming that 
the frictional force due to the viscosity is large compared to the stiffness of 
the spring. It follows that m1 and m2 are distinct negative numbers, and the 
general solution of (11) is

 x c e c em t m t= +1 2
1 2 . (14)

If we apply the initial conditions (5) to evaluate c1 and c2, (14) becomes

 
x

x
m m

m e m em t m t= 0

1 2
1 2

2 1

–
( – ). (15)
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The graph of this function is given in Figure 27. It is clear that no vibration 
occurs, and that the cart merely subsides to its equilibrium position. This 
type of motion is called overdamped. We now imagine that the viscosity is 
decreased until we reach the condition of the next case.

CASE B. b2 − a2 = 0 or b = a. Here we have m1 = m2 = −b = −a, and the general 
solution of (11) is

 x = c1e−at + c2te−at. (16)

When the initial conditions (5) are imposed, we obtain

 x = x0e−at(1 + at). (17)

This function has a graph similar to that of (15), and again we have no vibra-
tion. Any motion of this kind is said to be critically damped. If the viscosity 
is now decreased by any amount, however small, then the motion becomes 
vibratory, and is called underdamped. This is the really interesting situation, 
which we discuss as follows.

CASE C. b2 − a2 < 0 or b < a. Here m1 and m2 are conjugate complex numbers 
−b ± iα, where

 a = a b2 2– ,

and the general solution of (11) is

 x = e−bt(c1 cos αt + c2 sin αt). (18)

x

t

x0

FIGURE 27 
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When c1 and c2 are evaluated in accordance with the initial conditions (5), 
this becomes

 
x

x
e t b tbt= +0

a
a a a– ( cos sin ). (19)

If we introduce θ = tan−1 (b/α), then (19) can be expressed in the more reveal-
ing form

 
x

x b
e tbt= +0

2 2a
a

a q– cos( – ). (20)

This function oscillates with an amplitude that falls off exponentially, as 
Figure 28 shows. It is not periodic in the strict sense, but its graph crosses the 
equilibrium position x = 0 at regular intervals. If we consider its “period” T as 
the time required for one complete “cycle,” then αT = 2π and

 
T

a b k M c M
= = =2 2 2

42 2 2 2

p
a

p p

– –/ /
. (21)

Also, its “frequency” f is given by

 
f

T
a b

k
M

c
M

= = =1 1
2

1
2 4

2 2
2

2p p
– – . (22)

This number is usually called the natural frequency of the system. When 
the viscosity vanishes, so that c = 0, it is clear that (21) and (22) reduce to (7) 
and (8). Furthermore, on comparing (8) and (22) we see that the frequency of 
the vibration is decreased by damping, as we might expect.

T

x

x0

t

FIGURE 28 
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Forced vibrations. The vibrations discussed above are known as free vibra-
tions because all the forces acting on the system are internal to the system 
itself. We now extend our analysis to cover the case in which an impressed 
external force Fe = f(t) acts on the cart. Such a force might arise in many ways: 
for example, from vibrations of the wall to which the spring is attached, or 
from the effect on the cart of an external magnetic field (if the cart is made of 
iron). In place of (9) we now have

 
M

d x
dt

F F Fs d e

2

2 = + + , (23)

so

 
M

d x
dt

c
dx
dt

kx f t
2

2 + + = ( ). (24)

The most important case is that in which the impressed force is periodic and 
has the form f(t) = F0 cos ωt, so that (24) becomes

 
M

d x
dt

c
dx
dt

kx F t
2

2 0+ + = cosw . (25)

We have already solved the corresponding homogeneous equation (10), so 
in seeking the general solution of (25) all that remains is to find a particular 
solution. This is most readily accomplished by the method of undetermined 
coefficients. Accordingly, we take x = A sin ωt + B cos ωt as a trial solution. 
On substituting this into (25), we obtain the following pair of equations for 
A and B:

  ωcA + (k − ω2M)B = F0,

 (k − ω2M)A − ωcB = 0.

The solution of this system is

 
A

cF
k M c

B
k M F

k M c
=

+
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Our desired particular solution is therefore
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By introducing ϕ = tan−1[ωc/(k − ω2M)], we can write (26) in the more useful 
form

 
x

F

k M c
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- +
-0

2 2 2 2( )
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w w
w f . (27)

If we now assume that we are dealing with the underdamped motion dis-
cussed above, then the general solution of (25) is

 
x e c t c t
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+
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( – )
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2 2 2 2
a a

w w
w f . (28)

The first term here is clearly transient in the sense that it approaches 0 as 
t → ∞. As a matter of fact, this is true whether the motion is underdamped 
or not, as long as some degree of damping is present (see Problem 17-2). 
Therefore, as time goes on, the motion assumes the character of the sec-
ond term, the steady-state part. On this basis, we can neglect the transient 
part of (28) and assert that for large t the general solution of (25) is essen-
tially equal to the particular solution (27). The frequency of this forced 
vibration equals the impressed frequency ω/2π, and its amplitude is the 
coefficient

 

F

k M c
0

2 2 2 2( )- +w w
. (29)

This expression for the amplitude holds some interesting secrets, for it 
depends not only on ω and F0 but also on k, c, and M. As an example, we 
note that if c is very small and ω is close to k M  (so that k − ω2M is very 
small), which means that the motion is lightly damped and the impressed 
frequency ω/2π is close to the natural frequency
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2
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– ,

then the amplitude is very large. This phenomenon is known as resonance. 
A classic example is provided by the forced vibration of a bridge under the 
impact of the feet of marching columns of men whose pace corresponds 
closely to the natural frequency of the bridge.

Finally, we mention briefly certain links between the mechanical prob-
lem treated above and the electrical problem discussed in Section  13. 
It was shown in that section that if a periodic electromotive force E = E0 cos ωt 
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acts in a simple circuit containing a resistor, an inductor, and a capacitor, 
then the charge Q on the capacitor is governed by the differential equation

 
L

d Q
dt

R
dQ
dt C

Q E t
2

2 0
1+ + = cosw . (30)

This equation is strikingly similar to (25). In particular, the following cor-
respondences suggest themselves:

 mass M ↔ inductance L;

 viscosity c ↔ resistance R;

 
stiffness of spring reciprocal of capacitancek

C
«

1
;

 displacement x ↔ charge Q on capacitor.

This analogy between the mechanical and electrical systems renders iden-
tical the mathematics of the two systems, and enables us to carry over at 
once all mathematical conclusions from the first to the second. In the given 
electric circuit we therefore have a critical resistance below which the free 
behavior of the circuit will be vibratory with a certain natural frequency, a 
forced steady-state vibration of the charge Q, and resonance phenomena that 
appear when the circumstances are favorable.

Problems

 1. Consider the forced vibration (27) in the underdamped case, and find the 
impressed frequency for which the amplitude (29) attains a maximum. 
Will such an impressed frequency necessarily exist? This value of the 
impressed frequency (when it exists) is called the resonance frequency. 
Show that it is always less than the natural frequency.

 2. Consider the underdamped free vibration described by formula (20). 
Show that x assumes maximum values for t = 0, T, 2T,…, where T is the 
“period” as given in formula (21). If x1 and x2 are any two successive 
maximum values of x, show that x1/x2 = ebT. The logarithm of this quan-
tity, bT, is known as the logarithmic decrement of the vibration.

 3. A spherical buoy of radius r floats half-submerged in water. If it is 
depressed slightly, a restoring force equal to the weight of the dis-
placed water presses it upward; and if it is then released, it will bob up 
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and down. Find the period of oscillation if the friction of the water is 
neglected.

 4. A cylindrical buoy 2 feet in diameter floats with its axis vertical in fresh 
water of density 62.4 lb/ft3. When depressed slightly and released, its 
period of oscillation is observed to be 1.9 seconds. What is the weight 
of the buoy?

 5. Suppose that a straight tunnel is drilled through the earth between any 
two points on the surface. If tracks are laid, then—neglecting friction—
a train placed in the tunnel at one end will roll through the earth under 
its own weight, stop at the other end, and return. Show that the time 
required for a complete round trip is the same for all such tunnels, and 
estimate its value. If the tunnel is 2L miles long, what is the greatest 
speed attained by the train?

 6. The cart in Figure 25 weighs 128 pounds and is attached to the wall by 
a spring with spring constant k = 64 lb/ft. The cart is pulled 6 inches in 
the direction away from the wall and released with no initial velocity. 
Simultaneously a periodic external force Fe = f(t) = 32 sin 4t is applied 
to the cart. Assuming that there is no air resistance, find the position 
x = x(t) of the cart at time t. Note particularly that |x(t)| has arbitrarily 
large values as t → ∞, a phenomenon known as pure resonance and 
caused by the fact that the forcing function has the same period as the 
free vibrations of the unforced system.

 7. (This problem is intended only for students who are not intimidated 
by calculations with complex numbers.) The correspondence between 
equations (25) and (30) makes it easy to write down the steady-state 
solution of (30) by merely changing the notation in (27):
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 where tan ϕ = ωR/(1/C − ω2L). In electrical engineering it is customary 
to think of E0 cos ωt in (30) as the real part of E0eiωt, and instead of (30) 
we would then consider the differential equation
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2
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1+ + = w .

 Find a particular solution of this equation by the method of unde-
termined coefficients, and at the end of the calculation take the real 
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part of this solution and thereby obtain the solution (*) of the differ-
ential equation (30).8

21 Newton’s Law of Gravitation and The Motion of the Planets

The inverse square law of attraction underlies so many natural phe-
nomena—the orbits of the planets around the sun, the motion of the moon 
and artificial satellites about the earth, the paths described by charged 
particles in atomic physics, etc.—that every person educated in science 
ought to know something about its consequences. Our purpose in this sec-
tion is to deduce Kepler’s laws of planetary motion from Newton’s law of 
universal gravitation, and to this end we discuss the motion of a small 
particle of mass m (a planet) under the attraction of a fixed large particle of 
mass M (the sun).

8 The use of complex numbers in the mathematics of electric circuit problems was pioneered 
by the mathematician, inventor and electrical engineer Charles Proteus Steinmetz (1865–
1923). As a young man in Germany, his student socialist activities got him into trouble with 
Bismarck’s police, and he hastily emigrated to America in 1889. He was employed by the 
General Electric Company in its earliest period, and he quickly became the scientific brains 
of the Company and probably the greatest of all electrical engineers. When he came to GE 
there was no way to mass-produce electric motors or generators, and no economically viable 
way to transmit electric power more than 3 miles. Steinmetz solved these problems by using 
mathematics and the power of his own mind, and thereby improved human life forever in 
ways too numerous to count.

  He was a dwarf who was crippled by a congenital deformity and lived with pain, but he 
was universally admired for his scientific genius and loved for his warm humanity and 
puckish sense of humor. The following little-known but unforgettable anecdote about him 
was published in the Letters section of Life magazine (May 14, 1965):

Sirs: In your article on Steinmetz (April 23) you mentioned a consultation with 
Henry Ford. My father, Burt Scott, who was an employee of Henry Ford for many 
years, related to me the story behind that meeting. Technical troubles developed 
with a huge new generator at Ford’s River Rouge plant. His electrical engineers 
were unable to locate the difficulty so Ford solicited the aid of Steinmetz. When 
“the little giant” arrived at the plant, he rejected all assistance, asking only for a 
notebook, pencil and cot. For two straight days and nights he listened to the gen-
erator and made countless computations. Then he asked for a ladder, a measur-
ing tape and a piece of chalk. He laboriously ascended the ladder, made careful 
measurements, and put a chalk mark on the side of the generator. He descended 
and told his skeptical audience to remove a plate from the side of the generator 
and take out 16 windings from the field coil at that location. The corrections were 
made and the generator then functioned perfectly. Subsequently Ford received 
a bill for $10,000 signed by Steinmetz for G.E. Ford returned the bill acknowl-
edging the good job done by Steinmetz but respectfully requesting an itemized 
statement. Steinmetz replied as follows: Making chalk mark on generator $1. 
Knowing where to make mark $9,999. Total due $10,000.
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For problems involving a moving particle in which the force acting on it 
is always directed along the line from the particle to a fixed point, it is usu-
ally simplest to resolve the velocity, acceleration, and force into components 
along and perpendicular to this line. We therefore place the fixed particle M 
at the origin of a polar coordinate system (Figure 29) and express the radius 
vector from the origin to the moving particle m in the form

 r = rur, (1)

where ur is the unit vector in the direction of r.9 It is clear that

 ur = i cos θ + j sin θ, (2)

and also that the corresponding unit vector uθ, perpendicular to ur in the 
direction of increasing θ, is given by

 uθ = –i sin θ + j cos θ. (3)

The simple relations
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obtained by differentiating (2) and (3), are essential for computing the veloc-
ity and acceleration vectors v and a. Direct calculation from (1) now yields

9 We here adopt the usual convention of signifying vectors by boldface type.
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If the force F acting on m is written in the form

 F = Fθuθ + Frur, (6)

then from (5) and (6) and Newton’s second law of motion ma = F, we get
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These differential equations govern the motion of the particle m, and are 
valid regardless of the nature of the force. Our next task is to extract infor-
mation from them by making suitable assumptions about the direction and 
magnitude of F.

Central forces and Kepler’s Second Law. F is called a central force if it has 
no component perpendicular to r, that is, if Fθ = 0. Under this assumption the 
first of equations (7) becomes
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On multiplying through by r, we obtain
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for some constant h. We shall assume that h is positive, which evidently 
means that m is moving in a counterclockwise direction. If A = A(t) is the 
area swept out by r from some fixed position of reference, so that dA = r2 dθ/2, 
then (8) implies that
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On integrating (9) from t1 to t2, we get
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This yields Kepler’s second law: the radius vector r from the sun to a planet 
sweeps out equal areas in equal intervals of time.10

Central gravitational forces and Kepler’s First Law. We now specialize even 
further, and assume that F is a central attractive force whose magnitude—
according to Newton’s law of gravitation—is directly proportional to the 
product of the two masses and inversely proportional to the square of the 
distance between them:
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The letter G represents the gravitational constant, which is one of the universal 
constants of nature. If we write (11) in the slightly simpler form
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where k = GM, then the second of equations (7) becomes
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10 When the Danish astronomer Tycho Brahe died in 1601, his assistant Johannes Kepler (1571–
1630) inherited great masses of raw data on the positions of the planets at various times. 
Kepler worked incessantly on this material for 20 years, and at last succeeded in distilling 
from it his three beautifully simple laws of planetary motion—which were the climax of 
thousands of years of purely observational astronomy.
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The next step in this line of thought is difficult to motivate, because it involves 
considerable technical ingenuity, but we will try. Our purpose is to use the 
differential equation (12) to obtain the equation of the orbit in the polar form 
r = f(θ), so we want to eliminate t from (12) and consider θ as the independent 
variable. Also, we want r to be the dependent variable, but if (8) is used to put 
(12) in the form
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then the presence of powers of 1/r suggests that it might be temporarily con-
venient to introduce a new dependent variable z = 1/r.

To accomplish these various aims, we must first express d2r/dt2 in terms of 
d2z/dθ2, by calculating
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When the latter expression is inserted in (13) and 1/r is replaced by z, 
we get
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The general solution of this equation can be written down at once:

 
z A B

k
h

= + +sin cosq q 2 . (14)

For the sake of simplicity, we shift the direction of the polar axis in such 
a way that r is minimal (that is, m is closest to the origin) when θ = 0. This 
means that z is to be maximal in this direction, so
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when θ = 0. These conditions imply that A = 0 and B > 0. If we now replace z 
by 1/r, then (14) can be written
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and if we put e = Bh2/k, then our equation for the orbit becomes
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, (15)

where e is a positive constant.
At this point we recall (Figure 30) that the locus defined by PF/PD = e is the 

conic section with focus F, directrix d, and eccentricity e. When this condition 
is expressed in terms of r and 0, it is easy to see that

 
r

pe
e

=
+1 cosq

is the polar equation of our conic section, which is an ellipse, a parabola, or 
a hyperbola according as e < 1, e = 1, or e > 1. These remarks show that the 
orbit (15) is a conic section with eccentricity e = Bh2/k; and since the planets 
remain in the solar system and do not move infinitely far away from the sun, 
the ellipse is the only possibility. This yields Kepler’s first law: the orbit of each 
planet is an ellipse with the sun at one focus.
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The physical meaning of the eccentricity. It follows from equation (4) that 
the kinetic energy of m is
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The potential energy of the system is the negative of the work required to 
move m to infinity (where the potential energy is zero), and is therefore
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If E is the total energy of the system, which is constant by the principle of 
conservation of energy, then (16) and (17) yield
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At the instant when θ = 0, (15) and (18) give
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It is easy to eliminate r from these equations; and when the result is solved 
for e, we find that
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This enables us to write equation (15) for the orbit in the form
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It is evident from (19) that the orbit is an ellipse, a parabola, or a hyperbola 
according as E < 0, E = 0, or E > 0. It is therefore clear that the nature of the 
orbit of m is completely determined by its total energy E. Thus the planets 
in the solar system have negative energies and move in ellipses, and bodies 
passing through the solar system at high speeds have positive energies and 
travel along hyperbolic paths. It is interesting to realize that if a planet like 
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the earth could be given a push from behind, sufficiently strong to speed it 
up and lift its total energy above zero, it would enter into a hyperbolic orbit 
and leave the solar system permanently.

The periods of revolution of the planets and Kepler’s Third Law. We now 
restrict our attention to the case in which m has an elliptic orbit (Figure 31) 
whose polar and rectangular equations are (15) and
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It is well known from elementary analytic geometry that e = c/a and c2 = a2 − b2, 
so e2 = (a2 − b2)/a2 and

 b2 = a2 (1 − e2). (20)

In astronomy the semimajor axis of the orbit is called the mean distance, 
because it is one-half the sum of the least and greatest values of r, so (15) and 
(20) give
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and we have
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If T is the period of m (that is, the time required for one complete revolution 
in its orbit), then since the area of the ellipse is πab it follows from (10) that 
πab = hT/2. In view of (21), this yields
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In the present idealized treatment, the constant k = GM depends on the cen-
tral mass M but not on m, so (22) holds for all the planets in our solar system 
and we have Keplers’ third law: the squares of the periods of revolution of the 
planets are proportional to the cubes of their mean distances.

The ideas of this section are of course due primarily to Newton 
(Appendix B). However, the arguments given here are quite different from 
those that were used in print by Newton himself, for he made no explicit 
use of the methods of calculus in any of his published works on physics or 
astronomy. For him calculus was a private method of scientific investigation 
unknown to his contemporaries, and he had to rewrite his discoveries into 
the language of classical geometry whenever he wished to communicate 
them to others.

Problems

 1. In practical work with Kepler’s third law (22), it is customary to measure 
T in years and a in astronomical units (1 astronomical unit = the earth’s 
mean distance ≅ 93,000,000 miles ≅ 150,000,000 kilometers). With these 
convenient units of measurement, (22) takes the simpler form T2 = a3. 
What is the period of revolution T of a planet whose mean distance 
from the sun is

 (a) twice that of the earth?
 (b) three times that of the earth?
 (c) twenty-five times that of the earth?
 2. (a)  Mercury’s “year” is 88 days. What is Mercury’s mean distance from 

the sun?
 (b)  The mean distance of the planet Saturn is 9.54 astronomical units. 

What is Saturn’s period of revolution about the sun?
 3. Kepler’s first two laws, in the form of equations (8) and (15), imply 

that m is attracted toward the origin with a force whose magnitude is 
inversely proportional to the square of r. This was Newton’s fundamen-
tal discovery, for it caused him to propound his law of gravitation and 
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investigate its consequences. Prove this by assuming (8) and (15) and 
verifying the following statements:

 (a) Fθ = 0;

 (b) 
dr
dt
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h

= sin q;

 (c) d r
dt
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2 2= cosq ;

 (d) F
mk
r
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.

 4. Show that the speed v of a planet at any point of its orbit is given by
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 5. Suppose that the earth explodes into fragments which fly off at 
the same speed in different directions into orbits of their own. Use 
Kepler’s third law and the result of Problem 4 to show that all frag-
ments that do not fall into the sun or escape from the solar system 
will reunite later at the same point where they began to diverge.

22  Higher Order Linear Equations. 
Coupled Harmonic Oscillators

Even though the main topic of this chapter is second order linear equations, 
there are several aspects of higher order linear equations that make it worth-
while to discuss them briefly.

Most of the ideas and methods described in Sections 14 to 19 are easily 
extended to nth order linear equations with constant coefficients,

 y(n) + a1y(n−1) + … + an−1 y′ + any = f(x), (1)

where f(x) is assumed to be continuous on an interval [a,b]. The basic 
fact to keep in mind is that the general solution of (1) has the form we 
expect,

 y(x) = yg(x) + yp(x),

where yp(x) is any particular solution of (1) and yg(x) is the general solution of 
the reduced homogeneous equation
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 y(n) + a1y(n−1) + … + an−1 y′ + an y = 0. (2)

The proof is exactly the same as the proof for the case n = 2, and will not be 
repeated.

We begin by considering the problem of finding the general solution of the 
homogeneous equation (2). Our experience with the case n = 2 tells us that 
this equation probably has solutions of the form y = erx for suitable values of 
the constant r. By substituting y = erx and its derivatives into (2) and dividing 
out the nonzero factor erx, we obtain the auxiliary equation

 rn + a1rn−1 + … + an−1r + an = 0. (3)

The polynomial on the left side of (3) is called the auxiliary polynomial; in prin-
ciple it can always be factored completely into a product of n linear factors, 
and equation (3) can then be written in the factored form

 (r − r1)(r − r2) … (r − rn) = 0.

The constants r1, r2,…, rn are the roots of the auxiliary equation (3). If these 
roots are distinct from one another, then we have n distinct solutions

 e e er x r x r xn1 2, , ,�  (4)

of the homogeneous equation (2). Just as in the case n = 2, the linear 
combination

 y x c e c e c er x r x
n

r xn( ) = + + +1 2
1 2 �  (5)

is also a solution for every choice of the coefficients c1, c2,…, cn.
Since (5) contains n arbitrary constants, we have reasonable grounds for 

hoping that it is the general solution of the nth order equation (2). To elevate 
this hope into a certainty, we must appeal to a small body of theory that we 
now sketch very briefly.

When the theorems of Sections 14 and 15 are extended in the natural way, 
it can be proved that (5) is the general solution of (2) if the solutions (4) are 
linearly independent.11 There are several ways of establishing the fact that 
the solutions (4) are linearly independent whenever the roots r1, r2,…, rn are 

11 This requires establishing the same connections as before among (1) satisfying n initial con-
ditions, (2) the nonvanishing of the Wronskian, (3) Abel’s formula, and (4) linear indepen-
dence. A set of n functions y1(x), y2(x),…, yn(x) is said to be linearly dependent if one of them 
can be expressed as a linear combination of the others, and linearly independent if this is not 
possible. In specific cases this is usually easy to decide by inspection. Equivalently, linear 
dependence means that there exists a relation of the form c1y1(x) + c2y2(x) + ⋯ + cnyn(x) = 0 in 
which at least one of the c’s is not zero, and linear independence means that any such rela-
tion implies that all the c’s must be zero.
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distinct, but we omit the details. It therefore follows that (5) actually is the 
general solution of (2) in this case.

Repeated real roots. If the real roots of (3) are not all distinct, then the solu-
tions (4) are linearly dependent and (5) is not the general solution. For exam-
ple, if r1 = r2 then the part of (5) consisting of c e c er x r x

1 2
1 2+  becomes ( )c c er x

1 2
1+ , 

and the two constants c1 and c2 become one constant c1 + c2. To see what to do 
when this happens, we recall that in the special case of the second order equa-
tion, where we had only the two roots r1 and r2, we found that when r1 = r2 the 
solution c e c er x r x

1 2
1 2+  had to be replaced by c e c xe c c x er x r x r x

1 2 1 2
1 1 1+ = +( ) . It can 

be verified by substitution that if r1 = r2 for the nth order equation (2), then the 
first two terms of (5) must be replaced by this same expression.

More generally, if r1 = r2 = ··· = rk is a real root of multiplicity k (that is, a k-fold 
repeated root) of the auxiliary equation (3), then the first k terms in the solu-
tion (5) must be replaced by

 ( )c c x c x c x ek
k r x

1 2 3
2 1 1+ + + + -� .

A similar family of solutions is needed for each multiple real root, giving a 
correspondingly modified form of (5). In the next section we will show how 
to obtain these expressions by operator methods.

Complex roots. Some of the roots of the auxiliary equation (3) may be com-
plex numbers. Since the coefficients of (3) are real, all complex roots occur in 
conjugate complex pairs a + ib and a − ib. As in the case n = 2, the part of the 
solution (5) corresponding to two such roots can be written in the alternative 
real form

 eax(A cos bx + B sin bx).

If a + ib and a − ib are roots of multiplicity k, then we must take

 

e A A x A x bx

B B x B x bx

ax
k

k

k
k

[( )cos
( )sin ]

1 2
1

1 2
1

+ + +
+ + + +

-�

� -

as part of the general solution.

Example 1. The differential equation

 y(4) − 5y″ + 4y = 0

has auxiliary equation

 r4 − 5r2 + 4 = (r2 − 1)(r2 − 4) = (r − 1)(r + 1)(r − 2)(r + 2) = 0.
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Its general solution is therefore

 y = c1ex + c2e–x + c3e2x + c4e−2x.

Example 2. The equation

 y(4) − 8y″ + 16y = 0

has auxiliary equation

 r4 − 8r2 + 16 = (r2 − 4)2 = (r − 2)2(r + 2)2 = 0,

so the general solution is

 y = (c1 + c2x)e2x + (c3 + c4x)e−2x.

Example 3. The equation

 y y y y y( )4 2 2 2 0- ¢¢¢ + ¢¢ - ¢ + =

has auxiliary equation

 r4 − 2r3 + 2r2 − 2r + 1 = 0,

or, after factoring,12

 (r − 1)2(r2 + 1) = 0.

The general solution is therefore

 y = (c1 + c2x)ex + c3 cos x + c4 sin x.

Example 4. Coupled harmonic oscillators. Linear equations of order 
n > 2 arise most often in physics by eliminating variables from simultane-
ous systems of second order equations. We can see an example of this by 
linking together two simple harmonic oscillators of the kind discussed 
at the beginning of Section 20. Accordingly, let two carts of masses m1 
and m2 be attached to the left and right walls in Figure 32 by springs with 
spring constants k1 and k2. If there is no damping and these carts are left 
unconnected, then when disturbed each moves with its own simple har-
monic motion, that is, we have two independent harmonic oscillators. 
We obtain coupled harmonic oscillators if we now connect the carts to each 
other by a spring with spring constant k3, as indicated in the figure. By 
applying Newton’s second law of motion, it can be shown (Problem 16) 

12 To factor the auxiliary equation, notice that r = 1 is a root that can be found by inspection, 
so r – 1 is a factor of the auxiliary polynomial and the other factor can be found by long 
division.
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that the displacements x1 and x2 of the carts satisfy the following simul-
taneous system of second order linear equations:

 

m
d x
dt

k x k x x

k k x k x

m
d x
dt

k x

1

2
1

2 1 1 3 2 1

1 3 1 3 2

2

2
2

2 3 2

= +

+ +

=

– ( – )

– ( ) ,

– (

=

–– ) –

– ( ) .

x k x

k x k k x

1 2 2

3 1 2 3 2= +

 (6)

We can now obtain a single fourth order equation for x1 by solving the 
first equation for x2 and substituting in the second equation (Problem 17).

We have not yet addressed the problem of finding a particular solution for 
the complete equation (1). In this context it suffices to remark that the method 
of undetermined coefficients discussed in Section 18 continues to apply, with 
obvious minor changes, for functions f(x) of the types considered in that sec-
tion. In the next section we shall examine a totally different approach to the 
problem of finding particular solutions.

Example 5. Find a particular solution of the differential equation 
y‴ + 2y″ − y′ = 3x2 − 2x + 1.

Our experience in Section 18 suggests that we take a trial solution of 
the form

 y = x(a0 + a1x + a2x2)

 = a0x + a1x2 + a2x3.

Since y′ = a0 + 2a1x + 3a2x2, y″ = 2a1 + 6a2x, and y‴ = 6a2, substitution in the 
given equation yields

 6a2 + 2(2a1 + 6a2x) − (a0 + 2a1x + 3a2x2) = 3x2 − 2x + 1

or, after collecting coefficients of like powers of x,

 −3a2x2 + (−2a1 + 12a2)x + (– a0 + 4a1 + 6a2) = 3x2 − 2x + 1.

k1 k3 k2m1 m2

x2x1

FIGURE 32 
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Thus,

 −3a2 = 3,

 −2a1 + 12a2 = −2,

 −a0 + 4a1 + 6a2 = 1,

so a2 = −1, a1 = −5, and a0 = −27. We therefore have a particular solution 
y = −27x − 5x2 − x3.

Problems

Find the general solution of each of the following equations.

 1. y‴ − 3y″ + 2y′ = 0.
 2. y‴ − 3y″ + 4y′ − 2y = 0.
 3. y‴ − y = 0.
 4. y‴ + y = 0.
 5. y‴ + 3y″ + 3y′ + y = 0.
 6. y(4) + 4y‴ + 6y″ + 4y′ + y = 0.
 7. y(4) − y = 0.
 8. y(4) + 5y″ + 4y = 0.
 9. y(4) − 2a2y″ + a4y = 0.
 10. y(4) + 2a2y″ + a4y = 0.
 11. y(4) + 2y‴ + 2y″ + 2y′ + y = 0.
 12. y(4) + 2y‴ − 2y″ − 6y′ + 5y = 0.
 13. y‴ − 6y″ + 11y′ − 6y = 0.
 14. y(4) + y‴ − 3y″ − 5y′ − 2y = 0.
 15. y(5) − 6y(4) − 8y‴ + 48y″ + 16y′ − 96y = 0.
 16. Derive equations (6) for the coupled harmonic oscillators by using the 

configuration shown in Figure 32, where both carts are displaced to the 
right from their equilibrium positions and x2 > x1, so that the spring on 
the right is compressed and the other two are stretched.

 17. In Example 4, find the fourth order differential equation for x1 by elimi-
nating x2 as suggested.

 18. In the preceding problem, solve the fourth order equation for x1 if the 
masses are equal and the spring constants are equal, so that m1 = m2 = m 
and k1 = k2 = k3 = k. In this special case, show directly (that is, with-
out using the symmetry of the situation) that x2 satisfies the same 
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differential equation as x1. The two frequencies associated with these 
coupled harmonic oscillators are called the normal frequencies of the sys-
tem. What are they?

 19. Find the general solution of y(4) = 0. Of y(4) = sin x + 24.
 20. Find the general solution of y‴ − 3y″ + 2y′ = 10 + 42e3x.
 21. Find the solution of y‴ − y′ = 1 that satisfies the initial conditions 

y(0) = y′(0) = y″(0) = 4.
 22. Show that the change of independent variable x = ez transforms the 

third order Euler equidimensional equation

 x3y‴ + a1x2y″ + a2xy′ + a3y = 0

 into a third order linear equation with constant coefficients. (This trans-
formation also works for the nth order Euler equation.) Solve the fol-
lowing equations by this method:

 (a) x3y‴ + 3x2y″ = 0;
 (b) x3y‴ + x2y″ − 2xy′ + 2y = 0;
 (c) x3y‴ + 2x2y″ + xy′ − y = 0.
 23. In determining the drag on a small sphere moving at a constant speed 

through a viscous fluid, it is necessary to solve the differential equation

 x3y(4) + 8x2y‴ + 8xy″ − 8y′ = 0.

 Notice that this is an Euler equation for y′ and use the method of 
Problem 22 to show that the general solution is

 y = c1x2 + c2x−1 + c3x−3 + c4.

 These ideas are part of the mathematical background used by Robert A. 
Millikan in his famous oil-drop experiment of 1909 for measuring the 
charge on an electron, for which he won the 1923 Nobel Prize.13

23 Operator Methods for Finding Particular Solutions

At the end of Section 22 we referred to the problem of finding particular 
solutions for nonhomogeneous equations of the form

 

d y
dx

a
d y
dx

a
dy
dx

a y f x
n

n

n

n n n+ + + + =1

1

1 1

–

– – ( )� . (1)

13 For a clear explanation of this exceedingly ingenious experiment, with a good drawing of 
the apparatus, see pp. 50–51 of the book by Linus Pauling mentioned in Section 4 [Note 12].
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In this section we give a very brief sketch of the use of differential opera-
tors for solving this problem in more efficient ways than any we have seen 
before. These “operational methods” are mainly due to the English applied 
mathematician Oliver Heaviside (1850–1925). Heaviside’s methods seemed 
so strange to the scientists of his time that he was widely regarded as a 
crackpot, which unfortunately is a common fate for thinkers of unusual 
originality.

Let us represent derivatives by powers of D, so that

 
Dy

dy
dx

D y
d y
dx

D y
d y
dx

n
n

n= = =, , ,2
2

2 ¼ .

Then (1) can be written as

 D y a D y a Dy a y f xn n
n n+ + + + =1

1
1

–
– ( )� , (2)

or as

 ( ) ( )D a D a D a y f xn n
n n+ + + + =-

-1
1

1� ,

or as

 p(D)y = f(x), (3)

where the differential operator p(D) is simply the auxiliary polynomial p(r) 
with r replaced by D. The successive application of two or more such opera-
tors can be made by first multiplying the operators together by the usual 
rules of algebra and then applying the product operator. For example, we 
know that p(D) can be formally factored into

 p D D r D r D rn( ) ( )( ) ( )= - - -1 2 � , (4)

where r1, r2,…, rn are the roots of the auxiliary equation; and these factors can 
then be applied successively in any order to yield the same result as a single 
application of p(D). As an illustration of this idea, we point out that if the 
auxiliary equation is of the second decree and therefore has only two roots r1 
and r2, then formally we have

 (D − r1)(D − r2) = D2 − (r1 + r2)D + r1r2; (5)

and since

 
( )D r y

d
dx

r y
dy
dx

r y- = -æ
è
ç

ö
ø
÷ = -2 2 2 ,
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we can verify (5) by writing

 

( )( )D r D r y
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for this is the meaning of (5).
We have no difficulty with the meaning of the expression p(D)y on the left 

of (3): it has the same meaning as the left side of (2) or (1). Our purpose now is 
to learn how to treat p(D) as a separate entity, and in doing this to develop the 
methods for solving (3) that are the subject of this section. Without beating 
around the bush, we wish to “solve formally” for y in (3), obtaining

 
y

p D
f x=

1
( )

( ). (6)

Here 1/p(D) represents an operation to be performed on f(x) to yield y. The 
question is, what is the nature of this operation, and how can we carry it out? 
In order to begin to understand these matters, we consider the simple equa-
tion Dy = f(x), which gives

 
y

D
f x=

1
( ).

But Dy = f(x), or equivalently dy/dx = f(x), is easily solved by writing

 
y f x dx= ò ( ) ,

so it is natural to make the definition

 

1
D

f x f x dx( ) ( )= ò . (7)

This tells us that the operator 1/D applied to a function means integrate the 
function. Similarly, the operator 1/D2 applied to a function means integrate 
the function twice in succession, and so on. Operators like 1/D and 1/D2 



164 Differential Equations with Applications and Historical Notes

are called inverse operators. We continue this line of investigation and exam-
ine other inverse operators. Consider

 (D − r)y = f(x), (8)

where r is a constant. Formally, we have

 
y

D r
f x=

1
–

( ).

But (8) is the simple first order linear equation

 

dy
dx

ry f x– ( )= ,

whose solution by Section 10 is

 
y e e f x dxrx rx= ò – ( ) .

(We suppress constants of integration because we are only seeking particu-
lar solutions.) It is therefore natural to make the definition

 

1
D r

f x e e f x dxrx rx

–
( ) ( )–= ò . (9)

Notice that this reduces to (7) when r = 0. We are now ready to begin carrying 
out the problem-solving procedures that arise from (6).

METHOD 1: SUCCESSIVE INTEGRATIONS. By using the factorization 
(4), we can write formula (6) as

 

y
p D

f x
D r D r D r

f x

D r D r D r
f x

n

n

= =
- - -

- - -

1 1

1 1 1
1 2

1 2

( )
( )

( )( ) ( )
( )

( ).

�

�=

Here we may apply the n inverse operators in any convenient order, and by 
(9) we know that the complete process requires n successive integrations. 
That the resulting function y = y(x) is a particular solution of (3) is easily seen; 
for by applying to y the factors of p(D) in suitable order, we undo the succes-
sive integrations and arrive back at f(x).
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Example 1. Find a particular solution of y″ − 3y′ + 2y = xex.

Solution. We have (D2 − 3D + 2)y = xex, so

 
( )( )D D y xe y

D D
xex x- - = =

- -
1 2

1
1

1
2

and .

By (9) and an integration by parts, we obtain
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Example 2. Find a particular solution of y″ − y = e−x.

Solution. We have (D2 − 1)y = e−x, so
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METHOD 2: PARTIAL FRACTIONS DECOMPOSITIONS OF 
OPERATORS. The successive integrations of method 1 are likely to become 
complicated and time-consuming to carry out. The formula
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suggests a way to avoid this work, for it suggests the possibility of decom-
posing the operator on the right into partial fractions. If the factors of p(D) 
are distinct, we can write
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for suitable constants A1, A2,…, An, and each term on the right can be found 
by using (9). The operator in brackets here is sometimes called the Heaviside 
expansion of the inverse operator 1/p(D).

Example 3. Solve the problem in Example 1 by this method.

Solution. We have
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The student will notice that this solution is not quite the same as the 
solution found in Example 1. However, it is easy to see that they differ 
only by a solution of the reduced homogeneous equation, so all is well.

Example 4. Solve the problem in Example 2 by this method.

Solution. We have
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.

If some of the factors of p(D) are repeated, then we know that the form of 
the partial fractions decomposition is different. For example if D − r1 is a 
k-fold repeated factor, then the decomposition contains the terms
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These operators can be applied to f(x) in order from left to right, each requir-
ing an integration based on the result of the preceding step, as in method 1.

METHOD 3: SERIES EXPANSIONS OF OPERATORS. For problems in 
which f(x) is a polynomial, it is often useful to expand the inverse operator 
1/p(D) in a power series in D, so that
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The reason for this is that high derivatives of polynomials disappear, because 
Dkxn = 0 if k > n.

Example 5. Find a particular solution of y‴ − 2y″ + y = x4 +2x +5.

Solution. We have (D3 − 2D2 + 1)y = x4 + 2x + 5, so

 
y

D D
x x=

+
+ +

1
1 2

2 52 3
4

–
( ).

By ordinary long division we find that
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In order to make the fullest use of this method, it is desirable to keep in mind 
the following series expansions from elementary algebra:
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In this context we are only interested in these formulas as “formal” series 
expansions, and have no need to concern ourselves with their convergence 
behavior.

Example 6. Find a particular solution of y‴ + y″ + y′ + y = x5 − 2x2 + x.

Solution. We have (D3 + D2 + D + 1) y = x5 − 2x2 + x, so
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The remarkable thing about the procedures illustrated in these examples is 
that they actually work!

METHOD 4: THE EXPONENTIAL SHIFT RULE. As we know, exponen-
tial functions behave in a special way under differentiation. This fact enables 
us to simplify our work whenever f(x) contains a factor of the form ekx. Thus, 
if f(x) = ekxg(x), we begin by noticing that

 (D − r)f(x) = (D − r)ekxg(x)

 = ekxDg(x) + kekxg(x) − rekxg(x)

 = ekx(D + k − r)g(x).

By applying this formula to the successive factors D − r1, D − r2, D − rn, we see 
that for the polynomial operator p(D),

 p(D)ekxg(x) = ekxp(D + k)g(x). (10)

This says that we can move the factor ekx to the left of the operator p(D) if we 
replace D by D + k in the operator.

The same property is valid for the inverse operator 1/p(D), that is,
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To see this, we simply apply p(D) to the right side and use (10):
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Properties (10) and (11) are called the exponential shift rule. They are useful in 
moving exponential functions out of the way of operators.

Example 7. Solve the problem in Example 1 by this method.

Solution. We have (D2 − 3D + 2)y = xex, so
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as we have already seen in Examples 1 and 3.
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Interested readers will find additional material on the methods of this section 
in the “Historical Introduction” to H. S. Carslaw and J. C. Jaeger, Operational 
Methods In Applied Mathematics, Dover, New York, 1963; and in E. Stephens, The 
Elementary Theory of Operational Mathematics, McGraw-Hill, New York, 1937.

Problems

 1. Find a particular solution of y″ − 4y = e2x by using each of Methods 1 
and 2.

 2. Find a particular solution of y″ − y = x2e2x by using each of Methods 1, 2, 
and 4.

In Problems 3 to 6, find a particular solution by using Method 1.
 3. y″ + 4y′ + 4y = 10x3e−2x.
 4. y″ − 2y′ + y = ex.
 5. y″ − y = e−x.
 6. y″ − 2y′ − 3y = 6e5x.

In Problems 7 to 15, find a particular solution by using Method 3.
 7. y″ − y′ + y = x3 − 3x2 + 1.
 8. y′″ − 2y′ + y = 2x3 − 3x2 + 4x + 5.
 9. 4y″ + y = x4.
 10. y(5) − y‴ = x2.
 11. y(6) − y = x10.
 12. y″ + y′ − y = 3x − x4.
 13. y″ + y = x4.
 14. y‴ − y″ = 12x − 2.
 15. y′″ + y″ = 9x2 − 2x + 1.

In Problems 16 to 18, find a particular solution by using Method 4.
 16. y″ − 4y′ + 3y = x3e2x.
 17. y″ − 7y′ + 12y = e2x(x3 − 5x2).
 18. y″ + 2y′ + y = 2x2e−2x + 3e2x.

In Problems 19 to 24, find a particular solution by any method.
 19. y′″ − 8y = 16x2.
 20. y(4) − y = 1 − x3.

 21. y‴ − 1
4

 y′ = x.

 22. y(4) = x−3.
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 23. y‴ − y″ + y′ = x + 1.
 24. y‴ + 2y″ = x.
 25. Use the exponential shift rule to find the general solution of each of the 

following equations:
 (a) (D − 2)3y = e2x [hint: multiply by e−2x and use (10)];
 (b) (D + 1)3y = 12e–x;
 (c) (D − 2)2y = e2xsin x.
 26. Consider the nth order homogeneous equation p(D)y = 0.
 (a)  If a polynomial q(r) is a factor of the auxiliary polynomial p(r), show 

that any solution of the differential equation q(D)y = 0 is also a solu-
tion of p(D)y = 0.

 (b)  If r1 is a root of multiplicity k of the auxiliary equation p(r) = 0, show 
that any solution of (D − r1)ky = 0 is also a solution of p(D)y = 0.

 (c) Use the exponential shift rule to show that (D − r1)ky = 0 has

 y c c x c x c x ek
k r x= + + + + -( )1 2 3

2 1 1�

as its general solution. Hint: (D − r1)ky = 0 is equivalent to 
e D e yr x k r x1 1 0( )- = .

Appendix A. Euler

Leonhard Euler (1707–1783) was Switzerland’s foremost scientist and one 
of the three greatest mathematicians of modern times (the other two being 
Gauss and Riemann).

He was perhaps the most prolific author of all time in any field. From 1727 
to 1783 his writings poured out in a seemingly endless flood, constantly add-
ing knowledge to every known branch of pure and applied mathematics, 
and also to many that were not known until he created them. He averaged 
about 800 printed pages a year throughout his long life, and yet he almost 
always had something worthwhile to say and never seems long-winded. The 
publication of his complete works was started in 1911, and the end is not in 
sight. This edition was planned to include 887 titles in 72 volumes, but since 
that time extensive new deposits of previously unknown manuscripts have 
been unearthed, and it is now estimated that more than 100 large volumes 
will be required for completion of the project. Euler evidently wrote mathe-
matics with the ease and fluency of a skilled speaker discoursing on subjects 
with which he is intimately familiar. His writings are models of relaxed clar-
ity. He never condensed, and he reveled in the rich abundance of his ideas 
and the vast scope of his interests. The French physicist Arago, in speaking 
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of Euler’s incomparable mathematical facility, remarked that “He calculated 
without apparent effort, as men breathe, or as eagles sustain themselves in 
the wind.” He suffered total blindness during the last 17 years of his life, 
but with the aid of his powerful memory and fertile imagination, and with 
helpers to write his books and scientific papers from dictation, he actually 
increased his already prodigious output of work.

Euler was a native of Basel and a student of John Bernoulli at the University, 
but he soon outstripped his teacher. His working life was spent as a member 
of the Academies of Science at Berlin and St. Petersburg, and most of his 
papers were published in the journals of these organizations. His business 
was mathematical research, and he knew his business. He was also a man of 
broad culture, well versed in the classical languages and literatures (he knew 
the Aeneid by heart), many modern languages, physiology, medicine, botany, 
geography, and the entire body of physical science as it was known in his 
time. However, he had little talent for metaphysics or disputation, and came 
out second best in many good-natured verbal encounters with Voltaire at the 
court of Frederick the Great. His personal life was as placid and uneventful 
as is possible for a man with 13 children.

Though he was not himself a teacher, Euler has had a deeper influence on 
the teaching of mathematics than any other man. This came about chiefly 
through his three great treatises: Introductio in Analysin Infinitorum (1748); 
Institutiones Calculi Differentialis (1755); and Institutiones Calculi Integralis 
(1768–1794). There is considerable truth in the old saying that all elementary 
and advanced calculus textbooks since 1748 are essentially copies of Euler 
or copies of copies of Euler.14 These works summed up and codified the dis-
coveries of his predecessors, and are full of Euler’s own ideas. He extended 
and perfected plane and solid analytic geometry, introduced the analytic 
approach to trigonometry, and was responsible for the modern treatment 
of the functions log x and ex. He created a consistent theory of logarithms of 
negative and imaginary numbers, and discovered that log x has an infinite 
number of values. It was through his work that the symbols e, π, and i ( )= -1  
became common currency for all mathematicians, and it was he who linked 
them together in the astonishing relation eπi = −1. This is merely a special 
case (put θ = π) of his famous formula eiθ = cos θ + i sin θ, which connects the 
exponential and trigonometric functions and is absolutely indispensable in 
higher analysis.15 Among his other contributions to standard mathematical 

14 See C. B. Boyer, “The Foremost Textbook of Modern Times,” Am. Math. Monthly, Vol. 58, 
pp. 223–226, 1951.

15 An even more astonishing consequence of his formula is the fact that an imaginary power of an 
imaginary number can be real, in particular i ei = -p 2; for if we put θ = π/2, we obtain eπi/2 = i, so

 i e e ei i i i= = = -( ) ./ /p p p2 2 22

 Euler further showed that ii has infinitely many values, of which this calculation produces 
only one.
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notation were sin x, cos x, the use of f(x) for an unspecified function, and the 
use of Σ for summation.16 Good notations are important, but the ideas behind 
them are what really count, and in this respect Euler’s fertility was almost 
beyond belief. He preferred concrete special problems to the general theories 
in vogue today, and his unique insight into the connections between appar-
ently unrelated formulas blazed many trails into new areas of mathematics 
which he left for his successors to cultivate.

He was the first and greatest master of infinite series, infinite products, 
and continued fractions, and his works are crammed with striking discover-
ies in these fields. James Bernoulli (John’s older brother) found the sums of 
several infinite series, but he was not able to find the sum of the reciprocals 

of the squares, 1 + 
1
4

1
9

1
16

+ +  + …. He wrote, “If someone should succeed in 

finding this sum, and will tell me about it, I shall be much obliged to him.” 
In 1736, long after James’s death, Euler made the wonderful discovery that
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He also found the sums of the reciprocals of the fourth and sixth powers,
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When John heard about these feats, he wrote, “If only my brother were alive 
now.”17 Few would believe that these formulas are related—as they are—to 
Wallis’s infinite product (1656),
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Euler was the first to explain this in a satisfactory way, in terms of his infinite 
product expansion of the sine,
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16 See F. Cajori, A History of Mathematical Notations, Open Court, Chicago, 1929.
17 The world is still waiting—more than 200 years later—for someone to discover the sum of 

the reciprocals of the cubes.
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Wallis’s product is also related to Brouncker’s remarkable continued fraction,
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which became understandable only in the context of Euler’s extensive 
researches in this field.

His work in all departments of analysis strongly influenced the further 
development of this subject through the next two centuries. He contributed 
many important ideas to differential equations, including substantial parts 
of the theory of second order linear equations and the method of solution by 
power series. He gave the first systematic discussion of the calculus of varia-
tions, which he founded on his basic differential equation for a minimizing 
curve. He introduced the number now known as Euler’s constant,
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which is the most important special number in mathematics after π and e. He 
discovered the integral defining the gamma function,
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which is often the first of the so-called higher transcendental functions that 
students meet beyond the level of calculus, and he developed many of its 
applications and special properties. He also worked with Fourier series, 
encountered the Bessel functions in his study of the vibrations of a stretched 
circular membrane, and applied Laplace transforms to solve differential 
equations—all before Fourier, Bessel, and Laplace were born. Even though 
Euler died about 200 years ago, he lives everywhere in analysis.

E. T. Bell, the well-known historian of mathematics, observed that “One 
of the most remarkable features of Euler’s universal genius was its equal 
strength in both of the main currents of mathematics, the continuous and the 
discrete.” In the realm of the discrete, he was one of the originators of mod-
ern number theory and made many far-reaching contributions to this subject 
throughout his life. In addition, the origins of topology—one of the dominant 
forces in modern mathematics—lie in his solution of the Königsberg bridge 
problem and his formula V − E + F = 2 connecting the numbers of vertices, 



174 Differential Equations with Applications and Historical Notes

edges, and faces of a simple polyhedron. In the following paragraphs, we 
briefly describe some of his activities in these fields.

In number theory, Euler drew much of his inspiration from the challeng-
ing marginal notes left by Fermat in his copy of the works of Diophantus. 
He gave the first published proofs of both Fermat’s theorem and Fermat’s 
two squares theorem. He later generalized the first of these classic results 
by introducing the Euler ϕ function; his proof of the second cost him 
7  years of intermittent effort. In addition, he proved that every positive 
integer is a sum of four squares and investigated the law of quadratic 
reciprocity.

Some of his most interesting work was connected with the sequence of 
prime numbers, that is, with those integers p > 1 whose only positive divisors 

are 1 and p. His use of the divergence of the harmonic series 1
1
2

1
3

+ + + ¼ to 

prove Euclid’s theorem that there are infinitely many primes is so simple and 
ingenious that we venture to give it here. Suppose that there are only N primes, 
say p1, p2,…, pN. Then each integer n > 1 is uniquely expressible in the form 
n p p pa a
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by multiplying out the factors on the right. But the simple formula 
1 + x + x2 + ··· = 1/(1 − x), which is valid for |x| < 1, shows that the factors in the 
above product are less than the numbers
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for every n. This contradicts the divergence of the harmonic series and shows 
that there cannot exist only a finite number of primes. He also proved that 
the series
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of the reciprocals of the primes diverges, and discovered the following won-
derful identity: if s > 1, then

 n
s

p
sn p

=

¥

å Õ=
1

1 1
1 1– /

,

where the expression on the right denotes the product of the numbers 
(1 − p−s)−1 for all primes p. We shall return to this identity later, in our note on 
Riemann in Appendix E in Chapter 5.

He also initiated the theory of partitions, a little-known branch of number 
theory that turned out much later to have applications in statistical mechan-
ics and the kinetic theory of gases. A typical problem of this subject is to 
determine the number p(n) of ways in which a given positive integer n can 
be expressed as a sum of positive integers, and if possible to discover some 
properties of this function. For example, 4 can be partitioned into 4 = 3 + 1 = 
2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1, so p(4) = 5, and similarly p(5) = 7 and p(6) = 11. It is 
clear that p(n) increases very rapidly with n, so rapidly, in fact, that18

 p(200) = 3,972,999,029,388.

Euler began his investigations by noticing (only geniuses notice such things) 
that p(n) is the coefficient of xn when the function [(1 − x)(1 − x2)(1 − x3) ···]−1 is 
expanded in a power series:
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By building on this foundation, he derived many other remarkable identities 
related to a variety of problems about partitions.19

18 This evaluation required a month’s work by a skilled computer in 1918. His motive was to 
check an approximate formula for p(n), namely
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 (the error was extremely small).
19 See Chapter XIX of G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 

Oxford University Press, 1938; or Chapters 12–14 of G. E. Andrews, Number Theory, W. B. 
Saunders, San Francisco, 1971. These treatments are “elementary” in the technical sense that 
they do not use the high-powered machinery of advanced analysis, but nevertheless they are 
far from simple. For students who wish to experience some of Euler’s most interesting work 
in number theory at first hand, and in a context not requiring much previous knowledge, 
we recommend Chapter VI of G. Polya’s fine book, Induction and Analogy in Mathematics, 
Princeton University Press, 1954.
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The Königsberg bridge problem originated as a pastime of Sunday stroll-
ers in the town of Königsberg (now Kaliningrad) in what was formerly East 
Prussia. There were seven bridges across the river that flows through the 
town (see Figure 33). The residents used to enjoy walking from one bank to 
the islands and then to the other bank and back again, and the conviction 
was widely held that it is impossible to do this by crossing all seven bridges 
without crossing any bridge more than once. Euler analyzed the problem by 
examining the schematic diagram given on the right in the figure, in which 
the land areas are represented by points and the bridges by lines connecting 
these points. The points are called vertices, and a vertex is said to be odd or 
even according as the number of lines leading to it is odd or even. In modern 
terminology, the entire configuration is called a graph, and a path through 
the graph that traverses every line but no line more than once is called an 
Euler path. An Euler path need not end at the vertex where it began, but if it 
does, it is called an Euler circuit. By the use of combinatorial reasoning, Euler 
arrived at the following theorems about any such graph: (1) there are an even 
number of odd vertices; (2) if there are no odd vertices, there is an Euler cir-
cuit starting at any point; (3) if there are two odd vertices, there is no Euler 
circuit, but there is an Euler path starting at one odd vertex and ending at the 
other; (4) if there are more than two odd vertices, there are no Euler paths.20 
The graph of the Königsberg bridges has four odd vertices, and therefore, by 
the last theorem, has no Euler paths.21 The branch of mathematics that has 
developed from these ideas is known as graph theory; it has applications to 
chemical bonding, economics, psychosociology, the properties of networks 
of roads and railroads, and other subjects.

A polyhedron is a solid whose surface consists of a number of polygonal 
faces, and a regular polyhedron has faces that are regular polygons. As we 
know, there exists a regular polygon with n sides for each positive integer 

20 Euler’s original paper of 1736 is interesting to read and easy to understand; it can be 
found on pp. 573–580 of J. R. Newman (ed), The World of Mathematics, Simon and Schuster, 
New York, 1956.

21 It is easy to see—without appealing to any theorems— that this graph contains no Euler 
circuit, for if there were such a circuit, it would have to enter each vertex as many times as 
it leaves it, and therefore every vertex would have to be even. Similar reasoning shows also 
that if there were an Euler path that is not a circuit, there would be two odd vertices.

FIGURE 33
The Königsberg bridges.
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n = 3, 4, 5,…, and they even have special names—equilateral triangle, square, 
regular pentagon, etc. However, it is a curious fact—and has been known 
since the time of the ancient Greeks—that there are only five regular polyhe-
dra, those shown in Figure 34, with names given in the table below.

The Greeks studied these figures assiduously, but it remained for Euler to 
discover the simplest of their common properties: If V, E and F denote the num-
bers of vertices, edges, and faces of any one of them, then in every case we have

 V − E + F = 2.

This fact is known as Euler’s formula for polyhedra, and it is easy to verify from 
the data summarized in the following table.

 
 V E F 

Tetrahedron 4 6 4
Cube 8 12 6
Octahedron 6 12 8
Dodecahedron 20 30 12
Icosahedron 12 30 20

This formula is also valid for any irregular polyhedron as long as it is simple—
which means that it has no “holes” in it, so that its surface can be deformed 
continuously into the surface of a sphere. Figure 35 shows two simple irregu-
lar polyhedra for which V − E + F = 6 − 10 + 6 = 2 and V − E + F = 6 − 9 + 5 = 2. 
However, Euler’s formula must be extended to

 V − E + F = 2 − 2p

FIGURE 34
Regular polyhedra.
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in the case of a polyhedron with p holes (a simple polyhedron is one for 
which p = 0). Figure 36 illustrates the cases p = 1 and p = 2; here we have 
V − E + F = 16 − 32 + 16 = 0 when p = 1, and V − E + F = 24 − 44 + 18 = −2 when p = 2. 
The significance of these ideas can best be understood by imagining a poly-
hedron to be a hollow figure with a surface made of thin rubber, and inflating 
it until it becomes smooth. We no longer have flat faces and straight edges, 
but instead a map on the surface consisting of curved regions, their boundar-
ies, and points where boundaries meet. The number V − E + F has the same 
value for all maps on our surface, and is called the Euler characteristic of this 
surface. The number p is called the genus of the surface. These two numbers, 
and the relation between them given by the equation V − E + F = 2 − 2p, are evi-
dently unchanged when the surface is continuously deformed by stretching 

FIGURE 35

FIGURE 36
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or bending. Intrinsic geometric properties of this kind—which have little 
connection with the type of geometry concerned with lengths, angles, and 
areas—are called topological. The serious study of such topological properties 
has greatly increased during the past century, and has furnished valuable 
insights to many branches of mathematics and science.22

The distinction between pure and applied mathematics did not exist in 
Euler’s day, and for him the entire physical universe was a convenient object 
whose diverse phenomena offered scope for his methods of analysis. The 
foundations of classical mechanics had been laid down by Newton, but Euler 
was the principal architect. In his treatise of 1736 he was the first to explicitly 
introduce the concept of a mass-point or particle, and he was also the first to 
study the acceleration of a particle moving along any curve and to use the 
notion of a vector in connection with velocity and acceleration. His continued 
successes in mathematical physics were so numerous, and his influence was 
so pervasive, that most of his discoveries are not credited to him at all and are 
taken for granted by physicists as part of the natural order of things. However, 
we do have Euler’s equations of motion for the rotation of a rigid body, Euler’s 
hydrodynamic equation for the flow of an ideal incompressible fluid, Euler’s 
law for the bending of elastic beams, and Euler’s critical load in the theory 
of the buckling of columns. On several occasions the thread of his scientific 
thought led him to ideas his contemporaries were not ready to assimilate. 
For example, he foresaw the phenomenon of radiation pressure, which is cru-
cial for the modern theory of the stability of stars, more than a century before 
Maxwell rediscovered it in his own work on electromagnetism.

Euler was the Shakespeare of mathematics—universal, richly detailed, 
and inexhaustible.23

Appendix B. Newton

Most people are acquainted in some degree with the name and reputation 
of Isaac Newton (1642–1727), for his universal fame as the discoverer of the 
law of gravitation has continued undiminished over the two and a half cen-
turies since his death. It is less well known, however, that in the immense 
sweep of his vast achievements he virtually created modern physical science, 
and in consequence has had a deeper influence on the direction of civilized 
life than the rise and fall of nations. Those in a position to judge have been 

22 Proofs of Euler’s formula and its extension are given on pp. 236–240 and 256–259 of R. Courant 
and H. Robbins, What Is Mathematics?, Oxford University Press, 1941. See also G. Polya, op. 
cit., pp. 35–43.

23 For further information, see C. Truesdell, “Leonhard Euler, Supreme Geometer (1707–1783),” 
in Studies in Eighteenth-Century Culture, Case Western Reserve University Press, 1972. Also, 
the November 1983 issue of Mathematics Magazine is wholly devoted to Euler and his work.



180 Differential Equations with Applications and Historical Notes

unanimous in considering him one of the very few supreme intellects that 
the human race has produced.

Newton was born to a farm family in the village of Woolsthorpe in north-
ern England. Little is known of his early years, and his undergraduate life 
at Cambridge seems to have been outwardly undistinguished. In 1665 an 
outbreak of the plague caused the universities to close, and Newton returned 
to his home in the country, where he remained until 1667. There, in 2 years of 
rustic solitude—from age 22 to 24—his creative genius burst forth in a flood 
of discoveries unmatched in the history of human thought: the binomial 
series for negative and fractional exponents; differential and integral calcu-
lus; universal gravitation as the key to the mechanism of the solar system; 
and the resolution of sunlight into the visual spectrum by means of a prism, 
with its implications for understanding the colors of the rainbow and the 
nature of light in general. In his old age he reminisced as follows about this 
miraculous period of his youth: “In those days I was in the prime of my age 
for invention and minded Mathematicks and Philosophy [i.e., science] more 
than at any time since.”24

Newton was always an inward and secretive man, and for the most part 
kept his monumental discoveries to himself. He had no itch to publish, and 
most of his great works had to be dragged out of him by the cajolery and per-
sistence of his friends. Nevertheless, his unique ability was so evident to his 
teacher, Isaac Barrow, that in 1669 Barrow resigned his professorship in favor 
of his pupil (an unheard-of event in academic life), and Newton settled down 
at Cambridge for the next 27 years. His mathematical discoveries were never 
really published in connected form; they became known in a limited way 
almost by accident, through conversations and replies to questions put to 
him in correspondence. He seems to have regarded his mathematics mainly 
as a fruitful tool for the study of scientific problems, and of comparatively 
little interest in itself. Meanwhile, Leibniz in Germany had also invented cal-
culus independently; and by his active correspondence with the Bernoullis 
and the later work of Euler, leadership in the new analysis passed to the 
Continent, where it remained for 200 years.25

Not much is known about Newton’s life at Cambridge in the early years 
of his professorship, but it is certain that optics and the construction of 
telescopes were among his main interests. He experimented with many 

24 The full text of this autobiographical statement (probably written sometime in the period 
1714–1720) is given on pp. 291–292 of I. Bernard Cohen, Introduction to Newton’s ‘Principia,’ 
Harvard University Press, 1971. The present writer owns a photograph of the original 
document.

25 It is interesting to read Newton’s correspondence with Leibniz (via Oldenburg) in 1676 and 
1677 (see The Correspondence of Isaac Newton, Cambridge University Press, 1959–1976, 6 vol-
umes so far). In Items 165, 172, 188, and 209, Newton discusses his binomial series but con-
ceals in anagrams his ideas about calculus and differential equations, while Leibniz freely 
reveals his own version of calculus. Item 190 is also of considerable interest, for in it Newton 
records what is probably the earliest statement and proof of the Fundamental Theorem of 
Calculus.



181Second Order Linear Equations

techniques for grinding lenses (using tools which he made himself), and 
about 1670 built the first reflecting telescope, the earliest ancestor of the great 
instruments in use today at Mount Palomar and throughout the world. The 
pertinence and simplicity of his prismatic analysis of sunlight have always 
marked this early work as one of the timeless classics of experimental sci-
ence. But this was only the beginning, for he went further and further in 
penetrating the mysteries of light, and all his efforts in this direction con-
tinued to display experimental genius of the highest order. He published 
some of his discoveries, but they were greeted with such contentious stu-
pidity by the leading scientists of the day that he retired back into his shell 
with a strengthened resolve to work thereafter for his own satisfaction alone. 
Twenty years later he unburdened himself to Leibniz in the following words: 
“As for the phenomena of colours.. . I conceive myself to have discovered the 
surest explanation, but I refrain from publishing books for fear that disputes 
and controversies may be raised against me by ignoramuses.”26

In the late 1670s Newton lapsed into one of his periodic fits of distaste 
for science, and directed his energies into other channels. As yet he had 
published nothing about dynamics or gravity, and the many discoveries he 
had already made in these areas lay unheeded in his desk. At last, however, 
under the skillful prodding of the astronomer Edmund Halley (of Halley’s 
Comet), he turned his mind once again to these problems and began to write 
his greatest work, the Principia.27

It all seems to have started in 1684 with three men in deep conversation in 
a London inn—Halley, and his friends Christopher Wren and Robert Hooke. 
By thinking about Kepler’s third law of planetary motion, Halley had come 
to the conclusion that the attractive gravitational force holding the planets in 
their orbits was probably inversely proportional to the square of the distance 
from the sun.28 However, he was unable to do anything more with the idea 
than formulate it as a conjecture. As he later wrote (in 1686):

I met with Sir Christopher Wren and Mr. Hooke, and falling in discourse 
about it, Mr. Hooke affirmed that upon that principle all the Laws of 
the celestiall motions were to be demonstrated, and that he himself had 

26 Correspondence, Item 427. 
27 The full title is Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural 

Philosophy).
28 At that time this was quite easy to prove under the simplifying assumption—which contra-

dicts Kepler’s other two laws—that each planet moves with constant speed v in a circular 
orbit of radius r. [Proof: In 1673 Huygens had shown, in effect, that the acceleration a of such 
a planet is given by a = v2/r. If T is the periodic time, then
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 By Kepler’s third law, T 2 is proportional to r3, so r3/T 2 is constant, and a is therefore inversely 
proportional to r2. If we now suppose that the attractive force F is proportional to the accel-
eration, then it follows that F is also inversely proportional to r2.]
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done it. I declared the ill success of my attempts; and Sir Christopher, 
to encourage the Inquiry, said that he would give Mr. Hooke or me 
two months’ time to bring him a convincing demonstration therof, and 
besides the honour, he of us that did it, should have from him a pres-
ent of a book of 40 shillings. Mr. Hooke then said that he had it, but 
that he would conceale it for some time, that others triing and failing, 
might know how to value it, when he should make it publick; however, 
I remember Sir Christopher was little satisfied that he could do it, and 
tho Mr. Hooke then promised to show it him, I do not yet find that in that 
particular he has been as good as his word.29

It seems clear that Halley and Wren considered Hooke’s assertions to be 
merely empty boasts. A few months later Halley found an opportunity to 
visit Newton in Cambridge, and put the question to him: “What would be 
the curve described by the planets on the supposition that gravity dimin-
ishes as the square of the distance?” Newton answered immediately, “An 
ellipse.” Struck with joy and amazement, Halley asked him how he knew 
that. “Why,” said Newton, “I have calculated it.” Not guessed, or surmised, 
or conjectured, but calculated. Halley wanted to see the calculations at once, 
but Newton was unable to find the papers. It is interesting to speculate on 
Halley’s emotions when he realized that the age-old problem of how the 
solar system works had at last been solved—but that the solver hadn’t both-
ered to tell anybody and had even lost his notes. Newton promised to write 
out the theorems and proofs again and send them to Halley, which he did. 
In the course of fulfilling his promise he rekindled his own interest in the 
subject, and went on, and greatly broadened the scope of his researches.30

In his scientific efforts Newton somewhat resembled a live volcano, with 
long periods of quiescence punctuated from time to time by massive erup-
tions of almost superhuman activity. The Principia was written in 18 incred-
ible months of total concentration, and when it was published in 1687 it was 
immediately recognized as one of the supreme achievements of the human 
mind. It is still universally considered to be the greatest contribution to sci-
ence ever made by one man. In it he laid down the basic principles of theo-
retical mechanics and fluid dynamics; gave the first mathematical treatment 
of wave motion; deduced Kepler’s laws from the inverse square law of gravi-
tation, and explained the orbits of comets; calculated the masses of the earth, 
the sun, and the planets with satellites; accounted for the flattened shape 
of the earth, and used this to explain the precession of the equinoxes; and 
founded the theory of tides. These are only a few of the splendors of this pro-
digious work.31 The Principia has always been a difficult book to read, for the 

29 Correspondence, Item 289.
30 For additional details and the sources of our information about these events, see Cohen, op. 

cit., pp. 47–54.
31 A valuable outline of the contents of the Principia is given in Chapter VI of W. W. Rouse Ball, 

An Essay on Newton’s Principia (first published in 1893; reprinted in 1972 by Johnson Reprint 
Corp, New York).
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style has an inhuman quality of icy remoteness, which perhaps is appropriate 
to the grandeur of the theme. Also, the densely packed mathematics consists 
almost entirely of classical geometry, which was little cultivated then and 
is less so now.32 In his dynamics and celestial mechanics, Newton achieved 
the victory for which Copernicus, Kepler, and Galileo had prepared the way. 
This victory was so complete that the work of the greatest scientists in these 
fields over the next two centuries amounted to little more than footnotes to 
his colossal synthesis. It is also worth remembering in this context that the 
science of spectroscopy, which more than any other has been responsible for 
extending astronomical knowledge beyond the solar system to the universe 
at large, had its origin in Newton’s spectral analysis of sunlight.

After the mighty surge of genius that went into the creation of the Principia, 
Newton again turned away from science. However, in a famous letter to 
Bentley in 1692, he offered the first solid speculations on how the universe of 
stars might have developed out of a primordial featureless cloud of cosmic 
dust:

It seems to me, that if the matter of our Sun and Planets and all the mat-
ter in the Universe was evenly scattered throughout all the heavens, and 
every particle has an innate gravity towards all the rest … some of it 
would convene into one mass and some into another, so as to make an 
infinite number of great masses scattered at great distances from one to 
another throughout all that infinite space. And thus might the Sun and 
Fixt stars be formed, supposing the matter were of a lucid nature.33

This was the beginning of scientific cosmology, and later led, through the 
ideas of Thomas Wright, Kant, Herschel, and their successors, to the elabo-
rate and convincing theory of the nature and origin of the universe provided 
by late twentieth century astronomy.

In 1693 Newton suffered a severe mental illness accompanied by delu-
sions, deep melancholy, and fears of persecution. He complained that he 
could not sleep, and said that he lacked his “former consistency of mind.” He 
lashed out with wild accusations in shocking letters to his friends Samuel 
Pepys and John Locke. Pepys was informed that their friendship was over 
and that Newton would see him no more; Locke was charged with trying to 
entangle him with women and with being a “Hobbist” (a follower of Hobbes, 
i.e., an atheist and materialist).34 Both men feared for Newton’s sanity. They 
responded with careful concern and wise humanity, and the crisis passed.

32 The nineteenth century British philosopher Whewell has a vivid remark about this: “Nobody 
since Newton has been able to use geometrical methods to the same extent for the like pur-
poses; and as we read the Principia we feel as when we are in an ancient armoury where the 
weapons are of gigantic size; and as we look at them we marvel what manner of man he was 
who could use as a weapon what we can scarcely lift as a burden.”

33 Correspondence, Item 398.
34 Correspondence, Items 420, 421, and 426.



184 Differential Equations with Applications and Historical Notes

In 1696 Newton left Cambridge for London to become Warden (and soon 
Master) of the Mint, and during the remainder of his long life he entered a 
little into society and even began to enjoy his unique position at the pinnacle 
of scientific fame. These changes in his interests and surroundings did not 
reflect any decrease in his unrivaled intellectual powers. For example, late 
one afternoon, at the end of a hard day at the Mint, he learned of a now-
famous problem that the Swiss scientist John Bernoulli had posed as a chal-
lenge “to the most acute mathematicians of the entire world.” The problem 
can be stated as follows: Suppose two nails are driven at random into a wall, 
and let the upper nail be connected to the lower by a wire in the shape of a 
smooth curve. What is the shape of the wire down which a bead will slide 
(without friction) under the influence of gravity so as to pass from the upper 
nail to the lower in the least possible time? This is Bernoulli’s brachistochrone 
(“shortest time”) problem. Newton recognized it at once as a challenge to him-
self from the Continental mathematicians; and in spite of being out of the 
habit of scientific thought, he summoned his resources and solved it that 
evening before going to bed. His solution was published anonymously, and 
when Bernoulli saw it, he wryly remarked, “I recognize the lion by his claw.”

Of much greater significance for science was the publication of his Opticks 
in 1704. In this book he drew together and extended his early work on 
light and color. As an appendix he added his famous Queries, or specula-
tions on areas of science that lay beyond his grasp in the future. In part the 
Queries relate to his lifelong preoccupation with chemistry (or alchemy, 
as it was then called). He formed many tentative but exceedingly careful 
conclusions—always founded on experiment—about the probable nature of 
matter; and though the testing of his speculations about atoms (and even 
nuclei) had to await the refined experimental work of the late nineteenth and 
early twentieth centuries, he has been proven absolutely correct in the main 
outlines of his ideas.35 So, in this field of science too, in the prodigious reach 
and accuracy of his scientific imagination, he passed far beyond not only 
his contemporaries but also many generations of his successors. In addition, 
we quote two astonishing remarks from Queries 1 and 30, respectively: “Do 
Not Bodies act upon Light at a distance, and by their action bend its Rays?” 
and “Are not gross Bodies and Light convertible into one another?” It seems 
as clear as words can be that Newton is here conjecturing the gravitational 
bending of light and the equivalence of mass and energy, which are prime 
consequences of the theory of relativity. The former phenomenon was first 
observed during the total solar eclipse of May 1919, and the latter is now 
known to underlie the energy generated by the sun and the stars. On other 
occasions as well he seems to have known, in some mysterious intuitive way, 
far more than he was ever willing or able to justify, as in this cryptic sentence 
in a letter to a friend: “It’s plain to me by the fountain I draw it from, though I 

35 See S. I. Vavilov, “Newton and the Atomic Theory,” in Newton Tercentenary Celebrations, 
Cambridge University Press, 1947.
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will not undertake to prove it to others.”36 Whatever the nature of this “foun-
tain” may have been, it undoubtedly depended on his extraordinary powers 
of concentration. When asked how he made his discoveries, he said, “I keep 
the subject constantly before me and wait till the first dawnings open little 
by little into the full light.” This sounds simple enough, but everyone with 
experience in science or mathematics knows how very difficult it is to hold 
a problem continuously in mind for more than a few seconds or a few min-
utes. One’s attention flags; the problem repeatedly slips away and repeatedly 
has to be dragged back by an effort of will. From the accounts of witnesses, 
Newton seems to have been capable of almost effortless sustained concentra-
tion on his problems for hours and days and weeks, with even the need for 
occasional food and sleep scarcely interrupting the steady squeezing grip of 
his mind.

In 1695 Newton received a letter from his Oxford mathematical friend John 
Wallis, containing news that cast a cloud over the rest of his life. Writing 
about Newton’s early mathematical discoveries, Wallis warned him that 
in Holland “your Notions” are known as “Leibniz’s Calculus Differentialis,” 
and he urged Newton to take steps to protect his reputation.37 At that time 
the relations between Newton and Leibniz were still cordial and mutually 
respectful. However, Wallis’s letters soon curdled the atmosphere, and initi-
ated the most prolonged, bitter, and damaging of all scientific quarrels: the 
famous (or infamous) Newton–Leibniz priority controversy over the inven-
tion of calculus.

It is now well established that each man developed his own form of cal-
culus independently of the other, that Newton was first by 8 or 10 years but 
did not publish his ideas, and that Leibniz’s papers of 1684 and 1686 were 
the earliest publications on the subject. However, what are now perceived as 
simple facts were not nearly so clear at the time. There were ominous minor 
rumblings for years after Wallis’s letters, as the storm gathered:

What began as mild innuendoes rapidly escalated into blunt charges 
of plagiarism on both sides. Egged on by followers anxious to win a 
reputation under his auspices, Newton allowed himself to be drawn 
into the centre of the fray; and, once his temper was aroused by accu-
sations of dishonesty, his anger was beyond constraint. Leibniz’s con-
duct of the controversy was not pleasant, and yet it paled beside that 
of Newton. Although he never appeared in public, Newton wrote most 
of the pieces that appeared in his defense, publishing them under the 
names of his young men, who never demurred. As president of the Royal 
Society, he appointed an “impartial” committee to investigate the issue, 
secretly wrote the report officially published by the society [in 1712], and 
reviewed it anonymously in the Philosophical Transactions. Even Leibniz’s 
death could not allay Newton’s wrath, and he continued to pursue the 

36 Correspondence, Item 193.
37 Correspondence, Items 498 and 503.
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enemy beyond the grave. The battle with Leibniz, the irrepressible 
need to efface the charge of dishonesty, dominated the final 25 years of 
Newton’s life. Almost any paper on any subject from those years is apt to 
be interrupted by a furious paragraph against the German philosopher, 
as he honed the instruments of his fury ever more keenly.38

All this was bad enough, but the disastrous effect of the controversy on 
British science and mathematics was much more serious. It became a mat-
ter of patriotic loyalty for the British to use Newton’s geometrical methods 
and clumsy calculus notations, and to look down their noses at the upstart 
work being done on the Continent. However, Leibniz’s analytical methods 
proved to be far more fruitful and effective, and it was his followers who 
were the moving spirits in the richest period of development in mathemati-
cal history. What has been called “the Great Sulk” continued; for the British, 
the work of the Bernoullis, Euler, Lagrange, Laplace, Gauss, and Riemann 
remained a closed book; and British mathematics sank into a coma of impo-
tence and irrelevancy that lasted through most of the eighteenth and nine-
teenth centuries.

Newton has often been thought of and described as the ultimate rational-
ist, the embodiment of the Age of Reason. His conventional image is that of 
a worthy but dull absent-minded professor in a foolish powdered wig. But 
nothing could be further from the truth. This is not the place to discuss or 
attempt to analyze his psychotic flaming rages; or his monstrous vengeful 
hatreds that were unquenched by the death of his enemies and continued at 
full strength to the end of his own life; or the 58 sins he listed in the private 
confession he wrote in 1662; or his secretiveness and shrinking insecurity; 
or his peculiar relations with women, especially with his mother, who he 
thought had abandoned him at the age of 3. And what are we to make of 
the bushels of unpublished manuscripts (millions of words and thousands 
of hours of thought!) that reflect his secret lifelong studies of ancient chro-
nology, early Christian doctrine, and the prophecies of Daniel and St. John? 
Newton’s desire to know had little in common with the smug rationalism 
of the eighteenth century; on the contrary, it was a form of desperate self-
preservation against the dark forces that he felt pressing in around him.39 As 
an original thinker in science and mathematics he was a stupendous genius 
whose impact on the world can be seen by everyone; but as a man he was so 
strange in every way that normal people can scarcely begin to understand 
him. It is perhaps most accurate to think of him in medieval terms—as a con-
secrated, solitary, intuitive mystic for whom science and mathematics were 
means of reading the riddle of the universe.

38 Richard S. Westfall, in the Encyclopaedia Britannica.
39 The best effort is Frank E. Manuel’s excellent book, A Portrait of Isaac Newton, Harvard 

University Press, 1968.
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Chapter 4
Qualitative Properties of Solutions

24 Oscillations and the Sturm Separation Theorem

It is natural to feel that a differential equation should be solved, and one 
of the main aims of our work in Chapter 3 was to develop ways of finding 
explicit solutions of the second order linear equation

 y″ + P(x)y′ + Q(x)y = 0. (1)

Unfortunately, however—as we have tried to emphasize—it is rarely pos-
sible to solve this equation in terms of familiar elementary functions. This 
situation leads us to seek wider vistas by formulating the problem at a higher 
level, and to recognize that our real goal is to understand the nature and 
properties of the solutions of (1). If this goal can be attained by means of 
elementary formulas for these solutions, well and good. If not, then we try to 
open up other paths to the same destination. In this brief chapter we turn our 
attention to the problem of learning what we can about the essential charac-
teristics of the solutions of (1) by direct analysis of the equation itself, in the 
absence of formal expressions for these solutions. It is surprising how much 
interesting and useful information can be gained in this way.

As an illustration of the idea that many properties of the solutions of a dif-
ferential equation can be discovered by studying the equation itself, without 
solving it in any traditional sense, we discuss the familiar equation

 y″ + y = 0. (2)

We know perfectly well that y1(x) = sin x and y2(x) = cos x are two linearly 
independent solutions of (2); that they are fully determined by the initial con-
ditions y1(0) = 0, ¢ =y1 0 1( )  and y y2 20 1 0 0( ) , ( )= ¢ = ; and that the general solution 
is y(x) = c1y1(x) + c2y2(x). Normally we regard (2) as completely solved by these 
observations, for the functions sin x and cos x are old friends and we know 
a great deal about them. However, our knowledge of sin x and cos x can be 
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thought of as an accident of history; and for the sake of emphasizing our 
present point of view, we now pretend total ignorance of these familiar func-
tions. Our purpose is to see how their properties can be squeezed out of (2) 
and the initial conditions they satisfy. The only tools we shall use are quali-
tative arguments and the general principles described in Sections 14 and 15.

Accordingly, let y = s(x) be defined as the solution of (2) determined by the 
initial conditions s(0) = 0 and s′(0) = 1. If we try to sketch the graph of s(x) by 
letting x increase from 0, the initial conditions tell us to start the curve at the 
origin and let it rise with slope beginning at 1 (Figure 37). From the equa-
tion itself we have s″(x) = −s(x), so when the curve is above the x-axis, s″(x) is 
a negative number that increases in magnitude as the curve rises. Since s″(x) 
is the rate of change of the slope s′(x), this slope decreases at an increasing 
rate as the curve lifts, and it must reach 0 at some point x = m. As x continues 
to increase, the curve falls toward the x-axis, s′(x) decreases at a decreasing 
rate, and the curve crosses the x-axis at a point we can define to be π. Since 
s″(x) depends only on s(x), we see that the graph between x = 0 and x = π is 
symmetric about the line x = m, so m = π/2 and s′(π) = −1. A similar argument 
shows that the next portion of the curve is an inverted replica of the first 
arch, and so on indefinitely.

In order to make further progress, it is convenient at this stage to introduce 
y = c(x) as the solution of (2) determined by the initial conditions c(0) = 1 and 
c′(0) = 0. These conditions tell us (Figure 37) that the graph of c(x) starts at the 
point (0, 1) and moves to the right with slope beginning at 0. since by equa-
tion (2) we know that c″(x) = –c(x), the same reasoning as before shows that 
the curve bends down and crosses the x-axis. It is natural to conjecture that 
the height of the first arch of s(x) is 1, that the first zero of c(x) is π/2, etc.; but 
to establish these guesses as facts, we begin by showing that

 s′(x) = c(x) and c′(x) = –s(x). (3)

To prove the first statement, we start by observing that (2) yields y‴+ y′ = 0 
or (y′)″ + y′ = 0, so the derivative of any solution of (2) is again a solution (see 
Problem 17–4). Thus s′(x) and c(x) are both solutions of (2), and by Theorem 14-A 

y
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it suffices to show that they have the same values and the same derivatives 
at x = 0. This follows at once from s′(0) = 1, c(0) = 1 and s″(0) = –s(0) = 0, c′(0) = 0. 
The second formula in (3) is an immediate consequence of the first, for 
c′(x) = s″(x) = –s(x). We now use (3) to prove

 s(x)2 + c(x)2 = 1. (4)

Since the derivative of the left side of (4) is

 2s(x)c(x) − 2c(x)s(x),

which is 0, we see that s(x)2 + c(x)2 equals a constant, and this constant must be 
1 because s(0)2 + c(0)2 = 1. It follows at once from (4) that the height of the first 
arch of s(x) is 1 and that the first zero of c(x) is π/2. This result also enables 
us to show that s(x) and c(x) are linearly independent, for their Wronskian is

 W[s(x), c(x)] = s(x)c′(x) − c(x)s′(x)

 = −s(x)2 − c(x)2 = −1.

In much the same way, we can continue and establish the following addi-
tional facts:

 s(x + a) = s(x)c(a) + c(x)s(a); (5)

 c(x + a) = c(x)c(a) − s(x)s(a); (6)

 s(2x) = 2s(x)c(x); (7)

 c(2x) = c(x)2 − s(x)2; (8)

 s(x + 2π) = s(x); (9)

 c(x + 2π) = c(x). (10)

The proofs are not difficult, and we leave them to the reader (see Problem 1). 
Among other things, it is easy to see from the above results that the posi-
tive zeros of s(x) and c(x) are, respectively, π, 2π, 3π, . . . and π/2, π/2 + π, 
π/2 + 2π, . . . .

There are two main points to be made about the above discussion. First, we 
have extracted almost every significant property of the functions sin x and 
cos x from equation (2) by the methods of differential equations alone, without 
using any prior knowledge of trigonometry. Second, the tools we did use 
consisted chiefly of convexity arguments (involving the sign and magnitude 
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of the second derivative) and the basic properties of linear equations set forth 
in Sections 14 and 15.

It goes without saying that most of the above properties of sin x and cos x 
are peculiar to these functions alone. Nevertheless, the central feature of 
their behavior—the fact that they oscillate in such a manner that their zeros 
are distinct and occur alternately—can be generalized far beyond these par-
ticular functions. The following result in this direction is called the Sturm 
separation theorem.1

Theorem A. If y1(x) and y2(x) are two linearly independent solutions of

 y″ + P(x)y′ + Q(x)y = 0,

then the zeros of these functions are distinct and occur alternately—in the sense that 
y1(x) vanishes exactly once between any two successive zeros of y2(x), and conversely.

Proof. The argument rests primarily on the fact (see the lemmas in Section 15) 
that since y1, and y2 are linearly independent, their Wronskian

 W y y y x y x y x y x( , ) ( ) ( ) ( ) ( )1 2 1 2 2 1= ¢ ¢-

does not vanish, and therefore—since it is continuous—must have constant 
sign. First, it is easy to see that y1, and y2 cannot have a common zero; for 
if they do, then the Wronskian will vanish at that point, which is impos-
sible. We now assume that x1 and x2 are successive zeros of y2 and show 
that y1 vanishes between these points. The Wronskian clearly reduces to 
y x y x1 2( ) ( )¢  at x1 and x2, so both factors y1(x) and ¢y x2( ) are ≠ 0 at each of these 
points. Furthermore, ¢y x2 1( ) and ¢y x2 2( ) must have opposite signs, because if 
y2 is increasing at x1 it must be decreasing at x2, and vice versa. Since the 
Wronskian has constant sign, y1(x1) and y1(x2) must also have opposite signs, 
and therefore, by continuity, y1(x) must vanish at some point between x1 
and x2. Note that y1 cannot vanish more than once between x1 and x2; for if 
it does, then the same argument shows that y2 must vanish between these 
zeros of y1, which contradicts the original assumption that x1 and x2 are suc-
cessive zeros of y2.

The convexity arguments given above in connection with the equation 
y″ + y = 0 make it clear that in discussing the oscillation of solutions it is 

1 Jacques Charles Francois Sturm (1803–1855) was a Swiss mathematician who spent most of 
his life in Paris. For a time he was tutor to the de Broglie family, and after holding several 
other positions he at last succeeded Poisson in the Chair of Mechanics at the Sorbonne. His 
main work was done in what is now called the Sturm–Liouville theory of differential equa-
tions, which has been of steadily increasing importance ever since in both pure mathematics 
and mathematical physics.
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convenient to deal with equations in which the first derivative term is miss-
ing. We now show that any equation of the form

 y″ + P(x)y′ + Q(x)y = 0 (11)

can be written as

 u″ + q(x)u = 0 (12)

by a simple change of the dependent variable. It is customary to refer to (11) 
as the standard form, and to (12) as the normal form, of a homogeneous second 
order linear equation. To write (11) in normal form, we put y(x) = u(x)v(x), so 
that y′ = uv′ + u′v and y″ = uv″ + 2u′v′ + u″v. When these expressions are substi-
tuted in (11), we obtain

 vu″ + (2v′ + Pv)u′ + (v″ + Pv′ + Qv)u = 0. (13)

On setting the coefficient of u′ equal to zero and solving, we find that

 v e
P dx

= ò–
1
2  (14)

reduces (13) to the normal form (12) with

 
q x Q x P x P x( ) ( ) ( ) ( )= ¢- -

1
4

1
2

2 . (15)

Since v(x) as given by (14) never vanishes, the above transformation of (11) 
into (12) has no effect whatever on the zeros of solutions, and therefore leaves 
unaltered the oscillation phenomena which are the objects of our present 
interest.

We next show that if q(x) in (12) is a negative function, then the solutions of 
this equation do not oscillate at all.

Theorem B. If q(x) < 0, and if u(x) is a nontrivial solution of u″ + q(x)u = 0, then u(x) 
has at most one zero.

Proof. Let x0 be a zero of u(x), so that u(x0) = 0. Since u(x) is nontrivial (i.e., 
is not identically zero), Theorem 14-A implies that u′(x0) ≠ 0. For the sake of 
concreteness, we now assume that u′(x0) > 0, so that u(x) is positive over some 
interval to the right of x0. Since q(x) < 0, u″(x) = –q(x)u(x) is a positive function 
on the same interval. This implies that the slope u′(x) is an increasing func-
tion, so u(x) cannot have a zero to the right of x0, and in the same way it has 
none to the left of x0. A similar argument holds when u′(x0) < 0, so u(x) has 
either no zeros at all or only one, and the proof is complete.
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Since our interest is in the oscillation of solutions, this result leads us 
to confine our study of (12) to the special case in which q(x) is a positive 
function.

Even in this case, however, it is not necessarily true that solutions will 
oscillate. To get an idea of what is involved, let u(x) be a nontrivial solution 
of (12) with q(x) > 0. If we consider a portion of the graph above the x-axis 
(Figure 38), then u″(x) = –q(x)u(x) is negative, so the graph is concave down 
and the slope u′(x) is decreasing. If this slope ever becomes negative, then the 
curve plainly crosses the x-axis somewhere to the right and we get a zero for 
u(x). We know that this happens when q(x) is constant. The alternative is that 
although u′(x) decreases, it never reaches zero and the curve continues to rise, 
as in the upper part of Figure 38. It is reasonably clear from these remarks 
that u(x) will have zeros as x increases whenever q(x) does not decrease too 
rapidly. This leads us to the next theorem.

Theorem C. Let u(x) be any nontrivial solution of u″ + q(x)u = 0, where q(x) > 0 for 
all x > 0. If

 

q x dx( ) = ¥
¥

ò
1

, (16)

then u(x) has infinitely many zeros on the positive x-axis.

Proof. Assume the contrary, namely, that u(x) vanishes at most a finite num-
ber of times for 0 < x < ∞, so that a point x0 > 1 exists with the property that 
u(x) ≠ 0 for all x ≥ x0. We may clearly suppose, without any loss of generality, 
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u

FIGURE 38 
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that u(x) > 0 for all x ≥ x0, since u(x) can be replaced by its negative if neces-
sary. Our purpose is to contradict the assumption by showing that u′(x) is 
negative somewhere to the right of x0—for, by the above remarks, this will 
imply that u(x) has a zero to the right of x0. If we put

 
v x

u x
u x

( )
( )
( )

=
¢

-

for x ≥ x0, then a simple calculation shows that

 v′(x) = q(x) + v(x)2;

and on integrating this from x0 to x, where x > x0, we get
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We now use (16) to conclude that v(x) is positive if x is taken large enough. 
This shows that u(x) and u′(x) have opposite signs if x is sufficiently large, so 
u′(x) is negative and the proof is complete.

Problems

 1. Prove formulas (5) to (10) by arguments consistent with the spirit of the 
preceding discussion.

 2. Show that the zeros of the functions a sin x + b cos x and c sin x + d cos x 
are distinct and occur alternately whenever ad − bc ≠ 0.

 3. Find the normal form of Bessel’s equation

 x2y″ + xy′ + (x2 − p2)y = 0,

 and use it to show that every nontrivial solution has infinitely many 
positive zeros.

 4. The hypothesis of Theorem C is false for the Euler equation 
y″ + (k/x2)y = 0, but the conclusion is sometimes true and sometimes 
false, depending on the magnitude of the positive constant k. Show 
that every nontrivial solution has an infinite number of positive zeros 
if k > 1/4, and only a finite number if k ≤ 1/4.



194 Differential Equations with Applications and Historical Notes

25 The Sturm Comparison Theorem

In this section we continue our study of the oscillation behavior of nontrivial 
solutions of the differential equation

 y″ + q(x)y = 0, (1)

where q(x) is a positive function. We begin with a theorem that rules out the 
possibility of infinitely many oscillations on closed intervals.

Theorem A. Let y(x) be a nontrivial solution of equation (1) on a closed interval 
[a, b]. Then y(x) has at most a finite number of zeros in this interval.

Proof. We assume the contrary, namely, that y(x) has an infinite number of 
zeros in [a,b]. It follows from this that there exist in [a,b] a point x0 and a 
sequence of zeros xn ≠ x0 such that xn → x0.2 Since y(x) is continuous and dif-
ferentiable at x0, we have

 
y x y x

x x
n

n
( ) lim ( )0

0
0= =

®

and

 
¢ = =

®
y x

y x y x
x xx x

n

nn
( ) lim

( ) ( )
0

0

00
0

-
-

.

By Theorem 14-A, these statements imply that y(x) is the trivial solution of (1), 
and this contradiction completes the proof.

We now recall that the Sturm separation theorem tells us that the zeros of any 
two (nontrivial) solutions of (1) either coincide or occur alternately, depend-
ing on whether these solutions are linearly dependent or independent. Thus, 
all solutions of (1) oscillate with essentially the same rapidity, in the sense 
that on a given interval the number of zeros of any solution cannot differ by 
more than one from the number of zeros of any other solution. On the other 
hand, it is clear that solutions of

 y″ + 4y = 0 (2)

oscillate more rapidly—that is, have more zeros—than solutions of

 y″ + y = 0; (3)

2 In this inference we use the Bolzano–Weierstrass theorem of advanced calculus, which 
expresses one of the basic topological properties of the real number system.
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for the zeros of a solution of (2) such as y = sin 2x are only half as far apart 
as the zeros of a solution y = sin x of (3). The following result, which is 
known as the Sturm comparison theorem, shows that this behavior is typi-
cal in the sense that the solutions of (1) oscillate more rapidly when q(x) is 
increased.

Theorem B. Let y(x) and z(x) be nontrivial solutions of

 y″ + q(x)y = 0

and

 z″ + r(x)z = 0,

where q(x) and r(x) are positive functions such that q(x) > r(x). Then y(x) vanishes at 
least once between any two successive zeros of z(x).

Proof. Let x1 and x2 be successive zeros of z(x), so that z(x1) = z(x2) = 0 and z(x) 
does not vanish on the open interval (x1, x2). We assume that y(x) does not 
vanish on (x1, x2), and prove the theorem by deducing a contradiction. It is 
clear that no loss of generality is involved in supposing that both y(x) and z(x) 
are positive on (x1, x2), for either function can be replaced by its negative if 
necessary. If we emphasize that the Wronskian

 W(y, z) = y(x)z′(x) − z(x)y′(x)

is a function of x by writing it W(x), then
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on (x1,x2). We now integrate both sides of this inequality from x1, to x2 and 
obtain

 W(x2) − W(x1) > 0 or W(x2) > W(x1).

However, the Wronskian reduces to y(x)z′(x) at x1 and x2, so

 W(x1) ≥ 0 and W(x2) ≤ 0,

which is the desired contradiction.
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It follows from this theorem that if we have q(x) > k2 > 0 in equation (1), 
then any solution must vanish between any two successive zeros of a solu-
tion y(x) = sin k(x − x0) of the equation y″ + k2y = 0, and therefore must vanish 
in any interval of length π/k. For example, if we consider Bessel’s equation

 x2y″ + xy′ + (x2 − p2)y = 0

in normal form
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and compare this with u″ + u = 0, then we at once have the next theorem.

Theorem C. Let yp(x) be a nontrivial solution of Bessel’s equation on the positive 
x-axis. If 0 ≤ p < 1/2, then every interval of length π contains at least one zero of 
yp(x); if p = 1/2, then the distance between successive zeros of yp(x) is exactly π; and if 
p > 1/2, then every interval of length π contains at most one zero of yp(x).

Bessel’s equation is of considerable importance in mathematical physics. The 
oscillation properties of its solutions expressed in Theorem C, and also in 
Problem 24-3 and Problem 1 below, are clearly of fundamental significance 
for understanding the nature of these solutions. In Chapter 8 we shall devote 
a good deal of effort to finding explicit solutions for Bessel’s equation in 
terms of power series. However, these series solutions are awkward tools to 
try to use in studying oscillation properties, and it is a great convenience to 
be able to turn to qualitative reasoning of the kind discussed in this chapter.

Problems

 1. Let x1 and x2 be successive positive zeros of a nontrivial solution yp(x) of 
Bessel’s equation.

 (a) If 0 ≤ p < 1/2, show that x2 − x1 is less than π and approaches π as x1 → ∞.
 (b) If p > 1/2, show that x2 − x1 is greater than π and approaches π as x1 → ∞.
 2. If y(x) is a nontrivial solution of y″ + q(x)y = 0, show that y(x) has an infi-

nite number of positive zeros if q(x) > k/x2 for some k > 1/4, and only a 
finite number if q(x) < 1/4x2.

 3. Every nontrivial solution of y″ + (sin2 x + 1)y = 0 has an infinite number 
of positive zeros. Formulate and prove a theorem that includes this 
statement as a special case.
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Chapter 5
Power Series Solutions and Special Functions

26 Introduction. A Review of Power Series

Most of the specific functions encountered in elementary analysis belong to 
a class known as the elementary functions. In order to describe this class, we 
begin by recalling that an algebraic function is a polynomial, a rational func-
tion, or more generally any function y = f(x) that satisfies an equation of the 
form

 Pn(x)yn + Pn−1(x)yn−1 + … + P1(x)y + P0(x) = 0,

where each Pi(x) is a polynomial. The elementary functions consist of the 
algebraic functions; the elementary transcendental (or nonalgebraic) functions 
occurring in calculus—i.e., the trigonometric, inverse trigonometric, expo-
nential, and logarithmic functions; and all others that can be constructed 
from these by adding, subtracting, multiplying, dividing, or forming a func-
tion of a function. Thus,
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is an elementary function.
Beyond the elementary functions lie the higher transcendental functions, or, 

as they are often called, the special functions. Since the beginning of the eigh-
teenth century, many hundreds of special functions have been considered 
sufficiently interesting or important to merit some degree of study. Most of 
these are almost completely forgotten but some, such as the gamma function, 
the Riemann zeta function, the elliptic functions, and those that continue 
to be useful in mathematical physics, have generated extensive theories. 
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And among these, a few are so rich in meaning and influence that the mere 
history of any one of them would fill a large book.1

The field of special functions was cultivated with enthusiastic devotion 
by many of the greatest mathematicians of the eighteenth and nineteenth 
centuries—by Euler, Gauss, Abel, Jacobi, Weierstrass, Riemann, Hermite, 
and Poincaré, among others. But tastes change with the times, and today 
most mathematicians prefer to study large classes of functions (continu-
ous functions, integrable functions, etc.) instead of outstanding individuals. 
Nevertheless, there are still many who favor biography over sociology, and a 
balanced treatment of analysis cannot neglect either view.

Special functions vary rather widely with respect to their origin, nature, 
and applications. However, one large group with a considerable degree of 
unity consists of those that arise as solutions of second order linear differen-
tial equations. Many of these find applications in connection with the par-
tial differential equations of mathematical physics. They are also important, 
through the theory of orthogonal expansions, as the main historical source 
of linear analysis, which has played a central role in shaping much of mod-
ern pure mathematics.

Let us try to understand in a general way how these functions arise. It will 
be recalled that if we wish to solve the simple equation

 y″ + y = 0, (1)

then the familiar functions y = sin x and y = cos x are already available for 
this purpose from elementary calculus. The situation with respect to the 
equation

 xyʺ + yʹ + xy = 0 (2)

is quite different, for this equation cannot be solved in terms of elementary 
functions. As a matter of fact, there is no known type of second order lin-
ear equation—apart from those with constant coefficients, and equations 
reducible to these by changes of the independent variable—which can be 
solved in terms of elementary functions. In Chapter 4 we found that cer-
tain general properties of the solutions of such an equation can often be 
established without solving the equation at all. But if a particular equation 
of this kind seems important enough to demand some sort of explicit solu-
tion, what can we do? The approach we develop in this chapter is to solve 
it in terms of power series and to use these series to define new special 
functions. We then investigate the properties of these functions by means 
of their series expansions. If we succeed in learning enough about them, 

1 The reader who wishes to form an impression of the extent of this part of analysis would 
do well to look through the three volumes of Higher Transcendental Functions, A Erdélyi (ed.), 
McGraw-Hill, New York, 1953–1955.
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then they attain the status of “familiar functions” and can be used as tools 
for studying the problem that gave rise to the original differential equa-
tion. Needless to say, this program is easier to describe than to carry out, 
and is worthwhile only in the case of functions with a variety of significant 
applications.

It is clear from the above remarks that we will be using power series 
extensively throughout this chapter. We take it for granted that most read-
ers are reasonably well acquainted with these series from an earlier course 
in calculus. Nevertheless, for the benefit of those whose familiarity with 
this topic may have faded slightly, we present a brief review of the main 
facts.

 A. An infinite series of the form
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 is a power series in x − x0, and is somewhat more general than (3). 
However, (4) can always be reduced to (3) by replacing x −x0 by x—
which is merely a translation of the coordinate system—so for the 
most part we shall confine our discussion to power series of the 
form (3).

 B. The series (3) is said to converge at a point x if the limit
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 exists, and in this case the sum of the series is the value of this limit. 
It is obvious that (3) always converges at the point x = 0. With respect 
to the arrangement of their points of convergence, all power series in 
x fall into one or another or three major categories. These are typi-
fied by the following examples:
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 The first of these series diverges (i.e., fails to converge) for all x ≠ 0; 
the second converges for all x; and the third converges for |x|< 1 
and diverges for |x|> 1. Some power series in x behave like (5), and 
converge only for x = 0. These are of no interest to us. Some, like (6), 
converge for all x. These are the easiest to work with. All others are 
roughly similar to (7). This means that to each series of this kind 
there corresponds a positive real number R, called the radius of con-
vergence, with the property that the series converges if |x|< R and 
diverges if |x|> R [R = 1 in the case of (7)].

  It is customary to put R equal to 0 when the series converges only 
for x = 0, and equal to ∞ when it converges for all x. This convention 
allows us to cover all possibilities in a single statement: each power 
series in x has a radius of convergence R, where 0 ≤ R ≤ ∞, with the 
property that the series converges if |x|< R and diverges if |x|> R. 
It should be noted that if R = 0 then no x satisfies |x|< R, and if R = ∞ 
then no x satisfies |x|> R.

  In many important cases the value of R can be found as 
follows. Let
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 be a series of nonzero constants. We recall from elementary calculus 
that if the limit
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 exists, then the ratio test asserts that the series converges if L < 1 and 
diverges if L > 1. In the case of our power series (3), this tells us that 
if each an ≠ 0, and if for a fixed point x ≠ 0 we have
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 then (3) converges if L < 1 and diverges if L > 1. These considerations 
yield the formula
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1

 if this limit exists (we put R = ∞ if |an/an+1|→ ∞). Regardless of whether 
this formula can be used or not, it is known that R always exists; 
and if R is finite and nonzero, then it determines an interval of con-
vergence −R < x < R such that inside the interval the series converges 
and outside the interval it diverges. A power series may or may not 
converge at either endpoint of its interval of convergence.

 C. Suppose that (3) converges for |x|< R with R > 0, and denote its sum 
by f(x):
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 Then f(x) is automatically continuous and has derivatives of all 
orders for |x|< R. Also, the series can be differentiated termwise in 
the sense that
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 and so on, and each of the resulting series converges for |x|< R. 
These successive differentiated series yield the following basic for-
mula linking the an to f(x) and its derivatives:
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 Furthermore, it is often useful to know that the series (8) can be 
integrated termwise provided the limits of integration lie inside the 
interval of convergence.
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If we have a second power series in x that converges to a function 
g(x) for |x|< R, so that
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 then (8) and (10) can be added or subtracted termwise:
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 They can also be multiplied as if they were polynomials, in the sense 
that
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 where cn = a0bn + a1bn−1 + … + anb0.2 If it happens that both series con-
verge to the same function, so that f(x) = g(x) for |x|< R, then for-
mula (9) implies that they must have the same coefficients: a0 = b0, 
a1 = b1, …. In particular, if f(x) = 0 for |x|< R, then a0 = 0, a1 = 0, ….

 D. Let f(x) be a continuous function that has derivatives of all orders for 
|x|< R with R > 0. Can f(x) be represented by a power series? If we use 
(9) to define the an, then it is natural to hope that the expansion
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 will hold throughout the interval. This is often true, but unfortu-
nately it is sometimes false. One way of investigating the validity of 
this expansion for a specific point x in the interval is to use Taylor’s 
formula:

2 It will be useful later to notice that cn can be written in two equivalent forms:
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where the remainder Rn(x) is given by
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 for some point x between 0 and x. To verify (11), it suffices to show 
that Rn(x) → 0 as n → ∞. By means of this procedure, it is quite easy to 
obtain the following familiar expansions, which are valid for all x:
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 If a specific convergent power series is given to us, how can we rec-
ognize the function that is its sum? In general it is impossible to do 
this, for very few power series have sums that are familiar elemen-
tary functions.

 E. A function f(x) with the property that a power series expansion of 
the form
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 is valid in some neighborhood of the point x0 is said to be analytic at 
x0. In this case the an are necessarily given by
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 and (15) is called the Taylor series of f(x) at x0. Thus, (12), (13), and (14) 
tell us that ex, sin x, and cos x are analytic at x0 = 0, and the given series 
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are the Taylor series of these functions at this point. Most questions 
about analyticity can be answered by means of the following facts:

 1. Polynomials and the functions ex, sin x, and cos x are analytic at all 
points.

 2. If f(x) and g(x) are analytic at x0, then f(x) + g(x), f(x)g(x), and f(x)/g(x) [if 
g(x0) ≠ 0] are also analytic at x0.

 3. If f(x) is analytic at x0 and f−1(x) is a continuous inverse, then f−1(x) is 
analytic at f(x0) if f′(x0) ≠ 0.

 4. If g(x) is analytic at x0 and f(x) is analytic at g(x0), then f(g(x)) is ana-
lytic at x0.

 5. The sum of a power series is analytic at all points inside the interval 
of convergence.

Some of these statements are quite easy to prove by elementary methods, but 
others are not. Generally speaking, the behavior of analytic functions can be 
fully understood only in the broader context of the theory of functions of a 
complex variable.

Problems

 1. Use the ratio test to verify that R = 0, R = ∞, and R = 1 for the series (5), (6), 
and (7).

 2. If p is not zero or a positive integer, show that the series
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 converges for |x|< 1 and diverges for |x|> 1.
 3. Show that R = ∞ for the series on the right sides of expansions (13) 

and (14).
 4. Use Taylor’s formula to establish the validity of the expansions (12), (13), 

and (14) for all x. Hint: an/n! → 0 for every constant a (why?).
 5. It is well known from elementary algebra that
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 Use this to show that the expansions

 

1
1

1 2 3

– x
x x x= + + + +�

 and

 

1
1

1 2 3

+x
x x x= + +– – �

 are valid for |x|< 1. Apply the latter to show that
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 for |x|< 1.
 6. Use the first expansion given in Problem 5 to find the power series for 

1/(1 − x)2

 (a) by squaring;
 (b) by differentiating.
 7. (a) Show that the series for cos x,
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  has the property that yʺ = −y, and is therefore a solution of equation (1).
 (b) Show that the series
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 converges for all x, and verify that it is a solution of equation (2). 
[Observe that this series can be obtained from the one in (a) by replac-
ing each odd factor in the denominators by the next greater even num-
ber. The sum of this series is a useful special function denoted by J0(x) 
and called the Bessel function of order 0; it will be studied in detail in 
Chapter 8.]
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27 Series Solutions of First Order Equations

We have repeatedly emphasized that many interesting and important dif-
ferential equations cannot be solved by any of the methods discussed in ear-
lier chapters, and also that solutions for equations of this kind can often be 
found in terms of power series. Our purpose in this section is to explain the 
procedure by showing how it works in the case of first order equations that 
are easy to solve by elementary methods.

As our first example, we consider the equation

 yʹ = y. (1)

We assume that this equation has a power series solution of the form

 y = a0 + a1x + a2x2 + … + anxn + … (2)

that converges for |x|< R with R > 0; that is, we assume that (1) has a solution 
that is analytic at the origin. A power series can be differentiated term by 
term in its interval of convergence, so

 yʹ = a1 + 2a2x + 3a3x2 + … + (n + 1)an+1xn + …. (3)

Since yʹ = y, the series (2) and (3) must have the same coefficients:

 a1 = a0, 2a2 = a1, 3a3 = a2, …, (n + 1)an+1 = an, … .

These equations enable us to express each an in terms of a0:
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When these coefficients are inserted in (2), we obtain our power series 
solution
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where no condition is imposed on a0. It is essential to understand that so far 
this solution is only tentative, because we have no guarantee that (1) actually 
has a power series solution of the form (2). The above argument shows only 
that if (1) has such a solution, then that solution must be (4). However, it fol-
lows at once from the ratio test that the series in (4) converges for all x, so the 
term-by-term differentiation is valid and (4) really is a solution of (1). In this 
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case we can easily recognize the series in (4) as the power series expansion of 
ex, so (4) can be written as

 y = a0ex.

Needless to say, we can get this solution directly from (1) by separating vari-
ables and integrating. Nevertheless, it is important to realize that (4) would 
still be a perfectly respectable solution even if (1) were unsolvable by elemen-
tary methods and the series in (4) could not be recognized as the expansion 
of a familiar function.

This example suggests a useful method for obtaining the power series 
expansion of a given function: find the differential equation satisfied by the 
function, and then solve this equation by power series.

As an illustration of this idea we consider the function

 y = (1 + x)p, (5)

where p is an arbitrary constant. It is easy to see that (5) is the indicated par-
ticular solution of the following differential equation:

 (1 + x)yʹ = py, y(0) = 1. (6)

As before, we assume that (6) has a power series solution

 y = a0 + a1x + a2x2 + … + anxn + … (7)

with positive radius of convergence. It follows from this that
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By equation (6), the sum of the first two series must equal the third, so equat-
ing the coefficients of successive power of x gives

 a1 = pa0, 2a2 + a1 = pa1, 3a3 + 2a2 = pa2, …,

 (n + 1) an+1 + nan = pan, ….

The initial condition in (6) implies that a0 = 1, so
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With these coefficients, (7) becomes
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To conclude that (8) actually is the desired solution, it suffices to observe that 
this series converges for |x|< 1 (see Problem 26-2). On comparing the two 
solutions (5) and (8), and using the fact that (6) has only one solution, we have
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for |x|< 1. This expansion is called the binomial series, and generalizes the 
binomial theorem to the case of an arbitrary exponent.3

Problems

 1. Consider the following differential equations:
 (a) y′ = 2xy;
 (b) y′ + y = 1.

3 As the reader will recall from elementary algebra, the binomial theorem states that if n is a 
positive integer, then
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 More concisely,
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 In each case, find a power series solution of the form a xn
nå , try to 

recognize the resulting series as the expansion of a familiar function, 
and verify your conclusion by solving the equation directly.

 2. Consider the following differential equations:
 (a) xy′ = y;
 (b) x2y′ = y.

 In each case, find a power series solution of the form a xn
nå , solve the 

equation directly, and explain any discrepancies that arise.

 3. Express sin−1 x in the form of a power series a xn
nå  by solving y′ = 

(1 − x2)−1/2 in two ways. (Hint: Remember the binomial series.) Use this 
result to obtain the formula
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 4. The differential equations considered in the text and preceding prob-
lems are all linear. The equation

 y′ = 1 + y2 (*)

  is nonlinear, and it is easy to see directly that y = tan x is the particular 
solution for which y(0) = 0. Show that

 
tan x x x x= + + +1

3
2

15
3 5 �

 by assuming a solution for equation (*) in the form of a power series 

a xn
nå  and finding the an in two ways:

 (a)  by the method of the examples in the text (note particularly how the 
nonlinearity of the equation complicates the formulas);

 (b) by differentiating equation (*) repeatedly to obtain

 y″ = 2yy′, y′″ = 2yy″ + 2(y′)2, … ,

 and using the formula an = f(n)(0)/n!.
 5. Solve the equation

 y′ = x − y, y(0) = 0

 by each of the methods suggested in Problem 4. What familiar function 
does the resulting series represent? Verify your conclusion by solving 
the equation directly as a first order linear equation.
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28 Second Order Linear Equations. Ordinary Points

We now turn our attention to the general homogeneous second order linear 
equation

 y″ + P(x)y′ + Q(x)y = 0. (1)

As we know, it is occasionally possible to solve such an equation in terms of 
familiar elementary functions. This is true, for instance, when P(x) and Q(x) 
are constants, and in a few other cases as well. For the most part, however, 
the equations of this type having the greatest significance in both pure and 
applied mathematics are beyond the reach of elementary methods, and can 
only be solved by means of power series.

The central fact about equation (1) is that the behavior of its solutions near 
a point x0 depends on the behavior of its coefficient functions P(x) and Q(x) 
near this point. In this section we confine ourselves to the case in which P(x) 
and Q(x) are “well behaved” in the sense of being analytic at x0, which means 
that each has a power series expansion valid in some neighborhood of this 
point. In this case x0 is called an ordinary point of equation (1), and it turns 
out that every solution of the equation is also analytic at this point. In other 
words, the analyticity of the coefficients of (1) at a certain point implies that 
its solutions are also analytic there. Any point that is not an ordinary point 
of (1) is called a singular point.

We shall prove the statement made in the above paragraph, but first we 
consider some illustrative examples.

In the case of the familiar equation

 y″ + y = 0, (2)

the coefficient functions are P(x) = 0 and Q(x) = 1, These functions are analytic 
at all points, so we seek a solution of the form

 y = a0 + a1x + a2x2 + … + anxn + …. (3)

Differentiating (3) yields

 y′ = a1 + 2a2x + 3a3x2 + … + (n + 1)an+1xn + … (4)

and

 y″ = 2a2 + 2 ∙ 3a3x + 3 · 4a4x2 + … + (n + 1)(n + 2)an+2xn + …. (5)
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If we substitute (5) and (3) into (2) and add the two series term by term, 
we get

 (2a2 + a0) + (2 · 3a3 + a1)x + (3 · 4a4 + a2)x2 + (4 · 5a5 + a3)x3

 + … + [(n + 1)(n + 2)an+2 + an]xn + … = 0;

and equating to zero the coefficients of successive powers of x gives

 2a2 + a0 = 0, 2 · 3a3 + a1 = 0, 3 · 4a4 + a2 = 0,

 4 · 5a5 + a3 = 0,…, (n + 1)(n + 2)an+2 + an = 0,… .

By means of these equations we can express an in terms of a0 or a1, according 
as n is even or odd:
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With these coefficients, (3) becomes
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Let y1(x) and y2(x) denote the two series in parentheses. We have shown for-
mally that (6) satisfies (2) for any two constants a0 and a1. In particular, by 
choosing a0 = 1 and a1 = 0 we see that y1 satisfies this equation, and the choice 
a0 = 0 and a1 = 1 shows that y2 also satisfies the equation. Just as in the examples 
of the previous section, the only remaining issue concerns the convergence of 
the two series defining y1 and y2. But the ratio test shows at once that each 
of these series—and therefore the series (6)—converges for all x (see Problem 
26-3). It follows that all the operations performed on (3) are legitimate, so (6) 
is a valid solution of (2) as opposed to a merely formal solution. Furthermore, 
y1 and y2 are linearly independent since it is obvious that neither series is a 
constant multiple of the other. We therefore see that (6) is the general solution 
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of (2), and that any particular solution is obtained by specifying the values 
of y(0) = a0 and y′(0) = a1.

In the above example the two series in parentheses are easily recognizable 
as the expansions of cos x and sin x, so (6) can be written in the form

 y = a0 cos x + a1 sin x.

Naturally, this conclusion could have been foreseen in the beginning, since 
(2) is a very simple equation whose solutions are perfectly familiar to us. 
However, this result should be regarded as only a lucky accident, for most 
series solutions found in this way are quite impossible to identify and repre-
sent previously unknown functions.

As an illustration of this remark, we use the same procedure to solve 
Legendre’s equation

 (1 − x2)y″ − 2xy′ + p(p + 1)y = 0, (7)

where p is a constant. It is clear that the coefficient functions
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are analytic at the origin. The origin is therefore an ordinary point, and 
we expect a solution of the form y a xn

n= å . Since ¢ = + +åy n a xn
n( )1 1 , we 

get the following expansions for the individual terms on the left side of 
equation (7):
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By equation (7), the sum of these series is required to be zero, so the coef-
ficient of xn must be zero for every n:

 (n + 1)(n + 2)an+2 − (n − 1)nan − 2nan + p(p + 1)an = 0.
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With a little manipulation, this becomes
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Just as in the previous example, this recursion formula enables us to express an 
in terms of a0 or a1 according as n is even or odd:
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and so on. By inserting these coefficients into the assumed solution 
y a xn

n= å , we obtain
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as our formal solution of (7).
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When p is not an integer, each series in brackets has radius of convergence 
R = 1. This is most easily seen by using the recursion formula (9): for the first 
series, this formula (with n replaced by 2n) yields
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as n → ∞, and similarly for the second series. As before, the fact that each 
series has positive radius of convergence justifies the operations we have per-
formed and shows that (10) is a valid solution of (7) for every choice of the 
constants a0 and a1. Each bracketed series is a particular solution; and since 
it is clear that the functions defined by these series are linearly independent, 
(10) is the general solution of (7) on the interval |x|< 1.

The functions defined by (10) are called Legendre functions, and in general 
they are not elementary. However, when p is a nonnegative integer, one of 
the series terminates and is thus a polynomial—the first series if p is even 
and the second series if p is odd—while the other does not and remains 
an infinite series. This observation leads to the particular solutions of (7) 
known as Legendre polynomials, whose properties and applications we dis-
cuss in Chapter 8.

We now apply the method of these examples to establish the following 
general theorem about the nature of solutions near ordinary points.

Theorem A. Let x0 be an ordinary point of the differential equation

 y″ + P(x)y′ + Q(x)y = 0, (11)

and let a0 and a1 be arbitrary constants. Then there exists a unique function y(x) 
that is analytic at x0, is a solution of equation (11) in a certain neighborhood of this 
point, and satisfies the initial conditions y(x0) = a0 and y′(x0) = a1. Furthermore, if 
the power series expansions of P(x) and Q(x) are valid on an interval |x − x0|< R, 
R > 0, then the power series expansion of this solution is also valid on the same 
interval.

Proof. For the sake of convenience, we restrict our argument to the case in 
which x0 = 0. This permits us to work with power series in x rather than x − x0, 
and involves no real loss of generality. With this slight simplification, the 
hypothesis of the theorem is that P(x) and Q(x) are analytic at the origin and 
therefore have power series expansions
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and
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that converge on an interval |x|< R for some R > 0. Keeping in mind the 
specified initial conditions, we try to find a solution for (11) in the form of 
a power series
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with radius of convergence at least R. Differentiation of (14) yields
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It now follows from the rule for multiplying power series that
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On substituting (16), (17), and (18) into (11) and adding the series term by 
term, we obtain
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so we have the following recursion formula for the an:

 
( )( ) [( ) ]n n a k p a q an

k

n

n k k n k k+ + = - + ++

=

- + -å1 2 12

0

1 . (19)

For n = 0, 1, 2, … this formula becomes

 2a2 = − (p0a1 + q0a0),

 2 · 3a3 = −(p1a1 + 2p0a2 + q1a0 + q0a1),

 3 · 4a4 = −(p2a1 + 2p1a2 + 3p0a3 + q2a0 + q1a1 + q0a2),

 ….

These formulas determine a2, a3, … in terms of a0 and a1, so the resulting 
series (14), which formally satisfies (11) and the given initial conditions, is 
uniquely determined by these requirements.

Suppose now that we can prove that the series (14), with its coefficients 
defined by formula (19), actually converges for |x|< R. Then by the general 
theory of power series it will follow that the formal operations by which 
(14) was made to satisfy (11)—termwise differentiation, multiplication, and 
term-by-term addition—are justified, and the proof will be complete. This 
argument is not easy. We give the details in Appendix A, where they can be 
omitted conveniently by any reader who wishes to do so.

A few final remarks are in order. In our examples we encountered only 
what are known as two-term recursion formulas for the coefficients of the 
unknown series solutions. The simplicity of these formulas makes it fairly 
easy to determine the general terms of the resulting series and to obtain 
precise information about their radii of convergence. However, it is appar-
ent from formula (19) that this simplicity is not to be expected in general. 
In most cases the best we can do is to find the radii of convergence of the 
series expansions of P(x) and Q(x) and to conclude from the theorem that 
the radius for the series solution must be at least as large as the smaller of 
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these numbers. Thus, for Legendre’s equation it is clear from (8) and the 
familiar expansion
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that R = 1 for both P(x) and Q(x). We therefore know at once, without further 
calculation, that any solution of the form y a xn

n= å  must be valid at least 
on the interval |x|< l.

Problems

 1. Find the general solution of (1 + x2)y″ + 2xy′ − 2y = 0 in terms of power 
series in x. Can you express this solution by means of elementary 
functions?

 2. Consider the equation y″ + xy′ + y = 0.

 (a)  Find its general solution y a xn
n= å  in the form y = a0y1(x) + a1y1(x), 

where y1(x) and y2(x) are power series.

 (b)  Use the ratio test to verify that the two series y1(x) and y2(x) converge 
for all x, as Theorem A asserts.

 (c)  Show that y1(x) is the series expansion of e x– /2 2, use this fact to find a 
second independent solution by the method of Section 16, and con-
vince yourself that this second solution is the function y2(x) found 
in (a).

 3. Verify that the equation y″ + y′ − xy = 0 has a three-term recursion for-
mula, and find its series solutions y1(x) and y2(x) such that

 (a) y y1 10 1 0 0( ) , ( )= ¢ = ;
 (b) y y2 20 0 0 1( ) , ( )= ¢ = .

 Theorem A guarantees that both series converge for all x. Notice 
how difficult this would be to prove by working with the series 
themselves.

 4. The equation y″ + (p + 1
2
 − 1

4
x2)y = 0, where p is a constant, certainly has a 

series solution of the form y a xn
n= å .

 (a)  Show that the coefficients an are related by the three-term recursion 
formula
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 (b)  If the dependent variable is changed from y to w by means 
of y we x= – /2 4, show that the equation is transformed into 
w″ − xw′ + pw = 0.

 (c)  Verify that the equation in (b) has a two-term recursion formula 
and find its general solution.

 5. Solutions of Airy’s equation y″ + xy = 0 are called Airy functions, and 
have applications to the theory of diffraction.4

 (a)  Apply the theorems of Section 24 to verify that every nontrivial 
Airy function has infinitely many positive zeros and at most one 
negative zero.

 (b)  Find the Airy functions in the form of power series, and verify 
directly that these series converge for all x.

 (c)  Use the results of (b) to write down the general solution of y″ − xy = 0 
without calculation.

 6. Chebyshev’s equation is

 (1 − x2)y″ − xy′ + p2y = 0,

 where p is a constant.
 (a) Find two linearly independent series solutions valid for |x|< 1.
 (b)  Show that if p = n where n is an integer ≥ 0, then there is a polyno-

mial solution of degree n. When these are multiplied by suitable 
constants, they are called the Chebyshev polynomials. We shall return 
to this topic in the problems of Section 31 and in Appendix D.

 7. Hermite’s equation is

 y″ − 2xy′ + 2py = 0,

 where p is a constant.
 (a) Show that its general solution is y(x) = a0y1(x) + a1y2(x), where
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4 Sir George Biddell Airy (1801–1892), Astronomer Royal of England for many years, was a 
hard-working, systematic plodder whose sense of decorum almost deprived John Couch 
Adams of credit for discovering the planet Neptune. As a boy Airy was notorious for his 
skill in designing peashooters; but in spite of this promising start and some early work in the 
theory of light—in connection with which he was the first to draw attention to the defect of 
vision known as astigmatism—he developed into the excessively practical type of scientist 
who is obsessed by elaborate numerical computations and has little use for general scientific 
ideas.
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  and
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  By Theorem A, both series converge for all x. Verify this directly.
 (b)  If p is a nonnegative integer, then one of these series terminates 

and is thus a polynomial—y1(x) if p is even, and y2(x) if p is odd—
while the other remains an infinite series. Verify that for p = 0, 1, 

2, 3, 4, 5, these polynomials are 1, x, 1 − 2x2, x − 2
3

x3, 1 − 4x2 + 4
3

x4, 

x x x–
4
3

4
15

3 5+ .

 (c)  It is clear that the only polynomial solutions of Hermite’s equa-
tion are constant multiples of the polynomials described in 
(b). Those constant multiples with the property that the terms con-
taining the highest powers of x are of the form 2nxn are denoted 
by Hn(x) and called the Hermite polynomials. Verify that H0(x) = 1, 
H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x, H4(x) = 16x4 − 48x2+ 12, and 
H5(x) = 32x5 − 160x3 + 120x.

 (d)  Verify that the polynomials listed in (c) are given by the general 
formula
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.

 In Appendix B we show how the formula in (d) can be deduced 
from the series in (a), we prove several of the most useful prop-
erties of the Hermite polynomials, and we show briefly how 
these polynominals arise in a fundamental problem of quantum 
mechanics.

29 Regular Singular Points

We recall that a point x0 is a singular point of the differential equation

 y″ + P(x)y′ + Q(x)y = 0 (1)
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if one or the other (or both) of the coefficient functions P(x) and Q(x) fails to be 
analytic at x0. In this case the theorem and methods of the previous section 
do not apply, and new ideas are necessary if we wish to study the solutions 
of (1) near x0. This is a matter of considerable practical importance; for many 
differential equations that arise in physical problems have singular points, 
and the choice of physically appropriate solutions is often determined by 
their behavior near these points. Thus, while we might want to avoid the 
singular points of a differential equation, it is precisely these points that usu-
ally demand particular attention. As a simple example, the origin is clearly 
a singular point of
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y

x
y

2 2
02– .

It is easy to verify that y1 = x and y2 = x−2 are independent solutions for 
x > 0, so y = c1x + c2x−2 is the general solution on this interval. If we happen 
to be interested only in solutions that are bounded near the origin, then 
it is evident from this general solution that these are obtained by putting 
c2 = 0.

In general, there is very little that can be said about the solutions of (1) 
near the singular point x0. Fortunately, however, in most of the applications 
the singular points are rather “weak,” in the sense that the coefficient func-
tions are only mildly nonanalytic, and simple modifications of our previ-
ous methods yield satisfactory solutions. These are the regular singular 
points, which are defined as follows. A singular point x0 of equation (1) is 
said to be regular if the functions (x − x0)P(x) and (x − x0)2Q(x) are analytic, 
and irregular otherwise.5 Roughly speaking, this means that the singular-
ity in P(x) cannot be worse than 1/(x − x0), and that in Q(x) cannot be worse 
than 1/(x − x0)2.

If we consider Legendre’s equation 28-(7) in the form
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it is clear that x = 1 and x = −1 are singular points. The first is regular 
because
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5 This terminology follows a time-honored tradition in mathematics, according to which situa-
tions that elude simple analysis are dismissed by such pejorative terms as “improper,” “inad-
missible,” “degenerate,” “irregular,” and so on.
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are analytic at x = 1, and the second is also regular for similar reasons. As 
another example, we mention Bessel’s equation of order p, where p is a non-
negative constant:

 x2y″ + xy′ + (x2 − p2)y = 0. (2)

If this is written in the form
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it is apparent that the origin is a regular singular point because

 xP(x) = 1 and x2Q(x) = x2 − p2

are analytic at x = 0. In the remainder of this chapter we will often use Bessel’s 
equation as an illustrative example, and in Chapter 8 its solutions and their 
applications will be examined in considerable detail.

Now let us try to understand the reasons behind the definition of a regu-
lar singular point. To simplify matters, we may assume that the singular 
point x0 is located at the origin; for if it is not, then we can always move it to 
the origin by changing the independent variable from x to x − x0. Our start-
ing point is the fact that the general form of a function analytic at x = 0 is 
a0 + a1x + a2x2 + …. As a consequence, the origin will certainly be a singular 
point of (1) if
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and at least one of the coefficients with negative subscripts is nonzero. The 
type of solution we are aiming at for (1), for reasons that will appear below, 
is a “quasi power series” of the form

 y = xm(a0 + a1x + a2x2 + …)

 = a0xm + a1xm+1 + a2xm+2 + …, (3)

where the exponent m may be a negative integer, a fraction, or even an irra-
tional real number. We will see in Problems 6 and 7 that two independent 
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solutions of this kind are possible only if the above expressions for P(x) and 
Q(x) do not contain, respectively, more than the first term or more than the 
first two terms to the left of the constant terms b0 and c0. An equivalent state-
ment is that xP(x) and x2Q(x) must be analytic at the origin; and according 
to the definition, this is precisely what is meant by saying that the singular 
point x = 0 is regular.

The next question we attempt to answer is: where do we get the idea that 
series of the form (3) might be suitable solutions for equation (1) near the 
regular singular point x = 0? At this stage, the only second order linear equa-
tion we can solve completely near a singular point is the Euler equation dis-
cussed in Problem 17–5:

 x2y″ + pxy′ + qy = 0. (4)

If this is written in the form
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so that P(x) = p/x and Q(x) = q/x2, then it is clear that the origin is a regular 
singular point whenever the constants p and q are not both zero. The solu-
tions of this equation provide a very suggestive bridge to the general case, so 
we briefly recall the details. The key to finding these solutions is the fact that 
changing the independent variable from x to z = log x transforms (4) into an 
equation with constant coefficients. To carry out this process, we assume that 
x > 0 (so that z is a real variable) and write
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When these expressions are inserted in (4), the transformed equation is 
clearly
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whose auxiliary equation is

 m2 + (p − 1)m + q = 0. (7)

If the roots of (7) are m1 and m2, then we know that (6) has the following 
independent solutions:
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Since ez = x, the corresponding pairs of solutions for (4) are
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If we seek solutions valid on the interval x < 0, we have only to change the 
variable to t = −x and solve the resulting equation for t > 0.

We have presented this discussion of Euler’s equation and its solutions for 
two reasons. First, we point out that the most general differential equation 
with a regular singular point at the origin is simply equation (5) with the 
constant numerators p and q replaced by power series:
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Second, if the transition from (5) to (9) is accomplished by replacing con-
stants by power series, then it is natural to guess that the corresponding 
transition from (8) to the solutions of (9) might be accomplished by replacing 
power functions xm by series of the form (3). We therefore expect that (9) will 
have two independent solutions of the form (3), or perhaps one of this form 
and one of the form

 y = xm log x (a0 + a1x + a2x2 + …), (10)

where we assume that x > 0. The next section will show that these are very 
good guesses.

One final remark is necessary before we leave these generalities. Notice 
that if a0 = 0 in expressions like (3) and (10), then some positive integral power 
of x can be factored out of the power series part and combined with xm. We 
therefore always assume that a0 ≠ 0 in such expressions; and this assump-
tion means only that the highest possible power of x is understood to be 
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factored out before any calculations are performed. Series of the form (3) 
are called Frobenius series, and the procedure described below for finding 
solutions of this type is known as the method of Frobenius.6 Frobenius series 
evidently include power series as special cases, whenever m is zero or a posi-
tive integer.

To illustrate the above ideas, we consider the equation

 2x2y″ + x(2x + 1)y′ − y = 0. (11)

If this is written in the more revealing form
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then we see at once that xP(x) = 
1
2

 + x and x2Q(x) = –
1
2

, so x = 0 is a regular sin-

gular point. We now introduce our assumed Frobenius series solution

 y = xm(a0 + a1x + a2x2 + …)

 = a0xm + a1xm+1 + a2xm+2 + …, (13)

and its derivatives

 y′ = a0mxm−1 + a1(m + 1)xm + a2(m + 2)xm+1 + …

and

 y″ = a0m(m − 1)xm−2 + a1(m + 1)mxm−1

 + a2(m + 2)(m + 1)xm + ….

To find the coefficients in (13), we proceed in essentially the same way as in 
the case of an ordinary point, with the significant difference that now we 
must also find the appropriate value (or values) of the exponent m. When the 
three series above are inserted in (12) and the common factor xm−2 is canceled, 
the result is

6 Ferdinand Georg Frobenius (1849–1917) taught in Berlin and Zurich. He made several valu-
able contributions to the theory of elliptic functions and differential equations. However, his 
most influential work was in the field of algebra, where he invented and applied the impor-
tant concept of group characters and proved a famous theorem about possible extensions of 
the complex number system.
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By inspection, we combine corresponding power of x and equate the 
coefficient of each power of x to zero. This yields the following system of 
equations:
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As we explained above, it is understood that a0 ≠ 0. It therefore follows from 
the first of these equations that
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This is called the indicial equation of the differential equation (11). Its 
roots are
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and these are only possible values for the exponent m in (13). For each of 
these values of m, we now use the remaining equations of (14) to calculate a1, 
a2, … in terms of a0. For m1 = 1, we obtain
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And for m2 = – 1
2

, we obtain

 

a
a

a

a
a

1

0

0

2

1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

3
2

1
2

1
2

3
2

1
2

1
2

=
æ
è
ç

ö
ø
÷ + ×

=

= -
× + ×

=

– –
– ,

–
– aa a1 0

1
2

= .

We therefore have the following two Frobenius series solutions, in each of 
which we have put a0 =1:
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These solutions are clearly independent for x > 0, so the general solution of 
(11) on this interval is
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The problem of determining the interval of convergence for the two power 
series in parentheses will be discussed in the next section.

If we look closely at the way in which (15) arises from (12), it is easy to see 
that the indicial equation of the more general differential equation (9) is

 m(m − 1) + mp0 + q0 = 0. (18)

In our example, the indicial equation had two distinct real roots leading to 
the two independent series solutions (16) and (17). It is natural to expect such 
a result whenever the indicial equation (18) has distinct real roots m1 and 
m2. This turns out to be true if the difference between m1 and m2 is not an 
integer. If, however, this difference is an integer, then it often (but not always) 
happens that one of the two expected series solutions does not exist. In this 
case it is necessary—just as in the case m1 = m2—to find a second independent 
solution by other methods. In the next section we investigate these difficul-
ties in greater detail.
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Problems

 1. For each of the following differential equations, locate and classify its 
singular points on the x-axis:

 (a) x3(x − 1)y″ − 2(x − 1)y′ + 3xy = 0;
 (b) x2(x2 − 1)2y″ − x(1 − x)y′ + 2y = 0;
 (c) x2y″ + (2 − x)y′ = 0;
 (d) (3x + 1)xy″ − (x + 1)y′ + 2y = 0.
 2. Determine the nature of the point x = 0 for each of the following 

equations:
 (a) y″ + (sin x)y = 0;
 (b) xy″ + (sin x)y = 0;
 (c) x2y″ + (sin x)y = 0;
 (d) x3y″ + (sin x)y = 0;
 (e) x4y″ + (sin x)y = 0.
 3. Find the indicial equation and its roots for each of the following dif-

ferential equations:
 (a) x3y″ + (cos 2x − 1)y′ + 2xy = 0;
 (b) 4x2y″ + (2x4 − 5x)y′ + (3x2 + 2)y = 0.
 4. For each of the following equations, verify that the origin is a regu-

lar singular point and calculate two independent Frobenius series 
solutions:

 (a) 4xy″ + 2y′ + y = 0;
 (b) 2xy″ + (3 − x)y′ − y = 0;
 (c) 2xy″ + (x + 1)y′ + 3y = 0;
 (d) 2x2y″ + xy′ − (x + 1)y = 0.
 5. When p = 0, Bessel’s equation (2) becomes

 x2y″ + xy′ + x2y = 0.

 Show that its indicial equation has only one root, and use the method 
of this section to deduce that
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 is the corresponding Frobenius series solution [see Problem 26-7(b)].
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 6. Consider the differential equation
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 (a)  Show that x = 0 is an irregular singular point.
 (b)  Use the fact that y1 = x is a solution to find a second independent 

solution y2 by the method of Section 16.
 (c)  Show that the second solution y2 found in (b) cannot be expressed 

as a Frobenius series.
 7. Consider the differential equation
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 where p and q are nonzero real numbers and b and c are posi-
tive integers. It is clear that x = 0 is an irregular singular point if 
b > 1 or c > 2.

 (a)  If b = 2 and c = 3, show that there is only one possible value of m for 
which there might exist a Frobenius series solution.

 (b)  Show similarly that m satisfies a quadratic equation—and hence we 
can hope for two Frobenius series solutions, corresponding to the 
roots of this equation—if and only if b = 1 and c ≤ 2. Observe that 
these are exactly the conditions that characterize x = 0 as a “weak” 
or regular singular point as opposed to a “strong” or irregular sin-
gular point.

 8. The differential equation

 x2y″ + (3x − 1)y′ + y = 0

 has x = 0 as an irregular singular point. If (3) is inserted into this equa-
tion, show that m = 0 and the corresponding Frobenius series “solution” 
is the power series
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 which converges only at x = 0. This demonstrates that even when a 
Frobenius series formally satisfies such an equation, it is not necessar-
ily a valid solution.
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30 Regular Singular Points (Continued)

Our work in the previous section was mainly directed at motivation and 
technique. We now confront the theoretical side of the problem of solving the 
general second order linear equation

 y″ + P(x)y′ + Q(x)y = 0 (1)

near the regular singular point x = 0. The ideas developed above suggest 
that we attempt a formal calculation of any solutions of (1) that have the 
Frobenius form

 y = xm(a0 + a1x + a2x2 +…), (2)

where a0 ≠ 0 and m is a number to be determined. Our hope is that any for-
mal solution that arises in this way can be legitimized by a proof and estab-
lished as a valid solution. The generality of this approach will also serve to 
illuminate the circumstances under which equation (1) has only one solu-
tion of the form (2).7 For reasons already explained, we confine our attention 
to the interval x > 0. The behavior of solutions on the interval x < 0 can be 
studied by changing the variable to t = −x and solving the resulting equation 
for t > 0.

Our hypothesis is that xP(x) and x2Q(x) are analytic at x = 0, and therefore 
have power series expansions
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which are valid on an interval |x|< R for some R > 0. Just as in the example of 
the previous section, we must find the possible values of m in (2); and then, 
for each acceptable m, we must calculate the corresponding coefficients a0, a1, 
a2, … . If we write (2) in the form

 
y x a x a xm

n
n

n

n
m n

n

= =
=

¥
+

=

¥

å å
0 0

,

7 When we say that (1) has “only one” solution of the form (2), we mean that a second indepen-
dent solution of this form does not exist.
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then differentiation yields
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The terms P(x)y′ and Q(x)y in (1) can now be written as
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When these expressions for y″, P(x)y′ and Q(x)y are inserted in (1) and the 
common factor xm−2 is canceled, then the differential equation becomes
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and equating to zero the coefficient of xn yields the following recursion for-
mula for the an:
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On writing this out for the successive values of n, we get
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If we put f(m) = m(m − 1) + mp0 + q0, then these equations become

 a0f(m) = 0,

 a1f(m + 1) + a0(mp1 + q1) = 0,

 a2f(m + 2) + a0(mp2 + q2) + a1[(m +1)p1 + q1] = 0,

 …

 an f(m + n) + a0(mpn + qn) + … + an−1[(m + n − 1)p1 + q1] = 0,

 ….

Since a0 ≠ 0, we conclude from the first of these equations that f(m) = 0 or, 
equivalently, that

 m(m − 1) + mp0 + q0 = 0. (5)
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This is the indicial equation, and its roots m1 and m2—which are possible values 
for m in our assumed solution (2)—are called the exponents of the differential 
equation (1) at the regular singular point x = 0. The following equations give 
a1 in terms of a0, a2 in terms of a0 and a1 and so on. The an are therefore deter-
mined in terms of a0 for each choice of m unless f(m + n) = 0 for some positive 
integer n, in which case the process breaks off. Thus, if m1 = m2 + n for some 
integer n ≥ 1, the choice m = m1 gives a formal solution but in general m = m2 
does not—since f(m2 + n) = f(m1) = 0. If m1 = m2 we also obtain only one formal 
solution. In all other cases where m1 and m2 are real numbers, this procedure 
yields two independent formal solutions. It is possible, of course, for m1 and 
m2 to be conjugate complex numbers, but we do not discuss this case because 
an adequate treatment would lead us too far into complex analysis. The spe-
cific difficulty here is that if the m’s are allowed to be complex, then the an 
will also be complex, and we do not assume that the reader is familiar with 
power series having complex coefficients.

These ideas are formulated more precisely in the following theorem.

Theorem A. Assume that x = 0 is a regular singular point of the differential equa-
tion (1) and that the power series expansions (3) of xP(x) and x2Q(x) are valid on an 
interval |x|< R with R > 0. Let the indicial equation (5) have real roots m1 and m2 
with m2 ≤ m1. Then equation (1) has at least one solution
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on the interval 0 < x < R, where the an are determined in terms of a0 by the recursion 

formula (4) with m replaced by m1, and the series a xn
nå  converges for |x|< R. 

Furthermore, if m1 − m2 is not zero or a positive integer, then equation (1) has a sec-
ond independent solution
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on the same interval, where in this case the an are determined in terms of a0 by for-
mula (4) with m replaced by m2, and again the series a xn

nå  converges for |x|< R.

In view of what we have already done, the proof of this theorem can be 
completed by showing that in each case the series a xn

nå  converges on the 
interval |x|< R. Readers who are interested in the details of this argument 
will find them in Appendix A. We emphasize that in a specific problem it 
is much simpler to substitute the general Frobenius series (2) directly into 
the differential equation than to use the recursion formula (4) to calculate 
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the coefficients. This recursion formula finds its main application in the deli-
cate convergence proof given in Appendix A.

Theorem A unfortunately fails to answer the question of how to find a 
second solution when the difference m1 − m2 is zero or a positive integer. In 
order to convey an idea of the possibilities here, we distinguish three cases.

CASE A. If m1 = m2, there cannot exist a second Frobenius series solution.

The other two cases, in both of which m1 − m2 is a positive integer, will be 
easier to grasp if we insert m = m2 in the recursion formula (4) and write it as

 anf(m2 + n) = −a0(m2pn + qn) − … − an−1[(m2 + n − 1)p1 + q1]. (8)

As we know, the difficulty in calculating the an arises because f(m2 + n) = 0 for 
a certain positive integer n. The next two cases deal with this problem.

CASE B. If the right side of (8) is not zero when f(m2 + n) = 0, then there is no 
possible way of continuing the calculation of the coefficients and there can-
not exist a second Frobenius series solution.

CASE C. If the right side of (8) happens to be zero when f(m2 + n) = 0, then an is 
unrestricted and can be assigned any value whatever. In particular, we can 
put an = 0 and continue to compute the coefficients without any further diffi-
culties. Hence in this case there does exist a second Frobenius series solution.

The problems below will demonstrate that each of these three possibilities 
actually occurs.

The following calculations enable us to discover what form the second solu-
tion takes when m1 − m2 is zero or a positive integer. We begin by defining a 
positive integer k by = m1 − m2 + 1. The indicial equation (5) can be written as

 (m − m1)(m − m2) = m2 − (m1 + m2)m + m1m2 = 0,

so equating the coefficients of m yields p0 − 1 = −(m1 + m2) or m2 = 1 − p0 − m1, 
and we have k = 2m1 + p0. By using the method of Section 16, we can find a 
second solution y2 from the known solution y x a a xm

1 0 1
1= + +( )�  by writing 

y2 = vy1, where
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The function g(x) defined by the last equality is clearly analytic at x = 0, with 
g a( )0 1 0

2= , so in some interval about the origin we have

 g(x) = b0 + b1x + b2x2 + …, b0 ≠ 0. (9)

It follows that

 v′ = b0x−k + b1x−k+1 + … + bk−1x−1 + bk + …,

so
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If we factor x−k+1 out of the series last written, use m1 − k + 1 = m2, and multiply 
the two remaining power series, then we obtain
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as our second solution.
Formula (10) has only limited value as a practical tool; but it does yield 

several grains of information. First, if the exponents m1 and m2 are equal, 
then k = 1 and bk−1 = b0 ≠ 0; so in this case—which is Case A above—the term 
containing log x is definitely present in the second solution (10). However, 
if m1 − m2 = k − 1 is a positive integer, then sometimes bk−1 ≠ 0 and the loga-
rithmic term is present (Case B), and sometimes bk−1 = 0 and there is no loga-
rithmic term (Case C). The practical difficulty here is that we cannot readily 
find bk−1 because we have no direct means of calculating the coefficients in 
(9). In any event, we at least know that in Cases A and B, when bk−1 ≠ 0 and 
the method of Frobenius is only partly successful, the general form of a 
second solution is
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where the cn are certain unknown constants that can be determined by sub-
stituting (11) directly into the differential equation. Notice that this expres-
sion is similar to formula 29-(10) but somewhat more complicated.

Problems

 1. The equation

 x2y″ − 3xy′ + (4x + 4)y = 0

 has only one Frobenius series solution. Find it.
 2. The equation

 4x2y″ − 8x2y′ + (4x2 + 1)y = 0

 has only one Frobenius series solution. Find the general solution.
 3. Find two independent Frobenius series solutions of each of the follow-

ing equations:
 (a) xy″ + 2y′ + xy = 0;
 (b) x2y″ − x2y′ + (x2 − 2)y = 0;
 (c) xy″ − y′ + 4x3y = 0.
 4. Bessel’s equation of order p = 1 is

 x2y″ + xy′ + (x2 − 1)y = 0.

 Show that m1 − m2 = 2 and that the equation has only one Frobenius 
series solution. Then find it.

 5. Bessel’s equation of order p = 1
2

 is
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 Show that m1 − m2 = 1, but that nevertheless the equation has two inde-
pendent Frobenius series solutions. Then find them.

 6. The only Frobenius series solution of Bessel’s equation of order p = 0 
is given in problem 29-5. By taking this as y1, and substituting for-
mula (11) into the differential equation, obtain the second independent 
solution
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31 Gauss’s Hypergeometric Equation

This famous differential equation is

 x(1 − x)y″ + [c − (a + b + 1)x]y′ − aby = 0, (1)

where a, b, and c are constants. The coefficients of (1) may look rather strange, 
but we shall find that they are perfectly adapted to the use of its solutions in 
a wide variety of situations. The best way to understand this is to solve the 
equation for ourselves and see what happens.

We have
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so x = 0 (and similarly x = 1) is a regular singular point. These expansion show 
that p0 = c and q0 = 0, so the indicial equation is

 m(m − 1) + mc = 0 or m[m − (1 − c)] = 0

and the exponents are m1 = 0 and m2 = 1 − c. If 1 − c is not a positive integer, that 
is, if c is not zero or a negative integer, then Theorem 30-A guarantees that (1) 
has a solution of the form
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where a0 is a nonzero constant. On the substituting this into (1) and equating 
to zero the coefficient of xn, we obtain the following recursion formula for 
the an:
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We now set a0 = 1 and calculate the other an in succession:
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With these coefficients, (2) becomes
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This is known as the hypergeometric series, and is denoted by the symbol 
F(a,b,c,x). It is called this because it generalizes the familiar geometric series 
as follows: when a = 1 and c = b, we obtain
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If a or b is zero or a negative integer, the series (4) breaks off and is a poly-
nomial; otherwise the ratio test shows that it converges for |x|< 1, since (3) 
gives
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This convergence behavior could also have been predicted from the fact that 
the singular point closest to the origin is x = 1. Accordingly, when c is not zero 
or a negative integer, F(a,b,c,x) is an analytic function—called the hypergeo-
metric function—on the interval |x|< 1. It is the simplest particular solution 
of the hypergeometric equation. The hypergeometric function has a great 
many properties, of which the most obvious is that it is unaltered when a and 
b are interchanged: F(a,b,c,x) = F(b,a,c,x).8

8 A summary of some of its other properties can be found in A. Erdélyi (ed.), Higher 
Transcendental Functions, Vol. I, pp. 56–119, McGraw-Hill, New York, 1953.
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If 1 − c is not zero or a negative integer—which means that c is not a posi-
tive integer—then Theorem 30-A also tells us that there is a second indepen-
dent solution of (1) near x = 0 with exponent m2 = 1 − c. This solution can be 
found directly, by substituting

 y = x1−c(a0 + a1x + a2x2 + …)

into (1) and calculating the coefficients. It is more instructive, however, to 
change the dependent variable in (1) from y to z by writing

 y = x1−cz.

When the necessary computations are performed—students should do this 
work themselves—equation (1) becomes

 x(1 − x)z″ + [(2 − c) − ([a − c + 1] + [b − c + 1] + 1)x]z′
 − (a − c + 1)(b − c + 1)z = 0, (5)

which is the hypergeometric equation with the constants a, b, and c replaced 
by a − c + 1, b − c + 1, and 2 − c. We already know that (5) has the power series 
solution

 z = F(a − c + 1, b − c + 1, 2 − c,x)

near the origin, so our desired second solution is

 y = x1−cF(a − c + 1, b − c + 1, 2 − c,x).

Accordingly, when c is not an integer, we have

 y = c1F(a,b,c,x) + c2 x1−cF(a − c + 1, b − c + 1, 2 − c,x) (6)

as the general solution of the hypergeometric equation near the singular 
point x = 0.

In general, the above solution is only valid near the origin. We now solve 
(1) near the singular point x = 1. The simplest procedure is to obtain this solu-
tion from the one already found, by introducing a new independent variable 
t = 1 − x. This makes x = 1 correspond to t = 0 and transforms (1) into

 t(1 − t)y″ + [(a + b − c + 1) − (a + b + 1)t]y′ − aby = 0,

where the primes signify derivatives with respect to t. Since this is a hyper-
geometric equation, its general solution near t = 0 can be written down at 
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once from (6), by replacing x by t and c by a + b − c + 1; and when t is replaced 
by 1 − x, we see that the general solution of (1) near x = 1 is

 y = c1F(a,b, a + b − c + 1, 1 − x)
 + c2(1 − x)c−a−bF(c − b, c − a, c − a − b + 1, 1 − x). (7)

In this case it is necessary to assume that c − a − b is not an integer.
Formulas (6) and (7) show that the adaptability of the constants in equation 

(1) makes it possible to express the general solution of this equation near each 
of its singular points in terms of the single function F. Much more than this 
is true, for these ideas are applicable to a wide class of differential equations. 
The key is to notice the following general features of the hypergeometric 
equation: that the coefficients of y″, y′, and y are polynomials of degrees 2, 
1, and 0, and also that the first of these polynomials has distinct real zeros. 
Any differential equation with these characteristics can be brought into the 
hypergeometric form by a linear change of the independent variable, and 
hence can be solved near its singular points in terms of the hypergeometric 
function.

To make these remarks somewhat more concrete, we briefly consider the 
general equation of this type,

 (x − A)(x − B)y″ + (C + Dx)y′ + Ey = 0, (8)

where A ≠ B. If we change the independent variable from x to t by means of

 
t

x A
B A
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,

then x = A corresponds to t = 0, and x = B to t = 1. With a little calculation, equa-
tion (8) assumes the form

 t(1 − t)y″ + (F + Gt)y′ + Hy = 0,

where F, G, and H are certain combinations of the constants in (8) and the 
primes indicate derivatives with respect to t. This is a hypergeometric equa-
tion with a, b, and c defined by

 F = c, G = –(a + b + 1), H = −ab,

and can therefore be solved near t = 0 and t = 1 in terms of the hypergeometric 
function. But this means that (8) can be solved in terms of the same function 
near x = A and x = B.

The above ideas suggest the protean versatility of the hypergeometric func-
tion F(a,b,c,x) in the field of differential equations. We will also see (in Problem 1) 
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that the flexibility afforded by the three constants a, b, and c allows the hyper-
geometric function to include as special cases most of the familiar functions 
of elementary analysis. This function was known to Euler, who discovered a 
number of its properties; but it was first studied systematically in the context 
of the hypergeometric equation by Gauss, who in this connection gave the 
earliest satisfactory treatment of the convergence of an infinite series. Gauss’s 
work was of great historical importance because it initiated far-reaching devel-
opments in many branches of analysis—not only in infinite series, but also in 
the general theories of linear differential equations and functions of a complex 
variable. The hypergeometric function has retained its significance in modern 
mathematics because of its powerful unifying influence, since many of the 
principal special functions of higher analysis are also related to it.9

Problems

 1. Verify each of the following by examining the series expansions of the 
functions on the left sides:

 (a) (1 + x)p = F(−p,b,b, − x);
 (b) log(1 + x) = xF(1,1,2, −x);
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 Satisfy yourself of the validity of these statements without attempting 
to justify the limit processes involved.

 2. Find the general solution of each of the following differential equations 
near the indicated singular point:

 (a) x x y x y y x( ) ,1
3
2

2 2 0 0- ¢¢ + -æ
è
ç

ö
ø
÷ ¢ + = = ;

9 A brief account of Gauss and his scientific work is given in Appendix C.
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 (b) (2x2 + 2x)y″ + (1 + 5x)y′ + y = 0, x = 0;
 (c) (x2 − 1)y″ + (5x + 4)y′ + 4y = 0, x = −1;
 (d) (x2 − x − 6)y″ + (5 + 3x)y′ + y = 0, x = 3.
 3. In Problem 28-6 we discussed Chebyshev’s equation

 (1 − x2)y″ − xy′ + p2y = 0,

 where p is a nonnegative constant. Transform it into a hypergeometric 

equation by replacing x by t = 
1
2

(1 − x), and show that its general solution 
near x = 1 is
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 4. Consider the differential equation

 x(1 − x)y″ + [p − (p + 2)x]y′ − py = 0,

 where p is a constant.
 (a)  If p is not an integer, find the general solution near x = 0 in terms of 

hypergeometric functions.
 (b)  Write the general solution found in (a) in terms of elementary 

functions.
 (c) When p = 1, the differential equation becomes

 x(1 − x)y″ + (1 − 3x)y′ − y = 0,

 and the solution in (b) is no longer the general solution. Find the gen-
eral solution in this case by the method of Section 16.

 5. Some differential equations are of the hypergeometric type even 
though they may not appear to be so. Find the general solution of
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 near the singular point x = 0 by changing the independent variable to 
t = ex.

 6. (a)   Show that ¢ = + + +F a b c x
ab
c

F a b c x( , , , ) ( , , , )1 1 1  .

 (b)  By applying the differentiation formula in (a) to the result of 
Problem 3, show that the only solutions of Chebyshev’s equation 

whose derivatives are bounded near x = 1 are y c F p p
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Conclude that the only polynomial solutions of Chebyshev’s equation 

are constant multiples of F n n
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 where n is a non-negative 
integer.
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 The Chebyshev polynomial of degree n is denoted by Tn(x) and defined by 

T F n, n, ,n( ) =    x
x- -æ
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÷

1
2

1
2

.
10

 An interesting application of these polyno-

mials to the theory of approximation is discussed in Appendix D,

32 The Point at Infinity

It is often desirable, in both physics and pure mathematics, to study the solu-
tions of

 y″ + P(x)y′ + Q(x)y = 0 (1)

for large values of the independent variable. For instance, if the variable is 
time, we may want to know how the physical system described by (1) behaves 
in the distant future, when transient disturbances have faded away.

We can adapt our previous ideas to this broader purpose by studying solu-
tions near the point at infinity. The procedure is quite simple, for if we change 
the independent variable from x to
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then large x’s correspond to small t’s. Consequently, if we apply (2) to (1), 
solve the transformed equation near t = 0, and then replace t by 1/x in these 
solutions, we have solutions of (1) that are valid for large values of x. To carry 
out this program, we need the formulas
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When these expressions are inserted in (1), and primes are used to denote 
derivatives with respect to t, then (1) becomes

10 The notation Tn(x) is used because Chebyshev’s name was formerly transliterated as 
Tchebychev, Tchebycheff, or Tschebycheff.



243Power Series Solutions and Special Functions

 
¢¢ + é

ëê
ù
ûú

¢ + =y
t

P t
t

y
Q t

t
y

2 1 1
02 4–

( / ) ( / )
. (5)

We say that equation (1) has x = ∞ as an ordinary point, a regular singular 
point with exponents m1 and m2, or an irregular singular point, if the point 
t = 0 has the corresponding character for the transformed equation (5).

As a simple illustration, consider the Euler equation
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A comparison of (6) with (5) shows that the transformed equation is
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It is clear that t = 0 is a regular singular point for (7), with indicial equation

 m(m − 1) − 2m + 2 = 0

and exponents m1 = 2 and m2 = 1. This means that (6) has x = ∞ as a regular 
singular point with exponents 2 and 1.

Our main example is the hypergeometric equation

 x(1 − x)y″ + [c − (a + b + 1)x]y′ − aby = 0. (8)

We already know that (8) has two finite regular singular points: x = 0 with 
exponents 0 and 1 − c; and x = 1 with exponents 0 and c − a − b. To determine 
the nature of the point x = ∞, we substitute (3) and (4) directly into (8). After a 
little rearrangement, we find that the transformed equation is
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This equation has t = 0 as a regular singular point with indicial equation

 m(m − 1) + (1 − a − b)m + ab = 0

or

 (m − a)(m − b) = 0.

This shows that the exponents of equation (9) at t = 0 are a and b, so equation 
(8) has x = ∞ as a regular singular point with exponents a and b. We conclude 
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that the hypergeometric equation (8) has precisely three regular singular 
points: 0, 1, and ∞ with corresponding exponents 0 and 1 − c, 0 and c − a − b 
and a and b. In Appendix E we demonstrate that the form of the hypergeo-
metric equation is completely determined by the specification of these three 
regular singular points together with the added requirement that at least one 
exponent must be zero at each of the points x = 0 and x = 1.

Another classical differential equation of considerable importance is the 
confluent hypergeometric equation

 xy″ + (c − x)y′ − ay = 0. (10)

To understand where this equation comes from and why it bears this name, 
we consider the ordinary hypergeometric equation (8) in the form
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If the independent variable is changed from s to x = bs, then we have
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where the primes denote derivatives with respect to x. Equation (12) has 
regular singular points at x = 0, x = b, and x = ∞; it differs from (11) in that the 
singular point x = b is now mobile. If we let b → ∞, then (12) becomes (10). The 
singular point at b has evidently coalesced with the one at ∞, and this conflu-
ence of two regular singular points at ∞ is easily seen to produce an irregular 
singular point there (Problem 3).

Problems

 1. Use (3) and (4) to determine the nature of the point x = ∞ for
 (a) Legendre’s equation (1 − x2)y″ − 2xy′ + p(p + 1)y = 0;
 (b) Bessel’s equation x2y″ + xy′ + (x2 − p2)y = 0.
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 2. Show that the change of dependent variable defined by y = taw trans-
forms equation (9) into the hypergeometric equation

 t(1 − t)w″ + {(1 + a − b) − [a + (1 + a − c) + 1]t}w′

 − a(1 + a − c)w = 0.

 If a and b are not equal and do not differ by an integer, conclude that the 
hypergeometric equation (8) has the following independent solutions 
for large values of x:
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 3. Verify that the confluent hypergeometric equation (10) has x = ∞ as an 
irregular singular point.

 4. Verify that the confluent hypergeometric equation (10) has x = 0 as a 
regular singular point with exponents 0 and 1 − c. If c is not zero or a 
negative integer, show that the Frobenius series solution corresponding 
to the exponent 0 is
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.

 The function defined by this series is known as the confluent hypergeo-
metric function, and is often denoted by the symbol F(a,c,x).

 5. Laguerre’s equation is

 xy″ + (1 − x)y′ + py = 0,

 where p is a constant.11 Use Problem 4 to show that the only solutions 
bounded near the origin are constant multiples of F(−p,1,x), and also 
that these solutions are polynomials if p is a nonnegative integer. The 
functions Ln(x) = F(−n,1,x), where n = 0, 1, 2, …, are called Laguerre poly-
nomials; they have important applications in the quantum mechanics of 
the hydrogen atom.

11 Edmond Laguerre (1834–1886) was a professor at the Collège de France in Paris, and worked 
primarily in geometry and the theory of equations. He was one of the first to point out that a 
“reasonable” distance function (metric) can be imposed on the coordinate plane of analytic 
geometry in more than one way.
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Appendix A. Two Convergence Proofs

Proof of Theorem 28-A (conclusion). Our assumption is that the series
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converge for |x|< R, R > 0. We must prove that the series
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converges at least on the same interval if a0 and a1 are arbitrary and if an+2 is 
defined recursively for n ≥ 0 by
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Let r be a positive number such that r < R. Since the series (1) converge for 
x = r, and the terms of a convergent series approach zero and are therefore 
bounded, there exists a constant M > 0 such that
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for all n. Using these inequalities in (3), we find that
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where the term M|an+1| r is inserted because it will be needed below. We now 
define b0 = |a0|, b1 = |a1|, and bn+2 (for n ≥ 0) by
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It is clear that 0 ≤|an|≤ bn for every n. We now try to learn something about the 
values of x for which the series
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converges, and for this we need information about the behavior of the ratio 
bn+1/bn as n → ∞. We acquire this information at follows. Replacing n in (4) 
first by n − 1 and then by n − 2 yields
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By multiplying the first of these equations by r and using the second, we 
obtain
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The series (5) therefore converges for |x|< r, so by the inequality |an|≤ bn and 
the comparison test, the series (2) also converges for |x|< r. Since r was an 
arbitrary positive number smaller than R, we conclude that (2) converges 
for |x|< R, and the proof is complete.
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Proof of Theorem 30-A (conclusion). The argument is similar to that just 
given for Theorem 28-A, but is sufficiently different in its details to merit 
separate consideration. We assume that the series
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converge for |x|< R, R > 0. The indicial equation is

 f (m) = m(m − 1) + mp0 + q0 = 0, (7)

and we consider only the case in which (7) has two real roots m1 and m2 with 
m2 ≤ m1. The series whose convergence behavior we must examine is
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where a0 is an arbitrary nonzero constant and the other an are defined recur-
sively in terms of a0 by
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Our task is to prove that the series (8) converges for |x|< R if m = m1, and also 
if m = m2 and m1 − m2 is not a positive integer.

We begin by observing that f (m) can be written in the form

 f (m) = (m − m1)(m − m2) = m2 − (m1 + m2)m + m1m2.

With a little calculation, this enables us to write

 f (m1 + n) = n(n + m1 − m2)

and

 f (m2 + n) = n(n + m2 − m1);

and consequently

 |f (m1 + n)| ≥ n(n −|m1 − m2|) (10)

and

 |f (m2 + n)|≥ n(n −|m2 − m1|). (11)
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Let r be a positive number such that r < R. Since the series (6) converge for 
x = r, there exists a constant M > 0 with property that

 |pn|rn ≤ M  and |qn|rn ≤ M (12)

for all n. If we put m = m1 in (9) and use (10) and (12), we obtain
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We now define a sequence {bn} by writing

 bn = |an| for 0 ≤ n ≤ |m1 − m2|

and
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for n > |m1 − m2|. It is clear that 0 ≤|an|≤ bn for every n. We shall prove that the 
series
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converges for |x|< r, and to achieve this we seek a convenient expression for 
the ratio bn+1/bn. By replacing n by n + 1 in (13), multiplying by r, and using (13) 
to simplify the result, we obtain
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so (14) converges for |x|< r. It now follows from 0 ≤ |an| ≤ bn that (8) also con-
verges for |x|< r; and since r was taken to be an arbitrary positive number 
smaller than R, we conclude that (8) converges for |x|< R. If m1 is everywhere 
replaced by m2 and (11) is used instead of (10), then the same calculations 
prove that in this case the series (8) also converges for |x|< R—assuming, 
of course, that m1 − m2 is not a positive integer so that the series (8) is well 
defined.

Appendix B. Hermite Polynomials and Quantum Mechanics

The most important single application of the Hermite polynomials is to the 
theory of the linear harmonic oscillator in quantum mechanics. A differ-
ential equation that arises in this theory and is closely related to Hermite’s 
equation (Problem 28-7) is
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2

2
22 1 0+ + - =( ) , (1)

where p is a constant. For reasons discussed at the end of this appendix, 
physicists are interested only in solutions of (1) that approach zero as |x|→ ∞. 
If we try to solve (1) directly by power series, we get a three-term recursion 
formula for the coefficients, and this is too inconvenient to merit further con-
sideration. To simplify the problem, we introduce a new dependent variable 
y by means of

 w ye x= – /2 2. (2)

This transforms (1) into
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which is Hermite’s equation. The desired solutions of (1) therefore correspond 
to the solutions of (3) that grow in magnitude (as |x|→ ∞) less rapidly than 
ex2 2, and we shall see that these are essentially the Hermite polynomials.

Physicists motivate the transformation (2) by the following ingenious 
argument. When x is large, the constant 2p + 1 in equation (1) is negligible 
compared with x2, so (1) is approximately
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It is not too outrageous to guess that the functions w e x= ± 2 2 might be 
solutions of this equation. We now observe that

 ¢ = ± ¢¢ = ±± ± ±w xe w x e ex x x2 2 22 2 2 2and ;

and since for large x the second term of w″ can be neglected compared with 
the first, it appears that w ex=

2 2 and w e x= – /2 2 are indeed “approximate solu-
tions” of (1). The first of these is now discarded because it does not approach 
zero as |x| → ∞. It is therefore reasonable to suppose that the exact solution 
of (1) has the form (2), where we hope that the function y(x) has a simpler 
structure than w(x).

Whatever one thinks of this reasoning, it works. For we have seen in 
Problem 28-7 that Hermite’s equation (3) has a two-term recursion formula
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and also that this formula generates two independent series solutions
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that converge for all x.
We now compare the rates of growth of the functions y1(x) and ex2 2. Our 

purpose is to prove that
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if and only if the series for y1(x) breaks off and is a polynomial, that is, if and 
only if the parameter p has one of the values 0,2,4, … . The “if” part is clear by 
l’Hospital’s rule. To prove the “only if” part, we assume that p ≠ 0,2,4, …, and 
show that in this case the above quotient does not approach zero. To do this, 
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we use the fact that y1(x) has the form y x a xn
n
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2( ) = å  with its coefficients 

determined by (4) and the condition a0 = 1, and also that ex2 2 has the series 
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Formula (4) tells us that all coefficients in the numerator with sufficiently 
large subscripts have the same sign, so without loss of generality these coef-
ficients may be assumed to be positive. To prove that our quotient does not 
approach zero as |x| → ∞, it therefore suffices to show that a2n > b2n if n is 
large enough. To establish this, we begin by observing that
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This implies that
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for all sufficiently large n’s. If N is any one of these n’s, then repeated applica-
tion of this inequality shows that
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for all sufficiently large k’s, so a2n/b2n > 1 or a2n > b2n if n is large enough. 
The above argument proves that y x e x

1
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0( ) /- ®  as |x| → ∞ if and only if 
the parameter p has one of the values 0,2,4, … . Similar reasoning yields the 
same conclusion for y x e x

2
22

( ) - /  (with p = 1,3,5, …), so the desired solutions of 
Hermite’s equation are constant multiples of the Hermite polynomials H0(x), 
H1(x), H2(x), … defined in Problem 28-7.



253Power Series Solutions and Special Functions

The generating function and Rodrigues’ formula. We have seen how the 
Hermite polynomials arise, and we now turn to a consideration of their most 
useful properties. The significance of these properties will become clear at 
the end of this appendix.

These polynomials are often defined by means of the following power 
series expansion:
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The function e xt t2 2–  is called the generating function of the Hermite polynomi-
als. This definition has the advantage of efficiency for deducing properties of 
the Hn(x), and the obvious weakness of being totally unmotivated. We shall 
therefore derive (7) from the series solutions (5) and (6).

All polynomial solutions of (3) are obtained from these series by replacing 
p by an integer n ≥ 0 and multiplying by an arbitrary constant. They all have 
the form
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where the sum last written ends with a0 or a1x according as n is even or odd 
and its coefficients are related by
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We shall find an−2, an−4, … in terms of an, and to this end we replace k in (8) by 
k − 2 and get
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Letting k be n, n − 2, n − 4, etc., yields
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and so on, so
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This expression can be written in the form
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where [n/2] is the standard notation for the greatest integer ≤ n/2. To get the 
nth Hermite polynomial Hn(x), we put an = 2n and obtain
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This choice for the value of an is purely a matter of convenience; it has the 
effect of simplifying the formulas expressing the various properties of the 
Hermite polynomials.

In order to make the transition from (9) to (7), we digress briefly. The defin-
ing formula for the product of two power series,
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is awkward to use when the first series contains only even powers of t:
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What we want to do here is gather together the nth powers of t from all pos-
sible products akt2kbjtj, so 2k + j = n and the terms we consider are akt2kbn−2ktn−2k. 
The restrictions are k ≥ 0 and n − 2k ≥ 0, so 0 ≤ k ≤ n/2; and for each n ≥ 0 we 
see that k varies from 0 to the greatest integer ≤ n/2. This yields the product 
formula
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If we now insert (9) into the right side of (7) and use (10), we obtain
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which establishes (7).
As an application of (7) we prove Rodrigues’ formula for the Hermite 

polynomials:
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In view of formula 26-(9) for the coefficients of a power series, (7) yields
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If we introduce a new variable z = x − t and use the fact that ∂/∂t = –(∂/∂z), then 
since t = 0 corresponds to z = x, the expression last written becomes
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and the proof is complete.

Orthogonality. We know that for each nonnegative integer n the function

 w x e H xn
x

n( ) ( )/= - 2 2 , (12)

called the Hermite function of order n, approaches zero as |x|→ ∞ and is a solu-
tion of the differential equation

 ¢¢ + + - =w n x wn n( )2 1 02 . (13)

An important property of these functions is the fact that
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This relation is often expressed by saying that the Hermite functions are 
orthogonal on the interval (–∞, ∞).

To prove (14) we begin by writing down the equation satisfied by wm(x),

 ¢¢ + + - =w m x wm m( )2 1 02 . (15)

Now, multiplying (13) by wm and (15) by wn and subtracting, we obtain
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If we integrate this equation from –∞ to ∞ and use the fact that ¢ ¢w w w wn m m n–  
vanishes at both limits, we see that
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We will also need to know that the value of the integral in (14) when m = n is
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To establish this, we use Rodrigues’ formula (11) and integrate
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Since uv is the product of e x– 2
 and a polynomial, it vanishes at both limits and
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Now the term containing the highest power of x in Hn(x) is 2nxn, so 
H x nn

n n( )( ) != 2  and the last integral is
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which is the desired result.12

12 The fact that the integral of e x– 2
 from 0 to ∞ is p 2 is often proved in elementary calculus. 

See Equation 3 in Appendix 1A.
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These orthogonality properties can be used to expand an “arbitrary” func-
tion f(x) in a Hermite series:
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If we proceed formally, the coefficients an can be found by multiplying 
(17) by e H xx
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 and integrating term by term from –∞ to ∞. By (14) and 
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so (replacing m by n)
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This formal procedure suggests the mathematical problem of determin-
ing conditions on the function f (x) that guarantee that (17) is valid when 
the an‘s are defined by (18). Problems of this kind are part of the general 
theory of orthogonal functions. Some direct physical applications of 
orthogonal expansions like (17) are discussed in Appendices A and B of 
Chapter 8.

The harmonic oscillator. As we stated at the beginning, the mathematical 
ideas developed above have their main application in quantum mechan-
ics. An adequate discussion of the underlying physical concepts is clearly 
beyond the scope of this appendix. Nevertheless, it is quite easy to under-
stand the role played by the Hermite polynomials Hn(x) and the correspond-
ing Hermite functions e H xx

n
– / ( )

2 2 .
In Section 20 we analyzed the classical harmonic oscillator, which can be 

thought of as a particle of mass m constrained to move along the x-axis and 
bound to the equilibrium position x = 0 by a restoring force −kx. The equation 
of motion is

 
m

d x
dt

kx
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2 = – ;
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and with suitable initial conditions, we found that its solution is the har-
monic oscillation

 
x x

k
m

t= 0 cos ,

where x0 is the amplitude. We also recall that the period T is given by 
T m k= 2p ; and since the vibrational frequency v is the reciprocal of the 
period, we have k = 4π2mv2. Furthermore, since the kinetic energy is 1

2
m(dx/

dt)2 and the potential energy is 
1
2kx2, an easy calculation shows that the total 

energy of the system is E kx= 1
2 0

2, a constant. This total energy may clearly 

take any positive value whatever.
In quantum mechanics, the Schrödinger wave equation for the harmonic 

oscillator described above is
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where E is again the total energy, h is Planck’s constant, and satisfactory solu-
tions ψ(x) are known as Schrödinger wave functions.13 If we use the equation 
k = 4π2mv2 to eliminate the force constant k, then (19) can be written in the 
form

 

d
dx

m
h

E mv x
2

2

2

2
2 2 28

2 0
y p p y+ - =( ) . (20)

The physically admissible (or “civilized”) solutions of this equation are those 
satisfying the conditions
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These solutions—the Schrödinger wave functions—are also called the eigen-
functions of the problem, and we shall see that they exist only when E has 
certain special values called eigenvalues.

13 Erwin Schrödinger (1887–1961) was an Austrian theoretical physicist who shared the 1933 
Nobel Prize with Dirac. His scientific work can be appreciated only by experts, but he was 
a man of broad cultural interests and was a brilliant and lucid writer in the tradition of 
Poincaré. He liked to write pregnant little books on big themes: What Is Life?, Science and 
Humanism, Nature and the Greeks, Cambridge University Press, New York, 1944, 1952, 1954, 
respectively.
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If we change the independent variable to
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then (20) becomes
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and conditions (21) become

 

y y p® ® ¥ =
¥

¥

ò0 22as u du
vm
h

and
–

. (24)

Except for notation, equation (23) has exactly the form of equation (1), so we 
know that it has solutions satisfying the first condition of (24) if and only if 
2E/hv = 2n + 1 or

 
E hv n= +æ

è
ç

ö
ø
÷

1
2

 (25)

for some non-negative integer n. We also know that in this case these solu-
tions of (23) have the form
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where c is a constant. If we now impose the second condition of (24) and use 
(16), then it follows that
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The eigenfunction corresponding to the eigenvalue (25) is therefore
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where (22) gives u in terms of x.
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Physicists have a deep professional interest in the detailed properties of 
these eigenfunctions. For us, however, the problem is only an illustration 
of the occurrence of the Hermite polynomials, so we will not pursue the 
matter any further—beyond pointing out that formula (25) yields the so-
called quantized energy levels of the harmonic oscillator. This means that 
the energy E may assume only these discrete values, which of course is 
very different from the corresponding classical situation described above. 
The simplest concrete application of these ideas is to the vibrational motion 
of the atoms in a diatomic molecule. When this phenomenon is studied 
experimentally, the observed energies are found to be precisely in accord 
with (25).

NOTE ON HERMITE. Charles Hermite (1822–1901), one of the most emi-
nent French mathematicians of the nineteenth century, was particularly 
distinguished for the elegance and high artistic quality of his work. As a 
student, he courted disaster by neglecting his routine assigned work to study 
the classic masters of mathematics; and though he nearly failed his examina-
tions, he became a first-rate creative mathematician himself while still in his 
early twenties. In 1870 he was appointed to a professorship at the Sorbonne, 
where he trained a whole generation of well known French mathematicians, 
including Picard, Borel, and Poincaré.

The unusual character of his mind is suggested by the following remark 
of Poincaré: “Talk with M. Hermite. He never evokes a concrete image, yet 
you soon perceive that the most abstract entities are to him like living crea-
tures.” He disliked geometry, but was strongly attracted to number theory 
and analysis, and his favorite subject was elliptic functions, where these 
two fields touch in many remarkable ways. The reader may be aware that 
Abel had proved many years before that the general polynomial equation 
of the fifth degree cannot be solved by functions involving only rational 
operations and root extractions. One of Hermite’s most surprising achieve-
ments (in 1858) was to show that this equation can be solved by elliptic 
functions. His 1873 proof of the transcendence of e was another high point 
of his career.

Several of his purely mathematical discoveries had unexpected appli-
cations many years later to mathematical physics. For example, the 
Hermitian forms and matrices he invented in connection with certain 
problems of number theory turned out to be crucial for Heisenberg’s 
1925 formulation of quantum mechanics, and we have seen that Hermite 
polynomials and Hermite functions are useful in solving Schrödinger’s 
wave equation. The reason is not clear, but it seems to be true that math-
ematicians do some of their most valuable practical work when thinking 
about problems that appear to have nothing whatever to do with physical 
reality.
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Appendix C. Gauss

Carl Friedrich Gauss (1777–1855) was the greatest of all mathematicians 
and perhaps the most richly gifted genius of whom there is any record. 
This gigantic figure, towering at the beginning of the nineteenth century, 
separates the modern era in mathematics from all that went before. His 
visionary insight and originality, the extraordinary range and depth of his 
achievements, his repeated demonstrations of almost superhuman power 
and tenacity—all these qualities combined in a single individual present an 
enigma as baffling to us as it was to his contemporaries.

Gauss was born in the city of Brunswick in northern Germany. His 
exceptional skill with numbers was clear at a very early age, and in later 
life he joked that he knew how to count before he could talk. It is said that 
Goethe wrote and directed little plays for a puppet theater when he was 
six, and that Mozart composed his first childish minuets when he was five, 
but Gauss corrected an error in his father’s payroll accounts at the age of 
three.14 His father was a gardener and bricklayer without either the means 
or the inclination to help develop the talents of his son. Fortunately, how-
ever, Gauss’s remarkable abilities in mental computation attracted the inter-
est of several influential men in the community, and eventually brought 
him to the attention of the Duke of Brunswick. The Duke was impressed 
with the boy and undertook to support his further education, first at the 
Caroline College in Brunswick (1792–1795) and later at the University of 
Göttingen (1795–1798).

At the Caroline College, Gauss completed his mastery of the classical lan-
guages and explored the works of Newton, Euler, and Lagrange. Early in 
this period—perhaps at the age of fourteen or fifteen—he discovered the 
prime number theorem, which was finally proved in 1896 after great efforts 
by many mathematicians (see our notes on Chebyshev and Riemann). He 
also invented the method of least squares for minimizing the errors inherent 
in observational data, and conceived the Gaussian (or normal) law of distri-
bution in the theory of probability.

At the university, Gauss was attracted by philology but repelled by the 
mathematics courses, and for a time the direction of his future was uncer-
tain. However, at the age of eighteen he made a wonderful geometric discov-
ery that caused him to decide in favor of mathematics and gave him great 
pleasure to the end of his life. The ancient Greeks had known ruler-and-
compass constructions for regular polygons of 3, 4, 5, and 15 sides, and for all 
others obtainable from these by bisecting angles. But this was all, and there 
the matter rested for 2000 years, until Gauss solved the problem completely. 

14 See W. Sartorius von Waltershausen, “Gauss zum Gedächtniss.” These personal recollec-
tions appeared in 1856, and a translation by Helen W. Gauss (the mathematician’s great-
granddaughter) was privately printed in Colorado Springs in 1966.
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He proved that a regular polygon with n sides is constructible if and only 
if n is the product of a power of 2 and distinct prime numbers of the form 
pk

k
= +2 12 . In particular, when k = 0,1,2,3, we see that each of the correspond-

ing numbers pk = 3,5,17,257 is prime, so regular polygons with these numbers 
of sides are constructible.15

During these years Gauss was almost overwhelmed by the torrent of ideas 
which flooded his mind. He began the brief notes of his scientific diary in an 
effort to record his discoveries, since there were far too many to work out in 
detail at that time. The first entry, dated March 30, 1796, states the construct-
ibility of the regular polygon with 17 sides, but even earlier than this he was 
penetrating deeply into several unexplored continents in the theory of num-
bers. In 1795 he discovered the law of quadratic reciprocity, and as he later 
wrote, “For a whole year this theorem tormented me and absorbed my great-
est efforts, until at last I found a proof,”16 At that time Gauss was unaware 
that the theorem had already been imperfectly stated without proof by Euler, 
and correctly stated with an incorrect proof by Legendre. It is the core of the 
central part of his famous treatise Disquisitiones Arithmeticae, which was pub-
lished in 1801 although completed in 1798.17 Apart from a few fragmentary 
results of earlier mathematicians, this great work was wholly original. It is 
usually considered to mark the true beginning of modern number theory, to 
which it is related in much the same way as Newton’s Principia is to phys-
ics and astronomy. In the introductory pages Gauss develops his method of 
congruences for the study of divisibility problems and gives the first proof of 
the fundamental theorem of arithmetic (also called the unique factorization 
theorem), which asserts that every integer n > 1 can be expressed uniquely as 
a product of primes. The central part is devoted mainly to quadratic congru-
ences, forms, and residues. The last section presents his complete theory of 
the cyclotomic (circle-dividing) equation, with its applications to the con-
structibility of regular polygons. The entire work was a gargantuan feast of 
pure mathematics, which his successors were able to digest only slowly and 
with difficulty.

In his Disquisitiones Gauss also created the modern rigorous approach to 
mathematics. He had become thoroughly impatient with the loose writing 
and sloppy proofs of his predecessors, and resolved that his own works 
would be beyond criticism in this respect. As he wrote to a friend, “I mean 
the word proof not in the sense of the lawyers, who set two half proofs equal 
to a whole one, but in the sense of the mathematician, where 1/2 proof = 0 
and it is demanded for proof that every doubt becomes impossible.” The 
Disquisitiones was composed in this spirit and in Gauss’s mature style, which 

15 Details of some of these constructions are given in H. Tietze, Famous Problems of Mathematics, 
chap. IX, Graylock Press, New York, 1965.

16 See D. W. Smith, A Source Book in Mathematics, pp. 112–118, McGraw-Hill, New York, 1929. 
This selection includes a statement of the theorem and the fifth of eight proofs that Gauss 
found over a period of many years. There are probably more than 50 known today.

17 There is a translation by Arthur A. Clarke (Yale University Press, New Haven, Conn., 1966).
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is terse, rigorous, devoid of motivation, and in many places so carefully pol-
ished that it is almost unintelligible. In another letter he said, “You know that 
I write slowly. This is chiefly because I am never satisfied until I have said 
as much as possible in a few words, and writing briefly takes far more time 
than writing at length.” One of the effects of this habit is that his publica-
tions concealed almost as much as they revealed, for he worked very hard 
at removing every trace of the train of thought that led him to his discover-
ies. Abel remarked, “He is like the fox, who effaces his tracks in the sand 
with his tail.” Gauss replied to such criticisms by saying that no self-respect-
ing architect leaves the scaffolding in place after completing his building. 
Nevertheless, the difficulty of reading his works greatly hindered the diffu-
sion of his ideas.

Gauss’s doctoral dissertation (1799) was another milestone in the history 
of mathematics. After several abortive attempts by earlier mathematicians—
d’Alembert, Euler, Lagrange, Laplace—the fundamental theorem of algebra 
was here given its first satisfactory proof. This theorem asserts the existence 
of a real or complex root for any polynomial equation with real or complex 
coefficients. Gauss’s success inaugurated the age of existence proofs, which 
ever since have played an important part in pure mathematics. Furthermore, 
in this first proof (he gave four altogether) Gauss appears as the earliest 
mathematician to use complex numbers and the geometry of the complex 
plane with complete confidence.18

The next period of Gauss’s life was heavily weighted toward applied math-
ematics, and with a few exceptions the great wealth of ideas in his diary and 
notebooks lay in suspended animation.

In the last decades of the eighteenth century, many astronomers were 
searching for a new planet between the orbits of Mars and Jupiter, where 
Bode’s law (1772) suggested that there ought to be one. The first and largest 
of the numerous minor planets known as asteroids was discovered in that 
region in 1801, and was named Ceres. This discovery ironically coincided 
with an astonishing publication by the philosopher Hegel, who jeered at 
astronomers for ignoring philosophy: this science (he said) could have saved 
them from wasting their efforts by demonstrating that no new planet could 
possibly exist.19 Hegel continued his career in a similar vein, and later rose 
to even greater heights of clumsy obfuscation. Unfortunately the tiny new 
planet was difficult to see under the best of circumstances, and it was soon 
lost in the light of the sky near the sun. The sparse observational data posed 
the problem of calculating the orbit with sufficient accuracy to locate Ceres 
again after it had moved away from the sun. The astronomers of Europe 
attempted this task without success for many months. Finally, Gauss was 

18 The idea of this proof is very clearly explained by F. Klein, Elementary Mathematics from an 
Advanced Standpoint, pp. 101–104, Dover, New York, 1945.

19 See the last few pages of “De Orbitis Planetarum,” vol. I of Georg Wilhelm Hegel’s Sämtliche 
Werke, Frommann Verlag, Stuttgart, 1965.
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attracted by the challenge; and with the aid of his method of least squares 
and his unparalleled skill at numerical computation he determined the 
orbit, told the astronomers where to look with their telescopes, and there 
it was. He had succeeded in rediscovering Ceres after all the experts had 
failed.

This achievement brought him fame, an increase in his pension from 
the Duke, and in 1807 an appointment as professor of astronomy and first 
director of the new observatory at Göttingen. He carried out his duties 
with his customary thoroughness, but as it turned out, he disliked admin-
istrative chores, committee meetings, and all the tedious red tape involved 
in the business of being a professor. He also had little enthusiasm for teach-
ing, which he regarded as a waste of his time and as essentially useless 
(for different reasons) for both talented and untalented students. However, 
when teaching was unavoidable he apparently did it superbly. One of his 
students was the eminent algebraist Richard Dedekind, for whom Gauss’s 
lectures after the passage of 50 years remained “unforgettable in memory 
as among the finest which I have ever heard.”20 Gauss had many opportu-
nities to leave Göttingen, but he refused all offers and remained there for 
the rest of his life, living quietly and simply, traveling rarely, and working 
with immense energy on a wide variety of problems in mathematics and 
its applications. Apart from science and his family—he had two wives and 
six children, two of whom emigrated to America—his main interests were 
history and world literature, international politics, and public finance. He 
owned a large library of about 6000 volumes in many languages, includ-
ing Greek, Latin, English, French, Russian, Danish, and of course German. 
His acuteness in handling his own financial affairs is shown by the fact 
that although he started with virtually nothing, he left an estate over a 
hundred times as great as his average annual income during the last half 
of his life.

In the first two decades of the nineteenth century Gauss produced a steady 
stream of works on astronomical subjects, of which the most important was 
the treatise Theoria Motus Corporum Coelestium (1809). This remained the 
bible of planetary astronomers for over a century. Its methods for dealing 
with perturbations later led to the discovery of Neptune. Gauss thought of 
astronomy as his profession and pure mathematics as his recreation, and 
from time to time he published a few of the fruits of his private research. His 
great work on the hypergeometric series (1812) belongs to this period. This 
was a typical Gaussian effort, packed with new ideas in analysis that have 
kept mathematicians busy ever since.

20 Dedekind’s detailed recollections of this course are given in G. Waldo Dunnington, Carl 
Friedrich Gauss: Titan of Science, pp. 259–261, Hafner, New York, 1955. This book is useful 
mainly for its many quotations, its bibliography of Gauss’s publications, and its list of the 
courses he offered (but often did not teach) from 1808 to 1854.
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Around 1820 he was asked by the government of Hanover to supervise a 
geodetic survey of the kingdom, and various aspects of this task—includ-
ing extensive field work and many tedious triangulations—occupied him 
for a number of years. It is natural to suppose that a mind like his would 
have been wasted on such an assignment, but the great ideas of science are 
born in many strange ways. These apparently unrewarding labors resulted 
in one of his deepest and most far-reaching contributions to pure mathemat-
ics, without which Einstein’s general theory of relativity would have been 
quite impossible.

Gauss’s geodetic work was concerned with the precise measurement of 
large triangles on the earth’s surface. This provided the stimulus that led 
him to the ideas of his paper Disquisitiones generales circa superficies curvas 
(1827), in which he founded the intrinsic differential geometry of general 
curved surfaces.21 In this work he introduced curvilinear coordinates u and 
v on a surface; he obtained the fundamental quadratic differential form 
ds2 = E du2 + 2F du dv + G dv2 for the element of arc length ds, which makes 
it possible to determine geodesic curves; and he formulated the concepts 
of Gaussian curvature and integral curvature.22 His main specific results 
were the famous theorema egregium, which states that the Gaussian curva-
ture depends only on E, F, and G, and is therefore invariant under bend-
ing; and the Gauss–Bonnet theorem on integral curvature for the case of 
a geodesic triangle, which in its general form is the central fact of mod-
ern differential geometry in the large. Apart from his detailed discoveries, 
the crux of Gauss’s insight lies in the word intrinsic, for he showed how to 
study the geometry of a surface by operating only on the surface itself and 
paying no attention to the surrounding space in which it lies. To make this 
more concrete, let us imagine an intelligent two-dimensional creature who 
inhabits a surface but has no awareness of a third dimension or of anything 
not on the surface. If this creature is capable of moving about, measuring 
distances along the surface, and determining the shortest path (geodesic) 
from one point to another, then he is also capable of measuring the Gaussian 
curvature at any point and of creating a rich geometry on the surface—and 
this geometry will be Euclidean (flat) if and only if the Gaussian curvature 
is everywhere zero. When these conceptions are generalized to more than 
two dimensions, then they open the door to Riemannian geometry, tensor 
analysis, and the ideas of Einstein.

Another great work of this period was his 1831 paper on biquadratic resi-
dues. Here he extended some of his early discoveries in number theory with 
the aid of a new method, his purely algebraic approach to complex numbers. 
He defined these numbers as ordered pairs of real numbers with suitable 

21 A translation by A. Hiltebeitel and J. Morehead was published under the title General 
Investigations of Curved Surfaces by the Raven Press, Hewlett, New York, in 1965.

22 These ideas are explained in nontechnical language in C. Lanczos, Albert Einstein and the 
Cosmic World Order, chap. 4, Interscience-Wiley, New York, 1965.
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definitions for the algebraic operations, and in so doing laid to rest the con-
fusion that still surrounded the subject and prepared the way for the later 
algebra and geometry of n-dimensional spaces. But this was only inciden-
tal to his main purpose, which was to broaden the ideas of number theory 
into the complex domain. He defined complex integers (now called Gaussian 
integers) as complex numbers a + ib with a and b ordinary integers; he intro-
duced a new concept of prime numbers, in which 3 remains prime but 
5 = (1 + 2i) · (1 − 2i) does not; and he proved the unique factorization theorem 
for these integers and primes. The ideas of this paper inaugurated algebraic 
number theory, which has grown steadily from that day to this.23

From the 1830s on, Gauss was increasingly occupied with physics, and he 
enriched every branch of the subject he touched. In the theory of surface 
tension, he developed the fundamental idea of conservation of energy and 
solved the earliest problem in the calculus of variations involving a double 
integral with variable limits. In optics, he introduced the concept of the focal 
length of a system of lenses and invented the Gauss wide-angle lens (which 
is relatively free of chromatic aberration) for telescope and camera objec-
tives. He virtually created the science of geomagnetism, and in collabora-
tion with his friend and colleague Wilhelm Weber he built and operated an 
iron-free magnetic observatory, founded the Magnetic Union for collecting 
and publishing observations from many places in the world, and invented 
the electromagnetic telegraph and the bifilar magnetometer. There are many 
references to his work in James Clerk Maxwell’s famous Treatise on Electricity 
and Magnetism (1873). In his preface, Maxwell says that Gauss “brought his 
powerful intellect to bear on the theory of magnetism and on the methods of 
observing it, and he not only added greatly to our knowledge of the theory 
of attractions, but reconstructed the whole of magnetic science as regards 
the instruments used, the methods of observation, and the calculation of 
results, so that his memoirs on Terrestrial Magnetism may be taken as mod-
els of physical research by all those who are engaged in the measurement of 
any of the forces in nature.” In 1839 Gauss published his fundamental paper 
on the general theory of inverse square forces, which established potential 
theory as a coherent branch of mathematics.24 As usual, he had been think-
ing about these matters for many years; and among his discoveries were the 
divergence theorem (also called Gauss’s theorem) of modern vector analysis, 
the basic mean value theorem for harmonic functions, and the very power-
ful statement which later became known as “Dirichlet’s principle” and was 
finally proved by Hilbert in 1899.

We have discussed the published portion of Gauss’s total achievement, but 
the unpublished and private part was almost equally impressive. Much of 

23 See E. T. Bell, “Gauss and the Early Development of Algebraic Numbers,” National Math. 
Mag., vol. 18, pp. 188–204, 219–233 (1944).

24 George Green’s “Essay on the Application of Mathematical Analysis to the Theories of 
Electricity and Magnetism” (1828) was neglected and almost completely unknown until it 
was reprinted in 1846.
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this came to light only after his death, when a great quantity of material 
from his notebooks and scientific correspondence was carefully analyzed 
and included in his collected works. His scientific diary has already been 
mentioned. This little booklet of 19 pages, one of the most precious docu-
ments in the history of mathematics, was unknown until 1898, when it was 
found among family papers in the possession of one of Gauss’s grandsons. 
It extends from 1796 to 1814 and consists of 146 very concise statements of 
the results of his investigations, which often occupied him for weeks or 
months.25 All of this material makes it abundantly clear that the ideas Gauss 
conceived and worked out in considerable detail, but kept to himself, would 
have made him the greatest mathematician of his time if he had published 
them and done nothing else.

For example, the theory of functions of a complex variable was one of the 
major accomplishments of nineteenth century mathematics, and the central 
facts of this discipline are Cauchy’s integral theorem (1827) and the Taylor 
and Laurent expansions of an analytic function (1831, 1843). In a letter writ-
ten to his friend Bessel in 1811, Gauss explicitly states Cauchy’s theorem and 
then remarks, “This is a very beautiful theorem whose fairly simple proof I 
will give on a suitable occasion. It is connected with other beautiful truths 
which are concerned with series expansions.”26 Thus, many years in advance 
of those officially credited with these important discoveries, he knew 
Cauchy’s theorem and probably knew both series expansions. However, for 
some reason the “suitable occasion” for publication did not arise. A possible 
explanation for this is suggested by his comments in a letter to Wolfgang 
Bolyai, a close friend from his university years with whom he maintained 
a lifelong correspondence: “It is not knowledge but the act of learning, not 
possession but the act of getting there, which grants the greatest enjoyment. 
When I have clarified and exhausted a subject, then I turn away from it in 
order to go into darkness again.” His was the temperament of an explorer, 
who is reluctant to take the time to write an account of his last expedition 
when he could be starting another. As it was, Gauss wrote a great deal; but 
to publish every fundamental discovery he made in a form satisfactory to 
himself would have required several long lifetimes.

Another prime example is non-Euclidean geometry, which has been com-
pared with the Copernican revolution in astronomy for its impact on the 
minds of civilized men. From the time of Euclid to the boyhood of Gauss, 
the postulates of Euclidean geometry were universally regarded as neces-
sities of thought. Yet there was a flaw in the Euclidean structure that had 
long been a focus of attention: the so-called parallel postulate, stating that 
through a point not on a line there exists a single line parallel to the given 
line. This postulate was thought not to be independent of the others, and 
many had tried without success to prove it as a theorem. We now know that 

25 See Gauss’s Werke, vol. X, pp. 483–574, 1917.
26 Werke, vol. VIII, p. 91, 1900.
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Gauss joined in these efforts at the age of fifteen, and he also failed. But he 
failed with a difference, for he soon came to the shattering conclusion—
which had escaped all his predecessors—that the Euclidean form of geom-
etry is not the only one possible. He worked intermittently on these ideas 
for many years, and by 1820 he was in full possession of the main theorems 
of non-Euclidean geometry (the name is due to him).27 But he did not reveal 
his conclusions, and in 1829 and 1832 Lobachevsky and Johann Bolyai (son 
of Wolfgang) published their own independent work on the subject. One 
reason for Gauss’s silence in this case is quite simple. The intellectual cli-
mate of the time in Germany was totally dominated by the philosophy of 
Kant, and one of the basic tenets of his system was the idea that Euclidean 
geometry is the only possible way of thinking about space. Gauss knew 
that this idea was totally false and that the Kantian system was a structure 
built on sand. However, he valued his privacy and quiet life, and held his 
peace in order to avoid wasting his time on disputes with the philosophers. 
In 1829 he wrote as follows to Bessel: “I shall probably not put my very 
extensive investigations on this subject [the foundations of geometry] into 
publishable form for a long time, perhaps not in my lifetime, for I dread the 
shrieks we would hear from the Boeotians if I were to express myself fully 
on this matter.”28

The same thing happened again in the theory of elliptic functions, a very 
rich field of analysis that was launched primarily by Abel in 1827 and also 
by Jacobi in 1828–1829. Gauss had published nothing on this subject, and 
claimed nothing, so the mathematical world was filled with astonishment 
when it gradually became known that he had found many of the results of 
Abel and Jacobi before these men were born. Abel was spared this devas-
tating knowledge by his early death in 1829, at the age of twenty-six, but 
Jacobi was compelled to swallow his disappointment and go on with his 
work. The facts became known partly through Jacobi himself. His attention 
was caught by a cryptic passage in the Disquisitiones (Article 335), whose 
meaning can only be understood if one knows something about elliptic 
functions. He visited Gauss on several occasions to verify his suspicions 
and tell him about his own most recent discoveries, and each time Gauss 
pulled 30-year-old manuscripts out of his desk and showed Jacobi what 
Jacobi had just shown him. The depth of Jacobi’s chagrin can readily be 
imagined. At this point in his life Gauss was indifferent to fame and was 
actually pleased to be relieved of the burden of preparing the treatise on 
the subject which he had long planned. After a week’s visit with Gauss in 
1840, Jacobi wrote to his brother, “Mathematics would be in a very different 
position if practical astronomy had not diverted this colossal genius from 
his glorious career.”

27 Everything he is known to have written about the foundations of geometry was published 
in his Werke, vol. VIII, pp. 159–268, 1900.

28 Werke, vol. VIII, p. 200. The Boeotians were a dull-witted tribe of the ancient Greeks.
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Such was Gauss, the supreme mathematician. He surpassed the levels of 
achievement possible for ordinary men of genius in so many ways that one 
sometimes has the eerie feeling that he belonged to a higher species.

Appendix D. Chebyshev Polynomials 
and the Minimax Property

In Problem 31-6 we defined the Chebyshev polynomials Tn(x) in terms of 

the hypergeometric function by T x F n n
x
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, where n = 0,1,2, … . 

Needless to say, this definition by itself tells us practically nothing, for the 
question that matters is: what purpose do these polynomials serve? We will 
now try to answer this question.

It is convenient to begin by adopting a different definition for the poly-
nomials Tn(x). We will see later that the two definitions agree. Our starting 
point is the fact that if n is a nonnegative integer, then de Moivre’s formula 
from the theory of complex numbers gives
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so cos nθ is the real part of the sum on the right. Now the real terms in 
this sum are precisely those that contain even powers of i sin θ; and since 
sin2 θ = 1 − cos2 θ, it is apparent that cos nθ is a polynomial function of cos θ. 
We use this as the definition of the nth Chebyshev polynomial: Tn(x) is that 
polynomial for which

 cos nθ = Tn(cos θ). (2)

Since Tn(x) is a polynomial, it is defined for all values of x. However, if x is 
restricted to lie in the interval −1 ≤ x ≤ 1 and we write x = cos θ where 0 ≤ θ ≤ π, 
then (2) yields

 Tn(x) = cos (n cos−1 x). (3)

With the same restrictions, we can obtain another curious expression for 
Tn(x). For on adding the two formulas
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 cos nθ ± i sin nθ = (cos θ ± i sin θ)n,

we get
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Another explicit expression for Tn(x) can be found by using the binomial for-
mula to write (1) as
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We have remarked that the real terms in this sum correspond to the even 
values of m, that is, to m = 2k where k = 0, 1, 2, …, [n/2].29 Since

 (i sin θ)m = (i sin θ)2k = (−1)k(1 − cos2 θ)k = (cos2 θ − 1)k,

we have
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29 The symbol [n/2] is the standard notation for the greatest integer ≤ n/2.
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It is clear from (4) that T0(x) = 1 and T1(x) = x; but for higher values of n, Tn(x) is 
most easily computed from a recursion formula. If we write

 cos nθ = cos [θ + (n − 1)θ] = cos θ cos (n − 1)θ − sin θ sin (n − 1)θ

and
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then it follows that

 cos nθ + cos(n − 2)θ = 2 cos θ cos (n − 1)θ.

If we use (2) and replace cos θ by x, then this trigonometric identity gives the 
desired recursion formula:

 T x T x xT xn n n( ) ( ) ( )+ =- -2 12 . (6)

By starting with T0(x) = 1 and T1(x) = x, we find from (6) that T2(x) = 2x2 − 1, 
T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1, and so on.

The hypergeometric form. To establish a connection between Chebyshev’s 
differential equation and the Chebyshev polynomials as we have just 
defined them, we use the fact that the polynomial y = Tn(x) becomes the 
function y = cos nθ when the variable is changed from x to θ by means of 
x = cos θ. Now the function y = cos nθ is clearly a solution of the differential 
equation
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and an easy calculation shows that changing the variable from θ back to x 
transforms (7) into Chebyshev’s equation
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We therefore know that y = Tn(x) is a polynomial solution of (8). But 
Problem 31-6 tells us that the only polynomial solutions of (8) have the 
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form cF n n
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Orthogonality. One of the most important properties of the functions 
yn(θ) = cos nθ for different values of n is their orthogonality on the interval 
0 ≤ θ ≤ π, that is, the fact that
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To prove this, we write down the differential equations satisfied by ym = cos mθ 
and yn = cos nθ:
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2 20 0and .

On multiplying the first of these equations by yn and the second by ym, and 
subtracting, we obtain
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and (10) follows at once by integrating each term of this equation from 0 to π, 
since ¢ym and ¢yn both vanish at the endpoints and m2 − n2 ≠ 0.

When the variable in (10) is changed from θ to x = cos θ, (10) becomes
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This fact is usually expressed by saying that the Chebyshev polynomials 
are orthogonal on the interval −1 ≤ x ≤ 1 with respect to the weight function 
(1 − x2)−1/2. When m = n in (11), we have
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These additional statements follow from
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which are easy to establish by direct integration.
Just as in the case of the Hermite polynomials discussed in Appendix B, 

the orthogonality properties (11) and (12) can be used to expand an “arbi-
trary” function f (x) in a Chebyshev series:
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The same formal procedure as before yields the coefficients
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for n > 0. And again the true mathematical issue is the problem of finding 
conditions under which the series (13)—with the an defined by (14) and (15)—
actually converges to f (x).

The minimax property. The Chebyshev problem we now consider is to see 
how closely the function xn can be approximated on the interval 1 ≤ x ≤ 1 by 
polynomials an–1xn–1 + ⋯ + a1x + a0 of degree n − 1; that is, to see how small the 
number
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can be made by an appropriate choice of the coefficients. This in turn is equiva-
lent to the following problem: among all polynomials P(x) = xn + an−1xn−1 + … + 
a1x + a0 of degree n with leading coefficient 1, to minimize the number
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and if possible to find a polynomial that attains this minimum value.
It is clear from T1(x) = x and the recursion formula (6) that when n > 0 the 

coefficient of xn in Tn(x) is 2n−1, so 21−nTn(x) has leading coefficient 1. These 
polynomials completely solve Chebyshev’s problem, in the sense that they 
have the following remarkable property.

Minimax property. Among all polynomials P(x) of degree n > 0 with leading coef-
ficient 1, 21−nTn(x) deviates least from zero in the interval −1 ≤ x ≤ 1:
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Proof. First, the equality in (16) follows at once from
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To complete the argument, we assume that P(x) is a polynomial of the stated 
type for which
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and we deduce a contradiction from this hypothesis. We begin by noticing 
that the polynomial 21−nTn(x) − 21−n cos nθ has the alternately positive and neg-
ative values 21−n, −2l−n, 21−n, …, ±21−n at the n + 1 points x that correspond to 
θ = 0, π/n, 2π/n, …, nπ/n = π. By assumption (17), Q(x) = 21−nTn(x) − P(x) has the 
same sign as 21−nTn(x) at these points, and must therefore have at least n zeros 
in the interval −1 ≤ x ≤ 1. But this is impossible since Q(x) is a polynomial of 
degree at most n − 1 which is not identically zero.

In this very brief treatment the minimax property unfortunately seems 
to appear out of nowhere, with no motivation and no hint as to why the 
Chebyshev polynomials behave in this extraordinary way. We hope the 
reader will accept our assurance that in the broader context of Chebyshev’s 
original ideas this surprising property is really quite natural.30 For those who 
like their mathematics to have concrete applications, it should be added that 
the minimax property is closely related to the important place Chebyshev 
polynomials occupy in contemporary numerical analysis.

30 Those readers who are blessed with indomitable skepticism, and rightly refuse to accept 
assurances of this kind without personal investigation, are invited to consult N. I. Achieser, 
Theory of Approximation, Ungar, New York, 1956; E. W. Cheney, Introduction to Approximation 
Theory, McGraw-Hill, New York, 1966; or G. G. Lorentz, Approximation of Functions, Holt, 
New York, 1966.
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NOTE ON CHEBYSHEV. Pafnuty Lvovich Chebyshev (1821–1894) was the 
most eminent Russian mathematician of the nineteenth century. He was 
a contemporary of the famous geometer Lobachevsky (1793–1856), but his 
work had a much deeper influence throughout Western Europe and he is 
considered the founder of the great school of mathematics that has been 
flourishing in Russia for the past century.

As a boy he was fascinated by mechanical toys, and apparently was first 
attracted to mathematics when he saw the importance of geometry for under-
standing machines. After his student years in Moscow, he became professor 
of mathematics at the University of St. Petersburg, a position he held until 
his retirement. His father was a member of the Russian nobility, but after 
the famine of 1840 the family estates were so diminished that for the rest of 
his life Chebyshev was forced to live very frugally and he never married. He 
spent much of his small income on mechanical models and occasional jour-
neys to Western Europe, where he particularly enjoyed seeing windmills, 
steam engines, and the like.

Chebyshev was a remarkably versatile mathematician with a rare talent 
for solving difficult problems by using elementary methods. Most of his 
effort went into pure mathematics, but he also valued practical applica-
tions of his subject, as the following remark suggests: “To isolate math-
ematics from the practical demands of the sciences is to invite the sterility 
of a cow shut away from the bulls.” He worked in many fields, but his 
most important achievements were in probability, the theory of numbers, 
and the approximation of functions (to which he was led by his interest in 
mechanisms).

In probability, he introduced the concepts of mathematical expectation 
and variance for sums and arithmetic means of random variables, gave a 
beautifully simple proof of the law of large numbers based on what is now 
known as Chebyshev’s inequality, and worked extensively on the central 
limit theorem. He is regarded as the intellectual father of a long series of 
well-known Russian scientists who contributed to the mathematical theory 
of probability, including A. A. Markov, S. N. Bernstein, A. N. Kolmogorov, 
A. Y. Khinchin, and others.

In the late 1840s Chebyshev helped to prepare an edition of some of the 
works of Euler. It appears that this task caused him to turn his attention 
to the theory of numbers, particularly to the very difficult problem of the 
distribution of primes. As the reader probably knows, a prime number is 
an integer p > 1 that has no positive divisors except 1 and p. The first few 
are easily seen to be 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, …. It is clear 
that the primes are distributed among all the positive integers in a rather 
irregular way; for as we move out, they seem to occur less and less fre-
quently, and yet there are many adjoining pairs separated by a single even 
number. The problem of discovering the law governing their occurrence—
and of understanding the reasons for it—is one that has challenged the 



277Power Series Solutions and Special Functions

curiosity of men for hundreds of years. In 1751 Euler expressed his own 
bafflement in these words: “Mathematicians have tried in vain to this day 
to discover some order in the sequence of prime numbers, and we have 
reason to believe that it is a mystery into which the human mind will 
never penetrate.”

Many attempts have been made to find simple formulas for the nth 
prime and for the exact number of primes among the first n positive inte-
gers. All such efforts have failed, and real progress was achieved only 
when mathematicians started instead to look for information about the 
average distribution of the primes among the positive integers. It is cus-
tomary to denote by π(x) the number of primes less than or equal to a 
positive number x. Thus; π(1) = 0, π(2) = 1, π(3) = 2, π(π) = 2, π(4) = 2, and so on. 
In his early youth Gauss studied π(x) empirically, with the aim of finding 
a simple function that seems to approximate it with a small relative error 
for large x. On the basis of his observations he conjectured (perhaps at the 
age of fourteen or fifteen) that x/log x is a good approximating function, 
in the sense that
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This statement is the famous prime number theorem; and as far as anyone 
knows, Gauss was never able to support his guess with even a fragment of 
proof.

Chebyshev, unaware of Gauss’s conjecture, was the first mathematician 
to establish any firm conclusions about this question. In 1848 and 1850 he 
proved that
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for all sufficiently large x, and also that if the limit in (18) exists, then its value 
must be 1.31 As a by-product of this work, he also proved Bertrand’s postu-
late: for every integer n ≥ 1 there is a prime p such that n < p ≤ 2n. Chebyshev’s 
efforts did not bring him to a final proof of the prime number theorem (this 
came in 1896), but they did stimulate many other mathematicians to continue 
working on the problem. We shall return to this subject in Appendix E, in 
our note on Riemann.

31 The number on the left side of (19) is A = log 2 3 5 30
1
2

1
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1
5

1
30

-
, and that on the right is 
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A.
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Appendix E. Riemann’s Equation

Our purpose in this appendix is to understand the structure of Gauss’s 
hypergeometric equation

 x(1 − x)y″ + [c − (a + b + 1)x]y′ − aby = 0. (1)

In Sections 31 and 32 we saw that this equation has exactly three regular 
singular points x = 0, x = 1, and x = ∞, and also that at least one exponent has 
the value 0 at each of the points x = 0 and x = 1. We shall prove that (1) is fully 
determined by these properties, in the sense that if we make these assump-
tions about the general equation

 y″ + P(x)y′ + Q(x)y = 0, (2)

then (2) necessarily has the form (1).
We begin by recalling from Section 32 that if the independent variable in 

(2) is changed from x to t = 1/x, then (2) becomes
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where the primes denote derivatives with respect to t. It is clear from (3) that 
the point x = ∞ is a regular singular point of (2) if it is not an ordinary point 
and the functions
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are both analytic at t = 0.
We now explicitly assume that (2) has x = 0, x = 1, and x = ∞ as regular singu-

lar points and that all other points are ordinary. It follows that xP(x) is ana-
lytic at x = 0, that (x − 1)P(x) is analytic at x = 1, and that x(x − l)P(x) is analytic 
for all finite values of x:
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If we substitute x = 1/t, then (4) becomes
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so
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Since x = ∞ is a regular singular point of (2), this function must be analytic at 
t = 0. We conclude that a2 = a3 = … = 0, so (4) yields
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for certain constants A and B. Similarly x2(x − 1)2Q(x) is analytic for all finite 
values of x, so
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As before, the assumption that x = ∞ is a regular singular point of (2) implies 
that (6) must be analytic at t = 0, so b3 = b4 = … = 0 and
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Now the fact that (6) is bounded near t = 0 means that x2Q(x) bounded for 
large x, so
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is also bounded and C + E = 0. This enables us to write (7) as
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and in view of (5) and (8), equation (2) takes the form
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Let the exponents belonging to the regular singular points 0, 1, and ∞ be 
denoted by α1 and α2, β1 and β2, γ1 and γ2, respectively. These numbers are the 
roots of the indicial equations at these three points:

 m(m − 1) + Am + D = 0,

 m(m − 1) + Bm + F = 0,

 m(m − 1) + (2 − A − B)m + (D + F − C) = 0.

The first two of these equations can be written down directly by inspecting 
(9), but the third requires a little calculation based on (3). If we write these 
equations as

 m2 + (A − 1)m + D = 0,

 m2 + (B − 1)m + F = 0,

 m2 + (1 − A − B)m + (D + F − C) = 0,

then by the well-known relations connecting the roots of a quadratic equa-
tion with its coefficients, we obtain

α1 + α2 = 1 − A,       α1 α2 = D,

  β1 + β2 = 1 − B,         β1β2 = F, (10)

γ1 + γ2 = A + B − 1,   γ1γ2 = D + F − C.

It is clear from the first column that

  α1 + α2 + β1 + β2 + γ1 + γ2 = 1; (11)
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and by using (10), we can write (9) in the form
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This is called Riemann’s equation, and (11) is known as Riemann’s identity.
The qualitative content of this remarkable conclusion can be expressed as 

follows: the precise form of (2) is completely determined by requiring that it 
have only three regular singular points x = 0, x = 1, and x = ∞ and by specify-
ing the values of its exponents at each of these points.

Let us now impose the additional condition that at least one exponent must 
have the value 0 at each of the points x = 0 and x = 1, say α1 = β1 = 0. Then with a 
little simplification and the aid of (11), Riemann’s equation reduces to

 x(1 − x)y″ + [(1 − α2) − (γ1 + γ2 + 1)x]y′ − γ1γ2y = 0,

which clearly becomes Gauss’s equation (1) if we introduce the customary 
notation a = γ1, b = γ2, c = 1 − α2. For this reason, equation (12) is sometimes 
called the generalized hypergeometric equation.

These results are merely the first few steps in a far-reaching theory of dif-
ferential equations initiated by Riemann. One of the aims of this theory is 
to characterize in as simple a manner as possible all differential equations 
whose solutions are expressible in terms of Gauss’s hypergeometric func-
tion. Another is to achieve a systematic classification of all differential equa-
tions with rational coefficients according to the number and nature of their 
singular points. One surprising fact that emerges from this classification is 
that virtually all such equations arising in mathematical physics can be gen-
erated by confluence from a single equation with five regular singular points 
in which the difference between the exponents at each point is 1/2.32

NOTE ON RIEMANN. No great mind of the past has exerted a deeper influ-
ence on the mathematics of the twentieth century than Bernhard Riemann 
(1826–1866), the son of a poor country minister in northern Germany. He 
studied the works of Euler and Legendre while he was still in secondary 
school, and it is said that he mastered Legendre’s treatise on the theory of 

32 A full understanding of these further developments requires a grasp of the main principles 
of complex analysis. Nevertheless, a reader without this equipment can glean a few useful 
impressions from E. T. Whittaker and G. N. Watson, Modern Analysis, pp 203–208, Cambridge 
University Press, London, 1935; or E. D. Rainville, Intermediate Differential Equations, chap. 6, 
Macmillan, New York, 1964.
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numbers is less than a week. But he was shy and modest, with little aware-
ness of his own extraordinary abilities, so at the age of nineteen he went to 
the University of Göttingen with the aim of pleasing his father by studying 
theology and becoming a minister himself. Fortunately this worthy purpose 
soon stuck in his throat, and with his father’s willing permission he switched 
to mathematics.

The presence of the legendary Gauss automatically made Göttingen 
the center of the mathematical world. But Gauss was remote and 
unapproachable—particularly to beginning students—and after only a year 
Riemann left this unsatisfying environment and went to the University of 
Berlin. There he attracted the friendly interest of Dirichlet and Jacobi, and 
learned a great deal from both men. Two years later he returned to Göttingen, 
where he obtained his doctor’s degree in 1851. During the next eight years 
he endured debilitating poverty and created his greatest works. In 1854 he 
was appointed Privatdozent (unpaid lecturer), which at that time was the 
necessary first step on the academic ladder. Gauss died in 1855, and Dirichlet 
was called to Göttingen at his successor. Dirichlet helped Riemann in every 
way he could, first with a small salary (about one-tenth of that paid to a full 
professor) and then with a promotion to an assistant professorship. In 1859 
he also died, and Riemann was appointed as a full professor to replace him. 
Riemann’s years of poverty were over, but his health was broken. At the age 
of thirty-nine he died of tuberculosis in Italy, on the last of several trips he 
undertook in order to escape the cold, wet climate of northern Germany. 
Riemann had a short life and published comparatively little, but his works 
permanently altered the course of mathematics in analysis, geometry, and 
number theory.33

His first published paper was his celebrated dissertation of 1851 on the gen-
eral theory of functions of a complex variable.34 Riemann’s fundamental aim 
here was to free the concept of an analytic function from any dependence 
on explicit expressions such as power series, and to concentrate instead on 
general principles and geometric ideas. He founded his theory on what are 
now called the Cauchy–Riemann equations, created the ingenious device of 
Riemann surfaces for clarifying the nature of multiple-valued functions, and 
was led to the Riemann mapping theorem. Gauss was rarely enthusiastic 
about the mathematical achievements of his contemporaries, but in his offi-
cial report to the faculty he warmly praised Riemann’s work: “The disserta-
tion submitted by Herr Riemann offers convincing evidence of the author’s 
thorough and penetrating investigations in those parts of the subject treated 
in the dissertation, of a creative, active, truly mathematical mind, and of a 
gloriously fertile originality.”

33 His Gesammelte Mathematische Werke (reprinted by Dover in 1953) occupy only a single vol-
ume, of which two-thirds consists of posthumously published material. Of the nine papers 
Riemann published himself, only five deal with pure mathematics.

34 Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen 
Grösse, in Werke, pp. 3–43.
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Riemann later applied these ideas to the study of hypergeometric and 
Abelian functions. In his work on Abelian functions he relied on a remark-
able combination of geometric reasoning and physical insight, the latter in 
the form of Dirichlet’s principle from potential theory. He used Riemann sur-
faces to build a bridge between analysis and geometry which made it possible 
to give geometric expression to the deepest analytic properties of functions. 
His powerful intuition often enabled him to discover such properties—for 
instance, his version of the Riemann–Roch theorem—by simply thinking 
about possible configurations of closed surfaces and performing imaginary 
physical experiments on these surfaces. Riemann’s geometric methods in 
complex analysis constituted the true beginning of topology, a rich field of 
geometry concerned with those properties of figures that are unchanged by 
continuous deformations.

In 1854 he was required to submit a probationary essay in order to be 
admitted to the position of Privatdozent, and his response was another preg-
nant work whose influence is indelibly stamped on the mathematics of our 
own time.35 The problem he set himself was to analyze Dirichlet’s condi-
tions (1829) for the representability of a function by its Fourier series. One 
of these conditions was that the function must be integrable. But what does 
this mean? Dirichlet had used Cauchy’s definition of integrability, which 
applies only to functions that are continuous or have at most a finite number 
of points of discontinuity. Certain functions that arise in number theory sug-
gested to Riemann that this definition should be broadened. He developed 
the concept of the Riemann integral as it now appears in most textbooks 
on calculus, established necessary and sufficient conditions for the existence 
of such an integral, and generalized Dirichlet’s criteria for the validity of 
Fourier expansions. Cantor’s famous theory of sets was directly inspired 
by a problem raised in this paper, and these ideas led in turn to the con-
cept of the Lebesgue integral and even more general types of integration. 
Riemann’s pioneering investigations were therefore the first steps in another 
new branch of mathematics, the theory of functions of a real variable.

The Riemann rearrangement theorem in the theory of infinite series was an 
incidental result in the paper just described. He was familiar with Dirichlet’s 
example showing that the sum of a conditionally convergent series can be 
changed by altering the order of its terms:
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35 Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe, in Werke, 
pp. 227–264.
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It is apparent that these two series have different sums but the same terms; 
for in (14) the first two positive terms in (13) are followed by the first negative 
term, then the next two positive terms are followed by the second negative 
term, and so on. Riemann proved that it is possible to rearrange the terms of 
any conditionally convergent series in such a manner that the new series will 
converge to an arbitrary preassigned sum, or diverge to ∞ or –∞.

In addition to his probationary essay, Riemann was also required to pres-
ent a trial lecture to the faculty before he could be appointed to his unpaid 
lectureship. It was the custom for the candidate to offer three titles, and the 
head of his department usually accepted the first. However, Riemann rashly 
listed as his third topic the foundations of geometry, a profound subject on 
which he was unprepared but which Gauss had been turning over in his 
mind for 60 years. Naturally, Gauss was curious to see how this particular 
candidate’s “gloriously fertile originality” would cope with such a challenge, 
and to Riemann’s dismay he designated this as the subject of the lecture. 
Riemann quickly tore himself away from his other interests at the time—
“my investigations of the connection between electricity, magnetism, light, 
and gravitation”—and wrote his lecture in the next two months. The result 
was one of the great classical masterpieces of mathematics, and probably the 
most important scientific lecture ever given.36 It is recorded that even Gauss 
was surprised and enthusiastic.

Riemann’s lecture presented in nontechnical language a vast generaliza-
tion of all known geometries, both Euclidean and non-Euclidean. This field 
is now called Riemannian geometry; and apart from its great importance in 
pure mathematics, it turned out 60 years later to be exactly the right frame-
work for Einstein’s general theory of relativity. Like most of the great ideas 
of science, Riemannian geometry is quite easy to understand if we set aside 
the technical details and concentrate on its essential features. Let us recall 
the intrinsic differential geometry of curved surfaces which Gauss had dis-
covered 25 years earlier. If a surface imbedded in three dimensional space is 
defined parametrically by three functions x = x(u,v), y = y(u,v), and z = z(u,v), 
then u and v can be interpreted as the coordinates of points on the sur-
face. The distance ds along the surface between two nearby points (u,v) and 
(u + du,v + dv) is given by Gauss’s quadratic differential form

 ds2 = E du2 + 2F du dv + G dv2,

where E, F, and G are certain functions of u and v. This differential form 
makes it possible to calculate the lengths of curves on the surface, to find 
the geodesic (or shortest) curves, and to compute the Gaussian curvature 
of the surface at any point—all in total disregard of the surrounding space. 
Riemann generalized this by discarding the idea of a surrounding Euclidean 

36 Ueber die Hypothesen, Welche der Geometrie zu Grunde liegen, in Werke, pp. 272–286. There 
is a translation in D. E. Smith, A Source Book in Mathematics, McGraw-Hill, New York, 1929.
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space and introducing the concept of a continuous n-dimensional manifold 
of points (x1, x2, …, xn). He then imposed an arbitrarily given distance (or 
metric) ds between nearby points

 (x1, x2, …, xn) and (x1 + dx1, x2 + dx2, …, xn + dxn)

by means of a quadratic differential form
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where the gij are suitable functions of x1 x2, …, xn and different systems of gij 
define different Riemannian geometries on the manifold under discussion. 
His next steps were to examine the idea of curvature for these Riemannian 
manifolds and to investigate the special case of constant curvature. All of 
this depends on massive computational machinery, which Riemann mer-
cifully omitted from his lecture but included in a posthumous paper on 
heat conduction. In that paper he explicitly introduced the Riemann cur-
vature tensor, which reduces to the Gaussian curvature when n = 2 and 
whose vanishing he showed to be necessary and sufficient for the given 
quadratic metric to be equivalent to a Euclidean metric. From this point 
of view, the curvature tensor measures the deviation of the Riemannian 
geometry defined by formula (15) from Euclidean geometry. Einstein has 
summarized these ideas in a single statement: “Riemann’s geometry of an 
n-dimensional space bears the same relation to Euclidean geometry of an 
n-dimensional space as the general geometry of curved surfaces bears to the 
geometry of the plane.”

The physical significance of geodesics appears in its simplest form as the 
following consequence of Hamilton’s principle in the calculus of variations: 
if a particle is constrained to move on a curved surface, and if no force acts 
on it, then it glides along a geodesic.37 A direct extension of this idea is the 
heart of the general theory of relativity, which is essentially a theory of gravi-
tation. Einstein conceived the geometry of space as a Riemannian geometry 
in which the curvature and geodesics are determined by the distribution of 
matter; in this curved space, planets move in their orbits around the sun by 
simply coasting along geodesics instead of being pulled into curved paths by 
a mysterious force of gravity whose nature no one has ever really understood.

In 1859 Riemann published his only work on the theory of numbers, a brief 
but exceedingly profound paper of less than 10 pages devoted to the prime 
number theorem.38 This mighty effort started tidal waves in several branches 

37 This is proved in Appendix B of Chapter 12.
38 Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, in Werke, pp. 145–153. See 

the statement of the prime number theorem in our note on Chebyshev in Appendix D.
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of pure mathematics, and its influence will probably still be felt a thousand 
years from now. His starting point was a remarkable identity discovered by 
Euler over a century earlier: if s is a real number greater than 1, then

 n
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1 1
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where the expression on the right denotes the product of the numbers 
(1 − p−s)−1 for all primes p. To understand how this identity arises, we note 
that 1/(1 − x) = 1 + x + x2 + … for |x|< 1, so for each p we have
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On multiplying these series for all primes p and recalling that each integer 
n > 1 is uniquely expressible as a product of powers of different primes, we 
see that
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which is the identity (16). The sum of the series on the left of (16) is evidently 
a function of the real variable s > 1, and the identity establishes a connection 
between the behavior of this function and properties of the primes. Euler 
himself exploited this connection in several ways, but Riemann perceived 
that access to the deeper features of the distribution of primes can only be 
gained by allowing s to be a complex variable. He denoted the resulting 
function by ζ(s), and it has since been known as the Riemann zeta function:
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In his paper he proved several important properties of this function, and in 
a sovereign way simply stated a number of others without proof. During the 
century since his death, many of the finest mathematicians in the world have 
exerted their strongest efforts and created rich new branches of analysis in 
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attempts to prove these statements. The first success was achieved in 1893 by 
J. Hadamard, and with one exception every statement has since been settled 
in the sense Riemann expected.39 This exception is the famous Riemann 
hypothesis: that all the zeros of ζ(s) in the strip 0 ≤ σ ≤ 1 lie on the central line 

σ = 1
2

. It stands today as the most important unsolved problem of mathemat-
ics, and is probably the most difficult problem that the mind of man has 
ever conceived. In a fragmentary note found among his posthumous papers, 
Riemann wrote that these theorems “follow from an expression for the func-
tion ζ(s) which I have not yet simplified enough to publish.”40 Writing about 
this fragment in 1944, Hadamard remarked with justified exasperation, “We 
still have not the slightest idea of what the expression could be.”41 He adds 
the further comment: “In general, Riemann’s intuition is highly geometrical; 
but this is not the case for his memoir on prime numbers, the one in which 
that intuition is the most powerful and mysterious.”

39 Hadamard’s work led him to his 1896 proof of the prime number theorem. See E. C. 
Titchmarsh, The Theory of the Riemann Zeta Function, chap. 3, Oxford University Press, 
London, 1951. This treatise has a bibliography of 326 items.

40 Werke, p. 154.
41 The Psychology of Invention in the Mathematical Field, p. 118, Dover, New York, 1954.
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Chapter 6
Fourier Series and Orthogonal Functions

33 The Fourier Coefficients

Trigonometric series of the form
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are needed in the treatment of many physical problems that lead to partial 
differential equations, for instance, in the theory of sound, heat conduction, 
electromagnetic waves, and mechanical vibrations.1 We shall examine some 
of these applications in the next chapter The representation of functions by 
power series is familiar to us from calculus and also from our work in the 
preceding chapter. An important advantage of the series (1) is that it can rep-
resent very general functions with many discontinuities—like the discontin-
uous “impulse” functions of electrical engineering—whereas power series 
can represent only continuous functions that have derivatives of all orders.

Aside from the great practical value of trigonometric series for solving 
problems in physics and engineering, the purely theoretical part of this sub-
ject has had a profound influence on the general development of mathemati-
cal analysis over the past 250 years. Specifically, it provided the main driving 
force behind the evolution of the modern notion of function, which in all its 
ramifications is certainly the central concept of mathematics; it led Riemann 
and Lebesgue to create their successively more powerful theories of integra-
tion, and Cantor his theory of sets; it led Weierstrass to his critical study of 
the real number system and the properties of continuity and differentiability 
for functions; and it provided the context within which the geometric idea of 
orthogonality (perpendicularity) was able to develop into one of the major 
unifying concepts of modern analysis. We shall comment further on all of 
these matters throughout this chapter.

1 It is only for reasons of convenience that the constant term in (1) is written 
1
2

a0 instead of a0. 
This will become clear below.
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We begin our treatment with some classical calculations that were first 
performed by Euler. Our point of view is that the function f(x) in (1) is defined 
on the closed interval –π ≤ x ≤ π, and we must find the coefficients an and bn in 
the series expansion. It is convenient to assume, temporarily, that the series is 
uniformly convergent, because this implies that the series can be integrated 
term by term from –π to π.2

Since
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for n = 1, 2,..., the term-by-term integration yields
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It is worth noticing here that formula (3) shows that the constant term 1
2

a0 in 

(1) is simply the average value of f(x) over the interval. The coefficient an is 
found in a similar way. Thus, if we multiply (1) by cos nx the result is

 f(x) cos nx = 
1
2

a0 cos nx + ∙ ∙ ∙ + an cos2 nx + ∙ ∙ ∙, (4)

where the terms not written contain products of the form sin mx cos nx or of 
the form cos mx cos nx with m ≠ n. At this point it is necessary to recall the 
trigonometric identities

 sin mx cos nx = 
1
2

[sin (m + n)x + sin (m – n)x],

 cos mx cos nx = 
1
2

[cos (m + n)x + cos (m – n)x],

 sin mx sin nx = 
1
2

[cos (m – n)x – cos (m + n)x],

2 Readers who are not acquainted with the concept of uniform convergence can freely integrate 
the series term by term anyway—as Euler and his contemporaries did without a qualm—as 
long as they realize that this operation is not always legitimate and ultimately needs theoreti-
cal justification.
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which follow directly from the addition and subtraction formulas for the sine 
and cosine. It is now easy to verify that for integral values of m and n ≥ 1 we have
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These facts enable us to integrate (4) term by term and obtain
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By (3), formula (7) is also valid for n = 0; this is the reason for writing the 

constant term in (1) as 
1
2

a0 rather than a0. We get the corresponding formula 

for bn by essentially the same procedure—we multiply (1) through by sin nx, 
integrate term by term, and use the additional fact that
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These calculations show that if the series (1) is uniformly convergent, then 
the coefficients an and bn can be obtained from the sum f(x) by means of 
the above formulas. However, this situation is too restricted to be of much 
practical value, because how do we know whether a given f(x) admits an 
expansion as a uniformly convergent trigonometric series? We don’t—and 
for this reason it is better to set aside the idea of finding the coefficients an 
and bn in an expansion (1) that may or may not exist, and instead use for-
mulas (7) and (9) to define certain numbers an and bn that are then used to 
construct the trigonometric series (1). When this is done, these an and bn are 
called the Fourier coefficients of the function f(x), and the series (1) is called 
the Fourier series of f(x). A Fourier series is thus a special kind of trigono-
metric series—one whose coefficients are obtained by applying formulas 
(7) and (9) to some given function f(x). In order to form this series, it is not 
necessary to assume that f(x) is continuous, but only that the integrals (7) 
and (9) exist; and for this it suffices to assume that f(x) is integrable on the 
interval –π ≤ x ≤ π.3

Of course, we hope that the Fourier series of f(x) will converge and have 
f(x) for its sum, and that therefore (1) will constitute a valid representation or 
expansion of this function. Unfortunately, however, this is not always true, 
for there exist many integrable—even continuous—functions whose Fourier 
series diverge at one or more points. Advanced treatises on Fourier series 
usually replace the equals sign in (1) by the symbol ~, in order to emphasize 
that the series on the right is the Fourier series of the function on the left but 
that the series is not necessarily convergent. We shall continue to use the 
equals sign because the series obtained in this book actually do converge for 
every value of x.

Just as being a Fourier series does not imply convergence, convergence for 
a trigonometric series does not imply that it is a Fourier series. For example, 
it is known that
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converges for every value of x, and yet this series is known not to be a Fourier 
series.4 This means that the coefficients in (10) cannot be obtained by apply-
ing formulas (7) and (9) to any integrable function f(x), not even if we make 

3 In this context “integrable” means “Riemann integrable,” which is defined in terms of upper 
sums and lower sums and is the standard concept used in most calculus courses.

4 For convergence, see Problem 2(a) in Appendix C.12 of George F. Simmons, Calculus With 
Analytic Geometry, McGraw-Hill, New York, 1985. The fact that (10) is not a Fourier series is a 
consequence of the remarkable theorem that the term-by-term integral of any Fourier series 
(whether convergent or not) must converge for all x—and this is not true for (10).
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the obvious choice and take f(x) to be the function that is the sum of the 
series.

These surprising phenomena prevent the theory of Fourier series from 
being at all simple or straightforward, but they also render it extraordinarily 
fascinating to mathematicians. The fundamental problem of the subject is 
clearly to discover properties of an integrable function that guarantee that 
its Fourier series not only converges but also converges to the function. We 
shall state such properties in the next section, but first it is desirable to gain 
some direct, hands-on experience with the calculation of Fourier series for 
particular functions.

Example 1. Find the Fourier series of the function f(x) = x, –π ≤ x ≤ π. First, 
by (3) we have
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If n ≥ 1, then we find an by using (7) and integrating by parts with u = x, 
dv = cos nx dx,
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and using (9) with u = x, dv = sin nx dx gives
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since cos nπ = (–1)n. Now, substituting these results in (1) suggests that

 
x x

x x
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sin sin
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It should be clearly understood that the use of the equals sign here is an 
expression of hope rather than definite knowledge.

In Appendix A we prove that the series (11) converges to x for –π < 
x < π. To discuss the convergence behavior of the series outside this 
interval, we introduce the concept of periodicity. A function f(x) is said 
to be periodic if f(x + p) = f(x) for all values of x, where p is a positive 
constant.5 Any positive number p with this property is called a period 
of f(x); for instance, sin x in (11) has periods 2π, 4π,..., and sin2x has 
periods π, 2π,....

It is easy to see that each term of the series (11) has period 2π—in fact, 
2π is the smallest period common to all the terms—so the sum also has 
period 2π. This means that the known graph of the sum between –π and 
π is simply repeated on each successive interval of length 2π to the right 
and left. The graph of the sum therefore has the sawtooth appearance 
shown in Figure 39. It is clear from this that the sum of the series is equal 
to x only on the interval –π < x < π, and not on the entire real line –∞ > 
< x < ∞.

It remains to describe what happens at the points x = ±π, ±3π,..., where 
the sum of the series as shown in the figure has a sudden jump from 
–π to + π. By putting x = ±π, ±3π,... in (11), we see that every term of the 
series is zero. Therefore the sum is also zero, and we show this fact in the 
figure by putting a dot at these points.

The first four terms of the series (11) are

 2 sin x, –sin 2x, 
2
3

sin 3x, – 
1
2

sin 4x.

These and the next two terms are sketched as the numbered curves in 
Figure 40. The sum of the four terms listed above is

5 It follows that we also have f (x – p) = f(x), as can be seen by replacing x by x – p in the above 
equation.

y

x–4π
–3π

–2π
–π π

2π
3π

4π

FIGURE 39
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 y = 2 sin x – sin 2x + 
2
3

sin 3x – 
1
2

sin 4x. (12)

Since this is a partial sum of the Fourier series, and the series converges 
to x for –π < x < π, we expect the partial sum (12) to approximate the func-
tion y = x on this interval. The accuracy of the approximation is indicated 
by the upper curves in Figure 40, which show this partial sum of four 
terms and also the sums of six and ten terms. As the number of terms 
increases, the approximating curves approach y = x for each fixed x on 
the interval –π < x < π, but not for x = ± π.

Example 2. Find the Fourier series of the function defined by

 f(x) = 0, –π ≤ x < 0;

 f(x) = π, 0 ≤ x ≤ π.

0

y

4 terms

1

2

3

4
5 6

π x

6 terms

10 terms

FIGURE 40
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By (3), (7) and (9) we have
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Since the nth even number is 2n and the nth odd number is 2n – 1 the last 
of these formulas tells us that
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By substituting in (1) we obtain the required Fourier series,
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x x
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sin sin
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The successive partial sums are

 
y y x y x x= = + = + +

p p p
2 2

2
2

2
2
3

3, sin , sin sin ,....

The first four of these are sketched in Figure 41, together with the graph 
of y = f(x)

0–π π

π

x

y

FIGURE 41
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We will see in the next section that the series (13) converges to the 
function f(x) on the subintervals –π < x < 0 and 0 < x < π, but not at 
the points 0, π –π. The sum of the series (13) is clearly periodic with 
period 2π, and therefore the graph of this sum has the square wave 
appearance shown in Figure 42, with a jump from 0 to π at each point 
x = 0, ±π, ±2π,.... Further, this sum evidently has the value π/2 at each of 
these points of discontinuity, and we indicate this fact in the figure as 
we did before, by placing a dot at each of the points in question. And 
just as before, each dot is halfway between the limit of the function 
as we approach the point of discontinuity from the left and the limit 
from the right.

Example 3. Find the Fourier series of the function defined by

 

f x x

f x x
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This is the function in Example 2 minus the constant π/2. Its Fourier 
series can therefore be obtained by subtracting π/2 from the series (13), 
which gives
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� . (14)

The graph of the sum of this series is simply the square wave in Figure 42 
lowered to be symmetric about the x-axis, as shown in Figure 43.
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FIGURE 42
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Example 4. Find the Fourier series of the function defined by
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This is the function defined in Example 3 minus one-half the function in 
Example 1. The Fourier series can therefore be obtained by subtracting 
one-half the series (11) term by term the series (14):
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The graph of the sum of this series is the sawtooth wave shown in 
Figure 44.

The validity of the procedures used in Examples 3 and 4 depends on the eas-
ily verified fact that the operation of forming the Fourier coefficients is linear; 
that is, the coefficients for the sum f(x) + g(x) are the sums of the respective 
coefficients for f(x) and for g(x), and if c is any constant, then the coefficients 
for cf(x) are c times the coefficients for f(x). Also, the Fourier series of a con-
stant function is simply the constant itself.

Remark 1. In Section 36 we show how the interval –π ≤ x ≤ π of length 2π can 
be replaced by an interval of arbitrary length, with no difficulty except for a 
slight loss of simplicity in the formulas. This extension of the ideas is neces-
sary for many of the applications to science.

–4π
–3π

–2π –π
π

2π
3π

4π
x

y

π
2

π
2–

FIGURE 44
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Remark 2. Our work in this section —and throughout this chapter—rests on 
the property of orthogonality for the system of functions

 1, cos nx, sin nx (n = 1, 2,...)

over the interval –π ≤ x ≤ π. This means that the integral of the product of 
any two of these functions over the interval is zero—which is precisely the 
substance of equations (2), (5), (6) and (8). We shall return to this concept in 
Sections 37 and 38 and use it to give a simple and satisfying geometric struc-
ture to the theory of Fourier series.

NOTE ON FOURIER. Jean Baptiste Joseph Fourier (1768–1830), an excel-
lent mathematical physicist, was a friend of Napoleon (so far as such people 
have friends) and accompanied his master to Egypt in 1798. On his return 
he became prefect of the district of Isère in southeastern France, and in this 
capacity built the first real road from Grenoble to Turin. He also befriended 
the boy Champollion, who later deciphered the Rosetta Stone as the first 
long step toward understanding the hieroglyphic writing of the ancient 
Egyptians.

During these years he worked on the theory of the conduction of heat, and 
in 1822 published his famous Théorie Analytique de la Chaleur, in which he 
made extensive use of the series that now bear his name. These series were 
of profound significance in connection with the evolution of the concept of a 
function. The general attitude at that time was to call f(x) a function if it could 
be represented by a single expression like a polynomial, a finite combination 

of elementary functions, a power series a xn
n

n

=

¥å 0
, or a trigonometric series 

of the form

 

1
2

0

1

a a nx b nxn n

n

+ +( )
=

¥

å cos sin .

If the graph of f(x) were “arbitrary”—for example, a polygonal line with 
a number of corners and even a few gaps—then f(x) would not have been 
accepted as a genuine function. Fourier claimed that “arbitrary” graphs can 
be represented by trigonometric series and should therefore be treated as 
legitimate functions, and it came as a shock to many that he turned out to 
be right. It was a long time before these issues were completely clarified, and 
it was no accident that the definition of a function that is now almost uni-
versally used was first formulated by Dirichlet in 1837 in a research paper 
on the theory of Fourier series. Also, the classical definition of the definite 
integral due to Riemann was first given in his fundamental paper of 1854 on 
the subject of Fourier series. Indeed, many of the most important mathemati-
cal discoveries of the nineteenth century are directly linked to the theory of 
Fourier series, and the applications of this subject to mathematical physics 
have been scarcely less profound.
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Fourier himself is one of the fortunate few: his name has become rooted in 
all civilized languages as an adjective that is well known to physical scien-
tists and mathematicians in every part of the world.

Problems

 1. Find the Fourier series for the function defined by
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 2. Find the Fourier series for the function defined by

 

f x

x

x

x

( )

, ;

, ;

, .

=

£ <

£ £

< £

ì

í

ï
ïï

î

ï
ï
ï

0 0

1 0
2

0
2

-p
p

p p

 3. Find the Fourier series for the function defined by

 

f x x

f x x x

( ) , ;
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0 0
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 4. Solve Problem 3 with sin x replaced by cos x.

 5. Find the Fourier series for the function defined by
 (a) f(x) = π, –π ≤ x ≤ π;
 (b) f(x) = sin x, –π ≤ x ≤ π;
 (c) f(x) = cos x, –π ≤ x ≤ π;
 (d) f(x) = π + sin x + cos x, –π ≤ π ≤ π.

 Pay special attention to the reasoning used to establish your conclu-
sions, including the possibility of alternate lines of thought.

 Solve Problems 6 and 7 by using the methods of Examples 3 and 4, 
without actually calculating the Fourier coefficients.
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 6. Find the Fourier series for the function defined by
 (a) f(x) = –a, –π ≤ x < 0 and f(x) = a, 0 ≤ x ≤ π (a is a positive number);
 (b) f(x) = –1, –π ≤ x < 0 and f(x) = 1, 0 ≤ x ≤ π;

 (c) f x x f x x( ) , ( ) ,= £ < £ £- -p p p p
4

0
4

0and = ;

 (d) f(x) = –1,–π ≤ x < 0 and f(x) = 2, 0 ≤ x ≤ π;
 (e) f(x) = 1, –π ≤ x < 0 and f(x) = 2, 0 ≤ x ≤ π.

 7. Obtain the Fourier series for the function in Problem 2 from the result 
of Problem 1. Hint: Begin by forming π – (the function in Example 2).

 8. Without using Fourier series at all, show graphically that the sawtooth 
wave of Figure. 33 can be represented as the sum of a sawtooth wave of 
period π and a square wave of period 2π.

34 The Problem of Convergence

The examples and problems in Section 33 illustrate several features that are 
characteristic of Fourier series in general and which we now discuss from 
a general point of view. Our purpose is to attain a good understanding of a 
useful set of conditions that will guarantee that the Fourier series of a func-
tion not only converges, but also converges to the function.

We begin by pointing out that each term of the series

 
f x a a nx b nxn n( ) ( cos sin )= + +

¥

å1
2

0

1

 (1)

has period 2π, and therefore, if the function f(x) is to be represented by the 
sum, f(x) must also have period 2π. Whenever we consider a series like (1), we 
shall assume that f(x) is initially given on the basic interval –π ≤ x < π or –π < 
x ≤ π, and that for other values of x, f(x) is defined by the periodicity condition

 f(x + 2π) = f(x). (2)

In particular, (2) requires that we must always have f (π) = f (–π). Accordingly, 
the complete function we consider is the so-called “periodic extension” of 
the originally given part to the successive intervals of length 2π that lie to the 
right and left of the basic interval.

The phrase simple discontinuity (or often jump discontinuity) is used to 
describe the situation where a function has a finite jump at a point x = x0. 
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This means that f(x) approaches finite but different limits from the left side 
of x0 and from the right side, as shown in Figure 45. We can express this 
behavior by writing

 
lim ( ) lim ( ),
Î® Î®

Î ¹ + Î Î>
0

0
0

0 0f x f x- ,

where it is understood that both limits exist and are finite. It will be conve-
nient to denote these limits by the simpler symbols f (x0 –) and f (x0 +), so that 
the above inequality can be written as

 f (x0 –) ≠ f (x0 +).

A function f(x) is said to be bounded if an inequality of the form

 |f(x)| ≤ M

holds for some constant M and all x under consideration. For example, the 
functions x2, ex and sin x are bounded on –π ≤ x < π, but f(x) = 1/(π – x) is not. 
It can be proved (see Problem 7 below) that if a bounded function f(x) has 
only a finite number of discontinuities and only a finite number of maxima 
and minima, then all its discontinuities are simple. This means that f(x –) 
and f (x +) exist at every point x, and points of continuity are those for which 
f(x –) = f(x +).

Each of the functions shown in Figures 39, 42, 43, and 44 satisfies these 
conditions on every finite interval. However, the function defined by

f (x0 –)

f (x0 +)

y

xx0 – ε x0 x0 + ε

y = f (x)

FIGURE 45
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f x

x
x f( ) sin ( ), ( )= ¹ =1

0 0 0

has infinitely many maxima near x = 0, and the discontinuity at x = 0 is not 
simple [Figure. 46 (a)]. The functions defined by

 
g x x

x
x g( ) sin ( ), ( )= ¹ =1

0 0 0

and

 
h x x

x
x h( ) sin ( ), ( )= ¹ =2 1

0 0 0

also have infinitely many maxima near x = 0 [Figures 46 (b) and 46 (c)], 
but both are continuous at x = 0 whereas only h(x) is differentiable at this 
point.

We are now in a position to state the following theorem, which establishes 
the desired convergence behavior for a very large class of functions.

(a)

x

y

(b)

y

x

(c)

y

x

FIGURE 46
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Dirichlet’s Theorem. Assume that f(x) is defined and bounded for –π ≤ x < π, 
and also that it has only a finite number of discontinuities and only a finite num-
ber of maxima and minima on this interval. Let f(x) be defined for other values 
of x by the periodicity condition f (x + 2π) = f(x). Then the Fourier series of f(x) 
converges to

 
1
2

[f (x –) + f (x +)]

at every point x, and therefore it converges to f(x) at every point of continuity of the 
function. Thus, if at every point of discontinuity the value of the function is redefined 
as the average of its two one-sided limits there,

 f(x) = 
1
2

[f (x –) + f (x +)],

then the Fourier series represents the function everywhere.6

The conditions imposed on f(x) in this theorem are called Dirichlet conditions, 
after the German mathematician P. G. L. Dirichlet who discovered the theo-
rem in 1829. In Appendix A we establish the same conclusion under slightly 
different hypotheses—piecewise smoothness—which are still sufficiently 
weak to cover almost all applications.7

The general situation is as follows: The continuity of a function is not suf-
ficient for the convergence of its Fourier series to the function, and neither is 
it necessary.8 That is, it is quite possible for a discontinuous function to be 
represented everywhere by its Fourier series, provided its discontinuities are 
relatively mild, and provided it is relatively well-behaved between the points 
of discontinuity. In Dirichlet’s theorem above, the discontinuities are simple 
and the graph consists of a finite number of increasing or decreasing con-
tinuous pieces; and in the theorem we prove in Appendix A, the discontinui-
ties are again simple and the graph consists of a finite number of continuous 
pieces with continuously turning tangents.

6 We remind the reader that the value of an integrable function can be redefined at any finite 
number of points without changing the value of its integral, and therefore without changing 
the Fourier series of the function.

7 Proofs of Dirichlet’s theorem in a slightly more general form can be found in E. C. Titchmarsh, 
The Theory of Functions, 2d ed., Oxford University Press, 1950, pp. 406–407; in W. Rogosinski, 
Fourier Series, Chelsea, New York, 1950, pp. 72–74; and in Béla Sz.-Nagy, Introduction to Real 
Functions and Orthogonal Expansions, Oxford University Press, 1965, pp. 399–402.

8 It is a major unsolved problem of mathematics to find conditions that are both necessary and 
sufficient.
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Example. Find the Fourier series of the periodic function defined by
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For n ≥ 1, we integrate by parts to obtain
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The Fourier series is therefore
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By Dirichlet’s theorem this equation is valid at all points of continuity, 
since f(x) is understood to be the periodic extension of the initially given 
part (see Figure 47). At the point of discontinuity x = π, the series con-
verges to
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When x = π is substituted in (3), this yields the following interesting sum 
of the reciprocals of the squares of the odd numbers,
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The same sum is obtained by substituting the point of continuity x = 0 
into (3). Further, we can use (4) to find the sum of the reciprocals of the 
squares of all the positive integers,
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All that is needed to establish this is to write
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The sum (5) was found by Euler in 1736, and is one of the most memo-
rable discoveries in the early history of infinite series.9

NOTE ON DIRICHLET. Peter Gustav Lejeune Dirichlet (1805–1859) was 
a German mathematician who made many contributions of lasting value 
to analysis and number theory. As a young man he was drawn to Paris by 

9 For Euler’s own wonderfully ingenious way of discovering (5), see Appendix A 12 in the 
Simmons book cited in footnote 4.

–3π –2π –π

y

π 2π 3π x

FIGURE 47
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the reputations of Cauchy, Fourier, and Legendre, but he was most deeply 
influenced by his encounter and lifelong contact with Gauss’s Disquisitiones 
Arithmeticae (1801). This prodigious but cryptic work contained many of the 
great master’s far-reaching discoveries in number theory, but it was under-
stood by very few mathematicians at that time. As Kummer later said, 
“Dirichlet was not satisfied to study Gauss’s Disquisitiones once or several 
times, but continued throughout his life to keep in close touch with the 
wealth of deep mathematical thoughts which it contains by perusing it again 
and again. For this reason the book was never put on the shelf but had an 
abiding place on the table at which he worked. Dirichlet was the first one 
who not only fully understood this work, but also made it accessible to oth-
ers.” In later life Dirichlet became a friend and disciple of Gauss, and also 
a friend and advisor of Riemann, whom he helped in a small way with his 
doctoral dissertation. In 1855, after lecturing at Berlin for many years, he suc-
ceeded Gauss in the professorship at Göttingen.

One of Dirichlet’s earliest achievements was a milestone in analysis: In 
1829 he gave the first satisfactory proof that certain specific types of func-
tions are actually the sums of their Fourier series. Previous work in this field 
had consisted wholly of the uncritical manipulation of formulas; Dirichlet 
transformed the subject into genuine mathematics in the modern sense. As a 
byproduct of this research, he also contributed greatly to the correct under-
standing of the nature of a function, and gave the definition which is now 
most often used, namely, that y is a function of x when to each value of x in 
a given interval there corresponds a unique value of y. He added that it does 
not matter whether y depends on x according to some “formula” or “law” or 
“mathematical operation,” and he emphasized this by giving the example of 
the function of x which has the value 1 for all rational x’s and the value 0 for 
all irrational x’s.

Perhaps his greatest works were two long memoirs of 1837 and 1839 in 
which he made very remarkable applications of analysis to the theory of 
numbers. It was in the first of these that he proved his wonderful theorem 
that there are an infinite number of primes in any arithmetic progression of 
the form a + nb, where a and b are positive integers with no common factor. 
His discoveries about absolutely convergent series also appeared in 1837. His 
convergence test, referred to in footnote 4 in Section 33, was published post-
humously in his Vorlesungen über Zahlentheorie (1863). These lectures went 
through many editions and had a very wide influence.

He was also interested in mathematical physics, and formulated the 
so-called Dirichlet principle of potential theory, which asserts the exis-
tence of harmonic functions (functions that satisfy Laplace’s equation) 
with prescribed boundary values. Riemann—who gave the principle its 
name—used it with great effect in some of his profoundest researches. 
Hilbert gave a rigorous proof of Dirichlet’s principle in the early twentieth 
century.
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Problems

 1. In Problems 1, 2, 3, 4, 6 of Section 33, sketch the graph of the sum of each 
Fourier series on the interval –5π ≤ x ≤ 5π.

 2. Use the example in the text to write down without calculation the 
Fourier series for the function defined by

 

f x x x

f x x

( ) , ;
( ) , .

= - < £
= < £

-p
p

0
0 0

 Sketch the graph of the sum of this series on the interval –5π ≤ x ≤ 5π.
 3. Find the Fourier series for the periodic function defined by

 

f x x

f x x x

( ) , ;
( ) , .

= £ <
= £ <

- -p p
p

0
0

 Sketch the graph of the sum of this series on the interval – 5π ≤ x ≤ 5π and 
find what numerical sums are implied by the convergence behavior at 
the points of discontinuity x = 0 and x = π.

 4. (a)  Show that the Fourier series for the periodic function defined by 
f(x) = 0, –π ≤ x < 0 and f(x) = x2, 0 ≤ x < π is

 

f x
nx

n

nx
n

n

n

n

( ) ( )
cos

( )
sin sin( )

= +

+

¥

¥
+

¥

å

å å

p

p
p

2

1
2

1

1

1

6
2 1

1
4 2 1

-

- - - xx
n( )2 1 3-

.

 (b) Sketch the graph of the sum of this series on the interval – 5π ≤ x ≤ 5π.
 (c) Use the series in (a) with x = 0 and π to obtain the sums

 
1

1
2

1
3

1
4 122 2 2

2

- -+ + =�
p

and

 
1

1
2

1
3

1
4 62 2 2

2

+ + + + =�
p .
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 (d) Derive the second sum in (c) from the first. Hint: Add 2
1

2

2

n
æ
è
ç

ö
ø
÷å  to 

both sides.
 5. (a)  Find the Fourier series for the periodic function defined by f(x) = 

ex, –π ≤ x < π. Hint: Recall that sinh x = (ex – e–x)/2.
 (b) Sketch the graph of the sum of this series on the interval 

–5π ≤ x ≤ 5π.
 (c) Use the series in (a) to establish the sums

 1
2

1
1

1
2

1
¥

å +
= é

ëê
ù
ûún

p
ptanh

-

and

 1
2

1
1

1
2

1
¥

å +
= é

ëê
ù
ûú

( )
sinh

- -
n

n
p

p
.

 6. Mathematicians prefer the classes of functions they study to be lin-
ear spaces, that is, to be closed under the operations of addition and 
multiplication by scalars. Unfortunately this is not true for the class of 
functions defined on the interval –π ≤ x < π that satisfy the Dirichlet 
conditions. Verify this statement by examining the functions

 
f x x

x
x x f( ) sin ( ), ( )= + ¹ =2 1

2 0 0 0

and

 g(x) = –2x.

 7. If f(x) is defined on the interval –π ≤ x < π and satisfies the Dirichlet 
conditions there, prove that f (x–) and f (x+) exist at every interior point, 
and also that f (x+) exists at the left endpoint and f (x–) exists at the 
right endpoint. Hint: Each interior point of discontinuity is isolated 
from other such points, in the sense that the function is continuous at 
all nearby points; also, on each side of such a point and near enough 
to it, the function does not oscillate, and is therefore increasing or 
decreasing.
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35 Even and Odd Functions. Cosine and Sine Series

In principle, our work in the preceding sections could have been based on 
any interval of length 2π, for instance, on the interval 0 ≤ x ≤ 2π. However, the 
symmetrically placed interval –π ≤ x ≤ π has substantial advantages for the 
exploitation of symmetry properties of functions, as we now show.

A function f(x) defined on this interval (or on any symmetrically placed 
interval) is said to be even if

 f(–x) = f(x), (1)

and f(x) is said to be odd if

 f(–x) = –f(x). (2)

For example, x2 and cos x are even, and x3 and sin x are odd. The graph of 
an even function is symmetric about the y-axis, as shown in Figure 48, and 
the graph of an odd function is skew-symmetric (Figure 49). By putting x = 0 
in (2), we see that an odd function always has the property that f (0) = 0. It is 
clear from the figures that

 –

( ) ( ) ( )
a

a a

f x dx f x dx f xò ò= 2
0

if is even, (3)

and

 –

( ) ( )
a

a

f x dx f xò = 0 if is odd, (4)

x

y

FIGURE 48



311Fourier Series and Orthogonal Functions

because the integrals represent the algebraic (signed) areas under the curves. 
These facts can also be established by analytic reasoning based on the defini-
tions (1) and (2) [see Problem 3 below]. Products of even and odd functions 
have the simple properties

 (even)(even) = even, (even)(odd) = odd, (odd)(odd) = even,

which correspond to the familiar rules

 (+1)(+1) = +1, (+1)(–1) = –1, (–1) (–1) = +1.

For instance, to prove the second property we consider the function F(x) = f (x)
g(x), where f(x) is even and g(x) is odd. Then

 F(–x) = f(–x) g(–x) = f(x) [–g(x)] = –f(x) g(x) = –F(x),

which shows that the product f(x) g(x) is odd. The other two properties can 
be proved similarly. As an example, we know that x3cos nx is odd because x3 
is odd and cos nx is even, so (4) tells us at once that

 –

cos
p

p

ò =x nx dx3 0,

without the need for detailed integrations by parts.
The following simple theorem clarifies the significance of these ideas for 

the study of Fourier series.

x

y

FIGURE 49
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Theorem. Let f(x) be an integrable function defined on the interval –π ≤ x ≤ π. 
If f(x) is even, then its Fourier series has only cosine terms and the coefficients are 
given by

 

a f x nx dx bn n= =ò2
0

0
p

p

( )cos ,  . (5)

And if f(x) is odd, then its Fourier series has only sine terms and the coefficients are 
given by

 

a b f x nx dxn n= = ò0
2

0

, ( )sin
p

p

 . (6)

To prove this, we assume first that f(x) is even. Then f(x) cos nx is even (even 
times even) and by (3) we have

 

a f x nx dx f x nx dxn = =ò ò1 2

0
p p

p

p p

–

( )cos ( )cos .

On the other hand, f(x) sin nx is odd (even times odd), so (4) tells us that

 

b f x nx dxn = =ò1
0

p
p

p

–

( )sin ,

which completes the argument for (5). It is easy to establish (6) by similar 
reasoning.

Example 1. (a) First, we briefly consider the function f(x) = x on the 
interval –π ≤ x ≤ π. Since this is an odd function, its Fourier series is 
automatically a sine series, and therefore it is not necessary to bother 
calculating the cosine coefficients. We found in Section 33 that the 
Fourier series is

 
x x

x x
= +æ

è
ç

ö
ø
÷2

2
2

3
3

sin
sin sin

- -� , (7)

and we know that this expansion is valid only on the open inter-
val –π < x < π and not at the endpoints x = ±π, because any series of sines 
converges to zero at these points.
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(b) Next, we consider the function f(x) = |x| on the interval –π ≤ x ≤ π 
(Figure 50). Since this is an even function, its Fourier series reduces to a 
cosine series, and by (5) we have

 

a x nx dx

x nx dx

n =

=

ò

ò

1

2

0

p

p

p

p

p

-

| |cos

cos .

It is easy to see that a0 = π, and for n ≥ 1 an integration by parts gives

 
a

n
n

n
n

n= = éë ùû
2

1
2

1 12 2p
p

p
(cos ) ( )- - - .

This tells us that

 
a a

n
n n= =0

4
2 1

2 1 2and - -
-p( )

,

so we have the expansion

 
| | cos

cos cos
x x

x x
= + + +æ

è
ç

ö
ø
÷

p
p2
4 3

3
5

52 2- � . (8)

The periodic extension of the initially given function is shown in 
Figure 51. We see at once from the ideas of Section 34 that the series in 
(8) converges to this extension for all x, and therefore the expansion (8) is 
valid on the closed interval –π ≤ x ≤ π.

y

xπ–π

FIGURE 50
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Since |x| = x for x ≧ 0, the two series (7) and (8) are both expansions of 
the same function f(x) = x on the interval 0 ≤ x ≤ π. The first series (7) is 
called the Fourier sine series for x, and (8) is called the Fourier cosine series 
for x. Similarly, any function f(x) defined on the interval 0 ≤ x ≤ π that sat-
isfies the Dirichlet conditions there can be expanded in both a sine series 
and a cosine series on this interval—with the proviso that the sine series 
cannot converge to f(x) at the endpoints x = 0 and x = π unless f(x) has the 
value 0 at these points.

To obtain the sine series for f(x), we redefine the function (if necessary) 
to have the value 0 at x = 0, and then we extend it over the interval –π ≤ 
x < 0 in such a way that the extended function is odd. That is, we define 
f(x) for –π ≤ x < 0 by putting f(x) = –f(–x). The extended function is clearly 
odd, so its Fourier series contains sine terms only, and its coefficients 
are given by (6). Similarly, we obtain the cosine series for f(x) by extend-
ing f(x) to be an even function on the interval –π ≤ x ≤ π and using (5) 
to calculate the coefficients. With respect to the sine and cosine series 
described here, we emphasize particularly that the original function f(x) 
is not assumed in advance to be odd, or even, or periodic, or defined 
elsewhere at all; it is intended to be an essentially arbitrary function on 
the interval 0 ≤ x ≤ π—within the very weak restrictions imposed by the 
Dirichlet conditions.

Example 2. Find the sine series, and also the cosine series, for the func-
tion f(x) = cos x, 0 ≤ x ≤ π.

For the sine series, (6) gives

 

a b x nx dxn n= = ò0
2

0

and  
p

p

cos sin .

For n = 1 we have b1 = 0, and for n > 1 a short calculation yields

 
b

n
n

n

n

=
+é

ë
ê

ù

û
ú

2 1 1
12p

( )-
-

.

–3π –2π –π π 2π 3π x

y
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We therefore have

 
b b

n
n

n n2 1 2 20
8

4 1
-

-
= =and

p( )
,

so the sine series is

 
cos

sin
,x

n nx
n

x= < <
¥

å8 2
4 1

0
1

2p
p

-
.

To obtain the cosine series, we observe that (5) gives bn = 0 and

 

a x nx dx
n

nn = =
=
¹

ì
í
îò2 1 1

0 1
0

p

p

cos sin  
for 
for .

Therefore the cosine series for cos x is simply cos x, just as we would have 
expected. This conclusion also follows directly from the equation cos x = 
cos x, because our work in Section 33 shows that any finite trigonometric 
series (the right side) is automatically the Fourier series of its sum (the 
left side).

Problems

 1. Determine whether each of the following functions is even, odd, or 
neither:

 
x x x x e x x x x x x x

xx5 2 3 2 3 2 32
1
1

sin , sin , , (sin ) , sin , cos( ), , log+ + + +
- xx

.

 2. show that any function f(x) defined on a symmetrically placed interval 
can be written as the sum of an even function and an odd function. 
Hint:

 f(x) = 
1
2

[f(x) + f(–x)] + 
1
2

[f(x) – f(–x)].

 3. Prove properties (3) and (4) analytically, by making x = –t in the part of 
the Integral from –a to 0 and using the definitions (1) and (2).
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 4. Show that the sine series of the constant function f(x) = π/4 is

 

p p
4

3
3

5
5

0= + + + < <sin
sin sin

,x
x x

x� .

 What sum is obta.ned by putting x = π/2? What is the cosine series of 
this function?

 5. Find the Fourier series for the function of period 2π defined by f(x) = 

cos 
1
2

x, –π ≤ x ≤ π. Sketch the graph of the sum of this series on the inter-

val – 5π ≤ x ≤ 5π.
 6. Find the sine and cosine series for sin x.
 7. Find the Fourier series for the function of period 2π defined by

 

f x x x

f x x x

( ) , ;

( ) ,

= + - £ <

= - + £ £

p p

p p

2
0

2
0

 (a) by computing the Fourier coefficients;
 (b) directly from the expansion (8).

 Sketch the graph of the sum of this series (a triangular wave) on the 
interval –5π ≤ x ≤ 5π.

 8. For the function f(x) = π – x, find
 (a) its Fourier series on the interval –π < x < π;
 (b) its cosine series on the interval 0 ≤ x ≤ π;
 (c) its sine series on the interval 0 < x ≤ π.

 Sketch the graph of the sum of each of these series on the interval –5π ≤ 
x ≤ 5π.

 9. If f(x) = x for 0 ≤ x ≤ π/2 and f(x) = π – x for π/2 < x ≤ π, show that the 
cosine series for this function is

 
f x

n x
n

( )
cos ( )

( )
=

¥

åp
p4
2 2 2 1

2 1
1

2- -
-

.

 Sketch the graph of the sum of this series on the interval –5π ≤ x ≤ 5π.
 10. (a) Show that the cosine series for x2 is

 
x

nx
n

xn2
2

1
23

4 1= + £ £
¥

åp p p( )
cos

,- - .
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 (b) Find the sine series for x2, and use this expansion together with 
formula (7) to obtain the sum

 
1

1
3

1
5

1
7 323 3 3

3

– –+ + =�
p

.

 (c) Denote by s the sum of the reciprocals of the cubes of the odd 
numbers,

 
1

1
3

1
5

1
73 3 3+ + + + =� s,

  and show that then

 

1
1

1
2

1
3

1
4

8
73 3 3 3

1
n

s= + + + + =
¥

å � .

   The exact numerical value of the latter sum has been one of unsolved 
mysteries of mathematics since Euler first raised the question in 
1736.

 11. (a) Show that the cosine series for x3 is

 
x

nx
n

n x
n

n3
3

1
2

1
44

6 1
24 2 1

2 1
= + +

¥ ¥

å åp p
p

( )
cos cos( )

( )
- -

-
,

 0 ≤ x ≤ π.

 (b) Use the series in (a) to obtain, in this order, the sums

 1
4

4

1
4

41
2 1 96

1
90

¥ ¥

å å= =
( )n n-

p p
and .

 12. (a)   Show that the cosine series for x4 is

 
x

n
n

nxn4
4

1

2 2

45
8 1

6= +
¥

åp p
( ) cos- -

,

 –π ≤ x ≤ π.

 (b) Use the series in (a) to obtain again the second sum in Problem 
11(b).
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 13. (a) If α is not an integer, show that

 
cos

sin sin
( )

cosa ap
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a ap
p a

x
nx
n

n= +
¥

å2
1

1
2 2-

-

 for –π ≤ x ≤ π.

 (b) Use the series in (a) to obtain the formula

 
p ap

a
a

a
cot = +

¥

å1
2

1

1
2 2- n

.

  This is called Euler’s partial fractions expansion of the cotangent.
 (c) Rewrite the expansion in (b) in the form

 
p p p

p
cot ,t

t
t

n t
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-
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¥

å
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2 2

2

   and by integrating term by term from t = 0 to t = x (0 < x < 1) obtain
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   If x is replaced by x/π, this infinite product takes the equivalent 
form

 

sin x
x

x x x=
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,

   which is called Euler’s infinite product for the sine. Observe that this 
formula displays the nonzero roots x = ±π, ±2π, ±3π,... of the tran-
scendental equation sin x = 0.

 14. The functions sin2x and cos2x are both even. Show briefly, without cal-
culation, that the identities

 
sin ( cos ) cos2 1

2
1 2

1
2

1
2

2x x x= - = -
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 and

 cos2x = 
1
2

 (l + cos 2x) = 
1
2

 + 
1
2

 cos 2x

 are the Fourier series expansions of these functions.
 15. Find the sine series of the functions in Problem 14, and verify that these 

expansions satisfy the identity sin2x + cos2 x = 1.
 16. Prove the trigonometric identities

 sin3 x = 3
4

 sin x – 
1
4

 sin 3x  and  cos3 x = 
3
4

x + 1
4

 cos 3x,

 and show briefly, without calculation that these are the Fourier series 
expansions of the functions on the left.

36 Extension to Arbitrary Intervals

The standard form of a Fourier series is the one we have worked with in the 
preceding sections, where the function under consideration is defined on the 
interval –π ≤ x < π. In many applications it is desirable to adapt the form of a 
Fourier series to a function f(x) defined on an interval –L ≤ x < L, where L is 
a positive number different from π. This is done by a change of variable that 
amounts to a change of scale on the horizontal axis.

We introduce a new variable t that runs from –π to π as x runs from – L to 
L. This is easy to remember as a statement about proportions:

 

t x
L

t
x

L
x

Lt
p

p
p

= = =, so and . (1)

The function f(x) is thereby transformed into a function of t,

 
f x f

Lt
g t t( ) ( ),= æ

è
ç

ö
ø
÷ = £ <

p
p p- ,

and if we assume that f(x) satisfies the Dirichlet conditions, then so does g(t). 
We can therefore expand g(t) in a Fourier series of the usual form,

 
g t a a nt b ntn n( ) ( cos sin )= + +

¥

å1
2

0

1

, (2)
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where we use the familiar formulas for the coefficients,

 

a g t nt dt b g t nt dtn n= =ò ò1 1
p p

p

p

p

p

– –

( )cos ( )sinand . (3)

Having found the expansion (2), we now use (1) to transform this back into a 
solution of our original problem, namely, to find an expansion of f(x) on the 
interval – L ≤ x < L:

 
f x a a

n x
L
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n x

L
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1

p p
. (4)

Of course, we can also transform formulas (3) into integrals with respect to x,

 

a
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f x
n x

L
dx b

L
f x

n x
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dxn
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L
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( )cos ( )sin
p p

and . (5)

We can use formulas (5) directly if we wish to do so, but changing the vari-
able to t usually makes the work easier because it simplifies the calculations.

Example 1. Expand f(x) in a Fourier series on the interval –2 ≤ x < 2 if 
f(x) = 0 for –2 ≤ x < 0 and f(x) = 1 for 0 ≤ x < 2.

Here we introduce t by writing

 

t x
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x
x

t
p

p
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= = =
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2
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Then g(t) = 0 for –π ≤ t < 0 and g(t) = 1 for 0 ≤ t < π, and we have

 

a dt dt

a nt dt n

b

n

n

0

0

0

0

0

1
0 1 1

1
0 1

1

= +
é

ë

ê
ê

ù

û

ú
ú

=

= = ³

=

ò ò

ò

p

p

p

p

p

p

–

;

cos , ;

pp

pò =sin [ – (– ) ]nt dt
n

n1
1 1 .
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The last of these formulas tells us that

 
b b

n
n n2 2 10

2
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We therefore have
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so the desired expansion is
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x
( ) sin( )= +

¥

å1
2

2 1
2 1

2 1
2

1
p

p
-

- .

Further, we know that this series converges to the periodic extension of 
f(x) [with period 4] at all points x except the points of discontinuity x = 
0, ±2, ±4,..., and at these points it converges to the sum 1/2, which is the 
average of the two one-sided limits.

Problems

 1. For the function defined by

 f(x) = –3, –2 ≤ x < 0  and  f(x) = 3, 0 ≤ x < 2,

 write down its Fourier expansion directly from the example in the text, 
without calculation.

 2. Find the Fourier series for the functions defined by
 (a) f(x) = 1 + x, –l ≤ x < 0  and  f(x) = 1 – x, 0 ≤ x ≤ 1;
 (b) f(x) = |x|, –2 ≤ x ≤ 2.
 3. Show that

 

1
2

1 2
0

1

L x
L

n
n x
L

x L– sin ,= < <
¥

åp
p

.

 4. Find the cosine series for the function defined on the interval 0 ≤ x ≤ 1 

by f(x) = x2 – x + 1
6

. (In the context of Problem 9 below, this function is 
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the Bernoulli polynomial B2(x), and the series found here is the simplest 
special case of the expansion in Problem 10.)

 5. Find the cosine series for the function defined by

 f(x) = 2, 0 ≤ x ≤ 1  and  f(x) = 0, 1 < x ≤ 2.

 6. Expand f(x) = cos πx in a Fourier series on the interval –1 ≤ x ≤ 1.
 7. Find the cosine series for the function defined by

 f(x) = 
1
4

 – x, 0 ≤ x < 
1
2

  and  f(x) = x – 
3
4

, 
1
2

 ≤ x ≤ 1.

 8. (This problem and the next are necessary preliminaries for the Fourier 
series problem that follows them, and this in turn is aimed at obtaining 
the remarkable formulas in Problem 11.) Since

 

e
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x xx –
! !

1
1

2 3

2

= + + +�

 for x ≠ 0, and this power series has the value 1 at x = 0, the reciprocal 
function x/(ex – 1) has a power series expansion valid in some neighbor-
hood of the origin if the value of this function is defined to be 1 at x = 0:
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 The numbers Bn defined in this way are called Bernoulli numbers and 
play an important role in the theory of infinite series10. Evidently B0 = 1.

 (a) By writing
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10 For instance, it can be proved that the power senes expansion of tan x is
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See Appendix A.18 in the Simmons book mentioned in footnote 4.
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and noticing that the second term on the right is an even function, 

conclude that B1 = –
1
2

 and Bn = 0 if n is odd and >1.

 (b) By writing (*) in the form
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 and multiplying the two power series on the left, conclude by 
examining the coefficient of xn-1 that
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for n ≥ 2, where 
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k
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÷ is the binomial coefficient n!/[k!(n – k)!]

 (c) By taking n = 3, 5, 7, 9, 11 in (**), show that
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From the recursive mode of calculation, all the Bernoulli numbers 
can be considered as known (even though considerable labor may 
be required to make any particular one of them visibly present) and 
all of them are rational.

 9. The Bernoulli polynomials B0(x), B1(x), B2(x),... are defined by the resulting 
coefficients in the following product of two power series (see the pre-
ceding problem):
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 (a)  Show that Bn(x) is a polynomial of degree n that is given by the 
formula
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 (b)  Show that Bn(0) = Bn for n ≥ 0, and by using (**) in the preceding 
problem, show that also Bn(1) = Bn for n ≥ 2.

 (c) Show that

 ¢ = ++B x n B xn n1 1( ) ( ) ( ).

and deduce from this that
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and (if n ≥ 1)
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 (d) Show that
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 10. Show that the cosine series for the Bernoulli polynomial B2n(x) on the 
interval 0 ≤ x ≤ 1 is
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 11. Use the expansion in Problem 10 to show that
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where p is a positive integer. Use the results of Problem 8 to obtain the 
special sums corresponding to p = 1, 2, 3, 4, 5:
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These discoveries are all due to Euler.11

37 Orthogonal Functions

A sequence of functions θn(x), n = 1, 2, 3,..., is said to be orthogonal on the 
interval [a, b]12 if
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For example, the sequence

  θ1(x) = sin x, θ2(x) = sin 2x,..., θn(x) = sin nx,...

is orthogonal on [0, π] because
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We pointed out in Section 33 that the sequence

 1, cos x, sin x, cos 2x, sin 2x,... (2)

11 For more information on the background of these formulas, see the article by Raymond 
Ayoub, “Euler and the Zeta Function,” American Mathematical Monthly, vol. 81 (1974) 
pp. 1067 – 1086.

12 As usual, this notation designates the closed interval a ≤ x ≤ b.
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is orthogonal on [–π, π] but it is not orthogonal on [0, π] because

 

1 2 0
0

× = ¹ò sin x dx 
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.

In the preceding sections of this chapter the trigonometric sequence (2) was 
used for the formation of Fourier series. During the nineteenth and early 
twentieth centuries many mathematicians and physicists became aware 
that one can form series similar to Fourier series by using any orthogonal 
sequence of functions. These generalized Fourier series turned out to be 
indispensable tools in many branches of mathematical physics, especially 
in quantum mechanics. They are also of central importance in several major 
areas of twentieth century mathematics, in connection with such topics as 
function spaces and theories of integration.13

The formula for the generalized Fourier coefficients is particularly simple 
if the integral (1) has the value 1 for m = n. In this case the functions θn (x) 
are said to be normalized, and {θn (x)} is called an orthonormal sequence. On the 
other hand, if
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For example, since
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p p pò ò ò= = =1 2 2 2dx nx dx nx dx  (4)

13 See, for example, the excellent book by Béla Sz.-Nagy, Introduction to Real Functions and 
Orthogonal Expansions, Oxford University Press, 1965.
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for n ≥ 1, the orthonormal sequence corresponding to the orthogonal 
sequence (2) is

 

1
2

2 2
p p p p p

,
cos

,
sin

,
cos

,
sin

, .
x x x x

…
 

(5)

Now let {ϕn(x)} be an orthonormal sequence of functions on [a, b] and sup-
pose that we are trying to expand another function f(x) in a series of the 
form

 f(x) = a1ϕ1 (x) + a2ϕ2(x) + ∙ ∙ ∙ + anϕn (x) + ∙ ∙ ∙.  (6)

To determine the coefficients an we multiply both sides of (6) by ϕn(x). 
This gives

 f(x)ϕn(x) = a1ϕ1(x)ϕn(x) + ∙ ∙ ∙ + an[ϕn(x)]2 + ∙ ∙ ∙,  (7)

where the terms not written contain products ϕm(x)ϕn(x) with m ≠ n. If we 
assume that term-by-term integration of (7) is valid, then by carrying out 
this integration and using (3) we find that most of the terms disappear and 
all that remains is

 

f x x dx a x dx an
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b

n n n
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( ) ( ) [ ( )]f f= =ò ò 2 ,

so

 

a f x x dxn n
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= ò ( ) ( )f  . (8)

In deriving formula (8) for the coefficients in the expansion (6), we made 
two very large assumptions. First, we assumed that the function f(x) can be 
represented by a series of the form (6). Second, we assumed that the term-
by-term integration of the series (7) is permissible. Unfortunately, we have 
no reason whatever—apart from wishful thinking—for believing that either 
assumption is legitimate. To express this somewhat differently, we have no 
guarantee at all that the series (6) with coefficients defined by (8) will even 
converge, let alone converge to the function f(x). Nevertheless, the numbers 
(8) are called the Fourier coefficients of f(x) with respect to the orthonormal 
sequence {ϕn(x)}, and the resulting series (6) is called the Fourier series of f(x) 
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with respect to {ϕn(x)}.14 When these ideas are applied to the orthonormal 
sequence (5), they yield the ordinary Fourier series as described in the pre-
ceding sections (see Problem 2 below).

We also point out, as we did in Section 33, that the term-by-term integra-
tion of (7) that leads to (8) is legal if the functions are continuous and the 
series is uniformly convergent. However, in the next section formula (8) will 
be obtained in an entirely different manner, having nothing to do with uni-
form convergence. It will then be clear that there is no need to feel uneasy 
because formula (8) seems to have been derived by faulty reasoning. The 
truth is, that we can use whatever reasoning we please as motivation for the 
definitions of the Fourier coefficients and Fourier series, and we then turn to 
the problem of discovering conditions under which the Fourier series (6) is a 
valid expansion of the function f(x).

Most orthogonal sequences of functions are obtained by solving differen-
tial equations, as suggested in the following example. A broader discussion 
of this topic is given in Section 43.

Example 1. Use the differential equation y″ + λy = 0, or equivalently 
y″ = –λy, to show that the trigonometric sequence (2) is orthogonal on [–π, π].

Let m and n be positive integers. If ym = sin mx or cos mx and yn = sin nx 
or cos nx, then

 
¢¢ = ¢¢ =y m y y n ym m n n- -2 2and .

If the first equation is multiplied by yn, the second by ym, and the result-
ing equations are subtracted, the result is

 y y y y n m y yn m m n m n¢¢ ¢¢ =- -( )2 2 .

We now notice that the left side of this is the derivative of y y y yn m m n¢ ¢– , so 
integrating from –π to π gives
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p

p

p

2 2 . (9)

The function y y y yn m m n¢ ¢–  is periodic with period 2π and therefore has 
the same values at –π and π, so the left side of (9) is zero. This yields the 
orthogonality property

 –p

p

ò =y y dxm n 0,

14 Some writers make consistent use of the terms generalized Fourier coefficients and generalized 
Fourier series. We prefer to simplify the terminology by omitting the adjective “generalized,” 
and to rely on the context to tell us whether we are dealing with generalized or ordinary 
Fourier series.
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except in the case m = n. In this case, however, the relevant integral is 
easy to evaluate:

 – –

sin cos sin
p

p

p

p

ò =
ù

û

ú
ú

=nx nx dx
n

nx
1

2
02 .

All that remains is to notice that the function 1 in the sequence (2) is 
orthogonal to all the others, that is,

 –p

p

ò × =1 0y dxn

for every n, and this completes the argument.

There is a very suggestive analogy between Fourier series and vectors that 
should be mentioned here. Let us briefly consider ordinary three-dimensional 
Euclidean space. In this space i, j, k are familiar mutually perpendicular unit 
vectors in the coordinate directions, and other vectors can be written in the 
form

 A = a1i + a2j + a3k

and

 B = b1i + b2j + b3k.

Let us denote the “dot product” A · B of A and B by the symbol (A, B), so that

 (A,B) = a1b1 + a2b2 + a3b3. (10)

In the present context we prefer to call this quantity the inner product of A 
and B, and our purpose is to point out that this inner product is closely con-
nected with the most important geometric features of the space.

First, two vectors A and B are orthogonal (or perpendicular) if their inner 
product is zero, that is, if

 (A,B) = a1b1 + a2b2 + a3b3 = 0. (11)

Next, the inner product underlies the concept of the norm, or length, of a vec-
tor A: if we denote the norm by ║A║—a symbol that resembles, but differs 
from, the absolute value sign—then

 A A A= + + =a a a1
2

2
2

3
2 ( ).,  (12)
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This norm in turn gives rise to the concept of the distance between any two 
points in the space, or equivalently, the distance between the tips of any two 
vectors,

 d (A,B) = ║A – B║. (13)

As our final bit of review, we recall that if u1, u2, u3 are any three mutually 
orthogonal unit vectors, then every vector V can be expressed in the form

 V = α1u1 + α2u2 + α3u3, (14)

where α1, α2, α3 are constants. In order to determine these constant coeffi-
cients for a given vector V, we form the inner product of both sides of (14) 
with uk, where k = 1, 2, or 3. This yields

 (V, uk) = α1 (u1,uk) + α2(u2, uk) + α3(u3,uk);

and since the vectors u1, u2, u3 are mutually orthogonal and have length 1, 
the sum on the right collapses to a single term,

 (V, uk) = αk.

The formula for the coefficients is therefore

  αk = (V, uk). (15)

Equations (14) and (15) should be compared with (6) and (8), because their 
meanings are very similar. In essence, the αk are the “Fourier coefficients” of 
the vector V, and (14) is its expansion in a “Fourier series.”

In the case of genuine Fourier series, we work with functions defined on 
an interval [a, b] instead of with vectors. We speak of a “function space” 
instead of a three-dimensional “vector space.” This function space is 
infinite-dimensional, in the sense that we need an infinite orthonormal 
sequence to represent an arbitrary function. Life is somewhat more compli-
cated in this infinite-dimensional space than it is in the three-dimensional 
space described above. First, it turns out that only special kinds of ortho-
normal sequences are capable of representing “arbitrary” functions. And 
second, it is necessary to introduce restrictions that remove the vagueness 
from the expression “arbitrary function” and precisely define the class of 
functions that are to be represented by their Fourier series. We begin this 
precise discussion in the next few paragraphs, and continue it in the next 
section.

The function space we consider is denoted by R and consists of all func-
tions f(x) that are defined and Riemann integrable on the interval [a, b]. Since 
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the inner product (10) is the sum of products of components, and since the 
values of a function can be thought of as its components, it is natural to define 
the inner product ( f, g) of two functions in R by

 

( , ) ( ) ( )f g f x g x dx
a

b

= ò . (16)

Clearly,

 ( f1 + f2,g) = ( f1,g) + ( f2,g),

 (cf,g) = c( f,g) and ( f,g) = (g,f).

With (11) as our guide, we say that f and g are orthogonal if their inner product 
is zero, that is, if

 ( f,g) = 0.

This is precisely the meaning of orthogonality as given in Section 33,
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( ) ( )ò = 0.

By the definition at the beginning of this section, an orthogonal sequence in 
R is a sequence with the property that each function is orthogonal to every 
other and no function is orthogonal to itself. Continuing the analogy, the 
norm of a function f is defined by
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so that

  ║f║2 = ( f,f).

A function f is called a null function if

 

f f x dx
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= =ò0 02or, equivalently, if [ ( )] .
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A null function need not be identically zero. For example, if f(x) = 0 on [–π π] 

except at the points x = 1, 
1
2

, 
1
3

,..., but f(x) = 1 at these points, then f is a null 

function. In the present context it is convenient to consider a null function 
as being essentially equal to zero, so that two functions are considered to 
be equal if their difference is a null function. With this understanding, the 
norm has the simple properties

  ║cf║ = |c| ║f║,  ║f║ ≥ 0,

  ║f║ = 0 if and only if f = 0. (18)

Two properties that are not so simple are

 |( f, g)| ≤ ║f║ ║g║. (19)

and

  ║f + g║ ≤ ║f║ + ║g║. (20)

The inequality (19) is called the Schwarz inequality. By using (16) and (17), it 
can be written out as follows [in the form ( f, g)2 ≤ ║f║2 ║g║2]:
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The inequality (20) is called the Minkowski inequality; its written-out form is
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The integral versions of these inequalities have a formidable appearance, 
and one might think that probably they cannot be established except by the 
use of complicated reasoning. In fact, however, there exists a simple but inge-
nious proof of (19) which we ask readers to think through for themselves 
(Problem 3 below); and (20) follows quite easily from (19) by an argument that 
we give here. Thus, by Schwarz’s inequality we have
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  ║f + g║2 = ( f + g, f + g) = ( f, f) + 2( f, g) + (g, g)

 = ║f║2 + 2( f, g) + ║g║2

 ≤ ║f║2 + 2|( f, g)| + ║g║2

 ≤ ║f║2 + 2 ║f║ ║g║ + ║g║2

 = (║f║ + ║g║)2,

and we now obtain (20) by taking square roots.
By using the concept of the norm of a function, we are now able to define 

the distance d ( f, g) between two functions f and g in R:

 

d f g f g f x g x dx
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We also speak of d ( f, g) as the distance from f to g, or the distance of g from f. 
It is easy to see from (18) and (20) that distance has the following properties:

 d( f, g) ≥ 0, and d( f, g) = 0 if and only if f = g;

 d( f, g) = d(g, f) [symmetry];

 d( f, g) ≤ d( f, h) + d(h, g) [triangle inequality].

A space (of vectors, functions, or any objects whatever) with a distance func-
tion possessing these properties is called a metric space. With the understand-
ing that functions in R are considered to be equal if they differ by a null 
function, R is a metric space whose structure we continue to investigate in 
the next section.

NOTE ON MINKOWSKI. At the age of 18 the Russian-German mathemati-
cian Hermann Minkowski (1864–1909) won the Grand Prize of the Academy 
of Sciences in Paris for his brilliant research on quadratic forms, starting 
from a problem about the representation of an integer as the sum of five 
squares. This work later led to the creation of a whole new branch of number 
theory now called the Geometry of Numbers, which in turn is based on his 
highly original ideas about the properties of convex bodies in n-dimensional 
space. In this connection he introduced the abstract concept of distance, 
analyzed the notions of volume and surface, and established the important 
inequality that bears his name. In the years 1907–1908 Minkowski became 
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the mathematician of relativity by geometrizing the new subject. He created 
the concept of four-dimensional space-time as the proper mathematical set-
ting for Einstein’s essentially physical (and nonmathematical) way of think-
ing about special relativity. In a now-famous lecture of 1908 he began with a 
sentence that is not easily forgotten: “From now on space by itself, and time 
by itself, are doomed to fade away into mere shadows, and only a kind of 
union of the two will retain an independent existence.”

NOTE ON SCHWARZ. Hermann Amadeus Schwarz (1843–1921), a pupil 
of Weierstrass whom he succeeded in Berlin, made substantial contributions 
to the theory of minimal surfaces in geometry and to conformal mapping, 
potential theory, hypergeometric functions, and other topics in analysis. 
In conformal mapping, he rescued and rigorously nailed down some of 
Riemann’s very important but rather intuitive discoveries, especially the 
basic Riemann mapping theorem. In minimal surfaces, he gave the first rig-
orous proof that a sphere has a smaller surface area than any other body 
of the same volume. He also discovered and proved the “pedal triangle” 
theorem of elementary geometry: In any acute-angled triangle, the inscribed 
triangle with smallest perimeter is the one whose vertices are the three feet 
of the altitudes of the given triangle.15

Problems

 1. One of the important consequences of the orthogonality properties of 
the trigonometric sequence (2) [namely, equations (4) in this section 
and (2), (5), (6), (8) in Section 33] is Bessel’s inequality: If f(x) is any func-
tion integrable on [–π, π], its ordinary Fourier coefficients satisfy the 
inequality
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 Prove this by the following steps:
 (a) For any n ≥ l, define
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15 For details, see Chapter 5 of H. Rademacher and O. Toeplitz, The Enjoyment of Mathematics, 
Princeton University Press, 1957; or R. Courant and H. Robbins, What Is Mathematics?, Oxford 
University Press, 1941, pp. 346–51.
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and show that
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 (b)  By considering all possible products in the multiplication of sn(x) by 
itself, show that
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and from this complete the proof.
Observe that the convergence of the series on the left side of (*) 

implies the following corollary of Bessel’s inequality: If an and bn are 
coefficients of f(x), then an → 0 and bn → 0 as n → ∞.

 2. In the case of the orthonormal sequence (5), verify in detail that the 
Fourier coefficients (8) are slightly different from the ordinary Fourier 
coefficients, but that the Fourier series (6) is exactly the same as the 
ordinary Fourier series.

 3. Prove the Schwarz in equality (19). Hint: If ║g║ ≠ 0, then the function 
F(α) = ║f + αg║2 is a second degree polynomial in α that has no negative 
values; examine the discriminant.
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 4. A well-known theorem of elementary geometry states that the sum 
of the squares of the sides of a parallelogram equals the sum of the 
squares of its diagonals. Prove that this called parallelogram law is true 
for the norm in R:

 2║f║2 + 2║g║2 = ║f + g║2 + ║f – g║2.

 5. Prove the Pythagorean theorem and its converse in R: f is orthogonal to g 
if and only if ║f – g║2 = ║f║2 + ║g║2.

 6. Show that a null function is zero at each point of continuity, so that a 
continuous null function is identically zero.

38 The Mean Convergence of Fourier Series

Consider a function f(x) and a sequence of functions pn(x), all defined and 
integrable on the interval [a, b]. There are different ways in which pn(x) can 
converge to f(x), and these are best understood in terms of the problem of 
approximating f(x) by pn (x).

If we try to approximate f(x) by pn(x), then each of the numbers

 |f(x) – pn(x)| and [f(x) – pn(x)]2 (1)

gives a measure of the error in the approximation at the point x. It is clear 
that if one of these numbers is small, then so is the other. The usual definition 
of convergence amounts to the statement that the sequence of functions pn(x) 
converges to the function f(x) if for each point x either of the expressions (1) 
approaches zero as n → ∞. This is the familiar concept used in Sections 33 to 
36, and for obvious reasons it is called pointwise convergence.

On the other hand, we might prefer to use a measure of error that refers 
to the whole interval [a, b] simultaneously, instead of point by point. We can 
obtain such a measure by integrating the expressions (1) from a to b,

 a

b

n

a

b

nf x p x dx f x p x dxò ò( ) ( ) [ ( ) ( )]- -and 2 .

The second integral here is a better choice than the first, for two reasons: it 
avoids the awkward absolute value sign in the first integral; and the expo-
nent 2 makes many of the necessary calculations very convenient to carry 
out, as we will see below. The measure of error we adopt is therefore
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E f x p x dxn

a

b

n= ò[ ( ) ( )]- 2 . (2)

This quantity is called the mean square error. The terminology is appropri-
ate because if the integral (2) is divided by b – a, the result is exactly the 
mean value of the square error [ f(x) – pn(x)]2. If (2) approaches zero as n → ∞, 
the sequence {pn(x)} is said to converge in the mean to f(x), and this concept is 
called mean convergence. We sometimes symbolize this mode of convergence 
by writing

 
f x p x

n
n( ) l .i .m. ( )=

®¥
,

where “l.i.m.” stands for “limit in the mean.” Our discussion in the rest of 
this section will show that in the case of Fourier series mean convergence is 
much easier to work with than ordinary pointwise convergence.

We assumed at the beginning that the functions f(x) and pn(x) belong to the 
function space R described in the preceding section. We now point out that 
the mean square error (2) is precisely the square of the norm of f – pn in R,

 

E f x p x dx f pn

a

b

n n= =ò[ ( ) ( )]- -2 2
. (3)

The mean convergence of pn(x) to f(x) is therefore completely equivalent to the 
convergence of the sequence {pn} to the limit f in the metric space R, namely,

 d( f, pn) = ║f – pn║ → 0 as n → ∞.

As indicated here, we will often use f and pn as abbreviations for f(x) and pn(x), 
in order to simplify the notation.

We now come to the main business of this section. Let {ϕn(x)} be an ortho-
normal sequence of integrable functions on [a, b], so that

 

f fm n

a

b

x x dx
m n

m n
( ) ( )

,
.

=
¹
=

ì
í
îò

0
1

for 
for  (4)

We consider the first n of these functions,

  ϕ1(x),  ϕ2(x),…,  ϕn(x), (5)
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and we seek to approximate a given integrable function f(x) by a linear com-
bination of the functions (5),

 pn(x) = b1ϕ1(x) + b2ϕ2(x) + … + bnϕn(x).

Our purpose is to minimize the mean square error (2),

 

E f p dx f b b dxn

a

b

n

a

b

n n= = + +ò ò[ ] [ ( )]- -2
1 1

2f f� , (6)

by making a suitable choice of the coefficients b1,..., bn.
Our first step is to expand the term in brackets in (6), which yields

 

E f dx b b f dx

b b dx

n

a

b

a

b

n n

a

b

n n

= + +

+ + +

ò ò

ò

2
1 1

1 1
2

2- ( )

( ) .

f f

f f

�

�

 

(7)

If the Fourier coefficients of f with respect to the orthonormal sequence {ϕk} 
are denoted by

 

a f dxk k

a

b

= ò f ,

as in Section 37, then the second integral in (7) is

 

( )b b f dx a b a bn n

a

b

n n1 1 1 1f f+ + = + +ò � � .

The third integral in (7) can be written

 

( )( )

( )

b b b b dx

b b

n n

a

b

n n

n n

1 1 1 1

1
2

1
2 2 2

f f f f

f f

+ + + +

= + + +

ò � �

� �       ddx

b b

a

b

n

ò
= + +        1

2 2� ,
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where the second group of terms “+ …” contains products ϕi ϕj with i ≠ j and 
the final value results from using (4). These considerations enable us to write 
the mean square error (7) as

 

E f dx a b bn

a

b

k

n

k k

k

n

k= +ò å å
= =

2

1 1

22– . (8)

If we now notice that

 – – ( – )2 2 2 2a b b a b ak k k k k k+ = + ,

then the formula for En takes its final form,

 

E f dx a b an

a

b

k

n

k

k

n

k k= +ò å å
= =

2

1

2

1

2– ( – ) . (9)

Formula (9) for the mean square error En has a number of important conse-
quences that follow by very simple reasoning. First, the terms (bk – ak)2 in (9) 
are positive unless bk = ak, in which case they are zero. Therefore the choice of 
the bk that minimizes En is obviously bk = ak, and we have

Theorem 1. For each positive integer n, the nth partial sum of the Fourier series of 
f, namely,

 
a a ak k n n

k

n

f f f= + +
=

å 1 1

1

� ,

gives a smaller mean square error E f p dxn n

a

b

= ò ( )- 2  than is given by any other lin-

ear combination pn = b1ϕ1 + ∙ ∙ ∙ + bnϕn. Further, this minimum value of the error is

 

min E f dx an

a

b

k

n

k= ò å
=

2

1

2- . (10)

Formula (6) tells us that we always have En ≥ 0, because the integrand in (6), 
being a square, is nonnegative. Since En ≥ 0 for all choices of the bk, it is clear 
that the minimum value of En (which arises when bk = ak) is also ≥ 0. Therefore 
(10) implies that
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 a

b

k

n

k

k

n

k

a

b

f dx a a f dxò å å ò
= =

³ £2

1

2

1

2 20– or .

By letting n → ∞ we at once obtain

Theorem 2. If the numbers a f dxn a
b

n= ò f   are the Fourier coefficients of f with 

respect to the orthonormal sequence {ϕn}, then the series an
2å  converges and satis-

fies Bessel’s inequality,

 

a f x dxn

a

b

n

2 2

1

£ òå
=

¥

[ ( )] . (11)

Since the nth term of a convergent series must approach zero, Theorem 2 
implies

Theorem 3. If the numbers a f dxn n
a

b

= ò f  are the Fourier coefficients of f with 

respect to the orthonormal sequence {ϕn}, then an → 0 as n → ∞.

Theorems 2 and 3 are obtained for ordinary Fourier series in Problem 37–1. 
Here they are seen to be true for generalized Fourier series with respect to 
arbitrary orthonormal sequences.

For applications it is important to know whether or not the Fourier series 
of f is a valid expansion of f in the sense of mean convergence. This is equiva-
lent to asking whether or not the partial sums of the Fourier series of f con-
verge in the mean to f, that is, whether or not

 
f a

n
k k

k

n

=
®¥

=
ål .i .m. f

1

. (12)

In view of Theorem 1 it is evident that we do have a valid expansion of f if 
and only if

 min En → 0 as n → ∞,

and by formula (10) we see that this happens if and only if Parseval’s equation 
holds:

 

f dx a
a

b

k

k

2 2

1

0ò å =
=

¥

- .

We summarize these observations in the following theorem.
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Theorem 4. The representation of f by its Fourier series, namely,

 f = a1ϕ1 + a2ϕ2 + ∙ ∙ ∙ + anϕn + ∙ ∙ ∙, (13)

is valid in the sense of mean convergence if and only if Bessel’s inequality (11) 
becomes Parseval’s equation,

 

a f x dxn

a

b

n

2 2

1

= òå
=

¥

[ ( )] . (14)

If a Fourier expansion of the form (13) is valid (in the sense of mean conver-
gence) for every function f(x) in R, then the orthonormal sequence {(ϕn(x)} is 
said to be complete. A complete sequence, then, is a sequence {ϕn} that can be 
used for mean square approximations of the form (12) for arbitrary functions 
f in R. It can be proved that the trigonometric sequence

 

1
2

2 2
p p p p p

,
cos

,
sin

,
cos

,
sin

,
x x x x

�  (15)

is complete on [–π, π].

Remark 1. The proof of the theorem just stated about the trigonometric 
sequence (15) is long and would take us much too far afield.16 However, if 
we recall Problem 2 in Section 37, then we see that this theorem immediately 
yields the following major conclusion, which can be interpreted as sweeping 
away all the difficulties that arise in the theory of pointwise convergence for 
Fourier series.

Theorem 5. If f(x) is any function defined and integrable on [–π, π], then f(x) is rep-
resented by its ordinary Fourier series in the sense of mean convergence,

 
f x a a nx b nxn n

n

( ) ( cos sin )= + +
=

¥

å1
2

0

1

, (16)

where the an and bn are the ordinary Fourier coefficients of f(x).

16 The basic tools for the proof we have in mind are two major theorems of classical analysis, 
Fejer’s summability theorem and the Weierstrass approximation theorem.
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To appreciate the clean simplicity of this statement, it helps to recall from our 
previous work that this representation theorem is false if (16) is interpreted 
in the sense of pointwise convergence; further, the representation even fails 
for some continuous functions.

Remark 2. In Problem 6 below we ask the student to show that if we spe-
cialize to the interval [–π, π] and use the ordinary Fourier coefficients, then 
Parseval’s equation (14) takes the form

 

1 1
2

2
0
2

1

2 2

p
p

p

–

[ ( )] ( )ò å= + +
¥

f x dx a a bn n . (17)

The function f(x) in this equation is assumed to belong to R, that is, to be 
Riemann integrable on [–π, π] and for any such function its square [f(x)]2 is 
also automatically integrable. It therefore follows from (17) that for this func-
tion the Fourier coefficients a0, a1, b1 a2, b2,... have the property that the series 

( )a bn n
2 2+å  converges. Of course, we already knew this from Problem 1 in 

Section 37.
However, if the Riemann integral is replaced by its more powerful cousin 

the Lebesgue integral, then this statement has a converse that was proved by 
F. Riesz and E. Fischer in 1907. The famous Riesz–Fischer theorem, one of the 
great achievements of the Lebesgue theory of integration, states that given 

any sequence of numbers a0, a1, b1 a2, b2,... such that the series ( )a bn n
2 2+å  

converges, there exists a unique square-integrable function f(x) with these 
numbers as its Fourier coefficients.

It is customary to use the symbol L2 to denote the space of functions f(x) 
that are square-integrable on [–π, π] in the sense of Lebesgue, where as usual 
two functions are considered to be equal if they differ by a null function.17 
When Parseval’s equation (17) and the Riesz–Fischer theorem are taken 
together, we see from this discussion that they give a very simple charac-
terization of the functions in L2 in terms of their Fourier coefficients. It is 
remarkable that no other important class of functions has a characterization 
of comparable simplicity and completeness—a fact that delights the souls of 
mathematicians.

NOTE ON PARSEVAL. Marc-Antoine Parseval des Chênes (1755–1836), 
member of an aristocratic French family and ardent royalist, poet, and ama-
teur mathematician, managed to survive the French Revolution with his 

17 It should be pointed out that L2 contains R and many other functions as well, and that when-
ever the Lebesgue integral is applied to a function in R, it yields the same numerical result 
as the Riemann integral.
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head still on his shoulders, but was imprisoned briefly in 1792 and luckily 
fled the country when Napoleon ordered his arrest for publishing poetry 
attacking the regime. He published very little mathematics—and none of 
any distinction—but this little included (in 1799) a rough statement that 
only slightly resembles Parseval’s equation as it is known to mathematicians 
today throughout the world... and for this his name is immortal.

Problems

 1. Consider the sequence of functions fn(x), n = 1, 2, 3,..., defined on the 
interval [0,1] by

 

f x

x n

n n x n

n x
n( )

, ,

, ,
, .

=

£ £

< <
£ £

ì

í
ï

î
ï

0 0 1

1 2
0 2 1

 (a) Show that the sequence {fn(x)} converges pointwise to the zero func-
tion on the interval [0, 1].

 (b) Show that the sequence {fn(x)} does not converge in the mean to the 
zero function on the interval [0, 1].

 2. Consider the following sequence of closed subintervals of [0, 1]: 0
1
2

,é
ëê

ù
ûú
, 

1
2

1,é
ëê

ù
ûú
, 0

1
4

,é
ëê

ù
ûú
, 1

4
1
2

,é
ëê

ù
ûú
, 

1
2

3
4

,é
ëê

ù
ûú
, 3

4
1,é

ëê
ù
ûú
, 0

1
8

,é
ëê

ù
ûú
, 1

8
1
4

,é
ëê

ù
ûú
,..., and denote the nth 

subinterval by In. Now define a sequence of functions fn (x) on [0,1] by

 
f x

x I

x In
n

n
( )

,
=

ì
í
î

1
0

for  in 
for  not in .

 (a) Show that the sequence {fn(x)} converges in the mean to the zero 
function on the interval [0, 1].

 (b) Show that the sequence {fn(x)} does not converge pointwise at any 
point of the interval [0, 1].

 3. Obtain the formula bk = ak from both (8) and (9), by using the fact that 
∂En/∂bk = 0 when En has a minimum value.

 4. The function f(x) = 1 is to be approximated on [0, π] by p(x) = b1 sin x + 
b2 sin 2x + b3 sin 3x + b4 sin 4x + b5, sin 5x in such a way that ò -0

21p[ ( )]p x dx 
is minimized. What values should the coefficients bk have?
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 5. The function f(x) = x is to be approximated on [0, π] by

 p(x) = b1 sin x + b2 sin 2x + b3 sin 3x

 in such a way that ò0

2
p

[ ( )]x p x dx-  is minimized. What values should 

the coefficients bk have?

 6. Show that Parseval’s equation (14) has the form (17) when the ortho-
normal sequence {ϕn (x)} is the trigonometric sequence (15).

 7. Obtain the sums

 

1
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1
902

2

1
4

4

1
n n

= =
¥ ¥

å åp p
and

 by applying Parseval’s equation in the preceding problem to the two 
Fourier series

 
x x

x x= +æ
è
ç
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ø
÷2

2
2

3
3

sin
sin sin- -�

 and

 
x

nx
n

n2
2

1
23

4 1= +
¥

åp
( )

cos- .

 [These series are found in Example 33–1 and Problem 35–10(a).]
 8. Use the method and results of Problem 7 to obtain the sum

 

1
9456

1

6

n

¥

å = p

 from the sine series for x2 [Problem 35–10(b)].
 9. Use the method and results of Problems 7 and 8 to obtain the sum

 

1
94508

8

1
n

=
¥

å p

 from the cosine series for x4 [Problem 35–12(a)].
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Appendix A. A Pointwise Convergence Theorem

We divide the work of stating and proving the theorem into stages, for easier 
comprehension.

1. Our first purpose is to obtain a convenient explicit formula for the differ-
ence between a function and the nth partial sum of its Fourier series. This 
formula will enable us to prove pointwise convergence for a large class of 
functions that includes all the examples given in this chapter.

To develop this formula, we begin by assuming only that f(x) is an inte-
grable function of period 2π. The nth partial sum of its Fourier series is then

 
s x a a kx b kxn k k

k
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( ) ( cos sin )= + +
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, (1)

where
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p
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( )cos ( )sinand . (2)

By substituting (2) into (1) we obtain
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( ) cos ( ) .  (3)

If we define the Dirichlet kernel by

 
D u kun

k

n

( ) cos= +
=

å1
2

1

, (4)

then (3) can be put in the more compact form

 
s x f t D t x dtn n( ) ( ) ( )= ò1

p
p

p

-

- . (5)
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Putting u = t – x in (5) yields

 

s x f x u D u dun

x

x

n( ) ( ) ( )= +ò1
p

p

p

- -

-

. (6)

By the definition (4), Dn(u) has period 2π; and as a function of u, f(x + u) also 
has period 2π. Therefore the integral of f(x + u)Dn(u) over any interval of 
length 2n equals the integral over any other interval of length 2π, and (6) can 
be written

 

s x f x u D u dun n( ) ( ) ( )= +ò1
p

p

p

-

. (7)

Since Dn(–u) = Dn(u), we can replace u by –u in (7) to obtain
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( ) ( ) ,
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 (8)

and adding (7) and (8) yields

 

2
1

s x f x u f x u D u dun n( ) [ ( ) ( )] ( )= + +òp
p

p

-

- .

The integrand here is an even function of u, so the integral from –π to π is 
twice the integral from 0 to π, and we have

 

s x f x u f x u D u dun n( ) [ ( ) ( )] ( )= + +ò1

0
p

p

- . (9)

To bring f(x) into our discussion and put the difference sn(x) – f(x) into a con-
venient form, we notice that

 

1 1
2

0
p

p

D u dun( ) =ò ,
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since the terms cos ku in (4) integrate to zero. If we now multiply this by 2f(x) 
we obtain

 

f x f x D u dun( ) ( ) ( )= ò1
2

0
p

p

, (10)

and subtracting (10) from (9) yields

 

s x f x f x u f x u f x D u dun n( ) ( ) [ ( ) ( ) ( )] ( )- - -= + +ò1
2

0
p

p

. (11)

This formula is our fundamental tool for studying the convergence of sn (x) 
to f(x).

2. At this point we need the following closed formula for the Dirichlet 
kernel (4),

 
D u ku

n u
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n

( ) cos
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=
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, (12)

if sin 
1
2

u ≠ 018. This enables us to write (11) in the form
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, (13)

where

 

g u
f x u f x u f x

u
( )

( ) ( ) ( )

sin
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+ + - - 2

2
1
2

. (14)

Of course, g(u) is really a function of both u and x. However, we are going 
to be examining g(u) with x fixed and u variable, and this notation helps to 
avoid confusion. In view of (13), to prove that sn(x) → f(x) as n → ∞, we must 
prove that

18 This formula can easily be proved by writing down the identity 2 cos A sin B = sin (A + B) − 
sin (A − B) n times, with A = u, 2u, 3u,..., nu and B = u/2, and adding the results to obtain

 2 sin 
1
2

u (cos u + cos 2u + ∙ ∙ ∙ + cos nu) = sin n u+æ
è
ç

ö
ø
÷

1
2

 – sin 
1
2

u.
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lim ( )sin
n

g u n u du
®¥
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p

. (15)

Our task is to give a rigorous proof of (15) with appropriate, understandable, 
and clearly stated assumptions about the behavior of the function f(x).

3. As a preliminary to the proof of the main convergence theorem stated 
below, we need the following lemma.

Lemma. If ϕ (u) is integrable on the interval [0, π], then

 

lim ( )sin
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u n u du
®¥
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Proof. By the addition formula for the sine, this integral can be broken up 
into
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If we write
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( )sin cos

and
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2

0
p

f
p

( )cos sin ,

then the integral (16) is

 

p
2

( )A Bn n+ .

It is easy to see that An is the nth coefficient in the cosine series for ϕ (u) sin 
1
2

u, 

and Bn is the nth coefficient in the sine series for ϕ(u) cos 
1
2

u. Since ϕ(u) is integra-

ble, each of these functions is also integrable. It now follows from the corollary 
to Bessel’s inequality stated at the end of Problem 37–1 that An → 0 and Bn → 0 as 
n → ∞, and the proof of (16) is complete.
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4. In view of condition (15) and the lemma, all that remains is to formulate 
assumptions sufficient to guarantee that the function g(u) defined by (14) is 
integrable on [0, π].

So far, we have only the general requirements that f(x) is integrable on 
[–π, π] and periodic with period 2π. We now make the further assumption 
that f(x) is piecewise smooth on [– π, π]. This means that the graph on [–π, π] 
consists of a finite number of continuous curves on each of which f″(x) exists 
and is continuous. It also means that the derivative exists at the endpoints of 
these curves, in the sense of

 
lim

( ) ( )
lim

( ) ( )
u u

f x u f x
u

f x u f x
u® + ® +

+ +
0 0

- - - -
-

and . (17)

In this way, the function f(x) is guaranteed to have a right derivative and a 
left derivative at every point x—including points of discontinuity—which 
we denote by ¢+f x( ) and ¢-f x( ).

Of course, the function f(x) is allowed to have a finite number of jump dis-
continuities on [–π, π]. However, since the Fourier coefficients are not changed 
if f(x) is redefined at a finite number of points, we may assume without loss 
of generality that

 
f x

f x f x
( )

( ) ( )
=

+ +-
2

 (18)

at every point x, whether f(x) is continuous at x or not.
Our pointwise convergence theorem can now be stated as follows.

Theorem. If f(x) is piecewise smooth on [–π, π], is periodic with period 2π, and is 
defined at points of discontinuity by (18), then the Fourier series of f(x) converges to 
f(x) at every point x.

5. To prove this theorem, let x be any fixed point. We wish to establish the 
correctness of (15), and in view of the lemma, it suffices to show that the 
function
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 (19)

is integrable on [0, π]. It is clear that the only doubt about integrability arises 

from the fact that sin 
1
2

u = 0 when u = 0—for elsewhere in the interval, 

sin 
1
2

u is continuous and positive, and the numerator of (19) is certainly an 
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integrable function of u on [0, π]. We see from these remarks that g(u) will be 
integrable on [0, π] if we can show that g(u) approaches a finite limit as u → 0+.

By using (18) we can write
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f x u f x u f x f x
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f x u f x
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But as u → 0+, (17) tells us that
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and we know that

 

1
2

1
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It therefore follows that

 g u f x f x( ) ( ) ( )® ¢ ¢+ - - ,

so g(u) is integrable on [0, π] and the proof is complete.
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Chapter 7
Partial Differential Equations and 
Boundary Value Problems

39 Introduction. Historical Remarks

The theory of Fourier series discussed in the preceding chapter had its his-
torical origin in the middle of the eighteenth century, when several mathema-
ticians were studying the vibrations of stretched strings. The mathematical 
theory of these vibrations amounts to the problem of solving the partial dif-
ferential equation
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where a is a positive constant. This one-dimensional wave equation has many 
solutions, and the problem, for a particular vibrating string, is to find the 
solution that satisfies certain preliminary conditions associated with this 
string, such as its initial shape, its initial velocity, etc. The solution then 
describes the subsequent motion of the string as it vibrates under tension. 
The equilibrium position of the string is assumed to be along the x-axis, and 
if y = y(x, t) is the desired solution of (1), then for a fixed value of t ≥ 0 the 
curve y = y(x, t) gives the shape of the displaced string at that moment (see the 
dashed curve in Figure 52), and this shape changes from moment to moment.

For the case of a string stretched between the points x = 0 and x = π, and 
then deformed into an arbitrary shape and released at the moment t = 0, 
Daniel Bernoulli (in 1753) gave the solution of (1) as a series of the form

 y = b1 sin x cos at + b2 sin 2x cos 2at + …. (2)

It is easy to verify by inspection that a typical term of this series, 
bn sin nx cos nat, is a solution of equation (1). Further, every finite sum of such 
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terms is a solution, and the series (2) will also be a solution if term-by-term 
differentiation of the series is justified.1 When t = 0, the series (2) reduces to

 y = b1 sin x + b2 sin 2x + ….

This should give the initial shape of the string, that is, the curve y = y(x, 0) into 
which the string is deformed at the moment t = 0 when the string is released 
and the vibrations begin (see the solid curve in Figure 52).

However, d’Alembert (in 1747) and Euler (in 1748) had already published 
solutions of the problem which, for the case stated above, have the form

 
y f x at f x at= + + -1

2
[ ( ) ( )]. (3)

Here the curve y = f(x) is assumed to be the shape of the string at time t = 0; 
also, the function f(x) is assumed to be defined outside the interval [0, π] by 
the requirement that it is an odd function of period 2π, that is,

 f(−x) = −f(x) and f(x + 2π) = f(x).

If we compare the solution of Bernoulli with that of d’Alembert and Euler, 
then we see at once that we ought to have

 f(x) = b1 sin x + b2 sin 2x + …, (4)

because this is what we get if the solutions (2) and (3) agree at time t = 0. 
Therefore, as a result of mathematically analyzing this physical problem, 
Bernoulli arrived at an idea that has had very far-reaching influence on the 

1 In Bernoulli’s time no mathematicians had any doubt that infinite series of functions can be 
differentiated freely term-by-term. Such doubt was the product of a later, more skeptical, and 
more sophisticated age.

x

y

0
π

y = y (x, 0)

y = y (x, t)

FIGURE 52
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history of mathematics and physical science, namely, the possibility that a 
function as general as the shape of an arbitrarily deformed taut string can be 
expanded in a trigonometric series of the form (4).

Both d’Alembert and Euler rejected Bernoulli’s idea, and for essentially the 
same reason. It is clear on physical grounds that there is a great amount of 
freedom in the way the string can be constrained in its initial position. For 
example, if the string is plucked aside at a single point, then the shape will 
be a broken line (Figure 53(a)); and if it is pushed aside by using a circular 
object of some kind, then the shape will be partly a straight line, partly an 
arc of a circle, and partly another straight line, as in Figure 53(b). Is it reason-
able to expect that the single “formula” or “analytic expression” (4) could 
represent a straight line on part of the interval [0,π], a circle on another part, 
and a second straight line on still another part? To the mathematicians of 
that time (except Bernoulli) this seemed absurd. To d’Alembert the curve 
in Figure 53(b) would have represented three separate graphs of three dis-
tinct functions, merely pieced together. To Euler it would have been a single 
graph, but of three functions rather than a single function. Both dismissed 
the possibility that such a graph could be represented by a single “reason-
able” function like the series (4). The controversy bubbled on for many years, 
and in the absence of mathematical proofs, no one converted anyone else to 
his way of thinking.

(b)

0 π x

y

(a)

0 π x

y

FIGURE 53
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The more general form of a trigonometric series containing both sines and 
cosines, namely,

 
f x a a nx b nxn n
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arises naturally in another physical problem, that of the conduction of heat. 
In 1807 the French physicist–mathematician Fourier announced in this con-
nection that an “arbitrary function” f(x) can be represented in the form (5), 
with coefficients given by the formulas
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No one believed him, and for the next 15  years he labored at the task of 
accumulating empirical evidence to support his assertion. The results were 
presented in his classic treatise, Théorie Analytique de la Chaleur (1822). He 
supplied no proofs, but instead heaped up the evidence of many solved prob-
lems and many convincing specific expansions—so many, indeed, that the 
mathematicians of the time began to spend more effort on proving, rather 
than disproving, his conjecture. The first major result of this shift in the 
winds of opinion was the classical paper of Dirichlet in 1829, in which he 
proved with full mathematical rigor that the series (5) actually does converge 
to the function f(x) for all continuous functions whose graphs consist of a 
finite number of increasing or decreasing pieces—in particular, for the func-
tions illustrated in Figure 53. Thus were Bernoulli and Fourier vindicated. 
We must add, however, that Euler found formulas (6) in 1777, but believed 
them to be valid only in the case of functions f(x) already known to be repre-
sented in the form (5).

As we know from Chapter 6, in recognition of Fourier’s pioneering 
tenacity a trigonometric series of the form (5) is called a Fourier series if 
its coefficients are calculated by formulas (6) from some given integrable 
function f(x).

Those readers who would like a more detailed description of these memo-
rable events in our intellectual history are urged to consult any (or all) of 
the following masterly accounts: Philip J. Davis and Reuben Hersh, The 
Mathematical Experience, Houghton Mifflin Co., Boston, 1982, pp. 255–270; 
Béla Sz.-Nagy, Introduction to Real Functions and Orthogonal Expansions, Oxford 
University Press, 1965, pp. 375–380; and particularly Bernhard Riemann, in 
A Source Book In Classical Analysis, ed. Garrett Birkhoff, Harvard University 
Press, 1973, pp. 16–21.
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In the next section and its problems we present an organized exposi-
tion of the theory of the vibrating string sketched above; and in the sec-
tions after that we turn to other applications of Fourier series in physics and 
mathematics.

NOTE ON d’ALEMBERT. Jean le Rond d’Alembert (1717–1783) was a French 
physicist, mathematician, and man of letters. In science he is remembered 
for d’Alembert’s principle in mechanics and his solution of the wave equation. 
The main work of his life was his collaboration with Diderot in preparing 
the latter’s famous Encyclopédie, which played a major role in the French 
Enlightenment by emphasizing science and literature and attacking the 
forces of reaction in church and state. D’Alembert was a valued friend of 
Euler, Lagrange, and Laplace.

40 Eigenvalues, Eigenfunctions, and the Vibrating String

We begin by seeking a nontrivial solution y(x) of the equation

 y″ + λy = 0 (1)

that satisfies the boundary conditions

 y(0) = 0 and y(π) = 0. (2)

The parameter λ in (1) is free to assume any real value whatever, and part 
of our task is to discover the λ’s for which the problem can be solved. In our 
previous work we have considered only initial value problems, in which the 
solution of a second order equation is sought that satisfies two conditions at 
a single value of the independent variable. Here we have an entirely different 
situation, for we wish to satisfy one condition at each of two distinct values 
of x. Problems of this kind are called boundary value problems, and in general 
they are more difficult and far-reaching—in both theory and practice—than 
initial value problems.

In the problem posed by (1) and (2), however, there are no difficulties. If λ 
is negative, then Theorem 24-B tells us that only the trivial solution of (1) can 
satisfy (2); and if λ = 0, then the general solution of (1) is y(x) = c1x + c2, and we 
have the same conclusion. We are thus restricted to the case in which λ is 
positive, where the general solution of (1) is

 y x c x c x( ) sin cos= +1 2l l ;
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and since y(0) must be 0, this reduces to

 y x c x( ) sin= 1 l . (3)

Thus, if our problem has a solution, it must be of the form (3). For the second 
boundary condition y(π) = 0 to be satisfied, it is clear that lp must equal nπ 
for some positive integer n, so λ = n2. In other words, λ must equal one of the 
numbers 1, 4, 9, … . These values of λ are called the eigenvalues of the problem, 
and corresponding solutions

 sin x, sin 2x, sin 3x, … (4)

are called eigenfunctions. It is clear that the eigenvalues are uniquely deter-
mined by the problem, but that the eigenfunctions are not; for any nonzero 
constant multiples of (4), say a1 sin x, a2 sin 2x, a3 sin 3x, …, will serve just 
as well and are also eigenfunctions. For future reference we notice two 
facts: the eigenvalues form an increasing sequence of positive numbers that 
approaches ∞; and the nth eigenfunction, sin nx, vanishes at the endpoints of 
the interval [0, π] and has exactly n − 1 zeros inside this interval.

We now examine the classical problem of mathematical physics described 
in the preceding section—that of the vibrating string. Our purpose is to 
understand how eigenvalues and eigenfunctions arise. Suppose that a flex-
ible string is pulled taut on the x-axis and fastened at two points that for 
convenience we take to be x = 0 and x = π. The string is then drawn aside into 
a certain curve y = f(x) in the xy-plane (Figure 54) and released. In order to 
obtain the equation of motion, we make several simplifying assumptions, 
the first of which is that the subsequent vibration is entirely transverse. This 
means that each point of the string has constant x-coordinate, so that its 
y-coordinate depends only on x and the time t. Accordingly, the displace-
ment of the string from its equilibrium position is given by some function 
y = y(x, t), and the time derivatives ∂y/∂t and ∂2y/∂t2 represent the string’s 
velocity and acceleration. We consider the motion of a small piece which in 
its equilibrium position has length Δx. If the linear mass density of the string 

0 Δx π

θ

T

x

y

FIGURE 54
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is m = m(x), so that the mass of the piece is m Δx, then by Newton’s second law 
of motion the transverse force F acting on it is given by
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Since the string is flexible, the tension T = T(x) at any point is directed along 
the tangent (see Figure 54) and has T sin θ as its y-component. We next 
assume that the motion of the string is due solely to the tension in it. As a 
consequence, F is the difference between the values of T sin θ at the ends of 
our piece, namely Δ(T sin θ), so (5) becomes
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If the vibrations are relatively small, so that θ is small and sin θ is approxi-
mately equal to tan θ = ∂y/∂x, then (6) yields
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and when Δx is allowed to approach 0, we obtain
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Our present interest in this equation is confined to the case in which both m 
and T are constant, so that the equation can be written
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with a T m= . For reasons that will emerge in the Problems, equation (8) is 
called the one-dimensional wave equation. We seek a solution y(x,t) that satisfies 
the boundary conditions

 y(0,t) = 0 (9)

and

 y(π,t) = 0, (10)
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and the initial conditions
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and

 y(x,0) = f(x). (12)

Conditions (9) and (10) express the assumption that the ends of the string are 
permanently fixed at the points x = 0 and x = π and (11) and (12) assert that 
the string is motionless when it is released and that y = f(x) is its shape at that 
moment. We note explicitly, however, that none of these conditions are in any 
way connected with the derivation of (7) and (8).

We shall give a formal solution of (8) by the method of separation of vari-
ables. This amounts to looking for solutions of the form

 y(x,t) = u(x)v(t), (13)

which are factorable into a product of functions each of which depends 
on only one of the independent variables. When (13) is substituted into (8), 
we get

 a2u″(x)v(t) = u(x)v″(t)

or
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Since the left side is a function only of x and the right side is a function only 
of t, equation (14) can hold only if both sides are constant. If we denote this 
constant by –λ, then (14) splits into two ordinary differential equations for 
u(x) and v(t):

 u″ + λu = 0 (15)

and

 v″ + λa2v = 0. (16)

It is possible to satisfy (9) and (10) by solving (15) with the boundary condi-
tions u(0) = u(π) = 0. We have already seen that this problem has a nontrivial 
solution if and only if λ = n2 for some positive integer n, and that correspond-
ing solutions (the eigenfunctions) are

 un(x) = sin nx.
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Similarly, for these λ’s (the eigenvalues) the general solution of (16) is

 v(t) = c1 sin nat + c2 cos nat;

and if we impose the requirement that v′(0) = 0, so that (11) is satisfied, then 
c1 = 0 and we have solutions

 vn(t) = cos nat.

The corresponding products of the form (13) are therefore

 yn(x, t) = sin nx cos nat.

Each of these functions, for n = 1, 2, …, satisfies equation (8) and conditions 
(9), (10), and (11); and it is easily verified that the same is true for any finite 
sum of constant multiples of the yn:

 b1 sin x cos at + b2 sin 2x cos 2at + … + bn sin nx cos nat.

If we proceed formally—that is, ignoring all questions of convergence, term-
by-term differentiability, and the like—then any infinite series of the form
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is also a solution that satisfies (9), (10), and (11). This brings us to the final 
condition (12), namely, that for t = 0 our solution (17) should yield the initial 
shape of the string:

 f(x) = b1 sin x + b2 sin 2x + … +bn sin nx + …. (18)

As we said in the preceding section, when these formulas were developed 
by Daniel Bernoulli in 1753, it seemed to many mathematicians that (18) 
ought to be impossible unless f(x) were a function of some very special type. 
During the next century it became clear that this opinion was mistaken, and 
that in reality expressions of the form (18) are valid for very wide classes of 
functions f(x) that vanish at 0 and π. Assuming that this is true, the problem 
remained for Bernoulli and his contemporaries of finding the coefficients bn 
when the function f(x) is given. This problem was solved by Euler in 1777, 
and his solution launched the vast subject of Fourier series. We know how 
to find these coefficients from our work in Section 35, but we shall find them 
again by methods that fit into a broader pattern of ideas.
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The eigenfunctions um(x) and un(x), that is, sin mx and sin nx, satisfy the 
equations

 ¢¢ = - ¢¢ = -u m u u n um m n n
2 2and .

If the first equation is multiplied by un and the second by um, then the differ-
ence of the resulting equations is

 u u u u n m u un m m n m n¢¢ - ¢¢ = -( )2 2

or

 ( ) ( )u u u u n m u un m m n m n¢ - ¢ ¢ = -2 2 . (19)

On integrating both sides of (19) from 0 to π and using the fact that 
um(x) = sin mx and un(x) = sin nx both vanish at 0 and π, we obtain
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This result suggests multiplying (18) through by sin nx and integrating the 
result term by term from 0 to π. When these operations are carried out, (20) 
produces a wholesale disappearance of terms, leaving only
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These bn are very familiar to us and are called the Fourier coefficients of f(x). 
With these coefficients, (18) is the Fourier sine series of f(x) or the eigenfunc-
tion expansion of f(x) in terms of the eigenfunctions sin nx, and (17) is called 
Bernoulli’s solution of the wave equation.

The above “solution” of the wave equation is clearly riddled with doubt-
ful procedures and unanswered questions, so much so, indeed, that from 
a strictly rigorous point of view it cannot be regarded as having more than 
a suggestive value. But even this much is well worth the effort, for some of 
the questions that arise—especially those about the meaning and validity of 
(18)—are exceedingly fruitful. For instance, if the bn are computed by means 
of (21) and used to form the series on the right of (18), under what circum-
stances will this series converge? And if it converges at a point x, does it nec-
essarily converge to f(x)? We give the following brief statement of one answer 
to these questions that is fully covered by the theorem proved in Appendix 
A at the end of the preceding chapter.

The function f(x) under consideration is defined on the interval [0,π] and 
vanishes at the endpoints. Suppose that f(x) is continuous on the entire inter-
val, and also that its derivative is continuous with the possible exception of 
a finite number of jump discontinuities, where the derivative approaches finite 
but different limits from the left and from the right. In geometric language, 
the graph of such a function is a continuous curve with the property that the 
direction of the tangent changes continuously as it moves along the curve, 
except possibly at a finite number of “corners” where its direction changes 
abruptly. Under these hypotheses the expansion (18) is valid; that is, if the bn 
are defined by (21), then the series on the right converges at every point to 
the value of the function at that point. The need for a carefully constructed 
theory can be seen from the fact that if f(x) is merely assumed to be continu-
ous, and nothing is said about its derivative, then it is known to be possible 
for the series on the right of (18) to diverge at some points.2

Another line of investigation considers the possiblity of eigenfunction 
expansions like (18) for other boundary value problems. If we put aside the 
issue of the validity of such expansions, then the main problem becomes that 
of showing in other cases that we have an adequate supply of suitable build-
ing materials, i.e., a sequence of eigenvalues with corresponding eigenfunc-
tions that satisfy some condition similar to (20).

Suppose, for instance, we consider the vibrating string studied above 
with one significant difference: the string is nonhomogeneous, in the sense 
that its density m = m(x) may vary from point to point. In this situation, (8) is 
replaced by
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2 It has been known since 1966 that there even exists a continuous function whose Fourier 
series diverges at every rational point in [0,π].
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If we again seek a solution of the form (13), then (22) becomes
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and as before, we are led to the following boundary value problem:

 u″ + λm(x)u = 0,  u(0) = u(π) = 0. (23)

What are the eigenvalues and eigenfunctions in this case? Needless to say, 
we cannot give precise answers without knowing something definite about 
the density function m(x). But at least we can prove that these eigenvalues 
and eigenfunctions exist. The details of this argument are given in Appendix 
A at the end of this chapter.

Problems

 1. Find the eigenvalues λn and eigenfunctions yn(x) for the equation 
y″ + λy = 0 in each of the following cases:

 (a) y(0) = 0, y(π/2) = 0;
 (b) y(0) = 0, y(2π) = 0;
 (c) y(0) = 0, y(1) = 0;
 (d) y(0) = 0, y(L) = 0 when L > 0;
 (e) y(−L) = 0, y(L) = 0 when L > 0;
 (f) y(a) = 0, y(b) = 0 when a < b.

 Solve the following two problems formally, i.e., without considering 
such purely mathematical issues as the differentiability of functions 
and the convergence of series.

 2. If y = F(x) is an arbitrary function, then y = F(x + at) represents a wave 
of fixed shape that moves to the left along the x-axis with velocity a 
(Figure 55). Similarly, if y = G(x) is another arbitrary function, then 
y = G(x − at) is a wave moving to the right, and the most general one-
dimensional wave with velocity a is

 y(x,t) = F(x + at) + G(x − at). (*)

 (a) Show that (*) satisfies the wave equation (8).
 (b)  It is easy to see that the constant a in equation (8) has the dimen-

sions of velocity. Also, it is intuitively clear that if a stretched string 
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is disturbed, then waves will move in both directions away from 
the source of the disturbance. These considerations suggest intro-
ducing the new variables α = x + at and β = x − at. Show that with 
these independent variables, equation (8) becomes
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   and from this derive (*) by integration. Formula (*) is called 
d’Alembert’s solution of the wave equation. It was also obtained by 
Euler, independently of d’Alembert but slightly later.

 3. Consider an infinite string stretched taut on the x-axis from –∞ to ∞. Let 
the string be drawn aside into a curve y = f(x) and released, and assume 
that its subsequent motion is described by the wave equation (8).

 (a)  Use (*) to show that the string’s displacement is given by d’Alembert’s 
formula,

 
y x t f x at f x at( , ) [ ( ) ( )]= + + -1

2
. (**)

  Hint: Remember the initial conditions (11) and (12).
 (b)  Assume further that the string remains motionless at the points 

x = 0 and x = π (such points are called nodes), so that y(0,t) = y(π,t) = 0, 
and use (**) to show that f(x) is an odd function that is periodic with 
period 2π [that is, f(−x) = −f(x) and f(x + 2π) = f(x)].

 (c)  Show that since f(x) is odd and periodic with period 2π, it necessar-
ily vanishes at 0 and π.

 (d)  Show that Bernoulli’s solution (17) can be written in the form of (**). 
Hint: 2 sin nx cos nat = sin [n(x + at)] + sin [n(x − at)].

 4. Consider a uniform flexible chain of constant mass density m0 hang-
ing freely from one end. If a coordinate system is established as in 
Figure 56, then the lateral vibrations of the chain, when it is disturbed, 

at

y = F (x + at) y = F (x)

y

x

FIGURE 55



364 Differential Equations with Applications and Historical Notes

are governed by equation (7). In this case, the tension T at any point 
is the weight of the chain below that point, and is therefore given by 
T = m0xg, where g is the acceleration due to gravity. When m0 is can-
celed, (7) becomes
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 (a)  Assume that this partial differential equation has a solution of the 
form y(x,t) = u(x)v(t), and show as a consequence that u(x) satisfies 
the following ordinary differential equation:
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 (b)  If the independent variable is changed from x to z x g= 2 l , show 
that equation (***) becomes
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FIGURE 56
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   which (apart from notation) is Bessel’s equation 1-(9) for the special 
case in which p = 0

 5. Solve the vibrating string problem in the text if the initial shape (12) is 
given by the function
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  In each case, sketch the initial shape of the string.
 6. Solve the vibrating string problem in the text if the initial shape (12) is 

that of a single arch of a sine curve, f(x) = c sin x. Show that the mov-
ing string always has the same general shape. Do the same for func-
tions of the form f(x) = c sin nx. Show, in particular, that there are n − 1 
points between x = 0 and x = π at which the string remains motionless; 
these points are called nodes, and these solutions are called stand-
ing waves. Draw sketches to illustrate the movement of the standing 
waves.

 7. The problem of the struck string is that of solving equation (8) with the 
boundary conditions (9) and (10) and the initial conditions
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 (These initial conditions mean that the string is initially in the equilib-
rium position, and has an initial velocity g(x) at the point x as a result of 
being struck.) By separating variables and proceeding formally, obtain 
the solution
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41 The Heat Equation

When we study the flow of heat in thermally conducting bodies, we encoun-
ter an entirely different type of problem leading to a partial differential 
equation.

In the interior of a body where heat is flowing from one region to another, 
the temperature generally varies from point to point at any one time, and 
from time to time at any one point. Thus, the temperature w is a function 
of the space coordinates x, y, z and the time t, say w = w(x,y,z,t). The precise 
form of this function naturally depends on the shape of the body, the ther-
mal characteristics of its material, the initial distribution of temperature, and 
the conditions maintained on the surface of the body. The French physicist–
mathematician Fourier studied this problem in his classic treatise of 1822, 
Théorie Analytique de la Chaleur. He used physical principles to show that the 
temperature function w must satisfy the heat equation
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We shall retrace his reasoning in a simple one-dimensional situation, and 
thereby derive the one-dimensional heat equation.

The following are the physical principles that will be needed:

 (a) Heat flows in the direction of decreasing temperature, that is, from 
hot regions to cold regions.

 (b) The rate at which heat flows across an area is proportional to the 
area and to the rate of change of temperature with respect to dis-
tance in a direction perpendicular to the area. (This proportional-
ity factor is denoted by k and called the thermal conductivity of the 
substance.)

 (c) The quantity of heat gained or lost by a body when its temperature 
changes, that is, the change in its thermal energy, is proportional to 
the mass of the body and to the change of temperature. (This pro-
portionality factor is denoted by c and called the specific heat of the 
substance.)

We now consider the flow of heat in a thin cylindrical rod of cross-sectional 
area A (Figure 57) whose lateral surface is perfectly insulated so that no heat 
flows through it. This use of the word “thin” means that the temperature is 
assumed to be uniform on any cross section, and is therefore a function only 
of the time and the position of the cross section, say w = w(x,t). We examine 
the rate of change of the heat contained in a thin slice of the rod between the 
positions x and x + Δx.
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If ρ is the density of the rod, that is, its mass per unit volume, then the mass 
of the slice is

  Δm = ρA Δx.

Furthermore, if Δw is the temperature change at the point x in a small time 
interval Δt, then (c) tells us that the quantity of heat stored in the slice in this 
time interval is

  ΔH = c Δm Δw = cρA Δx Δw,

so the rate at which heat is being stored is approximately
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We assume that no heat is generated inside the slice—for instance, by 
chemical or electrical processes—so that the slice gains heat only by means 
of the flow of heat through its faces. By (b) the rate at which heat flows into 
the slice through the left face is
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.

The negative sign here is chosen in accordance with (a), so that this quantity 
will be positive if ∂w/∂x is negative. Similarly, the rate at which heat flows 
into the slice through the right face is
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so the total rate at which heat flows into the slice is
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FIGURE 57
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If we equate the expressions (2) and (3), the result is
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Finally, by letting Δx and Δt → 0 we obtain the desired equation,
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where a2 = k/cρ. This is the physical reasoning that leads to the one-
dimensional heat equation. The three-dimensional equation (1) can be 
derived in essentially the same way.

We now solve the one-dimensional heat equation (4), subject to the fol-
lowing set of conditions: the rod is π units long and lies along the x-axis 
between x = 0 and x = π; the initial temperature is a prescribed function f(x), 
so that

 w(x,0) = f(x); (5)

and the ends of the rod have the constant temperature zero for all values 
of t ≥ 0,

 w(0,t) = 0 and w(π,t) = 0. (6)

We try for a solution of this boundary value problem by the method of sepa-
ration of variables that worked so well in the case of the wave equation; that 
is, we seek a solution of (4) having the form

 w(x,t) = u(x)v(t). (7)

When this expression is substituted in (4), the result can be written
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Since each side of this equation depends on only one of the variables, both 
sides must be constant, and if we denote this common constant value by –λ, 
then (8) splits into the two ordinary differential equations

 u″ + λu = 0 (9)

and

 v′ + λa2v = 0. (10)

Just as in Section 40, we solve (9) and satisfy the boundary conditions (6) by 
setting λ = n2 for any positive integer n, and the corresponding eigenfunc-
tion is

 un(x) = sin nx.

With this value of λ, equation (10) becomes

 v′ + n2a2v = 0,

which has the easy solution

 v t en
n a t( ) .= - 2 2

The resulting products of the form (7) are therefore

 w x t e nx nn
n a t( , ) sin , , , ,= =- 2 2

1 2 3 …. (11)

This brings us to the point where we know that each of the functions (11) 
satisfies equation (4) and the boundary conditions (6), and it is clear that the 
same is true for any finite linear combination of the wn:

 b e x b e x b e nxa t a t
n

n a t
1 2

42 2 2 2
2- - -+ + +sin sin sin� . (12)

Without dwelling on the important mathematical issues of convergence and 
term-by-term differentiability, we now pass from (12) to the corresponding 
infinite series,
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This will be a solution of our original boundary value problem if it allows us 
to satisfy the initial condition (5), that is, if (13) reduces to the initial tempera-
ture distribution f(x) when t = 0:
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To finish this part of our work and make the solution (13) completely explicit, 
all that remains is to determine the bn as the Fourier coefficients in the expan-
sion (14) of f(x) in a Fourier sine series,
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Example 1. Suppose that the thin rod discussed above is first immersed 
in boiling water so that its temperature is 100°C throughout, and then 
removed from the water at time t = 0 with its ends immediately put in 
ice so that these ends are kept at temperature 0°C. Find the temperature 
w = w(x,t) under these circumstances.

Solution. This is the special case of the above discussion in which the 
initial temperature distribution is given by the constant function

 f(x) = 100, 0 < x < π.

We must therefore find the sine series of this function, which we can 
either calculate from scratch by using (15) or obtain in some other way 
(see Problem 35-4),
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By referring to formula (13), we now see that the desired temperature 
function is
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Example 2. Find the steady-state temperature of the thin rod discussed 
above if the fixed temperatures at the ends x = 0 and x = π are w1 and w2, 
respectively.
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Solution. “Steady-state” means that ∂w/∂t = 0, so the heat equation (4) 
reduces to ∂2w/∂x2 = 0 or d2w/dx2 = 0. The general solution is therefore 
w = c1x + c2, and by using the boundary conditions we easily determine 
these constants of integration and obtain the desired solution,
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The steady-state version of the three-dimensional heat equation (1) is

 

¶
¶

+ ¶
¶

+ ¶
¶

=
2

2

2

2

2

2 0
w

x
w

y
w

z
; (16)

it is called Laplace’s equation. The study of this equation and its solutions 
and uses—there are many applications in the theory of gravitation—is a 
rich branch of mathematics called potential theory. This topic is continued in 
Appendix A at the end of the next chapter. The corresponding equation in 
two dimensions is
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this is a valuable tool if plane problems are under consideration. Equation 
(17) also has a special significance of its own in complex analysis.

Problems

 1. Derive the three-dimensional heat equation (1) by adapting the reason-
ing in the text to the case of a small box with edges Δx, Δy, Δz contained 
in a region R in xyz-space where the temperature function w(x,y,z,t) is 
sought. Hint: Consider the flow of heat through two opposite faces of 
the box, first perpendicular to the x-axis, then the y-axis, and finally the 
z-axis.

 2. Solve the boundary value problem in the text if the conditions are 
altered from (5) and (6) to

 w(x,0) = f(x) and w(0,t) = w1, w(π,t) = w2.

 Hint: Write w(x,t) = W(x,t) + g(x) and remember Example 2.
 3. Suppose that the lateral surface of the thin rod in the text is not insu-

lated, but instead radiates heat into the surroundings. If Newton’s 
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law of cooling applies, show that the one-dimensional heat equation 
becomes
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 where c is a positive constant and w0 is the temperature of the 
surroundings.

 4. In the preceding problem, find w(x,t) if the ends of the rod are kept at 
0°C, w0 = 0°C, and the initial temperature distribution is f(x).

 5. In Example 1, suppose the ends of the rod are insulated instead of being 
kept at 0°C. What are the new boundary conditions? Find the tempera-
ture w(x,t) in this case by using only common sense.

 6. Solve the problem of finding w(x,t) for the rod with insulated ends at 
x = 0 and x = π (see the preceding problem) if the initial temperature dis-
tribution is given by w(x,0) = f(x).

 7. The two-dimensional heat equation is
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 Use the method of separation of variables to find a steady-state solu-
tion of this equation in the infinite strip of the xy-plane bounded 
by the lines x = 0, x = π and y = 0 if the following conditions are 
satisfied:
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42 The Dirichlet Problem for a Circle. Poisson’s Integral

We continue our overall program in this chapter of acquainting the stu-
dent with important mathematical problems related to both partial dif-
ferential equations and Fourier series. Even though we cannot treat these 
problems in the depth they deserve within the limitations of the present 
book, at least it is possible to convey an impression of what these problems 
are and briefly describe some of the standard methods for dealing with 
them.
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We begin with the two-dimensional Laplace equation mentioned at the 
end of Section 41. In rectangular coordinates (x,y) it is

 

¶
¶

+ ¶
¶

=
2

2

2

2 0
w

x
w

y
; (1)

and in polar coordinates (r, θ) it is
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It is an exercise in the use of the chain rule for partial derivatives to trans-
form these equations into one another (see Problem 1 below). Many types of 
physical problems require solutions of Laplace’s equation, and there exists 
a wide variety of solutions containing many different kinds of functions. 
However, just as in the preceding sections, a specific physical problem usu-
ally asks for a solution that is defined in a certain region and satisfies a given 
condition on the boundary of that region.

There is a famous problem in analysis called the Dirichlet problem, one ver-
sion of which can be stated as follows: Given a region R in the plane bounded 
by a simple closed curve C, and given a function f(P) defined and continuous 
for points P on C, it is required to find a function w(P) continuous in R and 
on C, such that w(P) satisfies Laplace’s equation in R and equals f(P) on the 
boundary C.

We shall consider the special case in which R is the interior of the unit 
circle x2 + y2 = 1, and we use polar coordinates as the geometry suggests. Let 
w = w(r, θ) be a function continuous inside and on this circle. The values of 
this function when r = 1 are called its boundary values for the circular region. 
The function w(1,θ) is evidently a continuous function of θ with period 2π. 
The Dirichlet problem for this circular region is then the following: Let f(θ) 
be any given continuous function of θ with period 2π. It is required to find a 
function w = w(r, θ) that satisfies Laplace’s equation (2) for 0 ≤ r ≤ 1, and has the 
further property that w(1,θ) = f(θ) for each value of θ. In some versions of the 
Dirichlet problem the condition that f(θ) must be continuous is relaxed and 
the condition w(1,θ) = f(θ) is expressed in a different form; we shall comment 
further on these matters below.

If w is understood to be temperature, then we know from our work in 
Section 41 that the Dirichlet problem for a circle is the problem of finding the 
steady-state temperature throughout a thin circular plate when the tempera-
ture along the edge is prescribed in advance. Solutions of Laplace’s equa-
tion are often called harmonic functions. Using this language, the Dirichlet 
problem is the problem of finding a function that is harmonic in the circular 
region and assumes preassigned continuous values on the boundary.
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Now for the details of solving this problem. We begin by ignoring the 
boundary function f (θ) and seeking solutions of Laplace’s equation (2) that 
have the form w = w(r,θ) = u(r)v(θ), that is, that can be written as the product 
of a function of r alone and a function of θ alone. Thus, we make yet another 
application of the method of separation of variables. When this function is 
substituted in equation (2) we obtain
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The left side of (3) is independent of θ, and the right side is independent of r, 
so both sides must be constant; and if we denote this common constant value 
by λ, then (3) splits into the two equations

 v″ + λv = 0 (4)

and

 r2u″ + ru′ − λu = 0. (5)

We want v(θ) to be continuous and periodic with period 2π—and, of course, 
not identically zero. This requires us to conclude that the constant λ in (4) 
must be of the form λ = n2 with n = 0, 1, 2, 3, … For n = 0 the only suitable 
solution is v = a constant, and for n = 1, 2, 3, … the solutions of (4) are linear 
combinations of cos nθ and sin nθ,

 vn(θ) = an cos nθ + bn sin nθ.

We next set λ = n2 in equation (5), which then becomes
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This is Euler’s equidimensional equation (Problem 17-5), with solutions
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where A and B are constants. We want u(r) to be continuous at r = 0, so we 
take B = 0 in all cases, and we therefore have

 un(r) = rn.

If we now write down all the solutions w = un(r)vn(θ) in sequential order, the 
result is as follows:
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It is easy to see that any finite sum of solutions of Laplace’s equation is also 
a solution, and the same is true for an infinite series of solutions if the series 
has suitable convergence properties. This leads us to the solution
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If we put r = 1 in (6) and remember that we want to satisfy the boundary con-
dition w(1,θ) = f (θ), then we obtain
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It is now clear what must be done to solve the Dirichlet problem for the 
unit circle: start with the given boundary function f (θ) and find its Fourier 
series (7); then form the solution (6) by merely inserting the factor rn in front 
of the expression in parentheses in (7). Of course, the constant term in (6) 

is written as 
1
2

a0 for the sake of agreement with the standard notation for 

Fourier series.

Example. Solve the Dirichlet problem for the unit circle if f (θ) = 1 on the 
top half of the circle (0 < θ < π) and f (θ) = −1 on the bottom half of the circle 
(−π < θ < 0), with f (0) = f (±π) = 0.

Solution. We know from Problem 35–4 that the Fourier series for f (θ) is
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The solution of the Dirichlet problem is therefore
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The discussion given above is concerned mostly with formal procedures and 
not with delicate questions of convergence. However, we state without proof 
that if the an and bn are the Fourier coefficient’s of f(θ), then the series (6) con-
verges for 0 ≤ r < 1 and its sum w(r,θ) is a solution of Laplace’s equation in this 
region. For this to be true it is not necessary to assume that f (θ) is continuous, 
or even that its Fourier series converges. It is enough to assume that f (θ) is 
integrable. Furthermore, even with this weak hypothesis it turns out that f (θ) 
is the boundary value of w(r,θ), in the sense that
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at every point of continuity of the function f(θ). These remarkable facts have 
emerged from careful theoretical studies of the Poisson integral, which we 
now briefly describe.3

The Poisson integral. The Dirichlet problem for the unit circle is now solved, 
at least formally. However, a simpler expression for this solution can be found 
as follows, if we don’t mind a bit of calculating with complex numbers. As we 
know, the coefficients in (6) are given by the formulas
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When these are substituted in (6), then by using the identity

 cos (θ − ϕ) = cos θ cos ϕ + sin θ sin ϕ

and interchanging the order of integration and summation, we obtain
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3 More details on these interesting matters of theory can be found in H. S. Carslaw, Introduction 
to the Theory of Fourier’s Series and Integrals, 3d ed., Macmillan, London, 1930, pp. 250–254; R. T. 
Seeley, An Introduction to Fourier Series and Integrals, W A Benjamin, New York, 1966, pp. 16–19; 
or pp. 436–442 of the book of Sz.-Nagy mentioned in Section 39.
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To sum the series in brackets, we put α = θ − ϕ and let z = reiα = r(cos α + i sin α). 
Then zn = rneinα = rn(cos nα + i sin nα) and
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By substituting this in (8) we obtain
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This remarkable formula for the solution of the Dirichlet problem is called 
the Poisson integral; it expresses the value of the harmonic function w(r,θ) at all 
points inside the circle in terms of its values on the circumference of the circle. 
It should also be observed that for r = 0 formula (9) yields
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This shows that the value of the harmonic function w at the center of the 
circle is the average of its values on the circumference.

NOTE ON POISSON. Siméon Denis Poisson (1781–1840), a very eminent 
French mathematician and physicist, succeeded Fourier in 1806 as full pro-
fessor at the École Polytechnique. In physics, Poisson’s equation describes 
the variation of potential inside continuous distributions of mass or electric 
charge, just as Laplace’s equation does in empty space. He also made impor-
tant theoretical contributions to the study of elasticity, magnetism, heat, and 
capillary action. In pure mathematics, the Poisson summation formula is a 
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major tool in analytic number theory, and the Poisson integral pointed the 
way to many important developments in Fourier analysis. In addition, he 
worked extensively in probability. It was he who named the law of large 
numbers; and the Poisson distribution—or law of small numbers—has many 
applications to such phenomena as the distribution of blood cells on a micro-
scope slide, of automobiles on a highway, of customers at a theater ticket 
office, etc. According to Abel, Poisson was a short, plump man. His family 
tried to encourage him in many directions, from being a doctor to being a 
lawyer, this last on the theory that perhaps he was fit for nothing better, but 
at last he found his niche as a scientist and produced over 300 works in a 
relatively short lifetime. “La vie, c’est le travail (Life is work),” he said—and 
he had good reason to know.

Problems

 1. If w = F(x,y) = G(r,θ) with x = r cos θ and y = r sin θ, show that
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 Hint:
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 2. Solve the Dirichlet problem for the unit circle if the boundary function 
f(θ) is defined by

 (a) f (θ) = cos 
1
2

 θ, −π ≤ θ ≤ π;
 (b) f (θ) = 0, −π < θ < π;
 (c) f (θ) = 0 for −π ≤ θ < 0,  f (θ) = sin θ for 0 ≤ θ ≤ π;
 (d) f (θ) = 0 for −π ≤ θ ≤ 0,  f (θ) = 1 for 0 ≤ θ ≤ π;

 (e) f (θ) = 
1
4

 θ2, −π ≤ θ ≤ π.
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 3. Show that the Dirichlet problem for the circle x2 + y2 = R2, where f(θ) is 
the boundary function, has the solution
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 where an and bn are the Fourier coefficients of f (θ). Show also that the 
Poisson integral for this more general case is
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 4. Let w(P) be harmonic in a plane region, and let C be any circle entirely 
contained in this region. Prove that the value of w at the center of C is 
the average of its values on the circumference. (This is a major theorem 
of potential theory due to Gauss.)

43 Sturm–Liouville Problems

We return briefly to the discussion of eigenvalues and eigenfunctions at 
the beginning of Section 40. Our purpose here is to place these ideas in a 
broader context that will help make an easier transition to the topics of the 
next chapter.

As we know, a sequence of functions yn(x) with the property that
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is said to be orthogonal on the interval [a,b]. If αn = 1 for all n, the functions are 
said to be normalized, and we speak of an orthonormal sequence. A more gen-
eral type of orthogonality is defined by the property
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In this case the sequence is said to be orthogonal with respect to the weight func-
tion q(x). Orthogonality properties of this kind are possessed by the eigen-
functions associated with a wide variety of boundary value problems.
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Consider a differential equation of the form

 

d
dx

p x
dy
dx
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ëê

ù
ûú

+ + =l 0, (3)

for which we are interested in solutions valid on the interval [a,b]. We know 
from Theorem A in Section 14 that if p(x), p′(x), q(x), and r(x) are continu-
ous on this interval, and if p(x) does not vanish there, then there is one and 
only one solution y(x) for the initial value problem in which we arbitrarily 
assign prescribed values to both y(a) and y′(a). Suppose, however, that we 
wish to assign prescribed values to both y(a) and y(b), that is, to y(x) at two 
different points, rather than to y(x) and y′(x) at the same point. We examine 
the circumstances under which this boundary value problem has a nontrivial 
solution.

Example 1. At the beginning of Section 40 we considered the special case 
of (3) in which p(x) = q(x) = 1 and r(x) = 0, so that the equation is

 y″ + λy = 0.

The interval was taken to be [0,π] and the boundary conditions were

 y(0) = 0 and y(π) = 0.

We found that for this problem to be solvable λ must have one of the 
values

  λn = n2, n = 1,2,3, …,

and that corresponding solutions are

 yn(x) = sin nx.

We called the λn the eigenvalues of the problem, and the yn(x) are correspond-
ing eigenfunctions.

In the case of the more general equation (3), it turns out that if the func-
tions p(x) and q(x) are restricted in a reasonable way—specifically, if p(x) > 0 
and q(x) > 0 on [a,b]—then we will also be able to obtain nontrivial solutions 
satisfying suitable boundary conditions at the two distinct points a and b if 
and only if the parameter λ takes on certain specific values. These are the 
eigenvalues of the boundary value problem; they are real numbers that can be 
arranged in an increasing sequence

  λ1 < λ2 < λ3 < … < λn < λn+1 < …, (4)
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and furthermore,

  λn → ∞ as n → ∞.

This ordering is desirable because it enables us to arrange the corresponding 
eigenfunctions

 y1(x), y2(x), …, yn(x), … (5)

in their own natural order. As in the case of Example 1, the eigenfunctions 
are not unique, but with the boundary conditions we will be interested in, 
they are determined up to a nonzero constant factor.

We now look for possible orthogonality properties of the sequence of 
eigenfunctions (5), and in the process of doing this, we will discover what 
types of boundary conditions are “suitable.” Consider the differential equation 
(3) written down for two different eigenvalues λm and λn, with ym and yn the 
corresponding eigenfunctions:
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If we shift to the more compact prime notation for derivatives, then on mul-
tiplying the first equation by yn and the second by ym, and subtracting, we 
find that

 y py y py qy yn m m n m n m n( ) ( ) ( )¢ ¢ ¢ ¢ + =- -l l 0.

We now move the first two terms to the right and integrate from a to b, using 
integration by parts, to obtain
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If we denote by W(x) the Wronskian determinant of the solutions ym(x) and 
yn(x), which is defined by
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then (6) can be written in the convenient form
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We point out particularly that the integrations by parts in the calculation (6), 
and the consequent cancellations, are possible only because of the special 
form of the first term in the differential equation (3).4

We want the right side of (6) or (7) to vanish, so that we can obtain the 
orthogonality property
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By looking at the right side of (6), we see that this will certainly happen if the 
boundary conditions required of a nontrivial solution of (3) are

 y(a) = 0 and y(b) = 0

or

 y′(a) = 0 and y′(b) = 0.

Each of these is a special case of the more general boundary conditions

 c1y(a) + c2y′(a) = 0 and d1y(b) + d2y′(b) = 0 (9)

where c1, or c2 ≠ 0 and d1 or d2 ≠ 0. To see that these boundary conditions 
really do make the right side of (7) vanish, suppose that the solutions ym(x) 
and yn(x) both satisfy the first condition (9), so that
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4 Differential equations having this special form are called self-adjoint. See the problems below 
for an explanation of this terminology.
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Since this system has a nontrivial solution c1 c2, the coefficient determinant 
must vanish:
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Similarly W(b) = 0, and it follows from this that the right side of (7) vanishes.
Boundary conditions of the form (9) are called homogeneous boundary condi-

tions. Their special feature is the fact that any sum of solutions of equation (3) 
that individually satisfy such boundary conditions will also satisfy the same 
boundary conditions. Any differential equation of the form (3) with homoge-
neous boundary conditions is called a Sturm–Liouville problem.

The significance of these ideas is that the orthogonality property (8) gives 
us a formal method for finding series expansions of functions f(x) in terms 
of the eigenfunctions of such a Sturm–Liouville problem. Formally, we are 
led to the following procedure. We assume that f(x) can be written in the 
form

 f (x) = a1y1(x) + a2y2(x)+ … anyn(x) + … (10)

Multiplying both sides of this by q(x)yn(x) and integrating term by term from 
a to b yields
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because of (8). With the coefficients an determined by (11), formula (10) is 
called an eigenfunction expansion of f (x).

A very important mathematical question now arises that is familiar to us 
from Chapter 6 and the earlier sections of this chapter—how do we know 
that the series (10) with coefficients determined by (11) really represents 
f(x)? And what does “represents” mean? Does it mean in the sense of point-
wise convergence? Or mean convergence? Or perhaps some other concept 
altogether? We have seen in Chapter 6 how difficult some of these theoreti-
cal problems are for ordinary Fourier series, which are the simplest of all 
eigenfunction expansions. Two further special cases that are particularly 
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important for applications to physics are concerned with the orthogonal 
sequences of the Legendre polynomials and the Bessel functions. These two 
sequences of functions, and their properties, and the associated eigenfunc-
tion expansions, are the subject of the next chapter.

Self-adjoint boundary value problems of the kind described above are 
called regular, because the interval [a,b] is finite and the functions p(x) and 
q(x) are positive and continuous on the entire interval. Singular problems are 
those in which one of these functions vanishes or becomes infinite at an 
endpoint, or the interval itself is infinite. Unfortunately, many of the more 
important problems are singular, and the theory must be correspondingly 
more complicated to cope with them.5

Example 2. Consider the important Legendre equation in its self-adjoint 
form,
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Here the function p(x) = 1 − x2 vanishes at both endpoints. No boundary 
conditions of the usual kind are imposed at the endpoints x = ±1, but it is 
required that the solutions remain bounded near these points. It turns out 
that this happens only when λ = n(n + 1) for n = 0, 1, 2, …, and the correspond-
ing solutions are the Legendre polynomials Pn(x). The details of this singular 
self-adjoint boundary value problem are found in Chapter 8.

Remark. We have done little more in this section than acquaint the student 
with some of the issues in this subject, and we have certainly not provided 
any substantive proofs. One of the first questions about any self-adjoint 
boundary value problem—Sturm-Liouville or otherwise—is this: Does there 
exists an adequate supply of eigenvalues and corresponding eigenfunctions? 
For the reader who is interested in these theoretical matters, a full and rig-
orous proof of this existence theorem is given in Appendix A, but only for 
a somewhat special case of the regular Sturm–Liouville problem described 
above.

Note on Liouville. Joseph Liouville (1809–1882) was a highly respected pro-
fessor at the Collège de France in Paris and the founder and editor of the 
Journal des Mathématiques Pures et Appliquées, a famous periodical that played 
an important role in French mathematical life throughout the nineteenth 
century. For some reason, however, his own remarkable achievements as a 

5 Full treatments can be found in E. C. Titchmarsh, Eigenfunction Expansions, 2 vols, Oxford 
University Press, 1946 and 1958; and in E. A. Coddington and N. Levinson, Theory of Ordinary 
Differential Equations, McGraw-Hill, New York, 1955.
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creative mathematician have not received the appreciation they deserve. The 
fact that his collected works have never been published is an unfortunate 
and rather surprising oversight on the part of his countrymen.

He was the first to solve a boundary value problem by solving an equiva-
lent integral equation, a method developed by Fredholm and Hilbert in 
the early 1900s into one of the major fields of modern analysis. His inge-
nious theory of fractional differentiation answered the long-standing ques-
tion of what reasonable meaning can be assigned to the symbol dny/dxn 
when n is not a positive integer. He discovered the fundamental result in 
complex analysis now known as Liouville’s theorem—that a bounded entire 
function is necessarily a constant—and used it as the basis for his own 
theory of elliptic functions. There is also a well-known Liouville theorem 
in Hamiltonian mechanics, which states that volume integrals are time-
invariant in phase space. His theory of the integrals of elementary func-
tions was perhaps the most original of all his achievements, for in it he 
proved that such integrals as
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as well as the elliptic integrals of the first and second kinds, cannot be 
expresed in terms of a finite number of elementary functions.6

The fascinating and difficult theory of transcendental numbers is another 
important branch of mathematics that originated in Liouville’s work. The 
irrationality of π and e—that is, the fact that these numbers are not roots 
of any linear equation ax + b = 0 whose coefficients are integers—had been 
proved in the eighteenth century by Lambert and Euler. In 1844 Liouville 
showed that e is also not a root of any quadratic equation with integral coef-
ficients. This led him to conjecture that e is transcendental, which means that 
it does not satisfy any polynomial equation

 anxn + an−1xn−1 + … + a1x + a0 = 0

with integral coefficients. His efforts to prove this failed, but his ideas con-
tributed to Hermite’s success in 1873 and then to Lindemann’s 1882 proof 
that π is also transcendental. Lindemann’s result showed at last that the age-
old problem of squaring the circle by a ruler-and-compass construction is 
impossible. One of the great mathematical achievements of modern times 
was Gelfond’s 1929 proof that eπ is transcendental, but nothing is yet known 

6 See D. G. Mead, “Integration,” Am. Math. Monthly, vol. 68, pp. 152–156 (1961). For additional 
details, see G. H. Hardy, The Integration of Functions of a Single Variable, Cambridge University 
Press, London, 1916; or J. F. Ritt, Integration in Finite Terms, Columbia University Press, 
New York, 1948.
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about the nature of any of the numbers π + e, πe or πe. Liouville also discov-
ered a sufficient condition for transcendence and used it in 1844 to produce 
the first examples of real numbers that are provably transcendental. One of 
these is
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His methods here have also led to extensive further research in the twentieth 
century.7

Problems

 1. The differential equation P(x)y″ + Q(x)y′ + R(x)y = 0 is called exact if it 
can be written in the form [P(x)y′]′ + [S(x)y]′ = 0 for some function S(x). 
In this case the second equation can be integrated at once to give the 
first order linear equation P(x)y′ + S(x)y = c1, which can then be solved 
by the method of Section 10. By equating coefficients and eliminating 
S(x), show that a necessary and sufficient condition for exactness is 
P″(x) − Q′(x) + R(x) = 0.

 2. Consider the Euler equidimensional equation that arose in Section 42,

 x2y″ + xy′ − n2y = 0,

 where n is a positive integer. Find the values of n for which this equation 
is exact, and for these values find the general solution by the method 
suggested in Problem 1.

 3. If the equation in Problem 1 is not exact, it can be made exact by mul-
tiplying by a suitable integrating factor μ(x). Thus, μ(x) must satisfy 
the condition that the equation μ(x)P(x)y″ + μ(x)Q(x)y′ + u(x)R(x)y = 0 is 
expressible in the form [μ(x)P(x)y′]′ + [S(x)y]′ = 0 for some function S(x). 
Show that μ(x) must be a solution of the adjoint equation

 P(x)μ″ + [2P′(x) − Q(x)]μ′ + [P″(x) − Q′(x) + R(x)]μ = 0.

 In general (but not always) the adjoint equation is just as difficult to 
solve as the original equation. Find the adjoint equation in each of the 
following cases:

7 An impression of the depth and complexity of this subject can be gained by looking into A. 
O. Gelfond, Transcendental and Algebraic Numbers, Dover, New York, 1960.
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 (a) Legendre’s equation: (1 − x2)y″ − 2xy′ + p(p + 1)y = 0;
 (b) Bessel’s equation: x2y″ + xy′ + (x2 − p2)y = 0;
 (c) Chebyshev’s equation: (1 − x2)y″ − xy′ + p2y = 0;
 (d) Hermite’s equation: y″ − 2xy′ + 2py = 0;
 (e) Airy’s equation: y″ + xy = 0;
 (f) Laguerre’s equation: xy″ + (1 − x)y′ + py = 0.
 4. Solve the equation
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 by finding a simple solution of the adjoint equation by inspection.
 5. Show that the adjoint of the adjoint of the equation P(x)y″ + Q(x)y′ + 

R(x)y = 0 is the original equation.
 6. The equation P(x)y″ + Q(x)y′ + R(x)y = 0 is called self-adjoint if its adjoint is 

the same equation (except for notation).
 (a)  Show that this equation is self-adjoint if and only if P′(x) = Q(x). In 

this case the equation becomes

 P(x)y″ + P′(x)y′ + R(x) = 0

or

 [P(x)y′]′ + R(x)y = 0,

which is the standard form of a self-adjoint equation.
 (b) Which of the equations in Problem 3 are self-adjoint?
 7. Show that any equation P(x)y″ + Q(x)y′ + R(x)y = 0 can be made self-

adjoint by multiplying through by

 

1
P

e
Q P dx( )ò .

 8. Using Problem 7 when necessary, put each equation in Problem 3 into 
the standard self-adjoint form described in Problem 6.

 9. Consider the regular Sturm-Liouville problem consisting of 
equation (3) with the boundary conditions (9). Prove that every eigen-
function is unique except for a constant factor. Hint: Let y = u(x) and 
y = v(x) be eigenfunctions corresponding to a single eigenvalue λ, 
and use their Wronskian to show that they are linearly dependent 
on [a,b].
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 10. Consider the following self-adjoint boundary value problem on [a,b].
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 where p(a) = p(b). It is assumed that p(x), p′(x), q(x), and r(x) are continu-
ous and that p(x) > 0 and q(x) > 0 for a ≤ x ≤ b. This problem is then said 
to have periodic boundary conditions. It can be proved that there exists a 
sequence of eigenvalues

  λ0 < λ1 < λ2 < … < λn < λn+1 < …

 such that 

 
lim
n

n
®¥

= ¥l .

 (a)  By examining the calculation (6), show that eigenfunctions corre-
sponding to distinct eigenvalues are orthogonal with respect to the 
weight function q(x).

 (b)  In this case, however, to each eigenvalue there may correspond 
either one or two linearly independent eigenfunctions. Verify this 
by finding the eigenvalues and corresponding eigenfunctions for 
the problem y″ + λy = 0, where y(−π) = y(π) and y′(−π) = y′(π).

 (c)  Why can this problem not have more than two independent eigen-
functions associated with a particular eigenvalue?

Appendix A. The Existence of Eigenvalues and Eigenfunctions

The general theory of eigenvalues, eigenfunctions, and eigenfunction expan-
sions is one of the deepest and richest parts of modern mathematics. In this 
appendix we confine our attention to a small but significant fragment of this 
broad subject. Our primary purpose is to prove that any boundary value 
problem of the form 40–(23)—which arose in connection with the nonhomo-
geneous vibrating string—has eigenvalues and eigenfunctions with proper-
ties similar to those encountered in Section 40. Once this is accomplished, we 
will find that a simple change of variable allows us to extend this result to a 
considerably more general class of problems.

We begin with several easy consequences of the Sturm comparison 
theorem.
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Lemma 1. Let y(x) and z(x) be nontrivial solutions of

 y″ + q(x)y = 0

and

 z″ + r(x)z = 0,

where q(x) and r(x) are positive continuous functions such that q(x) > r(x). Suppose 
that y(x) and z(x) both vanish at a point b0, and that z(x) has a finite or infinite num-
ber of successive zeros b1, b2, …, bn, … to the right of b0. Then y(x) has at least as 
many zeros as z(x) on every closed interval [b0,bn]; and if the successive zeros of y(x) 
to the right of b0 are a1, a2, …, an, …, then an < bn for every n.

Proof. By the Sturm comparison theorem (Theorem 25-B), y(x) has at least 
one zero in each of the open intervals (b0,b1), (b1,b2), …, (bn−1,bn), and both state-
ments follow at once from this.

Lemma 2. Let q(x) be a positive continuous function that satisfies the inequalities

 0 < m2 < q(x) < M2

on a closed interval [a,b]. If y(x) is a nontrivial solution of y″ + q(x)y = 0 on this inter-
val, and if x1 and x2 are successive zeros of y(x), then
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Furthermore, if y(x) vanishes at a and b, and at n − 1 points in the open interval (a,b), 
then
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Proof. To prove (1), we begin by comparing the given equation with z″ + m2z = 0. 
A nontrivial solution of this that vanishes at x1 is z(x) = sin m(x − x1). Since the 
next zero of z(x) is x1 + π/m, and Theorem 25-B tells us that x2 must occur 
before this, we have x2 < x1 + π/m or x2 − x1 < π/m. A similar argument gives 
the other inequality in (1).

To prove (2), we first observe that there are n subintervals between the 
n + 1 zeros, so by (1) we have b − a = the sum of the lengths of the n subin-
tervals < n(π/m), and therefore m(b − a)/π < n. In the same way we see that 
b − a > n(π/M), so n < M(b − a)/π.

Our main preliminary result is the next lemma.
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Lemma 3. Let q(x) be a positive continuous function and consider the differential 
equation

 y″ + λq(x)y = 0 (3)

on a closed interval [a,b]. For each λ, let yλ(x) be the unique solution of equation (3) 
which satisfies the initial conditions yλ(a) = 0 and ¢ =y al( ) 1. Then there exists an 
increasing sequence of positive numbers

	 λ1 < λ2 < … < λn < …

that approaches ∞ and has the property that yλ(b) = 0 if and only if λ equals one 
of the λn. Furthermore, the function y xnl ( ) has exactly n − 1 zeros in the open 
interval (a,b).

Proof. It is clear by Theorem 24-B that yλ(x) has no zeros to the right of a when 
λ ≤ 0. Our plan is to watch the oscillation behavior of yλ(x) as λ increases 
from 0. We begin with the observation that by the continuity of q(x) there 
exist positive numbers m and M such that on [a,b] we have 0 < m2 < q(x) < M2. 
Thus, in the sense made precise in Section 25, yλ(x) oscillates more rapidly on 
[a,b] than solutions of

 y″ + λm2y = 0,

and less rapidly than solutions of

 y″ + λM2y = 0.

By Lemma 2, when λ is positive and small (so small that p lM b a³ - ) the 
function yλ(x) has no zeros in [a,b] to the right of a; and when λ increases to 
the point where, p lM b a£ -  then yλ(x) has at least one such zero. Similarly, 
as λ increases to ∞, the number of zeros of yλ(x) in [a,b] tends toward ∞. It fol-
lows from Lemma 1 that the nth zero of yλ(x) to the right of a moves to the left 
as λ increases, and we shall take it for granted (it can be proved) that this zero 
moves continuously. Consequently, as λ starts at 0 and increases to ∞, there 
are infinitely many values λ1, λ2, …, λn, … for which a zero of yλ(x) reaches b 
and subsequently enters the interval, so that y xnl ( ) vanishes at a and b and 
has n − 1 zeros in (a,b). To show that the sequence λ1, λ2, …, λn, … approaches 
∞, we appeal to the inequalities (2), which in this case become
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or
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Equation (3) is the special case of the Sturm-Liouville equation

 

d
dx

p x
dy
dx

q x y( ) ( )é
ëê

ù
ûú

+ =l 0  (4)

in which p(x) = 1. We assume here that p(x) and q(x) are positive continuous 
functions on [a,b], and also that p(x) has a continuous derivative on this inter-
val. If we change the independent variable in (4) from x to a new variable w 
defined by
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then (4) takes the form
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where q1(w) is positive and continuous on the transformed interval 0 ≤ w ≤ 
c = w(b). On applying Lemma 3 to equation (5), we immediately obtain the 
following statement about (4).

Theorem A. Consider the boundary value problem
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ù
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+ = = =l 0 0, (6)

where p(x) and q(x) satisfy the conditions stated above. Then there exists an increas-
ing sequence of positive numbers

  λ1 < λ2 < … λn < …
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that approaches ∞ and has the property that (6) has a nontrivial solution if and only 
if λ equals one of the λn. The solution corresponding to λ = λn is unique except for an 
arbitrary constant factor, and has exactly n − 1 zeros in the open interval (a,b).

One final remark is in order. As pointed out in Section 43, we usually refer 
to (6) as a regular Sturm–Liouville problem because the interval is finite 
and the functions p(x) and q(x) are positive and continuous on the entire 
interval. Singular problems arise when the interval is infinite, or when it is 
finite and p(x) or q(x) vanishes or is discontinuous at one or both endpoints. 
These problems are considerably more difficult, and of course are not cov-
ered by our discussion in this appendix. Unfortunately, many of the most 
interesting differential equations are singular in this sense. We mention 
Legendre’s equation
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Hermite’s equation
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and Laguerre’s equation
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These equations appeared in Chapter 5, where they were studied from an 
entirely different point of view.
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Chapter 8
Some Special Functions of 
Mathematical Physics

44 Legendre Polynomials

This section and the next are entirely devoted to the technical task of defin-
ing the Legendre polynomials and establishing a number of their spe-
cial properties. It is natural to wonder about the purpose of this elaborate 
machinery, and more generally, why we care about Legendre polynomials at 
all. The simplest answer is that the Legendre polynomials have many impor-
tant applications to mathematical physics, and these applications depend on 
this machinery. For the benefit of readers who wish to see for themselves, 
the physical background and several typical applications are discussed in 
Appendix A. There is another answer, however, which is less utilitarian and 
applies equally to our subsequent treatment of Bessel functions. It is that 
the study of specific classical functions and their individual properties pro-
vides a healthy counterpoise to the abstract ideas that sometimes seem to 
dominate contemporary mathematics. In addition, we mention several items 
that arise naturally in the context of this chapter which we hope will be of 
interest to all students of mathematics: the gamma function and the formula 
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è
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ø
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! p ; Lambert’s continued fraction for the tangent,
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whose sums were discovered by Euler in the early eighteenth century and 
which appear again in a surprising way in connection with the zeros of 
Bessel functions.

Now for the Legendre polynomials themselves, which we approach by 
way of the hypergeometric equation.1

In Section 28 we used Legendre’s equation to illustrate the technique of 
finding power series solutions at ordinary points. For reasons explained in 
Appendix A, we now write this equation in the form

 (1 – x2)y″ – 2xy′ + n(n + 1)y = 0, (1)

where n is understood to be a non-negative integer. The reader will recall that 
all the solutions of (1) found in Section 28 are analytic on the interval – 1 < x < 1. 
However, the solutions most useful in the applications are those bounded 
near x = 1, and for convenience in singling these out we change the indepen-
dent variable from x to t = 1

2
(1 – x). This makes x = 1 correspond to t = 0 and 

transforms (1) into

 t(l – t)y″ + (1 – 2t)y′ + n(n + 1)y = 0, (2)

where the primes signify derivatives with respect to t. This is a hypergeo-
metric equation with a = –n, b = n + 1, and c = 1, so it has the following poly-
nomial solution near t = 0:

 y1 = F(–n, n + 1,1, t). (3)

Since the exponents of (2) at the origin are both zero (m1 = 0 and m2 = 1 – c = 0), 
we seek a second solution by the method of Section 16. This second solution 
is y2 = vy1, where
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by an elementary integration. Since y1
2 is a polynomial with constant term 1, 

the bracketed expression on the right is an analytic function of the form 1 + 
a1t + a2t2 + ∙ ∙ ∙, and we have

1 Adrien Marie Legendre (1752–1833) encountered his polynomials in his research on the 
gravitational attraction of ellipsoids. He was a very good French mathematician who had 
the misfortune of seeing most of his best work—in elliptic integrals, number theory, and the 
method of least squares—superseded by the achievements of younger and abler men. For 
instance, he devoted 40 years to his research on elliptic integrals, and his two-volume treatise 
on the subject had scarcely appeared in print when the discoveries of Abel and Jacobi revolu-
tionized the field completely. He was very remarkable for the generous spirit with which he 
repeatedly welcomed newer and better work that made his own obsolete.
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This yields υ = log t + a1t + ∙ ∙ ∙, so

 y2 = y1(log t + a1t + ∙ ∙ ∙)

and the general solution of (2) near the origin is

 y = c1 y1 + c2y2. (4)

Because of the presence of the term log t in y2, it is clear that (4) is bounded 
near t = 0 if and only if c2 = 0. If we replace t in (3) by 1

2
(1 – x), it follows that 

the solutions of (1) bounded near x = 1 are precisely constant multiples of the 
polynomial F[–n,n + 1,1, 1

2
(1 – x)].

This brings us to the fundamental definition. The nth Legendre polynomial 
is denoted by Pn(x) and defined by
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We know from our work in Section 28 that Pn(x) is a polynomial of degree 
n that contains only even or only odd powers of x according as n is even or 
odd. It can therefore be written in the form

 Pn(x) = anxn + an–2xn–2 + an–4xn–4 + ∙ ∙ ∙, (6)

where this sum ends with a0 if n is even and a1x if n is odd. It is clear from (5) 
that Pn(l) = 1 for every n, and in view of (6) we also have Pn(–l) = (–1)n.

As it stands, formula (5) is a very inconvenient tool to use in studying 
Pn(x), so we look for something simpler. We could expand each term in 
(5), collect like powers of x, and arrange the result in the form (6), but this 
would be unnecessarily laborious. What we shall do is notice from (5) that 
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an = (2n)!/(n!)22n and calculate an–2, an–4, … recursively in terms of an. What is 
needed here is formula 28-(9) with p replaced by n and n by k – 2:
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and so on, so (6) becomes
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the coefficient of xn–2k in (7) is
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This enables us to write (7) as
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where [n/2] is the usual symbol for the greatest integer ≤n/2. We continue 
toward an even more concise form by observing that

 

P x
k n k

n k
n k

xn

k

n k

n
n k

k

n

( )
( )
!( )!

( )!
( )!

[ / ]

[ /

=

=

=

=

å
0

2
2

0

2

1
2

2 2
2

-
-

-
-

-

]]

[ / ]

( )
!( )!

!
!

!( )

å

å=
=

-
-

-

-1
2

1
2

2 2

0

2

k

n

n

n
n k

n

n

n
k

n

k n k
d

dx
x

n
d

dx
n

k n k !!
( ) ( )x n k k2 1- - .

If we extend the range of this sum by letting k vary from 0 to n—which 
changes nothing since the new terms are of degree <n and their nth deriva-
tives are zero—then we get
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and the binomial formula yields
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This expression for Pn(x) is called Rodrigues’ formula.2 It provides a relatively 
easy method for computing the successive Legendre polynomials, of which 
the first few (Figure 58) are

2 Olinde Rodrigues (1794–1851) was a French banker who came to the aid of Claude Henri 
Saint-Simon (the founder of socialism) in his destitute old age, supported him during the last 
years of his life, and became one of his earliest disciples. He discovered the above formula 
in 1816, but soon thereafter became interested in the scientific organization of society and 
never returned to mathematics. The term “Rodrigues’ formula” is often applied by transfer-
ence to similar expressions for other classical polynomials of which Rodrigues himself knew 
nothing.
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An even easier procedure is suggested in Problem 2, and a more significant 
application of (9) will appear in the next section.

Problems

 1. The function on the left side of 1
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 is called the generating function of the Legendre polynomials. Assume 
that this relation is true, and use it

 (a) to verify that Pn(l) = 1 and Pn(–l) = (–1)n;

 (b) to show that P2n+1(0) = 0 and P
n

n
n

n
n2 0 1

1 3 2 1
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FIGURE 58
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 2. Consider the generating relation in Problem 1,

 

1

1 2 2
0–

( )
xt t

P x t
n

n
n

+
=

=

¥

å .

 (a) By differentiating both sides with respect to t, show that
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 (b) Equate the coefficients of tn in (a) to obtain the recursion formula

 (n + 1)Pn+1(x) = (2n + 1)xPn(x) – nPn–1(x).

 (c)  Assume that P0(x) = 1 and Ρ1(x) = x are known, and use the recursion 
formula in (b) to calculate P2(x), P3(x), P4(x), and P5(x).

 3. Establish the generating relation of Problems 1 and 2 by the following 
steps:

 (a) Use the binomial series to write
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 (b)  It is clear that tn can occur only in terms out to and including the 
last term written in (a). By expanding the various powers of 2x – t, 
show that the total coefficient of tn is
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 (c) Show that the sum in (b) is Pn(x) as given by (8).
 4. This problem constitutes a direct verification that if Pn(x) is defined 

by formula (9), then it satisfies Legendre’s equation (1) and has 
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the property that Pn(1) = 1 Consider the polynomials of degree n 
defined by
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n
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 (a)  If w = (x2 – 1)n, then (x2 – 1)w′ – 2nxw = 0. By differentiating this equa-
tion k + 1 times, show that

 (x2 –1)w(k+2) + 2(k +1)xw(k+1) + (k + 1)kw(k) – 2nxw(k+1) – 2(k + 1)nw(k) = 0,

and conclude that y = w(n) is a solution of equation (1).
 (b) Put u = (x – 1)n and v = (x + 1)n and use the formula

 y = (uv)(n) = u(n)v + nu(n–1)v(1) + ∙ ∙ ∙ + nu(1)v(n–1) + uv(n)

to show that y(l) = n!2n.

45 Properties of Legendre Polynomials

In the previous section we defined the sequence of Legendre polynomials

 P0(x), P1(x), P2(x), …, Pn(x), …. (1)

The reader is aware that these polynomials have a number of applications, 
which range from mathematical physics to the theory of approximation. We 
now discuss the fundamental ideas on which some of these applications 
depend.

Orthogonality. The most important property of the Legendre polynomials 
is the fact that
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This is often expressed by saying that (1) is a sequence of orthogonal functions 
on the interval –1 ≤ x ≤ 1. We shall explain the significance of this property 
after we prove it.

Let f (x) be any function with at least n continuous derivatives on the inter-
val –1 ≤ x ≤ 1, and consider the integral
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The expression in brackets vanishes at both limits, so
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and by continuing to integrate by parts, we obtain
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If f(x) = Pm(x) with m < n, then f(n)(x) = 0 and consequently I = 0, which proves 
the first part of (2). To establish the second part, we put f(x) = Pn(x). Since 
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If we change the variable by writing x = sin θ, and recall the formula (proved 
by an integration by parts)

 ò ò+ =
+

+
+

cos cos sin cos2 1 2 2 11
2 1

2
2 1

n n nd
n

n
n

dq q q q q q- , (4)



402 Differential Equations with Applications and Historical Notes

then the definite integral in (3) becomes
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We conclude that in this case I = 2/(2n + 1), and the proof of (2) is complete.

Legendre series. As we illustrate in Appendix A, many problems of poten-
tial theory depeind on the possibility of expanding a given function in a 
series of Legendre polynomials. It is easy to see that this can always be done 
when the given function is itself a polynomial. For example, formulas 44-(10) 
tell us that
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and it follows that any third-degree polynomial p(x) = b0 + b1x + b2x2 + b3x3 
can be written as
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More generally, since Pn(x) is a polynomial of degree n for every positive 
integer n, a simple extension of this procedure shows that x″ can always be 
expressed as a linear combination of P0(x), P1(x), …, Pn(x), so any polynomial 
p(x) of degree k has an expansion of the form
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An obvious problem that arises from these remarks—and also from the 
demands of the applications—is that of expanding an “arbitrary” function 
f(x) in a so-called Legendre series:
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It is clear that a new procedure is needed for calculating the coefficients an in 
(5), and the key lies in formulas (2).

If we throw mathematical caution to the winds, and multiply (5) by Pm(x) 
and integrate term by term from –1 to 1, then the result is
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We therefore have the following formula for the an in (5):
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These manipulations are easy to justify if f(x) is known in advance to have 
a series expansion of the form (5) and this series is integrable term by term 
on the interval –1 ≤ x ≤ 1. Both conditions are obviously satisfied when f(x) is 
a polynomial; but in the case of other types of functions we have no way of 
knowing this, and our conclusion that the coefficients an in (5) are given by 
(6) is of doubtful validity. Nevertheless, these formal procedures are highly 
suggestive, and can lead to legitimate mathematics if we ask the following 
question. If the an are defined by formula (6) and then used to form the series 
(5), for what kinds of functions f(x) will these an exist and the expansion (5) 
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be valid? This question has an answer, but this is not the place to go into 
details.3

The possibility of expansions of the form (5) obviously depends in a cru-
cial way on the orthogonality property (2) of the Legendre polynomials. 
This is an instance of the following general phenomenon, which is often 
encountered in the theory of special functions. If a sequence of functions 
ϕ1(x), ϕ2(x), …, ϕn(x), … defined on an interval a ≤ x ≤ b has the property that
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then the ϕn are said to be orthogonal functions on this interval. Just as above, 
the general problem that arises in connection with a sequence of this kind 
is that of representing “arbitrary” functions f(x) by expansions of the form

 
f x a xn n

n

( ) ( )=
=

¥

å f
1

,

and a formal use of (7) suggests that the coefficients an ought to be given by
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Additional examples occur in Appendices B and D of Chapter 5, where the 
orthogonality (with respect to suitable weight functions) of the Hermite 
polynomials and Chebyshev polynomials is briefly mentioned. The satis-
factory solution of this group of problems was one of the main achieve-
ments of pure mathematics in the nineteenth and early twentieth centuries. 
Also, Chapter 6 contains a fairly full treatment of the classical problem that 

3 The answer we refer to—often called the Legendre expansion theorem—is easy to understand, 
but its proof depends on many properties of the Legendre polynomials that we have not 
mentioned. This theorem makes the following statement: If both f(x) and f′(x) have at most a 
finite number of jump discontinuities on the interval –1 ≤ x ≤ l, and if f(x–) and f(x+) denote the 
limits of f(x) from the left and from the right at a point x, then the an exist and the Legendre 
series converges to 

 
1
2

 [ f(x–) + f(x+)]

 for – 1 < x < 1, to f(– 1 +) at x = –1, and to f(1 –) at x = 1–and in particular, it converges to 
f(x) at every point of continuity. See N. N. Lebedev, Special Functions and Their Applications, 
pp. 53–58, Prentice-Hall, Englewood Cliffs, N.J., 1965.
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underlies all of these ideas—that of expanding suitably restricted functions 
in Fourier series.

Least squares approximation. Let f(x) be a function defined on the interval 
–1 ≤ x ≤ 1, and consider the problem of approximating f(x) as closely as pos-
sible in the sense of least squares by polynomials p(x) of degree ≤n. If we 
think of the integral
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as representing the sum of the squares of the deviations of p(x) from f(x), then 
the problem is to minimize the value of this integral by a suitable choice of 
p(x). It turns out that the minimizing polynomial is precisely the sum of the 
first n + 1 terms of the Legendre series (5),

 p(x) = a0P0(x) + ∙ ∙ ∙ + anPn(x),

where the coefficients are given by (6).
To prove this, we use the fact that all polynomials of degree ≤n are 

expressible in the form b0P0(x) + ∙ ∙ ∙ + bnPn(x). The integral (8) can therefore 
be written as
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Since the ak are fixed and the bk are at our disposal, it is clear that I assumes 
its minimum value when bk = ak for k = 0, …, n. The only hypothesis required 
by this argument is that f(x) and f(x)2 must be integrable. If the function 
f(x) is sufficiently well behaved to have a power series expansion on the 
interval –l ≤ x ≤ l, then most students assume that the “best” polynomial 
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approximations to f(x) are given by the partial sums of this power series. 
The result we have established here shows that this is false if our criterion is 
approximation in the sense of least squares.

Problems

 1. Verify formula (4).
 2. Legendre’s equation can also be written in the form
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 Use these two equations to give a proof of the first part of formula (2) 
that does not depend on the specific form of the Legendre polynomials 
Hint: Multiply the first equation by Pn and the second by Pm, subtract, 
and integrate from –1 to 1.

 3. If the generating relation given in Problems 1 and 2 of Section 44 is 
squared and integrated from x = – 1 to x = 1, then the first part of (2) 
implies that
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 Establish the second part of (2) by showing that the integral on the left 
has the value
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 4. Find the first three terms of the Legendre series of

 (a) f x
if x

x if x
( )

,
;

=
£ <
£ £

ì
í
î

0 1 0
0 1

-

 (b) f(x) = ex.
 5. If p(x) is a polynomial of degree n ≥ 1 such that

 –

( ) , , , –
1

1

0 0 1 1ò = = ¼x p x dx k nk for ,

 show that p(x) = cPn(x) for some constant c.
 6. If Pn(x) is multiplied by the reciprocal r of the coefficient of x″, then 

the resulting polynomial rPn(x) has leading coefficient 1. Show that this 
polynomial has the following minimum property: Among all polyno-
mials of degree n with leading coefficient 1, rPn(x) deviates least from 
zero on the interval –1 ≤ x ≤ 1 in the sense of least squares.

46 Bessel Functions. The Gamma Function

The differential equation

 x2y″ + xy′ + (x2 – p2)y = 0, (1)

where p is a non-negative constant, is called Bessel’s equation, and its solu-
tions are known as Bessel functions. These functions first arose in Daniel 
Bernoulli’s investigation of the oscillations of a hanging chain (Problem 
40–4), and appeared again in Euler’s theory of the vibrations of a circular 
membrane and Bessel’s studies of planetary motion.4 More recently, Bessel 
functions have turned out to have very diverse applications in physics and 
engineering, in connection with the propagation of waves, elasticity, fluid 

4 Friedrich Wilhelm Bessel (1784–1846) was a famous German astronomer and an intimate 
friend of Gauss, with whom he corresponded for many years. He was the first man to deter-
mine accurately the distance of a fixed star: his parallax measurement of 1838 yielded a dis-
tance for the star 61 Cygni of 11 light-years or about 360,000 times the diameter of the earth’s 
orbit. In 1844 he discovered that Sirius, the brightest star in the sky, has a traveling compan-
ion and is therefore what is now known as a binary star. This Companion of Sirius, with the 
size of a planet but the mass of a star, and consequently a density many thousands of times 
the density of water, is one of the most interesting objects in the universe. It was the first dead 
star to be discovered, and occupies a special place in modern theories of stellar evolution.
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motion, and especially in many problems of potential theory and diffusion 
involving cylindrical symmetry. They even occur in some interesting prob-
lems of pure mathematics. We present a few applications in Appendix B, but 
first it is necessary to define the more important Bessel functions and obtain 
some of their simpler properties.5

The definition of the function Jp(x). We begin our study of the solutions of 
(1) by noticing that after division by x2 the coefficients of y′ and y are P(x) = 
1/x and Q(x) = (x2 – p2)/x2, so xP(x) = 1 and x2Q(x) = –p2 + x2. The origin is 
therefore a regular singular point, the indicial equation 30-(5) is m2 – p2 = 0, 
and the exponents are m1 = p and m2 = –p. It follows from Theorem 30-A that 
equation (1) has a solution of the form

 y = xp ∑ anxn = ∑ anxn+p, (2)

where a0 ≠ 0 and the power series ∑ anxn converges for all x. To find this solu-
tion, we write

 y′ = ∑(n + p)anxn+p–1

and

 y″ = ∑(n + p – 1)(n + p)anxn+p–2.

These formulas enable us to express the terms on the left side of equation (1) 
in the form

 x2y″ = ∑(n + p –1)(n + p)anxn+p,

 xy′ = ∑(n + p)anxn+p,

 x2y = ∑an–2xn+p,

 –p2y = ∑–p2anxn+p.

If we add these series and equate to zero the coefficient of xn+p, then after 
a little simplification we obtain the following recursion formula for the an:

 n(2p + n)an + an–2 = 0 (3)

5 The entire subject is treated on a vast scale in G. N. Watson, A Treatise on the Theory of Bessel 
Functions, 2d ed., Cambridge University Press, London, 1944. This is a gargantuan work of 
752 pages, with a 36-page bibliography of 791 items. What we shall discuss amounts to lit-
tle more than the froth on a heaving ocean of scientific effort extending over nearly three 
centuries.
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We know that a0 is nonzero and arbitrary. Since a–1 = 0, (4) tells us that a1 = 0; 
and repeated application of (4) yields the fact that an = 0 for every odd sub-
script n. The nonzero coefficients of our solution (2) are therefore
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The Bessel function of the first kind of order p, denoted by Jp (x) is defined by put-
ting a0 = 1/2p p! in (5), so that
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The most useful Bessel functions are those of order 0 and 1, which are
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and
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Their graphs are shown in Figure 59. These graphs display several interest-
ing properties of the functions J0(x) and J1(x) each has a damped oscillatory 
behavior producing an infinite number of positive zeros; and these zeros 
occur alternately, in a manner suggesting the functions cos x and sin x. This 
loose analogy is strengthened by the relation J0(x) = –Ji(x), which we ask the 
reader to prove and apply in Problems 1 and 2.

We hope the reader has noticed the following flaw in this discussion—that 
Jp(x) as defined by (6) is meaningless unless the non-negative real number p is 
an integer, since only in this case has any meaning been assigned to the fac-
tors (p + n)! in the denominators. We next turn our attention to the problem 
of overcoming this difficulty.

The gamma function. The purpose of this digression is to give a reasonable 
and useful meaning to p! [and more generally to (p + n)! for n = 0, 1, 2, …] 
when the non-negative real number p is not an integer. We accomplish this 
by introducing the gamma function Γ(p), defined by
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The factor e–t → 0 so rapidly as t → ∞ that this improper integral converges 
at the upper limit regardless of the value of p. However, at the lower limit we 
have e–t → 1, and the factor tp–1 → ∞ whenever p < 1. The restriction that p must 
be positive is necessary in order to guarantee convergence at the lower limit.

It is easy to see that

  Γ(p + 1) = p Γ(p); (10)
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for integration by parts yields
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since bp/eb → 0 as b → ∞. If we use the fact that
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then (10) yields Γ(2) = 1Γ(1) = 1, Γ(3) = 2Γ(2) = 2∙1, Γ(4) = 3Γ(3) = 3 ∙ 2 ∙ 1, and in 
general

 Γ(n + 1) = n! (12)

for any integer n ≥ 0.
We began our discussion of the gamma function under the assumption 

that p is non-negative, and we mentioned at the outset that the integral (9) 
does not exist if p = 0. However, we can define Γ(p) for many negative p’s 
without the aid of this integral if we write (10) in the form
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This extension of the definition is necessary for the applications, and it begins 
as follows: If –1 < p < 0, then 0 < p + 1 < 1, so the right side of equation (13) has 
a value and the left side of (13) is defined to have the value given by the right 
side. The next step is to notice that if –2 < p < –1, then –1 < p + 1 < 0, so we can 
use (13) again to define Γ(p) on the interval –2 < p < –1 in terms of the values 
of Γ(p + 1) already defined in the previous step. It is clear that this process can 
be continued indefinitely. Furthermore, it is easy to see from (11) that
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according as p → 0 from the right or left. The function Γ(p) behaves in a 
similar way near all negative integers, and therefore its graph has the gen-
eral appearance shown in Figure 60. We will also need to know the curious 
fact that
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This is indicated in the figure, and its proof is left to the reader (in Problem 3). 
Since Γ(p) never vanishes, the function 1/Γ(p) will be defined and well behaved 
for all values of p if we agree that 1/Γ(p) = 0 for p = 0, –1, –2, ….

These ideas enable us to define p! by

 p! = Γ(p + 1)

for all values of p except negative integers, and by formula (12) this func-
tion has its usual meaning when p is a non-negative integer. Its reciprocal, 
1/p! = 1/Γ(p + 1), is defined for all p’s and has the value 0 whenever p is a 
negative integer.
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The gamma function is an extremely interesting function in its own right. 
However, our purpose in introducing it here is solely to guarantee that the 
function Jp(x) as defined by formula (6) has a meaning for every p > 0. We 
point out that even more has been achieved—since l/(p + n)! now has a mean-
ing for every p + n, (6) defines a perfectly respectable function of x for all 
values of p, without exception.

The general solution of Bessel’s equation. Our present position is this: we 
have found a particular solution of (1) corresponding to the exponent m1 = p, 
namely, Jp(x). In order to find the general solution, we must now construct a 
second independent solution—that is, one that is not a constant multiple of 
Jp(x). Any such solution is called a Bessel function of the second kind. The natural 
procedure is to try the other exponent, m2 = –p. But in doing so, we expect to 
encounter difficulties whenever the difference m1 – m2 = 2p is zero or a posi-
tive integer, that is, whenever the non-negative constant p is an integer or half 
an odd integer. It turns out that the expected difficulties are serious only in 
the first case.

We therefore begin by assuming that p is not an integer. In this case we 
replace p by –p in our previous treatment, and it is easy to see that the dis-
cussion goes through almost without change. The only exception is that (3) 
becomes

 n(–2p + n)an + an–2 = 0;

and if it happens that p = 1/2, then by letting n = 1 we see that there is no 
compulsion to choose a1 = 0. However, since all we want is a particular solu-
tion, it is certainly permissible to put a1 = 0 The same problem arises when 
p = 3/2 and n = 3, and so on; and we solve it by putting a1 = a3 = ∙ ∙ ∙ = 0 in all 
cases. Everything else goes as before and we obtain a second solution
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The first term of this series is
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so J–p(x) is unbounded near x = 0. Since Jp(x) is bounded near x = 0 these two 
solutions are independent and

 y = c1Jp(x) + c2J–p(x),  p not an integer, (16)

is the general solution of (1).
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The solution is entirely different when p is an integer m ≥ 0. Formula (15) 
now becomes
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since the factors l/(–m + n)! are zero when n = 0, 1 ∙ ∙ ∙, m – 1. On replacing the 
dummy variable n by n + m and compensating by beginning the summation 
at n = 0, we obtain
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This show that J–m(x) is not independent of Jm(x) so in this case

 y = c1Jm(x) + c2J–m(x)

is not the general solution of (1), and the search continues.
At this point the story becomes rather complicated, and we sketch it very 

briefly. One possible approach is to use the method of Section 16 which is 
easily seen to yield
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as a second solution independent of Jm(x). It is customary, however, to pro-
ceed somewhat differently, as follows. When p is not an integer, any function 
of the form (16) with c2 ≠ 0 is a Bessel function of the second kind, including 
J–p(x) itself. The standard Bessel function of the second kind is defined by
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This seemingly eccentric choice is made for good reasons, which we describe 
in a moment. First, however, the reader should notice that (16) can certainly 
be written in the equivalent form
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 y = c1Jp(x) + c2Yp(x), p not an integer. (18)

We still have the problem of what to do when p is an integer m, for (17) is 
meaningless in this case. It turns out after detailed analysis that the function 
defined by

 
Y x Y xm
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exists and is a Bessel function of the second kind; and it follows that

 y = c1Jp(x) + c2Yp(x) (20)

is the general solution of Bessel’s equation in all cases, whether p is an integer 
or not. The graph of Y0(x) is shown by the dashed curve in Figure 59. This 
graph illustrates the important fact that for every p ≥ 0, the function Yp(x) is 
unbounded near the origin. Accordingly, if we are interested only in solu-
tions of Bessel’s equation that are bounded near x = 0, and this is often the 
case in the applications, then we must take c2 = 0 in (20).

Now for the promised explanation of the surprising form of (17). We have 
pointed out that there are many ways of defining Bessel functions of the 
second kind. The definitions (17) and (19) are particularly convenient for two 
reasons. First, the form of (17) makes it fairly easy to show that the limit (19) 
exists (see Problem 9). And second, these definitions imply that the behavior 
of Yp(x), for large values of x, is matched in a natural way to the behavior of 
Jp(x). To understand what is meant by this statement, we recall from Problem 
24–3 that introducing a new dependent variable u x xy x( ) ( )=  transforms 
Bessel’s equation (1) into
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When x is very large, equation (21) closely approximates the familiar differ-
ential equation u″ + u = 0, which has independent solutions u1(x) = cos x and 
u2(x) = sin x. We therefore expect that for large values of x, any Bessel func-
tion y(x) will behave like some linear combination of
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and
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where r1(x) and r2(x) are bounded as x → ∞.6

Problems

 1. Use (7) and (8) to show that

 (a) 
d

dx
J x J x0 1( ) ( )= - ;

 (b) 
d

dx
xJ x xJ x[ ( )] ( )1 0= .

 2. Use Problem 1 and Rolle’s theorem to show that:
 (a) Between any two positive zeros of J0(x) there is a zero of J1(x).
 (b) Between any two positive zeros of J1(x) there is a zero of J0(x).
 3. According to the definition (9),
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 (b) Since s in (a) is a dummy variable, we can write
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6 See Watson, op. cit., chap. VII (footnote 5); or R. Courant and D. Hilbert, Methods of Mathematical 
Physics, vol. 1, pp. 331–334, 526, Interscience-Wiley, New York, 1953.
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 By changing this double integral to polar coordinates, show that
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 4. Since p! = Г(p + 1) whenever p is not a negative integer, (14) says that 
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 for any non-negative integer n.
 5. When p = 1/2, equation (21) shows that the general solution of Bessel’s 

equation is expressible in either of the equivalent forms

 
y

x
c x c x= +1

1 2( cos sin )

 and
 y = c1J1/2(x) + c2J–1/2(x).

 It therefore must be true that

 xJ x a x b x1 2( ) cos sin= +

 and

 xJ x c x d x– / ( ) cos sin1 2 = +

 for certain constants a, b, c, and d. By evaluating these constants, 
show that

 
J x

x
x J x

x
x1 2 1 2

2 2
/ /( ) sin ( ) cos= =

p p
and - .
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 6. Establish the formulas in Problem 5 by direct manipulation of the series 
expansions of J1/2 and J–1/2(x).

 7. Many differential equations are really Bessel’s equation in disguised 
form, and are therefore solvable by means of Bessel functions. For 
example, let Bessel’s equation be written as

 
z

d w
dz

z
dw
dz

z p w2
2

2
2 2 0+ + =( )- ,

 and show that the change of variables defined by z = axb and w = yxc 
(where a, b, and c are constants) transforms it into

 
x

d y
dx

c x
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a b x c p b yb2
2

2
2 2 2 2 2 22 1 0+ + + + =( ) [ ( )]- .

 Write the general solution of this equation in terms of Bessel functions.
 8. Use the result of Problem 7 to show that the general solution of Airy’s 

equation y″ + xy = 0 (see Problem 28–5) is
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 9. Apply l’Hospital’s rule to the limit (19) to show that
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47 Properties of Bessel Functions

The Bessel function Jp(x) has been defined for any real number p by
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In this section we develop several properties of these functions that are use-
ful in their applications.
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Identities and the functions Jm+1/2(x). We begin by considering the formulas
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To establish (2), we simply multiply the series (1) by xp and differentiate:
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The verification of (3) is similar, and we leave the details to the reader in 
Problem 1 below. If the differentiations in (2) and (3) are carried out, and the 
results are divided by x±p, then the formulas become

 
¢ + =J x

p
x

J x J xp p p( ) ( ) ( )-1  (4)

and

 
¢ = +J x

p
x

J x J xp p p( ) ( ) ( )- 1 . (5)

If (4) and (5) are first added and then subtracted, the results are

 2 1 1¢ = +J x J x J xp p p( ) ( ) ( )- -  (6)

and

 

2
1 1

p
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J x J x J xp p p( ) ( ) ( )= + +- . (7)
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These formulas enable us to express Bessel functions and their derivatives in 
terms of other Bessel functions.

An interesting application of (7) begins with the formulas
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which were established in Problem 46–5. It now follows from (7) that
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Also,
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It is clear that calculations of this kind can be continued indefinitely, and 
therefore every Bessel function Jm+1/2(x) (where m is an integer) is elementary. 
It has been proved by Liouville that these are the only cases in which Jp(x) is 
elementary.7

Another application of formula (7) is given at the end of Appendix C, 
where we show how it yields Lambert’s continued fraction for tan x. This 
continued fraction is of great historical interest, for it led to the first proof of 
the fact that π is not a rational number.

When the differentiation formulas (2) and (3) are written in the form

 ò = +x J x dx x J x cp
p

p
p– ( ) ( )1  (8)

7 The details of this remarkable achievement can be found in Watson, op. cit., chap. IV, and in 
J. F. Ritt, Integration in Finite Terms, Columbia University Press, New York, 1948. The functions 
Jm+1/2(x) are often called spherical Bessel functions because they arise in solving the wave equa-
tion in spherical coordinates.
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and

 ò + = +x J x dx x J x cp
p

p
p

– –( ) ( )1 , (9)

then they serve for the integration of many simple expressions containing 
Bessel functions. For example, when p = 1, (8) yields

 
xJ x dx xJ x c0 1( ) ( ) = +ò . (10)

In the case of more complicated integrals, where the exponent does not 
match the order of the Bessel function as it does in (8) and (9), integration by 
parts is usually necessary as a supplementary tool.

Zeros and Bessel series. It follows from Problem 24–3 that for every value of 
p, the function Jp(x) has an infinite number of positive zeros. This is true in 
particular of J0(x). The zeros of this function are known to a high degree of 
accuracy, and their values are given in many volumes of mathematical tables. 
The first five are approximately 2.4048, 5.5201, 8.6537, 11.7915, and 14.9309; 
their successive differences are 3.1153, 3.1336, 3.1378, and 3.1394. The corre-
sponding positive zeros and differences for J1(x) are 3.8317, 7.0156, 10.1735, 
13.3237, and 16.4706; and 3.1839, 3.1579, 3.1502, and 3.1469. Notice how these 
differences confirm the guarantees given in Problem 25–1.

What is the purpose of this concern with the zeros of Jp(x)? It is often neces-
sary in mathematical physics to expand a given function in terms of Bessel 
functions, where the particular type of expansion depends on the problem 
at hand. The simplest and most useful expansions of this kind are series of 
the form

 
f x a J x a J x a J xn p n p
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¥
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1 2 2 �, (11)

where f(x) is defined on the interval 0 ≤ x ≤ l and the λn are the positive zeros 
of some fixed Bessel function Jp(x) with p ≥ 0. We have chosen the interval 
0 ≤ x ≤ 1 only for the sake of simplicity, and all the formulas given below can 
be adapted by a simple change of variable to the case of a function defined on 
an interval of the form 0 ≤ x ≤ a. The role of such expansions in physical prob-
lems is similar to that of Legendre series as illustrated in Appendix A, where 
the problem considered involves temperatures in a sphere. In Appendix B 
we demonstrate the use of (11) in solving the two-dimensional wave equa-
tion for a vibrating circular membrane.
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In the light of our previous experience with Legendre series, we expect the 
determination of the coefficients in (11) to depend on certain integral proper-
ties of the functions Jp(λnx). What we need here is the fact that
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 (12)

In terms of the ideas introduced in Section 43, these formulas say that the 
functions Jp(λnx) are orthogonal with respect to the weight function x on the 
interval 0 ≤ x ≤ 1. We shall prove them at the end of this section, but first we 
demonstrate their use.

If an expansion of the form (11) is assumed to be possible, then multiplying 
through by xJp(λmx), formally integrating term by term from 0 to 1, and using 
(12) yields

 

xf x J x dx
a

Jp m
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p m( ) ( ) ( )l l = +ò 2
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2
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;

and on replacing m by n we obtain the following formula for an:
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l  . (13)

The series (11), with its coefficients calculated by (13), is called the Bessel 
series—or sometimes the Fourier–Bessel series—of the function f(x). As usual, 
we state without proof a rather deep theorem that gives conditions under 
which this series actually converges and has the sum f(x).8

Theorem A. (Bessel expansion theorem). Assume that f(x) and f′(x) have at 
most a finite number of jump discontinuities on the interval 0 ≤ x ≤ 1. If 0 < x < 1, 
then the Bessel series (11) converges to f(x) when x is a point of continuity of this 
function, and converges to 1

2
[f(x–) + f(x+)] when x is a point of discontinuity.

It is natural to wonder what happens at the endpoints of the interval. At x = 1, 
the series converges to zero regardless of the nature of the function because 
every JP(λn) is zero. The series also converges at x = 0, to zero if p > 0 and to 
f(0+) if p = 0.

8 For the proof, see Watson, op. cit., chap. XVIII.
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As an illustration, we compute the Bessel series of the function f(x) = 1 for 
the interval 0 ≤ x ≤ 1 in terms of the functions J0(λnx), where it is understood 
that the λn are the positive zeros of J0(x). In this case, (13) is
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By (10), we see that
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is the desired Bessel series.

Proofs of the orthogonality properties. To establish (12), we begin with the 
fact that y = Jp(x) is a solution of
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If a and b are distinct positive constants, it follows that the functions u(x) = 
Jp(ax) and v(x) = Jp(bx) satisfy the equations
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We now multiply these equations by υ and u, the subtract the results, to 
obtain

 

d
dx

u v v u
x

u v v u b a uv( ) ( ) ( )¢ ¢ + ¢ ¢ =- - -1 2 2 ;

and after multiplication by x, this becomes
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When (16) is integrated from x = 0 to x = 1, we get
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The expression in brackets clearly vanishes at x = 0, and at the other end of 
the interval we have u(1) = Jp(a) and v(1) = Jp(b). It therefore follows that the 
integral on the left is zero if a and b are distinct positive zeros λm and λn of 
Jp(x); that is, we have

 

xJ x J x dxp m p n
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which is the first part of (12).
Our final task is to evaluate the integral in (17) when m = n. If (14) is multi-

plied by 2x2u′, it becomes

 2x2u′u″ + 2xu′2 + 2a2x2uu′ – 2p2uu′ = 0

or
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so on integrating from x = 0 to x = 1, we obtain
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When x = 0, the expression in brackets vanishes; and since ¢ = ¢u aJ ap( ) ( )1 , (18) 
yields
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We now put a = λn and get
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where the last step makes use of (5), and the proof of (12) is complete.

Problems

 1. Verify formula (3).
 2. Prove that the positive zeros of Jp(x) and Jp+1(x) occur alternately, in the 

sense that between each pair of consecutive positive zeros of either 
there is exactly one zero of the other.

 3. Express J2(x), J3(x), and J4(x) in terms of J0(x) and J1(x).
 4. If f(x) is defined by
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 where the λn are the positive zeros of J0(x).
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 5. If f(x) = xp for the interval 0 ≤ x ≤ 1, show that its Bessel series in the func-
tions Jp(λnx), where the λn are the positive zeros of Jp(x), is
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 6. Use the notation of Problem 5 to show formally that if g(x) is a well-
behaved function on the interval 0 ≤ x ≤ 1, then

 

1
2

11

1
0

1

10

1

x g x dx
J

xg x J x dxp

n p n
p n

n

+

+=

¥

= òåò ( )
( )

( ) ( )  
l l

l .

 By taking g(x) = xp and xp+2, deduce that
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 7. The positive zeros of sin x are π, 2π, 3π, … Use the result of Problem 6 
(and Problem 46–5) to show that
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 8. Show that the change of dependent variable defined by
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u
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 transforms the special Riccati equation
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 If m ≠ –2, use Problem 46–7 to show that this equation is solvable in 
terms of elementary functions if and only if m = –4k/(2k + 1) for some 
integer k. (When m = –2, the substitution y = υ/x transforms Riccati’s 
equation into an equation with separable variables that has an elemen-
tary solution.)

 9. Show that the general solution of
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x y= +2 2

 can be written as
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Appendix A. Legendre Polynomials and Potential Theory

If a number of particles of masses m1, m2, … mn, attracting according to the 
inverse square law of gravitation, are placed at points P1, P2, …, Pn, then the 
potential due to these particles at any point p (that is, the work done against 
their attractive forces in moving a unit mass from P to an infinite distance) is
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n

n
= + + +1

1

2

2
� , (1)

where G is the gravitational constant.9 If the points P, P1, P2, …, Pn have rect-
angular coordinates (x,y,z), (x1,y1,z1), (x2,y2,z2), …, (xn,yn,zn), so that

 PP x x y y z z1 1
2

1
2

1
2= + +( ) ( ) ( )- - - ,

with similar expressions for the other distances, then it is easy to verify by 
partial differentiation that the potential U satisfies Laplace’s equation:
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9 See equation 21-(17).
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This partial differential equation does not involve either the particular 
masses or the coordinates of the points at which they are located, so it is sat-
isfied by the potential produced in empty space by an arbitrary discrete or 
continuous distribution of particles. It is often written in the form

  ∇2U = 0, (3)

where the symbol ∇2 (del squared) is simply a concise notation for the dif-
ferential operator
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2x y z
.

The function U is called a gravitational potential. If we work instead with 
charged particles of charges q1, q2, …, qn, then their electrostatic potential has 
the same form as (1) with the m’s replaced by q’s and G by Coulomb’s con-
stant, so it also satisfies Laplace’s equation. This equation has such a wide 
variety of applications that its study is a branch of analysis in its own right, 
known as potential theory. the related equation

 
a U

U
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, (4)

called the heat equation, occurs in problems of heat conduction, where U 
is now a function of the time t as well as the space coordinates. The wave 
equation

 
a U

U
t

2 2
2
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¶

 (5)

is connected with vibratory phenomena.
We add a few brief comments on the physical meaning of equations (3) 

and (4). [Equation (5) is simply the three-dimensional counterpart of the 
one-dimensional wave equation 40-(8), which we have already discussed 
quite fully.] First, Laplace’s equation (3) makes the same sort of statement 
about the function U as the one-dimensional equation d2y/dx2 = 0 makes 
about a function y(x) of the single variable x. But the latter equation implies 
that y(x) has the linear form y = mx + b; and every such function has the 
property that its value at the center of an interval equals the average of 
its values at the endpoints. It is clear from (1) that solutions of Laplace’s 
equation need not be linear functions of x, y, and z; in fact, they can be 
very complicated indeed. Nevertheless, it can be proved (and was discov-
ered by Gauss) that any solution of (3) has the very remarkable property 
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that its value at the center of a sphere equals the average of its values on the 
surface of that sphere.10 More generally, the function ∇2U can be thought 
of as a rough measure of the difference between the average value of U 
on the surface of a small sphere and its exact value at the center. Thus, for 
example, if U represents the temperature at an arbitrary point P in a solid 
body, and ∇2U is positive at a certain point P0, then the value of U at P0 is 
in general lower than its values at nearby points. We therefore expect heat 
to flow toward P0, raising the temperature there; and since the tempera-
ture U is rising, ∂U/∂t is positive at P0. This is essentially what the heat 
equation (4) says: that ∂U/∂t is proportional to ∇2U and has the same sign. 
If the temperature U reaches a steady state throughout the body, so that 
∂U/∂t = 0 at all points, then ∇2U = 0 and we are back to the case of Laplace’s 
equation.

We shall have occasion to use the formulas for ∇2U in cylindrical coordi-
nates (r,θ,z) and spherical coordinates (ρ,θ,ϕ), as shown in Figure 61. These 
coordinates are related to rectangular coordinates by the equations

 x = r cos θ,  y = r sin θ,  z = z,

and

 x = ρ sin ϕ cos θ,  y = ρ sin ϕ sin θ,  z = ρ cos ϕ.

10 The two-dimensional version of this property is given in Problem 42-4.

x

r
θ

ρ

y

z

z

FIGURE 61
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By tedious but straightforward calculations one can show that in cylindrical 
coordinates,
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and in spherical coordinates,
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All students of mathematics or physics should carry out the necessary calcu-
lations at least once in their lives, but perhaps once is enough!

Steady-state temperatures in a sphere. Our purpose in this example is to 
illustrate as simply as possible the role of Legendre polynomials in solving 
certain boundary value problems of mathematical physics.11

Let a solid sphere of radius 1 be placed in a spherical coordinate system 
with its center at the origin. Let the surface be held at a specified temperature 
f(ϕ), which is assumed to be independent of θ for the sake of simplicity, until 
the flow of heat produces a steady state for the temperature T(ρ, ϕ) within the 
sphere. The problem is to find an explicit representation for the temperature 
function T(ρ, ϕ).

The steady-state temperature T satisfies Laplace’s equation in spherical 
coordinates; and since T does not depend on θ, (7) allows us to write this 
equation in the form
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To solve (8) subject to the given boundary condition

 T(1, ϕ) = f(ϕ), (9)

we use the method of separation of variables; that is, we seek a solution of (8) 
of the form T(ρ, ϕ) = ιι(ρ)ν(ϕ). When this expression is inserted in (8) and the 
variables are separated, we obtain
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11 Many problems of greater complexity are discussed in Lebedev, op. cit., chap. 8.
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The crucial step in the method is the following observation: since the left 
side of equation (10) is a function of ρ alone and the right side is a function 
of ϕ alone, each side must be constant. If this constant—called the separation 
constant—is denoted by λ, then (10) splits into the two ordinary differential 
equations
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Equation (11) is an Euler equation with p = 2 and q = –λ, so its indicial equa-
tion is

 m(m – 1) + 2m – λ = 0  or  m2 + m – λ = 0.

The exponents are therefore 
1
2

1 1 4– ± +( )l , and the general solution 
of (11) is

 u c c= +- + + - - +
1

1 2 1 4
2

1 2 1 4r rl l  (13)

or

 u = c3ρ–l/2 + c4ρ–1/2 log ρ.

To guarantee that u is single-valued and bounded near ρ = 0, we discard the 

second possibility altogether, and in (13) put c2 = 0 and –
1
2

1
4

+ + =l n where 

n is a non-negative integer. It follows that λ = n(n + 1), so (13) reduces to

 u = c1ρn (14)

and (12) becomes
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If the independent variable is changed from ϕ to x = cos ϕ, then this equation 
is transformed into
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which is precisely Legendre’s equation. By the physics of the problem, the 
function ν must be bounded for 0 ≤ ϕ ≤ π, or equivalently for –1 ≤ x ≤ 1; and we 
know from Section 44 that the only solutions of (15) with this property are 
constant multiples of the Legendre polynomials Pn(x). If this result is com-
bined with (14), then it follows that for each n = 0, 1, 2, …, we have particular 
solutions of (8) of the form

 anρnPn(cos ϕ), (16)

where the an are arbitrary constants. We cannot hope to satisfy the bound-
ary condition (9) by using these solutions individually. However, Laplace’s 
equation is linear and sums of solutions are also solutions, so it is natural to 
put the particular solutions (16) together into an infinite series and hope that 
T(ρ, ϕ) can be expressed in the form
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The boundary condition (9) now requires that
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We know from Section 45 that if the function f(cos–1 x) is sufficiently well 
behaved, then it can be expanded into a Legendre series of the form (18) 
where the coefficients an are given by
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With these coefficients, (17) is the desired solution of our problem.
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We have found the solution (17) by rather formal procedures, and it should 
be pointed out that there are difficult questions of pure mathematics involved 
here that we have not touched on at all. To a physicist, it may seem obvious 
that a solid body whose surface temperature is specified will actually attain 
a definite and unique steady-state temperature at every interior point, but 
mathematicians are unhappily aware that the obvious is often false.12 The so-
called Dirichlet problem of potential theory requires a rigorous proof of the 
existence and uniqueness of a potential function throughout a region that 
assumes given values on the boundary. This problem was solved in the early 
twentieth century by the great German mathematician Hilbert, for very gen-
eral but precisely defined types of boundaries and boundary functions.

The electrostatic dipole potential. The generating relation
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for the Legendre polynomials is discussed in Problems 44–1, 44–2, and 44–3. 
As a direct physical illustration of its value, we use it to find the potential due 
to two point charges of equal magnitude q but opposite sign. If these charges 
are placed in a polar coordinate system (Figure 62), then with suitable units 
of measurement the potential at P is

 
U

q
r

q
r

=
1 2

– , (21)

12 Some fairly simple examples in which the statement just made is false are given in O. D. 
Kellogg, Foundations of Potential Theory, p. 285, Springer, New York, 1929. Einstein, a great 
maker of aphorisms, said: “The rarest and most valuable of all intellectual traits is the capac-
ity to doubt the obvious.”
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where
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by the law of cosines. When r > a, we can use (20) to write
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Formula (21) can now be written
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We know that the nth Legendre polynomial Pn(x) is even if n is even and odd 
if n is odd. The bracketed expression therefore equals 0 or 2Pn(cos θ) accord-
ing as n is even or odd, and (22) becomes
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If we now assume that all terms except the first can be neglected when r is 
large compared with a, and recall that P1(x) = x, then (23) yields
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This is the approximation used by physicists for the dipole potential.
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Appendix B. Bessel Functions and the Vibrating Membrane

One of the simplest physical applications of Bessel functions occurs in Euler’s 
theory of the vibrations of a circular membrane. In this context a membrane 
is understood to be a uniform thin sheet of flexible material pulled taut into 
a state of uniform tension and clamped along a given closed curve in the xy-
plane. When this membrane is slightly displaced from its equilibrium posi-
tion and then released, the restoring forces due to the deformation cause it to 
vibrate. Our problem is to analyze this vibrational motion.

The equation of motion. Our discussion is similar to that given in Section 40 
for the vibrating string; that is, we make several simplifying assumptions 
that enable us to formulate a partial differential equation, and we hope that 
this equation describes the motion with a reasonable degree of accuracy. 
These assumptions can be summarized in a single statement: we consider 
only small oscillations of a freely vibrating membrane. The various ways in 
which this is used will appear as we proceed.

First, we assume that the vibrations are so small that each point of the 
membrane moves only in the z direction, with displacement at time t given 
by some function z = z(x,y,t). We consider a small piece of the membrane 
(Figure 63) bounded by vertical planes through the following points in the 
xy-plane: (x,y), (x + ∆x,y), (x + ∆x,y + ∆y), and x,y + ∆y). If m is the constant 
mass per unit area, then the mass of this piece is m ∆x ∆y, and by Newton’s 
second law of motion we see that
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is the force acting on it in the z direction.
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When the membrane is in its equilibrium position, the constant tension 
T has the following physical meaning: Along any line segment of length 
∆s, the material on one side exerts a force, normal to the segment and of 
magnitude T ∆s, on the material on the other side. In this case the forces 
on opposite edges of our small piece are parallel to the xy-plane and cancel 
one another. When the membrane is curved, as in the frozen instant of 
motion shown in Figure 63, we assume that the deformation is so small 
that the tension is still T but now acts parallel to the tangent plane, and 
therefore has an appreciable vertical component. It is the curvature of our 
piece which produces different magnitudes for these vertical components 
on opposite edges, and this in turn is the source of the restoring forces that 
cause the motion.

We analyze these forces by assuming that the piece of the membrane 
denoted by ABCD is only slightly tilted. This makes it possible to replace the 
sines of certain small angles by their tangents, as follows. Along the edges 
DC and AB, the forces are perpendicular to the x-axis and almost parallel to 
the y-axis, with small z components approximately equal to
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The subscripts on these partial derivatives indicate their values at the points 
(x,y + ∆y) and (x,y). By working in the same way on the edges BC and AD, 
we find that the total force in the z direction (neglecting all external forces) 
is approximately
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so (1) can be written
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If we now put a2 = T/m and let ∆x → 0 and ∆y → 0, this becomes
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which is the two-dimensional wave equation.
Students may be somewhat skeptical about the argument leading to equa-

tion (2). If so, they have plenty of company; for the question of what consti-
tutes a satisfactory derivation of the differential equation describing a given 
physical system is never easy, and is particularly baffling in the case of the 
wave equation. To give a more refined treatment of the limits involved would 
get us nowhere, since the membrane is ultimately atomic and not continu-
ous at all. Perhaps the most reasonable attitude is to accept our discussion as 
a plausibility argument that suggests the wave equation as a mathematical 
model. We can then adopt this equation as an axiom of rational mechanics 
describing an “ideal membrane” whose mathematical behavior may or may 
not match the actual behavior of real membranes.13

The circular membrane. We now specialize to the case of a circular mem-
brane, in which it is natural to use polar coordinates with the origin located 
at the center. Formula (6) of Appendix A shows that in this case the wave 
equation (2) takes the form
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where z = z(r,θ,t) is a function of the polar coordinates and the time. For 
convenience we assume that the membrane has radius 1, and is therefore 
clamped to its plane of equilibrium along the circle r = 1 Accordingly, our 
boundary condition is

 z(l,θ,r) = 0. (4)

The problem is to find a solution of (3) that satisfies this boundary condition 
and certain initial conditions to be specified later.

In applying the standard method of separation of variables, we begin with 
a search for particular solutions of the form

 z(r,θ,t) = u(r)v(θ)w(t). (5)

13 On the question, “What is rational mechanics?,” we recommend the illuminating remarks of 
C. Truesdell, Essays in the History of Mechanics, pp. 334–340, Springer, New York, 1968.
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When (5) is inserted in (3) and the result is rearranged, we get
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Since the left side of equation (6) is a function only of r and θ, and the right 
side is a function only of t, both sides must equal a constant. For the mem-
brane to vibrate, w(t) must be periodic; and the right side of (6) shows that in 
order to guarantee this, the separation constant must be negative. We there-
fore equate each side of (6) to –λ2 with λ > 0, and obtain the two equations

 w″(t) + λ2a2w(t) = 0 (7)

and
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It is clear that (7) has

 w(t) = c1 cos λat + c2 sin λat (9)

as its general solution, and (8) can be written as
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In (10) we have a function of r on the left and a function of θ on the right, so 
again both sides must equal a constant. We now recall that the polar angle 
θ of a point in the plane is determined only up to an integral multiple of 
2π; and by the nature of our problem, the value of υ at any point must be 
independent of the value of θ used to describe that point. This requires that 
υ must be either a constant or else nonconstant and periodic with period 2π. 
An inspection of the right side of equation (10) shows that these possibilities 
are covered by writing the separation constant in the form n2 where n = 0, 1, 
2, …, and then (10) splits into

  υ″(θ) + n2ν(θ) = 0 (11)

and

 r2u″(r) + ru′(r) + (λ2r2 – n2)u(r) = 0. (12)
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By recalling that υ is either a constant or else nonconstant and periodic with 
period 2π, we see that (11) implies that

  υ(θ) = d1 cos nθ + d2 sin nθ (13)

for each n, regardless of the fact that (13) is not the general solution of (11) 
when n = 0. Next, it is clear from Problem 46–7 that (12) is a slightly disguised 
form of Bessel’s equation of order n, with a bounded solution Jn(λr) and an 
independent unbounded solution Yn(λr). Since u(r) is necessarily bounded 
near r = 0, we discard the second solution and write

 u(r) = kJn(λr). (14)

The boundary condition (4) can now be satisfied by requiring that u(1) = 0 or

 Jn(λ) = 0. (15)

Thus the permissible values of λ are the positive zeros of the function Jn(x), 
and we know from Section 47 that Jn(x) has an infinite number of such zeros. 
We therefore conclude that the particular solutions (5) yielded by this analy-
sis are constant multiples of the doubly infinite array of functions

 Jn(λr)(d1 cos nθ + d2 sin nθ)(c1 cos λat + c2 sin λat), (16)

where n = 0, 1, 2, …, and for each n the corresponding λ’s are the positive 
roots of (15).

Special initial conditions. The above discussion is intended to show how 
Bessel functions of integral order arise in physical problems. It also demon-
strates the significance of the positive zeros of these functions. For the sake 
of simplicity, we confine our further treatment to the following special case: 
the membrane is displaced into a shape z = f(r) independent of the variable 
θ, and then released from rest at the instant t = θ This means that we impose 
the initial conditions

 z(r,θ,0) =f(r) (17)

and
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The problem is to determine the shape z(r,θ,i) at any subsequent time t > 0.
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Our strategy is to adapt the particular solutions already found to the given 
initial conditions. First, the part of (17) that says that the initial shape is inde-
pendent of θ implies that υ(θ) is constant, so (13) tells us that n = 0. If the posi-
tive zeros of J0(x) are denoted by λ1, λ2 …, λn, …, then this remark reduces the 
array of functions (16) to

 J0(λnr)(c1 cos λnat + c2 sin λnat), n = 1,2, …

Next, (18) implies that c2 = 0, and this leaves us with constant multiples of the 
functions

 J0(λnr) cos λnat, n = 1, 2, ….

Up to this point we have not used the fact that sums of solutions of (3) are 
also solutions. Accordingly, the most general formal solutions now available 
to us are the infinite series
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Our final step is to try to satisfy (17) by putting t = 0 in (19) and equating the 
result to f(r):
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The Bessel expansion theorem of Section 47 guarantees that this representa-
tion is valid whenever f(r) is sufficiently well behaved, if the coefficients are 
defined by
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With these coefficients, (19) is a formal solution of (3) that satisfies the 
given boundary condition and initial conditions, and this concludes our 
discussion.14

14 Many additional applications of Bessel functions can be found in Lebedev, op. cit., chap. 6. 
See also A. Gray and G. B. Mathews, A Treatise on Bessel Functions and Their Applications to 
Physics, Macmillan, New York, 1952.
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Appendix C. Additional Properties of Bessel Functions

In Sections 46 and 47 we had no space for several remarkable properties of 
Bessel functions that should not go unmentioned, so we present them here. 
Unfortunately, a full justification of our procedures requires several theo-
rems from more advanced parts of analysis, but this does not detract from 
the validity of the results themselves.

The generating function. The Bessel functions Jn(x) of integral order are 
linked together by the fact that
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To establish (1), we formally multiply the two series
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The result is a so-called double series, whose terms are all possible products 
of a term from the first series and a term from the second. The fact that each 
of the series (3) is absolutely convergent permits us to conclude that this dou-
ble series converges to the proper sum regardless of the order of its terms. 
For each fixed integer n ≥ 0, we obtain a term of the double series containing 
tn precisely when j = n + k; and when all possible values of k are accounted 
for, the total coefficient of tn is
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Similarly, a term containing t–n (n ≥ 1) arises precisely when k = n + j, so the 
total coefficient of t–n is
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and the proof of (1) is complete.
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A simple consequence of (2) is the addition formula
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To prove this, we notice first that
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However, the product of the two exponentials on the left is also
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and (4) follows at once on equating the coefficients of tn in these expressions. 
When n = 0, (4) can be written as
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or

 J0(x + y) = J0(x)J0(y) – 2J1(x)J1(y) + 2J2(x)J2(y) – …. (5)

If we replace y by –x and use the fact that Jn(x) is even or odd according as n 
is even or odd, then (5) yields the remarkable identity

 1 = J0(x)2 + 2J1(x)2 + 2J2(x)2 + …, (6)

which shows that |J0(x)| ≤ 1 and J xn( ) £ 1 2  for n = 1, 2, ….
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Bessel’s integral formula. When t = eiθ, the exponent on the left side of (2) 
becomes

 
x

e e
ix

i iq q

q–
sin

–

2
= ,

and (2) itself assumes the form

 
e J x eix

n

n
insin ( )q q=

= ¥

¥

å
-

. (7)

Since eix sin θ = cos (x sin θ) + i sin (x sin θ) and ein θ = cos nθ + i sin nθ, equating 
real and imaginary parts in (7) yields

 
cos ( sin ) ( )cosx J x n

n

nq q=
= ¥

¥

å
-

 (8)

and

 
sin ( sin ) ( )sinx J x n

n

nq q=
= ¥

¥

å
-

. (9)

If we now use the relations J–n(x) = (–1)nJn(x), cos(–nθ) = cos nθ, and sin (–nθ) = 
–sin nθ, then (8) and (9) become

 
cos ( sin ) ( ) ( )cos x J x J x nn

n

q q= +
=

¥

å0 2

1

2 2  (10)

and

 
sin ( sin ) ( )sin ( )x J x n

n

nq q=
=

¥

å2 2 1
1

2 1- - . (11)

As a special case of (10), we note that θ = 0 yields the interesting series

 1 = J0(x) + 2J2(x) + 2J4(x) + ….
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Also, on putting θ = π/2 in (10) and (11), we obtain the formulas

 cos x = J0(x) – 2J2(x) + 2J4(x) – …

and

 sin x = 2J1(x) – 2J3(x) + 2J5(x) – …,

which demonstrate once again the close ties between the Bessel functions 
and the trigonometric functions.

The most important application of (8) and (9) is to the proof of Bessel’s inte-
gral formula

 

J x n x dn( ) cos ( sin )= ò1

0
p

q q q
p

- . (12)

To establish this, we multiply (8) by cos mθ, (9) by sin mθ, and add:

 
cos ( sin ) ( )cos ( )m x J x m n

n

nq q q- -
-

=
= ¥

¥

å .

When both sides of this are integrated from θ = 0 to θ = π, the right side 
reduces to πJm(x), and replacing m by n yields formula (12). In his astronomi-
cal work, Bessel encountered the functions Jn(x) in the form of these integrals, 
and on this basis developed many of their properties.15

Some continued fractions. If we write the identity 47-(7) in the form

 
J x

p
x

J x J xp p p– ( ) ( ) – ( )1 1
2

= + ,

then dividing by Jp(x) yields

 

J x
J x

p
x J x J x

p

p p p

– ( )
( )

–
( )/ ( )

1

1

2 1=
+

.

When this formula is itself applied to the second denominator on the right, 
with p replaced by p + 1, and this process is continued indefinitely, we 
obtain

15 For a description of Bessel’s original problem, see Gray and Mathews, op. cit., pp. 4–7.
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x p
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= +
+

�

This is an infinite continued fraction expansion of the ratio Jp–1(x)/Jp (x). We 
cannot investigate the theory of such expansions here. Nevertheless, it may 
be of interest to point out that when p = 1/2, it follows from Problem 46–5 that 
J–1/2(x)/J1/2(x) = cot x, so

 

tan .x

x
x

x

= 1
1 1

3 1
5

-
-

-�

This continued fraction was discovered in 1761 by Lambert, who used it to 
prove that π is irrational. He reasoned as follows: If x is a nonzero rational 
number, then the form of this continued fraction implies that tan x cannot be 
rational; but tan π/4 = 1, so neither π/4 nor π is rational. Several minor flaws 
in Lambert’s argument were patched up by Legendre about 30 years later.
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Chapter 9
Laplace Transforms

48 Introduction

In recent years there has been a considerable growth of interest in the use of 
Laplace transforms as an efficient method for solving certain types of dif-
ferential and integral equations. In addition to such applications, Laplace 
transforms also have a number of close connections with important parts 
of pure mathematics. We shall try to give the reader an adequate idea of 
some of these matters without dwelling too much on the analytic fine points 
and computational techniques that would be appropriate in a more extensive 
treatment.

Before entering into the details, we offer a few general remarks aimed at 
placing the ideas of this chapter in their proper context. We begin by noting 
that the operation of differentiation transforms a function f(x) into another 
function, its derivative f′(x). If the letter D is used to denote differentiation, 
then this transformation can be written

 D[f(x)] = f′(x). (1)

Another important transformation of functions is that of integration:

 

I f x f t dt
x

[ ( )] ( )= ò
0

.

 

(2)

An even simpler transformation is the operation of multiplying all functions 
by a specific function g(x):

 Mg[f(x)] = g(x)f(x). (3)

The basic feature these examples have in common is that each transforma-
tion operates on functions to produce other functions. It is clear that in most 
cases some restriction must be placed on the functions f(x) to which a given 
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transformation is applied. Thus, in (1) f(x) must be differentiable, and in (2) 
it must be integrable. In each of our examples, the function on the right is 
called the transform of f(x) under the corresponding transformation.

A general transformation T of functions is said to be linear if the relation

 T[αf(x) + βg(x)] = αT[f(x)] + βT[g(x)] (4)

holds for all admissible functions f(x) and g(x) and all constants α and β. 
Verbally, equation (4) says that the transform of any linear combination of 
two functions is the same linear combination of their transforms. It is worth 
observing that (4) reduces to

 T[f(x) + g(x)] = T[f(x)] + T[g(x)]

and

 T[αf(x)] = αT[f(x)]

when α = β = 1 and when β = 0. It is easy to see that the transformations 
defined by (1), (2), and (3) are all linear.

A class of linear transformations of particular importance is that of the 
integral transformations. To get an idea of what these are, we consider func-
tions f(x) defined on a finite or infinite interval a ≤ x ≤ b, and we choose a fixed 
function K(p,x) of the variable x and a parameter p. Then the general integral 
transformation is given by

 

T f x K p x f x dx F p
a

b

[ ( )] ( , ) ( ) ( )= =ò .

 

(5)

The function K(p,x) is called the kernel of the transformation T, and it is clear that 
T is linear regardless of the nature of K. The concept of a linear integral trans-
formation, in generalized form, has been the source of some of the most fruitful 
ideas in modern analysis. Also, in classical analysis, various special cases of (5) 
have been minutely studied, and have led to specific transformations useful in 
handling particular types of problems.

When a = 0, b = ∞, and K(p,x) = e–px, we obtain the special case of (5) that 
concerns us—the Laplace transformation L, defined by

 

L f x e f x dx F ppx[ ( )] ( ) ( )= =
¥

-ò
0

.

 

(6)

Thus, the Laplace transformation L acts on any function f(x) for which this 
integral exists, and produces its Laplace transform L[f(x)] = F(p), a function of 
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the parameter p.1 We remind the reader that the improper integral in (6) is 
defined to be the following limit, and exists only when this limit exists:

 0 0

¥

®¥ò ò=e f x dx e f x dxpx

b

b

px– –( ) lim ( ) .

 

(7)

When the limit on the right exists, the improper integral on the left is said 
to converge.

The following Laplace transforms are quite easy to compute:

 

f x F p e dx
p

px( ) , ( )= = =
¥

-ò1
1

0

;

 

(8)

 

f x x F p e x dx
p

px( ) , ( )= = =
¥

-ò
0

2

1
;

 

(9)

 

f x x F p e x dx
n

p
n px n

n( ) , ( )
!= = =

¥
-

+ò
0

1 ;

 

(10)

 

f x e F p e e dx
p a

ax px ax( ) , ( )= = =
-

¥
-ò

0

1
;

 

(11)

 

f x ax F p e ax dx
a

p a
px( ) sin , ( ) sin= = =

+

¥
-ò

0

2 2 ;

 

(12)

 

f x ax F p e ax dx
p

p a
px( ) cos , ( ) cos= = =

+

¥
-ò

0

2 2 .

 

(13)

The integral in (11) converges for p > a, and all the others converge for p > 0. 
Students should perform the necessary calculations themselves, so that the 
source of these restrictions on p is perfectly clear (see Problem 1). As an illus-
tration, we provide the details for (10), in which n is assumed to be a positive 
integer:

1 As this remark suggests, we shall consistently use small letters to denote functions of x and 
the corresponding capital letters to denote the transforms of these functions.



450 Differential Equations with Applications and Historical Notes

 

L x e x dx
x e

p
n
p

e x dx

n
p

L x

n px n
n px

px n

n

[ ]

[ ]

= =
ù

û
ú
ú

+

=

¥
-

-
¥ ¥

- -

-

ò ò
0 0 0

1

1

-

== -æ

è
ç

ö

ø
÷

= = =

-

+

n
p

n
p

L x

n
p

L
n

p

n

n n

1

1

2

1

[ ]

!
[ ]

!
.�

It will be noted that we have made essential use here of the fact that

 
lim
x

n

px

x
e

p
®¥

= >0 0for .

The above formulas will be found in Table 1 in Section 50. Additional simple 
transforms can readily be determined without integration by using the lin-
earity of L, as in

 
L x L x L

p p
[ ] [ ] [ ]2 3 2 3 1

2 3
2+ = + = + .

In later sections we shall develop methods for finding Laplace transforms of 
more complicated functions.

As we stated above, the Laplace transformation L can be regarded as the 
special case of the general integral transformation (5) obtained by taking 
a = 0, b = ∞, and K(p,x) = e–px. Why do we choose these limits and this particu-
lar kernel? In order to see why this might be a fruitful choice, it is useful to 
consider a suggestive analogy with power series.

If we write a power series in the form

 
a n xn

n

( )
=

¥

å
0

,

then its natural analog is the improper integral

 

a t x dtt( )
0

¥

ò .

We now change the notation slightly by writing x = e–p, and this integral 
becomes
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 0

¥

òe a t dtpt– ( ) ,

which is precisely the Laplace transform of the function a(t). Laplace trans-
forms are therefore the continuous analogs of power series; and since power 
series are important in analysis, we have reasonable grounds for expecting 
that Laplace transforms will also be important.

A short account of Laplace is given in Appendix A.

Problems

 1. Evaluate the integrals in (8), (9), (11), (12), and (13).
 2. Without integrating, show that

 (a) L ax
a

p a
p a[sinh ] , ;=

-
>2 2

 (b) L ax
p

p a
p a[cosh ] , .= >2 2-

 3. Find L[sin2 ax] and L[cos2 ax] without integrating. How are these two 
transforms related to one another?

 4. Use the formulas given in the text to find the transform of each of the 
following functions:

 (a) 10;
 (b) x5 + cos 2x;
 (c) 2e3x – sin 5x;
 (d) 4 sin x cos x + 2e–x;
 (e) x6 sin2 3x + x6 cos2 3x.
 5. Find a function f(x) whose transform is

 (a) 30
4p
;

 (b) 
2

3p +
;

 (c) 
4 6

43 2p p
+

+
;

 (d) 
1

2p p+
;

 (e) 
1

4 2p p+
.

 6. Give a reasonable definition of 
1
2

!.
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49 A Few Remarks on the Theory

Before proceeding to the applications, it is desirable to consider more carefully the 
circumstances under which a function has a Laplace transform. A detailed and 
rigorous treatment of this problem would require familiarity with the general 
theory of improper integrals, which we do not assume. On the other hand, it is 
customary to give a brief introduction to this subject in elementary calculus, and 
a grasp of the following simple statements will suffice for our purposes.

First, the integral

 

f x dx( )
0

¥

ò
 

(1)

is said to converge if the limit

 
lim ( )
b

b

f x dx
®¥ ò

0

exists, and in this case the value of (1) is by definition the value of this limit:

 

f x dx f x dx
b

b

( ) lim ( )
0 0

¥

®¥ò ò= .

Next, (1) converges whenever the integral

 

f x dx( )
0

¥

ò

converges, and in this case (1) is said to converge absolutely. And finally, 
(1) converges absolutely—and therefore converges—if there exists a function 
g(x) such that |f(x)| ≤ g(x) and

 

g x dx( )
0

¥

ò

converges (this is known as the comparison test).
Accordingly, if f(x) is a given function defined for x ≥ 0, the convergence 

of (1) requires first of all that the integral ò0
b f x dx( )  must exist for each finite 

b > 0. To guarantee this, it suffices to assume that f(x) is continuous, or at 
least is piecewise continuous. By the latter we mean that f(x) is continuous over 
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every finite interval 0 ≤ x ≤ b, except possibly at a finite number of points 
where there are jump discontinuities, at which the function approaches dif-
ferent limits from the left and right. Figure 64 illustrates the appearance of 
a typical piecewise continuous function; its integral from 0 to b is the sum 
of the integrals of its continuous parts over the corresponding subintervals. 
This class of functions contains virtually all that are likely to arise in prac-
tice. In particular, it includes the discontinuous step functions and sawtooth 
functions expressing the sudden application or removal of forces and volt-
ages in problems of physics and engineering.

If f(x) is piecewise continuous for x ≥ 0, then the only remaining threat to 
the existence of its Laplace transform

 

F p e f x dxpx( ) ( )=
¥

-ò
0

is the behavior of the integrand e–xpf(x) for large x. In order to make sure that 
this integrand diminishes rapidly enough for convergence—or that f(x) does 
not grow too rapidly—we shall further assume that f(x) is of exponential order. 
This means that there exist constants M and c such that

 |f(x)| ≤ Mecx. (2)

Thus, although f(x) may become infinitely large as x → ∞, it must grow less 
rapidly than a multiple of some exponential function ecx. It is clear that any 
bounded function is of exponential order with c = 0. As further examples, 
we mention eax (with c = a) and xn (with c any positive number). On the other 
hand, ex2

 is not of exponential order. If f(x) satisfies (2), then we have

 |e–pxf(x)| ≤ Me–(p–c)x;

0 b

y

x

FIGURE 64
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and since the integral of the function on the right converges for p > c, the 
Laplace transform of f(x) converges absolutely for p > c. In addition, we note 
that

 

F p e f x dx e f x dx

M e dx
M

p c
p c

px px

p c x

( ) ( ) ( )

, ,( )

= £

£ = >

¥ ¥

¥

ò ò

ò

0 0

0

- -

- -

-

so

 F(p) → 0 as p → ∞. (3)

Actually, it can be shown that (3) is true whenever F(p) exists, regardless of 
whether or not f(x) is piecewise continuous and of exponential order. Thus, if 
ϕ(p) is a function of p with the property that its limit as p → ∞ does not exist 
or is not equal to zero, then it cannot be the Laplace transform of any f(x). 
In particular, polynomials in p, sin p, cos p, ep, and log p cannot be Laplace 
transforms. On the other hand, a rational function is a Laplace transform if 
the degree of the numerator is less than that of the denominator.

The above remarks show that any piecewise continuous function of expo-
nential order has a Laplace transform, so these conditions are sufficient for the 
existence of L[f(x)]. However, they are not necessary, as the example f(x) = x–1/2 
shows. This function has an infinite discontinuity at x = 0, so it is not piece-
wise continuous, but nevertheless its integral from 0 to b exists; and since it 
is bounded for large x, its Laplace transform exists. Indeed, for p > 0 we have

 

L x e x dxpx[ ]/ /-

¥
- -= ò1 2

0

1 2 ,

and the change of variable px = t gives

 

L x p e t dtt[ ]/ / /- -

¥

- -= ò1 2 1 2

0

1 2 .

Another change of variable, t = s2, leads to

 

L x p e dss[ ]/ /- -

¥

-= ò1 2 1 2

0

2
2

.

 

(4)
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In most treatments of elementary calculus it is shown that the last-written 
integral has the value p 2 (see Problem 1), so we have

 
L x

p
[ ] ./- =1 2 p

 
(5)

This result will be useful in a later section.
In the remainder of this chapter we shall concentrate on the uses of Laplace 

transforms, and will not attempt to study the purely mathematical theory 
behind our procedures. Naturally these procedures need justification, and 
readers who are impatient with formalism can find what they want in more 
extensive discussions of the subject.

Problems

 1. If f denotes the integral in (4), then (s being a dummy variable) we can write

 

I e dx e dy e dx dyx y x y2

0 0 0 0

2 2 2 2
=

æ

è

ç
ç

ö

ø

÷
÷

æ

è

ç
ç

ö

ø

÷
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=
¥

-

¥
-

¥ ¥
- +ò ò òò ( ) .

  Evaluate this double integral by changing to polar coordinates, and 
thereby show that I = p 2.

 2. In each of the following cases, graph the function and find its Laplace 
transform:

 (a)  f(x) = u(x – a) where a is a positive number and u(x) is the unit step 
function defined by

 
u x

x

x
( )

;
=

ì
í
î

<
³

0
1

0
0

if 
if 

 (b) f(x) = [x] where [x] denotes the greatest integer ≤ x;
 (c) f(x) = x – [x];

 (d) f x
x x

x
( )

sin
.

=
ì
í
î

£ £
>0

0if 
if 

p
p

 3. Show explicitly that L ex[ ]
2

 does not exist. Hint: x2 – px = (x – p/2)2 – p2/4.
 4. Show explicitly that L[x−1] does not exist.
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 5. Let є be a positive number and consider the function fє(x) defined by

 
f x

x

xε

ε ε

ε
( )

.
=

ì
í
î

£ £
>

1
0

0if 
if 

  The graph of this function is shown in Figure 65. It is clear that for 
every є > 0 we have ò0 1¥ =f x dxε( ) . Show that

 
L f x

e
p

p

[ ( )]ε

ε

ε
= - -1

  and

 
lim [ ( )]
ε

ε
®¥

=L f x 1.

  Strictly speaking, lim ( )ε ε®0 f x  does not exist as a function, so 

L f x[lim ( )]ε ε®0  is not defined; but if we throw caution to the winds, then

 
d( ) lim ( )x f x=

®ε
ε

0

xε

1/ε

y

FIGURE 65
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  is seen to be some kind of quasi-function that is infinite at x = 0 and 
zero for x > 0, and has the properties

 

d d( ) [ ( )]x dx L x= =
¥

ò 1 1
0

and .

  This quasi-function δ(x) is called the Dirac delta function or unit impulse 
function.2

50 Applications to Differential Equations

Suppose we wish to find the particular solution of the differential equation

 y″ + ay′ + by = f(x) (1)

that satisfies the initial conditions y(0) = y0 and ¢ = ¢y y( )0 0 . It is clear that we 
could try to apply the methods of Chapter 3 to find the general solution and 
then evaluate the arbitrary constants in accordance with the given initial 
conditions. However, the use of Laplace transforms provides an alternate 
way of attacking this problem that has several advantages.

To see how this method works, let us apply the Laplace transformation L 
to both sides of (1):

 L[y″ + ay′ + by] = L[f(x)].

By the linearity of L, this can be written as

 L[y″] + aL[y′] + bL[y] = L[f(x)]. (2)

Our next step is to express L[y′] and L[y″] in terms of L[y]. First, an integration 
by parts gives

2 P.A.M. Dirac (1902–1984) was an English theoretical physicist who won the Nobel Prize at the 
age of thirty-one for his work in quantum theory. There are several ways of making good 
mathematical sense out of his delta function. See, for example, I. Halperin, Introduction to the 
Theory of Distributions, University of Toronto Press, Toronto, 1952; or A. Erdélyi, Operational 
Calculus and Generalized Functions, Holt, New York, 1962. Dirac’s own discussion of his func-
tion is interesting and easy to read; see pp. 58–61 of his treatise The Principles of Quantum 
Mechanics, Oxford University Press, 4th ed., 1958.
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so

 L[y′] = pL[y] – y(0). (3)

Next,

 L[y″] = L[(y′)′] = pL[y′] – y′(0),

so

 L[y″] = p2L[y] – py(0) – y′(0). (4)

If we now insert the given initial conditions in (3) and (4), and substitute 
these expressions in (2), we obtain an algebraic equation for L[y],

 p L y py y apL y ay bL y L f x2
0 0 0[ ] [ ] [ ] [ ( )]- - ¢ + - + = ;

and solving for L[y] yields

 
L y

L f x p a y y
p ap b

[ ]
[ ( )] ( )

=
+ + + ¢

+ +
0 0

2 .
 

(5)

The function f(x) is known, so its Laplace transform L[f(x)] is a specific function 
of p; and since a, b, y0, and ¢y0 are known constants, L[y] is completely known 
as a function of p. If we can now find which function y(x) has the right side of 
equation (5) as its Laplace transform, then this function will be the solution 
of our problem—initial conditions and all. These procedures are particularly 
suited to solving equations of the form (1) in which the function f(x) is discon-
tinuous, for in this case the methods of Chapter 3 may be difficult to apply.

There is an obvious flaw in this discussion: in order for (2) to have any 
meaning, the functions f(x), y, y′, and y″ must have Laplace transforms. This 
difficulty can be remedied by simply assuming that f(x) is piecewise con-
tinuous and of exponential order. Once this assumption is made, then it can 
be shown (we omit the proof) that y, y′, and y″ necessarily have the same 
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properties, so they also have Laplace transforms. Another difficulty is that 
in obtaining (3) and (4) we took it for granted that

 
lim lim
x

px

x

pxye y e
®¥

-

®¥

-= ¢ =0 0and .

However, since y and y′ are automatically of exponential order, these state-
ments are valid for all sufficiently large values of p.

Example 1. Find the solution of

 y″ + 4y = 4x (6)

that satisfies the initial conditions y(0) = 1 and y′(0) = 5.
When L is applied to both sides of (6), we get

 L[y″] + 4L[y] = 4L[x]. (7)

If we recall that L(x) = 1/p2, and use (4) and the initial conditions, then 
(7) becomes

 
p L y p L y

p
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25 4
4
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++
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4

1
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.
 

(8)

On referring to the transforms obtained in Section 48, we see that (8) can 
be written

 L[y] = L[cos 2x] + L[2 sin 2x] + L[x]

 = L[cos 2x + 2 sin 2x + x],

so

 y = cos 2x + 2 sin 2x + x
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is the desired solution. We can easily check this result, for the general 
solution of (6) is seen by inspection to be

 y = c1 cos 2x + c2 sin 2x + x,

and the initial conditions imply at once that c1 = 1 and c2 = 2.
The validity of this procedure clearly rests on the assumption that only 

one function y(x) has the right side of equation (8) as its Laplace trans-
form. This is true if we restrict outselves to continuous y(x)’s—and any 
solution of a differential equation is necessarily continuous. When f(x) is 
assumed to be continuous, the equation L[f(x)] = F(p) is often written in 
the form

 L–1[F(p)] = f(x).

It is customary to call L–1 the inverse Laplace transformation, and to refer 
to f(x) as the inverse Laplace transform of F(p). Since L is linear, it is evident 
that L–1 is also linear. In Example 1 we made use of the following inverse 
transforms:
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p

x L
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x L
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é
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ù
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ë
ê

ù

û
ú =1

2
1

2
1

24
2

2
4

2
1

cos , sin , .

This example also illustrates the value of decomposition into partial 
fractions as a method of finding inverse transforms.

For the convenience of the reader, we give a short list of useful trans-
form pairs in Table 1. Much more extensive tables are available for the 
use of those who find it desirable to apply Laplace transforms frequently 
in their work.

We shall consider a number of general properties of Laplace trans-
forms that greatly increase the flexibility of Table 1. The first of these is 
the shifting formula:

 L[eaxf(x)] = F(p – a). (9)

To establish this, it suffices to observe that

 

L e f x e e f x dx

e f x dx

F p a

ax px ax

p a x

[ ( )] ( )

( )

( ).

( )

=

=

= -

¥
-

¥
- -

ò

ò

0

0

Formula (9) can be used to find transforms of products of the form eaxf(x) 
when F(p) is known, and also to find inverse transforms of functions of 
the form F(p – a) when f(x) is known.
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Example 2.

 
L bx

b
p b

[sin ] =
+2 2

,

so

 
L e bx

b
p a b

ax[ sin ]
( )

=
+- 2 2 .

Example 3.

 
L

p
x- é
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ê

ù

û
ú =1

2

1
,

so

 
L

p a
e xax-

-
é

ë
ê

ù

û
ú =1

2

1
( )

.

The methods of this section can be applied to systems of linear differ-
ential equations with constant coefficients, and also to certain types of 
partial differential equations. Discussions of these further applications 
can be found in more extended works on Laplace transforms.3

3 For example, see R. V. Churchill, Operational Mathematics, 2d ed., McGraw-Hill, New York, 1958.

TABLE 1

Simple Transform Pairs

f(x) F(p) = L[f(x)]

1 1
p

x 1
2p

xn n
pn

!
+1

eax 1
p a–

sin ax a
p a2 2+

cos ax p
p a2 2+

sinh ax a
p a2 2–

cosh ax p
p a2 2–
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Problems

 1. Find the Laplace transforms of
 (a) x5e–2x;
 (b) (1 – x2)e–x;
 (c) e3x cos 2x.
 2. Find the inverse Laplace transforms of
 (a) 6

2 92( )
;

p + +

 (b) 12
3 4( )

;
p +

 (c) p
p p

+
+ +

3
2 52 .

 3. Solve each of the following differential equations by the method of 
Laplace transforms:

 (a) y′ + y = 3e2x, y(0) = 0;
 (b) y″ – 4y′ + 4y = 0, y(0) = 0 and y′(0) = 3;
 (c) y″ + 2y′ + 2y = 2, y(0) = 0 and y′(0) = 1;
 (d) y″ + y′ = 3x2, y(0) = 0 and y′(0) = 1;
 (e) y″ + 2y′ + 5y = 3e–x sin x, y(0) = 0 and y′(0) = 3.
 4. Find the solution of y″ – 2ay′ + a2y = 0 in which the initial conditions 

y(0) = y0 and ¢ = ¢y y( )0 0 are left unrestricted. (This provides an additional 
derivation of our earlier solution, in Section 17, for the case in which the 
auxiliary equation has a double root.)

 5. Apply (3) to establish the formula for the Laplace transform of an 
integral,

 

L f x dx
F p

p

x

( )
( )

0
ò

é

ë
ê
ê

ù

û
ú
ú

= ,

  and verify this by finding

 
L

p p
–

( )
1 1

1+
é

ë
ê

ù

û
ú

  in two ways.
 6. Solve ¢ + + = =òy y y dx e y

x
x4 5 0 0

0

– , ( ) .
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51 Derivatives and Integrals of Laplace Transforms

Consider the general Laplace transform formula

 

F p e f x dxpx( ) ( )=
¥

-ò
0

.

The differentiation of this with respect to p under the integral sign can be 
justified, and yields

 

¢ = -
¥

-òF p e x f x dxpx( ) ( ) ( )
0  

(1)

or

 L[–xf(x)] = F′(p). (2)

By differentiating (1), we find that

 L[x2f(x)] = F″(p), (3)

and, more generally, that

 L[(–1)nxnf(x)] = F(n)(p) (4)

for any positive integer n. These formulas can be used to find transforms of 
functions of the form xnf(x) when F(p) is known.

Example 1. Since L[sin ax] = a/(p2 + a2), we have

 
L x ax

d
dp

a
p a

ap
p a

[ sin ]
( )

= -
+

æ

è
çç

ö

ø
÷÷ =

+2 2 2 2 2

2
.

Example 2. We know from Section 49 that L x p[ ]/- =1 2 p/ , so

 

L x L x x
d
dp p p p

[ ] [ ( )] ./ /1 2 1 2 1
2

= = -
æ

è
çç

ö

ø
÷÷ =- p p

If we apply (2) to a function y(x) and its derivatives—and remember for-
mulas 50-(3) and 50-(4)—then we get

 
L xy

d
dp

L y
dY
dp

[ ] [ ]= - = - ,
 

(5)
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L xy

d
dp

L y
d
dp

pY y
d
dp

pY[ ] [ ] [ ( )] [ ],¢ = - ¢ = - - = -0
 

(6)

and

 

L xy
d
dp

L y
d
dp

p Y py y

d
dp

p Y py

[ ] [ ] [ ( ) ( )]

[ ( )].

¢¢ = - ¢¢ = - - - ¢

= - -

2

2

0 0

0
 

(7)

These formulas can sometimes be used to solve linear differential equa-
tions whose coefficients are first degree polynomials in the independent 
variable.

Example 3. Bessel’s equation of order zero is

 xy″ + y′ + xy = 0. (8)

It is known to have a single solution y(x) with the property that y(0) = 1. 
To find this solution, we apply L to (8) and use (5) and (7), which gives

 
- - + - - =

d
dp

p Y p pY
dY
dp

[ ]2 1 0

or

 
( ) .p

dY
dp

pY2 1+ = -  (9)

If we separate the variables in (9) and integrate, we get

 

Y
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p
c p

c
p p
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ø
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2 1 2
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(10)

On expanding the last factor by the binomial series
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(10) becomes
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p p p p
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If we now proceed formally, and compute the inverse transform of this 
series term by term, then we find that

 

y x c
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c
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Since y(0) = 1, it follows that c = 1, and our solution is

 
y x

x x x
( ) .= - +

×
-

× ×
+1

2 2 4 2 4 6

2

2

4

2 2

6

2 2 2 �

This series defines the important Bessel function J0(x), whose Laplace 
transform we have found to be 1 12p + . We obtained this series in 
Chapter 8 in a totally different way, and it is interesting to see how easily 
it can be derived by Laplace transform methods.

We now turn to the problem of integrating transforms, and our main result is

 

L
f x
x

F p dp
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ù
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=
¥
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To establish this, we put L[f(x)/x] = G(p). An application of (2) yields

 

dG
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L x
f x
x

L f x F p= -é
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for some a. Since we want to make G(p) → 0 as p → ∞, we put a = ∞ and get

 

G p F p dp
p

( ) ( )=
¥

ò ,

which is (11). This formula is useful in finding transforms of functions of the 
form f(x)/x when F(p) is known. Furthermore, if we write (11) as

 0

¥
-

¥

ò ò=e
f x
x

dx F p dppx

p

( )
( )

and let p → 0, we obtain

 

f x
x

dx F p dp
( )

( )=
¥¥

òò
00

,
 

(12)

which is valid whenever the integral on the left exists. This formula can some-
times be used to evaluate integrals that are difficult to handle by other methods.

Example 4. Since L[sin x] = 1/(p2 + 1), (12) gives

 0 0

2
1

0
1 2

¥ ¥

-

¥

ò ò=
+

=
ù

û

ú
ú

=
sin

tan
x

x
dx

dp
p

p
p

.

For easy reference, we list the main general properties of Laplace trans-
forms in Table 2. It will be noted that the last item in the list is new. We 
shall discuss this formula and its applications in the next section.

TABLE 2

General Properties of L[  f(x)] = F(p)

L[αf(x) + βg(x)] = αF(p) + βG(p)
L[eaxf(x)] = F(p – a)
L[f′(x)] = pF(p) – f(0);
L[f″(x)] = p2F(p) – pf(0) – f′(0)

L f x dx
F p

p

x

( )
( )

0ò
é

ë
ê

ù

û
ú =

L[–xf(x)] = F′(p);
L[(–1)nxnf(x)] = F(n)(p)

L
f x
x

F p dp
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( )é

ëê
ù

ûú
=

¥

ò
L f x t g t dt F p G p

x

( ) ( ) ( ) ( )-
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ë
ê

ù

û
ú =ò0
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Problems

 1. Show that

 
L x ax

p a
p a

[ cos ]
( )

=
+

2 2

2 2 2

-
,

  and use this result to find

 
L

p a
–

( )
1

2 2 2

1
+

é

ë
ê

ù

û
ú.

 2. Find each of the following transforms:
 (a) L[x2 sin ax];
 (b) L[x3/2].
 3. Solve each of the following differential equations:
 (a) xy″ + (3x – 1)y′ – (4x + 9)y = 0, y(0) = 0;
 (b) xy″ + (2x + 3)y′ + (x + 3)y = 3e–x, y(0) = 0.
 4. If y(x) satisfies the differential equation

 y″ + x2y = 0,

  where y(0) = y0 and ¢ = ¢y y( )0 0, show that its transform Y(p) satisfies the 
equation

 ¢¢ + = + ¢Y p Y py y2
0 0.

  Observe that the second equation is of the same type as the first, so that 
no progress has been made. The method of Example 3 is advantageous 
only when the coefficients are first degree polynomials.

 5. If a and b are positive constants, evaluate the following integrals:

 (a) e e
x

dx
ax bx- -¥ -ò0

;

 (b) 
e bx

x
dx

ax-¥

ò sin
0

.

 6. Show formally that

 (a) J x dx0
0

1( ) =
¥

ò ;

 (b) J x x t dt0
0

1
( ) cos( cos )= òp

p

.
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 7. If x > 0, show formally that

 (a) f x
xt

t
dt( )

sin= =
¥

ò p
20

;

 (b) f x
xt
t

dt e x( )
cos=

+
= -

¥

ò 1 22
0

p
.

 8. (a) If f(x) is periodic with period a, so that f(x + a) = f(x), show that

 

F p
e

e f x dxap

a

px( ) ( ) .=
- -

-ò1
1

0

 (b)  Find F(p) if f(x) = 1 in the intervals from 0 to 1, 2 to 3, 4 to 5, etc., and 
f(x) = 0 in the remaining intervals.

52 Convolutions and Abel’s Mechanical Problem

If L[f(x)] = F(p) and L[g(x)] = G(p), what is the inverse transform of F(p)G(p)?
To answer this question formally, we use dummy variables s and t in the 

integrals defining the transforms and write

 

F p G p e f s ds e g t dtps pt( ) ( ) ( ) ( )=
é

ë
ê
ê

ù

û
ú
ú

é

ë
ê
ê

ù

û
ú
ú

=

¥
-

¥
-

¥ ¥

ò ò

òò

0 0

0 0

ee f s g t ds dt

e f s ds g t dt

p s t

p s t

- +

¥ ¥
- +=

é

ë
ê
ê

ù

û
ú
úò ò

( )

( )

( ) ( )

( ) ( ) ,
0 0

where the integration is extended over the first quadrant (s ≥ 0, t ≥ 0) in the 
st-plane. We now introduce a new variable x in the inner integral of the last 
expression by putting s + t = x, so that s = x – t and (t being fixed during this 
integration) ds = dx. This enables us to write
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This integration is extended over the first half of the first quadrant (x – t ≥ 0) in 
the xt-plane, and reversing the order as suggested in Figure 66, we get
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e f x t
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The integral in the last expression is a function of the upper limit x, and pro-
vides the answer to our question. This integral is called the convolution of the 
functions f(x) and g(x). It can be regarded as a “generalized product” of these 
functions. The fact stated in equation (1)—namely, that the product of the 
Laplace transforms of two functions is the transform of their convolution—is 
called the convolution theorem.

The convolution theorem can be used to find inverse transforms. For 
instance, since L[x] = 1/p2 and L[sin x] = 1/(p2 + 1), we have

t

x

t = x

FIGURE 66
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( )sin tt

x x= - sin ,

as can easily be verified by partial fractions. A more interesting class of appli-
cations arises as follows. If f(x) and k(x) are given functions, then the equation

 

f x y x k x t y t dt
x

( ) ( ) ( ) ( ) ,= + -ò
0  

(2)

in which the unknown function y(x) appears under the integral sign, is called 
an integral equation. Because of its special form, in which the integral is the 
convolution of the two functions k(x) and y(x), this equation lends itself to 
solution by means of Laplace transforms. In fact, if we apply L to both sides 
of equation (2), we get

 L[f(x)] = L[y(x)] + L[k(x)]L[y(x)],

so

 
L y x

L f x
L k x

[ ( )]
[ ( )]

[ ( )]
.=

+1  
(3)

The right side of (3) is presumably known as a function of p; and if this func-
tion is a recognizable transform, then we have our solution y(x).

Example 1. The integral equation

 

y x x x t y t dt
x

( ) sin( ) ( )= + -ò3

0  

(4)

is of this type, and by applying L we get

 L[y(x)] = L[x3] + L[sin x]L[y(x)].

Solving for L[y(x)] yields
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so

 
y x x x( ) = +3 51

20

is the solution of (4).

As a further illustration of this technique, we analyze a classical problem 
in mechanics that leads to an integral equation of the above type. Consider a 
wire bent into a smooth curve (Figure 67) and let a bead of mass m start from 
rest and slide without friction down the wire to the origin under the action 
of its own weight. Suppose that (x, y) is the starting point and (u, v) is any 
intermediate point. If the shape of the wire is specified by a given function 
y = y(x), then the total time of descent will be a definite function T(y) of the 
initial height y. Abel’s mechanical problem is the converse: specify the function 
T(y) in advance and then find the shape of the wire that yields this T(y) as the 
total time of descent.

To formulate this problem mathematically, we start with the principle of 
conservation of energy:

 

1
2

2
2

m
ds
dt

mg y v
ds
dt

g y væ
è
ç

ö
ø
÷ = - - = -( ) ( ) ,or

which can be written as

 
dt

ds
g y v

= -
-2 ( )

.

m
s

x

y

(u, v)

(x, y)

y = y (x)

FIGURE 67
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On integrating this from v = y to v = 0, we get
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(5)

Now
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is known whenever the curve y = y(x) is known, so its derivative
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(6)

is also known. If we insert (6) in (5), then we see that

 

T y
g

f v dv
y v

y

( )
( )

,=
-ò1

2
0  

(7)

and this enables us to calculate T(y) whenever the curve is given. In Abel’s 
problem we want to find the curve when T(y) is given; and from this point of 
view, the function f(y) in equation (7) is the unknown and (7) itself is called 
Abel’s integral equation. Note that the integral in (7) is the convolution of the 
functions y–1/2 and f(y), so on applying the Laplace transformation L we get

 
L T y

g
L y L f y[ ( )] [ ] [ ( )]./= -1

2
1 2

If we now recall that L y p[ ]- =1 2 p , then this yields

 

L f y g
L T y

p

g
p L T y

[ ( )]
[ ( )]

[ ( )].

=

=

2

2 1 2

p

p  
(8)

When T(y) is given, the right side of equation (8) is known as a function of 
p, so hopefully we can find f(y) by taking the inverse transform. Once f(y) is 
known, the curve itself can be found by solving the differential equation (6).
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As a concrete example, we now specialize our discussion to the case in 
which T(y) is a constant T0. This assumption means that the time of descent 
is to be independent of the starting point. The curve defined by this property 
is called the tautochrone, so our problem is that of finding the tautochrone. In 
this case, (8) becomes

 
L f y

g
p L T

g
p

T
p

b
p

[ ( )] [ ] ,= = =
2 21 2

0
1 2 0 1 2

p p
p

where b g T= 2 0
2 2p . The inverse transform of p p is y–1/2, so
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b
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(9)

With this f(y), (6) now yields
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as the differential equation of the curve, so

 
x

b y
y

dy= ò –
.

On substituting y = b sin2 ϕ, this becomes

 

x b d b d

b
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( sin ) ,

f f f f
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so
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b
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2 2
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1 2( sin ) ( cos ).f f fand
 

(10)

The curve must pass through the origin (0,0), so c = 0; and if we put a = b/2 
and θ = 2ϕ, then (10) take the simpler form

 x = a(θ + sin θ)  and  y = a(1 – cos θ).
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These are the parametric equations of the cycloid shown in Figure 68, which 
is generated by a fixed point on a circle of radius a rolling under the horizon-
tal dashed line y = 2a. Since 2 2 0

2 2a b g T= = p , the diameter of the generating 
circle is determined by the constant time of descent.

Accordingly, the tautochrone is a cycloid. In Problems 6–5 and 11–5 we 
verified this property of cycloids by other methods. Our present discussion 
has the advantage of enabling us to find the tautochrone without knowing in 
advance what the answer will be.

Problems

 1. Find L–1[l/(p2 + a2)2] by convolution. (See Problem 51–1.)
 2. Solve each of the following integral equations:

 (a) y x x t y t dt
x

( ) ( ) ( ) ;= - -ò1
0

 (b) y x e e y t dtx t
x

( ) ( ) ;= +
é

ë
ê

ù

û
ú

-ò1
0

 (c) e y x x t y t dtx
x

- = + -ò( ) cos( ) ( ) ;2
0

 (d) 3 2
0

sin ( ) ( ) ( ) .x y x x t y t dt
x

= + -ò
 3. Deduce

 

f y
g d

dy
T t dt

y t

y

( )
( )

= ò
2

0
p -

  from equation (8), and use this to verify (9) when T(y) is a constant T0.
 4. Find the equation of the curve of descent if T y k y( ) =  for some con-

stant k.

y

x

FIGURE 68
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 5. Show that the differential equation

 y″ + a2y = f(x),  y(0) = y′(0) = 0,

  has

 

y x
a

f t a x t dt
x

( ) ( )sin ( )= -ò1

0

  as its solution.

53  More about Convolutions. The Unit 
Step and Impulse Functions

In the preceding section we found that the product of the Laplace transforms 
of two functions is the transform of a certain combination of these functions 
called their convolution. If we use the time t as the independent variable and 
if the two functions are f(t) and g(t), then this convolution theorem [equation 
52-(1)] can be expressed as follows:
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(1)

It is customary to denote the convolution of f(t) and g(t) by f(t)*g(t), so that

 

f t g t f t g d
t

( ) ( ) ( ) ( ) .* = -ò
0

t t t

 

(2)

The convolution theorem (1) can then be written in the form

 L[f(t)*g(t)] = L[f(t)]L[g(t)]. (3)

Our purpose in this section is to discuss an application of this theorem that 
makes it possible to determine the response of a mechanical or electrical sys-
tem to a general stimulus if its response to the unit step function is known. 
These ideas have important uses in electrical engineering and other areas of 
applied science.

Any physical system capable of responding to a stimulus can be thought 
of as a device that transforms an input function (the stimulus) into an output 
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function (the response). If we assume that all initial conditions are zero at the 
moment t = 0 when the input f(t) begins to act, then by setting up the dif-
ferential equation that describes the system, operating on this equation with 
the Laplace transformation L, and solving for the transform of the output y(t), 
we obtain an equation of the form
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where z(p) is a polynomial whose coefficients depend only on the parameters 
of the system itself. This equation is the main source of the explicit formulas 
for y(t) that we obtain below with the aid of the convolution theorem.

Let us be more specific. We seek solutions y(t) of the linear differential 
equation

 y″ + ay′ + by = f(t) (5)

that satisfy the initial conditions

 y(0) = y′(0) = 0 (6)

describing a mechanical or electrical system at rest in its equilibrium posi-
tion. The input f(t) can be thought of as an impressed external force F or elec-
tromotive force E that begins to act at time t = 0, as discussed in Section 20. 
When this input is the unit step function u(t) defined in Problem 49–2(a), 
the solution (or output) y(t) is denoted by A(t) and called the indicial response; 
that is,

 A″ + aA′ + bA = u(t).

By applying the Laplace transformation L and using formulas (3) and (4) in 
Section 50, we obtain
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where z(p) is defined by the last equality. We now apply L in the same way to 
the general equation (5), which yields (4); and dividing both sides of this by 
p and using (7) gives
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The convolution theorem now enables us to write (8) in the form
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By using formula 50-(3) once more we get
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By applying Leibniz’s rule for differentiating integrals4 to (9), we now have
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Next, since L[A]L[f] = L[f]L[A], (8) also enables us to write
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4 Leibniz’s rule states that if F t G t x dxu
v( ) ( , )= ò , where u and v are functions of t and x is a dummy 

variable, then
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 See p. 613 of George F. Simmons, Calculus With Analytic Geometry, McGraw-Hill, New York, 

1985.
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and by following the same reasoning as before, we obtain
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In formula (10) we notice that A(0) = 0 because of the initial conditions (6); 
and (11) takes a more convenient form under the change of variable τ = t – σ. 
Our two formulas (10) and (11) for y(t) therefore become
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and
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Each of these formulas provides a solution of (5) for a general input f(t) in 
terms of the indicial response A(t) to the unit step function. Formula (13) is 
sometimes called the principle of superposition; it has been variously attributed 
to the famous nineteenth century physicists James Clerk Maxwell and Ludwig 
Boltzmann, and also to the English applied mathematician Oliver Heaviside.

Example 1. Use formula (13) to solve y″ + y′ – 6y = 2e3t, where y(0) = y′(0) = 0.
Here we have
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Since f(t) = 2e3t, f′(t) = 6e3t and f(0) = 2, (13) gives
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This solution can be verified by substituting directly in the given equa-
tion, and also by solving the equation by the method already studied in 
Section 50.

We can also use formula (12) to solve the equation in this example, but before 
doing this, it is desirable to express (12) in a simpler form. We accomplish this 
by using the unit impulse function δ(t) described in Problem 49–5. In physics, 
the impulse due to a constant force F acting over a time interval Δt is defined to 
be F Δt. The “function” δ(t) can be thought of as a limit of constant functions 
of unit impulse acting over shorter and shorter intervals of time; it is used to 
describe forces and voltages that act very suddenly, as in the case of a ham-
mer blow on a mechanical system or a lightning stroke on a transmission line.

For us, the essential property of δ(t) is that expressed by the equation

 L[δ(t)] = 1,

obtained in Problem 49–5. When the input f(t) in the differential equation (5) 
is the unit impulse function δ(t), the output y(t) is denoted by h(t) and called 
the impulsive response. Applying L in this case yields

 
L h t

z p
[ ( )]

( )
,= 1

 
(14)

so

 
h t L

z p
( )

( )
.=

é

ë
ê

ù

û
ú

-1 1

By (7) and (14),
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and it follows from Problem 50–5 that
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This shows that A′(t) = h(t), so formula (12) becomes
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Thus, the solution of (5) with a general input f(t) can be written as the convo-
lution of the impulsive response h(t) with f(t).
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Example 2. Consider again the equation y″ + y′ – 6y = 2e3t solved in 
Example 1. We have
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as before.

Remark 1. In complicated practical situations electrical engineers are some-
times compelled to work with indicial or impulsive responses A(t) or h(t) 
that are only accessible experimentally, by means of oscilloscope pictures 
responding to generator-produced step functions or impulse functions. 
In such a case the output must be calculated from (13) or (15) by methods 
of graphical integration that permit the plotting of individual points on the 
output curve. For a discussion of these topics see Chapter 9 of W. D. Day, 
Introduction to Laplace Transforms for Radio and Electronic Engineers, Interscience, 
New York, 1960.

Remark 2. To form a more general view of the meaning of convolution let us 
consider a linear physical system in which the effect at the present time t of 
a small stimulus g(τ) dτ at any past time τ is proportional to the size of the 
stimulus. We further assume that the proportionality factor depends only on 
the elapsed time t – τ, and thus has the form f(t – τ) The effect at the present 
time t is therefore

 f(t – τ)g(r) dτ.

Since the system is linear, the total effect at the present time t due to the 
stimulus acting throughout the entire past history of the system is obtained 
by adding these separate effects, and this leads to the convolution integral

 0

t

f t g dò -( ) ( ) .t t t

The lower limit here is 0 because we assume that the stimulus started acting 
at time t = 0, that is, that g(τ) = 0 for τ < 0. The importance of convolution is 
difficult to exaggerate: it provides a reasonable way of taking account of the 
past in the study of wave motion, heat conduction, diffusion, and other areas 
of mathematical physics.
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Problems

 1. Show that f(t) * g(t) = g(t) * f(t) directly from the definition (2), by intro-
ducing a new dummy variable σ = t – τ. This shows that the opera-
tion of forming convolutions is commutative. It is also associative and 
distributive:

 f(t) * [g(t) * h(t)] = [f(t) * g(t)] * h(t)

  and

 f(t) * [g(t) + h(t)] = f(t) * g(t) + f(t) * h(t),

 [f(t) + g(t)] * h(t) = f(t) * h(t) + g(t) * h(t).

  An interesting discussion of the abstract properties of convolution is 
given by Mark Kac and Stanislaw Ulam on pp. 140–142 of Mathematics 
and Logic, New American Library, New York, 1969.

 2. Find the convolution of each of the following pairs of functions:
 (a) 1, sin at;
 (b) eat, ebt, where a ≠ b;
 (c) t, eat;
 (d) sin at, sin bt, where a ≠ b.
 3. Verify the convolution theorem for each of the pairs of functions con-

sidered in Problem 2.
 4. Use the methods of both Examples 1 and 2 to solve each of the follow-

ing differential equations:
 (a) y″ + 5y′ + 6y = 5e3t, y(0) = y′(0) = 0;
 (b) y″ + y′ – 6y = t, y(0) = y′(0) = 0;
 (c) y″ – y′ = t2, y(0) = y′(0) = 0.
 5. When the polynomial z(p) has distinct real zeros a and b, so that
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  for suitable constants A and B, then

 h(t) = Aeat + Bebt

  and (15) takes the form
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  This is sometimes called the Heaviside expansion theorem.

 (a)  Use this theorem to write the solution of y″ + 3y′ + 2y = f(t), 
y(0) = y′(0) = 0.

 (b)  Give an explicit evaluation of the solution in (a) for the cases f(t) = e3t 
and f(t) = t.

 (c) Find the solutions in (b) by using the superposition principle (13).
 6. Formula (13) can also be derived from (4) as follows, without the use of 

Leibniz’s rule for differentiating integrals:
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  Check the steps.
 7. As we know from Section 20, the forced vibrations of an undamped 

spring–mass system are described by the differential equation

 Mx″ + kx = f(t),

  where x(t) is the displacement and f(t) is the impressed external force or 
“forcing function.” If x(0) = x′(0) = 0, find the functions A(t) and h(t) and 
write down the solution x(t) for any f(t).

 8. The current I(t) in an electric circuit with inductance L and resistance R 
is given by equation (4) in Section 13:

 
L

dI
dt

RI E t+ = ( ),

  where E(t) is the impressed electromotive force. If I(0) = 0, use the meth-
ods of this section to find I(t) in each of the following cases:

 (a) E(t) = E0u(t);
 (b) E(t) = E0 δ(t);
 (c) E(t) = E0 sin ωt.
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Appendix A. Laplace

Pierre Simon de Laplace (1749–1827) was a French mathematician and theo-
retical astronomer who was so famous in his own time that he was known 
as the Newton of France. His main interests throughout his life were celestial 
mechanics, the theory of probability, and personal advancement.

At the age of twenty-four he was already deeply engaged in the detailed 
application of Newton’s law of gravitation to the solar system as a whole, in 
which the planets and their satellites are not governed by the sun alone but 
interact with one another in a bewildering variety of ways. Even Newton 
had been of the opinion that divine intervention would occasionally be 
needed to prevent this complex mechanism from degenerating into chaos. 
Laplace decided to seek reassurance elsewhere, and succeeded in proving 
that the ideal solar system of mathematics is a stable dynamical system 
that will endure unchanged for all time. This achievement was only one of 
the long series of triumphs recorded in his monumental treatise Mécanique 
Céleste (published in five volumes from 1799 to 1825), which summed up the 
work on gravitation of several generations of illustrious mathematicians. 
Unfortunately for his later reputation, he omitted all reference to the dis-
coveries of his predecessors and contemporaries, and left it to be inferred 
that the ideas were entirely his own. Many anecdotes are associated with 
this work. One of the best known describes the occasion on which Napoleon 
tried to get a rise out of Laplace by protesting that he had written a huge 
book on the system of the world without once mentioning God as the author 
of the universe. Laplace is supposed to have replied, “Sire, I had no need of 
that hypothesis.” The principal legacy of the Mécanique Céleste to later gen-
erations lay in Laplace’s wholesale development of potential theory, with its 
far-reaching implications for a dozen different branches of physical science 
ranging from gravitation and fluid mechanics to electro-magnetism and 
atomic physics. Even though he lifted the idea of the potential from Lagrange 
without acknowledgment, he exploited it so extensively that ever since his 
time the fundamental differential equation of potential theory has been 
known as Laplace’s equation.

His other masterpiece was the treatise Théorie Analytique des Probabilités 
(1812), in which he incorporated his own discoveries in probability from 
the preceding 40  years. Again he failed to acknowledge the many ideas 
of others he mixed in with his own; but even discounting this, his book is 
generally agreed to be the greatest contribution to this part of mathematics 
by any one man. In the introduction he says: “At bottom, the theory of 
probability is only common sense reduced to calculation.” This may be 
so, but the following 700 pages of intricate analysis—in which he freely 
used Laplace transforms, generating functions, and many other highly 
nontrivial tools—has been said by some to surpass in complexity even the 
Mécanique Céleste.
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After the French Revolution Laplace’s political talents and greed for posi-
tion came to full flower. His countrymen speak ironically of his “supple-
ness” and “versatility” as a politician. What this really means is that each 
time there was a change of regime (and there were many), Laplace smoothly 
adapted himself by changing his principles—back and forth between fer-
vent republicanism and fawning royalism—and each time he emerged with 
a better job and grander titles. He has been aptly compared with the apocry-
phal Vicar of Bray in English literature, who was twice a Catholic and twice a 
Protestant. The Vicar is said to have replied as follows to the charge of being 
a turncoat: “Not so, neither, for if I changed my religion, I am sure I kept true 
to my principle, which is to live and die the Vicar of Bray.”

To balance his faults, Laplace was always generous in giving assistance 
and encouragement to younger scientists. From time to time he helped for-
ward in their careers such men as the chemist Gay-Lussac, the traveler and 
naturalist Humboldt, the physicist Poisson, and—appropriately—the young 
Cauchy, who was destined to become one of the chief architects of nineteenth 
century mathematics.

Appendix B. Abel

Niels Henrik Abel (1802–1829) was one of the foremost mathematicians of 
the nineteenth century and probably the greatest genius produced by the 
Scandinavian countries. Along with his contemporaries Gauss and Cauchy, 
Abel was one of the pioneers in the development of modern mathematics, 
which is characterized by its insistence on rigorous proof. His career was a 
poignant blend of good-humored optimism under the strains of poverty and 
neglect, modest satisfaction in the many towering achievements of his brief 
maturity, and patient resignation in the face of an early death.

Abel was one of six children in the family of a poor Norwegian country 
minister. His great abilities were recognized and encouraged by one of his 
teachers when he was only sixteen, and soon he was reading and digesting 
the works of Newton, Euler, and Lagrange. As a comment on this experience, 
he inserted the following marginal remark in one of his later mathematical 
notebooks: “It appears to me that if one wants to make progress in math-
ematics, one should study the masters and not the pupils.” When Abel was 
only eighteen his father died and left the family destitute. They subsisted by 
the aid of friends and neighbors, and somehow the boy, helped by contribu-
tions from several professors, managed to enter the University of Oslo in 
1821. His earliest researches were published in 1823, and included his solu-
tion of the classic tautochrone problem by means of the integral equation 
discussed in Section 52. This was the first solution of an equation of this 
kind, and foreshadowed the extensive development of integral equations in 
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the late nineteenth and early twentieth centuries. He also proved that the 
general fifth degree equation ax5 + bx4 + cx3 + dx2 + ex + f = 0 cannot be solved 
in terms of radicals, as is possible for equations of lower degree, and thus 
disposed of a problem that had baffled mathematicians for 300  years. He 
published his proof in a small pamphlet at his own expense.

In his scientific development Abel soon outgrew Norway, and longed to 
visit France and Germany. With the backing of his friends and professors 
he applied to the government, and after the usual red tape and delays, he 
received a fellowship for a mathematical grand tour of the Continent. He 
spent most of his first year abroad in Berlin. Here he had the great good 
fortune to make the acquaintance of August Leopold Crelle, an enthusias-
tic mathematical amateur who became his close friend, advisor, and protec-
tor. In turn, Abel inspired Crelle to launch his famous Journal für die Reine 
und Angewandte Mathematik, which was the world’s first periodical devoted 
wholly to mathematical research. The first three volumes contained 22 con-
tributions by Abel.

Abel’s early mathematical training had been exclusively in the older for-
mal tradition of the eighteenth century, as typified by Euler. In Berlin he 
came under the influence of the new school of thought led by Gauss and 
Cauchy, which emphasized rigorous deduction as opposed to formal cal-
culation. Except for Gauss’s great work on the hypergeometric series, there 
were hardly any proofs in analysis that would be accepted as valid today. As 
Abel expressed it in a letter to a friend: “If you disregard the very simplest 
cases, there is in all of mathematics not a single infinite series whose sum 
has been rigorously determined. In other words, the most important parts of 
mathematics stand without a foundation.” In this period he wrote his clas-
sic study of the binomial series, in which he founded the general theory of 
convergence and gave the first satisfactory proof of the validity of this series 
expansion.

Abel had sent to Gauss in Göttingen his pamphlet on the fifth degree equa-
tion, hoping that it would serve as a kind of scientific passport. However, for 
some reason Gauss put it aside without looking at it, for it was found uncut 
among his papers after his death 30 years later. Unfortunately for both men, 
Abel felt that he had been snubbed, and decided to go on to Paris without 
visiting Gauss.

In Paris he met Cauchy, Legendre, Dirichlet, and others, but these meet-
ings were perfunctory and he was not recognized for what he was. He had 
already published a number of important articles in Crelle’s Journal, but the 
French were hardly aware yet of the existence of this new periodical and 
Abel was much too shy to speak of his own work to people he scarcely knew. 
Soon after his arrival he finished his great Mémoire sur une Propriété Générale 
d’une Classe Trés Etendue des Fonctions Transcendantes, which he regarded as 
his masterpiece. This work contains the discovery about integrals of alge-
braic functions now known as Abel’s theorem, and is the foundation for the 
later theory of Abelian integrals, Abelian functions, and much of algebraic 
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geometry. Decades later, Hermite is said to have remarked of this Mémoire: 
“Abel has left mathematicians enough to keep them busy for 500 years.” Jacobi 
described Abel’s theorem as the greatest discovery in integral calculus of the 
nineteenth century. Abel submitted his manuscript to the French Academy. 
He hoped that it would bring him to the notice of the French mathemati-
cians, but he waited in vain until his purse was empty and he was forced 
to return to Berlin. What happened was this: the manuscript was given to 
Cauchy and Legendre for examination; Cauchy took it home, mislaid it, and 
forgot all about it; and it was not published until 1841, when again the manu-
script was lost before the proof sheets were read. The original finally turned 
up in Florence in 1952.5 In Berlin, Abel finished his first revolutionary article 
on elliptic functions, a subject he had been working on for several years, and 
then went back to Norway, deeply in debt.

He had expected on his return to be appointed to a professorship at the 
university, but once again his hopes were dashed. He lived by tutoring, and 
for a brief time held a substitute teaching positon. During this period he 
worked incessantly, mainly on the theory of the elliptic functions that he 
had discovered as the inverses of elliptic integrals. This theory quickly took 
its place as one of the major fields of nineteenth century analysis, with many 
applications to number theory, mathematical physics, and algebraic geom-
etry. Meanwhile, Abel’s fame had spread to all the mathematical centers of 
Europe and he stood among the elite of the world’s mathematicians, but in 
his isolation he was unaware of it. By early 1829 the tuberculosis he con-
tracted on his journey had progressed to the point where he was unable to 
work, and in the spring of that year he died, at the age of twenty-six. As an 
ironic postcript, shortly after his death Crelle wrote that his efforts had been 
successful, and that Abel would be appointed to the chair of mathematics in 
Berlin.

Crelle eulogized Abel in his Journal as follows: “All of Abel’s works carry 
the imprint of an ingenuity and force of thought which is amazing. One may 
say that he was able to penetrate all obstacles down to the very foundation 
of the problem, with a force which appeared irresistible... He distinguished 
himself equally by the purity and nobility of his character and by a rare 
modesty which made his person cherished to the same unusual degree as 
was his genius.” Mathematicians, however, have their own ways of remem-
bering their great men, and so we speak of Abel’s integral equation, Abelian 
integrals and functions, Abelian groups, Abel’s series, Abel’s partial summa-
tion formula, Abel’s limit theorem in the theory of power series, and Abel 
summability. Few have had their names linked to so many concepts and 
theorems in modern mathematics, and what he might have accomplished in 
a normal lifetime is beyond conjecture.

5 For the details of this astonishing story, see the fine book by O. Ore, Niels Henrik Abel: 
Mathematician Extraordinary, University of Minnesota Press, Minneapolis, 1957.
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Chapter 10
Systems of First Order Equations

54 General Remarks on Systems

One of the fundamental concepts of analysis is that of a system of n simul-
taneous first order differential equations. If y1(x), y2(x),…, yn(x) are unknown 
functions of a single independent variable x, then the most general system 
of interest to us is one in which their derivatives ¢ ¢ ¢y y yn1 2, ,  ,…  are explicitly 
given as functions of x and y1, y2,…, yn:
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Systems of differential equations arise quite naturally in many scientific 
problems. In Section 22 we used a system of two second order linear equa-
tions to describe the motion of coupled harmonic oscillators; in the example 
below we shall see how they occur in connection with dynamical systems 
having several degrees of freedom; and in Section 57 we will use them to 
analyze a simple biological community composed of different species of ani-
mals interacting with one another.

An important mathematical reason for studying systems is that the single 
nth order equation

 y(n) = f (x, y, y′,…, y(n–1)) (2)

can always be regarded as a special case of (1). To see this, we put

 y y y y y yn
n

1 2
1= = ¢ = -, , ( )…,  (3)
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and observe that (2) is equivalent to the system
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which is clearly a special case of (1). The statement that (2) and (4) are equiva-
lent is understood to mean the following: if y(x) is a solution of equation (2), 
then the functions y1(x), y2(x),…, yn(x) defined by (3) satisfy (4); and conversely, 
if y1(x), y2(x),…, yn(x) satisfy (4), then y(x) = y1(x) is a solution of (2).

This reduction of an nth order equation to a system of n first order equa-
tions has several advantages. We illustrate by considering the relation 
between the basic existence and uniqueness theorems for the system (1) and 
for equation (2).

If a fixed point x = x0 is chosen and the values of the unknown functions

 y1(x0) = a1, y2(x0) = a2, …, yn(x0) = an (5)

are assigned arbitrarily in such a way that the functions f1, f2,…, fn are defined, 
then (1) gives the values of the derivatives ¢ ¢ ¢y x y x y xn1 0 2 0 0( ), ( ) ( ),  , …  The simi-
larity between this situation and that discussed in Section 2 suggests the 
following analog of Picard’s theorem.

Theorem A. Let the functions f1, f2,…, fn and the partial derivatives ∂f1/∂y1, … ,∂f1/
∂yn, … ,∂fn/∂y1, … ,∂fn/∂yn be continuous in a region R of (x, y1, y2,…, yn) space. If 
(x0, a1, a2,…, an) is an interior point of R, then the system (1) has a unique solution 
y1(x), y2(x),…, yn(x) that satisfies the initial conditions (5).

We will not prove this theorem, but instead remark that when the ground 
has been properly prepared, its proof is identical with that of Picard’s theo-
rem as given in Chapter 13. Furthermore, by virtue of the above reduction, 
Theorem A includes as a special case the following corresponding theorem 
for equation (2).

Theorem B. Let the function f and the partial derivatives ∂f/∂y, ∂f/∂y′,…, ∂f/∂y(n–1) 
be continuous in a region R of (x, y, y′,…, y(n–1)) space. If (x0, a1, a2,…, an) is an interior 
point of R, then equation (2) has a unique solution y(x) that satisfies the initial condi-
tions y(x0) = a1 y′(x0) = a2,…, y(n–1)(x0) = an.

As a further illustration of the value of reducing higher order equations to 
systems of first order equations, we consider the famous n-body problem of 
classical mechanics.



489Systems of First Order Equations

Let n particles with masses mi be located at points (xi, yi, zi) and assume 
that they attract one another according to Newton’s law of gravitation. If rij is 
the distance between mi and mj, and if θ is the angle from the positive x-axis 
to the segment joining them (Figure 69), then the x component of the force 
exerted on mi by mj is

 

Gm m
r

Gm m x x
r

i j

ij

i j j i

ij
2 3cos

( )
q =

-
,

where G is the gravitational constant. Since the sum of these components 
for all j ≠ i equals mi(d2xi/dt2), we have n second order differential equations
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and similarly
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If we put v dx dt v dy dtx i y ii i= =, , and v dz dtz ii = , and apply the above reduc-
tion, then we obtain a system of 6n equations of the form (1) in the unknown 
functions x v x v y v y v z v z vx n x y n y z n zn n n1 1 11 1 1, , , , , , , , , , , , , ,… … … . If we now make 
use of the fact that

 r x x y y z zij i j i j i j
3 2 2 2 3 2= - + - + -[( ) ( ) ( ) ] ,

then Theorem A yields the following conclusion: if the initial positions and 
initial velocities of the particles, i.e., the values of the unknown functions at a 
certain instant t = t0, are given, and if the particles do not collide in the sense 
that the rij do not vanish, then their subsequent positions and velocities are 
uniquely determined. This conclusion underlies the once popular philoso-
phy of mechanistic determinism, according to which the universe is nothing 
more than a gigantic machine whose future is inexorably fixed by its state at 
any given moment.1

Problems

 1. Replace each of the following differential equations by an equivalent 
system of first order equations:

 (a) y″ – x2y′ – xy = 0;
 (b) ¢¢¢ = ¢¢ - ¢y y x y2 2( ) .
 2. If a particle of mass m moves in the xy-plane, its equations of motion are

 
m

d x
dt

f t x y m
d y
dt

g t x y
2

2

2

2= =( , , ) ( , , )and ,

 where f and g represent the x and y components, respectively, of the 
force acting on the particle. Replace this system of two second order 
equations by an equivalent system of four first order equations of the 
form (1).

1 It also led Sir James Jeans to define the universe as “a self-solving system of 6N simultaneous 
differential equations, where N is Eddington’s number.” Sir Arthur Eddington asserted (with 
more poetry than truth) that

 
N = ´ ´

3
2

136 2256

 is the total number of particles of matter in the universe. See Jeans, The Astronomical Horizon, 
Oxford University Press, London, 1945; or Eddington, The Expanding Universe, Cambridge 
University Press, London, 1952.



491Systems of First Order Equations

55 Linear Systems

For the sake of convenience and clarity, we restrict our attention through 
the rest of this chapter to systems of only two first order equations in two 
unknown functions, of the form

 

dx
dt

F t x y

dy
dt

G t x y

=

=

ì

í
ïï

î
ï
ï

( , , )

( , , ) .
 (1)

The brace notation is used to emphasize the fact that the equations are linked 
together, and the choice of the letter t for the independent variable and x and 
y for the dependent variables is customary in this case for reasons that will 
appear later.

In this and the next section we specialize even further, to linear systems, of 
the form

 

dx
dt

a t x b t y f t

dy
dt

a t x b t y f t

= + +

= + +

ì

í
ïï

î
ï
ï

1 1 1

2 2 2

( ) ( ) ( )

( ) ( ) ( ).
 (2)

We shall assume in the present discussion, and in the theorems stated below, 
that the functions ai(t), bi(t), and fi(t), i = 1, 2, are continuous on a certain closed 
interval [a, b] of the t-axis. If f1(t) and f2(t) are identically zero, then the system 
(2) is called homogeneous; otherwise it is said to be nonhomogeneous. A solu-
tion of (2) on [a, b] is of course a pair of functions x(t) and y(t) that satisfy both 
equations of (2) throughout this interval. We shall write such a solution in 
the form

 

x x t

y y t

=
=

ì
í
î

( )
( ).

Thus, it is easy to verify that the homogeneous linear system (with constant 
coefficients)

 

dx
dt

x y

dy
dt

x y

= -

= +
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î
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2
 (3)
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has both
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3
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22
and  (4)

as solutions on any closed interval.
We now give a brief sketch of the general theory of the linear system (2). It 

will be observed that this theory is very similar to that of the second order 
linear equation as described in Sections 14 and 15. We begin by stating the 
following fundamental existence and uniqueness theorem, whose proof is 
given in Chapter 13.

Theorem A. If t0 is any point of the interval [a, b], and if x0 and y0 are any numbers 
whatever, then (2) has one and only one solution

 

x x t

y y t

=
=

ì
í
î

( )
( ),

valid throughout [a, b], such that x(t0) = x0 and y(t0) = y0.

Our next step is to study the structure of the solutions of the homogeneous 
system obtained from (2) by removing the terms f1 (t) and f2 (t):

 

dx
dt

a t x b t y

dy
dt

a t x b t y

= +

= +
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1 1

2 2

( ) ( )

( ) ( ) .
 (5)

It is obvious that (5) is satisfied by the so-called trivial solution, in which x(t) 
and y(t) are both identically zero. Our main tool in constructing more useful 
solutions is the next theorem.

Theorem B. If the homogeneous system (5) has two solutions

 

x x t

y y t

x x t

y y t

=
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=
=
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and  (6)

on [a, b], then

 

x c x t c x t

y c y t c y t

= +
= +

ì
í
î

1 1 2 2

1 1 2 2

( ) ( )
( ) ( )

 (7)

is also a solution on [a, b] for any constants c1, and c2.
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Proof. The proof is a routine verification, and is left to the reader.
The solution (7) is obtained from the pair of solutions (6) by multiplying 

the first by c1, the second by c2, and adding; (7) is therefore called a linear com-
bination of the solutions (6). With this terminology, we can restate Theorem 
B as follows: any linear combination of two solutions of the homogeneous 
system (5) is also a solution. Accordingly, (3) has

 

x c e c e

y c e c e

t t

t t

= +
= +

ì
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ï
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1

3
2

2

1
3

2
22

 (8)

as a solution for every choice of the constants c1 and c2.
The next question we must settle is that of whether (7) contains all solu-

tions of (5) on [a, b], that is, whether it is the general solution of (5) on [a, b]. 
By Theorem A, (7) will be the general solution if the constants c1 and c2 can 
be chosen so as to satisfy arbitrary conditions x(t0) = x0 and y(t0) = y0 at an 
arbitrary point t0 in [a, b], or equivalently, if the system of linear algebraic 
equations

 c1x1(t0) + c2x2(t0) = x0

 c1y1(t0) + c2y2(t0) = y0

in the unknowns c1 and c2 can be solved for each t0 in [a, b] and every pair of 
numbers x0 and y0. By the elementary theory of determinants, this is possible 
whenever the determinant of the coefficients,

 
W t

x t x t

y t y t
( )

( ) ( )
( ) ( )

=
1 2

1 2
,

does not vanish on the interval [a, b]. This determinant is called the Wronskian 
of the two solutions (6) (see Problem 4), and the above remarks prove the next 
theorem.

Theorem C. If the two solutions (6) of the homogeneous system (5) have a Wronskian 
W(t) that does not vanish on [a, b], then (7) is the general solution of (5) on this 
interval.

It follows from this theorem that (8) is the general solution of (3) on any closed 
interval, for the Wronskian of the two solutions (4) is

 
W t

e e

e e
e

t t

t t
t( ) = =

3 2

3 2
5

2
,
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which never vanishes. It is useful to know, as this example suggests, that the 
vanishing or nonvanishing of the Wronskian W(t) of two solutions does not 
depend on the choice of t. To state it formally, we have

Theorem D. If W(t) is the Wronskian of the two solutions (6) of the homogeneous 
system (5), then W(t) is either identically zero or nowhere zero on [a, b].

Proof. A simple calculation shows that W(t) satisfies the first order differen-
tial equation

 

dW
dt

a t b t W= +[ ( ) ( )]1 2 , (9)

from which it follows that

 W t ce
a t b t dt

( )
[ ( ) ( )]

= ò +1 2  (10)

for some constant c. The conclusion of the theorem is now evident from the 
fact that the exponential factor in (10) never vanishes on [a, b].

Theorem C provides an adequate means of verifying that (7) is the general 
solution of (5): show that the Wronskian W(t) of the two solutions (6) does 
not vanish. We now develop an equivalent test that is often more direct and 
convenient.

The two solutions (6) are called linearly dependent on [a, b] if one is a con-
stant multiple of the other in the sense that

 

x t kx t

y t ky t

x t kx t

y t ky t
1 2

1 2

2 1

2 1

( ) ( )
( ) ( )

( ) ( )
( ) ( )

=
=

=
=

or

for some constant k and all t in [a, b], and linearly independent if neither is a 
constant multiple of the other. It is clear that linear dependence is equivalent 
to the condition that there exist two constants c1 and c2, at least one of which 
is not zero, such that

 

c x t c x t

c y t c y t
1 1 2 2

1 1 2 2

0
0

( ) ( )
( ) ( )

+ =
+ =  

(11)

for all t in [a, b]. We now have the next theorem.

Theorem E. If the two solutions (6) of the homogeneous system (5) are linearly inde-
pendent on [a, b], then (7) is the general solution of (5) on this interval.

Proof. In view of Theorems C and D, it suffices to show that the solutions (6) 
are linearly dependent if and only if their Wronskian W(t) is identically zero. 
We begin by assuming that they are linearly dependent, so that, say,
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 x1(t) = kx2(t)

 y1(t) = ky2(t). 
(12)

Then

 

W t
x t x t

y t y t

kx t x t

ky t y t

kx t y

( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) (

= =

=

1 2

1 2

2 2

2 2

2 2 tt kx t y t) ( ) ( )- =2 2 0

for all t in [a, b]. The same argument works equally well if the constant k is on 
the other side of equations (12). We now assume that W(t) is identically zero, 
and show that the solutions (6) are linearly dependent in the sense of equa-
tions (11). Let t0 be a fixed point in [a, b]. Since W(t0) = 0, the system of linear 
algebraic equations

 c1x1(t0) + c2x2(t0) = 0

 c1y1(t0) + c2y2(t0) = 0

has a solution c1 c2 in which these numbers are not both zero. Thus, the solu-
tion of (5) given by

 

x c x t c x t

y c y t c y t
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(13)

equals the trivial solution at t0. It now follows from the uniqueness part of 
Theorem A that (13) must equal the trivial solution throughout the interval 
[a, b], so (11) holds and the proof is complete.

The value of this test is that in specific problems it is usually a simple matter 
of inspection to decide whether two solutions of (5) are linearly independent 
or not.

We now return to the nonhomogeneous system (2) and conclude our dis-
cussion with

Theorem F. If the two solutions (6) of the homogeneous system (5) are linearly inde-
pendent on [a, b], and if
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is any particular solution of (2) on this interval, then
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(14)

is the general solution of (2) on [a, b].
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Proof. It suffices to show that if
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y y t
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is an arbitrary solution of (2), then
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is a solution of (5), and this we leave to the reader.

The above treatment of the linear system (2) shows how its general solution 
(14) can be built up out of simpler pieces. But how do we find these pieces? 
Unfortunately—as in the case of second order linear equations—there does 
not exist any general method that always works. In the next section we dis-
cuss an important special case in which this problem can be solved: that in 
which the coefficients ai(t) and bi(t), i = 1, 2, are constants.

Problems

 1. Prove Theorem B.
 2. Finish the proof of Theorem F.
 3. Verify equation (9).
 4. Let the second order linear equation
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 be reduced to the system
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 If x1(t) and x2(t) are solutions of equation (*), and if
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 are the corresponding solutions of (**), show that the Wronskian of the 
former in the sense of Section 15 is precisely the Wronskian of the latter 
in the sense of this section.

 5. (a) Show that
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are solutions of the homogeneous system
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 (b) Show in two ways that the given solutions of the system in (a) are 
linearly independent on every closed interval, and write the gen-
eral solution of this system.

 (c) Find the particular solution
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of this system for which x(0) = 5 and y(0) = 1.
 6. (a) Show that
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 (b)  Show in two ways that the given solutions of the system in (a) are 
linearly independent on every closed interval, and write the gen-
eral solution of this system.

 (c) Show that
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is a particular solution of the nonhomogeneous system
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and write the general solution of this system.
 7. Obtain the given solutions of the homogeneous system in Problem 6
 (a)  by differentiating the first equation with respect to t and eliminat-

ing y;
 (b)  by differentiating the second equation with respect to t and elimi-

nating x.

 8. Use a method suggested by Problem 7 to find the general solution of the 
system
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 9. (a) Find the general solution of the system
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 (b)  Show that any second order equation obtained from the system in 
(a) is not equivalent to this system, in the sense that it has solu-
tions that are not part of any solution of the system. Thus, although 
higher order equations are equivalent to systems, the reverse is not 
true, and systems are more general.

56 Homogeneous Linear Systems with Constant Coefficients

We are now in a position to give a complete explicit solution of the simple system
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where a1, b1, a2, and b2 are given constants. Some of the problems at the end 
of the previous section illustrate a procedure that can often be applied to this 
case: differentiate one equation, eliminate one of the dependent variables, 
and solve the resulting second order linear equation. The method we now 
describe is based instead on constructing a pair of linearly independent solu-
tions directly from the given system.

If we recall that the exponential function has the property that its deriva-
tives are constant multiples of the function itself, then (just as in Section 17) 
it is natural to seek solutions of (1) having the form

 

x Ae

y Be

mt

mt
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=
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..
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If we substitute (2) into (1) we get

 Amemt = a1Aemt + b1Bemt

 Bmemt = a2Aemt + b2Bemt;

and dividing by emt yields the linear algebraic system

 

( )
( )

a m A b B

a A b m B
1 1

2 2

0
0

- + =
+ - =

 (3)

in the unknowns A and B. It is clear that (3) has the trivial solution A = B = 0, 
which makes (2) the trivial solution of (1). Since we are looking for nontrivial 
solutions of (1), this is no help at all. However, we know that (3) has non-
trivial solutions whenever the determinant of the coefficients vanishes, i.e., 
whenever

 

a m b

a b m
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2 2
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= .

When this determinant is expanded, we get the quadratic equation

 m2 – (a1 + b2)m + (a1b2 – a2b1) = 0 (4)

for the unknown m. By analogy with our previous work, we call this the aux-
iliary equation of the system (1). Let m1 and m2 be the roots of (4). If we replace 
m in (3) by m1, then we know that the resulting equations have a nontrivial 
solution A1 B1, so
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is a nontrivial solution of the system (1). By proceeding similarly with m2, we 
find another nontrivial solution

 

x A e

y B e

m t
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In order to make sure that we obtain two linearly independent solutions—
and hence the general solution—it is necessary to examine in detail each of 
the three possibilities for m1 and m2.

Distinct real roots. When m1 and m2 are distinct real numbers, then (5) and 
(6) are easily seen to be linearly independent (why?) and
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is the general solution of (1).

Example 1. In the case of the system
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(3) is

 (1 – m)A + B = 0

 4A + (–2 – m) B = 0.
 (9)

The auxiliary equation here is

 m2 + m – 6 = 0  or  (m + 3)(m – 2) = 0,

so m1 and m2 are –3 and 2. With m = –3, (9) becomes

 4A + B = 0

 4A + B = 0.

A simple nontrivial solution of this system is A = 1, B = –4, so we have
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as a nontrivial solution of (8). With m = 2, (9) becomes

 –A + B = 0

 4A – 4B = 0,

and a simple nontrivial solution is A = 1, B = 1. This yields
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as another solution of (8); and since it is clear that (10) and (11) are linearly 
independent,
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is the general solution of (8).

Distinct complex roots. If m1 and m2 are distinct complex numbers, then 
they can be written in the form a ± ib where a and b are real numbers and 
b ≠ 0. In this case we expect the A’s and B’s obtained from (3) to be complex 
numbers, and we have two linearly independent solutions
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However, these are complex-valued solutions, and to extract real-valued 
solutions we proceed as follows. If we express the numbers A1

* and B1
* in the 

standard form A A iA1 1 2
* = +  and B B iB1 1 2

* = + , and use Euler’s formula 17-(7), 
then the first of the solutions (13) can be written as
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It is easy to see that if a pair of complex-valued functions is a solution of (1), 
in which the coefficients are real constants, then their two real parts and their 
two imaginary parts are real-valued solutions. It follows from this that (14) 
yields the two real-valued solutions

 

x e A bt A bt

y e B bt B bt

at

at

= -
= -

ì
í
ï

îï

( cos sin )
( cos sin )

1 2

1 2

 (15)

and

 

x e A bt A bt

y e B bt B bt

at

at

= +
= +

ì
í
ï

îï

( sin cos )
( sin cos ).

1 2

1 2

 (16)

It can be shown that these solutions are linearly independent (we ask the 
reader to prove this in Problem 3), so the general solution in this case is

 

x e c A bt A bt c A bt A bt

y e c B

at

at

= - + +
=

[ ( cos sin ) ( sin cos )]
[ ( c

1 1 2 2 1 2

1 1 oos sin ) ( sin cos )].bt B bt c B bt B bt- + +

ì
í
ï

îï 2 2 1 2

 (17)

Since we have already found the general solution, it is not necessary to con-
sider the second of the two solutions (13).

Equal real roots. When m1 and m2 have the same value m, then (5) and (6) are 
not linearly independent and we essentially have only one solution

 

x Ae

y Be

mt

mt

=
=

ì
í
ï

îï .
 (18)

Our experience in Section 17 would lead us to expect a second linearly inde-
pendent solution of the form

 

x Ate

y Bte

mt

mt

=
=

ì
í
ï

îï .

Unfortunately the matter is not quite as simple as this, and we must actually 
look for a second solution of the form

 

x A A t e

y B B t e

mt

mt

= +
= +

ì
í
ï

îï

( )
( ) ,

1 2

1 2

 (19)
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so that the general solution is

 

x c Ae c A A t e

y c Be c B B t e

mt mt

mt mt

= + +
= + +

ì
í
ï

îï
1 2 1 2

1 2 1 2

( )
( ) .2

 
(20)

The constants A1, A2, B1, and B2 are found by substituting (19) into the system 
(1). Instead of trying to carry this through in the general case, we illustrate 
the method by showing how it works in a simple example.

Example 2. In the case of the system

 

dx
dt

x y

dy
dt

x y

= -

= -

ì

í
ïï

î
ï
ï

3 4

,

 (21)

(3) is

 

( )
( ) .

3 4 0
1 0

- - =
+ - - =

m A B

A m B
 (22)

The auxiliary equation is

 m2 – 2m + 1 = 0  or  (m – 1)2 = 0,

which has equal real roots 1 and 1. With m = 1, (22) becomes

 2A – 4B = 0

 A – 2B = 0.

A simple nontrivial solution of this system is A = 2, B = 1, so

 

x e

y e

t

t

=
=

ì
í
ï

îï

2  (23)

2 The only exception to this statement occurs when a1 = b2 = a and a2 = b1 = 0, so that the auxiliary 
equation is m2 – 2am + a2 = 0, m = a, and the constants A and B in (18) are completely unre-
stricted. In this case the general solution of (1) is obviously

 

x c e

y c e

mt

mt

=
=

ì
í
ï

îï

1

2 ,

 and the system is said to be uncoupled (since each equation can be solved independently of the 
other).
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is a nontrivial solution of (21). We now seek a second linearly indepen-
dent solution of the form

 

x A A t e

y B B t e

t

t

= +
= +

ì
í
ï

îï

( )
( ) .

1 2

1 2

 (24)

When this is substituted into (21), we obtain

 

( ( )) ( )

( ) (

A A t A e A A t e B B t e

B B t B e A A

t t t

t

1 2 2 1 2 1 2

1 2 2 1 2

3 4+ + + - +

+ + +

=

=

 

tt e B B t et t) ( ) ,- +1 2

which reduces at once to

 

( ) ( )

( ) ( ) .

2 4 2 4 0

2 2 0

2 2 1 2 1

2 2 1 1 2

A B t A A B

A B t A B B

- + - - =

- + - - =

Since these are to be identities in the variable t, we must have

 

2 4 0 2 4 0
2 0 2 0

2 2 1 2 1

2 2 1 1 2

A B A A B

A B A B B

- = - - =
- = - - =, .

The two equations on the left have A2 = 2, B2 = 1 as a simple nontrivial 
solution. With this, the two equations on the right become

 2A1 – 4B1 = 2

 A1 – 2B1 = 1,

so we may take A1 = 1, B1 = 0. We now insert these numbers into (24) and 
obtain

 

x t e

y te

t

t

= +
=

ì
í
ï

îï

( )1 2  (25)

as our second solution. It is obvious that (23) and (25) are linearly inde-
pendent, so

 

x c e c t e

y c e c te

t t

t t

= + +
= +

ì
í
ï

îï

2 1 21 2

1 2

( )  (26)

is the general solution of the system (21).
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Problems

 1. Use the methods described in this section to find the general solution 
of each of the following systems:

 (a) dx
dt

x y

dy
dt

x y

= - +

= - +

ì

í
ïï

î
ï
ï

3 4

2 3 ;

 (b) dx
dt

x y

dy
dt

x y

= -

= +

ì

í
ïï

î
ï
ï

4 2

5 2 ;

 (c) dx
dt

x y

dy
dt

x y

= +

= - +

ì

í
ïï

î
ï
ï

5 4

;

 (d) dx
dt

x y

dy
dt

x y

= -

= -

ì

í
ïï

î
ï
ï

4 3

8 6 ;

 (e) 
dx
dt

x

dy
dt

y

=

=

ì

í
ïï

î
ï
ï

2

3 ;

 (f) dx
dt

x y

dy
dt

x y

= - -

= -

ì

í
ïï

î
ï
ï

4

2 ;

 (g) dx
dt

x y

dy
dt

x y

= +

= +

ì

í
ïï

î
ï
ï

7 6

2 6 ;

 (h) dx
dt

x y

dy
dt

x y

= -

= +

ì

í
ïï

î
ï
ï

2

4 5 .

 2. Show that the condition a2b1 > 0 is sufficient, but not necessary, for the 
system (1) to have two real-valued linearly independent solutions of the 
form (2).
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 3. Show that the Wronskian of the two solutions (15) and (16) is given by

 W(t) = (A1B2 – A2B1)e2at,

 and prove that A1B2 – A2B1 ≠ 0.
 4. Show that in formula (20) the constants A2 and B2 satisfy the same lin-

ear algebraic system as the constants A and B, and that consequently 
we may put A2 = A and B2 = B without any loss of generality.

 5. Consider the nonhomogeneous linear system

 

dx
dt

a t x b t y f t

dy
dt

a t x b t y f t

= + +

= + +

ì

í
ïï

î
ï
ï

1 1 1

2 2 2

( ) ( ) ( )

( ) ( ) ( )
 (*)

 and the corresponding homogeneous system

 

dx
dt

a t x b t y

dy
dt

a t x b t y

= +

= +

ì

í
ïï

î
ï
ï

1 1

2 2

( ) ( )

( ) ( ) .
 (**)

 (a) If

 

x x t

y y t

x x t

y y t

=
=

ì
í
î

=
=

ì
í
î

1

1

2

2

( )
( )

( )
( )

and

are linearly independent solutions of (**), so that

 

x c x t c x t

y c y t c y t

= +
= +

ì
í
î

1 1 2 2

1 1 2 2

( ) ( )
( ) ( )

is its general solution, show that

 

x v t x t v t x t

y v t y t v t y t

= +
= +

ì
í
î

1 1 2 2

1 1 2 2

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

will be a particular solution of (*) if the functions v1(t) and v2(t) sat-
isfy the system

 

¢ + ¢ =
¢ + ¢ =

v x v x f

v y v y f
1 1 2 2 1

1 1 2 2 2.

This technique for finding particular solutions of nonhomogeneous 
linear systems is called the method of variation of parameters.



507Systems of First Order Equations

 (b)  Apply the method outlined in (a) to find a particular solution of the 
nonhomogeneous system

 

dx
dt

x y t

dy
dt

x y t

= + - +

= - - -

ì

í
ïï

î
ï
ï

5 2

4 2 8 8,

whose corresponding homogeneous system is solved in Example 1.

57 Nonlinear Systems. Volterra’s Prey-Predator Equations

Everyone knows that there is a constant struggle for survival among differ-
ent species of animals living in the same environment. One kind of animal 
survives by eating another; a second, by developing methods of evasion to 
avoid being eaten; and so on.

As a simple example of this universal conflict between the predator and 
its prey, let us imagine an island inhabited by foxes and rabbits. The foxes 
eat rabbits, and the rabbits eat clover. We assume that there is so much clo-
ver that the rabbits always have an ample supply of food. When the rabbits 
are abundant, then the foxes flourish and their population grows. When the 
foxes become too numerous and eat too many rabbits, they enter a period 
of famine and their population begins to decline. As the foxes decrease, the 
rabbits become relatively safe and their population starts to increase again. 
This triggers a new increase in the fox population, and as time goes on we 
see an endlessly repeated cycle of interrelated increases and decreases in the 
populations of the two species. These fluctuations are represented graphi-
cally in Figure 70, where the sizes of the populations are plotted against time.

x,y

t

Foxes

Rabbits

FIGURE 70



508 Differential Equations with Applications and Historical Notes

Problems of this kind have been studied by both mathematicians and biol-
ogists, and it is quite interesting to see how the mathematical conclusions we 
shall develop confirm and extend the intuitive ideas arrived at in the preced-
ing paragraph. In discussing the interaction between the foxes and the rab-
bits, we shall follow the approach of Volterra, who initiated the quantitative 
treatment of such problems.3

If x is the number of rabbits at time t, then we should have

 

dx
dt

ax a= >, 0,

as a consequence of the unlimited supply of clover, if the number y of foxes 
is zero. It is natural to assume that the number of encounters per unit time 
between rabbits and foxes is jointly proportional to x and y. If we further 
assume that a certain proportion of these encounters result in a rabbit being 
eaten, then we have

 

dx
dt

ax bxy a b= - >,  and 0.

In the same way

 

dy
dt

cy dxy c d= - + >,  and 0;

for in the absence of rabbits the foxes die out, and their increase depends on 
the number of their encounters with rabbits. We therefore have the following 
nonlinear system describing the interaction of these two species:

 

dx
dt

x a by

dy
dt

y c dx

= -

= - -

ì

í
ïï

î
ï
ï

( )

( ).
 (1)

3 Vito Volterra (1860–1940) was an eminent Italian mathematician. His early work on integral 
equations (together with that of Fredholm and Hilbert) began the full-scale development of 
linear analysis that dominated so much of mathematics during the first half of the twentieth 
century. His vigorous excursions in later life into mathematical biology enriched both mathe-
matics and biology. For further details, see his Lecons sur la théorie mathématique de la lutte pour 
la vie, Gauthier-Villars, Paris, 1931; or A. J. Lotka, Elements of Mathematical Biology, pp. 88–94, 
Dover, New York, 1956. A modern discussion, with the Hudson’s Bay Company data on the 
numbers of lynx and hares in Canada from 1847 to 1903, can be found in E. R. Leigh, “The 
Ecological Role of Volterra’s Equations,” in Some Mathematical Problems in Biology, American 
Mathematical Society, Providence, R.I., 1968.
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Equations (1) are called Volterra’s prey-predator equations. Unfortunately this 
system cannot be solved in terms of elementary functions. On the other 
hand, if we think of its unknown solution

 

x x t

y y t

=
=

ì
í
î

( )
( )

as constituting the parametric equations of a curve in the xy-plane, then we 
can find the rectangular equation of this curve. On eliminating t in (1) by 
division, and separating the variables, we obtain

 

( ) ( )a by dy
y

c dx dx
x

-
= - -

.

Integration now yields

 a log y – by = –c log x + dx + log K

or

 yae–by = Kx–cedx, (2)

where the constant K is given by

 K x y ec a dx by= - -
0 0

0 0

in terms of the initial values of x and y.
Although we cannot solve (2) for either x or y, we can determine points on 

the curve by an ingenious method due to Volterra. To do this, we equate the 
left and right sides of (2) to new variables z and w, and then plot the graphs 
C1 and C2 of the functions

 z = yae–by  and  w = Kx–cedx (3)

as shown in Figure 71. Since z = w, we are confined in the third quadrant to 
the dotted line L. To the maximum value of z given by the point A on C1, 
there corresponds one y and—via M on L and the corresponding points A′ 
and A″ on C2—two x’s, and these determine the bounds between which x 
may vary. Similarly, the minimum value of w given by B on C2 leads to N on 
L and hence to B′ and B″ on Cl and these points determine the bounds for 
y. In this way we find the points P1, P2 and Q1, Q2 on the desired curve C3. 
Additional points are easily found by starting on L at a point R anywhere 
between M and N and projecting up to C1 and over to C3, and then over to 
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C2 and up to C3, as indicated in Figure 71. It is clear that changing the value 
of K raises or lowers the point B, and this expands or contracts the curve C3. 
Accordingly, when K is given various values, we obtain a family of ovals 
about the point S, which is all there is of C3 when the minimum value of w 
equals the maximum value of z.

We next show that as t increases, the corresponding point (x, y) on C3 moves 
around the curve in a counterclockwise direction. To see this, we begin by 
noting that equations (1) give the horizontal and vertical components of the 
velocity of this point. A simple calculation based on formulas (3) shows that 
the point S has coordinates x = c/d, y = a/b. When x < c/d, it follows from the 
second equation of (1) that dy/dt is negative, so our point on C3 moves down 
as it traverses the arc Q2P1Q1. Similarly, it moves up along the arc Q1P2Q2, so 
the assertion is proved.

Finally, we use the fox-rabbit problem to illustrate the important method of 
linearization. First, we observe that if the rabbit and fox populations are

 
x

c
d

y
a
b

= =and , (4)

then the system (1) is satisfied and we have dx/dt = 0 and dy/dt = 0, so there are 
no increases or decreases in x or y. The populations (4) are called equilibrium 

L
M

R

N

A΄

B΄

B

x

w

z

C2

Q1

Q2

C1

A P2
P1 S

y

C3

A˝

B˝

FIGURE 71
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populations, for x and y can maintain themselves indefinitely at these con-
stant levels. It is obvious that this is the special case in which the minimum 
of w equals the maximum of z, so that the oval C3 reduces to the point S. If we 
now return to the general case and put

 
x

c
d

X y
a
b

Y= + = +and ,

then X and Y can be thought of as the deviations of x and y from their equi-
librium values. An easy calculation shows that if x and y in (1) are replaced 
by X and Y [which amounts to translating the point (c/d, a/b) to the origin] 
then (1) becomes

 

dX
dt

bc
d

Y bXY

dY
dt

ad
b

X dXY

= - -

= +

ì

í
ïï

î
ï
ï

.
 (5)

We now “linearize” by assuming that if X and Y are small, then the XY terms 
in (5) can be discarded without serious error. This assumption amounts to 
little more than a hope, but it does simplify (5) to a linear system

 

dX
dt

bc
d

Y

dY
dt

ad
b

X

= -

=

ì

í
ïï

î
ï
ï

.
 (6)

It is easy to find the general solution of (6), but it is even easier to eliminate t 
by division and obtain

 

dY
dX

ad
b c

X
Y

= -
2

2 ,

whose solution is immediately seen to be

 ad2X2 + b2cY2 = C2.

This is a family of ellipses surrounding the origin in the XY-plane. Since 
ellipses are qualitatively similar to the ovals of Figure 71, we have reasonable 
grounds for hoping that (6) is an acceptable approximation to (5).

We trust that the reader agrees that the fox-rabbit problem is interesting for 
its own sake. Beyond this, however, we have come to appreciate the fact that 
nonlinear systems present us with problems of a different nature from those 
we have considered before. In studying a system like (1), we have learned to 
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direct our attention to the behavior of solutions near points in the xy-plane at 
which the right sides both vanish; we have seen why periodic solutions (i.e., 
those that yield simple closed curves like C3 in Figure 71) are important and 
desirable; and we have a hint of a method for studying nonlinear systems by 
means of linear systems that approximate them. In the next chapter we shall 
study nonlinear systems more fully, and each of these themes will be worked 
out in greater detail and generality.

Problems

 1. Eliminate y from the system (1) and obtain the nonlinear second order 
equation satisfied by the function x(t).

 2. Show that d2y/dt2 > 0 whenever dx/dt > 0. What is the meaning of this 
result in terms of Figure. 70?
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Chapter 11
Nonlinear Equations

58 Autonomous Systems. The Phase Plane and Its Phenomena

There have been two major trends in the historical development of differ-
ential equations. The first and oldest is characterized by attempts to find 
explicit solutions, either in closed form—which is rarely possible—or in 
terms of power series. In the second, one abandons all hope of solving equa-
tions in any traditional sense, and instead concentrates on a search for quali-
tative information about the general behavior of solutions. We applied this 
point of view to linear equations in Chapter 4. The qualitative theory of non-
linear equations is totally different. It was founded by Poincaré around 1880, 
in connection with his work in celestial mechanics, and since that time has 
been the object of steadily increasing interest on the part of both pure and 
applied mathematicians.1

The theory of linear differential equations has been studied deeply and 
extensively for the past 200 years, and is a fairly complete and well-rounded 
body of knowledge. However, very little of a general nature is known about 
nonlinear equations. Our purpose in this chapter is to survey some of the 
central ideas and methods of this subject, and also to demonstrate that it 
presents a wide variety of interesting and distinctive new phenomena that 
do not appear in the linear theory. The reader will be surprised to find that 
most of these phenomena can be treated quite easily without the aid of 
sophisticated mathematical machinery, and in fact require little more than 
elementary differential equations and two-dimensional vector algebra.

Why should one be interested in nonlinear differential equations? The 
basic reason is that many physical systems—and the equations that describe 
them—are simply nonlinear from the outset. The usual linearizations are 
approximating devices that are partly confessions of defeat in the face of the 
original nonlinear problems and partly expressions of the practical view that 
half a loaf is better than none. It should be added at once that there are many 
physical situations in which a linear approximation is valuable and adequate 

1 See Appendix A for a general account of Poincaré’s work in mathematics and science.
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for most purposes. This does not alter the fact that in many other situations 
linearization is unjustified.2

It is quite easy to give simple examples of problems that are essentially 
nonlinear. For instance, if x is the angle of deviation of an undamped pen-
dulum of length a whose bob has mass m, then we saw in Section 5 that its 
equation of motion is

 

d x
dt

g
a

x
2

2 0+ =sin ; (1)

and if there is present a damping force proportional to the velocity of the 
bob, then the equation becomes

 

d x
dt

c
m

dx
dt

g
a

x
2

2 0+ + =sin . (2)

In the usual linearization we replace sin x by x, which is reasonable for small 
oscillations but amounts to a gross distortion when x is large. An example of 
a different type can be found in the theory of the vacuum tube, which leads 
to the important van der Pol equation

 

d x
dt

x
dx
dt

x
2

2
2 1 0+ - + =m( ) . (3)

It will be seen later that each of these nonlinear equations has interesting 
properties not shared by the others.

Throughout this chapter we shall be concerned with second order nonlin-
ear equations of the form

 

d x
dt

f x
dx
dt

2

2 = æ
è
ç

ö
ø
÷, , (4)

which includes equations (1), (2), and (3) as special cases. If we imagine a 
simple dynamical system consisting of a particle of unit mass moving on 
the x-axis, and if f(x, dx/dt) is the force acting on it, then (4) is the equation of 
motion. The values of x (position) and dx/dt (velocity), which at each instant 
characterize the state of the system, are called its phases, and the plane of the 
variables x and dx/dt is called the phase plane. If we introduce the variable 
y = dx/dt, then (4) can be replaced by the equivalent system

2 It has even been suggested by Einstein that since the basic equations of physics are nonlinear, 
all of mathematical physics will have to be done over again. If his crystal ball was clear on 
the day he said this, the mathematics of the future will certainly be very different from that 
of the past and present.
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dx
dt

y

dy
dt

f x y

=

=

ì

í
ïï

î
ï
ï

( , ).
 (5)

We shall see that a good deal can be learned about the solutions of (4) 
by studying the solutions of (5). When t is regarded as a parameter, then 
in general a solution of (5) is a pair of functions x(t) and y(t) defining a 
curve in the xy-plane, which is simply the phase plane mentioned above. 
We shall be interested in the total picture formed by these curves in the 
phase plane.

More generally, we study systems of the form

 

dx
dt

F x y

dy
dt

G x y

=

=

ì

í
ïï

î
ï
ï

( , )

( , ), 
(6)

where F and G are continuous and have continuous first partial derivatives 
throughout the plane. A system of this kind, in which the independent vari-
able t does not appear in the functions F and G on the right, is said to be 
autonomous. We now turn to a closer examination of the solutions of such a 
system.

It follows from our assumptions and Theorem 54-A that if t0 is any num-
ber and (x0,y0) is any point in the phase plane, then there exists a unique 
solution

 

x x t

y y t

=
=

ì
í
î

( )
( )

 (7)

of (6) such that x(t0) = x0 and y(t0) = y0. If x(t) and y(t) are not both constant 
functions, then (7) defines a curve in the phase plane called a path of the sys-
tem.3 It is clear that if (7) is a solution of (6), then

 

x x t c

y y t c

= +
= +

ì
í
î

( )
( )

 (8)

is also a solution for any constant c. Thus each path is represented by 
many solutions, which differ from one another only by a translation of 

3 The terms trajectory and characteristic are used by some writers.



516 Differential Equations with Applications and Historical Notes

the parameter. Also, it is quite easy to prove (see Problem 2) that any path 
through the point (x0,y0) must correspond to a solution of the form (8). It fol-
lows from this that at most one path passes through each point of the phase 
plane. Furthermore, the direction of increasing t along a given path is the 
same for all solutions representing the path. A path is therefore a directed 
curve, and in our figures we shall use arrows to indicate the direction in 
which the path is traced out as t increases.

The above remarks show that in general the paths of (6) cover the entire 
phase plane and do not intersect one another. The only exceptions to this 
statement occur at points (x0,y0) where both F and G vanish:

 F(x0,y0) = 0 and G(x0,y0) = 0.

These points are called critical points, and at such a point the unique solu-
tion guaranteed by Theorem 54-A is the constant solution x = x0 and y = y0. 
A constant solution does not define a path, and therefore no path goes 
through a critical point. In our work we will always assume that each critical 
point (x0,y0) is isolated, in the sense that there exists a circle centered on (x0,y0) 
that contains no other critical point.

In order to obtain a physical interpretation of critical points, let us consider 
the special autonomous system (5) arising from the dynamical equation (4). 
In this case a critical point is a point (x0,0) at which y = 0 and f(x0,0) = 0; that 
is, it corresponds to a state of the particle’s motion in which both the velocity 
dx/dt and the acceleration dy/dt = d2x/dt2 vanish. This means that the particle 
is at rest with no force acting on it, and is therefore in a state of equilibrium.4 
It is obvious that the states of equilibrium of a physical system are among its 
most important features, and this accounts in part for our interest in critical 
points.

The general autonomous system (6) does not necessarily arise from any 
dynamical equation of the form (4). What sort of physical meaning can be 
attached to the paths and critical points in this case? Here it is convenient to 
consider Figure 72 and the two-dimensional vector field defined by

 V(x,y) = F(x,y)i + G(x,y)j,

which at a typical point P = (x,y) has horizontal component F(x,y) and verti-
cal component G(x,y). Since dx/dt = F and dy/dt = G, this vector is tangent to 
the path at P and points in the direction of increasing t. If we think of t as 
time, then V can be interpreted as the velocity vector of a particle moving 
along the path. We can also imagine that the entire phase plane is filled with 
particles, and that each path is the trail of a moving particle preceded and 
followed by many others on the same path and accompanied by yet others 
on nearby paths. This situation can be described as a two-dimensional fluid 

4 For this reason, some writers use the term equilibrium point instead of critical point.
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motion; and since the system (6) is autonomous, which means that the vector 
V(x,y) at a fixed point (x,y) does not change with time, the fluid motion is sta-
tionary. The paths are the trajectories of the moving particles, and the critical 
points Q, R, and S are points of zero velocity where the particles are at rest 
(i.e., stagnation points of the fluid motion).

The most striking features of the fluid motion illustrated in Figure 72 are:

 (a) the critical points;
 (b) the arrangement of the paths near critical points;
 (c) the stability or instability of critical points, that is, whether a particle 

near such a point remains near or wanders off into another part of 
the plane;

 (d) closed paths (like C in the figure), which correspond to periodic 
solutions.

These features constitute a major part of the phase portrait (or overall pic-
ture of the paths) of the system (6). Since in general nonlinear equations and 
systems cannot be solved explicitly, the purpose of the qualitative theory 
discussed in this chapter is to discover as much as possible about the phase 
portrait directly from the functions F and G. To gain some insight into the 
sort of information we might hope to obtain, observe that if x(t) is a periodic 
solution of the dynamical equation (4), then its derivative y(t) = dx/dt is also 
periodic and the corresponding path of the system (5) is therefore closed. 
Conversely, if any path of (5) is closed, then (4) has a periodic solution. As a 
concrete example of the application of this idea, we point out that the van der 
Pol equation—which cannot be solved—can nevertheless be shown to have a 
unique periodic solution (if μ > 0) by showing that its equivalent autonomous 
system has a unique closed path.

R
Q

P
F

G

V
C

S

FIGURE 72
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Problems

 1. Derive equation (2) by applying Newton’s second law of motion to the 
bob of the pendulum.

 2. Let (x0,y0) be a point in the phase plane. If x1(t) y1(t) and x2(t), y2(t) are 
solutions of (6) such that x1(t1) = x0, y1(t1) = y0 and x2(t2) = x0, y2(t2) = y0 for 
suitable t1 and t2, show that there exists a constant c such that

 x1(t + c) = x2(t) and y1(t + c) = y2(t).

 3. Describe the relation between the phase portraits of the systems

 

dx
dt

F x y

dy
dt

G x y

dx
dt

F x y

dy
dt

G x y

=

=

ì

í
ïï

î
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ï

=

=
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( , ).
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 4. Describe the phase portrait of each of the following systems:

 (a) 
dx
dt
dy
dt

=

=

ì

í
ïï

î
ï
ï

0

0;

 (b) 
dx
dt

x

dy
dt

=

=
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0;

 (c) dx
dt
dy
dt

=

=
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1

2;

 (d) dx
dt

x

dy
dt

y

=

=
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í
ïï

î
ï
ï

–

– .

 5. The critical points and paths of equation (4) are by definition those of 
the equivalent system (5). Find the critical points of equations (1), (2), 
and (3).
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 6. Find the critical points of

 (a) d x
dt

dx
dt

x x x
2

2
3 2 2 0+ + =– ( – ) ;

 (b) dx
dt

y x

dy
dt

x y

= +

=

ì

í
ïï

î
ï
ï

2 5 6–

– .

 7. Find all solutions of the nonautonomous system

 

dx
dt

x

dy
dt

x et

=

= +

ì

í
ïï

î
ï
ï ,

 and sketch (in the xy-plane) some of the curves defined by these 
solutions.

59 Types of Critical Points. Stability

Consider an autonomous system

 

dx
dt

F x y

dy
dt

G x y

=

=

ì

í
ïï

î
ï
ï

( , )

( , ).
 (1)

We assume, as usual, that the functions F and G are continuous and have 
continuous first partial derivatives throughout the xy-plane. The critical 
points of (1) can be found, at least in principle, by solving the simultane-
ous equations F(x,y) = 0 and G(x,y) = 0. There are four simple types of criti-
cal points that occur quite frequently, and our purpose in this section is to 
describe them in terms of the configurations of nearby paths. First, however, 
we need two definitions.

Let (x0,y0) be an isolated critical point of (1). If C = [x(t),y(t)] is a path of (1), 
then we say that C approaches (x0,y0) as t → ∞ if
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lim ( ) lim ( )
t t

x t x y t y
®¥ ®¥

= =0 0and .5 (2)

Geometrically, this means that if P = (x,y) is a point that traces out C in accor-
dance with the equations x = x(t) and y = y(t), then P → (x0,y0) as t → ∞. If it is 
also true that

 
lim

( )
( )t

y t y
x t x®¥

-
-

0

0

 (3)

exists, or if the quotient in (3) becomes either positively or negatively infi-
nite as t → ∞, then we say that C enters the critical point (x0,y0) as t → ∞. 
The quotient in (3) is the slope of the line joining (x0,y0) and the point P with 
coordinates x(t) and y(t), so the additional requirement means that this line 
approaches a definite direction as t → ∞. In the above definitions, we may also 
consider limits as t → –∞. It is clear that these properties are properties of the 
path C, and do not depend on which solution is used to represent this path.

It is sometimes possible to find explicit solutions of the system (1), and 
these solutions can then be used to determine the paths. In most cases, how-
ever, to find the paths it is necessary to eliminate t between the two equa-
tions of the system, which yields

 

dy
dx

G x y
F x y

=
( , )
( , )

. (4)

This first order equation gives the slope of the tangent to the path of (1) that 
passes through the point (x,y), provided that the functions F and G are not 
both zero at this point. In this case, of course, the point is a critical point 
and no path passes through it. The paths of (1) therefore coincide with the 
one-parameter family of integral curves of (4), and this family can often be 
obtained by the methods of Chapter 2. It should be noted, however, that 
while the paths of (1) are directed curves, the integral curves of (4) have no 
direction associated with them. Each of these techniques for determining the 
paths will be illustrated in the examples below.

We now give geometric descriptions of the four main types of critical 
points. In each case we assume that the critical point under discussion is the 
origin O = (0,0).

Nodes. A critical point like that in Figure 73 is called a node. Such a point is 
approached and also entered by each path as t → ∞ (or as t → –∞). For the 
node shown in Figure 73, there are four half-line paths, AO, BO, CO, and 
DO, which together with the origin make up the lines AB and CD. All other 

5 It can be proved that if (2) is true for some solution x(t), y(t), then (x0, y0) is necessarily a critical 
point. See F. G. Tricomi, Differential Equations, p. 47, Blackie, Glasgow, 1961.
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paths resemble parts of parabolas, and as each of these paths approaches O 
its slope approaches that of the line AB.

Example 1. Consider the system

 

dx
dt

x

dy
dt

x y

=

= +

ì

í
ïï

î
ï
ï

– 2 .
 (5)

It is clear that the origin is the only critical point, and the general solu-
tion can be found quite easily by the methods of Section 56:

 

x c e

y c e c e

t

t t

=
= +

ì
í
ï

îï
1

1 2
2 .

 (6)

When c1 = 0, we have x = 0 and y = c2e2t. In this case the path (Figure 74) is 
the positive y-axis when c2 > 0, and the negative y-axis when c2 < 0, and 
each path approaches and enters the origin as t → –∞. When c2 = 0, we 
have x = c1et and y = c1et. This path is the half-line y = x, x > 0, when c1 > 0, 
and the half-line y = x, x < 0, when c1 < 0, and again both paths approach 
and enter the origin as t → –∞. When both c1 and c2 are ≠ 0, the paths 
lie on the parabolas y x c c x= + ( )2 1

2 2, which go through the origin with 

y

x

D

B

C

A

FIGURE 73
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slope 1. It should be understood that each of these paths consists of only 
part of a parabola, the part with x > 0 if c1 > 0, and the part with x < 0 
if c1 < 0. Each of these paths also approaches and enters the origin as 
t → –∞; this can be seen at once from (6). If we proceed directly from (5) 
to the differential equation

 

dy
dx

x y
x

=
+– 2

, (7)

giving the slope of the tangent to the path through (x,y) [provided (x,y) 
≠ (0,0)], then on solving (7) as a homogeneous equation, we find that 
y = x + cx2. This procedure yields the curves on which the paths lie (except 
those on the y axis), but gives no information about the manner in which 
the paths are traced out. It is clear from this discussion that the critical 
point (0,0) of the system (5) is a node.

Saddle points. A critical point like that in Figure 75 is called a saddle point. It 
is approached and entered by two half-line paths AO and BO as t → ∞, and 
these two paths lie on a line AB. It is also approached and entered by two 
half-line paths CO and DO at t → –∞, and these two paths lie on another line 
CD. Between the four half-line paths there are four regions, and each con-
tains a family of paths resembling hyperbolas. These paths do not approach 
O as t → ∞ or as t → –∞, but instead are asymptotic to one or another of the 
half-line paths as t → ∞ and as t → –∞.

y

x

FIGURE 74
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Centers. A center (sometimes called a vortex) is a critical point that is sur-
rounded by a family of closed paths. It is not approached by any path as 
t → ∞ or as t → –∞.

Example 2. The system

 

dx
dt

y

dy
dt

x

=

=

ì

í
ïï

î
ï
ï

–
 (8)

has the origin as its only critical point, and its general solution is

 

x c t c t

y c t c t

= +
= +

ì
í
î

– sin cos
cos sin .
1 2

1 2
 (9)

The solution satisfying the conditions x(0) = 1 and y(0) = 0 is clearly

 

x t

y t

=
=

ì
í
î

cos
sin ;

 (10)

y

A

C

D

x

B

FIGURE 75
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and the solution determined by x(0) = 0 and y(0) = −1 is

 

x t t

y t t

= = -æ
è
ç

ö
ø
÷

= - = -æ
è
ç

ö
ø
÷

ì
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ïï

î
ï
ï

sin cos

cos sin

p

p
2

2
.
 (11)

These two different solutions define the same path C (Figure 76), which 
is evidently the circle x2 + y2 = 1. Both (10) and (11) show that this path is 
traced out in the counterclockwise direction. If we eliminate t between 
the equations of the system, we get

 

dy
dx

x
y

= – ,

whose general solution x2 + y2 = c2 yields all the paths (but without their 
directions). It is obvious that the critical point (0,0) of the system (8) is a 
center.

Spirals. A critical point like that in Figure 77 is called a spiral (or sometimes 
a focus). Such a point is approached in a spiral-like manner by a family of 
paths that wind around it an infinite number of times as t → ∞ (or as t → –∞). 

y

x1 2

C

FIGURE 76 
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Note particularly that while the paths approach O, they do not enter it. That 
is, a point P moving along such a path approaches O as t → ∞ (or as t → –∞), 
but the line OP does not approach any definite direction.

Example 3. If a is an arbitrary constant, then the system

 

dx
dt

ax y

dy
dt

x ay

=

= +

ì

í
ïï

î
ï
ï

–
 (12)

has the origin as its only critical point (why?). The differential equation 
of the paths,

 

dy
dx

x ay
ax y

=
+
–

, (13)

is most easily solved by introducing polar coordinates r and θ defined by 
x = r cos θ and y = r sin θ. Since

 
r x y

y
x

2 2 2 1= + = -and q tan ,

y

x

FIGURE 77
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we see that

 
r

dr
dx

x y
dy
dx

r
d
dx

x
dy
dx

y= + =and 2 q
– .

With the aid of these equations, (13) can easily be written in the very 
simple form

 

dr
d

ar
q

= ,

so

 r = ceaθ (14)

is the polar equation of the paths. The two possible spiral configurations 
are shown in Figure 78 and the direction in which these paths are tra-
versed can be seen from the fact that dx/dt = −y when x = 0. If a = 0, then 
(12) collapses to (8) and (14) becomes r = c, which is the polar equation of 
the family x2 + y2 = c2 of all circles centered on the origin. This example 
therefore generalizes Example 2; and since the center shown in Figure 76 
stands on the borderline between the spirals of Figure 78, a critical point 
that is a center is often called a borderline case. We will encounter other 
borderline cases in the next section.

We now introduce the concept of stability as it applies to the critical points of 
the system (1).

It was pointed out in the previous section that one of the most important 
questions in the study of a physical system is that of its steady states. However, 
a steady state has little physical significance unless it has a reasonable degree 

x

y

x

y

a > 0 a < 0

FIGURE 78



527Nonlinear Equations

of permanence, i.e., unless it is stable. As a simple example, consider the pen-
dulum of Figure 79. There are two steady states possible here: when the bob 
is at rest at the highest point, and when the bob is at rest at the lowest point. 
The first state is clearly unstable, and the second is stable. We now recall 
that a steady state of a simple physical system corresponds to an equilibrium 
point (or critical point) in the phase plane. These considerations suggest in a 
general way that a small disturbance at an unstable equilibrium point leads 
to a larger and larger departure from this point, while the opposite is true at 
a stable equilibrium point.

We now formulate these intuitive ideas in a more precise way. Consider 
an isolated critical point of the system (1), and assume for the sake of con-
venience that this point is located at the origin O = (0,0) of the phase plane. 
This critical point is said to be stable if for each positive number R there 
exists a positive number r ≤ R such that every path which is inside the cir-
cle x2 + y2 = r2 for some t = t0 remains inside the circle x2 + y2 = R2 for all t > t0 
(Figure 80). Loosely speaking, a critical point is stable if all paths that get 
sufficiently close to the point stay close to the point. Further, our critical 
point is said to be asymptotically stable if it is stable and there exists a circle 
x y r2 2

0
2+ =  such that every path which is inside this circle for some t = t0 

approaches the origin as t → ∞. Finally, if our critical point is not stable, then 
it is called unstable.

As examples of these concepts, we point out that the node in Figure 74, the 
saddle point in Figure 75, and the spiral on the left in Figure 78 are unstable, 
while the center in Figure 76 is stable but not asymptotically stable. The node 
in Figure 73, the spiral in Figure 77, and the spiral on the right in Figure 78 
are asymptotically stable.

m

FIGURE 79
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Problems

 1. For each of the following nonlinear systems: (i) find the critical points; 
(ii) find the differential equation of the paths; (iii) solve this equation to 
find the paths; and (iv) sketch a few of the paths and show the direction 
of increasing t.

 (a) dx
dt

y x

dy
dt

xy
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O
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r
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FIGURE 80
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 (d) 
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2 2 2.

 2. Each of the following linear systems has the origin as an isolated criti-
cal point. (i) Find the general solution. (ii) Find the differential equation 
of the paths. (iii) Solve the equation found in (ii) and sketch a few of the 
paths, showing the direction of increasing t. (iv) Discuss the stability of 
the critical point.

 (a) 
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dt

x

dy
dt
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4

– .

 3. Sketch the phase portrait of the equation d2x/dt2 = 2x3, and show that it 
has an unstable isolated critical point at the origin.

60 Critical Points and Stability for Linear Systems

Our goal in this chapter is to learn as much as we can about nonlinear dif-
ferential equations by studying the phase portraits of nonlinear autonomous 
systems of the form

 

dx
dt

F x y

dy
dt

G x y

=

=
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î
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( , )

( , ).

One aspect of this is the problem of classifying the critical points of such a 
system with respect to their nature and stability. It will be seen in Section 62 
that under suitable conditions this problem can be solved for a given non-
linear system by studying a related linear system. We therefore devote this 
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section to a complete analysis of the critical points of linear autonomous 
systems.

We consider the system

 

dx
dt

a x b y

dy
dt

a x b y
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1 1

2 2 ,
 (1)

which has the origin (0,0) as an obvious critical point. We assume throughout 
this section that

 

a b

a b
1 1

2 2
0¹ , (2)

so that (0,0) is the only critical point. It was proved in Section 56 that (1) has a 
nontrivial solution of the form

 

x Ae

y Be

mt

mt

=
=
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whenever m is a root of the quadratic equation

 m2 − (a1 + b2)m + (a1b2 − a2b1) = 0, (3)

which is called the auxiliary equation of the system. Observe that condition (2) 
implies that zero cannot be a root of (3).

Let m1 and m2 be the roots of (3). We shall prove that the nature of the 
critical point (0,0) of the system (1) is determined by the nature of the num-
bers m1 and m2. It is reasonable to expect that three possibilities will occur, 
according as m1 and m2 are real and distinct, real and equal, or conjugate 
complex. Unfortunately the situation is a little more complicated than this, 
and it is necessary to consider five cases, subdivided as follows.

Major cases:
Case A. The roots m1 and m2 are real, distinct, and of the same sign (node).
Case B.  The roots m1 and m2 are real, distinct, and of opposite signs (saddle 

point).
Case C.  The roots m1 and m2 are conjugate complex but not pure imaginary 

(spiral).

Borderline cases:
Case D. The roots m1 and m2  are real and equal (node).
Case E. The roots m1  and m2  are pure imaginary (center).
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The reason for the distinction between the major cases and the borderline 
cases will become clear in Section 62. For the present it suffices to remark 
that while the borderline cases are of mathematical interest they have lit-
tle significance for applications, because the circumstances defining them 
are unlikely to arise in physical problems. We now turn to the proofs of the 
assertions in parentheses.

Case A. If the roots m1 and m2 are real, distinct, and of the same sign, then 
the critical point (0,0) is a node.

Proof. We begin by assuming that m1 and m2 are both negative, and we 
choose the notation so that m1 < m2 < 0. By Section 56, the general solution of 
(1) in this case is

 

x c A e c A e

y c B e c B e

m t m t

m t m t
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1 1 2 2

1 2
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where the A’s and B’s are definite constants such that B1/A1 ≠ B2/A2, and 
where the c’s are arbitrary constants. When c2 = 0, we obtain the solutions
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and when c1 = 0, we obtain the solutions
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 (6)

For any c1 > 0, the solution (5) represents a path consisting of half of the line 
A1y = B1x with slope B1/A1; and for any c1 < 0, it represents a path consist-
ing of the other half of this line (the half on the other side of the origin). 
Since m1 < 0, both of these half-line paths approach (0,0) as t → ∞; and since 
y/x = B1/A1, both enter (0,0) with slope B1/A1 (Figure 81). In exactly the same 
way, the solutions (6) represent two half-line paths lying on the line A2y = B2x 
with slope B2/A2. These two paths also approach (0,0) as t → ∞,and enter it 
with slope B2/A2.

If c1 ≠ 0 and c2 ≠ 0, the general solution (4) represents curved paths. Since 
m1 < 0 and m2 < 0, these paths also approach (0,0) as t → ∞. Furthermore, since 
m1 − m2 < 0 and
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it is clear that y/x → B2/A2 as t → ∞, so all of these paths enter (0,0) with slope 
B2/A2. Figure 81 presents a qualitative picture of the situation. It is evident 
that our critical point is a node, and that it is asymptotically stable.

If m1 and m2 are both positive, and if we choose the notation so that m1 > 
m2 > 0, then the situation is exactly the same except that all the paths now 
approach and enter (0,0) as t →–∞. The picture of the paths given in Figure 81 
is unchanged except that the arrows showing their directions are all reversed. 
We still have a node, but now it is unstable.

Case B. If the roots m1 and m2 are real, distinct, and of opposite signs, then 
the critical point (0,0) is a saddle point.

Proof. We may choose the notation so that m1 < 0 < m2. The general solu-
tion of (1) can still be written in the form (4), and again we have particular 
solutions of the forms (5) and (6). The two half-line paths represented by (5) 
still approach and enter (0,0) as t → ∞, but this time the two half-line paths 
represented by (6) approach and enter (0,0) as t → –∞. If c1 ≠ 0 and c2 ≠ 0, the 
general solution (4) still represents curved paths, but since m1 < 0 < m2, none 
of these paths approaches (0,0) as t → ∞ or t → –∞. Instead, as t → ∞, each of 
these paths is asymptotic to one of the half-line paths represented by (6); and 
as t → –∞, each is asymptotic to one of the half-line paths represented by (5). 
Figure 82 gives a qualitative picture of this behavior. In this case the critical 
point is a saddle point, and it is obviously unstable.

Case C. If the roots m1, and m2 are conjugate complex but not pure imaginary, 
then the critical point (0,0) is a spiral.

x

y A1y = B1x

A2y = B2x

FIGURE 81
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Proof. In this case we can write m1 and m2 in the form a ± ib where a and b are 
nonzero real numbers. Also, for later use, we observe that the discriminant 
D of equation (3) is negative:

 D = (a1 + b2)2 − 4(a1b2 − a2b1)

 = (a1 − b2)2 + 4a2b1 < 0. (7)

By Section 56, the general solution of (1) in this case is

 

x e c A bt A bt c A bt A bt

y e c B

at

at

= + +
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[ ( c

1 1 2 2 1 2
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-
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ì
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ï

îï
 (8)

where the A’s and B’s are definite constants and the c’s are arbitrary 
constants.

Let us first assume that a < 0. Then it is clear from formulas (8) that x → 0 
and y → 0 as t → ∞, so all the paths approach (0,0) as t →∞. We now prove that 
the paths do not enter the point (0,0) as t → ∞, but instead wind around it in 
a spiral-like manner. To accomplish this we introduce the polar cordinate θ 
and show that, along any path, dθ/dt is either positive for all t or negative for 
all t. We begin with the fact that θ = tan−1 (y/x), so

x

y
A1y = B1x

A2y = B2x

FIGURE 82
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and by using equations (1) we obtain

 

d
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( )
. (9)

Since we are interested only in solutions that represent paths, we assume 
that x2 + y2 ≠ 0. Now (7) implies that a2 and b1 have opposite signs. We con-
sider the case in which a2 > 0 and b1 < 0. When y = 0, (9) yields dθ/dt = a2 > 0. If 
y ≠ 0, dθ/dt cannot be 0; for if it were, then (9) would imply that

 a2x2 + (b2 − a1)xy − b1y2 = 0

or

 
a

x
y

b a
x
y

b2

2

2 1 1 0
æ

è
ç

ö

ø
÷ + - - =( )  (10)

for some real number x/y—and this cannot be true because the discriminant 
of the quadratic equation (10) is D, which is negative by (7). This shows that 
dθ/dt is always positive when a2 > 0, and in the same way we see that it is 
always negative when a2 < 0. Since by (8), x and y change sign infinitely often 
as t → ∞, all paths must spiral in to the origin (counterclockwise or clockwise 
according as a2 > 0 or a2 < 0). The critical point in this case is therefore a spiral, 
and it is asymptotically stable.

If a > 0, the situation is the same except that the paths approach (0,0) as 
t → –∞ and the critical point is unstable. Figure 78 illustrates the arrange-
ment of the paths when a2 > 0.

Case D. If the roots m1 and m2 are real and equal, then the critical point (0,0) 
is a node.

Proof. We begin by assuming that m1 = m2 = m < 0. There are two subcases 
that require separate discussion: (i) a1 = b2 ≠ 0 and a2 = b1 =0; (ii) all other pos-
sibilities leading to a double root of equation (3).

We first consider the subcase (i), which is the situation described in the 
footnote in Section 56. If a denotes the common value of a1 and b2, then equa-
tion (3) becomes m2 − 2am + a2 = 0 and m = a. The system (1) is thus
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dt

ax
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î
ï
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,
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and its general solution is

 

x c e

y c e

mt

mt

=
=

ì
í
ï

îï
1

2 ,
 (11)

where c1 and c2 are arbitrary constants. The paths defined by (11) are half-
lines of all possible slopes (Figure 83), and since m < 0 we see that each path 
approaches and enters (0,0) as t → ∞. The critical point is therefore a node, 
and it is asymptotically stable. If m > 0, we have the same situation except 
that the paths enter (0,0) as t → –∞, the arrows in Figure 83 are reversed, and 
(0,0) is unstable.

We now discuss subcase (ii). By formulas 56-(20) and Problem 56-(4), the 
general solution of (1) can be written in the form

 

x c Ae c A At e

y c Be c B Bt e

mt mt

mt mt

= + +
= + +

ì
í
ï

îï
1 2 1

1 2 1

( )
( ) ,

 (12)

where the A’s and B’s are definite constants and the c’s are arbitrary con-
stants. When c2 = 0, we obtain the solutions

x

y

FIGURE 83
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x c Ae

y c Be
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ì
í
ï
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1 .
 (13)

We know that these solutions represent two half-line paths lying on the line 
Ay = Bx with slope B/A, and since m < 0 both paths approach (0,0) as t → ∞ 
(Figure 84). Also, since y/x = B/A, both paths enter (0,0) with slope B/A. If 
c2 ≠ 0, the solutions (12) represent curved paths, and since m < 0 it is clear 
from (12) that these paths approach (0,0) as t → ∞. Furthermore, it follows 
from

 

y
x

c Be c B Bt e
c Ae c A At e

c B c B Bt
c A c

mt mt

mt mt= + +
+ +

=
+ +1 2 1

1 2 1
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that y/x → B/A as t → ∞, so these curved paths all enter (0,0) with slope B/A. 
We also observe that y/x → B/A as t → –∞. Figure 84 gives a qualitative pic-
ture of the arrangement of these paths. It is clear that (0,0) is a node that is 
asymptotically stable. If m > 0, the situation is unchanged except that the 
directions of the paths are reversed and the critical point is unstable.

Case E. If the roots m1 and m2 are pure imaginary, then the critical point (0,0) 
is a center.

x

Ay = Bx

y

FIGURE 84
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Proof. It suffices here to refer back to the discussion of Case C, for now m1 
and m2 are of the form a ± ib with a = 0 and b ≠ 0. The general solution of 
(1) is therefore given by (8) with the exponential factor missing, so x(t) and 
y(t) are periodic and each path is a closed curve surrounding the origin. As 
Figure 85 suggests, these curves are actually ellipses; this can be proved (see 
Problem 5) by solving the differential equation of the paths,

 

dy
dx

a x b y
a x b y

=
+
+

2 2

1 1
. (14)

Our critical point (0,0) is evidently a center that is stable but not asymptoti-
cally stable.

In the above discussions we have made a number of statements about sta-
bility. It will be convenient to summarize this information as follows.

Theorem A. The critical point (0,0) of the linear system (1) is stable if and only if 
both roots of the auxiliary equation (3) have nonpositive real parts, and it is asymp-
totically stable if and only if both roots have negative real parts.

If we now write equation (3) in the form

 (m − m1)(m − m2) = m2 + pm + q = 0, (15)

y

x

FIGURE 85
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so that p = −(m1 + m2) and q = m1m2, then our five cases can be described just as 
readily in terms of the coefficients p and q as in terms of the roots m1 and m2. 
In fact, if we interpret these cases in the pq-plane, then we arrive at a striking 
diagram (Figure 86) that displays at a glance the nature and stability proper-
ties of the critical point (0,0). The first thing to notice is that the p-axis q = 0 is 
excluded, since by condition (2) we know that m1m2 ≠ 0. In the light of what 
we have learned about our five cases, all of the information contained in the 
diagram follows directly from the fact that

 
m m

p p q
1 2

2 4
2

, =
- ± -

.

Thus, above the parabola p2 − 4q = 0, we have p2 − 4q < 0, so m1 and m2 are 
conjugate complex numbers that are pure imaginary if and only if p = 0; these 
are Cases C and E comprising the spirals and centers. Below the p-axis we 
have q < 0, which means that m1 and m2 are real, distinct, and have opposite 
signs; this yields the saddle points of Case B. And finally, the zone between 
these two regions (including the parabola but excluding the p-axis) is charac-
terized by the relations p2 − 4q ≥ 0 and q > 0, so m1 and m2 are real and of the 
same sign; here we have the nodes of Cases A and D. Furthermore, it is clear 
that there is precisely one region of asymptotic stability: the first quadrant. 
We state this formally as follows.

Theorem B. The critical point (0,0) of the linear system (1) is asymptotically stable 
if and only if the coefficients p = −(a1 + b2) and q = a1b2 − a2b1 of the auxiliary equation 
(3) are both positive.

Finally, it should be emphasized that we have studied the paths of our linear 
system near a critical point by analyzing explicit solutions of the system. 

Nodes
Nodes Borderli

ne n
odes

Borderline nodes

Unstable

StableUnstable

Saddle points
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Asymptotically
stable

p2–4q = 0

q
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In the next two sections we enter more fully into the spirit of the subject by 
investigating similar problems for nonlinear systems, which in general can-
not be solved explicitly.

Problems

 1. Determine the nature and stability properties of the critical point (0,0) 
for each of the following linear autonomous systems:

 (a) dx
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.

 2. If a1b2 − a2b1 = 0, show that the system (1) has infinitely many critical 
points, none of which are isolated.
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 3. (a) If a1b2 − a2b1 ≠ 0, show that the system
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2 2 2

  has a single isolated critical point (x0,y0).
 (b)  Show that the system in (a) can be written in the form of (1) by 

means of the change of variables x x x= – 0 and y y y= – 0.
 (c) Find the critical point of the system
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11 8 49

–

– ,

 write the system in the form of (1) by changing the variables, and deter-
mine the nature and stability properties of the critical point.

 4. In Section 20 we studied the free vibrations of a mass attached to a 
spring by solving the equation

 

d x
dt

b
dx
dt

a x
2

2
22 0+ + = ,

 where b ≥ 0 and a > 0 are constants representing the viscosity of the 
medium and the stiffness of the spring, respectively. Consider the 
equivalent autonomous system
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(*)

  which has (0,0) as its only critical point.
 (a) Find the auxiliary equation of (*). What are p and q?
 (b)  For each of the following four cases, describe the nature and stabil-

ity properties of the critical point, and give a brief physical interpre-
tation of the corresponding motion of the mass:

 (i) b = 0;
 (ii) 0 < b < a;
 (iii) b = a;

 (iv) b > a.
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 5. Solve equation (14) under the hypotheses of Case E, and show that the 
result is a one-parameter family of ellipses surrounding the origin. 
Hint: Recall that if Ax2 + Bxy + Cy2 = D is the equation of a real curve, 
then the curve is an ellipse if and only if the discriminant B2 − 4AC is 
negative.

61 Stability By Liapunov’s Direct Method

It is intuitively clear that if the total energy of a physical system has a local 
minimum at a certain equilibrium point, then that point is stable. This idea 
was generalized by Liapunov6 into a simple but powerful method for study-
ing stability problems in a broader context. We shall discuss Liapunov’s 
method and some of its applications in this and the next section.

Consider an autonomous system
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F x y
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 (1)

and assume that this system has an isolated critical point, which as usual 
we take to be the origin (0,0).7 Let C = [x(t),y(t)] be a path of (1), and consider a 
function E(x,y) that is continuous and has continuous first partial derivatives 
in a region containing this path. If a point (x,y) moves along the path in accor-
dance with the equations x = x(t) and y = y(t), then E(x,y) can be regarded as a 
function of t along C [we denote this function by E(t)] and its rate of change is
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6 Alexander Mikhailovich Liapunov (1857–1918) was a Russian mathematician and mechani-
cal engineer. He had the very rare merit of producing a doctoral dissertation of lasting value. 
This classic work was originally published in 1892 in Russian, but is now available in an 
English translation. Stability of Motion, Academic Press, New York, 1966. Liapunov died by 
violence in Odessa, which cannot be considered a surprising fate for a middle-class intel-
lectual in the chaotic aftermath of the Russian Revolution.

7 A critical point (x0,y0) can always be moved to the origin by a simple translation of coordi-
nates x x x= – 0 and y y y= – 0, so there is no loss of generality in assuming that it lies at the 
origin in the first place.
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This formula is at the heart of Liapunov’s ideas, and in order to exploit it 
we need several definitions that specify the kinds of functions we shall be 
interested in.

Suppose that E(x,y) is continuous and has continuous first partial deriva-
tives in some region containing the origin. If E vanishes at the origin, so 
that E(0,0) = 0, then it is said to be positive definite if E(x,y) > 0 for (x,y) ≠ (0,0), 
and negative definite if E(x,y) < 0 for (x,y) ≠ (0,0). Similarly, E is called positive 
semidefinite if E(0,0) = 0 and E(x,y) ≥ 0 for (x,y) ≠ (0,0), and negative semidefinite 
if E(0,0) = 0 and E(x,y) ≤ 0 for (x,y) ≠ (0,0). It is clear that functions of the form 
ax2m + by2n, where a and b are positive constants and m and n are positive inte-
gers, are positive definite. Since E(x,y) is negative definite if and only if −E(x,y) 
is positive definite, functions of the form ax2m + by2n with a < 0 and b < 0 are 
negative definite. The functions x2m, y2m, and (x − y)2m are not positive defi-
nite, but are nevertheless positive semidefinite. If E(x,y) is positive definite, 
then z = E(x,y) can be interpreted as the equation of a surface (Figure 87) that 
resembles a paraboloid opening upward and tangent to the xy-plane at the 
origin.

A positive definite function E(x,y) with the property that
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FIGURE 87
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is negative semidefinite is called a Liapunov function for the system (1). By 
formula (2), the requirement that (3) be negative semidefinite means that 
dE/dt ≤ 0—and therefore E is nonincreasing—along the paths of (1) near the 
origin. These functions generalize the concept of the total energy of a physi-
cal system. Their relevance for stability problems is made clear in the follow-
ing theorem, which is Liapunov’s basic discovery.

Theorem A. If there exists a Liapunov function E(x,y) for the system (1), then the 
critical point (0,0) is stable. Furthermore, if this function has the additional property 
that the function (3) is negative definite, then the critical point (0,0) is asymptotically 
stable.

Proof. Let C1 be a circle of radius R > 0 centered on the origin (Figure 88), and 
assume also that C1 is small enough to lie entirely in the domain of definition 
of the function E. Since E(x,y) is continuous and positive definite, it has a pos-
itive minimum m on C1. Next, E(x,y) is continuous at the origin and vanishes 
there, so we can find a positive number r < R such that E(x,y) < m whenever 
(x,y) is inside the circle C2 of radius r. Now let C = [x(t), y(t)] be any path which 
is inside C2 for t = t0. Then E(t0) < m, and since (3) is negative semidefinite we 
have dE/dt ≤ 0, which implies that E(t) ≤ E(t0) < m for all t > t0. It follows that 
the path C can never reach the circle C1 for any t > t0, so we have stability.

To prove the second part of the theorem, it suffices to show that under 
the additional hypothesis we also have E(t) → 0, for since E(x,y) is positive 
definite this will imply that the path C approaches the critical point (0,0). 

y

Rrr

t = t0

x

C

C2

C1

C3

FIGURE 88
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We begin by observing that since dE/dt < 0, it follows that E(t) is a decreasing 
function; and since by hypothesis E(t) is bounded below by 0, we conclude 
that E(t) approaches some limit L ≥ 0 as t → ∞. To prove that E(t) → 0 it suf-
fices to show that L = 0, so we assume that L > 0 and deduce a contradiction. 
Choose a positive number r r<  with the property that E(x,y) < L whenever 
(x,y) is inside the circle C3 with radius r . Since the function (3) is continuous 
and negative definite, it has a negative maximum −k in the ring consisting 
of the circles C1 and C3 and the region between them. This ring contains the 
entire path C for t ≥ t0, so the equation

 

E t E t
dE
dt

dt
t

t

( ) ( )= + ò0

0

yields the inequality

 E(t) ≤ E(t0) − k(t − t0) (4)

for all t ≥ t0. However, the right side of (4) becomes negatively infinite as 
t → ∞, so E(t) → −∞ as t → ∞. This contradicts the fact that E(x,y) ≥ 0, so we 
conclude that L = 0 and the proof is complete.

Example 1. Consider the equation of motion of a mass m attached to a 
spring:
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kx
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2 0+ + = . (5)

Here c ≥ 0 is a constant representing the viscosity of the medium through 
which the mass moves, and k > 0 is the spring constant. The autonomous 
system equivalent to (5) is
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and its only critical point is (0,0). The kinetic energy of the mass is my2/2, 
and the potential energy (or the energy stored in the spring) is

 
kx dx kx
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.



545Nonlinear Equations

Thus the total energy of the system is

 
E x y my kx( , ) = +

1
2

1
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2 2. (7)

It is easy to see that (7) is positive definite; and since
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(7) is a Liapunov function for (6) and the critical point (0,0) is stable. We 
know from Problem 60–4 that when c > 0 this critical point is asymptoti-
cally stable, but the particular Liapunov function discussed here is not 
capable of detecting this fact.8

Example 2. The system
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has (0,0) as an isolated critical point. Let us try to prove stability by con-
structing a Liapunov function of the form E(x,y) = ax2m + by2n. It is clear 
that
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We wish to make the expression in parentheses vanish, and inspection 
shows that this can be done by choosing m = 1, n = 1, a = 1, and b = 2. With 
these choices we have E(x,y) = x2 + 2y2 (which is positive definite) and 
(∂E/∂x)F + (∂E/∂y)G = −4y4 (which is negative semidefinite). The critical 
point (0,0) of the system (8) is therefore stable.

It is clear from this example that in complicated situations it may be very dif-
ficult indeed to construct suitable Liapunov functions. The following result 
is sometimes helpful in this connection.

8 It is known that both stability and asymptotic stability can always be detected by suitable 
Liapunov functions, but knowing in principle that such a function exists is a very differ-
ent matter from actually finding one. For references on this point, see L. Cesari, Asymptotic 
Behavior and Stability Problems in Ordinary Differential Equations, p. 111, Academic Press, 
New York, 1963; or G. Sansone and R. Conti, Non-Linear Differential Equations, p. 481, Macmillan, 
New York, 1964.



546 Differential Equations with Applications and Historical Notes

Theorem B The function E(x,y) = ax2 + bxy + cy2 is positive definite if and only if 
a > 0 and b2 − 4ac < 0, and is negative definite if and only if a < 0 and b2 − 4ac < 0.

Proof. If y = 0, we have E(x,0) = ax2, so E(x,0) > 0 for x ≠ 0 if and only if a > 0. 
If y ≠ 0, we have
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and when a > 0 the bracketed polynomial in x/y (which is positive for large 
x/y) is positive for all x/y if and only if b2 − 4ac < 0. This proves the first part 
of the theorem, and the second part follows at once by considering the func-
tion −E(x,y).

Problems

 1. Determine whether each of the following functions is positive definite, 
negative definite, or neither:

 (a) x2 − xy − y2;
 (b) 2x2 − 3xy + 3y2;
 (c) −2x2 + 3xy − y2;
 (d) −x2 − 4xy − 5y2.
 2. Show that a function of the form ax3 + bx2y + cxy2 + dy3 cannot be either 

positive definite or negative definite.
 3. Show that (0,0) is an asymptotically stable critical point for each of the 

following systems:

 (a) dx
dt

x y

dy
dt

x y

=

=

ì

í
ïï

î
ï
ï

– –

– ;

3

2

3

5 3

 (b) dx
dt

x xy

dy
dt

x y y

= +

=

ì

í
ïï

î
ï
ï

–

– – .

2 3

2 2 3

 4. Prove that the critical point (0,0) of the system (1) is unstable if there 
exists a function E(x,y) with the following properties:

 (a)  E(x,y) is continuous and has continuous first partial derivatives in 
some region containing the origin;
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 (b) E(0,0) = 0;
 (c)  every circle centered on (0,0) contains at least one point where E(x,y) 

is positive;
 (d) (∂E/∂x)F + (∂E/∂y)G is positive definite.
 5. Show that (0,0) is an unstable critical point for the system
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 6. Assume that f(x) is a function such that f(0) = 0 and xf(x) > 0 for x ≠ 0 
[that is, f(x) > 0 when x > 0 and f(x) < 0 when x < 0].

 (a) Show that
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0

is positive definite.
 (b) Show that the equation

 

d x
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f x
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has x = 0, y = dx/dt = 0 as a stable critical point.
 (c) If g(x) ≥ 0 in some neighborhood of the origin, show that the equation
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g x
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f x
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has x = 0, y = dx/df = 0 as a stable critical point.

62 Simple Critical Points of Nonlinear Systems

Consider an autonomous system
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with an isolated critical point at (0,0). If F(x,y) and G(x,y) can be expanded in 
power series in x and y, then (1) takes the form
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When |x| and |y| are small—that is, when (x,y) is close to the origin—the 
terms of second degree and higher are very small. It is therefore natural to 
discard these nonlinear terms and conjecture that the qualitative behavior of 
the paths of (2) near the critical point (0,0) is similar to that of the paths of the 
related linear system
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We shall see that in general this is actually the case. The process of replacing 
(2) by the linear system (3) is usually called linearization.

More generally, we shall consider systems of the form
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It will be assumed that

 

a b

a b
1 1

2 2
0¹ , (5)

so that the related linear system (3) has (0,0) as an isolated critical point; that 
f(x,y) and g(x,y) are continuous and have continuous first partial derivatives 
for all (x,y); and that as (x,y) → (0,0) we have

 

lim
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x y2 2 2 2
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Observe that conditions (6) imply that f(0,0) = 0 and g(0,0) = 0, so (0,0) is a criti-
cal point of (4); also, it is not difficult to prove that this critical point is isolated 
(see Problem 1). With the restrictions listed above, (0,0) is said to be a simple 
critical point of the system (4).
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Example 1. In the case of the system
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x y xy
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we have

 

a b

a b
1 1

2 2

2 3
1 1

1 0= = ¹
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,

so (5) is satisfied. Furthermore, by using polar coordinates we see that
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x y
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so f(x,y)/r and g(x,y)/r → 0 as (x,y) → (0,0) (or as r → 0). This shows that 
conditions (6) are also satisfied, so (0,0) is a simple critical point of the 
system (7).

The main facts about the nature of simple critical points are given in the fol-
lowing theorem of Poincaré, which we state without proof.9

Theorem A. Let (0,0) be a simple critical point of the nonlinear system (4), and 
consider the related linear system (3). If the critical point (0,0) of (3) falls under any 
one of the three major cases described in Section 60, then the critical point (0,0) of (4) 
is of the same type.

9 Detailed treatments can be found in W. Hurewicz, Lectures on Ordinary Differential Equations, 
pp. 86–98, MIT, Cambridge, Mass., 1958; L. Cesari, Asymptotic Behavior and Stability Problems in 
Ordinary Differential Equations, pp. 157–163, Academic Press, New York, 1963; or F. G. Tricomi, 
Differential Equations, pp. 53–72, Blackie, Glasgow, 1961.
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As an illustration, we examine the nonlinear system (7) of Example 1, whose 
related linear system is

 

dx
dt

x y

dy
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x y

= +

= +
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–

– .

2 3
 (8)

The auxiliary equation of (8) is m2 + m + 1 = 0, with roots

 
m m

i
1 2

1 3
2

, =
±-

.

Since these roots are conjugate complex but not pure imaginary, we have 
Case C and the critical point (0,0) of the linear system (8) is a spiral. By 
Theorem A, the critical point (0,0) of the nonlinear system (7) is also a spiral.

It should be understood that while the type of the critical point (0,0) is the 
same for (4) as it is for (3) in the cases covered by the theorem, the actual 
appearance of the paths may be somewhat different. For example, Figure 82 
shows a typical saddle point for a linear system, whereas Figure 89 suggests 
how a nonlinear saddle point might look. A certain amount of distortion is 
clearly present in the latter, but nevertheless the qualitative features of the 
two configurations are the same.

It is natural to wonder about the two borderline cases, which are not men-
tioned in Theorem A. The facts are these: if the related linear system (3) has a 
borderline node at the origin (Case D), then the nonlinear system (4) can have 

x

y

FIGURE 89
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either a node or a spiral; and if (3) has a center at the origin (Case E), then (4) 
can have either a center or a spiral. For example, (0,0) is a critical point for 
each of the nonlinear systems

 

dx
dt

y x

dy
dt

x
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dt

y x
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dt
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In each case the related linear system is
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.
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It is easy to see that (0,0) is a center for (10). However, it can be shown that 
while (0,0) is a center for the first system of (9), it is a spiral for the second.10

We have already encountered a considerable variety of configurations at 
critical points of linear systems, and the above remarks show that no new 
phenomena appear at simple critical points of nonlinear systems. What about 
critical points that are not simple? The possibilities here can best be appreci-
ated by examining a nonlinear system of the form (2). If the linear terms in 
(2) do not determine the pattern of the paths near the origin, then we must 
consider the second degree terms; if these fail to determine the pattern, then 
the third degree terms must be taken into account, and so on. This suggests 
that in addition to the linear configurations, a great many others can arise, of 
infinite variety and staggering complexity. Several are shown in Figure 90. 
It is perhaps surprising to realize that such involved patterns as these can 
occur in connection with systems of rather simple appearance. For example, 
the three figures in the upper row show the arrangement of the paths of
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In the first case, this can be seen at once by looking at Figure 3 and 
equation 3-(8).

We now discuss the question of stability for a simple critical point. The 
main result here is due to Liapunov: if (3) is asymptotically stable at the ori-
gin, then (4) is also. We state this formally as follows.

10 See Hurewicz, op. cit., p. 99.
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Theorem B. Let (0,0) be a simple critical point of the nonlinear system (4), and 
consider the related linear system (3). If the critical point (0,0) of (3) is asymptotically 
stable, then the critical point (0,0) of (4) is also asymptotically stable.

Proof. By Theorem 61-A, it suffices to construct a suitable Liapunov function 
for the system (4), and this is what we do.

Theorem 60–B tells us that the coefficients of the linear system (3) satisfy 
the conditions

 p = −(a1 + b2) > 0 and q = a1b2 − a2b1 > 0. (11)

Now define

 
E x y ax bxy cy( , ) ( )= + +1

2
22 2

by putting

 
a

a b a b a b
D

= + +2
2

2
2

1 2 2 1( )
,

-

 
b

a a b b
D

= +
– ,1 2 1 2

and

 
c

a b a b a b
D

= + +1
2

1
2

1 2 2 1( )
,

-

FIGURE 90
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where

 D = pq = −(a1 + b2)(a1b2 − a2b1).

By (11), we see that D > 0 and a > 0. Also, an easy calculation shows that
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2
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>
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,

so b2 − ac < 0. Thus, by Theorem 61-B, we know that the function E(x,y) is 
positive definite. Furthermore, another calculation (whose details we leave 
to the reader) yields

 

¶
¶

+ + ¶
¶

+ = - +E
x

a x b y
E
y

a x b y x y( ) ( ) ( )1 1 2 2
2 2 . (12)

This function is clearly negative definite, so E(x,y) is a Liapunov function for 
the linear system (3).11

We next prove that E(x,y) is also a Liapunov function for the nonlinear 
system (4). If F and G are defined by

 F(x,y) = a1x + b1y + f(x,y)

and

 G(x,y) = a2x + b2y + g(x,y),

then since E is known to be positive definite, it suffices to show that

 

¶
¶

+ ¶
¶

E
x

F
E
y

G  (13)

11 The reason for the definitions of a, b, and c can now be understood: we want (12) to be true.
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is negative definite. If we use (12), then (13) becomes

 −(x2 + y2) + (ax + by)f(x,y) + (bx + cy)g(x,y);

and by introducing polar coordinates we can write this as

 −r2 + r[(a cos θ + b sin θ)f(x,y) + (b cos θ + c sin θ)g(x,y)].

Denote the largest of the numbers |a|, |b|, |c| by K. Our assumption (6) now 
implies that

 
| ( , )| | ( , )|f x y

r
K

g x y
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6 6

and

for all sufficiently small r > 0, so
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6 3

0

for these r’s. Thus E(x,y) is a positive definite function with the property that 
(13) is negative definite. Theorem 61-A now implies that (0,0) is an asymptoti-
cally stable critical point of (4), and the proof is complete.

To illustrate this theorem, we again consider the nonlinear system (7) of 
Example 1, whose related linear system is (8). For (8) we have p = 1 > 0 and 
q = 1 > 0, so the critical point (0,0) is asymptotically stable, both for the linear 
system (8) and for the nonlinear system (7).

Example 2. We know from Section 58 that the equation of motion for the 
damped vibrations of a pendulum is
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c
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where c is a positive constant. The equivalent nonlinear system is
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Let us now write (14) in the form
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It is easy to see that

 

x x

x y
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2 2

0
+

®

as (x,y) → (0,0), for if x ≠ 0, we have

 

x x
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and since (0,0) is evidently an isolated critical point of the related linear 
system
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 (16)

it follows that (0,0) is a simple critical point of (15). Inspection shows 
(p = c/m > 0 and q = g/a > 0) that (0,0) is an asymptotically stable critical 
point of (16), so by Theorem B it is also an asymptotically stable critical 
point of (15). This reflects the obvious physical fact that if the pendulum 
is slightly disturbed, then the resulting motion will die out with the pas-
sage of time.

Problems

 1. Prove that if (0,0) is a simple critical point of (4), then it is necessar-
ily isolated. Hint: Write conditions (6) in the form f(x,y)/r = є1 → 0 and 
g(x,y)/r = є2 → 0, and in the light of (5) use polar coordinates to deduce a 
contradiction from the assumption that the right sides of (4) both vanish 
at points arbitrarily close to the origin but different from it.
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 2. Sketch the family of curves whose polar equation is r = a sin 2θ (see 
Figure 90), and express the differential equation of this family in the 
form dy/dx = G(x,y)/F(x,y).

 3. If (0,0) is a simple critical point of (4) and q = a1b2 − a2b1 < 0, then 
Theorem A implies that (0,0) is a saddle point of (4) and is therefore 
unstable. Prove that if p = −(a1 + b2) < 0 and q = a1b2 − a2b1 > 0, then (0,0) is 
an unstable critical point of (4). Hint: Adapt the proof of Theorem B to 
show that there exists a positive definite function E(x,y) such that
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+ = +E
x

a x b y
E
y

a x b y x y( ) ( )1 1 2 2
2 2,

 and apply Problem 61-4. (Observe that these facts together with Theorem 
B demonstrate that all the information in Figure 86 about asymptotic 
stability and instability carries over directly to nonlinear systems with 
simple critical points from their related linear systems.)

 4. Show that (0,0) is an asymptotically stable critical point of
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 but is an unstable critical point of
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 How are these facts related to the parenthetical remark in Problem 3?
 5. Verify that (0,0) is a simple critical point for each of the following sys-

tems, and determine its nature and stability properties:

 (a) dx
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 6. The van der Pol equation
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 is equivalent to the system
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 Investigate the stability properties of the critical point (0,0) for the cases 
μ > 0 and μ < 0.

63 Nonlinear Mechanics. Conservative Systems

It is well known that energy is dissipated in the action of any real dynamical 
system, usually through some form of friction. However, in certain situa-
tions this dissipation is so slow that it can be neglected over relatively short 
periods of time. In such cases we assume the law of conservation of energy, 
namely, that the sum of the kinetic energy and the potential energy is con-
stant. A system of this kind is said to be conservative. Thus the rotating earth 
can be considered a conservative system over short intervals of time involv-
ing only a few centuries, but if we want to study its behavior throughout 
millions of years we must take into account the dissipation of energy by tidal 
friction.

The simplest conservative system consists of a mass m attached to a spring 
and moving in a straight line through a vacuum. If x denotes the displace-
ment of m from its equilibrium position, and the restoring force exerted on m 
by the spring is −kx where k > 0, then we know that the equation of motion is

 
m

d x
dt

kx
2

2 0+ = .

A spring of this kind is called a linear spring because the restoring force is a 
linear function of x. If m moves through a resisting medium, and the resis-
tance (or damping force) exerted on m is −c(dx/dt) where c > 0, then the equa-
tion of motion of this nonconservative system is

 
m

d x
dt

c
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kx
2
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Here we have linear damping because the damping force is a linear function 
of dx/dt. By analogy, if f and g are arbitrary functions with the property that 
f(0) = 0 and g(0) = 0, then the more general equation
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d x
dt
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f x
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è
ç

ö
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can be interpreted as the equation of motion of a mass m under the action of 
a restoring force −f(x) and a damping force −g(dx/dt). In general these forces are 
nonlinear, and equation (1) can be regarded as the basic equation of nonlin-
ear mechanics. In this section we shall briefly consider the special case of a 
nonlinear conservative system described by the equation

 
m
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f x
2

2 0+ =( ) , (2)

in which the damping force is zero and there is consequently no dissipation 
of energy.12

Equation (2) is equivalent to the autonomous system
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If we eliminate dt, we obtain the differential equation of the paths of (3) in 
the phase plane,

 

dy
dx

f x
my

= –
( )

, (4)

and this can be written in the form

 my dy = −f(x) dx. (5)

If x = x0 and y = y0 when t = t0, then integrating (5) from t0 to t yields
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12 Extensive discussions of (1), with applications to a variety of physical problems, can be 
found in J. J. Stoker, Nonlinear Vibrations, Interscience-Wiley, New York, 1950; and in A. A. 
Andronow and C. E. Chaikin, Theory of Oscillations, Princeton University Press, Princeton, 
N.J., 1949.
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or
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To interpret this result, we observe that 
1
2

my2 = 
1
2

m(dx/dt)2 is the kinetic 
energy of the dynamical system and

 

V x f x dx
x

( ) ( )= ò
0

 (7)

is its potential energy. Equation (6) therefore expresses the law of conserva-
tion of energy,

 

1
2

2my V x E+ =( ) , (8)

where E my V x= +1
2 0

2
0( ) is the constant total energy of the system. It is clear 

that (8) is the equation of the paths of (3), since we obtained it by solving (4). 
The particular path determined by specifying a value of E is a curve of con-
stant energy in the phase plane. The critical points of the system (3) are the 
points (xc,0) where the xc are the roots of the equation f(x) = 0. As we pointed 
out in Section 58, these are the equilibrium points of the dynamical system 
described by (2). It is evident from (4) that the paths cross the x-axis at right 
angles and are horizontal when they cross the lines x = xc. Equation (8) also 
shows that the paths are symmetric with respect to the x-axis.

If we write (8) in the form

 
y

m
E V x= ± -2

[ ( )], (9)

then the paths can be constructed by the following easy steps. First, estab-
lish an xz-plane with the z-axis on the same vertical line as the y-axis of the 
phase plane (Figure 91). Next, draw the graph of z = V(x) and several hori-
zontal lines z = E in the xz-plane (one such line is shown in the figure), and 
observe the geometric meaning of the difference E − V(x). Finally, for each x, 
multiply E − V(x) as obtained in the preceding step by 2/m and use formula 
(9) to plot the corresponding values of y in the phase plane directly below. 
Note that since dx/dt = y, the positive direction along any path is to the right 
above the x-axis and to the left below this axis.
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Example 1. We saw in Section 58 that the equation of motion of an 
undamped pendulum is

 

d x
dt

k x
2

2 0+ =sin , (10)

where k is a positive constant. Since this equation is of the form (2), it can 
be interpreted as describing the undamped rectilinear motion of a unit 
mass under the influence of a nonlinear spring whose restoring force is 
−k sin x. The autonomous system equivalent to (10) is

y

√ 2—m
[E – V (x)]

√ 2—m[E – V(x)]

x

x

z

E – V(x)

z = V(x)

z = E

FIGURE 91
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and its critical points are (0,0), (±π,0), (±2π,0), . . . . The differential equa-
tion of the paths is

 

dy
dx

k x
y

= –
sin

,

and by separating variables and integrating, we see that the equation of 
the family of paths is

 

1
2

2y k k x E+ - =( cos ) .

This is evidently of the form (8), where m = 1 and

 

V x f x dx k k x
x

( ) ( ) cos= = -ò
0

is the potential energy. We now construct the paths by first drawing 
the graph of z = V(x) and several lines z = E in the xz-plane (Figure 92, 
where z = E = 2k is the only line shown). From this we read off the’ val-
ues E − V(x) and sketch the paths in the phase plane directly below by 
using y E V x= ± -2[ ( )]. It is clear from this phase portrait that if the 
total energy E is between 0 and 2k, then the corresponding paths are 
closed and equation (10) has periodic solutions. On the other hand, if 
E > 2k, then the path is not closed and the corresponding solution of 
(10) is not periodic. The value E = 2k separates the two types of motion, 
and for this reason a path corresponding to E = 2k is called a separa-
trix. The wavy paths outside the separatrices correspond to whirling 
motions of the pendulum, and the closed paths inside to oscillatory 
motions. It is evident that the critical points are alternately unstable 
saddle points and stable but not asymptotically stable centers. For the 
sake of contrast, it is interesting to consider the effect of transforming 
this conservative dynamical system into a nonconservative system by 
introducing a linear damping force. The equation of motion then takes 
the form

 

d x
dt

c
dx
dt

k x c
2

2 0 0+ + = >sin , ,

and the configuration of the paths is suggested in Figure 93. We find that 
the centers in Figure 92 become asymptotically stable spirals, and also 
that every path—except the separatrices entering the saddle points as 
t → ∞ ultimately winds into one of these spirals.
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x

x3π2ππ–π
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–2π–3π

E – V(x)

z = E = 2k

z = V( x ) = k – k cos xz

FIGURE 92
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FIGURE 93
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Problems

 1. If f(0) = 0 and xf(x) > 0 for x ≠ 0, show that the paths of

 

d x
dt

f x
2

2 0+ =( )

 are closed curves surrounding the origin in the phase plane; that is, 
show that the critical point x = 0, y = dx/dt = 0 is a stable but not asymp-
totically stable center. Describe this critical point with respect to its 
nature and stability if f(0) = 0 and xf(x) < 0 for x ≠ 0.

 2. Most actual springs are not linear. A nonlinear spring is called hard or soft 
according as the magnitude of the restoring force increases more rapidly 
or less rapidly than a linear function of the displacement. The equation

 

d x
dt

kx x k
2

2
3 0 0+ + = >a , ,

 describes the motion of a hard spring if α > 0 and a soft spring if α < 0. 
Sketch the paths in each case.

 3. Find the equation of the paths of

 

d x
dt

x x
2

2
32 0– + = ,

 and sketch these paths in the phase plane. Locate the critical points and 
determine the nature of each.

 4. Since by equation (7) we have dV/dx = f(x), the critical points of (3) are 
the points on the x-axis in the phase plane at which V′(x) = 0. In terms 
of the curve z = V(x)—if this curve is smooth and well behaved—there 
are three possibilities: maxima, minima, and points of inflection. Sketch 
all three possibilities, and determine the type of critical point associated 
with each (a critical point of the third type is called a cusp).

64 Periodic Solutions. The Poincaré–Bendixson Theorem

Consider a nonlinear autonomous system
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in which the functions F(x,y) and G(x,y) are continuous and have continuous 
first partial derivatives throughout the phase plane. Our work so far has told 
us practically nothing about the paths of (1) except in the neighborhood of 
certain types of critical points. However, in many problems we are much 
more interested in the global properties of paths than we are in these local 
properties. Global properties of paths are those that describe their behavior 
over large regions of the phase plane, and in general they are very difficult 
to establish.

The central problem of the global theory is that of determining whether 
(1) has closed paths. As we remarked in Section 58, this problem is 
important because of its close connection with the issue of whether (1) has 
periodic solutions. A solution x(t) and y(t) of (1) is said to be periodic if nei-
ther function is constant, if both are defined for all t, and if there exists a 
number T > 0 such that x(t + T) = x(t) and y(t + T) = y(t) for all t. The smallest 
T with this property is called the period of the solution.13 It is evident that 
each periodic solution of (1) defines a closed path that is traversed once 
as t increases from t0 to t0 + T for any t0. Conversely, it is easy to see that 
if C = [x(t),y(t)] is a closed path of (1), then x(t), y(t) is a periodic solution. 
Accordingly, the search for periodic solutions of (1) reduces to a search for 
closed paths.

We know from Section 60 that a linear system has closed paths if and 
only if the roots of the auxiliary equation are pure imaginary, and in this 
case every path is closed. Thus, for a linear system, either every path is 
closed or else no path is closed. On the other hand, a nonlinear system can 
perfectly well have a closed path that is isolated, in the sense that no other 
closed paths are near to it. The following is a well-known example of such 
a system:
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To solve this system we introduce polar coordinates r and θ, where 
x = r cos θ and y = r sin θ. If we differentiate the relations x2 + y2 = r2 and θ = tan−1 
(y/x), we obtain the useful formulas

 
x

dx
dt

y
dy
dt

r
dr
dt

x
dy
dt

y
dx
dt

r
d
dt

+ = =and – 2 q
. (3)

13 Every periodic solution has a period in this sense. Why?
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On multiplying the first equation of (2) by x and the second by y, and adding, 
we find that

 
r

dr
dt

r r= -2 21( ). (4)

Similarly, if we multiply the second by x and the first by y, and subtract, we 
get

 
r

d
dt

r2 2q
= . (5)

The system (2) has a single critical point at r = 0. Since we are concerned only 
with finding the paths, we may assume that r > 0. In this case, (4) and (5) 
show that (2) becomes
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q
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These equations are easy to solve separately, and the general solution of the 
system (6) is found to be
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The corresponding general solution of (2) is
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2
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1

-

-
.
 (8)

Let us analyze (7) geometrically (Figure 94). If c = 0, we have the solutions 
r = 1 and θ = t + t0, which trace out the closed circular path x2 + y2 = 1 in the 
counterclockwise direction. If c < 0, it is clear that r > 1 and that r → 1 as 
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t → ∞. Also, if c > 0, we see that r < 1, and again r → 1 as t → ∞. These observa-
tions show that there exists a single closed path (r = 1) which all other paths 
approach spirally from the outside or the inside as t → ∞.

In the above discussion we have shown that the system (2) has a closed 
path by actually finding such a path. In general, of course, we cannot hope 
to be able to do this. What we need are tests that make it possible for us to 
conclude that certain regions of the phase plane do or do not contain closed 
paths. Our first test is given in the following theorem of Poincaré. A proof is 
sketched in Problem 1.

Theorem A. A closed path of the system (1) necessarily surrounds at least one criti-
cal point of this system.

This result gives a negative criterion of rather limited value: a system with-
out critical points in a given region cannot have closed paths in that region.

Our next theorem provides another negative criterion, and is due to 
Bendixson.14

14 Ivar Otto Bendixson (1861–1935) was a Swedish mathematician who published one impor-
tant memoir in 1901 supplementing some of Poincaré’s earlier work. He served as professor 
(and later as president) at the University of Stockholm, and was an energetic long-time mem-
ber of the Stockholm City Council.

x
l

y

FIGURE 94
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Theorem B. If ∂F/∂x + ∂G/∂y is always positive or always negative in a certain 
region of the phase plane, then the system (1) cannot have closed paths in that 
region.

Proof. Assume that the region contains a closed path C = [x(t),y(t)] with inte-
rior R. Then Green’s theorem and our hypothesis yield

 

( )F dy G dx
F
x

G
y

dx dy
RC

- = ¶
¶

+ ¶
¶

æ

è
ç

ö

ø
÷ ¹òòò 0.

However, along C we have dx = F dt and dy = G dt, so

 C

T

F dy G dx FG GF dtò ò= - =( ) ( )-
0

0.

This contradiction shows that our initial assumption is false, so the region 
under consideration cannot contain any closed path.

These theorems are sometimes useful, but what we really want are posi-
tive criteria giving sufficient conditions for the existence of closed paths of 
(1). One of the few general theorems of this kind is the classical Poincaré-
Bendixson theorem, which we now state without proof.15

Theorem C. Let R be a bounded region of the phase plane together with its bound-
ary, and assume that R does not contain any critical points of the system (1). 
If C = [x(t),y(t)] is a path of (1) that lies in R for some t0 and remains in R for all t > t0, 
then C is either itself a closed path or it spirals toward a closed path as t → ∞. Thus 
in either case the system (1) has a closed path in R.

In order to understand this statement, let us consider the situation suggested 
in Figure 95. Here R consists of the two dashed curves together with the ring-
shaped region between them. Suppose that the vector

 V(x,y) = F(x,y)i + G(x,y)j

points into R at every boundary point. Then every path C through a bound-
ary point (at t = t0) must enter R and can never leave it, and under these cir-
cumstances the theorem asserts that C must spiral toward a closed path C0. 

15 For details, see Hurewicz, loc. cit., pp. 102–111, or Cesari, loc. cit., pp. 163–167.
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We have chosen a ring-shaped region R to illustrate the theorem because a 
closed path like C0 must surround a critical point (P in the figure) and R must 
exclude all critical points.

The system (2) provides a simple application of these ideas. It is clear that 
(2) has a critical point at (0,0), and also that the region R between the circles 
r = 1/2 and r = 2 contains no critical points. In our earlier analysis we found 
that

 

dr
dt

r r r= - >( )1 02 for .

This shows that dr/dt > 0 on the inner circle and dr/dt < 0 on the outer circle, 
so the vector V points into R at all boundary points. Thus any path through 
a boundary point will enter R and remain in R as t → ∞, and by the Poincaré-
Bendixson theorem we know that R contains a closed path C0. We have 
already seen that the circle r = 1 is the closed path whose existence is guar-
anteed in this way.

The Poincaré–Bendixson theorem is quite satisfying from a theoretical 
point of view, but in general it is rather difficult to apply. A more practical 
criterion has been developed that assures the existence of closed paths for 
equations of the form

 

d x
dt

f x
dx
dt

g x
2

2 0+ + =( ) ( ) , (9)

P

C

C0
t = t0

FIGURE 95
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which is called Liénard’s equation.16 When we speak of a closed path for such 
an equation, we of course mean a closed path of the equivalent system
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g x f x y
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and as we know, a closed path of (10) corresponds to a periodic solution of 
(9). The fundamental statement about the closed paths of (9) is the following 
theorem.

Theorem D. (Liénard’s Theorem.) Let the functions f(x) and g(x) satisfy the fol-
lowing conditions: (i) both are continuous and have continuous derivatives for all x; 
(ii) g(x) is an odd function such that g(x) > 0 for x > 0, and f(x) is an even function; 
and (iii) the odd function F x f x dxx( ) ( )= ò0  has exactly one positive zero at x = a, is 
negative for 0 < x < a, is positive and nondecreasing for x > a, and F(x) → ∞ as x → ∞. 
Then equation (9) has a unique closed path surrounding the origin in the phase plane, 
and this path is approached spirally by every other path as t → ∞.

For the benefit of the skeptical and tenacious reader who is rightly reluc-
tant to accept unsupported assertions, a proof of this theorem is given in 
Appendix B. An intuitive understanding of the role of the hypotheses can 
be gained by thinking of (9) in terms of the ideas of the previous section. 
From this point of view, equation (9) is the equation of motion of a unit mass 
attached to a spring and subject to the dual influence of a restoring force 
−g(x) and a damping force −f(x) dx/dt. The assumption about g(x) amounts 
to saying that the spring acts as we would expect, and tends to diminish 
the magnitude of any displacement. On the other hand, the assumptions 
about f(x)—roughly, that f(x) is negative for small |x| and positive for large 
|x|—mean that the motion is intensified for small |x| and retarded for 
large |x|, and therefore tends to settle down into a steady oscillation. This 
rather peculiar behavior of f(x) can also be expressed by saying that the 
physical system absorbs energy when |x| is small and dissipates it when 
|x| is large.

16 Alfred Liénard (1869–1958) was a French scientist who spent most of his career teaching 
applied physics at the School of Mines in Paris, of which he became director in 1929. His 
physical research was mainly in the areas of electricity and magnetism, elasticity, and 
hydrodynamics. From time to time he worked on mathematical problems arising from his 
other scientific investigations, and in 1933 was elected president of the French Mathematical 
Society. He was an unassuming bachelor whose life was devoted entirely to his work and his 
students.
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The main application of Liénard’s theorem is to the van der Pol17 equation

 

d x
dt

x
dx
dt

x
2

2
2 1 0+ - + =m( ) , (11)

where μ is assumed to be a positive constant for physical reasons. Here 
f(x) = μ(x2 − 1) and g(x) = x, so condition (i) is clearly satisfied. It is equally clear 
that condition (ii) is true. Since

 
F x x x x x( ) ( )= -æ

è
ç

ö
ø
÷ = -m m1

3
1
3

33 2 ,

we see that F(x) has a single positive zero at x = 3 , is negative for 0 3< <x , 
is positive for x > 3 , and that F(x) → ∞ as x → ∞. Finally, F′(x) = μ(x2 − 1) is posi-
tive for x > 1, so F(x) is certainly nondecreasing (in fact, increasing) for x > 3 . 
Accordingly, all the conditions of the theorem are met, and we conclude that 
equation (11) has a unique closed path (periodic solution) that is approached 
spirally (asymptotically) by every other path (nontrivial solution).

Problems

 1. A proof of Theorem A can be built on the following geometric ideas 
(Figure 96). Let C be a simple closed curve (not necessarily a path) in 
the phase plane, and assume that C does not pass through any critical 
point of the system (1). If P = (x,y) is a point on C, then

 V(x,y) = F(x,y)i + G(x,y)j

 is a nonzero vector, and therefore has a definite direction given by the 
angle θ. If P moves once around C in the counterclockwise direction, 
the angle θ changes by an amount Δθ = 2πn, where n is a positive integer, 
zero, or a negative integer. This integer n is called the index of C. If C 
shrinks continuously to a smaller simple closed curve C0 without pass-
ing over any critical point, then its index varies continuously; and since 
the index is an integer, it cannot change.

17 Balthasar van der Pol (1889–1959), a Dutch scientist specializing in the theoretical aspects of 
radioengineering, initiated the study of equation (11) in the 1920s, and thereby stimulated 
Liénard and others to investigate the mathematical theory of self-sustained oscillations in 
nonlinear mechanics.
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 (a) If C is a path of (1), show that its index is 1.
 (b)  If C is a path of (1) that contains no critical points, show that a small 

C0 has index 0, and from this infer Theorem A.
 2. Consider the nonlinear autonomous system
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 (a) Transform the system into polar coordinate form.
 (b)  Apply the Poincaré–Bendixson theorem to show that there is a 

closed path between the circles r = 1 and r = 3.
 (c)  Find the general nonconstant solution x = x(t) and y = y(t) of the orig-

inal system, and use this to find a periodic solution corresponding 
to the closed path whose existence was established in (b).

 (d)  Sketch the closed path and at least two other paths in the phase 
plane.

 3. Show that the nonlinear autonomous system
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 has a periodic solution.
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 4. In each of the following cases use a theorem of this section to determine 
whether or not the given differential equation has a periodic solution:

 (a) 
d x
dt

x x
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 5. Show that any differential equation of the form

 
a

d x
dt

b x
dx
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cx a b c
2

2
2 1 0 0+ - + = >( ) ( , , )

 can be transformed into the van der Pol equation by a change of the 
independent variable.

65 More about the van der Pol Equation

First, a bit history. In World War II, in the fall of 1940, Hitler’s German Army 
had swept across France and was poised on the coast of the English Channel, 
ready to invade England and complete its conquest of Western Europe. To do 
this they needed control of the air, and their Air Force was ready to attack 
and destroy London and Southeast England. All that stood in their way was 
the British Royal Air Force (R.A.F) and its small number of young fighter 
pilots. But with the help of the newly invented radar to tell them in advance 
where and when the German bombers were coming, the R.A.F. pilots suc-
cessfully fought off the Germans and defeated Hitler’s plans for conquest. 
This so-called Battle of Britain was a major turning point of the war, of which 
Winston Churchill said, “Never in the history of human conflict was so much 
owed by so many to so few.”

The detailed connection between radar and the van der Pol equation dis-
cussed in Section 64 can only be understood by a skilled electrical engineer, 
which the present writer is not. However, it turned out that solutions of the 
equation were closely related to increasing difficulties in getting reliable 
radar information back from greater and greater distances.
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The eminent theoretical physicist/mathematician Freeman Dyson was 
in England at the time, and has some interesting memories of these events. 
Dyson came to America in 1947 and has been a permanent Professor at The 
Institute for Advanced Study in Princeton, New Jersey since 1953. Professor 
Dyson’s recollections (1996) are as follows:

In 1942 when I was a student in Cambridge, I heard a lecture by Mary 
Cartwright about the van der Pol equation. Cartwright had been work-
ing with Littlewood on the solutions of the equation, which describe the 
output of a nonlinear radio amplifier when the input is a pure sine wave. 
The whole development of radar in World War II depended on high-power 
amplifiers, and it was a matter of life and death to have amplifiers that did 
what they were supposed to do. The soldiers were plagued with amplifiers 
that misbehaved and blamed the manufacturers for their erratic behav-
ior. Cartwright and Littlewood discovered that the manufacturers were 
not to blame. The equation itself was to blame. They discovered that as 
you raise the gain of the amplifier, the solutions of the equation become 
more and more irregular. At low power the solution has the same period 
as the input, but as the power increases you see solutions with double the 
period, then with quadruple the period, and finally you have solutions 
that are not periodic at all. Cartwright and Littlewood explored the behav-
ior of solutions in detail and discovered the phenomena that later became 
known as “chaos.” They published all this in a paper in the Journal of the 
London Mathematical Society, which appeared in 1945. That was a bad year 
to publish. Paper in England was scarce and few copies of the Journal 
were printed. Mathematicians everywhere were still busy fighting the 
war. The paper attracted no attention. In 1949 Mary Cartwright came to 
Princeton and talked about the work again. Again she attracted no atten-
tion. Littlewood was not helpful. In the foreword to Littlewood’s collected 
papers is a description written by Littlewood about his collaboration with 
Cartwright:

“Two rats fell into a can of milk. After swimming for a time one of them 
realized his hopeless fate and drowned. The other persisted, and at last 
the milk turned to butter and he could get out.”

Littlewood does not say whether the rat who drowned was himself or 
Cartwright. In either case the passage makes clear that Littlewood did not 
understand the importance of the work that he and Cartwright had done. 
Only Cartwright understood it, and she is not a person who likes to blow her 
own trumpet. She put the van der Pol equation to one side and went on to a 
distinguished career in analytic function theory and university administra-
tion. She became President of the London Mathematical Society in 1961, and 
Dame Mary (the female equivalent of a knighthood) in 1969. By that time, 
the phenomena of chaos had been rediscovered. A few years later, they were 
given their modern names.
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Appendix A. Poincaré

Jules Henri Poincaré (1854–1912) was universally recognized at the begin-
ning of the twentieth century as the greatest mathematician of his genera-
tion. He began his academic career at Caen in 1879, but only two years later 
he was appointed to a professorship at the Sorbonne. He remained there 
for the rest of his life, lecturing on a different subject each year. In his lec-
tures—which were edited and published by his students—he treated with 
great originality and mastery of technique virtually all known fields of 
pure and applied mathematics, and many that were not known until he 
discovered them. Altogether he produced more than 30 technical books on 
mathematical physics and celestial mechanics, half a dozen books of a more 
popular nature, and almost 500 research papers on mathematics. He was a 
quick, powerful, and restless thinker, not given to lingering over details, and 
was described by one of his contemporaries as “a conquerer, not a colonist.” 
He also had the advantage of a prodigious memory, and habitually did his 
mathematics in his head as he paced back and forth in his study, writing it 
down only after it was complete in his mind. He was elected to the Academy 
of Sciences at the very early age of thirty-two. The academician who pro-
posed him for membership said that “his work is above ordinary praise, 
and reminds us inevitably of what Jacobi wrote of Abel—that he had settled 
questions which, before him, were unimagined.”

Poincaré’s first great achievement in mathematics was in analysis. He gen-
eralized the idea of the periodicity of a function by creating his theory of auto-
morphic functions. The elementary trigonometric and exponential functions 
are singly periodic, and the elliptic functions are doubly periodic. Poincaré’s 
automorphic functions constitute a vast generalization of these, for they are 
invariant under a countably infinite group of linear fractional transforma-
tions and include the rich theory of elliptic functions as a detail. He applied 
them to solve linear differential equations with algebraic coefficients, and 
also showed how they can be used to uniformize algebraic curves, that is, 
to express the coordinates of any point on such a curve by means of single-
valued functions x(t) and y(t) of a single parameter t. In the 1880s and 1890s 
automorphic functions developed into an extensive branch of mathematics, 
involving (in addition to analysis) group theory, number theory, algebraic 
geometry, and non-Euclidean geometry.

Another focal point of his thought can be found in his researches into celes-
tial mechanics (Les Méthodes Nouvelle de la Mécanique Céleste, three volumes, 
1892–1899). In the course of this work he developed his theory of asymptotic 
expansions (which kindled interest in divergent series), studied the stability 
of orbits, and initiated the qualitative theory of nonlinear differential equa-
tions. His celebrated investigations into the evolution of celestial bodies led 
him to study the equilibrium shapes of a rotating mass of fluid held together 
by gravitational attraction, and he discovered the pear-shaped figures that 
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played an important role in the later work of Sir G. H. Darwin (Charles’ 
son).18 In Poincaré’s summary of these discoveries, he writes: “Let us imag-
ine a rotating fluid body contracting by cooling, but slowly enough to remain 
homogeneous and for the rotation to be the same in all its parts. At first very 
approximately a sphere, the figure of this mass will become an ellipsoid of 
revolution which will flatten more and more, then, at a certain moment, it 
will be transformed into an ellipsoid with three unequal axes. Later, the fig-
ure will cease to be an ellipsoid and will become pear-shaped until at last 
the mass, hollowing out more and more at its ‘waist,’ will separate into two 
distinct and unequal bodies.” These ideas have gained additional interest 
in our own time; for with the aid of artificial satellites, geophysicists have 
recently found that the earth itself is slightly pear-shaped.

Many of the problems he encountered in this period were the seeds of new 
ways of thinking, which have grown and flourished in twentieth-century 
mathematics. We have already mentioned divergent series and nonlinear dif-
ferential equations. In addition, his attempts to master the qualitative nature 
of curves and surfaces in higher dimensional spaces resulted in his famous 
memoir Analysis situs (1895), which most experts agree marks the beginning 
of the modern era in algebraic topology. Also, in his study of periodic orbits 
he founded the subject of topological (or qualitative) dynamics. The type of 
mathematical problem that arises here is illustrated by a theorem he conjec-
tured in 1912 but did not live to prove: if a one-to-one continuous transfor-
mation carries the ring bounded by two concentric circles into itself in such 
a way as to preserve areas and to move the points of the inner circle clock-
wise and those of the outer circle counterclockwise, then at least two points 
must remain fixed. This theorem has important applications to the classical 
problem of three bodies (and also to the motion of a billiard ball on a convex 
billiard table). A proof was found in 1913 by Birkhoff, a young American 
mathematician.19 Another remarkable discovery in this field, now known as 
the Poincaré recurrence theorem, relates to the long-range behavior of con-
servative dynamical systems. This result seemed to demonstrate the futility 
of contemporary efforts to deduce the second law of thermodynamics from 
classical mechanics, and the ensuing controversy was the historical source 
of modern ergodic theory.

One of the most striking of Poincaré’s many contributions to mathemati-
cal physics was his famous paper of 1906 on the dynamics of the electron. 
He had been thinking about the foundations of physics for many years, and 
independently of Einstein had obtained many of the results of the special 
theory of relativity.20 The main difference was that Einstein’s treatment 
was based on elemental ideas relating to light signals, while Poincaré’s was 

18 See G. H. Darwin, The Tides, chap. XVIII, Houghton Mifflin, Boston, 1899.
19 See G. D. Birkhoff, Dynamical Systems, chap. VI, American Mathematical Society Colloquium 

Publications, vol. IX, Providence, R.I., 1927.
20 A discussion of the historical background is given by Charles Scribner, Jr., “Henri Poincaré 

and the Principle of Relativity,” Am. J. Phys., vol. 32, p. 672 (1964).
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founded on the theory of electromagnetism and was therefore limited in its 
applicability to phenomena associated with this theory. Poincaré had a high 
regard for Einstein’s abilities, and in 1911 recommended him for his first aca-
demic position.21

In 1902 he turned as a side interest to writing and lecturing for a wider 
public, in an effort to share with nonspecialists his enthusiasm for the mean-
ing and human importance of mathematics and science. These lighter works 
have been collected in four books, La Science et l’Hypothèse (1903), La Valeur 
de la Science (1904), Science et Méthode (1908), and Derniéres Pensées (1913).22 
They are clear, witty, profound, and altogether delightful, and show him to 
be a master of French prose at its best. In the most famous of these essays, 
the one on mathematical discovery, he looked into himself and analyzed his 
own mental processes, and in so doing provided the rest of us with some 
rare glimpses into the mind of a genius at work. As Jourdain wrote in his 
obituary, “One of the many reasons for which he will live is that he made it 
possible for us to understand him as well as to admire him.”

At the present time mathematical knowledge is said to be doubling every 
10  years or so, though some remain skeptical about the permanent value 
of this accumulation. It is generally believed to be impossible now for any 
human being to understand thoroughly more than one or two of the four 
main subdivisions of mathematics—analysis, algebra, geometry, and num-
ber theory—to say nothing of mathematical physics as well. Poincaré had 
creative command of the whole of mathematics as it existed in his day, and 
he was probably the last man who will ever be in this position.

Appendix B. Proof of Liénard’s Theorem

Consider Liénard’s equation
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f x
dx
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g x
2

2 0+ + =( ) ( ) , (1)

and assume that f(x) and g(x) satisfy the following conditions: (i) f(x) and g(x) 
are continuous and have continuous derivatives; (ii) g(x) is an odd function 
such that g(x) > 0 for x > 0, and f(x) is an even function; and (iii) the odd 
function F x f x dxx( ) ( )= ò0  has exactly one positive zero at x = a, is negative for 
0 < x < a, is positive and nondecreasing for x > a, and F(x) → ∞ as x → ∞. 
We shall prove that equation (1) has a unique closed path surrounding the 

21 See M. Lincoln Schuster (ed.), A Treasury of the World’s Great Letters, p. 453, Simon and 
Schuster, New York, 1940.

22 All have been published in English translation by Dover Publications, New York.
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origin in the phase plane, and that this path is approached spirally by every 
other path as t → ∞.

The system equivalent to (1) in the phase plane is
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By condition (i), the basic theorem on the existence and uniqueness of solu-
tions holds. It follows from condition (ii) that g(0) = 0 and g(x) ≠ 0 for x ≠ 0, so 
the origin is the only critical point. Also, we know that any closed path must 
surround the origin. The fact that
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suggests introducing a new variable,

 z = y + F(x).

With this notation, equation (1) is equivalent to the system
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in the xz-plane. Again we see that the existence and uniqueness theorem 
holds, that the origin is the only critical point, and that any closed path must 
surround the origin. The one-to-one correspondence (x,y) ↔ (x,z) between 
the points of the two planes is continuous both ways, so closed paths corre-
spond to closed paths and the configurations of the paths in the two planes 
are qualitatively similar. The differential equation of the paths of (3) is
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. (4)

These paths are easier to analyze than their corresponding paths in the phase 
plane, for the following reasons.
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First, since both g(x) and F(x) are odd, equations (3) and (4) are unchanged 
when x and z are replaced by −x and −z. This means that any curve sym-
metric to a path with respect to the origin is also a path. Thus if we know the 
paths in the right half-plane (x > 0), those in the left half-plane (x < 0) can be 
obtained at once by reflection through the origin.

Second, equation (4) shows that the paths become horizontal only as they 
cross the z-axis, and become vertical only as they cross the curve z = F(x). 
Also, an inspection of the signs of the right sides of equations (3) shows 
that all paths are directed to the right above the curve z = F(x) and to the 
left below this curve, and move downward or upward according as x > 0 or 
x < 0. These remarks mean that the curve z = F(x), the z-axis, and the verti-
cal line through any point Q on the right half of the curve z = F(x) can be 
crossed only in the directions indicated by the arrows in Figure 97. Suppose 
that the solution of (3) defining the path C through Q is so chosen that the 
point Q corresponds to the value t = 0 of the parameter. Then as t increases 
into positive values, a point on C with coordinates x(t) and y(t) moves down 
and to the left until it crosses the z-axis at a point R; and as t decreases into 
negative values, the point on C rises to the left until it crosses the z-axis at 
a point P. It will be convenient to let b be the abscissa of Q and to denote 
the path C by Cb.

It is easy to see from the symmetry property that when the path Cb is con-
tinued beyond P and R into the left half of the plane, the result will be a 
closed path if and only if the distances OP and OR are equal. To show that 

x
x = bx = a

kL

M

N

O

z

P
Cb S

Q

z = F(x)

T
R

FIGURE 97
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there is a unique closed path, it therefore suffices to show that there is a 
unique value of b with the property that OP = OR.

To prove this, we introduce

 

G x g x dx
x

( ) ( )= ò
0

and consider the function

 
E x z z G x( , ) ( )= +

1
2

2 ,

which reduces to z2/2 on the z-axis. Along any path we have

 

dE
dt

g x
dx
dt

z
dz
dt

z F x
dz
dt

z
dz
dt

F x
dz
dt

= +

= - - +

=

( )

[ ( )]

( ) ,

so

 dE = F dz.

If we compute the line integral of F dz along the path Cb from P to R, we 
obtain

 

I b F dz dE E E OR OP
PR PR

R P( ) ( )= = = - = -ò ò 1
2

2 2 ,

so it suffices to show that there is a unique b such that I(b) = 0.
If b ≤ a, then F and dz are negative, so I(b) > 0 and Cb cannot be closed. 

Suppose now that b > a, as in Figure 97. We split I(b) into two parts,

 

I b F dz F dz I b F dz
PS TR ST

1 2( ) ( ) ,= + =ò ò òand

so that

 I(b) = I1(b) + I2(b).
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Since F and dz are negative as Cb is traversed from P to S and from T to R, it is 
clear that I1(b) > 0. On the other hand, if we go from S to T along Cb we have 
F > 0 and dz < 0, so I2(b) < 0. Our immediate purpose is to show that I(b) is 
a decreasing function of b by separately considering I1(b) and I2(b). First, we 
note that equation (4) enables us to write

 
F dz F

dz
dx

dx
g x F x
z F x

dx= =
– ( ) ( )

– ( )
.

The effect of increasing b is to raise the arc PS and to lower the arc TR, which 
decreases the magnitude of [−g(x)F(x)]/[z − F(x)] for a given x between 0 and a. 
Since the limits of integration for I1(b) are fixed, the result is a decrease in I1(b). 
Furthermore, since F(x) is positive and nondecreasing to the right of a, we see 
that an increase in b gives rise to an increase in the positive number −I2(b), 
and hence to a decrease in I2(b). Thus I(b) = I1(b) + I2(b) is a decreasing function 
for b ≥ a. We now show that I2(b) → –∞ as b → ∞. If L in Figure 97 is fixed and 
K is to the right of L, then

 

I b F dz f dz LM LN
ST NK

2( ) ( ) ( )= < £ - ×ò ò ;

and since LN → ∞ as b → ∞, we have I2(b) → –∞.
Accordingly, I(b) is a decreasing continuous function of b for b ≥ a, I(a) > 0, 

and I(b) → –∞ as b → ∞. It follows that I(b) = 0 for one and only one b = b0, so 
there is one and only one closed path Cb0.

Finally, we observe that OR > OP for b < b0; and from this and the symme-
try we conclude that paths inside Cb0 spiral out to Cb0. Similarly, the fact that 
OR < OP for b > b0 implies that paths outside Cb0 spiral in to Cb0.
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Chapter 12
The Calculus of Variations

66 Introduction. Some Typical Problems of the Subject

The calculus of variations has been one of the major branches of analysis for 
more than two centuries. It is a tool of great power that can be applied to a 
wide variety of problems in pure mathematics. It can also be used to express 
the basic principles of mathematical physics in forms of the utmost simplic-
ity and elegance.

The flavor of the subject is easy to grasp by considering a few of its typical 
problems. Suppose that two points P and Q are given in a plane (Figure 98). 
There are infinitely many curves joining these points, and we can ask which 
of these curves is the shortest. The intuitive answer is of course a straight line. 
We can also ask which curve will generate the surface of revolution of smallest 
area when revolved about the x-axis, and in this case the answer is far from 
clear. If we think of a typical curve as a frictionless wire in a vertical plane, 
then another nontrivial problem is that of finding the curve down which a 
bead will slide from P to Q in the shortest time. This is the famous brachisto-
chrone problem of John Bernoulli, which we discussed in Section 6. Intuitive 
answers to such questions are quite rare, and the calculus of variations pro-
vides a uniform analytical method for dealing with situations of this kind.

Every student of elementary calculus is familiar with the problem of find-
ing points at which a function of a single variable has maximum or mini-
mum values. The above problems show that in the calculus of variations 
we consider some quantity (arc length, surface area, time of descent) that 
depends on an entire curve, and we seek the curve that minimizes the quan-
tity in question. The calculus of variations also deals with minimum prob-
lems depending on surfaces. For example, if a circular wire is bent in any 
manner and dipped into a soap solution, then the soap film spanning the 
wire will assume the shape of the surface of smallest area bounded by the 
wire. The mathematical problem is to find the surface from this minimum 
property and the known shape of the wire.

In addition, the calculus of variations has played an important role as a 
unifying influence in mechanics and as a guide in the mathematical inter-
pretation of many physical phenomena. For instance, it has been found that if 
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the configuration of a system of moving particles is governed by their mutual 
gravitational attractions, then their actual paths will be minimizing curves 
for the integral, with respect to time, of the difference between the kinetic 
and potential energies of the system. This far-reaching statement of classical 
mechanics is known as Hamilton’s principle after its discoverer. Also, in mod-
ern physics, Einstein made extensive use of the calculus of variations in his 
work on general relativity, and Schrödinger used it to discover his famous 
wave equation, which is one of the cornerstones of quantum mechanics.

A few of the problems of the calculus of variations are very old, and were 
considered and partly solved by the ancient Greeks. The invention of ordi-
nary calculus by Newton and Leibniz stimulated the study of a number of 
variational problems, and some of these were solved by ingenious special 
methods. However, the subject was launched as a coherent branch of analy-
sis by Euler in 1744, with his discovery of the basic differential equation for 
a minimizing curve.

We shall discuss Euler’s equation in the next section, but first we observe 
that each of the problems described in the second paragraph of this section 
is a special case of the following more general problem. Let P and Q have 
coordinates (x1, y1) and (x2, y2), and consider the family of functions

 y = y(x) (1)

that satisfy the boundary conditions y(x1) = y1 and y(x2) = y2—that is, the graph 
of (1) must join P and Q. Then we wish to find the function in this family that 
minimizes an integral of the form

 I y f x y y dx
x

x

( ) ( , , )= ¢ò
1

2

. (2)

P

Q

x

y

FIGURE 98
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To see that this problem indeed contains the others, we note that the length 
of the curve (1) is

 

1 2

1

2

+ ¢ò ( )y dx
x

x

, (3)

and that the area of the surface of revolution obtained by revolving it about 
the x-axis is

 

2 1 2

1

2

py y dx
x

x

+ ¢ò ( ) . (4)

In the case of the curve of quickest descent, it is convenient to invert the 
coordinate system and take the point P at the origin, as in Figure 99. Since the 
speed v = ds/dt is given by v gy= 2 , the total time of descent is the integral 
of ds/v and the integral to be minimized is

 

1

2

2

1

2 + ¢
ò

( )y

gy
dx

x

x

. (5)

Accordingly, the function f(x, y, y′) occurring in (2) has the respective forms 

1 2+ ¢( )y , 2 1 2py y+ ¢( )  and 1 22+ ¢( )y gy  in our three problems.

It is necessary to be somewhat more precise in formulating the basic prob-
lem of minimizing the integral (2). First, we will always assume that the 
function f(x,y,y′) has continuous partial derivatives of the second order with 
respect to x, y, and y′. The next question is, What types of functions (1) are 

S

(x,y)

y

P x

Q = (x2, y2)

FIGURE 99
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to be allowed? The integral (2) is a well-defined real number whenever the 
integrand is continuous as a function of x, and for this it suffices to assume 
that y′(x) is continuous. However, in order to guarantee the validity of the 
operations we will want to perform, it is convenient to restrict ourselves once 
and for all to considering only unknown functions y(x) that have continuous 
second derivatives and satisfy the given boundary conditions y(x1) = y1 and 
y(x2) = y2. Functions of this kind will be called admissible. We can imagine a 
competition which only admissible functions are allowed to enter, and the 
problem is to select from this family the function or functions that yield the 
smallest value for I.

In spite of these remarks, we will not be seriously concerned with issues 
of mathematical rigor. Our point of view is deliberately naive, and our sole 
purpose is to reach the interesting applications as quickly and simply as pos-
sible. The reader who wishes to explore the very extensive theory of the sub-
ject can readily do so in the systematic treatises.1

67 Euler’s Differential Equation for an Extremal

Assuming that there exists an admissible function y(x) that minimizes the 
integral

 

I f x y y dx
x

x

= ¢ò ( , , )
1

2

, (1)

how do we find this function? We shall obtain a differential equation for 
y(x) by comparing the values of I that correspond to neighboring admissible 
functions. The central idea is that since y(x) gives a minimum value to I, I 
will increase if we “disturb” y(x) slightly. These disturbed functions are con-
structed as follows.

Let η(x) be any function with the properties that η″(x) is continuous and

  η(x1) = η(x2) = 0. (2)

If α is a small parameter, then

 y x y x x( ) ( ) ( )= + ah  (3)

1 See, for example, I. M. Gelfand and S. V. Fomin, Catculus of Variations, Prentice-Hall, 
Englewood Cliffs, N.J., 1963; G. M. Ewing, Calculus of Variations with Applications, Norton, 
New York, 1969; or C. Carathéodory, Calculus of Variations and Partial Differential Equations of 
the First Order, Part II: Calculus of Variations, Holden-Day, San Francisco, 1967.
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represents a one-parameter family of admissible functions. The vertical 
deviation of a curve in this family from the minimizing curve y(x) is αη(x), 
as shown in Figure 100.2 The significance of (3) lies in the fact that for each 
family of this type, that is, for each choice of the function η(x), the minimiz-
ing function y(x) belongs to the family and corresponds to the value of the 
parameter α = 0.

Now, with η(x) fixed, we substitute y x y x x( ) ( ) ( )= + ah  and ¢ = ¢ + ¢y x y x x( ) ( ) ( )ah  
into the integral (1), and get a function of α,

 

I f x y y dx

f x y x x y x x dx

x

x

x

x

( ) ( , , )

[ , ( ) ( ), ( ) ( )]

a

ah ah

= ¢

= + ¢ + ¢

ò

ò
1

2

1

2

. (4)

When α = 0, formula (3) yields y x y x( ) ( )= ; and since y(x) minimizes the inte-
gral, we know that I(α) must have a minimum when α = 0. By elementary 
calculus, a necessary condition for this is the vanishing of the derivative I′(α) 

2 The difference y y- = ah is called the variation of the function y and is usually denoted by 
δy. This notation can be developed into a useful formalism (which we do not discuss) and is 
the source of the name calculus of variations.

(x1 , y1)
y(x) = y(x) + αη(x)–

(x2,y2)

y(x)

αη (x)

η (x)

x1 x x2 x

y

FIGURE 100
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when α = 0: I′(0) = 0. The derivative I′(α) can be computed by differentiating 
(4) under the integral sign, that is,

 

¢ = ¶
¶

¢òI f x y y dx
x

x

( ) ( , , )a
a

1

2

. (5)

By the chain rule for differentiating functions of several variables, we have
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so (5) can be written as
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Now I′(0) = 0, so putting α = 0 in (6) yields
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In this equation the derivative η′(x) appears along with the function η(x). We 
can eliminate η′(x) by integrating the second term by parts, which gives

 

¶
¶ ¢

¢ =
¶
¶ ¢

é

ë
ê

ù

û
ú -

¶
¶ ¢

æ

è
ç

ö

ø
÷ò f

y
x dx x

f
y

x
d

dx
f
y

dx
x

x

x

x

h h h( ) ( ) ( )
1

2

1

2

xx

x

x

x

x
d

dx
f
y

dx

1

2

1

2

ò

ò= -
¶
¶ ¢

æ

è
ç

ö

ø
÷h( )

by virtue of (2). We can therefore write (7) in the form
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Our reasoning up to this point is based on a fixed choice of the function η(x). 
However, since the integral in (8) must vanish for every such function, we at 
once conclude that the expression in brackets must also vanish. This yields

 

d
dx

f
y

f
y

¶
¶ ¢

æ

è
ç

ö

ø
÷ -

¶
¶

= 0, (9)

which is Euler’s equation.3
It is important to have a clear understanding of the exact nature of our 

conclusion: namely, if y(x) is an admissible function that minimizes the inte-
gral (1), then y satisfies Euler’s equation. Suppose an admissible function y 
can be found that satisfies this equation. Does this mean that y minimizes I? 
Not necessarily. The situation is similar to that in elementary calculus, where 
a function g(x) whose derivative is zero at a point x0 may have a maximum, 
a minimum, or a point of inflection at x0. When no distinctions are made, 
these cases are often called stationary values of g(x), and the points x0 at which 
they occur are stationary points. In the same way, the condition I′(0) = 0 can 
perfectly well indicate a maximum or point of inflection for I(α) at α = 0, 
instead of a minimum. Thus it is customary to call any admissible solution 
of Euler’s equation a stationary function or stationary curve, and to refer to the 
corresponding value of the integral (1) as a stationary value of this integral—
without committing ourselves as to which of the several possibilities actually 
occurs. Furthermore, solutions of Euler’s equation which are unrestricted by 
the boundary conditions are called extremals.

In calculus we use the second derivative to give sufficient conditions dis-
tinguishing one type of stationary value from another. Similar sufficient 
conditions are available in the calculus of variations, but since these are quite 
complicated, we will not consider them here. In actual practice, the geometry 
or physics of the problem under discussion often makes it possible to deter-
mine whether a particular stationary function maximizes or minimizes the 
integral (or neither). The reader who is interested in sufficient conditions and 
other theoretical problems will find adequate discussions in the books men-
tioned in Section 66.

As it stands, Euler’s equation (9) is not very illuminating. In order to inter-
pret it and convert it into a useful tool, we begin by emphasizing that the 
partial derivatives ∂f/∂y and ∂f/∂y′ are computed by treating x, y, and y′ as 
independent variables. In general, however, ∂f/∂y′ is a function of x explicitly, 

3 In more detail, the indirect argument leading to (9) is as follows. Assume that the bracketed 
function in (8) is not zero (say, positive) at some point x = a in the interval. Since this function 
is continuous, it will be positive throughout some subinterval about x = a. Choose an η(x) 
that is positive inside the subinterval and zero outside. For this η(x), the integral in (8) will 
be positive—which is a contradiction. When this argument is formalized, the resulting state-
ment is known as the fundamental lemma of the calculus of variations.
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and also implicitly through y and y′, so the first term in (9) can be written in 
the expanded form
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Accordingly, Euler’s equation is

 
f

d y
dx

f
dy
dx

f fy y y y y x y¢ ¢ ¢+ + - =’ ( )
2

2 0. (10)

This equation is of the second order unless fy′y′ = 0, so in general the 
extremals—its solutions—constitute a two-parameter family of curves; and 
among these, the stationary functions are those in which the two parameters 
are chosen to fit the given boundary conditions. A second order nonlinear 
equation like (10) is usually impossible to solve, but fortunately many appli-
cations lead to special cases that can be solved.

CASE A. If x and y are missing from the function f, then Euler’s equation 
reduces to

 
f

d y
dx

y y¢ ¢ =
2

2 0;

and if fy′y′ ≠ 0, we have d2y/dx2 = 0 and y = c1x + c2, so the extremals are all 
straight lines.

CASE B. If y is missing from the function ƒ, then Euler’s equation becomes

 

d
dx

f
y
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and this can be integrated at once to yield the first order equation

 

¶
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=
f
y

c1

for the extremals.

CASE C. If x is missing from the function f, then Euler’s equation can be 
integrated to
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since ∂f/∂x = 0 and the expression in brackets on the right is zero by Euler’s 
equation.

We now apply this machinery to the three problems formulated in 
Section 66.

Example 1. To find the shortest curve joining two points (x1, y1) and 
(x2,y2)—which we know intuitively to be a straight line—we must mini-
mize the arc length integral

 

I y dx
x

x

= + ¢ò 1 2

1

2

( ) .

The variables x and y are missing from f y y( ) ( )¢ = + ¢1 2 , so this problem 
falls under Case A. Since
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f
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,

Case A tells us that the extremals are the two-parameter family of 
straight lines y = c1x + c2. The boundary conditions yield

 
y y

y y
x x

x x- =
-
-

-1
2 1

2 1
1( )  (11)

as the stationary curve, and this is of course the straight line joining 
the two points. It should be noted that this analysis shows only that if 
I has a stationary value, then the corresponding stationary curve must 
be the straight line (11). However, it is clear from the geometry that I 
has no maximizing curve but does have a minimizing curve, so we 
conclude in this way that (11) actually is the shortest curve joining our 
two points.

In this example we arrived at an obvious conclusion by analytical means. 
A much more difficult and interesting problem is that of finding the shortest 
curve joining two fixed points on a given surface and lying entirely on that 
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surface. These curves are called geodesics, and the study of their properties 
is one of the focal points of the branch of mathematics known as differential 
geometry.

Example 2. To find the curve joining the points (x1, y1) and (x2, y2) that 
yields a surface of revolution of minimum area when revolved about the 
x-axis, we must minimize

 

I y y dx
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x

= + ¢ò 2 1 2

1

2
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The variable x is missing from f y y y y( , ) ( )¢ = + ¢2 1 2p , so Case C tells us 
that Euler’s equation becomes

 

y y

y
y y c

( )

( )
( )

¢

+ ¢
- + ¢ =

2

2

2
1

1
1 ,

which simplifies to
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On separating variables and integrating, we get
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and solving for y gives
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The extremals are therefore catenaries, and the required minimal sur-
face—if it exists—must be obtained by revolving a catenary. The next 
problem is that of seeing whether the parameters c1 and c2 can indeed be 
chosen so that the curve (13) joins the points (x1, y1) and (x2, y2).

The choosing of these parameters turns out to be curiously compli-
cated. If the curve (13) is made to pass through the first point (x1,y1), then 
one parameter is left free. Two members of this one-parameter family 
are shown in Figure 101. It can be proved that all such curves are tan-
gent to the dashed curve C, so no curve in the family crosses C. Thus, 
when the second point (x2, y2) is below C, as in Figure 101, there is no 
catenary through both points and no stationary function exists. In this 
case it is found that smaller and smaller surfaces are generated by curves 
that approach the dashed line from (x1, y1) to (x1, 0) to (x2, 0) to (x2, y2) 
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so no admissible curve can generate a minimal surface. When the sec-
ond point lies above C, there are two catenaries through the points, and 
hence two stationary functions, but only the upper catenary generates a 
minimal surface. Finally, when the second point is on C, there is only one 
stationary function but the surface it generates is not minimal.4

Example 3. To find the curve of quickest descent in Figure 99, we must 
minimize
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Again the variable x is missing from the function f y y y gy( , ) ( )¢ = + ¢1 22 , 
so by Case C, Euler’s equation becomes
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4 A full discussion of these statements, with proofs, can be found in Chapter IV of G. A. Bliss’s 
book Calculus of Variations, Carus Monograph no. 1, Mathematical Association of America, 
1925.
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This reduces to

 y[1 + (y′)2] = c,

which is precisely the differential equation 6-(4) arrived at in our earlier 
discussion of this famous problem. Its solution is given in Section 6. The 
resulting stationary curve is the cycloid

 x = a(θ − sin θ)  and  y = a(1 − cos θ) (14)

generated by a circle of radius a rolling under the x axis, where a is 
chosen so that the first inverted arch passes through the point (x2, y2) 
in Figure 99. As before, this argument shows only that if I has a mini-
mum, then the corresponding stationary curve must be the cycloid (14). 
However, it is reasonably clear from physical considerations that I has 
no maximizing curve but does have a minimizing curve, so this cycloid 
actually minimizes the time of descent.

We conclude this section with an easy but important extension of our treat-
ment of the integral (1). This integral represents variational problems of the 
simplest type because it involves only one unknown function. However, 
some of the situations we will encounter below are not quite so simple, for 
they lead to integrals depending on two or more unknown functions.

For example, suppose we want to find conditions necessarily satisfied by 
two functions y(x) and z(x) that give a stationary value to the integral
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where the boundary values y(x1), z(x1) and y(x2), z(x2) are specified in advance. 
Just as before, we introduce functions η1(x) and η2(x) that have continuous 
second derivatives and vanish at the endpoints. From these we form the 
neighboring functions y x y x x( ) ( ) ( )= + ah1  and z x z x x( ) ( ) ( )= + ah2 , and then 
consider the function of α defined by
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Again, if y(x) and z(x) are stationary functions we must have I′(0) = 0, so by 
computing the derivative of (16) and putting α = 0 we get
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or, if the terms involving ¢h1  and ¢h2  are integrated by parts,
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Finally, since (17) must hold for all choices of the functions η1(x) and η2(x), we 
are led at once to Euler’s equations
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Thus, to find the extremals of our problem, we must solve the system (18). 
Needless to say, a system of intractable equations is harder to solve than only 
one; but if (18) can be solved, then the stationary functions are determined by 
fitting the resulting solutions to the given boundary conditions. Similar con-
siderations apply without any essential change to integrals like (15) which 
involve more than two unknown functions.

Problems

 1. Find the extremals for the integral (1) if the integrand is

 (a) 1 2+ ¢( )y

y
;

 (b) y2 − (y′)2.
 2. Find the stationary function of

 0

4

2ò ¢ ¢[ ( ) ]xy y dx-

  which is determined by the boundary conditions y(0) = 0 and y(4) = 3.
 3. When the integrand in (1) is of the form

 a(x)(y′)2 + 2b(x)yy′ + c(x)y2,

  show that Euler’s equation is a second order linear differential equation.
 4. If P and Q are two points in a plane, then in terms of polar coordinates, 

the length of a curve from P to Q is

 

ds dr r d
P

Q

P

Q

ò ò= +2 2 2q .
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  Find the polar equation of a straight line by minimizing this integral
 (a) with θ as the independent variable;
 (b) with r as the independent variable.
 5. Consider two points P and Q on the surface of the sphere x2 + y2 + 

z2 = a2, and coordinatize this surface by means of the spherical coordi-
nates θ and ϕ, where x = a sin ϕ cos θ, y = a sin ϕ sin θ, and z = a cos ϕ. 
Let θ = F(ϕ) be a curve lying on the surface and joining P and Q. Show 
that the shortest such curve (a geodesic) is an arc of a great circle, that 
is, that it lies on a plane through the center. Hint: Express the length of 
the curve in the form
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  solve the corresponding Euler equation for θ, and convert the result 
back into rectangular coordinates.

 6. Prove that any geodesic on the right circular cone z2 = a2(x2 + y2), z ≥ 0, 
has the following property: If the cone is cut along a generator and 
flattened into a plane, then the geodesic becomes a straight line. Hint: 
Represent the cone parametrically by means of the equations
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  show that the parameters r and θ represent ordinary polar coordinates 
on the flattened cone; and show that a geodesic r = r(θ) is a straight line 
in these polar coordinates.

 7. If the curve y = g(z) is revolved about the z-axis, then the resulting sur-
face of revolution has x2 + y2 = g(z)2 as its equation. A convenient para-
metric representation of this surface is given by

 x = g(z) cos θ,  y = g(z) sin θ,  z = z,

  where θ is the polar angle in the xy-plane. Show that a geodesic θ = θ(z) 
on this surface has
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  as its equation.
 8. If the surface of revolution in Problem 7 is a right circular cylinder, 

show that every geodesic of the form θ = θ(z) is a helix or a generator.
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68 Isoperimetric Problems

The ancient Greeks proposed the problem of finding the closed plane curve 
of given length that encloses the largest area. They called this the isoperimet-
ric problem, and were able to show in a more or less rigorous manner that 
the obvious answer—a circle—is correct.5 If the curve is expressed para-
metrically by x = x(t) and y = y(t), and is traversed once counterclockwise as t 
increases from t1 to t2, then the enclosed area is known to be
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which is an integral depending on two unknown functions.6 Since the length 
of the curve is
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the problem is to maximize (1) subject to the side condition that (2) must 
have a constant value. The term isoperimetric problem is usually extended to 
include the general case of finding extremals for one integral subject to any 
constraint requiring a second integral to take on a prescribed value.

We will also consider finite side conditions, which do not involve integrals 
or derivatives. For example, if

 G(x, y, z) = 0 (3)

is a given surface, then a curve on this surface is determined parametrically 
by three functions x = x(t), y = y(t), and z = z(t) that satisfy equation (3), and 
the problem of finding geodesics amounts to the problem of minimizing the 
arc length integral
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subject to the side condition (3).

5 See B. L. van der Waerden, Science Awakening, pp. 268–269, Oxford University Press, London, 
1961; also, G. Polya, Induction and Analogy in Mathematics, Chapter 10, Princeton University 
Press, Princeton, N.J., 1954.

6 Formula (1) is a special case of Green’s theorem. Also, see Problem 1.
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Lagrange multipliers. It is necessary to begin by considering some problems 
in elementary calculus that are quite similar to isoperimetric problems. For 
example, suppose we want to find the points (x, y) that yield stationary val-
ues for a function z = f (x, y), where, however, the variables x and y are not 
independent but are constrained by a side condition

 g(x, y) = 0. (5)

The usual procedure is to arbitrarily designate one of the variables x and y in 
(5) as independent, say x, and the other as dependent on it, so that dy/dx can 
be computed from
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We next use the fact that since z is now a function of x alone, dz/dx = 0 is a 
necessary condition for z to have a stationary value, so
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On solving (5) and (6) simultaneously, we obtain the required points (x, y).7
One drawback to this approach is that the variables x and y occur sym-

metrically but are treated unsymmetrically. It is possible to solve the same 
problem by a different and more elegant method that also has many practical 
advantages. We form the function

 F(x, y, λ) = f(x, y) + λg(x, y)

and investigate its unconstrained stationary values by means of the necessary 
conditions

7 In very simple cases, of course, we can solve (5) for y as a function of x and insert this in z = 
f(x,y), which gives z as an explicit function of x; and all that remains is to compute dz/dx, solve 
the equation dz/dx = 0, and find the corresponding y’s.
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If λ is eliminated from the first two of these equations, then the system clearly 
reduces to
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and this is the system obtained in the above paragraph. It should be 
observed that this technique (solving the system (7) for x and y) solves the 
given problem in a way that has two major features important for theoreti-
cal work: it does not disturb the symmetry of the problem by making an 
arbitrary choice of the independent variable; and it removes the side condi-
tion at the small expense of introducing λ as another variable. The param-
eter λ is called a Lagrange multiplier, and this method is known as the method 
of Lagrange multipliers.8 This discussion extends in an obvious manner to 
problems involving functions of more than two variables with several side 
conditions.

Integral side conditions. Here we want to find the differential equation 
that must be satisfied by a function y(x) that gives a stationary value to the 
integral
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where y is subject to the side condition
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and assumes prescribed values y(x1) = y1 and y(x2) = y2 at the end-points. As 
before, we assume that y(x) is the actual stationary function and disturb it 

8 A brief account of Lagrange is given in Appendix A.
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slightly to find the desired analytic condition. However, this problem cannot 
be attacked by our earlier method of considering neighboring functions of 
the form y x y x x( ) ( ) ( )= + ah , for in general these will not maintain the second 
integral J at the constant value c Instead, we consider a two-parameter family 
of neighboring functions,

 y x y x x x( ) ( ) ( ) ( )= + +a h a h1 1 2 2 , (10)

where η1(x) and η2(x) have continuous second derivatives and vanish at the 
endpoints. The parameters α1 and α2 are not independent, but are related by 
the condition that
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Our problem is then reduced to that of finding necessary conditions for the 
function
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to have a stationary value at α1 = α2 = 0, where α1 and α2 satisfy (11) This situ-
ation is made to order for the method of Lagrange multipliers We therefore 
introduce the function
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where

 F = f + λg,

and investigate its unconstrained stationary value at α1 = α2 = 0 by means of 
the necessary conditions
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If we differentiate (13) under the integral sign and use (10), we get
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and setting α1 = α2 = 0 yields
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by virtue of (14). After the second term is integrated by parts, this becomes

 x

x

i x
F
y

d
dx

F
y

dx
1

2

0ò ¶
¶

- ¶
¶ ¢

æ

è
ç

ö

ø
÷

é

ë
ê
ê

ù

û
ú
ú

=h ( ) . (15)

Since η1(x) and η2(x) are both arbitrary, the two conditions embodied in (15) 
amount to only one condition, and as usual we conclude that the stationary 
function y(x) must satisfy Euler’s equation
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The solutions of this equation (the extremals of our problem) involve three 
undetermined parameters: two constants of integration, and the Lagrange 
multiplier λ. The stationary function is then selected from these extremals 
by imposing the two boundary conditions and giving the integral J its pre-
scribed value c.

In the case of integrals that depend on two or more functions, this result 
can be extended in the same way as in the previous section. For example, if

 

I f x y z y z dx
x

x

= ¢ ¢ò ( , , , , )
1

2

has a stationary value subject to the side condition

 

J g x y z y z dx c
x

x

= ¢ ¢ =ò ( , , , , )
1

2

,



600 Differential Equations with Applications and Historical Notes

then the stationary functions y(x) and z(x) must satisfy the system of equations
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where F = f + λg. The reasoning is similar to that already given, and we omit 
the details.

Example 1. We shall find the curve of fixed length L that joins the points 
(0,0) and (1,0), lies above the x-axis, and encloses the maximum area 
between itself and the x-axis. This is a restricted version of the original 
isoperimetric problem in which part of the curve surrounding the area 
to be maximized is required to be a line segment of length 1. Our prob-

lem is to maximize y dx
0

1

ò  subject to the side condition
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and the boundary conditions y(0) = 0 and y(1)= 0. Here we have 
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or, after carrying out the differentiation,
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In this case no integration is necessary, since (19) tells us at once that the cur-
vature is constant and equals 1/λ. It follows that the required maximizing 
curve is an arc of a circle (as might have been expected) with radius λ. As an 
alternate procedure, we can integrate (18) to get
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On solving this for y′ and integrating again, we obtain

 (x − c1)2 + (y − c2)2 = λ2, (20)

which of course is the equation of a circle with radius λ.



601The Calculus of Variations

Example 2. In Example 1 it is clearly necessary to have L > 1. Also, if 
L > π/2 the circular arc determined by (20) will not define y > 0 as a sin-
gle-valued function of x. We can avoid these artificial issues by consid-
ering curves in parametric form x = x(t) and y = y(t) and by turning our 
attention to the original isoperimetric problem of maximizing
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so the Euler equations (17) are
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These equations can be integrated directly, which yields
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If we solve for x − c2 and y − c1, square, and add, then the result is

 (x − c2)2 + (y − c1)2 = λ2,

so the maximizing curve is a circle. This result can be expressed in the 
following way: if L is the length of a closed plane curve that encloses an 
area A, then A ≤ L2/4π, with equality if and only if the curve is a circle, A 
relation of this kind is called an isoperimetric inequality.9

9 Students of physics may be interested in the ideas discussed in G. Polya and G. Szegö, 
Isoperimetric Inequalities in Mathematical Physics, Princeton University Press Princeton N.J., 
1951.
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Finite side conditions. At the beginning of this section we formulated the 
problem of finding geodesics on a given surface

 G(x, y, z) = 0. (21)

We now consider the slightly more general problem of finding a space curve 
x = x(t), y = y(t), z = z(t) that gives a stationary value to an integral of the form
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where the curve is required to lie on the surface (21).
Our strategy is to eliminate the side condition (21), and to do this we pro-

ceed as follows. There is no loss of generality in assuming that the curve lies 
on a part of the surface where Gz ≠ 0. On this part of the surface we can solve 
(21) for z, which gives z = g(x, y) and
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When (23) is inserted in (22), our problem is reduced to that of finding uncon-
strained stationary functions for the integral
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We know from the previous section that the Euler equations 67-(18) for this 
problem are
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It follows from (23) that
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so the Euler equations can be written in the form
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If we now define a function λ(t) by
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and use the relations ∂g/∂x = −Gx/GZ and ∂g/∂y = −Gy/GZ, then Euler’s equa-
tions become
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Thus a necessary condition for a stationary value is the existence of a func-
tion λ(t) satisfying equations (24), (25), and (26). On eliminating λ(t), we obtain 
the symmetric equations
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which together with (21) determine the extremals of the problem. It is worth 
remarking that equations (24), (25), and (26) can be regarded as the Euler 
equations for the problem of finding unconstrained stationary functions for 
the integral
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This is very similar to our conclusion for integral side conditions, except that 
here the multiplier is an undetermined function of t instead of an undeter-
mined constant.
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When we specialize this result to the problem of finding geodesics on the 
surface (21), we have

 f x y z= + +� � �2 2 2 .

The equations (27) become
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and the problem is to extract information from this system.

Example 3. If we choose the surface (21) to be the sphere x2 + y2 + z2 = a2 
then G(x, y, z) − xz + y2 + z2 − a2 and (28) is
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If we ignore the middle term, this is
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and a second yields x + c1z = c2y. This is the equation of a plane through 
the origin, so the geodesics on a sphere are arcs of great circles. A differ-
ent method of arriving at this conclusion is given in Problem 67-5.

In this example we were able to solve equations (28) quite easily, but in gen-
eral this task is extremely difficult. The main significance of these equations 
lies in their connection with the following very important result in math-
ematical physics: if a particle glides along a surface, free from the action of 
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any external force, then its path is a geodesic. We shall prove this dynamical 
theorem in Appendix B. For the purpose of this argument it will be conve-
nient to assume that the parameter t is the arc length s measured along the 
curve, so that f = 1 and equations (28) become
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Problems

 1. Convince yourself of the validity of formula (1) for a closed convex curve 
like that shown in Figure 102. Hint: What is the geometric meaning of
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  where the first integral is taken from right to left along the upper part 
of the curve and the second from left to right along the lower part?

 2. Verify formula (1) for the circle whose parametric equations are 
x = a cos t and y = a sin t, 0 ≤ t ≤ 2π.

 3. Solve the following problems by the method of Lagrange multipliers.
 (a)  Find the point on the plane ax + by + cz = d that is nearest the origin. 

Hint: Minimize w = x2 + y2 + z2 with the side condition ax + by + 
cz − d = 0.

P

Q

y

x

FIGURE 102
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 (b)  Show that the triangle with greatest area A for a given 
perimeter is equilateral. Hint: If x, y, and z are the sides, then 
A s s x s y s z= ( )( )( )- - -  where s = (x + y + z)/2.

 (c)  If the sum of n positive numbers x1, x2,..., xn has a fixed value s, prove 
that their product x1x2 ∙∙∙ xn has sn/nn as its maximum value, and con-
clude from this that the geometric mean of n positive numbers can 
never exceed their arithmetic mean:

 
x x x

x x x
n

n
n n

1 2
1 2�

�
£

+ + +
.

 4. A curve in the first quadrant joins (0,0) and (1,0) and has a given area 
beneath it. Show that the shortest such curve is an arc of a circle.

 5. A uniform flexible chain of given length hangs between two points. Find 
its shape if it hangs in such a way as to minimize its potential energy.

 6. Solve the original isoperimetric problem (Example 2) by using polar 
coordinates. Hint: Choose the origin to be any point on the curve and 
the polar axis to be the tangent line at that point; then maximize
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  must be constant.
 7. Show that the geodesics on any cylinder of the form g(x,z) = 0 make a 

constant angle with the y-axis.

Appendix A. Lagrange

Joseph Louis Lagrange (1736–1813) detested geometry but made outstanding 
discoveries in the calculus of variations and analytical mechanics. He also 
contributed to number theory and algebra, and fed the stream of thought 
that later nourished Gauss and Abel. His mathematical career can be viewed 
as a natural extension of the work of his older and greater contemporary, 
Euler, which in many respects he carried forward and refined.

Lagrange was born in Turin of mixed French–Italian ancestry. As a boy, 
his tastes were more classical than scientific; but his interest in mathematics 
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was kindled while he was still in school by reading a paper by Edmund 
Halley on the uses of algebra in optics. He then began a course of indepen-
dent study, and progressed so rapidly that at the age of nineteen he was 
appointed professor of mathematics at the Royal Artillery School in Turin.10

Lagrange’s contributions to the calculus of variations were among his 
earliest and most important works. In 1755 he communicated to Euler his 
method of multipliers for solving isoperimetric problems. These problems 
had baffled Euler for years, since they lay beyond the reach of his own semi-
geometrical techniques. Euler was immediately able to answer many ques-
tions he had long contemplated; but he replied to Lagrange with admirable 
kindness and generosity, and withheld his own work from publication “so 
as not to deprive you of any part of the glory which is your due.” Lagrange 
continued working for a number of years on his analytic version of the cal-
culus of variations, and both he and Euler applied it to many new types of 
problems, especially in mechanics.

In 1766, when Euler left Berlin for St. Petersburg, he suggested to Frederick 
the Great that Lagrange be invited to take his place. Lagrange accepted and 
lived in Berlin for 20 years until Frederick’s death in 1786. During this period 
he worked extensively in algebra and number theory and wrote his master-
piece, the treatise Mécanique Analytique (1788), in which he unified general 
mechanics and made of it, as Hamilton later said, “a kind of scientific poem.” 
Among the enduring legacies of this work are Lagrange’s equations of 
motion, generalized coordinates, and the concept of potential energy (which 
are all discussed in Appendix B).11

Men of science found the atmosphere of the Prussian court rather uncon-
genial after the death of Frederick, so Lagrange accepted an invitation from 
Louis XVI to move to Paris, where he was given apartments in the Louvre. 
Lagrange was extremely modest and undogmatic for a man of his great 
gifts; and though he was a friend of aristocrats—and indeed an aristocrat 
himself—he was respected and held in affection by all parties throughout 
the turmoil of the French Revolution. His most important work during these 
years was his leading part in establishing the metric system of weights and 
measures. In mathematics, he tried to provide a satisfactory foundation for 
the basic processes of analysis, but these efforts were largely abortive. Toward 
the end of his life, Lagrange felt that mathematics had reached a dead end, 
and that chemistry, physics, biology, and other sciences would attract the 
ablest minds of the future. His pessimism might have been relieved if he had 
been able to forsee the coming of Gauss and his successors, who made the 
nineteenth century the richest in the long history of mathematics.

10 See George Sarton’s valuable essay, “Lagrange’s Personality,” Proc. Am. Phil. Soc., vol, 88, 
pp. 457–496 (1944).

11 For some interesting views on Lagrangian mechanics (and many other subjects), see 
S. Bochner, The Role of Mathematics in the Rise of Science, pp. 199–207, Princeton University 
Press, Princeton, N.J., 1966.
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Appendix B. Hamilton’s Principle and Its Implications

One purpose of the mathematicians of the eighteenth century was to discover 
a general principle from which Newtonian mechanics could be deduced. 
In searching for clues, they noted a number of curious facts in elementary 
physics: for example, that a ray of light follows the quickest path through an 
optical medium; that the equilibrium shape of a hanging chain minimizes 
its potential energy; and that soap bubbles assume a shape having the least 
surface area for a given volume. These facts and others suggested to Euler 
that nature pursues its diverse ends by the most efficient and economical 
means, and that hidden simplicities underlie the apparent chaos of phenom-
ena. It was this metaphysical idea that led him to create the calculus of varia-
tions as a tool for investigating such questions. Euler’s dream was realized 
almost a century later by Hamilton.

Hamilton’s principle. Consider a particle of mass m moving through space 
under the influence of a force

 F = F1i + F2j + F3k,

and assume that this force is conservative in the sense that the work it does in 
moving the particle from one point to another is independent of the path. It is 
easy to show that there exists a scalar function U(x, y, z) such that ∂U/∂x = F1, 
∂U/∂y = F2, and ∂U/∂z = F3.12 The function V = − U is called the potential 
energy of the particle, since the change in its value from one point to another 
is the work done against F in moving the particle from the first point to the 
second. Furthermore, if r(t) = x(t)i + y(t)j + z(t)k is the position vector of the 
particle, so that
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are its velocity and speed, respectively, then T = mv2/2 is its kinetic energy.
If the particle is at points P1 and P2 at times t1 and t2, then we are interested 

in the path it traverses in moving from P1 to P2. The action (or Hamilton’s inte-
gral) is defined as

 

A T V dt
t

t

= ò
1

2

( )- ,

and in general its value depends on the path along which the particle moves 
in passing from P1 to P2. We will show that the actual path of the particle is 
one that yields a stationary value for the action A.

12 In the language of vector analysis, F is the gradient of U.
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The function L = T − V is called the Lagrangian, and in the case under con-
sideration it is given by
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The integrand of the action is therefore a function of the form f (x, y, z, dx/dt, 
dy/dt, dz/dt), and if the action has a stationary value, then Euler’s equations 
must be satisfied. These equations are
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and can be written in the form
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This is precisely Newton’s second law of motion. Thus Newton’s law is a 
necessary condition for the action of the particle to have a stationary value. 
Since Newton’s law governs the motion of the particle, we have the following 
conclusion.

Hamilton’s principle. If a particle moves from a point P1 to a point P2 in a 
time interval t1 ≤ t ≤ t2, then the actual path it follows is one for which the action 
assumes a stationary value.

It is quite easy to give simple examples in which the actual path of a par-
ticle maximizes the action. However, if the time interval is sufficiently short, 
then it can be shown that the action is necessarily a minimum. In this form, 
Hamilton’s principle is sometimes called the principle of least action, and can 
be loosely interpreted as saying that nature tends to equalize the kinetic and 
potential energies throughout the motion.

In the above discussion we assumed Newton’s law and deduced Hamilton’s 
principle as a consequence. The same argument shows that Newton’s law fol-
lows from Hamilton’s principle, so these two approaches to the dynamics of 
a particle—the vectorial and the variational—are equivalent to one another. 
This result emphasizes the essential characteristic of variational principles 
in physics: they express the pertinent physical laws in terms of energy alone, 
without reference to any coordinate system.

The argument we have given extends at once to a system of n particles of 
masses mi with position vectors ri(t) = xi(t)i + yi(t)j + zi(t)k, which are moving 
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under the influence of conservative forces Fi = Fi1i + Fi2j + Fi3k. Here the 
potential energy of the system is a function V(x1, y1, z1,..., xn, yn, zn) such that
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the kinetic energy is
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and the action over a time interval t1 ≤ t ≤ t2 is

 

A T V dt
t

t
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In just the same way as above, we see that Newton’s equations of motion for 
the system,

 
m

d
dt

i
i

i

2

2

r
F= ,

are a necessary condition for the action to have a stationary value. Hamilton’s 
principle therefore holds for any finite system of particles in which the forces 
are conservative. It applies equally well to more general dynamical systems 
involving constraints and rigid bodies, and also to continuous media.

In addition, Hamilton’s principle can be made to yield the basic laws of 
electricity and magnetism, quantum theory, and relativity. Its influence is so 
profound and far-reaching that many scientists regard it as the most power-
ful single principle in mathematical physics and place it at the pinnacle of 
physical science. Max Planck, the founder of quantum theory, expressed this 
view as follows: “The highest and most coveted aim of physical science is to 
condense all natural phenomena which have been observed and are still to 
be observed into one simple principle.... Amid the more or less general laws 
which mark the achievements of physical science during the course of the 
last centuries, the principle of least action is perhaps that which, as regards 
form and content, may claim to come nearest to this ideal final aim of theo-
retical research.”

Example 1. If a particle of mass m is constrained to move on a given sur-
face G(x, y, z) = 0, and if no force acts on it, then it glides along a geodesic. 
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To establish this, we begin by observing that since no force is present we 
have V = 0, so the Lagrangian L = T − V reduces to T where
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We now apply Hamilton’s principle, and require that the action
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be stationary subject to the side condition G(x, y, z) = 0. By Section 68, this 
is equivalent to requiring that the integral
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t
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be stationary with no side condition, where λ(t) is an undetermined 
function of t. Euler’s equations for this unconstrained variational prob-
lem are
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When m and λ are eliminated, these equations become

 

d x dt
G

d y dt
G

d z dt
Gx y z

2 2 2 2 2

= = .

Now the total energy T + V = T of the particle is constant (we prove this 
below), so its speed is also constant, and therefore s = kt for some con-
stant k if the arc length s is measured from a suitable point. This enables 
us to write our equations in the form

 

d x ds
G

d y ds
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d z ds
Gx y z

2 2 2 2 2 2

= = .

These are precisely equations 68-(29), so the path of the particle is a geo-
desic on the surface, as stated.

Lagrange’s equations. In classical mechanics, Hamilton’s principle can be 
viewed as the source of Lagrange’s equations of motion, which occupy a 
dominant position in this subject. In order to trace the connection, we must 
first understand what is meant by degrees of freedom and generalized 
coordinates.
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A single particle moving freely in three-dimensional space is said to have 
three degrees of freedom, since its position can be specified by three inde-
pendent coordinates x, y, and z. By constraining it to move on a surface 
G(x, y, z) = 0, we reduce its degrees of freedom to two, since one of its coordi-
nates can be expressed in terms of the other two. Similarly, an unconstrained 
system of n particles has 3n degrees of freedom, and the effect of introducing 
constraints is to reduce the number of independent coordinates needed to 
describe the configurations of the system. If the rectangular coordinates of 
the particles are xi, yi and zi (i = 1, 2,..., n), and if the constraints are described 
by k consistent and independent equations of the form

 G x y z x y z j kj n n n( , , , , , , ) , , , , ,1 1 1 0 1 2… …= =

then the number of degrees of freedom is m = 3n − k. In principle these equa-
tions can be used to reduce the number of coordinates from 3n to m by express-
ing the 3n numbers xi, yi and zi (i = 1, 2,..., n) in terms of m of these numbers. 
It is more convenient, however, to introduce Lagrange’s generalized coordinates 
q1, q2,..., qm, which are any m independent coordinates whatever whose values 
determine the configurations of the system. This allows us full freedom to 
choose any coordinate system adapted to the problem at hand—rectangular, 
cylindrical, spherical, or any other—and renders our analysis independent 
of any particular coordinate system. We now express the rectangular coordi-
nates of the particles in terms of these generalized coordinates and note that 
the resulting formulas automatically include the constraints: xi = xi (q1,..., qm), 
yi = yi(q1,... qm), and zi = zi(q1,... qm), where i = 1, 2,..., n.

If mi is the mass of the ith particle, then the kinetic energy of the system is
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and in terms of the generalized coordinates this can be written as
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where �q dq dtj j= . For later use, we point out that T is a homogeneous function 
of degree 2 in the �qj The potential energy V of the system is assumed to be a 
function of the qj alone, so the Lagrangian L = T − V is a function of the form

 L L q q q q q qm m= ( , , , , , , , )1 2 1 2… � � … � .
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Hamilton’s principle tells us that the motion proceeds in such a way that the 

action L dt
t

t

 
1

2

ò  is stationary over any interval of time t1 ≤ t ≤ t2, so Euler’s equa-

tions must be satisfied. In this case these are
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which are called Lagrange’s equations. They constitute a system of m second 
order differential equations whose solution yields the qj as functions of t.

We shall draw only one general deduction from Lagrange’s equations, 
namely, the law of conservation of energy.

The first step in the reasoning is to note the following identity, which holds 
for any function L of the variables t q q q q q qm m, , , , , , , , :1 2 1 2… � � … �
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Since the Lagrangian L of our system satisfies equations (2) and does not 
explicitly depend on t, the right side of (3) vanishes and we have

 j

m

j
j

q
L
q

L E
=

å ¶
¶

=
1

�
�

–  (4)

for some constant E. We next observe that ¶ ¶ =V qj� 0, so ¶ ¶ = ¶ ¶L q T qj j� � . As 
we have already remarked, formula (1) shows that T is a homogeneous func-
tion of degree 2 in the �qj so
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by Euler’s theorem on homogeneous functions.13 With this result, equation 
(4) becomes 2T − L = E or 2T − (T − V) = E, so

 T + V = E,

13 Recall that a function f(x, y) is homogeneous of degree n in x and y if f(kx, ky) = knf(x, y). 
If both sides of this are differentiated with respect to k and then k is set equal to 1, we obtain
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 which is Euler’s theorem for this function. The same result holds for a homogeneous func-
tion of more than two variables.
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which states that during the motion, the sum of the kinetic and potential 
energies is constant.

In the following example we illustrate the way in which Lagrange’s equa-
tions can be used in specific dynamical problems.

Example 2. If a particle of mass m moves in a plane under the influ-
ence of a gravitational force of magnitude km/r2 directed toward the 
origin, then it is natural to choose polar coordinates as the generalized 

coordinates: q1 = r and q2 = θ. It is easy to see that T m r r= +( )( )2 2 2 2� �q  and 
V = –km/r, so the Lagrangian is
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and Lagrange’s equations are
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Since L does not depend explicitly on θ, equation (6) shows that 
¶ ¶ =L mr� �q q2  is constant, so
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for some constant h assumed to be positive. We next observe that (5) can 
easily be written in the form
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This is precisely equation 21-(12), which we solved in Section 21 to obtain 
the conclusion that the path of the particle is a conic section.

Variational problems for double integrals. Our general method of finding 
necessary conditions for an integral to be stationary can be applied equally 
well to multiple integrals. For example, consider a region R in the xy-plane 
bounded by a closed curve C (Figure 103). Let z = z(x, y) be a function that is 
defined in R and assumes prescribed boundary values on C, but is otherwise 



615The Calculus of Variations

arbitrary (except for the usual differentiability conditions). This function can 
be thought of as defining a variable surface fixed along its boundary in space. 
An integral of the form

 

I z f x y z z z dx dyx y

R
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will have values that depend on the choice of z, and we can pose the problem 
of finding a function z (a stationary function) that gives a stationary value to 
this integral.

Our reasoning follows a familiar pattern. Assume that z(x, y) is the desired 
stationary function and form the varied function z x y z x y x y( , ) ( , ) ( , ),= + ah  
where η(x, y) vanishes on C. When z is substituted into the integral (8), we 
obtain a function I(α) of the parameter α, and just as before, the necessary 
condition I′(0) = 0 yields
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To simplify the task of eliminating ηx and ηy, we now assume that the curve 
C has the property that each line in the xy-plane parallel to an axis intersects 

x2(y)

x1(y)
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FIGURE 103
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C in at most two points.14 Then, regarding the double integral of the second 
term in parentheses in (9) as a repeated integral (see Figure 103), we get
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because η vanishes on C, it follows that
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The term containing ηy can be transformed by a similar procedure, and (9) 
becomes
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We now conclude from the arbitrary nature of η that the bracketed expres-
sion in (10) must vanish, so
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is Euler’s equation for an extremal in this case. As before, a stationary func-
tion (if one exists) is an extremal that satisfies the given boundary conditions.

Example 3. In its simplest form, the problem of minimal surfaces was 
first proposed by Euler as follows: to find the surface of smallest area 
bounded by a given closed curve in space. If we assume that this curve 

14 This restriction is unnecessary, and can be avoided it we are willing to use Green’s theorem.
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projects down to a closed curve C surrounding a region R in the xy-
plane, and also that the surface is expressible in the form z = z(x, y), then 
the problem is to minimize the surface area integral
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subject to the boundary condition that z(x, y) must assume prescribed 
values on C. Euler’s equation (11) for this integral is
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which can be written in the form

 z z z z z z zxx y x y xy yy x( ) ( )1 2 1 02 2+ + + =- . (12)

This partial differential equation was discovered by Lagrange. Euler showed 
that every minimal surface not part of a plane must be saddle-shaped, and 
also that its mean curvature must be zero at every point.15 The mathematical 
problem of proving that minimal surfaces exist, i.e., that (12) has a solution 
satisfying suitable boundary conditions, is extremely difficult. A complete 
solution was attained only in 1930 and 1931 by the independent work of 
T. Radó (Hungarian, 1895–1965) and J. Douglas (American, 1897–1965). An 
experimental method of finding minimal surfaces was devised by the blind 
Belgian physicist J. Plateau (1801–1883), who described it in his 1873 treatise 
on molecular forces in liquids. The essence of the matter is that if a piece 
of wire is bent into a closed curve and dipped in a soap solution, then the 
resulting soap film spanning the wire will assume the shape of a minimal 
surface in order to minimize the potential energy due to surface tension. 
Plateau performed many striking experiments of this kind, and since his 
time the problem of minimal surfaces has been known as Plateau’s problem.16

Example 4. In Section 40 we obtained the one-dimensional wave equa-
tion from Newton’s second law of motion. In this example we deduce 
it from Hamilton’s principle with the aid of equation (11). Assume the 
following: a string of constant linear mass density m is stretched with 
a tension T and fastened to the x-axis at the points x = 0 and x = π; it is 

15 The mean curvature of a surface at a point is defined as follows. Consider the normal line 
to the surface at the point, and a plane containing this normal line. As this plane rotates 
about the line, the curvature of the curve in which it intersects the surface varies, and the 
mean curvature is one-half the sum of its maximum and minimum values.

16 The standard mathematical work on this subject is R. Courant, Dirichlet’s Principle, Conformal 
Mapping, and Minimal Surfaces, Interscience-Wiley, New York, 1950.
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plucked and allowed to vibrate in the xy-plane; and its displacements 
y(x, t) are relatively small, so that the tension remains essentially con-
stant and powers of the slope higher than the second can be neglected. 
When the string is displaced, an element of length dx is stretched to a 
length ds, where

 
ds y dx y dxx x= + @ +æ

è
ç
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ø
÷1 1

1
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2 2 .

This approximation results from expanding 1 12 2 1 2+ = +y yx x( )  in the 
binomial series 1 22+ +yx � and discarding all powers of yx higher than 

the second. The work done on the element is T ds dx Ty dxx( )- =
1
2

2 , so the 
potential energy of the whole string is

 
V T y dxx= ò1

2
2

0

p

.

The element has mass m dx and velocity yt, so its kinetic energy is 
1
2

2my dxt , 
and for the whole string we have

 

T m y dxt= ò1
2

2

0

p

.

The Lagrangian is therefore

 

L T V my Ty dxt x= = ò– ( – )
1
2

0
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,

and the action, which must be stationary by Hamilton’s principle, is
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In this case equation (11) becomes

 

T
m

y yxx tt= ,

which we recognize as the wave equation 40-(8).

NOTE ON HAMILTON. The Irish mathematician and mathematical 
physicist William Rowan Hamilton (1805–1865) was a classic child prodigy. 
He was educated by an eccentric but learned clerical uncle. At the age of 
three he could read English; at four he began Greek, Latin, and Hebrew; at 
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eight he added Italian and French; at ten he learned Sanskrit and Arabic; 
and at thirteen he is said to have mastered one language for each year he 
had lived. This forced flowering of linguistic futility was broken off at the 
age of fourteen, when he turned to mathematics, astronomy, and optics. At 
eighteen he published a paper correcting a mistake in Laplace’s Mécanique 
Céleste; and while still an undergraduate at Trinity College in Dublin, he 
was appointed professor of astronomy at that institution and automatically 
became Astronomer Royal of Ireland.

His first important work was in geometrical optics. He became famous at 
twenty-seven as a result of his mathematical prediction of conical refraction. 
Even more significant was his demonstration that all optical problems can be 
solved by a single method that includes Fermat’s principle of least time as a 
special case. He then extended this method to problems in mechanics, and 
by the age of thirty had arrived at a single principle (now called Hamilton’s 
principle) that exhibits optics and mechanics as merely two aspects of the 
calculus of variations.

In 1835 he turned his attention to algebra, and constructed a rigorous 
theory of complex numbers based on the idea that a complex number is an 
ordered pair of real numbers. This work was done independently of Gauss, 
who had already published the same ideas in 1831, but with emphasis on the 
interpretation of complex numbers as points in the complex plane. Hamilton 
subsequently tried to extend the algebraic structure of the complex numbers, 
which can be thought of as vectors in a plane, to vectors in three-dimen-
sional space. This project failed, but in 1843 his efforts led him to the dis-
covery of quaternions. These are four-dimensional vectors that include the 
complex numbers as a subsystem; in modern terminology, they constitute 
the simplest noncommutative linear algebra in which division is possible.17 
The remainder of Hamilton’s life was devoted to the detailed elaboration of 
the theory and applications of quaternions, and to the production of mas-
sive indigestible treatises on the subject. This work had little effect on phys-
ics and geometry, and was supplanted by the more practical vector analysis 
of Willard Gibbs and the multilinear algebra of Grassmann and E. Cartan. 
The significant residue of Hamilton’s labors on quaternions was the demon-
strated existence of a consistent number system in which the commutative 
law of multiplication does not hold. This liberated algebra from some of the 
preconceptions that had paralyzed it, and encouraged other mathematicians 
of the late nineteenth and twentieth centuries to undertake broad investiga-
tions of linear algebras of all types.

Hamilton was also a bad poet and friend of Wordsworth and Coleridge, 
with whom he corresponded voluminously on science, literature, and 
philosophy.

17 Fortunately Hamilton never learned that Gauss had discovered quaternions in 1819 but kept 
his ideas to himself. See Gauss, Werke, vol. VIII, pp. 357–362.
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Chapter 13
The Existence and Uniqueness of Solutions

69 The Method of Successive Approximations

One of the main recurring themes of this book has been the idea that only a 
few simple types of differential equations can be solved explicitly in terms 
of known elementary functions. Some of these types are described in the 
first three chapters, and Chapter 5 provides a detailed account of second 
order linear equations whose solutions are expressible in terms of power 
series. However, many differential equations fall outside these categories, 
and nothing we have done so far suggests a procedure that might work in 
such cases.

We begin by examining the initial value problem described in Section 2:

 y′ = f (x, y),  y(x0) = y0, (1)

where f (x, y) is an arbitrary function defined and continuous in some neigh-
borhood of the point (x0, y0). In geometric language, our purpose is to devise 
a method for constructing a function y = y(x) whose graph passes through 
the point (x0, y0) and that satisfies the differential equation y′ = f (x, y) in some 
neighborhood of x0 (Figure 104). We are prepared for the idea that elemen-
tary procedures will not work and that in general some type of infinite pro-
cess will be required.

The method we describe furnishes a line of attack for solving differential 
equations that is quite different from any the reader has encountered before. 
The key to this method lies in replacing the initial value problem (1) by the 
equivalent integral equation

 

y x y f t y t dt
x

x

( ) [ , ( )]= + ò0

0

. (2)



622 Differential Equations with Applications and Historical Notes

This is called an integral equation because the unknown function occurs 
under the integral sign. To see that (1) and (2) are indeed equivalent, suppose 
that y(x) is a solution of (1). Then y(x) is automatically continuous and the 
right side of

 y′(x) = f [x, y(x)]

is a continuous function of x; and when we integrate this from x0 to x and 
use y(x0) = y0, the result is (2). As usual, the dummy variable t is used in (2) 
to avoid confusion with the variable upper limit x on the integral. Thus any 
solution of (1) is a continuous solution of (2). Conversely, if y(x) is a continuous 
solution of (2), then y(x0) = y0 because the integral vanishes when x = x0, and 
by differentiation of (2) we recover the differential equation y′(x) = f [x, y(x)]. 
These simple arguments show that (1) and (2) are equivalent in the sense that 
the solutions of (1)—if any exist—are precisely the continuous solutions of 
(2). In particular, we automatically obtain a solution for (1) if we can construct 
a continuous solution for (2).

We now turn our attention to the problem of solving (2) by a process of 
iteration. That is, we begin with a crude approximation to a solution and 
improve it step by step by applying a repeatable operation which we hope 
will bring us as close as we please to an exact solution. The primary advan-
tage that (2) has over (1) is that the integral equation provides a convenient 
mechanism for carrying out this process, as we now see.

A rough approximation to a solution is given by the constant function 
y0(x) = y0, which is simply a horizontal straight line through the point (x0, y0). 

x

y

y = y(x)
( x0,y0)

x0

FIGURE 104
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We insert this approximation in the right side of equation (2) in order to 
obtain a new and perhaps better approximation y1(x) as follows:

 

y x y f t y dt
x

x

1 0 0

0

( ) ( , )= + ò .

The next step is to use y1(x) to generate another and perhaps even better 
approximation y2(x) in the same way:

 

y x y f t y t dt
x

x

2 0 1

0

( ) , ( )= + éë ùûò .

At the nth stage of the process we have

 

y x y f t y t dtn

x

x

n( ) [ , ( )]= + ò -0 1

0

. (3)

This procedure is called Picard’s method of successive approximations.1 We show 
how it works by means of a few examples.

The simple initial value problem

 y′ = y,  y(0) = 1

has the obvious solution y(x) = ex. The equivalent integral equation is

 

y x y t dt
x

( ) ( )= + ò1
0

,

1 Émile Picard (1856–1941), one of the most eminent French mathematicians of the past century, 
made two outstanding contributions to analysis: his method of successive approximations, 
which enabled him to perfect the theory of differential equations that Cauchy had initiated in 
the 1820s; and his famous theorem (called Picard’s Great Theorem) about the values assumed 
by a complex analytic function near an essential singularity, which has stimulated much 
important research down to the present day. Like a true Frenchman, he was a connoisseur of 
fine food and was particularly fond of bouillabiasse.
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and (3) becomes

 

y x y t dtn

x
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1 .

With y0(x) = 1, it is easy to see that
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and in general
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In this case it is very clear that the successive approximations do in fact con-
verge to the exact solution, for these approximations are the partial sums of 
the power series expansion of ex.

Let us now consider the problem

 y′ = x + y,  y(0) = 1. (4)

This is a first order linear equation, and the solution satisfying the given 
initial condition is easily found to be y(x) = 2ex − x − 1. The equivalent integral 
equation is

 

y x t y t dt
x

( ) [ ( )]= + +ò1
0

,

and (3) is

 

y x t y t dtn

x

n( ) [ ( )]= + +ò -1
0

1 .
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With y0(x) = 1, Picard’s method yields
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and in general
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This evidently converges to

 1 + x + 2(ex − x − 1) + 0 = 2ex − x − 1,

so again we have the exact solution.
In spite of these examples, the reader may not be entirely convinced of 

the practical value of Picard’s method. What are we to do, for instance, if the 
successive integrations are very complicated, or not possible at all except in 
principle? This skepticism is justified, for the real power of Picard’s method 
lies mainly in the theory of differential equations—not in actually find-
ing solutions, but in proving under very general conditions that an initial 
value problem has a solution and that this solution is unique. Theorems 
that make precise assertions of this kind are called existence and uniqueness 
theorems. We shall state and prove several of these theorems in the next two 
sections.
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Problems

 1. Find the exact solution of the initial value problem

 y′ = y2,  y(0) = 1.

 Starting with y0(x) = 1, apply Picard’s method to calculate y1(x), y2(x), 
y3(x), and compare these results with the exact solution.

 2. Find the exact solution of the initial value problem

 y′ = 2x(l + y),  y(0) = 0.

 Starting with y0(x) = 0, calculate y1(x), y2(x), y3(x), y4(x), and compare these 
results with the exact solution.

 3. It is instructive to see how Picard’s method works with a choice of the 
initial approximation other than the constant function y0(x) = y0. Apply 
the method to the initial value problem (4) with

 (a) y0(x) = ex;
 (b) y0(x) = 1 + x;
 (c) y0(x) = cos x.

70 Picard’s Theorem

As we pointed out at the end of the last section, the principal value of Picard’s 
method of successive approximations lies in the contribution it makes to the 
theory of differential equations. This contribution is most clearly illustrated 
in the proof of the following basic theorem.

Theorem A. (Picard’s theorem.) Let f (x, y) and ∂f/∂y be continuous functions of 
x and y on a closed rectangle R with sides parallel to the axes (Figure 105). If (x0, y0) 
is any interior point of R, then there exists a number h > 0 with the property that the 
initial value problem

 y′ = f (x, y),  y(x0) = y0  (l)

has one and only one solution y = y(x) on the interval |x − x0| ≤ h.

Proof. The argument is fairly long and intricate, and is best absorbed in easy 
stages.
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First, we know that every solution of (1) is also a continuous solution of the 
integral equation

 

y x y f t y t dt
x
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, (2)

and conversely. This enables us to conclude that (1) has a unique solution on 
an interval |x − x0| ≤ h if and only if (2) has a unique continuous solution on 
the same interval. In Section 69 we presented some evidence suggesting that 
the sequence of functions yn(x) defined by
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converges to a solution of (2). We next observe that yn(x) is the nth partial sum 
of the series of functions

R

x

y

x0 – h x0 + h

R΄
y = y(x)
(x0, y0)

FIGURE 105
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so the convergence of the sequence (3) is equivalent to the convergence of this 
series. In order to complete the proof, we produce a number h > 0 that defines 
the interval |x − x0| ≤ h and then we show that on this interval the following 
statements are true: (i) the series (4) converges to a function y(x); (ii) y(x) is a 
continuous solution of (2); (iii) y(x) is the only continuous solution of (2).

The hypotheses of the theorem are used to produce the positive number h, 
as follows. We have assumed that f (x, y) and ∂f/∂y are continuous functions 
on the rectangle R. But R is closed (in the sense that it includes its boundary) 
and bounded, so each of these functions is necessarily bounded on R. This 
means that there exist constants M and K such that

 |f (x, y)| ≤ M (5)

and

 

¶
¶

£
y

f x y K( , )  (6)

for all points (x, y) in R. We next observe that if (x, y1) and (x, y2) are distinct 
points in R with the same x coordinate, then the mean value theorem guar-
antees that

 
f x y f x y

y
f x y y y( , ) ( , ) ( , )1 2 1 2- = ¶

¶
* -  (7)

for some number y* between y1 and y2. It is clear from (6) and (7) that

 |f (x, y1) − f (x, y2)| ≤ K|y1 − y2| (8)

for any points (x, y1) and (x, y2) in R (distinct or not) that lie on the same verti-
cal line. We now choose h to be any positive number such that

 Kh < 1 (9)

and the rectangle R′ defined by the inequalities |x − x0| ≤ h and |y − y0| ≤ Mh 
is contained in R. Since (x0, y0) is an interior point of R, there is no difficulty in 
seeing that such an h exists. The reasons for these apparently bizarre require-
ments will of course emerge as the proof continues.
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From this point on, we confine our attention to the interval |x − x0| ≤ h. In 
order to prove (i), it suffices to show that the series

 
y x y x y x y x y x y x y xn n0 1 0 2 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )+ - + - -+ + +-� �

 
(10)

converges; and to accomplish this, we estimate the terms |yn(x) − yn−1(x)|. It is 
first necessary to observe that each of the functions yn(x) has a graph that lies 
in R′ and hence in R. This is obvious for y0(x) = y0, so the points [t, y0(t)] are in 
R′, (5) yields |f [t, y0(t)]| ≤ M, and

 

y x y f t y t dt Mh
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x
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0
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which proves the statement for y1(x). It follows in turn from this inequality 
that the points [t, y, (t)] are in R′, so |f [t, y1, (t)]| ≤ M and
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Similarly,
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and so on. Now for the estimates mentioned above. Since a continuous func-
tion on a closed interval has a maximum, and y1(x) is continuous, we can 
define a constant a by a = max|y1(x) − y0| and write

 |y1(x) − y0(x)| ≤ a.

Next, the points [t, y1(t)] and [t, y0(t)] lie in R′, so (8) yields

 |f [t, y1(t)] − f [t, y0(t)]| ≤ K|y1(t) − y0(t)| ≤ Ka

and we have
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Similarly,

 |f [t, y2(t)] − f [t, y1(t)]| ≤ K|y2(t) − y1(t)| ≤ K2 ah,

so
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By continuing in this manner, we find that

 |yn(x) − yn−1(x)| ≤ a(Kh)n−1

for every n = 1, 2,... Each term of the series (10) is therefore less than or equal 
to the corresponding term of the series of constants

 y a a Kh a Kh a Kh n
0

2 1+ + + + + +-( ) ( ) ( ) .� �

But (9) guarantees that this series converges, so (10) converges by the com-
parison test, (4) converges to a sum which we denote by y(x), and yn(x) → y(x). 
Since the graph of each yn(x) lies in R′, it is evident that the graph of y(x) also 
has this property.

Now for the proof of (ii). The above argument shows not only that yn(x) 
converges to y(x) in the interval, but also that this convergence is uniform. 
This means that by choosing n to be sufficiently large, we can make yn(x) 
as close as we please to y(x) for all x in the interval; or more precisely, if ∈ > 0 
is given, then there exists a positive integer n0 such that if n ≥ n0 we have 
|y(x) − yn(x)| < ∈ for all x in the interval. Since each yn(x) is clearly continu-
ous, this uniformity of the convergence implies that the limit function y(x) 
is also continuous.2 To prove that y(x) is actually a solution of (2), we must 
show that

 

y x y f t y t dt
x

x

( ) [ , ( )]- - =ò0

0

0. (11)

2 We will not discuss this in detail, but the reasoning is quite simple and rests on the inequality
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But we know that
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so subtracting the left side of (12) from the left side of (11) gives
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Since the graph of y(x) lies in R′ and hence in R, (8) yields
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The uniformity of the convergence of yn(x) to y(x) now implies that the right 
side of (13) can be made as small as we please by taking n large enough. The 
left side of (13) must therefore equal zero, and the proof of (11) is complete.

In order to prove (iii), we assume that y x( ) is also a continuous solution 
of (2) on the interval |x − x0| ≤ h, and we show that y x y x( ) ( )=  for every x 
in the interval. For the argument we give, it is necessary to know that the 
graph of y x( ) lies in R′ and hence in R, so our first step is to establish this 
fact. Let us suppose that the graph of y x( ) leaves R′ (Figure 106). Then the 
properties of this function [continuity and the fact that y x y( )0 0= ] imply that 
there exists an x1 such that |x1 − x0| < h, | ( ) |y x y Mh1 0- =  and | ( ) |y x y Mh- <0  
if |x − x0| < |x1 − x0|. It follows that
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However, by the mean value theorem there exists a number x* between x0 
and x1 such that
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since the point [ *, ( *)]x y x  lies in R′. This contradiction shows that no point 
with the properties of x1 can exist, so the graph of y x( ) lies in R′. To complete 
the proof of (iii), we use the fact that y x( ) and y(x) are both solutions of (2) to 
write
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Since the graphs of y x( ) and y(x) both lie in R′, (8) yields

 | ( ) ( )| max| ( ) ( )|y x y x Kh y x y x- £ - ,

so

 max| ( ) ( )| max| ( ) ( )|y x y x Kh y x y x- £ - .

This implies that max y x y x( ) ( )- = 0, for otherwise we would have 1 ≤ Kh 
in contradiction to (9). It follows that y x y x( ) ( )=  for every x in the inter-
val |x − x0| ≤ h, and Picard’s theorem is fully proved.

Remark 1. This theorem can be strengthened in various ways by weakening 
its hypotheses. For instance, our assumption that ∂f/∂y is continuous on R is 
stronger than the proof requires, and is used only to obtain the inequality (8). 
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We can therefore introduce this inequality into the theorem as an assump-
tion that replaces the one about ∂f/∂y. In this way we arrive at a stronger form 
of the theorem since there are many functions that lack a continuous partial 
derivative but nevertheless satisfy (8) for some constant K. This inequality, 
which says that the difference quotient

 

f x y f x y
y y

( , ) ( , )1 2

1 2

-
-

is bounded on R, is called a Lipschitz3 condition in the variable y.

Remark 2. If we drop the Lipschitz condition, and assume only that f (x,y) is 
continuous on R, then it is still possible to prove that the initial value problem 
(1) has a solution. This result is known as Peano’s theorem.4 The only known 
proofs depend on more sophisticated arguments than those we have used 
above.5 Furthermore, the solution whose existence this theorem guarantees 
is not necessarily unique. As an example, consider the problem

 y′ = 3y2/3,  y(0) = 0, (14)

and let R be the rectangle |x| ≤ 1, |y| ≤ 1. Here f(x,y) = 3y2/3 is plainly continu-
ous on R. Also, y1(x) = x3 and y2(x) = 0 are two different solutions valid for all 
x, so (14) certainly has a solution that is not unique. The explanation for this 
nonuniqueness lies in the fact that f (x,y) does not satisfy a Lipschitz condi-
tion on the rectangle R, since the difference quotient

 

f y f
y
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y y
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/
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0

3 32 3
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is unbounded in every neighborhood of the origin.

3 Rudolf Lipschitz (1832–1903) was a professor at Bonn for most of his life. He is remembered 
chiefly for his role in simplifying and clarifying Cauchy’s original theory of the existence and 
uniqueness of solutions of differential equations. However, he also extended Dirichlet’s theo-
rem on the representability of a function by its Fourier series, obtained the formula for the 
number of ways a positive integer can be expressed as a sum of four squares as a consequence 
of his own theory of the factorization of integral quaternions, and made useful contributions 
to theoretical mechanics, the calculus of variations, Bessel functions, quadratic differential 
forms, and the theory of viscous fluids.

4 Guiseppe Peano (1858–1932), Italian logician and mathematician, strongly influenced 
Hilbert’s axiomatic treatment of plane geometry and the work of Whitehead and Russell on 
mathematical logic. His postulates for the positive integers have led generations of students 
to wonder whether all of modern algebra is some kind of conspiracy to render the obvious 
obscure (it is not!). In 1890 he astounded the mathematical world with his remarkable con-
struction of a continuous curve in the plane that completely fills the square 0 ≤ x ≤ l, 0 ≤ y ≤ 1. 
Unfortunately for a man who valued logic so highly, his 1886 proof of the above existence 
theorem for solutions of y′ = f(x,y) was inadequate, and a satisfactory proof was not found 
until many years later.

5 See, for example, A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and 
Functional Analysis, vol, 1, p. 56, Graylock, Baltimore, 1957.
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Remark 3. Theorem A is called a local existence and uniqueness theorem 
because it guarantees the existence of a unique solution only on some inter-
val |x − x0| ≤ h where h may be very small. There are several important cases 
in which this restriction can be removed. Let us consider, for example, the 
first order linear equation

 y′ + P(x)y = Q(x),

where P(x) and Q(x) are defined and continuous on an interval a ≤ x ≤ b. Here 
we have

 f(x,y) = −P(x)y + Q(x);

and if K = max|P(x)| for a ≤ x ≤ b, it is clear that

 |f(x,y1) − f(x,y2)| = |−P(x)(y1 − y2)| ≤ K |y1 −y2|.

The function f(x,y) is therefore continuous and satisfies a Lipschitz condition 
on the infinite vertical strip defined by a ≤ x ≤ b and −∞ < y < ∞. Under these 
circumstances, the initial value problem

 y′ + P(x)y = Q(x),  y(x0) = y0

has a unique solution on the entire interval a ≤ x ≤ b. Furthermore, the point 
(x0,y0) can be any point of the strip, interior or not. This statement is a special 
case of the next theorem.

Theorem B. Let f (x,y) be a continuous function that satisfies a Lipschitz condition

 |f(x,y1) − f(x,y2)| ≤ K|y1 − y2|

on a strip defined by a ≤ x ≤ b and −∞ < y < ∞. If (x0,y0) is any point of the strip, then 
the initial value problem

 y′ = f (x,y),  y(x0) = y0 (15)

has one and only one solution y = y(x) on the interval a ≤ x ≤ b.

Proof. The argument is similar to that given for Theorem A, with certain 
simplifications permitted by the fact that the region under discussion is not 
bounded above or below. In particular, we start the proof in the same way 
and show that the series (4)— and therefore the sequence (3)—is uniformly 
convergent on the whole interval a ≤ x ≤ b. We accomplish this by using a 
somewhat different method of estimating the terms of the series (10).
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First, we define M0, M1, and M by

 M0 = |y0|,  M1 = max|y1(x)|,  M = M0 + M1,

and we notice that |y0(x)| ≤ M and |y1(x) − y0(x)| ≤ M. Next, if x0 ≤ x ≤ b, it fol-
lows that
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The same argument is also valid for a ≤ x ≤ x0, provided only that x − x0 is 
replaced by |x − x0|, so we have
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for every x in the interval and n = 1, 2,.... We conclude that each term of the 
series (10) is less than or equal to the corresponding term of the convergent 
series of constants
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b a
K M
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!
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!
2

2
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�,

so (3) converges uniformly on the interval a ≤ x ≤ b to a limit function y(x).
Just as before, the uniformity of the convergence implies that y(x) is a solu-

tion of (15) on the whole interval, and all that remains is to show that it is the 
only such solution. We assume that y x( ) is also a solution of (15) on the inter-
val. Our strategy is to show that y x y xn( ) ( )®  for each x as n→∞; and since we 
also have yn(x) → y(x), it will follow that y x y x( ) ( )= . We begin by observing 
that y x( ) is continuous and satisfies the equation
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If A y x y= -max| ( ) |0 , then for x0 ≤ x ≤ b we see that
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and in general
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A similar result holds for a ≤ x ≤ x0 so for any x in the interval we have
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Since the right side of this approaches zero as n → ∞, we conclude that 
y x y x( ) ( )=  for every x in the interval, and the proof is complete.

Problems

 1. Let (x0,y0) be an arbitrary point in the plane and consider the initial 
value problem

 y′ = y2, y(x0) = y0.

 Explain why Theorem A guarantees that this problem has a unique 
solution on some interval |x − x0| ≤ h. Since f(x,y) = y2 and ∂f/∂y = 2y are 
continuous on the entire plane, it is tempting to conclude that this solu-
tion is valid for all x. By considering the solutions through the points 
(0,0) and (0,1), show that this conclusion is sometimes true and some-
times false, and that therefore the inference is not legitimate.

 2. Show that f(x,y) = y1/2

 (a)  does not satisfy a Lipschitz condition on the rectangle |x| ≤ 1 and 
0 ≤ y ≤ 1;

 (b)  does satisfy a Lipschitz condition on the rectangle |x| ≤ 1 and 
c ≤ y ≤ d, where 0 < c < d.

 3. Show that f(x,y) = x2|y| satisfies a Lipschitz condition on the rectangle 
|x| ≤ 1 and |y| ≤ 1 but that ∂f/∂y fails to exist at many points of this 
rectangle.

 4. Show that f(x,y) = xy2

 (a) satisfies a Lipschitz condition on any rectangle a ≤ x ≤ b and c ≤ y ≤ d;
 (b)  does not satisfy a Lipschitz condition on any strip a ≤ x ≤ b> and 

–∞ < y < ∞.
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 5. Show that f(x,y) = xy

 (a) satisfies a Lipschitz condition on any rectangle a ≤ x ≤ b and c ≤ y ≤ d;
 (b) satisfies a Lipschitz condition on any strip a ≤ x ≤ b and –∞ < y < ∞;
 (c) does not satisfy a Lipschitz condition on the entire plane.
 6. Consider the initial value problem

 y′ = y|y|,  y(x0) = y0.

 (a)  For what points (x0,y0) does Theorem A imply that this problem has 
a unique solution on some interval |x − x0| ≤ h?

 (b)  For what points (x0,y0) does this problem actually have a unique 
solution on some interval |x − x0| ≤ h?

 7. For what points (x0,y0) does Theorem A imply that the initial value 
problem

 y′ = y|y|,  y(x0) = y0

 has a unique solution on some interval |x − x0| ≤ h?

71 Systems. The Second Order Linear Equation

Picard’s method of successive approximations can also be applied to sys-
tems of first order equations. Let us consider, for example, the initial value 
problem consisting of the following pair of first order equations and initial 
conditions:
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 (1)

where the right sides are continuous functions in some region of xyz space 
that contains the point (x0,y0,z0). We use the differential notation here in order 
to emphasize that x is the independent variable. A solution of such a system 
is of course a pair of functions y = y(x) and z = z(x) which together satisfy the 
conditions imposed by (1) on some interval containing the point x0. As in 
the case of a single first order equation, it is apparent that the system (1) is 
equivalent to the system of integral equations
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in the sense that the solutions of (1)—if any exist—are precisely the continu-
ous solutions of (2). If we attempt to solve (2) by successive approximations 
beginning with the constant functions

 y0(x) = y0  and  z0(x) = z0,

then the Picard method proceeds exactly as before. At the first stage we 
have
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at the second stage we have
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and so on. This procedure generates two sequences of functions yn(x) and 
zn(x); and under suitable hypotheses, the arguments of Theorem 69-A can 
easily be adapted to prove that these sequences converge to a solution of (1) 
which exists and is unique on some interval |x − x0| ≤ h.

We now specialize to a linear system, in which the functions f(x,y,z) and 
g (x,y,z) in (1) are linear functions of y and z. That is, we consider an initial 
value problem of the form
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where the six functions pi(x), qi(x), and rj(x) are continuous on an interval 
a ≤ x ≤ b and x0 is a point in this interval. Since each of these functions is 
bounded for a ≤ x ≤ b, there exists a constant K such that |pi(x)|≤ K and |qi(x)|≤ K 
for i = 1, 2. It is now easy to see that the functions on the right sides of the dif-
ferential equations in (3) satisfy Lipschitz conditions of the form

 |f(x,y1,z1) − f(x,y2,z2)| ≤ K(|y1 − y2| + |z1 − z2|)

and

 |g(x,y1,z1) − g(x,y2,z2)| ≤ K(|y1 − y2| + |z1 − z2|).

Just as in the proof of Theorem 69-B, these conditions can be used to show 
that (3) has a unique solution on the whole interval a ≤ x ≤ b. Again we spare 
the reader the details.

These remarks about systems make it possible to give a simple proof of 
the following basic theorem, which we stated at the beginning of Chapter 3 
and which has played an unobtrusive but crucial role in all of our work on 
second order linear equations.

Theorem A. Let P(x), Q(x), and R(x) be continuous functions on an interval a ≤ x ≤ b. 
If x0 is any point in this interval, and y0 and ¢y0 are any numbers whatever, then the 
initial value problem
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has one and only one solution y = y(x) on the interval a ≤ x ≤ b.

Proof. If we introduce the variable z = dy/dx, then it is clear that every solu-
tion of (4) yields a solution of the linear system
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and conversely. We have seen that (5) has a unique solution on the interval 
a ≤ x ≤ b, so the same is true of (4).

Problem

 1. Solve the following initial value problem by Picard’s method, and com-
pare the result with the exact solution:

 

dy
dx

z y

dz
dx

y z

= =

= - =

ì

í
ïï

î
ï
ï

, ( ) ,

, ( ) .

0 1

0 0



http://taylorandfrancis.com


643

Chapter 14
Numerical Methods

By John S. Robertson
Department of Mathematical Sciences,

U.S. Military Academy,

West Point, New York 10996–1786

72 Introduction

Despite the broad range of powerful analytical tools presented throughout 
this book, many occasions cry out for the application of numerical meth-
ods for solving ordinary differential equations. For example, an exact solu-
tion may be unavailable, or may be of little practical value.1 This situation 
occurs when power series solutions to linear second order equations are 
constructed. In general, the series are rather good approximations near the 
initial condition, but the Taylor expansions can soon require prohibitively 
many terms should the solution be required at some large distance from that 
point. For large systems of equations, an exact solution may exist (in vec-
tor form) but the subsequent algebraic manipulations may be overwhelm-
ing. Furthermore, numerical solutions should not be cast in a light of last 
resort, for they form the mathematician’s petri dish—a crucible in which he 
can conduct any number of experiments on his differential equation and, by 
proxy, the very thing he is trying to model.2

These numerical methods rely on two fundamental but distinct approx-
imations. First, a differential equation is replaced with a difference 
equation and the role played by a continuous independent variable is 
then assumed by a discrete one. For this approach to be of any use, it is 

1 For a detailed historical account of the important role played by the application of numerical 
methods to differential equations, see Garrett Birkhoff’s “Numerical Fluid Dynamics,” the 
1981 John von Neumann Lecture, published in SIAM Review vol. 25, pp 1–34 (1983).

2 In 1965, N. J. Zabusky and M. D. Kruskal discovered solitons in just this way. By considering 
a particular version of an equation governing the motion of surface water waves and exper-
imenting with its numerical solution, they deduced the existence of mathematical objects 
with truly surprising properties. Solitons and the differential equations that govern their 
behavior have been one of the most intensely studied areas of applied mathematics during 
the last two decades.
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important to understand the conditions under which the solution to the 
difference equation is close to, that is, converges to, the solution to the 
differential equation. Second, in virtually all digital computers in use 
today, the real-number line is approximated by a large but finite subset 
of rational numbers. Limiting oneself to only a finite range of rationals 
can have unobvious, but crucial, consequences in certain cases—the errors 
made by the machine may indeed be catastrophic. At any rate, both of 
these approximations permit the difference equations to be implemented 
on an enormous variety of computing hardware. Nevertheless, there are 
many apocryphal stories told of engineers performing expensive compu-
tations on big computers only to obtain nonsense answers. We emphasize 
here that existence and uniqueness questions, discussed elsewhere in this 
book, are vitally important and should always be considered first. Beyond 
these, other problems, such as numerical instability and the existence of 
spurious solutions can cause difficulties. Despite the abundance of well-
tuned algorithms for solving ordinary differential equations, the reader 
should carefully remark the need to be ever-vigilant. Before appealing to 
the machine for aid, it is always wise to know something about the answer 
one seeks. That is, the practicing scientist should endeavor to know as 
much about the solution as is possible. For example, is it bounded? Stable? 
Periodic? About how big (or small) should the answer be? Careful attention 
to these issues as discussed in the preceding chapters will stand the reader 
in good stead for what follows.3

In order to understand what we mean by a numerical solution of a differ-
ential equation, we consider the simple initial-value problem

 y′ = y, y(0) = 1. (1)

The problem has the obvious solution y = ex, and for many theoretical pur-
poses, this is enough. However, in a practical application it might be neces-
sary to know the value of the solution when x = 0.5, and the decimal 1.649 is 
likely to be more useful than the symbol e0.5. In contrast to the theoretical 
solution of (1), a numerical solution can be provided by a table of values for ex 
or a pocket calculator. Either way, the number so obtained depended on our 
knowledge of the formula y = ex.

In this chapter we describe several methods of calculating an approxima-
tion numerical solution of the form

 y′ = f(x,y), y(x0) = y0. (2)

3 For an excellent historical background on the evolution of numerical methods for differen-
tial equations that occurred in the decades surrounding the development of the first digital 
computers, see Herman H. Goldstine, The Computer from Pascal to von Neumann, Princeton 
University Press, Princeton, 1972.
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We shall assume that this problem has a unique solution denoted by y(x). 
Our methods consist of a computational procedures based solely on the 
information given by (2), and are completely independent of whether a for-
mula for y(x) is known or not. These numerical methods and others like them 
are therefore extremely valuable for those initial-value problems that cannot 
be solved exactly, and also for those having exact formal solutions that are 
practically intractable.4

Let us be a little more specific about the nature of these methods. We shall 
not approximate the exact solution y(x) for all values of x in some interval, but 
only for a discrete sequence of points beginning at x0, say

 x0, x1 = x0 + h, x2 = x1 + h, . . ., xn = xn−1 + h,

where h is a positive number. This means that we want an approximation 
y1 to the exact value y(x1), an approximation y2 to the exact value y(x2), 
and so on. Each numerical method we describe will be a rule for using yk 
to compute yk+1.5 Since we know the initial value y(x0) = y0 (this is exact), 
we can apply the rule with k = 0 to obtain y1, with n = 1 to obtain y2, etc. 
Our general purpose is to apply enough of the details of each method to 
enable the reader to apply it for himself if the need should ever arise. We 
avoid details dealing with the plethora of computing machines and pro-
gramming languages for several reasons. First, those issues are best left to 
specialized texts in numerical analysis. Second, it is our experience that 
virtually all students have some familiarity with computing fundamen-
tals and should be able to write programs where appropriate to perform 
the calculations required by the exercises in this chapter. As to the means, 
that is better left to the student and his teacher. Third, advances in com-
puting continue at a dizzying pace, and we see no need to burden this 
book with nonmathematical details that might well be obsolete in only a 
few short years.

We shall illustrate our methods by applying them to the simple problem

 y′ = x + y, y(0) = 1, (3)

which we call our benchmark problem. This differential equation in (3) is 
clearly linear, and the exact solution is easily found to be

 y = 2ex − x − 1. (4)

4 The noted American mathematician R. W. Hamming said that “the purpose of computing 
is insight, not numbers.” Even so, it takes more than insight to build a skyscraper or a space 
shuttle.

5 These are so-called single-step methods. There are also various multistep methods in which 
yk + 1 depends not only on yk, but possibly on yk − 1 and earlier terms.
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We have chosen (3) as our benchmark problem for two reasons. First, it is so 
simple that a numerical method can be applied to it by hand without obscur-
ing the main steps by a morass of computations. Second, the exact solution 
(4) can easily be evaluated for various x’s with the aid of a pocket calculator, 
so we have a means of judging the accuracy of the approximate solutions 
produced by our numerical methods.

Problem

 1. Have you encountered any examples in other courses where either the 
textbook or the instructor referred to numerical solutions of ordinary 
differential equations? Give an example and discuss what you read or 
heard.

73 The Method of Euler

If we integrate the differential equation in (2) from x0 to x1 = x0 + h, and use the 
initial condition y(x0) = y0, we obtain
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Since the unknown function y = y(x) occurs under the integral sign in (1), 
we can go no further without some sort of approximation to this integral. 
Different types of approximations correspond to various methods for 
numerically solving (2).

The Euler method is obtained from the simplest way of approximating the 
integral in (5). It is worth considering because it paves the way for an under-
standing of other more accurate but more complicated methods. The idea is 
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to obtain y1—our approximation to y(x1)—by assuming that the integrand 
f(x,y) in (5) varies so little over the interval x0 ≤ x ≤ x1 that only a small error 
is made by replacing it by its value f(x0,y0) at the left endpoint. This is equiva-
lent to replacing the integrand in (5) with its zeroth order Taylor polynomial, 
that is,

 f(x,y) = f(x0,y0) + R, (2)

where

 R(x) = [f′(ξ,y(ξ)) + fy(ξ,y(ξ))y′(ξ)](x − x0),

where R is the Taylor remainder term, fy = ∂f/∂y and x0 < ξ < x. Noting that 
y″ = f′ + fyy′, we substitute (2) into (5) to obtain
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We suppose that h2y″(ξ)/2 is “small” in an appropriate sense and neglect 
the term. How small is small in general, and more particularly, when this 
term is small are important issues that will be discussed in more detail 
later. (See Problem 6, Section 74, for a related discussion.) Neglecting this 
term, we have

 y1 = y0 + hf(x0,y0), (3)

We now continue and obtain y2 from y1 in the same way, by the formula 
y2 = y1 + hf(x,y); and in general we have

 yk + 1 = yk + hf(xk,yk). (4)

for k = 0, 1, . . ., n. The geometric meaning of these formulas is shown in 
Figure 107, where the smooth curve is the unknown exact solution which 
is being approximated by the piecewise-linear curve generated constructed 
from (8). To understand this figure, remember that f(x0,y0) is the slope of the 
tangent line to the curve at the initial point (x0,y0). The point y1 is found by 
constructing a line segment beginning at (x0,y0) with that slope and march-
ing it in the positive x direction a distance of h. That point becomes the sec-
ond approximation to the solution. The figure indicates the vertical distance 
between the solution and the approximation as the error at the first stage. 
An important quantity derived from this, is the total relative error En at the 
nth step, defined to be

 
E

y x y
y x

n
n n

n
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This quantity is often expressed as a percentage, providing a comfortable 
way to gauge how accurately the numerical solution is performing. Now, 
using (x1,y1) the process is repeated again to obtain the next point at (x2,y2), 
also shown in the figure. The geometric realization of the Euler method sug-
gests that error can build up rather quickly, which is, in general, true.

We illustrate the Euler method by applying it to the benchmark problem 
(3). We approximate the solution at the points xn = 0.2, 0.4, 0.6, 0.8, and 1.0 by 
using intervals of length h = 0.2. It is convenient to arrange the calculations 
as shown in Table 1. In the first line of this table, the initial condition y = 1 
when x = 0 determines the slope y′ = x + y = 1.00. Since h = 0.2 and y1 = y0 + hf 
(x0,y0), the next value is given by 1.00 + 0.2(1.00) = 1.20. This approximation 
is shifted to the yn in the second line and the process is repeated to find 
y2, which turns out to be 1.48. In the table (and most remaining examples), 

TABLE 1

Tabulated Values for Exact and Numerical 
Solutions to (3) with h = 0.2

xn yn Exact En (%) 

0.0 1.00000 1.00000 0.0
0.2 1.20000 1.24281 3.4
0.4 1.48000 1.58365 6.5
0.6 1.85600 2.04424 9.2
0.8 2.34720 2.65108 11.5
1.0 2.97664 3.43656 13.4

y

Error at second step

Error at first step

h
h

y0
y1

y2

x0 x1 xx2

FIGURE 107
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we retain five figures after the decimal point, and the resulting approximate 
value of y(1) is 2.97664. The exact value found from (4) is 3.43656, so the error 
is about 13 percent. If we carry out a similar calculation with h = 0.1, then the 
resulting approximation for y(1) is 3.18748, and the error is reduced to about 
7 percent, roughly half of what it was in the first instance. Table 2 displays 
the intermediate results of the Euler method for the benchmark problem in 
this case.

We can therefore improve the accuracy of the method by taking smaller 
values of h, but at the expense of more computational work. Even so, after a 
certain point, reducing the step size will only make errors worse as will be 
discussed in the next section.

Problems

For the following problems, use the Euler method with h = 0.1, 0.05, and 0.01 
to estimate the solution at x = 1. Compare your results to the exact solution in 
each instance and discuss how well (or badly!) the Euler method performs.

 1. y′ = 2x + 2y, y(0) = 1.
 2. y′ = 1/y, y(0) = 1.
 3. y′ = ey, y(0) = 0.
 4. y′ = y − sin x, y(0) = −1.
 5. y′ = (x + y − 1)2, y(0) = 0.

TABLE 2

Tabulated Values for Exact and Numerical 
Solutions to (3) with h = 0.1

xn yn Exact En (%) 

0.0 1.00000 1.00000 0.0
0.1 1.10000 1.11034 0.9
0.2 1.22000 1.24281 1.8
0.3 1.36200 1.39972 2.7
0.4 1.52820 1.58365 3.5
0.5 1.72102 1.79744 4.3
0.6 1.94312 2.04424 4.9
0.7 2.19743 2.32751 5.6
0.8 2.48718 2.65108 6.2
0.9 2.81590 3.01921 6.7
1.0 3.18748 3.43656 7.2
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 6. This problem illustrates the danger in blindly applying numerical meth-
ods. Employ the Euler method to the following initial value problem:

 y′ = sec2 x, y(0) = 0.

 Use a step size of h = 0.1 and determine the numerical solution at x = 1. 
Explain why the initial value problem has no solution at x = 1.

 7. Refer to Figure 107. From geometric arguments, for what kind of exact 
solutions might the Euler method give precise results? Do these results 
depend on h in any way? Construct two distinct examples to illustrate 
your ideas.

 8. The ordinary differential equation

 y′ = y(1 − y2),

 possesses two equilibrium solutions: ϕ1 = 0, which is unstable, and 
ϕ2 = 1, which is stable. With the initial condition y(0) = 0.1, predict what 
should happen to the solution. Then, with h = 0.1, use the Euler method 
to march the solution out until x = 3. What happens to the numerical 
solution?

74 Errors

The notion of error is of crucial importance in the study of numerical meth-
ods and we will give the idea some special consideration here. We mentioned 
in the previous section that reducing the step size in the Euler method can 
be very costly. This occurs for two reasons. First, the number of computa-
tions is directly proportional to the number of steps taken. Thus, raising the 
accuracy raises the computational cost. Secondly, a phenomenon known as 
round-off error can become important. This is a result of any computer’s 
ability to represent only a finite subset of rational numbers.

Example. Consider the benchmark problem (3). Let us examine what 
happens if h is made too small. Let us suppose that our calculator has 
nine decimal digits of precision. Let h = 10−10, a very small step size that 
would seem to yield very accurate answers. Applying the Euler method 
and computing the first step, we find that the calculator obtains

 y1 = y0 + hf(x0,y0) = 1 + 10−10 = 1! (1)

The last equality in (1) is not a misprint. Because of its limited precision 
ability, the calculator represents y1 as exactly 1. Unfortunately, the same 
thing will happen to y2 as well. In this instance, the Euler method would 
predict a constant solution to the test problem, and round-off error has 
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produced a numerical disaster. A detailed analysis of round-off error is 
beyond the scope of this text.6 As a result, we will concentrate exclusively 
on discretization error in the rest of this chapter, assuming that round-off 
error is always negligible.7

The local discretization error at the nth step is defined to be Єn = y(xn) − yn. 
(This assumes that yn is exactly correct.) As shown in the previous section, 
for the Euler method, this quantity is given by
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where xk − 1 < ξ < xk. First, note that on the interval x0 < x < xn, the quantity y″(x) 
is bounded by a positive constant M which is independent of h. Thus, |Єk| ≤ 
Mh2/2. Reducing the step size by a factor of 2 reduces the error bound on the 
local discretization error by a factor of 4, for example.

Unfortunately, the story is a bit more complicated than this, since there is 
nothing to prevent these local errors from accumulating as many steps are 
taken. This leads to the notion of total discretization error at the nth step, En. 
To estimate this quantity, note that, as the numerical solution is marched 
from x0 to xn, n steps are taken, and n = (xn − x0)/h. Assuming the worst case, 
that is, that local errors always add together and never cancel, a heuristic 
bound for the total error can be obtained:
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So, for the Euler method, the total discretization error is never greater than 
some constant times the step size.

To illustrate these ideas, let us estimate the discretization errors associ-
ated with the benchmark problem (3). First, note that y″ = 2ex. It is easy to see 
that on 0 ≤ x ≤ 1, this quantity assumes its largest value at x = 1. Thus, |Єn| ≤ 
eh2. The total error is bounded as well, with |En| ≤ eh. Referring to Table 1 in 
Section 73, with h = 0.2, the total discretization error at x = 1 is 0.46 (rounded 
to two decimal places). The error bound is e(0.2) = 0.54, and, as expected, the 
total error is less than the bound. With h = 0.1, the appropriate numbers can 
be obtained from Table 2 in Section 73. The total error is 0.25 while the error 
bound is 0.27.

We close this section with some practical advice. Since, in many problems 
of concern, the exact solution is not available for calculating an error bound, 
how does one know when h is “small enough?” One way used in practice is 

6 But see Chapter 1 of R. L. Burden and J. D. Faires Numerical Analysis, 4th ed., PWS-Kent, 
Boston, 1989, for a very thorough discussion.

7 Caveat computer.
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to calculate the numerical solution several times, successively halving the 
step size h. When the results no longer change within the precision desired, 
it is a good, but not infallible, bet that h is small enough. By the same token, 
how can one check to see whether h is “too small,” that is, that round-off 
error is not creeping into the problem. One technique is to repeat a calcula-
tion using extended precision arithmetic. Most programming languages and 
most computers support this capability. When re-calculated with extended 
precision, if the numerical results change in any substantial way, it is almost 
a sure thing that serious round-off errors are occurring. Nevertheless, this 
test is not foolproof, for it is always possible that the errors will not be vis-
ibly manifested even at extended precision. Never forget that, as powerful as 
computers and numerical methods are, they must be used with care.

Problems

For the following problems, use the exact solution, together with step sizes 
h = 0.2 and 0.1 to estimate the total discretization error that occurs with the 
Euler method at x = 1.

 1. y′ = 2x + 2y, y(0) = 1.
 2. y′ = 1/y, y(0) = 1.
 3. y′ = ey, y(0) = 0.
 4. y′ = y − sin x, y(0) = −1.
 5. y′ = (x + y − 1)2, y(0) = 0.
 6. Consider the problem y′ = sin 3πx, with y(0) = 0. Determine the exact 

solution and sketch the graph on the interval 0 ≤ x ≤ 1. Use the Euler 
method with h = 0.2 and h = 0.1 and sketch those results on the same 
axes. Discuss. Now, use the results in this section to calculate a step 
size sufficient to guarantee a total error of 0.01 at x = 1. Apply the Euler 
method with this step size, and compare with the exact solution. Why 
is this step size so small?

75 An Improvement to Euler

Errors of this magnitude (13 and 7 percent) are obviously unsatisfactory. 
They can be reduced considerably by using much smaller values of h, but 
this can have its hazards as discussed in Section 74 and a better approach 
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is to develop more accurate methods. For example, it is not unreasonable 
to expect an improvement if we approximate the integrand (5) by the aver-
age of its values at the left and right endpoints of the interval, that is, by 
1
2

[f(x0,y0) + f(x1,y(x1))]. This is equivalent to using the trapezoidal rule for 
approximating the definite integral in (5). Making the substitution, we get
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h
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2
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The difficulty with (1) is that y(x1) is unknown. However, if we replace y(x1) 
by its approximate value as found by the simpler Euler method, which we 
denote by z1 = y0 + hf(x0,y0), then (1) assumes the usable form
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More generally,
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where

 zk + 1 = yk + hf(xk,yk). (4)

This method, usually called the improved Euler method or Heun’s8 method, 
first predicts, then corrects an estimate for yk; it is a simple example of a class of 
numerical techniques called predictor–corrector methods. The local truncation 
error for this method can be shown to be Єk = –y′″(ξ)h3/12 with xk ≤ ξ ≤ xk; as 
a result, the total truncation error is proportional to h2, and we expect more 
accuracy for the same step size.

One way to visualize the improved Euler method is depicted in Figure 108. 
First, the point at (x1,z1) is predicted using the Euler method. This point is 
used to estimate the slope of the solution curve at x1. This is then averaged 
with the original slope estimate at (x0,y0) to make a better prediction of the 
solution, namely (x1,y1).

8 Karl Heun (1859–1929) was a contemporary of C. Runge and R. Kutta (q.v.). He made con-
tributions to classical mechanics, the theory of special functions, and Gaussian quadrature 
methods.
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To see just how much improvement is obtained, let us apply (3) and (4) 
to our benchmark problem (3) with a step size of h = 0.2. These formulas 
become

 zk + 1 = yk + 0.2(xk + yk),

and

 yk + 1 = yk + 0.1[(xk + yk) + (xk + 1 + zk + 1)].

To begin the calculations we set k = 0 and use the initial values x0 = 0.0 and 
y0 = 1.0000 to write

 z1 = 1.000 + 0.2(0.0 + 1.000) = 1.200

and

 y1 = 1.000 + 0.1[(0.0 + 1.000) + (0.2 + 1.2000)] = 1.240.

Table 1 shows the approximate values of the solution obtained at the points 
xn = 0.2, 0.4, 0.8, and 1.0 by continuing this process. The resulting approximate 
value for y(1) is 3.40542. The error with this method is therefore about 1 per-
cent, which is a substantial improvement over the result obtained with the 
Euler method and the same step size.

With a smaller step size, results are even better. Table 2 displays the results 
of applying the improved Euler method to (3) using a step size of h = 0.1. The 
relative error at x = 1.0 has been decreased to about 0.2 percent, roughly a 

y
Corrected slope f (x1, z1)

Error at first step

y1

x

z1

x1x0

y0

FIGURE 108
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fourth of that found previously. Since the total discretization error is propor-
tional h2, halving the step size leads to the result indicated above.

Clearly, there is a substantial improvement in the accuracy of the improved 
Euler method at a rather modest increase in the complexity of the formula. 
Suppose, however, that even more accuracy is desired. Decreasing the step 
size will work, though, as with the Euler method, it takes longer and will 
eventually produce unacceptably large errors. There are two main directions 
in which the strategy of increasing accuracy can be pursued. Perhaps the 
most natural one is to consider more accurate approximations to the inte-
grand in (5). There are two fundamental ways in which this can be done: by 
using a polynomial approximant for f(x,y) in the interval [x0,x1] or by subdi-
viding the interval. The latter method gives rise to the Runge–Kutta meth-
ods, which will be described in the next section. The former approach leads 
to the multiterm Taylor methods, one of which we briefly describe below.

TABLE 2

Tabulated Values for Exact and Numerical Solutions to (3) with 
h = 0.1 Using the Improved Euler Method

xn yn Exact En (%) 

0.0 1.00000 1.00000 0.0
0.1 1.11000 1.11034 0.0
0.2 1.24205 1.24281 0.1
0.3 1.39847 1.39972 0.1
0.4 1.58180 1.58365 0.1
0.5 1.79489 1.79744 0.1
0.6 2.04086 2.04424 0.2
0.7 2.32315 2.32751 0.2
0.8 2.64558 2.65108 0.2
0.9 3.01236 3.01921 0.2
1.0 3.42816 3.43656 0.2

TABLE 1

Tabulated Values for Exact and Numerical Solutions to (3) with 
h = 0.2 Using the Improved Euler Method

xn yn Exact En (%) 

0.0 1.00000 1.00000 0.00
0.2 1.24000 1.24281 0.23
0.4 1.57680 1.58365 0.43
0.6 2.03170 2.04424 0.61
0.8 2.63067 2.65108 0.77
1.0 3.40542 3.43656 0.91
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First, we determine the first order Taylor polynomial for f(x,y) about the 
point x = x0:

 f(x,y) = f(x0,y0) + [f’(x,y) + fy(x,y)y’)(x –x0).

We then substitute this into (5) to obtain the three-term Taylor scheme:
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2
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where we have used the fact that y″ = [f(x,y)]′. The local truncation error is 
Єk = y′″(ξ)h3/12 where x0 ≤ ξxn. The total truncation error is proportional to h2. 
Consequently, (5) is expected to perform comparably to (3).

Table 3 displays the results of applying (5) to (3) with h = 0.1. At x = 1, 
this method produces results identical (to the number of decimal places 
shown) to those obtained with the improved Euler method. Obviously, bet-
ter accuracy can be obtained by retaining more terms in the Taylor series 
(see Problem 8). The drawback to this approach comes from the need to 
evaluate higher-order derivatives of f(x,y). These derivatives can become 
unwieldy in a hurry, slowing down the calculation time for a given problem 
significantly. Even more, f(x,y) may not be available in analytical form. For 
example, it could consist of discrete experimental data or itself might be the 
result of a numerical computation. As such, higher order derivative calcula-
tions are likely to be so inaccurate as to nullify any gain that might exist 
in principle. Thus, multiterm Taylor methods are seldom used in practice. 

TABLE 3

Tabulated Values for Exact and Numerical Solutions to (3) with 
h = 0.1 Using the Three-Term Taylor Method

xn yn Exact En (%) 

0.0 1.00000 1.00000 0.0
0.1 1.11000 1.11034 0.0
0.2 1.24205 1.24281 0.1
0.3 1.39847 1.39972 0.1
0.4 1.58180 1.58365 0.1
0.5 1.79489 1.79744 0.1
0.6 2.04086 2.04424 0.2
0.7 2.32315 2.32751 0.2
0.8 2.64558 2.65108 0.2
0.9 3.01236 3.01921 0.2
1.0 3.42816 3.43656 0.2
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There exist much better ways to gain the accuracy needed with far less 
computational cost, as will be discussed in the next section.

Problems

For the following problems, use the improved Euler method with h = 0.1, 0.05, 
and 0.01 to estimate the solution at x = 1. Compare your results to the exact 
solution and the results obtained with the Euler method in Section 73.

 1. y′ = 2x + 2y, y(0) = 1.
 2. y′ = 1/y, y(0) = 1.
 3. y′ = ey, y(0) = 0.
 4. y′ = y − sin x, y(0) = −1.
 5. y′ = (x + y − 1)2, y(0) = 0.
 6. Think of some examples for which the three-term Taylor method 

might work better than the improved Euler method. In each instance, 
describe why and, if possible, use a computer or calculator to illustrate 
the problem.

 7. Think of some examples for which the three-term Taylor method might 
work poorly. In each instance, describe the source of difficulty. If pos-
sible, use a computer or calculator to illustrate the problem.

 8. Derive an expression for the four-term Taylor method. Apply it to the 
benchmark problem (3) with a step size of h = 0.1 and calculate the 
solution out to x = 1. Is any accuracy gained over the three-term Taylor 
method?

76 Higher Order Methods

As with the improved Euler methods discussed in Section 75, the Runge–
Kutta9 methods can be derived from (5) by using a different approximation 
for the integral. Let us consider Simpson’s rule. In this instance,

9 Carl Runge (1856–1927) was professor of applied mathematics at Göttingen from 1904 to 1925. 
He is known for his work on the Zeeman effect and for his discovery of a theorem that fore-
shadowed the famous Thue–Siegel–Roth theorem in Diophantine equations. He also taught 
Hilbert to ski. M. W. Kutta (1867–1944), another German applied mathematician, is remem-
bered for his contribution to the Kutta–Joukowski theory of airfoil lift in aerodynamics.
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where x1/2 = x0 + h/2. A rigorous derivation of the fourth order Runge–Kutta 
method is beyond the scope of this chapter. Rather than simply state the 
results, we give here an intuitive development of this extremely important 
scheme for solving ordinary differential equations.10

In much the same way as we applied the other integration formulas, we 
must make estimates of both y1/2 and y1. The first estimate of y1/2 is obtained 
from Euler’s method:

 
y y

m
1 2 0

1

2
= + , (2)

where m1 = hf(x0,y0). The factor of 1/2 is necessary since the step size from x0 
to x1/2 is h/2. To correct this estimate of y1/2, we calculate it again in the fol-
lowing way:
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where now m2 = hf(x0 + h/2, y0 + m1/2). Now, to predict y1 we use this latter 
estimate for y1/2 and the Euler method:
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where now m3 = hf(x0 + h/2, y0 + m2/2). Finally, we let m4 = hf(x + h, y0 + m3). The 
Runge–Kutta method is then obtained from substituting each of these esti-
mates into (1) to obtain

 y1 = y0 + 
1
6

(m1 + 2m2 + 2m3 +m4). (5)

As with all previous methods, this one can be extended to any number of 
mesh points in the natural way. At each step, first compute the four numbers 
m1, . . ., m4:

10 It is worth noting that more than one fourth order Runge–Kutta formula can be derived. See 
B. Carnahan, H. A. Luther, and J. O. Wilkes, Applied Numerical Methods, Wiley, New York, 
1969, pp. 361–363, for a short, but interesting, historical discussion of this point.
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Then, yk + 1 is given by

 yk +1 = yk + 
1
6

(m1 + 2m2 + 2m3 + m4). (6)

This powerful method is capable of giving accurate results without taking 
h so small that computational labor becomes excessive or that numerical 
round-off becomes a serious problem. The local truncation error is Єk = –yv(ξ)
h5/180 where x0 ≤ x ≤ xn and the total truncation error is proportional to h4. 
This is one reason for its remarkable accuracy.

We now apply (6) to approximate y(1) in our benchmarks problem (3). With 
h = 1, so that only a single step is required, we have

 m1 = 1(0 + 1) = 1,

 m2 = 1(0 + 0.5 + 1 + 0.5) = 2,

 m3 = 1(0 + 0.5 + 1 + 1) = 2.5,

 m4 = 1(0 + 1 + 1 + 2.5) = 4.5,

so that

 y1 = 1 + 
1
6

(1 + 4 + 5 + 4.5) = 3.417.

This approximation is even better than the improved Euler method with 
h = 0.2! In Table 1, we show the result of applying the Runge–Kutta method to 
our benchmark problem with h = 0.2. Note especially that our approximate 
value for y(1) is 3.43650, which agrees with the exact value to four figures 
after the decimal point. The relative error is much smaller, in this case less 
than 0.2%. Halving the step size produces even better results, as shown in 
Table 2. With h = 0.1, the exact and computed solutions agree exactly to the 
number of decimal places shown, and the relative error at the end of the cal-
culation is now less than 0.02 percent, a very nice result indeed!
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Problems

For the following problems, use the Runge–Kutta method with h = 0.1, 0.05, 
and 0.01 to estimate the solution at x = 1. Compare your results to the exact 
solution and the results obtained with both the Euler method in Section 73 
and the improved Euler method in Section 75.

 1. y′ = 2x + 2y, y(0) = 1.
 2. y′ = 1/y, y(0) = 1.
 3. y′ = ey, y(0) = 0.
 4. y′ = y − sin x, y(0) = −1.
 5. y′ = (x + y − 1)2, y(0) = 0.

TABLE 1

Tabulated Values for Exact and Numerical Solutions to (3) 
with h = 0.2 Using the Runge-Kutta Method

xn yn Exact En (%) 

0.0 1.00000 1.00000 0.00000
0.2 1.24280 1.24281 0.00044
0.4 1.58364 1.58365 0.00085
0.6 2.04421 2.04424 0.00125
0.8 2.65104 2.65108 0.00152
1.0 3.43650 3.43656 0.00179

TABLE 2

Tabulated Values for Exact and Numerical Solutions to (3) 
with h = 0.1 Using the Runge-Kutta Method

xn yn Exact En (%) 

0.0 1.00000 1.00000 0.00000
0.1 1.11034 1.11034 0.00002
0.2 1.24281 1.24281 0.00003
0.3 1.39972 1.39972 0.00004
0.4 1.58365 1.58365 0.00006
0.5 1.79744 1.79744 0.00007
0.6 2.04424 2.04424 0.00008
0.7 2.32750 2.32751 0.00009
0.8 2.65108 2.65108 0.00010
0.9 3.01920 3.01921 0.00011
1.0 3.43656 3.43656 0.00012
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 6. Are there any other numerical integration rules that could be used to 
generate methods as accurate as the Runge–Kutta method or more so? 
Find one and attempt to work out the steps necessary for an algorithm. 
Check your results against the benchmark problem and discuss your 
findings.

 7. Use the Runge–Kutta method with h = 0.2 and solve the following 
equation

 t2y″ − 3ty′ + 3y = 1, y(1) = 0, y′(1) = 0.

 Determine the exact solution and compare your results. Does the dif-
ferential equation possess a solution at t = 0? How might the Runge–
Kutta method be employed to compute the solution there?

77 Systems

Heretofore our numerical methods have been employed against first order 
initial-value problems. It should be clear that many important physical prob-
lems are modeled by second and higher order equations (such as vibrat-
ing mechanical systems), or even directly as systems of equations (such as 
predator–prey systems). It is therefore natural to seek ways in which our 
methods can be extended to treat these types of problems.

Since d2y/dt2 = f(t,y,dy/dt) can be transformed into the system of first order 
equations dy/dt = x and dx/dt = f(t,y,x), it is customary to transform all higher 
order differential equations into systems of first order equations. In this sec-
tion we will discuss formulas that explicitly treat systems of two first order 
equations, but the results can be generalized to more equations with relative 
ease. It should be noted that serious scientific and engineering applications, 
employing models composed of complicated systems of differential equa-
tions, are almost always solved with methods (albeit with a bit more sophis-
tication) very much like the ones we will describe here.

Our objective is to formulate methods for generating numerical solutions 
to the following system of equations:

 x′ = f(t,x,y), (1)

 y′ = g(t,x,y), (2)

with initial conditions

 x(t0) = x0, y(t0) = y0. (3)

We assume, of course, that the functions f and g are sufficiently smooth so 
that unique solutions to (1), (2), and (3) exist.11 As in the previous sections, we 

11 See Chapter 11.
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seek to construct approximate solutions xn and yn to the system at the points 
t = t0, t1 = t0 + h, . . ., tn = t0 + nh.

The Euler method takes on an entirely analogous form for this case and is 
given below:

 xk + 1 = xk + hf(tk,xk,yk), (4)

 yk + 1 = yk + hg(tk,xk,yk), (5)

where k = 0, 1, . . ., n − 1. The expression for the local truncation error is more 
complicated for the Euler method in this instance, but it remains true that the 
total discretization error is proportional to h.

Consider the following linear, second order, nonhomogeneous differential 
equation:

 

dy
dt

y t
2

2 4+ = cos   (6)

with initial conditions y(0) = y′(0) = 0. Equation (6) can be thought of as a 
model for an undamped spring–mass subject to a sinusoidal exterior driving 
force. At time t = 0, the mass lies at its equilibrium position with no initial 
velocity. The exact solution to (6) is

 y = 
1
3

(cos t − cos 2t).

Cast into system form, we first let y′ = x. Then

 x′ = −4y + cos t, (7)

 y′ = x, (8)

with initial conditions x(0) = y(0) = 0. Table 1 contains the tabulated results12 
for this system on the interval 0 ≤ t ≤ 1 using the Euler method with h = 0.1 
Note that the relative error for y starts out extremely large, decreases to a 
rather small value, and then begins to increase again. See Problem 5 for a 
discussion of this phenomenon.

12 This tabulation should convince anyone (should such convincing be needed) trying such a 
calculation by hand that there is nothing like a computer, together with a good program-
ming language, for accomplishing such a task. Imagine what it was like in the old days (pre-
World War II), when virtually all engineering computations were done with a pencil, paper, 
and perhaps a desk calculator.
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The Runge–Kutta method for this system is

 xk + 1 = xk + 
1
6

(μk1 + μk2 + μk3 + μk4), (9)

 yk + 1 = yk + 
1
6

(vk1 + vk2 + vk3 + vk4), (10)

where
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TABLE 1

Tabulated Values for Exact and Numerical Solutions to (7) 
and (8) with h = 0.1 Using the Euler Method

tn xn yn Exact x Exact y En for y (%) 

0.0 0.00000 0.00000 0.00000 0.00000 —
0.1 0.10000 0.00000 0.09917 0.00498 100
0.2 0.19950 0.01000 0.19339 0.01967 49
0.3 0.29351 0.02995 0.27792 0.04333 31
0.4 0.37706 0.05930 0.34843 0.07478 21
0.5 0.44545 0.09701 0.40117 0.11243 14
0.6 0.49440 0.14155 0.43315 0.15433 8.3
0.7 0.52032 0.19099 0.44223 0.19829 3.7
0.8 0.52040 0.24302 0.42726 0.24197 0.4
0.9 0.49286 0.29506 0.38812 0.28294 4.3
1.0 0.43700 0.34435 0.32571 0.31882 8.0
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The total discretization error for this more general Runge-Kutta method 
remains proportional to h4. The numerical solution of (7) and (8) with a step 
size of h = 0.1 is displayed in Table 2. Note that the relative error is signifi-
cantly smaller than that seen with the Euler method as shown in Table 1, and 
furthermore, the relative error does not exhibit the same degree of fluctua-
tion as that case.

Problems

 1. Use the Euler method, with step size h = 0.2 to evaluate the solution to 
y″ − y = 0, y(0) = 0, y’(1) = 0 at t = 0.2 and r = 0.4. Compare your results to 
the exact solution.

 2. Use the Euler method, with step size h = 0.1 to evaluate the solution to 
the following system of equations at t = 0.5:

 x′ = y′

 y′ = x(1 − x),

 with x(0) = y(0) = 1.
 3. Use the Runge-Kutta method (and a computer!) to evaluate the solution 

to y” − y(1 − y)y′ + y = 0, y(0) = 1 and y′(0) = 1, at t = 1. Use step sizes of 0.5, 
0.2, and 0.1.

TABLE 2

Tabulated Values for Exact and Numerical Solutions to (7) and 
(8) with h = 0.1 Using the Runge-Kutta Method

tn xn yn Exact x Exact y En for y (%) 

0.0 0.00000 0.00000 0.00000 0.00000 —
0.1 0.09917 0.00498 0.09917 0.00498 0.0006
0.2 0.19339 0.01967 0.19339 0.01967 0.0018
0.3 0.27792 0.04333 0.27792 0.04333 0.0022
0.4 0.34843 0.07478 0.34843 0.07478 0.0023
0.5 0.40117 0.11242 0.40117 0.11243 0.0024
0.6 0.43314 0.15432 0.43315 0.15433 0.0024
0.7 0.44223 0.19829 0.44223 0.19829 0.0024
0.8 0.42726 0.24196 0.42726 0.24197 0.0023
0.9 0.38813 0.28293 0.38812 0.28294 0.0022
1.0 0.32571 0.31881 0.32571 0.31882 0.0021
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 4. Generalize the formulation of the Euler method to a system of three first 
order ordinary differential equations.

 5. Using the results listed in Table 1, sketch the graph of yn and y versus tn. 
Explain the fluctuation in the relative error. Does the same error behav-
ior occur for xn and x? Why does the Runge-Kutta error (see Table 2) not 
behave this way?
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Numerical Tables

TABLE 1

Trigonometric Functions

Angle 

Sine Cosine Tangent

Angle 

Sine Cosine Tangent Degree Radian Degree Radian 

0° 0.000 0.000 1.000 0.000          
1° 0.017 0.017 1.000 0.017 32° 0.559 0.530 0.848 0.625
2° 0.035 0.035 0.999 0.035 33° 0.576 0.545 0.839 0.649
3° 0.052 0.052 0.999 0.052 34° 0.593 0.559 0.829 0.675
4° 0.070 0.070 0.998 0.070 35° 0.611 0.574 0.819 0.700
5° 0.087 0.087 0.996 0.087 36° 0.628 0.588 0.809 0.727
6° 0.105 0.105 0.995 0.105 37° 0.646 0.602 0.799 0.754
7° 0.122 0.122 0.993 0.123 38° 0.663 0.616 0.788 0.781
8° 0.140 0.139 0.990 0.141 39° 0.681 0.629 0.777 0.810
9° 0.157 0.156 0.988 0.158 40° 0.698 0.643 0.766 0.839

10° 0.175 0.174 0.985 0.176 41° 0.716 0.656 0.755 0.869
11° 0.192 0.191 0.982 0.194 42° 0.733 0.669 0.743 0.900
12° 0.209 0.208 0.978 0.213 43° 0.750 0.682 0.731 0.933
13° 0.227 0.225 0.974 0.231 44° 0.768 0.695 0.719 0.966
14° 0.244 0.242 0.970 0.249 45° 0.785 0.707 0.707 1.000
15° 0.262 0.259 0.966 0.268 46° 0.803 0.719 0.695 1.036
16° 0.279 0.276 0.961 0.287 47° 0.820 0.731 0.682 1.072
17° 0.297 0.292 0.956 0.306 48° 0.838 0.743 0.669 1.111
18° 0.314 0.309 0.951 0.325 49° 0.855 0.755 0.656 1.150
19° 0.332 0.326 0.946 0.344 50° 0.873 0.766 0.643 1.192
20° 0.349 0.342 0.940 0.364 51° 0.890 0.777 0.629 1.235
21° 0.367 0.358 0.934 0.384 52° 0.908 0.788 0.616 1.280
22° 0.384 0.375 0.927 0.404 53° 0.925 0.799 0.602 1.327
23° 0.401 0.391 0.921 0.424 54° 0.942 0.809 0.588 1.376
24° 0.419 0.407 0.914 0.445 55° 0.960 0.819 0.574 1.428
25° 0.436 0.423 0.906 0.466 56° 0.977 0.829 0.559 1.483
26° 0.454 0.438 0.899 0.488 57° 0.995 0.839 0.545 1.540
27° 0.471 0.454 0.891 0.510 58° 1.012 0.848 0.530 1.600
28° 0.489 0.469 0.883 0.532 59° 1.030 0.857 0.515 1.664
29° 0.506 0.485 0.875 0.554 60° 1.047 0.866 0.500 1.732
30° 0.524 0.500 0.866 0.577 61° 1.065 0.875 0.485 1.804
31° 0.541 0.515 0.857 0.601 62° 1.082 0.883 0.469 1.881

(Continued)
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TABLE 1 (Continued)

Trigonometric Functions

Angle 

Sine Cosine Tangent

Angle 

Sine Cosine Tangent Degree Radian Degree Radian 

63° 1.100 0.891 0.454 1.963 77° 1.344 0.974 0.225 4.332
64° 1.117 0.899 0.438 2.050 78° 1.361 0.978 0.208 4.705
65° 1.134 0.906 0.423 2.145 79° 1.379 0.982 0.191 5.145
66° 1.152 0.914 0.407 2.246 80° 1.396 0.985 0.174 5.671
67° 1.169 0.921 0.391 2.356 81° 1.414 0.988 0.156 6.314
68° 1.187 0.927 0.375 2.475 82° 1.431 0.990 0.139 7.115
69° 1.204 0.934 0.358 2.605 83° 1.449 0.993 0.122 8.144
70° 1.222 0.940 0.342 2.748 84° 1.466 0.995 0.105 9.514
71° 1.239 0.946 0.326 2.904 85° 1.484 0.996 0.087 11.43
72° 1.257 0.951 0.309 3.078 86° 1.501 0.998 0.070 14.30
73° 1.274 0.956 0.292 3.271 87° 1.518 0.999 0.052 19.08
74° 1.292 0.961 0.276 3.487 88° 1.536 0.999 0.035 28.64
75° 1.309 0.966 0.259 3.732 89° 1.553 1.000 0.017 57.29
76° 1.326 0.970 0.242 4.011 90° 1.571 1.000 0.000
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TABLE 2

Exponential Functions

x ex e−x x ex e−x 

0.00 1.0000 1.0000 2.5 12.182 0.0821
0.05 1.0513 0.9512 2.6 13.464 0.0743
0.10 1.1052 0.9048 2.7 14.880 0.0672
0.15 1.1618 0.8607 2.8 16.445 0.0608
0.20 1.2214 0.8187 2.9 18.174 0.0550
0.25 1.2840 0.7788 3.0 20.086 0.0498
0.30 1.3499 0.7408 3.1 22.198 0.0450
0.35 1.4191 0.7047 3.2 24.533 0.0408
0.40 1.4918 0.6703 3.3 27.113 0.0369
0.45 1.5683 0.6376 3.4 29.964 0.0334
0.50 1.6487 0.6065 3.5 33.115 0.0302
0.55 1.7333 0.5769 3.6 36.598 0.0273
0.60 1.8221 0.5488 3.7 40.447 0.0247
0.65 1.9155 0.5220 3.8 44.701 0.0224
0.70 2.0138 0.4966 3.9 49.402 0.0202
0.75 2.1170 0.4724 4.0 54.598 0.0183
0.80 2.2255 0.4493 4.1 60.340 0.0166
0.85 2.3396 0.4274 4.2 66.686 0.0150
0.90 2.4596 0.4066 4.3 73.700 0.0136
0.95 2.5857 0.3867 4.4 81.451 0.0123
1.0 2.7183 0.3679 4.5 90.017 0.0111
1.1 3.0042 0.3329 4.6 99.484 0.0101
1.2 3.3201 0.3012 4.7 109.95 0.0091
1.3 3.6693 0.2725 4.8 121.51 0.0082
1.4 4.0552 0.2466 4.9 134.29 0.0074
1.5 4.4817 0.2231 5 148.41 0.0067
1.6 4.9530 0.2019 6 403.43 0.0025
1.7 5.4739 0.1827 7 1096.6 0.0009
1.8 6.0496 0.1653 8 2981.0 0.0003
1.9 6.6859 0.1496 9 8103.1 0.0001
2.0 7.3891 0.1353 10 22026 0.00005
2.1 8.1662 0.1225
2.2 9.0250 0.1108
2.3 9.9742 0.1003
2.4 11.023 0.0907
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TABLE 3

Natural Logarithms (ln x = loge x)

This table contains logarithms of numbers from 1 to 10 to the base e. To obtain the natural 
logarithms of other numbers use the formulas:

 
ln ( ) ln ln ln ln ln10 10

10
10r r

r
rx x

x
x= + æ

è
ç

ö
ø
÷ = -

ln 10 = 2.302585 ln 102 = 4.605170 ln 103 = 6.907755
ln 104 = 9.210340 ln 105 = 11.512925 ln 106 = 13.815511

x 0 1 2 3 4 5 6 7 8 9 

1.0 0.0 0000 0995 1980 2956 3922 4879 5827 6766 7696 8618 
1.1 0.0 9531 *0436 *1333 *2222 *3103 *3976 *4842 *5700 *6551 *7395
1.2 0.1 8232 9062 9885 *0701 *1511 *2314 *3111 *3902 *4686 *5464
1.3 0.2 6236 7003 7763 8518 9267 *0010 *0748 *1481 *2208 *2930
1.4 0.3 3647 4359 5066 5767 6464 7156 7844 8526 9204 9878
1.5 0.4 0547 1211 1871 2527 3178 3825 4469 5108 5742 6373
1.6 0.4 7000 7623 8243 8858 9470 *0078 *0682 *1282 *1879 *2473
1.7 0.5 3063 3649 4232 4812 5389 5962 6531 7098 7661 8222
1.8 0.5 8779 9333 9884 *0432 *0977 *1519 *2078 *2594 *3127 *3658
1.9 0.6 4185 4710 5233 5752 6269 6783 7294 7803 8310 8813
2.0 0.6 9315 9813 *0310 *0804 *1295 *1784 *2271 *2755 *3237 *3716
2.1 0.7 4194 4669 5142 5612 6081 6547 7011 7473 7932 8390
2.2 0.7 8846 9299 9751 *0200 *0648 *1093 *1536 *1978 *2418 *2855
2.3 0.8 3291 3725 4157 4587 5015 5442 5866 6289 6710 7129
2.4 0.8 7547 7963 8377 8789 9200 9609 *0016 *0422 *0826 *1228
2.5 0.9 1629 2028 2426 2822 3216 3609 4001 4391 4779 5166
2.6 0.9 5551 5935 6317 6698 7078 7456 7833 8208 8582 8954
2.7 0.9 9325 9695 *0063 *0430 *0796 *1160 *1523 *1885 *2245 *2604
2.8 1.0 2962 3318 3674 4028 4380 4732 5082 5431 5779 6126
2.9 1.0 6471 6815 7158 7500 7841 8181 8519 8856 9192 9527
3.0 1.0 9861 *0194 *0526 *0856 *1186 *1514 *1841 *2168 *2493 *2817
3.1 1.1 3140 3462 3783 4103 4422 4740 5057 5373 5688 6002
3.2 1.1 6315 6627 6938 7248 7557 7865 8173 8479 8784 9089
3.3 1.1 9392 9695 9996 *0297 *0597 *0896 *1194 *1491 *1788 *2083
3.4 1.2 2378 2671 2964 3256 3547 3837 4127 4415 4703 4990
3.5 1.2 5276 5562 5846 6130 6413 6695 6976 7257 7536 7815
3.6 1.2 8093 8371 8647 8923 9198 9473 9746 *0019 *0291 *0563
3.7 1.3 0833 1103 1372 1641 1909 2176 2442 2708 2972 3237
3.8 1.3 3500 3763 4025 4286 4547 4807 5067 5325 5584 5841
3.9 1.3 6098 6354 6609 6864 7118 7372 7624 7877 8128 8379
4.0 1.3 8629 8879 9128 9377 9624 9872 *0118 *0364 *0610 *0854
4.1 1.4 1099 1342 1585 1828 2070 2311 2552 2792 3031 3270
4.2 1.4 3508 3746 3984 4220 4456 4692 4927 5161 5395 5629
4.3 1.4 5862 6094 6326 6557 6787 7018 7247 7476 7705 7933
4.4 1.4 8160 8387 8614 8840 9065 9290 9515 9739 9962 *0185

(Continued)
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TABLE 3 (Continued)

Natural Logarithms (ln x = loge x)

x 0 1 2 3 4 5 6 7 8 9 

4.5 1.5 0408 0630 0851 1072 1293 1513 1732 1951 2170 2388
4.6 1.5 2606 2823 3039 3256 3471 3687 3902 4116 4330 4543
4.7 1.5 4756 4969 5181 5393 5604 5814 6025 6235 6444 6653
4.8 1.5 6862 7070 7277 7485 7691 7898 8104 8309 8515 8719
4.9 1.5 8924 9127 9331 9534 9737 9939 *0141 *0342 *0543 *0744
5.0 1.6 0944 1144 1343 1542 1741 1939 2137 2334 2531 2728
5.1 1.6 2924 3120 3315 3511 3705 3900 4094 4287 4481 4673
5.2 1.6 4866 5058 5250 5441 5632 5823 6013 6203 6393 6582
5.3 1.6 6771 6959 7147 7335 7523 7710 7896 8083 8269 8455
5.4 1.6 8640 8825 9010 9194 9378 9562 9745 9928 *0111 *0293
5.5 1.7 0475 0656 0838 1019 1199 1380 1560 1740 1919 2098
5.6 1.7 2277 2455 2633 2811 2988 3166 3342 3519 3695 3871
5.7 1.7 4047 4222 4397 4572 4746 4920 5094 5267 5440 5613
5.8 1.7 5786 5958 6130 6302 6473 6644 6815 6985 7156 7326
5.9 1.7 7495 7665 7843 8002 8171 8339 8507 8675 8842 9009
6.0 1.7 9176 9342 9509 9675 9840 *0006 *0171 *0336 *0500 *0665
6.1 1.8 0829 0993 1156 1319 1482 1645 1808 1970 2132 2294
6.2 1.8 2455 2616 2777 2938 3098 3258 3418 3578 3737 3896
6.3 1.8 4055 4214 4372 4530 4688 4845 5003 5160 5317 5473
6.4 1.8 5630 5786 5942 6097 6253 6408 6563 6718 6872 7026
6.5 1.8 7180 7334 7487 7641 7794 7947 8099 8251 8403 8555
6.6 1.8 8707 8858 9010 9160 9311 9462 9612 9762 9912 *0061
6.7 1.9 0211 0360 0509 0658 0806 0954 1102 1250 1398 1545
6.8 1.9 1692 1839 1986 2132 2279 2425 2571 2716 2862 3007
6.9 1.9 3152 3297 3442 3586 3730 3874 4018 4162 4305 4448
7.0 1.9 4591 4734 4876 5019 5161 5303 5445 5586 5727 5869
7.1 1.9 6009 6150 6291 6431 6571 6711 6851 6991 7130 7269
7.2 1.9 7408 7547 7685 7824 7962 8100 8238 8376 8513 8650
7.3 1.9 8787 8924 9061 9198 9334 9470 9606 9742 9877 *0013
7.4 2.0 0148 0283 0418 0553 0687 0821 0956 1089 1223 1357
7.5 2.0 1490 1624 1757 1890 2022 2155 2287 2419 2551 2683
7.6 2.0 2815 2946 3078 3209 3340 3471 3601 3732 3862 3992
7.7 2.0 4122 4252 4381 4511 4640 4769 4898 5027 5156 5284
7.8 2.0 5412 5540 5668 5796 5924 6051 6179 6306 6433 6560
7.9 2.0 6686 6813 6939 7065 7191 7317 7443 7568 7694 7819
8.0 2.0 7944 8069 8194 8318 8443 8567 8691 8815 8939 9063
8.1 2.0 9186 9310 9433 9556 9679 9802 9924 *0047 *0169 *0291
8.2 2.1 0413 0535 0657 0779 0900 1021 1142 1263 1384 1505
8.3 2.1 1626 1746 1866 1986 2106 2226 2346 2465 2585 2704
8.4 2.1 2823 2942 3061 3180 3298 3417 3535 3653 3771 3889
8.5 2.1 4007 4124 4242 4359 4476 4593 4710 4827 4943 5060

(Continued)
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TABLE 3 (Continued)

Natural Logarithms (ln x = loge x)

x 0 1 2 3 4 5 6 7 8 9 

8.6 2.1 5176 5292 5409 5524 5640 5756 5871 5987 6102 6217
8.7 2.1 6332 6447 6562 6677 6791 6905 7020 7134 7248 7361
8.8 2.1 7475 7589 7702 7816 7929 8042 8155 8267 8380 8493
8.9 2.1 8605 8717 8830 8942 9054 9165 9277 9389 9500 9611
9.0 2.1 9722 9834 9944 *0055 *0166 *0276 *0387 *0497 *0607 *0717
9.1 2.2 0827 0937 1047 1157 1266 1375 1485 1594 1703 1812
9.2 2.2 1920 2029 2138 2246 2354 2462 2570 2678 2786 2894
9.3 2.2 3001 3109 3216 3324 3431 3538 3645 3751 3858 3965
9.4 2.2 4071 4177 4284 4390 4496 4601 4707 4813 4918 5024
9.5 2.2 5129 5234 5339 5444 5549 5654 5759 5863 5968 6072
9.6 2.2 6176 6280 6384 6488 6592 6696 6799 6903 7006 7109
9.7 2.2 7213 7316 7419 7521 7624 7727 7829 7932 8034 8136
9.8 2.2 8238 8340 8442 8544 8646 8747 8849 8950 9051 9152
9.9 2.2 9253 9354 9455 9556 9657 9757 9858 9958 *0058 *0158

10.0 2.3 0259 0358 0458 0558 0658 0757 0857 0956 1055 1154
x 0 1 2 3 4 5 6 7 8 9

Note: The * indicates that the first two digits are those at the beginning of the next row.
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TABLE 4

Common Logarithms (log10 x)

X 0 1 2 3 4 5 6 7 8 9 

10 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374
11 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755
12 0792 0828 0864 0899 0934 0969 1004 1038 1072 1106
13 1139 1173 1206 1239 1271 1303 1335 1367 1399 1430
14 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732
15 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014
16 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279
17 2304 2330 2355 2380 2405 2430 2455 2480 2504 2529
18 2553 2577 2601 2625 2648 2672 2695 2718 2742 2765
19 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989
20 3010 3032 3054 3075 3096 3118 3139 3160 3181 3201
21 3222 3243 3263 3284 3304 3324 3345 3365 3385 3404
22 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598
23 3617 3636 3655 3674 3692 3711 3729 3747 3766 3784
24 3802 3820 3838 3856 3874 3892 3909 3927 3945 3962
25 3979 3997 4014 4031 4048 4065 4082 4099 4116 4133
26 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298
27 4314 4330 4346 4362 4378 4393 4409 4425 4440 4456
28 4472 4487 4502 4518 4533 4548 4564 4579 4594 4609
29 4624 4639 4654 4669 4683 4698 4713 4728 4742 4757
30 4771 4786 4800 4814 4829 4843 4857 4871 4886 4900
31 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038
32 5051 5065 5079 5092 5105 5119 5132 5145 5159 5172
33 5185 5198 5211 5224 5237 5250 5263 5276 5289 5302
34 5315 5328 5340 5353 5366 5378 5391 5403 5416 5428
35 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551
36 5563 5575 5587 5599 5611 5623 5635 5647 5658 5670
37 5682 5694 5705 5717 5729 5740 5752 5763 5775 5786
38 5798 5809 5821 5832 5843 5855 5866 5877 5888 5899
39 5911 5922 5933 5944 5955 5966 5977 5988 5999 6010
40 6021 6031 6042 6053 6064 6075 6085 6096 6107 6117
41 6128 6138 6149 6160 6170 6180 6191 6201 6212 6222
42 6232 6243 6253 6263 6274 6284 6294 6304 6314 6325
43 6335 6345 6355 6365 6375 6385 6395 6405 6415 6425
44 6435 6444 6454 6464 6474 6484 6493 6503 6513 6522
45 6532 6542 6551 6561 6571 6580 6590 6599 6609 6618
46 6628 6637 6646 6656 6665 6675 6684 6693 6702 6712
47 6721 6730 6739 6749 6758 6767 6776 6785 6794 6803
48 6812 6821 6830 6839 6848 6857 6866 6875 6884 6893
49 6902 6911 6920 6928 6937 6946 6955 6964 6972 6981

(Continued)
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TABLE 4 (Continued)

Common Logarithms (log10 x)

X 0 1 2 3 4 5 6 7 8 9 

50 6990 6998 7007 7016 7024 7033 7042 7050 7059 7067
51 7076 7084 7093 7101 7110 7118 7126 7135 7143 7152
52 7160 7168 7177 7185 7193 7202 7210 7218 7226 7235
53 7243 7251 7259 7267 7275 7284 7292 7300 7308 7316
54 7324 7332 7340 7348 7356 7364 7372 7380 7388 7396
55 7404 7412 7419 7427 7435 7443 7451 7459 7466 7474
56 7482 7490 7497 7505 7513 7520 7528 7536 7543 7551
57 7559 7566 7574 7582 7589 7597 7604 7612 7619 7627
58 7634 7642 7649 7657 7664 7672 7679 7686 7694 7701
59 7709 7716 7723 7731 7738 7745 7752 7760 7767 7774
60 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846
61 7853 7860 7868 7875 7882 7889 7896 7903 7910 7917
62 7924 7931 7938 7945 7952 7959 7966 7973 7980 7987
63 7993 8000 8007 8014 8021 8028 8035 8041 8048 8055
64 8062 8069 8075 8082 8089 8096 8102 8109 8116 8122
65 8129 8136 8142 8149 8156 8162 8169 8176 8182 8189
66 8195 8202 8209 8215 8222 8228 8235 8241 8248 8254
67 8261 8267 8274 8280 8287 8293 8299 8306 8312 8319
68 8325 8331 8338 8344 8351 8357 8363 8370 8376 8382
69 8388 8395 8401 8407 8414 8420 8426 8432 8439 8445
70 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506
71 8513 8519 8525 8531 8537 8543 8549 8555 8561 8567
72 8573 8579 8585 8591 8597 8603 8609 8615 8621 8627
73 8633 8639 8645 8651 8657 8663 8669 8675 8681 8686
74 8692 8698 8704 8710 8716 8722 8727 8733 8739 8745
75 8751 8756 8762 8768 8774 8779 8785 8791 8797 8802
76 8808 8814 8820 8825 8831 8837 8842 8848 8854 8859
77 8865 8871 8876 8882 8887 8893 8899 8904 8910 8915
78 8921 8927 8932 8938 8943 8949 8954 8960 8965 8971
79 8976 8982 8987 8993 8998 9004 9009 9015 9020 9025
80 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079
81 9085 9090 9096 9101 9106 9112 9117 9122 9128 9133
82 9138 9143 9149 9154 9159 9165 9170 9175 9180 9186
83 9191 9196 9201 9206 9212 9217 9222 9227 9232 9238
84 9243 9248 9253 9258 9263 9269 9274 9279 9284 9289
85 9294 9299 9304 9309 9315 9320 9325 9330 9335 9340
86 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390
87 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440
88 9445 9450 9455 9460 9465 9469 9474 9479 9484 9489
89 9494 9499 9504 9509 9513 9518 9523 9528 9533 9538

(Continued)



675Numerical Tables

TABLE 4 (Continued)

Common Logarithms (log10 x)

X 0 1 2 3 4 5 6 7 8 9 

90 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586
91 9590 9595 9600 9605 9609 9614 9619 9624 9628 9633
92 9638 9643 9647 9652 9657 9661 9666 9671 9675 9680
93 9685 9689 9694 9699 9703 9708 9713 9717 9722 9727
94 9731 9736 9741 9745 9750 9754 9759 9763 9768 9773
95 9777 9782 9786 9791 9795 9800 9805 9809 9814 9818
96 9823 9827 9832 9836 9841 9845 9850 9854 9859 9863
97 9868 9872 9877 9881 9886 9890 9894 9899 9903 9908
98 9912 9917 9921 9926 9930 9934 9939 9943 9948 9952
99 9956 9961 9965 9969 9974 9978 9983 9987 9991 9996

Note: Decimal points are omitted in this table; the entries

0 1 2
10 0000 0043 0086

mean that log10(1.00 = 0.0000, log10(1.01) = 0.0043, and log10(1.02) = 0.0086 (to 
four-decimal-place accuracy).
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TABLE 5

Powers and Roots

x x2 x  x3 x3  

1 1 1.000 1 1.000
2 4 1.414 8 1.260
3 9 1.732 27 1.442
4 16 2.000 64 1.587
5 25 2.236 125 1.710
6 36 2.449 216 1.817
7 49 2.646 343 1.913
8 64 2.828 512 2.000
9 81 3.000 729 2.080

10 100 3.162 1,000 2.154
11 121 3.317 1,331 2.224
12 144 3.464 1,728 2.289
13 169 3.606 2,197 2.351
14 196 3.742 2,744 2.410
15 225 3.873 3,375 2.466
16 256 4.000 4,096 2.520
17 289 4.123 4,913 2.571
18 324 4.243 5,832 2.621
19 361 4.359 6,859 2.668
20 400 4.472 8,000 2.714
21 441 4.583 9,261 2.759
22 484 4.690 10,648 2.802
23 529 4.796 12,167 2.844
24 576 4.899 13,824 2.884
25 625 5.000 15,625 2.924
26 676 5.099 17,576 2.962
27 729 5.196 19,683 3.000
28 784 5.292 21,952 3.037
29 841 5.385 24,389 3.072
30 900 5.477 27,000 3.107
31 961 5.568 29,791 3.141
32 1,024 5.657 32,768 3.175
33 1,089 5.745 35,937 3.208
34 1,156 5.831 39,304 3.240
35 1,225 5.916 42,875 3.271
36 1,296 6.000 46,656 3.302
37 1,369 6.083 50,653 3.332
38 1,444 6.164 54,872 3.362
39 1,521 6.245 59,319 3.391
40 1,600 6.325 64,000 3.420

(Continued)
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TABLE 5 (Continued)

Powers and Roots

x x2 x  x3 x3  

41 1,681 6.403 68,921 3.448
42 1,764 6.481 74,088 3.476
43 1,849 6.557 79,507 3.503
44 1,936 6.633 85,184 3.530
45 2,025 6.708 91,125 3.557
46 2,116 6.782 97,336 3.583
47 2,209 6.856 103,823 3.609
48 2,304 6.928 110,592 3.634
49 2,401 7.000 117,649 3.659
50 2,500 7.071 125,000 3.684
51 2,601 7.141 132,651 3.708
52 2,704 7.211 140,608 3.733
53 2,809 7.280 148,877 3.756
54 2,916 7.348 157,464 3.780
55 3,025 7.416 166,375 3.803
56 3,136 7.483 175,616 3.826
57 3,249 7.550 185,193 3.849
58 3,364 7.616 195,112 3.871
59 3,481 7.681 205,379 3.893
60 3,600 7.746 216,000 3.915
61 3,721 7.810 226,981 3.936
62 3,844 7.874 238,328 3.958
63 3,969 7.937 250,047 3.979
64 4,096 8.000 262,144 4.000
65 4,225 8.062 274,625 4.021
66 4,356 8.124 287,496 4.041
67 4,489 8.185 300,763 4.062
68 4,624 8.246 314,432 4.082
69 4,761 8.307 328,509 4.102
70 4,900 8.367 343,000 4.121
71 5,041 8.426 357,911 4.141
72 5,184 8.485 373,248 4.160
73 5,329 8.544 389,017 4.179
74 5,476 8.602 405,224 4.198
75 5,625 8.660 421,875 4.217
76 5,776 8.718 438,976 4.236
77 5,929 8.775 456,533 4.254
78 6,084 8.832 474,552 4.273
79 6,241 8.888 493,039 4.291
80 6,400 8.944 512,000 4.309

(Continued)
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TABLE 5 (Continued)

Powers and Roots

x x2 x  x3 x3  

81 6,561 9.000 531,441 4.327
82 6,724 9.055 551,368 4.344
83 6,889 9.110 571,787 4.362
84 7,056 9.165 592,704 4.380
85 7,225 9.220 614,125 4.397
86 7,396 9.274 636,056 4.414
87 7,569 9.327 658,503 4.431
88 7,744 9.381 681,472 4.448
89 7,921 9.434 704,969 4.465
90 8,100 9.487 729,000 4.481
91 8,281 9.539 753,571 4.498
92 8,464 9.592 778,688 4.514
93 8,649 9.644 804,357 4.531
94 8,836 9.695 830,584 4.547
95 9,025 9.747 857,375 4.563
96 9,216 9.798 884,736 4.579
97 9,409 9.849 912,673 4.595
98 9,604 9.899 941,192 4.610
99 9,801 9.950 970,299 4.626

100 10,000 10.000 1,000,000 4.642
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TABLE 6

Factorials

n n! 

0 1.00000 00000 E00
1 1.00000 00000 E00
2 2.00000 00000 E00
3 6.00000 00000 E00
4 2.40000 00000 E01
5 1.20000 00000 E02
6 7.20000 00000 E02
7 5.04000 00000 E03
8 4.03200 00000 E04
9 3.62880 00000 E05

10 3.62880 00000 E06
11 3.99168 00000 E07
12 4.79001 60000 E08
13 6.22702 08000 E09
14 8.71782 91200 E10
15 1.30767 43680 E12
16 2.09227 89888 E13
17 3.55687 42810 E14
18 6.40237 37057 E15
19 1.21645 10041 E17
20 2.43290 20082 E18
21 5.10909 42172 E19
22 1.12400 07278 E21
23 2.58520 16739 E22
24 6.20448 40173 E23
25 1.55112 10043 E25
26 4.03291 46113 E26
27 1.08888 69450 E28
28 3.04888 34461 E29
29 8.84176 19937 E30
30 2.65252 85981 E32
31 8.22283 86542 E33
32 2.63130 83693 E35
33 8.68331 76188 E36
34 2.95232 79904 E38
35 1.03331 47966 E40
36 3.71993 32679 E41
37 1.37637 53091 E43
38 5.23022 61747 E44
39 2.03978 82081 E46

(Continued)
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TABLE 6 (Continued)

Factorials

n n! 

40 8.15915 28325 E47
41 3.34525 26613 E49
42 1.40500 61178 E51
43 6.04152 63063 E52
44 2.65827 15748 E54
45 1.19622 22087 E56
46 5.50262 21598 E57
47 2.58623 24151 E59
48 1.24139 15593 E61
49 6.08281 86403 E62
50 3.04140 93202 E64

Note: Values are given in scientific notation 
with the exponent denoted by E; for 
example, 2.65252 85981 E32 denotes 
2.6525285981 × 1032.
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Answers

Section 2

 2. (a) y e x cx= +1
3

1
2

3 2– ;

 (b) y = log x + c;

 (c) y e cx= +1
2

2 ;

 (d) y x x x c= + - +-sin 1 21 ;

 (e) y = x − log(1 + x) + c;

 (f) y x c= + +1
2

1 2log( ) ;

 (g) y
x x

x
x

c= - +
+

é

ë
ê

ù

û
ú + -é

ëê
ù

ûú
+-1

6
1

1
1
3

2 1
3

2

2
1log

( )
tan ;

 (h) y x c= +-1
2

1 2(tan ) ;

 (i) x = c(y − 1)ey;
 (j) x−4 + y−4 = c;

 (k) sin y cxe x= - 2
;

 (l) y cex=
2
;

 (m) x3 + 3 cos y = c;
 (n) y = −log(csc x + cot x) + c;
 (o) y = c cos x;
 (p) y = c sec x;

 (q) y
c x

cx
=

+
–

1
;

 (r) y = ecx.
 3. (a) y = xex − ex + 3;
 (b) y = sin2x + 1;
 (c) y = x log x − x;

 (d) y
x
x

= -
+

é
ëê

ù
ûú

1
2

3 3
1

log ;



682 Differential Equations with Applications and Historical Notes

 (e) y
x

x
= -é

ë
ê

ù

û
ú

1
8

4
3

2

2log ;

 (f) y x x x= + + - +-1
4

1 1
1
2

12 2 3 1log[( ) ( ) ] tan .

 4. (a) 3e2y = 2e3x + 1;
 (b) y = x2 + log x;
 (c) tan−1 x + ey = 1;
 (d) 2 sin 3x cos 2y = 1;
 (e) 2y + 1 = ex(sin x + cos x);
 (f) log x(y + 1) = y − x + 1.
 8. m = 1, 1/2, −2; y = c1ex + c2ex/2 + c3e−2x.

Section 3

 1. (a) x2 − y2 = c;
 (b) x2 + 2y2 = c2;
 (c) r = c(1 − cos θ);
 (d) y2 = −2x + c.
 2. (a) x2 + 4y2 = c2;
 (b) x2 + ny2 = c2.

 The orthogonal trajectories are ellipses, and are more and more elon-
gated in the x direction as n is taken to be larger and larger.

 3. r = 2c cos θ.
 4. r = c/(1 + cos θ).

 5. y xy
dy
dx

y
dy
dx

2 2
2

2= + æ
è
ç

ö
ø
÷ ; the family is self-orthogonal in the sense that 

when a curve in the family intersects another curve in the family, it is 
orthogonal to it.

 6. (a) xy = c;
 (b) y2 = ±2x + c;
 (c) y = ce±x;
 (d) y2 = cx;
 (e) x2 + 2y2 = c2;
 (f) y2 = ±x2 + c;
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 (g) θ = 0 or r = 2c sin θ;
 (h) θ = θ0 or r = cekθ.
 7. y = cx2.
 8. xy = cekx.
 9. The intersections of the cylinders xy = c with the saddle surface z = y2 − x2.
 10. (a) (xy′ − y)2 = x2(x2 − y2);
 (b) (x2 − y2 − 1)y′ = 2xy;
 (c) (x − y)2(1 + y′2) = (x + yy′)2;
 (d) y + y′2 = xy′;
 (e) (y − xy′)2 = 1 + y′2.

Section 4

 2. (a) T
r

=
100 2log  

years;

 (b) about 6.93 percent.

 3. (a) A D
e

k

kt

=
æ

è
ç

ö

ø
÷

– 1
;

 (b) $5986;
 (c) $1866.

 4. (a) A
W
k

P
W
k

ekt= + æ
è
ç

ö
ø
÷– ;

 (b) W0 = kP;

 (c) T
k

W
W W

=
-

1

0
log years;

 (d) about 13.86 years.
 5. If x = x(t) is his wealth at time t, and t = 0 one year ago, then x = 20/(2 − t). 

Thus, in 6 months x = 40 million dollars, and at the end of 1 year (as t → 2) 
x becomes infinite.

 6. At about 10.11 p.m.
 7. 3531.
 8. In the year a.d. 2076; 6.6 billion.
 9. (b) About 15.2 grams.

 10. x
x x

x x x e kx t=
+ - -

0 1

0 1 0
1( )

; when x x=
1
2

1.
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 12. About 35.35 percent; about 3.125 percent.
 13. About 133 days.
 14. About 13.53 percent.
 16. If B = A, then

 
x

kA abt
kAabt

=
+

2

1
;

 and if B < A, then

 
x

AB e
A Be

k A B abt

k A B abt= -
-

- -

- -
( )( )

( )

1
.

 The first formula is the limit of the second formula as B → A; students 
should prove this by using l’Hospital’s rule.

 17. 1
1

1
10

1

0

1
+
+

=
+
+

é

ë
ê

ù

û
ú

( )
( )

( )
( )

A x
A x

A x
A x

t t

.

 18. x
x

x x e kt=
+ - -

0

0 01( )
.

 19. 40 log 2 ≅ 27.72 minutes.
 20. 2 log 2 ≅ 1.39 hours.
 21. No later than 36 minutes after the smoking starts.
 22. 40 feet.

 23. 
9
25

0I  and 
81

625
3
5

0 0

10 3

I I;  æ
è
ç

ö
ø
÷ .

 25. 
log
log

5
2

1- hours.

 26. 60°.
 27. 16°.
 28. At 6 a.m.
 29. (a) About 3330 years (1380 b.c.);
 (b) about 3850 years (1900 b.c.);
 (c) about 10,510 years;
 (d) about 7010 years.

Section 5

 1. v
g
c

e

e

gc t

gc t
=

+

1

1

2

2

– (– )

(– )
; the terminal velocity is 

g
c

.
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 2. 2 miles.
 3. 256 feet; when t = 4, t = 8. v g0

2 2 ; when t = v0/g, 2v0/g.

 7. 1 5 2. ;gR gR .

 8. gR , which is approximately 5 miles/second.

Miscellaneous Problems for Chapter 1

 1. ( )5 1-  hours before noon.
 2. r = (2 − t)/8; one more month.
 3. After 100 log 2 minutes.
 4. 100 2 1( )-  minutes.
 5. The intersections of the cylinders x = cy4 with 4x2 + y2 + 4z2 = 36.

 7. 14
15 2

5 2

2

R
r g

 seconds.

 8. The shape of the surface obtained by revolving y = cx4 about the y-axis.
 9. 25h.

 12. 
4

4 15
g

log( )+  seconds.

 13. 
dT
d

T
q

m= ; T = T0eμθ.

 14. r r e r ax L= 0
20

2p .
 15. The President.
 16. Go 2 miles toward the origin and then move outward along one of the 

spirals r e= ±q 3.

 17. r
a

e=
2

–q; total distance = a.

Section 7

 1. (a) y2 = x2 + cx4;
 (b) y = cx2(x + y);
 (c) y = x tan cx3;
 (d) cos (y/x) + log cx = 0;
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 (e) y = x log (log cx2);
 (f) x2 − 2xy − y2 = c;
 (g) y = cx3 − x;

 (h) y x y x y x y x x y cx2 2 2 2 2 2 2 23+ + + + - + =log( ) log ;
 (i) y = cx2/(1 − cx);
 (j) y3 = x3 log cx3.
 2. x2 + y2 = cy.
 3. (a) x + y = tan (x + c);
 (b) tan (x − y + 1) = x + c.
 4. (b) z = dx + ey.

 5. (a) tan log ( ) ( )- +
-

æ
è
ç

ö
ø
÷ = - + + +1 2 25

1
1 5

y
x

x y c;

 (b) y − x = 5 log (x + y − 1) + c;

 (c) log[( ) ( ) ] tany x x
y x
x

c- + - +
-
-

æ
è
ç

ö
ø
÷ =-2 2 11 2

1
;

 (d) (x + 2y)(x − 2y − 4)3 = c;
 (e) (2x − y + 3)4 = c(x + 1)3.

 6. (a) n x cexy= =– ,1 2
2

/ ;
 (b) n = 3/4, 2 + 5xy2 = cx5/2;
 (c) n = −1, x = cyexy.
 11. (a) r = ceθ (in polar coordinates);
 (b) r = ce−θ;
 (c) x2 − y2 = c.

Section 8

 1. xy + log y2 = c.
 2. Not exact.
 3. 4xy − x4 + y4 = c.
 4. Not exact.
 5. xy + sin xy = c.
 6. Not exact.
 7. xey + sin x cos y = c.

 8. cos
x
y

c
x
y

c= = or .
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 9. Not exact.
 10. x2y3 + y sin x = c.

 11. log
1
1

2
+
-

- =
xy
xy

x c.

 12. x2y4 + x sin y = c.

 13. log .
1
1

2+
-

æ

è
ç

ö

ø
÷ + =

xy
xy

x c

 14. 3x2 + 2(x2 − y)3/2 = c.
 15. Not exact.

 16. xe y x cy2
+ =csc cot  .

 17. x − y2 cos2 x = c.
 18. x2 + y2 = c2.
 19. x3(1 + log y) − y2 = c.
 20. −y + y2 − x2 = c(x + y) or x + y2 − x2 = c(x + y).
 21. x2y2(4y2 − x2) = c.
 22. (a) n = 3, x2y2 + 2x3y = c;

 (b) n = 1, x2 + e2xy = c.

Section 9

 2. (a) m = - =1
4

2 2 3

y
x y cy, ;

 (b) m = - - =
1

2 2 2

x
xy x y c, log ;

 (c) m = = +1
3 13

2 4 2 2

( )
,

xy
x y cx y ;

 (d) μ = sin y, ex sin y + y2 = c;
 (e) μ = xex, x2ex sin y = c;

 (f) m = + =1
12

3

( )
,

xy
xy cxy;

 (g) μ = x2, 4x3y2 + x4 = c;
 (h) μ = y, xy2 − ey(y2 − 2y + 2) = c;

 (i) m = - + =
1 2

y
x y x y c, log ;

 (j) μ = exy, exy(x + y) = c;

 (k) m = + - =e e y x cx x2 22 2 3 2 2/ /, ( ) .
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 3. When (∂M/∂y − ∂N/∂x)/(N − M) is a function g(z) of z = x + y.

 4. (a) – –
x
y y

y c= + +1
;

 (b) log
x
y

y c= +1
3

3 ;

 (c) tan- = - +1 41
4

x
y

x c;

 (d) log tanx y
x
y

c2 2 1+ = +- ;

 (e) tan- = +1 3
3

y
x

x c;

 (f) y = x/(x + c);
 (g) y = 2x2 + 3 + cx;
 (h) 2 xy y c= + ;

 (i) – – log
1

xy
x y c+ = ;

 (j) 3x + x3y4 + cy = 0;
 (k) x (y5 + cy) = 4;
 (l) y = x/(x2 + c);
 (m) xy + x cos x = sin x + c.
 5. x2 cos (y/x2) + y sin (y/x2) = cx3.
 6. r = c/(1 − cos θ), a parabola.

Section 10

 2. (a) y = x4 + cx3;
 (b) y = e−x tan−1 ex + ce−x;
 (c) y = (1 + x2)−1 log (sin x) + c(l + x2)−1;
 (d) y = x2e−x + x2 − 2x + 2 + ce−x;
 (e) y = x2csc x + c csc x;
 (f) y = −x3 + cx2;
 (g) xy sin x = sin x − x cos x + c;

 (h) y x e cex x= +3 2 2 2
;

 (i) y = (x3 + c)/log x;
 (j) y = x2(1 + ce1/x).
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 3. (a) 
1

2
4 2

y
x cx= +– ;

 (b) y3 = 3 sin x + 9x−1 cos x − 18x−2 sin x − 18x−3 cos x + cx−3;
 (c) 1 + xy log x = cxy.
 4. (a) xy2 = ey + c;
 (b) x = yey + cy;
 (c) 1 = x2(y + cey);
 (d) 2xf(y)3 = f (y)2 + c.
 5. (a) x = y − 2 + ce−y;
 (b) 3 2x y c y+ = .
 7. log y = 2x2 + cx.
 8. y = tan x − sec x.

 9. x t t t= - - - £ £( ) ( ) ;10
8

10
10 0 104 .

 10. (a) 45 pounds;

 (b) after minutes
40
3

3 3 16 9( ) .- @ .

 11. (a) If k k y
k x

k k
e e k k y k x tek t k t k t

2 1
1 0

2 1
2 1 1 0

1 2 1¹ =
-

- = =- - -, ( ); ,and if .

 (b) About 66 days.

Section 11

 1. (a) y2 = c1x + c2;
 (b) x y c c2

2
2

1
2+ - =( ) ;

 (c) y = c1ekx + c2e−kx;

 (d) y x c x c x c c= +– – – log( – )
1
2

2
1 1

2
1 2;

 (e) 2 11 1 2c y c x c– = ± + ;

 (f) y c ec x= 2
1 ;

 (g) y = x2 + c1 log x + c2.
 2. (a) y = 1 or 3y + x3 = 3;
 (b) 2y − 3 = 8ye3x/2;
 (c) y = −log (2e−x − 1).
 3. (a) y = −log [cos (x + c1)] + c2;
 (b) y = log(c1ex + e−x) + c2.
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 4. T R g= @2 89p  minutes.

 5. s s g a t a g= 0 4cos ,  period = 4p .

Section 12

 2. T y w s y L x0
21¢¢ = + ¢ +( ) ( ) ( ).

 3. A parabola.
 5. y = c(eax + e−ax), where the bottom of the curtain is on the x-axis and the 

lowest point of the cord is on the y-axis.
 6. A horizontal straight line or a catenary.

 8. (a) y
c

k
x
c k

x
c

ck
k

k k

=
+

æ
è
ç

ö
ø
÷

æ
è
ç

ö
ø
÷

é

ë
ê
ê

ù

û
ú
ú

+
+

2
1

1
1

1 1

1 1

2–
– –

–

,

 so the distance the rabbit runs is ck/(1 − k2).

 (b) y
x c

c
c

x
c

=
é

ë
ê

ù

û
ú

1
2 2

2 2–
– log ,

 and the dog can get closer than c/2 + є for any є > 0 but not as close 
as c/2.

 9. y
x
c

c
x

k

k

k

k=
æ

è
ç

ö

ø
÷

+1
2

1

1– – .

 If a > b (k > 1), then y → –∞ as x → 0 and the boat will never land. If 
a = b(k = 1), then y → −c/2 as x → 0 and the boat will land at (0, −c/2). If 
a < b (k < 1), then y → 0 as x → 0 and the boat will land at the origin.

Section 13

 2. (a) I
E

R kL
e I

E
R kL

ekt Rt L= + æ
è
ç

ö
ø
÷

0
0

0

–
–

–
– – / ;

 (b) I
E

R L
t I

E L
R L

e Rt L=
+

- + +
+

æ
è
ç

ö
ø
÷

-0

2 2 2
0

0
2 2 2

w
w a w

w
sin( ) / ,

where tan α = Lω/R.
 4. (a) Q = E0C(1 − e−t/RC);
 (b) case 1, RC = 1,

Q = E0Cte−t;
case 2, RC ≠ 1,
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Q

E C
RC

e et RC t= 0

1–
[ – ]– / – ;

 (c) Q
E C

R C
RC t t e t RC=

+
+ - -0

2 2 2 1w
w w w[ sin cos ]/ .

 5. Q Q t LC I Q LC t LC= = -0 0cos( ), ( )sin( )/ / / .

Miscellaneous Problems for Chapter 2

 1. y c ec x= 2
1 .

 2. xy = log y + c.

 3. 3
1
1

1 11 2 2tan log[( ) ( ) ]- +
-

= + + - +
y
x

y x c.

 4. y x y x y x y y x x cx2 2 2 2 2 2 2 23+ + + + + = +log( ) log .

 5. 3y = 2x2 + cx2y3.

 6. – log .
1

2 2 2x y
y
x

c= +

 7. y2 = c2e2x + c1.
 8. xy = x sin x + cos x + c.
 9. y = x log y + cx.
 10. yex − x2y3 = c.
 11. c1 tan−1 c1x = y + c2.
 12. y = x2 + cx.
 13. y = x sin x + 2 cos x − 2x−1 sin x + cx−1.
 14. (3x + 2y) + log (3x + 2y)2 + x = c.
 15. x cos (x + y) = c.

 16. y x c x c= + +1
2

2
1 2(log ) log .

 17. yexy + sin x = c.
 18. (x − y) log (x − y) = c − y.

 19. y xe cex x= +– –2 2
.

 20. x2y2 − 2x3y − x4 = c.
 21. y = x4(1 + x2)−1 + c(1 + x2)−1.
 22. ex sin y + cos xy = c.

 23. y c x x c= + +( ) +1
2

21log .

 24. 2xey + x2 + y2 − 2x2y = c.
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 25. 2xexe−y + y2 = c.
 26. y4 − x4 log x4 = cx4.
 27. 3y cos3 x = 3 sin x − sin3 x + c.
 28. y = x(cx2 − 1)/(cx2 + 1).

 29. 1
2

+ =e cyx y( ) .
 30. (5y + 4)2 − 4(5y + 4)(5x + 2) − (5x + 2)2 = c.
 31. x3 log y = c.

 32. y
x

x
y c2 5

3
3log cos

+
- = .

 33. x = c(x + y)2.

 34. log x
xy

c- =1 .

 35. y x
c

x c c= + +
1
2 2

2 1 2
1 2– log( ) .

 36. x3y − xy3 = c.
 37. 4x2y = (x2 + 1)3 + c(x2 + 1).
 38. 3(y − 1)2 + 4(y − 1)(x + 1) + 3(x + 1)2 = c.

 39. xe cx y2
= .

 40. x3ey − x2 + cos y = c.
 41. x = c1y − log c2y.
 42. xy(x + y)2 = c.
 43. y = x tan (log cx).

 44. 
1

1
y

x cx= + +log .

 45. [cos y][log (5x + 15)] + log y = c.
 46. c1y2 = c1x + log (c1x − 1) + c2.
 47. xyex − ex = c.
 48. y = x2/(c − x).
 49. y3 = 3(c2 − x − c1y).
 50. x = csc y[log (sec y) + c].
 51. When t = 25.

 52. ce
y x
y x

x2 55 / =
-
+

.

 53. (a) 
dz
dt

s t I z Iz+ + = -[ ( ) ] 2.

 (b) y = 1 + z, where

 1 1 2 1 22 2

z
e I e dt cat It at It= +é

ëê
ù
ûú

+ - +ò(( / ) ) (( / ) ) .
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 55. Burnout velocity

burnout height

= +æ

è
ç

ö

ø
÷ -

= -

b
m
m

gm
a

gm

log ;1

2

2

1

2

2
2

aa
bm

a
bm

a
m

m m2
2 1 1

1 2
+ +

+
log .

 59. (a)  If the constant acceleration due to the constant gravitational field is 
denoted by A, then

 
v c

e
e

At c

At c=
+

æ

è
ç

ö

ø
÷

1
1

2

2

– – /

– / .

Section 14

 1. (a) y = c1 + c2x2;
 (b) a = 1, y = c1 + c2x2 + x3.
 2. y = c1 + c2 log x.
 3. (a) y = c1e−x + c2e2x;
 (b) y = c1e−x + c2e2x − 2x + 1.
 4. (a) y = 1/(2x);
 (b) y = −3x;

 (c) y = -
1
3

 sin x.

 5. (a) y = c1x + c2 + ex;
 (b) y = c1 + c2e2x − 2x;

 (c) y c e c e xx x= +1 2
1
2

– – sin ;

 (d) y = c1x + c2ex;
 (e) y = c1 + c2e−2x + 2ex.
 6. (a) x2y″ − 2xy′ + 2y = 0;
 (b) y″ − k2y = 0;
 (c) y″ + k2y = 0;
 (d) y″ + 2y′ = 0;
 (e) (1 − x cot x)y″ − xy′ + y = 0;
 (f) y″ − 2y′ + y = 0;
 (g) y″ + 2y′ − 3y =0;
 (h) x2y″ + xy′ − y = 0.
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Section 15

 2. y = x + 2x2.
 3. y = − 3ex + 2e2x.
 5. y1 = x2, y2 = x−1, y = 3x2 − 2x−1.
 6. (a) y = 6ex + 2e−2x;

 (b) y = 0;
 (c) y = 4e−2x −3e−3x;
 (d) y = e−2 −e−x.

 7. (a) y = a constant or y = log (x + c1) + c2.

 11. (a) u e v Q P P v
Pdx

= ò ¢¢ + ¢æ
è
ç

ö
ø
÷ =

–
, – –

1
2 21

2
1
4

0.

 (b) y c x c e x= + -( ) /
1 2

22
.

Section 16

 2. (a) y2 = −cos x, y = c1 sin x + c2 cos x;

 (b) y e y c e c ex x x
2 1 2

1
2

= = +– ,– – .

 3. y x y c c x2
2

1 2
21

2
= = +– ,– – .

 4. y x y c x c x2
2

1
2

2
21

4
= = +– ,– – .

 5. y c x c
x x

x
= + +

-
æ
è
ç

ö
ø
÷ -

é

ë
ê

ù

û
ú1 2

2
1
1

1log .

 6. y = c1x−1/2 sin x + c2x−1/2 cos x.
 7. (a) y = c1x + c2ex;
 (b) y = c1x + c2x−2;
 (c) y = c1x + c2xex.
 8. y = c1x + c2x∫x–2e∫xf(x)dxdx.
 9. y = c1ex + c2x2ex.
 10. (a) y1 = ex,y2 = ex∫xne–xdx.
 (b) y = c1ex + c2(x + 1), y = c1ex + c2(x2 + 2x + 2),

 y = c1ex + c2(x3 + 3x2 + 6x + 6).

 11. y = c1ex + c2ex∫e[–2x + ∫f(x) dx] dx.
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Section 17

 1. (a) y = c1e2x + c2e−3x;
 (b) y = c1e−x + c2xe−x;
 (c) y c x c x= +1 22 2 2 2cos sin ;

 (d) y e c x c xx= +( cos sin )1 23 3 ;
 (e) y = c1e2x + c2xe2x;
 (f) y = c1e5x + c2e4x;

 (g) y e c x c xx= +æ
è
ç

ö
ø
÷

– / cos sin2
1 2

1
2

5
1
2

5 ;

 (h) y = c1e3x/2 + c2xe3x/2;
 (i) y = c1 + c2e−x;
 (j) y = e3x (c1 cos 4x + c2 sin 4x);
 (k) y = c1e−5x/2 + c2xe−5x/2;

 (l) y e c x c xx= +( )– cos sin1 22 2 ;
 (m) y = c1e2x + c2e−2x;

 (n) y e c x c xx= +æ
è
ç

ö
ø
÷1 2

1
2

3
1
2

3cos sin ;

 (o) y = c1ex/2 + c2e−x;
 (p) y = c1ex/4 + c2xex/4;
 (q) y = e−2x(c1 cos x + c2 sin x);
 (r) y = c1ex + c2e−5x.
 2. (a) y = e3x−1;
 (b) y = ex + 2e5x;
 (c) y = 5xe3x;
 (d) y = e−2x(cos x + 2 sin x);

 (e) y e ex x= -- + - -( ) ( )2 2 2 22 ;

 (f) y e ex x= +9
5

1
5

1 9 1– – ( – ).

 5. (a) y = x−1[c1 cos (log x3) + c2 sin (log x3)];
 (b) y = c1x−2 + c2x−2 log x;
 (c) y = c1x3 + c2x−4;
 (d) y = c1x3/2 + c2x−1/2;
 (e) y = c1x2 + c2x2 log x;
 (f) y = c1x2 + c2x−3;

 (g) y x c x c x= æ
è
ç

ö
ø
÷ + æ

è
ç

ö
ø
÷

é

ë
ê

ù

û
ú

– / cos log sin log1 2
1 2

1
2

11
1
2

11 ;
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 (h) y c x c x= +1
2

2
2– ;

 (i) y = c1x4 + c2x−4.

 7. (a) y e c x c xx= +æ
è
ç

ö
ø
÷

– / cos sin
2 4

1
2

2
21

4
3

1
4

3 ;

 (b) not possible.

Section 18

 1. (a) y c e c e ex x x= + +1
2

2
5 41

3
– ;

 (b) y = c1 sin 2x + c2 cos 2x + sin x;
 (c) y = c1e−5x + c2xe−5x + 7x2e−5x;
 (d) y = ex(c1 cos 2x + c2 sin 2x) + 2 + 4x + 5x2;
 (e) y = c1e3x + c2e−2x − 4xe−2x;
 (f) y = c1ex + c2e2x + 2 sin 2x + 3 cos 2x;
 (g) y = c1 sin x + c2 cos x + x sin x;
 (h) y = c1 + c2e2x + 2x − 3x2;
 (i) y = c1ex + c2xex + 3x2ex;

 (j) y e c x c x xe xx x= + -( cos sin ) cos1 2
1
2

;

 (k) y = c1 +c2e−x + 2x5 − 10x4 + 40x3 − 120x2 + 242x.

 2. y c kx c kx
bx

k b
b k= + + =1 2 2 2sin cos

sin
,

-
unless  in which case y c kx= +1 sin

 

c kx
x kx

k
2

2
cos

cos- .

 3. (a) y = c1 sin 2x + c2 cos 2x + x sin 2x + 2 cos x − 1 − x + 2x2;

 (b) y c x c x x x x e x xx= + - + - + --
1 2

2 33 3
1
3

3
1
2

2 3 2sin cos cos sin .

Section 19

 1. yp = 2x + 4.

 2. y ep
x= – –1

4
.

 3. (a) y x x xp = +– cos log(sec tan )
1
4

2 2 2 ;

 (b) y x e x x ep
x x= 1

2
3
4

2 2– –log – ;

 (c) yp = −e−x(8x2 + 4x + 1);
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 (d) y xe x e x xp
x x= +1

2
2

1
4

2 2– –sin cos log(cos );

 (e) y ep
x= 1

10
3– ;

 (f) yp = ex log (1 + e−x) − ex + e2x log (1 + e−x).
 4. (a) yp = x sin x + cos x log (cos x);
 (b) yp = cos x log (csc x + cot x) −2;

 (c) y x x x x x xp = + - +1
2

1
2

cos log(sec tan ) sin log(csc cot );

 (d) y x x x x xp = + -1
4

2( sin cos sin );

 (e) yp = −cos x log (sec x + tan x);
 (f) yp = x cos x − sin x − sin x log (cos x);
 (g) yp = −sin x log (csc x + cot x) − cos x log (sec x + tan x).

 5. (b) y x
k

f t k x t dtp

x

( ) ( )sin ( )= -ò1
0

.

 6. (a) y c x c x x x= + + + -1 2
2 4 21

1
6

1
2

( ) ;

 (b) y c e c x x xx= +1 2
1 21

1
3

– – – – ;

 (c) y = c1x + c2ex + x2 + 1;

 (d) y c e c x e xx x= + + + -1 2
21

1
2

1( ) ( );

 (e)  y c x c x xe x x
e
x

dxx
x

= + + ò1 2
2 2– – ( )–

–

, where this integral is not an 

elementary function.

Section 20

 1. The frequency is 
1

2 2

2

2p
k
M

c
M

–  when k
M

c
M

–
2

22
 is positive, which is 

more restrictive than the condition that 
k
M

c
M

–
2

24
0> .

 3. 2 2 3p r g  seconds.
 4. About 574 pounds.
 5. The round trip time is 2p R g  seconds, where R is the radius of the 

earth; this is approximately 90 minutes. The greatest speed is approxi-
mately 0.074L miles/minute or 4.43L miles/hour.

 6. x t t t t= + -1
2

4
1
4

4 4cos sin cos .
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Section 21

 1. (a) 2 2  years.
 (b) 3 3  years.
 (c) 125 years.
 2. (a) About 0.39 astronomical units or 36,000,000 miles.
 (b) About 29.5 years.

Section 22

 1. y = c1 + c2ex + c3e2x.
 2. y = c1ex + ex(c2 cos x + c3 sin x).

 3. y c e e c x c xx x= + +æ
è
ç

ö
ø
÷1

2
2 3

1
2

3
1
2

3– / cos sin .

 4. y c e e c x c xx x= + +æ
è
ç

ö
ø
÷1

2
2 3

1
2

3
1
2

3– / cos sin .

 5. y = (c1 + c2x + c3x2)e−x.
 6. y = (c1 + c2x + c3x2 + c4x3)e−x.
 7. y = c1ex + c2e−x + c3 cos x + c4 sin x.
 8. y = c1 cos x + c2 sin x + c3 cos 2x + c4 sin 2x.
 9. y = (c1 + c2x)eax + (c3 + c4x)e−ax.
 10. y = (c1 + c2x)e−x + c3 cos x + c4 sin x.
 11. y = (c1 + c2x)e−x + c3 cos x + c4 sin x.
 12. y = (c1 + c2x)ex + e−2x(c3 cos x + c4 sin x).
 13. y = c1ex + c2e2x + c3e3x.
 14. y = c1e2x + (c2 + c3x + c4x2)e−x.
 15. y = (c1 + c2x)e2x + (c3 + c4x)e−2x + c5e6x.

 17. 
d x
dt

k k
m

k k
m

d x
dt

k k
m

k k
m

4
1

4
1 3

1

2 3

2

2
1

2
1 3

1

2 3

2
+ + + +é

ëê
ù

ûú
+

+æ

è
ç

ö

ø
÷

+æ

èè
ç

ö

ø
÷

é

ë
ê

ù

û
ú =–

k
m m

x3
2

1 2
1 0.

 18. x c
k
m

t c
k
m

t c
k

m
t c

k
m

t
k
m

k
m

1 1 2 3 4
3 3 1

2

1
2

3

= + + +cos sin cos sin ;

.

 

and

p

p
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 19. y = c1x3 + c2x2 + c3x + c4 + sin x + x4.
 20. y = c1 + c2ex + c3e2x + 5x + 7e3x.

 21. y e e xx x= 9
2

1
2

– –– .

 22. (a) y = c1 + c2x + c3x−1;
 (b) y = c1x + c2x2 + c3x−1;
 (c) y = c1x + c2 cos (log x) + c3 sin (log x).

Section 23

 1. y x e x= æ
è
ç

ö
ø
÷

1
4

1
16

2– .

 2. y x x e x= - +1
27

9 24 262 2( ) .

 3. y x e x= 1
2

5 2– .

 4. y x ex= 1
2

2 .

 5. y x e x= æ
è
ç

ö
ø
÷– – –1

2
1
4

.

 6. y e x= 1
2

5 .

 7. y = x3 − 6x − 5.
 8. y = 2x3 + 9x2 + 40x + 73.
 9. y = x4 − 48x2 + 384.

 10. y x x x= – – –
1

60
1
3

25 3 .

 11. y = −x10 − 151,200x4.
 12. y = x4 + 4x3 + 24x2 + 69x + 117.
 13. y = x4 − 12x2 + 24.
 14. y = −2x3 − 5x2 − 10x − 10.

 15. y x x x x= + +3
4

10
3

21
2

21 214 3 2– – .

 16. y = −e2x(x3 + 6x).

 17. y e x x xx= - - -1
8

4 2 18 252 3 2( ).
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 18. y e x x ex x= + + +2 4 6
1
3

2 2 2– ( ) .

 19. y = −2x2.
 20. y = x3 − 1.
 21. y = −2x2.

 22. y x x= -1
2

1(log ).

 23. y x x= + +1
2

2 12 .

 24. y x x x= - + -1
48

4 6 6 33 2( ).

 25. (a) y x c x c x c e x= + + +æ
è
ç

ö
ø
÷

1
6

3
1

2
2 3

2 ;

 (b) y = (2x3 + c1x2 + c2x + c3)e−x;
 (c) y = (−sin x + c1x + c2)e2x.

Section 24

 3. ¢¢ + +
æ

è
ç

ö

ø
÷ =u

p
x

u1
1 4

4
0

2

2

–
.

Section 25

 3. If f(x) ≥ 0 and k > 0, then every solution of the equation y″ + [f(x) + k]y = 0 
has an infinite number of positive zeros.

Section 26

 6. nxn

n

–1

1=

¥å .



701Answers

Section 27

 1. (a) y a x
x x x

a ex= + + + + +
æ

è
ç

ö

ø
÷ =0

2
4 6 8

01
2 3 4

2

! ! !
� ;

 (b) y a a x
a

x
a

x

a x
x x

= - - +
- - - +

= + - - + -

0 0
0 2 0 3

0

2 3

1
1

2
1

3

1 1 1
2 3

( )
( )

!
( )

!

( )
! !

�

++
æ

è
ç

ö

ø
÷ = + - -� 1 10( ) .a e x

 2. (a) y = a1x, no discrepancies;
 (b) y = 0, y = ce−1/x, the latter being analytic at x = 0 only when c = 0.

 3. sin
( )

( )
-

+

=

¥
= + × -

× +å1
2 1

1

1 3 2 1
2 4 2 2 1

x x
n

n
x
n

n

n

�
�

.

 5. y
x x x

x
x x x

x e xx

= - + -

= - + - + -
æ

è
ç

ö

ø
÷ + - = + --

2 3 4

2 3 4

2 3 4

1
2 3 4

1 1

! ! !

! ! !
.

�

�

Section 28

 1. y a x x x x a x

a x x a x

= + + +æ
è
ç

ö
ø
÷ +

= + +

0
2 4 6 8

1

0
1

1

1
1
3

1
5

1
7

1

– –

( tan ) .–

�

 2. (a) y x
x x x

y x x
x x x

1

2 4 6

2

3 5 7

1
2 2 4 2 4 6

3 3 5 3 5 7

( ) ,

( ) .

= - +
×

-
× ×

+

= - +
×

-
× ×

+

�

�

 3. a
n a a

n n
n

n n
+

+= +
+ +

2
1 11

1 2
–

( ) –
( )( )

– .

 (a) y x
x x x

1

3 4 5

1
2 3 2 3 4 2 3 4 5

( ) = +
×

-
× ×

+
× × ×

+�;

 (b) y x x
x x x x

2

2 3 4 5

2 2 3 2 3 4
4

2 3 4 5
( ) = - +

×
+

× ×
-

× × ×
+�.
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 4. (c) a
p n

n n
a

w x a
p

x
p p

x

a

n n+ =
+ +

= +é
ëê

ù
ûú

+

2

0
2 4

1

1 2

1
2

2
4

–
–

( )( )
,

( ) –
!

( – )
!

–�

xx
p

x
p p

x–
( – )

!
( – )( – )

!
–

1
3

1 3
5

3 5+é
ëê

ù
ûú

� .

 5. (b) y x a
x
n n

a x
x

n n

nn

n n

( )
( )

( ) !

( )

= + -
× × -

é

ë
ê

ù

û
ú

+ + -

=

¥

+

å0

3

1

1

3

1
1

2 5 8 3 1 3

1

�
11

1 4 7 10 3 1 3× × +
é

ë
ê

ù

û
ú=

¥å �( ) !n nnn
.

 (c) y x a
x

n n

a x
x

n

nn

n

( )
( ) !

(

= +
× × -

é

ë
ê

ù

û
ú

+ - -
× ×

=

¥

+

å0

3

1

1

3 1

1
2 5 8 3 1 3

4 7 10

�

� 33 1 31 n nnn +
é

ë
ê

ù

û
ú=

¥å ) !
.

 6. (a) y x
p p

x
p p p p

x

y x x
p p

x

1
2 4

2
3

1
2

2 2
4

1 1
3

( )
!

( ) ( )
!

,

( )
( )( )

!

= -
×

+
- +

-

= -
- +

+

�

(( )( )( )( )
!

.
p p p p

x
- - + +

-
1 3 1 3

5
5 �

Section 29

 1. (a) x = 0 irregular, x = 1 regular;
 (b) x = 0 and x = 1 regular, x = −1 irregular;
 (c) x = 0 irregular;

 (d) x x= =0
1
3

and regular– .

 2. (a) ordinary point;
 (b) ordinary point;
 (c) regular singular point;
 (d) regular singular point;
 (e) irregular singular point.
 3. (a) m(m − 1) − 2m + 2 = 0, m1 = 2, m2 = 1;

 (b) m m m m m( ) , ,- - + = = =1
5
4

1
2

0 2
1
4

1 2 .
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 4. (a) y x x
x x

x

y x
x x

x

1
1 2

2

2

2

1
3 5

1
2 4

( )
! !

sin ,

( )
! !

cos ;

/= - + -
æ

è
ç

ö

ø
÷ =

= - + - =

�

�

 (b) y x
x

n

y x x
x

n
x e

n

n

n

n
x

n

1
0

2
1 2 1 2 2

0

1 3 5 2 1

2

( )
( )

,

( )
!

/ / /

=
× × +

= =

=

¥

- -

=

¥

å
å

�

;

 (c) y x x x x

y x x x

1
1 2 2

2
2

1
7
6

21
40

1 3 2

( ) ,

( ) ;

/= - + +æ
è
ç

ö
ø
÷

= - + +

�

�

 (d) y x x x x

y x x x x

1
2

2
1 2 2

1
1
5

1
70

1
1
2

( ) ,

( ) ./

= + + +æ
è
ç

ö
ø
÷

= - - +æ
è
ç

ö
ø
÷

-

�

�

 6. (b) y2(x) = −xe1/x.

Section 30

 1. y = x2(1 − 4x + 4x2 + ∙ ∙ ∙).
 2. y = c1x1/2ex + c2x1/2ex log x.

 3. (a) y
x x

x x

y x
x x

x x

1

2 4
1

2
1

2 4
1

1
3 5

1
2 4

= + - =

= + -
æ

è
ç

ö

ø
÷ =

–
! !

sin ,

–
! !

cos

–

– –

�

� ;;

 (b) y x x x x

y x x x x

1
2 2 3

2
1 2 4

1
1
2

1
20

1
60

1
1
2

1
2

1
8

= + + +æ
è
ç

ö
ø
÷

= + + +æ
è
ç

ö

– ,

––

�

�
øø
÷ ;

 (c) y x
x x

x

y
x x

x

1
2

4 8
2

2

4 8
2

1
3 5

1
2 4

= +
æ

è
ç

ö

ø
÷ =

= + =

–
! !

– sin ,

–
! !

– cos .

�

�

 4. y x
x x= +

æ

è
ç

ö

ø
÷1

2 2 2 2 3

2

2

4

4–
! ! !

–� .
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 5. y x
x x

x x

y x
x x

1
1 2

2 4
1 2

1 2
2 4

1
3 5

1
2 4

= - + -
æ

è
ç

ö

ø
÷ =

= - + -
æ

-

-

/ /

/

! !
sin ,

! !

�

�
èè
ç

ö

ø
÷ = -x x1 2/ cos .

Section 31

 2. (a) y c F x c x F x

c x

= -æ
è
ç

ö
ø
÷ + -æ

è
ç

ö
ø
÷

= -æ
è
ç

ö

-
1 2

1 2

1

2 1
3
2

3
2

3
2

1
2

1
4
3

, , , , , ,/

øø
÷ + -æ

è
ç

ö
ø
÷

-c x F x2
1 2 3

2
3
2

1
2

/ , , , ;

 (b) y c F x c x F x

c
x

= -æ
è
ç

ö
ø
÷ + - -æ

è
ç

ö
ø
÷

=
+

æ
è
ç

1 2
1 2

1

1
2

1
1
2

1
3
2

3
2

1
1

, , , ( ) , , ,/

öö
ø
÷ + -

+
é

ë
ê

ù

û
úc

x
x

2

1 2

1
( )

;
/

;

 (c) y c F
x

c
x

F
x= +æ

è
ç

ö
ø
÷ + +æ

è
ç

ö
ø
÷

+æ
è
ç

ö
ø
÷1 2

1 2

2 2
1
2

1
2

1
2

5
2

5
2

3
2

1
2

, , , , , , ;

 (d) y c F
x

c
x

F
x= -æ

è
ç

ö
ø
÷ + -æ

è
ç

ö
ø
÷ - - - -æ

-

1 2

9 5

1 1
14
5

3
5

3
5

4
5

4
5

4
5

3
5

, , , , , ,
/

èè
ç

ö
ø
÷.

 4. (a) y = c1F(p,1,p,x) + c2x1−pF(1,2 − p,2 − p,x);

 (b) y c
x

c
x

x

p

= æ
è
ç

ö
ø
÷ +

æ

è
ç

ö

ø
÷1 2

11
1 1– –

–

;

 (c) y c
x

c
x
x

= æ
è
ç

ö
ø
÷ + æ

è
ç

ö
ø
÷1 2

1
1 1–

log
–

.

 5. y c F e c e F ex x x= - - -æ
è
ç

ö
ø
÷ + - -æ

è
ç

ö
ø
÷1 2

3 21 1
1
2

1 1
5
2

1
2

5
2

1, , , ( ) , , ,/ .

Section 32

 1. (a) A regular singular point with exponents p + 1 and −p.
 (b) An irregular singular point.
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Section 33

 1. 3
4

1 2 1 2 1 2 2 1
2 1

1

1

p +
- - - - + -

-

+¥å ( ) cos( ) sin( ) sin ( )n n x n x n x
n

.

 2. 1
4

1 1 2 1 2 1 2 2 1
2 1

1

1
+

- - + - + -
-

+¥åp
( ) cos( ) sin( ) sin ( )n n x n x n x

n
.

 3. 1 2 2
4 1

1
221p p

–
cos

–
sin

nx
n

x+
¥å .

 4. 
1
2

4 2
4 121

cos
sin

x
n nx

n
+

-

¥åp
.

 5. (a) π;
 (b) sin x;
 (c) cos x;
 (d) π + sin x + cos x.
 Notice that any finite trigonometric series is automatically the Fourier 

series of its sum.

 6. (a) 
4 3

3
5

5
a

x
x x

p
sin

sin sin+ + +æ
è
ç

ö
ø
÷� ;

 (b) 4 3
3

5
5p

sin
sin sin

x
x x+ + +æ

è
ç

ö
ø
÷� ;

 (c) sin
sin sin

x
x x+ + +3

3
5

5
�;

 (d) 
1
2

6 3
3

5
5

+ + + +æ
è
ç

ö
ø
÷p

sin
sin sin

x
x x

� ;

 (e) 3
2

2 3
3

5
5

+ + + +æ
è
ç

ö
ø
÷p

sin
sin sin

x
x x

� .

 7. After forming the suggested series, continue by subtracting from the 
series in Problem 1, then dividing by π.

Section 34

 2. f x
n x

n
nx

n
n( )

cos ( )
( )

( )
sin= -

-
-

- - +
¥¥ ååp

p4
2 2 1

2 1
12

1

11
.

 3. f x
n x

n
n x

n
nx

n
( )

cos( )
( )

sin( ) sin= - - -
-

+ -
-

-
¥¥ åp

p4
2 2 1

2 1
3

2 1
2 1

2
22 11ååå¥

1
.
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 In each case, 
1

2 1 82

2

( )n -
=å p

.

 5. f x
n

nx
n

n
nx

n n

( )
sinh ( )

cos
( )

sin= + -
+

- -
+

é

ë
ê

ù

û
ú

¥¥ ååp
p

1 2
1

1
2

1
12 211

.

Section 35

 1. Even, odd, neither, odd, even, even, neither, odd.

 4. 1
1
3

1
5 4

– + - =�
p

 (this concrete sum, familiar to us from elementary 

calculus, provides strong emphasis for the very remarkable nature of 
the sine series we are considering: as x varies continuously between 0 
and π, each term of the series changes in value, but these changes are 
so delicately interrelated that the sum of all these variable quantities is 
constantly equal to p

4
—astounding!);p

4
.

 5. f x
nx

n
n( ) ( )

cos= - -
-

¥å2 4
1

4 121p p
.

 6. sin ;
cos

,x
nx

n
x

2 4 2
4 1

021p p
p-

-
£ £

¥å .

 7. f x
n x

n
( )

cos( )
( )

= -
-

¥å4 2 1
2 1 21p

.

 8. (a) p p– ( )
sin

x
nx

n
n= + -

¥å2 1
1

;

 (b) p p
p

–
cos( – )

( – )
x

n x
n

= +
¥å2

4 2 1
2 1 21

;

 (c) p –
sin

x
nx

n
=

¥å2
1

.

 10. (b) x
nx

n
n x

n
xn2 1

311
2 1

8 2 1
2 1

0= - -
-

-
£ <+

¥¥ ååp
p

p( )
sin sin ( )

( )
, .

 15. sin sin ( ) , ;

cos

2

1

2

1 2
2 1

1
2 1

1
2 3

2 1 0

1

x
n n n

n x x

x

=
-

-
+

-
-

é
ëê

ù
ûú

- £ £

=

¥åp
p

pp
p2

2 1
1

2 1
1

2 3
2 1 0

1 n n n
n x x

-
-

+
-

-
é
ëê

ù
ûú

- < <
¥å sin ( ) , .
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Section 36

 1. f x
n

n
x

( ) sin( )=
-

-
¥å12 1

2 1
2 1

21p
p .

 2. (a) f x
n x

n
( )

cos( )
( )

= +
-

-

¥å1
2

4 2 1
2 12 21p

p ;

 (b) f x
n

n
x

( )
( )

cos( )= -
-

-
¥å1

8 1
2 1

2 1
22 21p

p
.

 4. f x
n x

n
( )

cos=
¥å1 2

2 21p
p

.

 5. f x
n

n
xn

( )
( )

cos( )= + -
-

-
+¥å1

4 1
2 1

2 1
2

1

1p
p

.

 6. cos πx = cos πx.

 7. f x
n x

n
( )

cos ( )
( )

= -
-

¥å2 2 2 1
2 12 21p

p
.

Section 38

 4. b b b b b1 2 3 4 5
4

0
4

3
0

4
5

= = = = =
p p p

, , , ,

 5. b1 = 2, b2 = −1, b3
2
3

= .

Section 40

 1. (a) λn = 4n2, yn(x) = sin 2nx;

 (b) ln n
n

y x nx= =
2

4
1
2

, ( ) sin ;

 (c) λn = n2π2, yn(x) = sin nπx;

 (d) l p p
n n

n
L

y x
n x

L
= =

2 2

2 , ( ) sin ;

 (e) l p p
n n

n
L

y x
n x L

L
= = +2 2

24 2
, ( ) sin

( ) ;
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 (f) l p p
n n

n
b a

y x
n x a

b a
=

-
= -

-

2 2

2( )
, ( ) sin

( )
.

 5. (a) y x t
c n x n at

n
n( , ) ( )

sin( ) cos( )
( )

= -
- -

-
+

¥å8
1

2 1 2 1
2 12

1
21p

;

 (b) y x t
n x n at

n
( , )

sin( ) cos( )
( )

=
- -

-

¥å8 2 1 2 1
2 12 31p

;

 (c) y x t
n

n n
nx nat( , ) sin sin sin cos= +é

ëê
ù
ûú

¥å2 1
4

3
421p

p p
.

Section 41

 2. w x t b e nx g xn
n a t( , ) sin ( )= +-

¥å 2 2

1
,

 where g x w w w x( ) ( )= + -1 2 1
1
p

 and b f x g x nx dxn = -ò2
0p

p

[ ( ) ( )]sin .

 4. w x t e b e nxct
n

n a t( , ) sin= - -
¥å 2 2

1
,

 where b f x nx dxn = ò2
0p

p

( )sin .

 5. 
¶
¶

ù
ûú

=
¶
¶

ù
ûú

= ( ) =
= =

w
x

w
x

w x t
x x0

0 0 00, ; ,
p

 1 .

 6. w x t a a e cos nxn
n a t( , ) = + -

¥å1
2

0
1

2 2
, where

 
a f x nx dx nn = =ò2

0 1 2
0p

p

( )cos , , , . for …

 7. w x y b e nxn
ny( , ) sin= -¥å1

, where b f x nx dxn = ò2
0p

p

( )sin  .

Section 42

 2. (a) w r
r n

n
n

n

( , ) ( )
cosq

p p
q= - -

-

¥å2 4
1

4 121
;

 (b) w r r r r( , ) sin sin sinq q q q= - + -æ
è
ç

ö
ø
÷2

1
2

2
1
3

32 3 � ;
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 (c) w r r
n

n
rn( , )

cos
sinq

p p
q q= -

-
+

¥å1 2 2
4 1

1
2

2
21

;

 (d) w r r r r( , ) sin sin sinq
p

q q q= + + + +æ
è
ç

ö
ø
÷

1
2

2 1
3

3
1
5

53 5 � ;

 (e) w r
r n

n
n

n

( , ) ( )
cosq p q= + -

¥å
2

2112
1 .

Section 43

 2. n y c x c x= = - +-1
1
2

1
1

2, .

 3. (a) (1 − x2)μ″ − 2xμ′ + p(p + 1)μ = 0;
 (b) x2μ″ + 3xμ′ + (1 + x2 − p2)μ = 0;
 (c) (1 − x2)μ″ − 3xμ′ + (p2 − 1)μ = 0;
 (d) μ″ + 2xμ′ + (2 + 2p)μ = 0;
 (e) μ″ + xμ = 0;
 (f) xμ″ + (1 + x)μ′ + (1 + p)μ = 0.

 4. m = = +
é

ë
ê
ê

ù

û
ú
úò

-

x y x e c
e
x

dx cx
x

, 4
1 5 2

2
2

.

 6. (b) Legendre’s and Airy’s.
 8. (a) [(1 − x2)y′]′ + p(p + 1)y = 0;

 (b) [ ]xy x
p
x

y¢ ¢ +
æ

è
ç

ö

ø
÷ =-

2

0;

 (c) [ ]1
1

02
2

2
- ¢ ¢ +

-
=x y

p

x
y ;

 (d) [ ]e y pe yx x- -¢ ¢ + =
2 2

2 0;

 (e) [y′]′ + xy = 0;
 (f) [xe−xy′]′ + pe−xy = 0.
 10. (b)  λ0 = 0, y0(x)=1; λn = n2 for n = 1,2,3, . . ., and the eigenfunctions corre-

sponding to each of these λn are cos nx and sin nx.
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Section 44

 2. (c) P x x

P x x x

P x x x

P

2
2

3
3

4
4 2

5

1
2

3 1

1
2

5 3

1
8

35 30 3

( ) ( ),

( ) ( ),

( ) ( ),

(

= -

= -

= - +

xx x x x) ( )= - +1
8

63 70 155 3 .

Section 45

 4. (a) f x P x P x P x( ) ( ) ( ) ( )= + + +1
4

1
2

5
16

0 1 2 �;

 (b) f x e e P x e P x e e P x( ) ( ) ( ) ( ) ( ) ( )= - + + - +- - -1
2

3
1
2

5 351
0

1
1

1
2 �.

Section 46

 7. y = x−c[c1Jp(axb) + c2J−p(axb)] if p is not an integer;
  y = x−c[c1Jp(axb) + c2 Yp(axb)] in all cases.

Section 47

 3. J x
x

J x J x

J x
x

J x
x

J x

J x

2 1 0

3 2 1 0

4

2

8
1

4

4

( ) ( ) ( );

( ) ( ) ( );

( )

= -

= -æ
è
ç

ö
ø
÷ -

=
88 8 24

13 1 2 0
x x

J x
x

J x-æ
è
ç

ö
ø
÷ - -æ

è
ç

ö
ø
÷( ) ( ).
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Section 48

 3. L ax
p

p
p a

[sin ]2
2 2

1
2

1
4

= -
+

æ

è
ç

ö

ø
÷ and L ax

p
p

p a
[cos ]2

2 2

1
2

1
4

= +
+

æ

è
ç

ö

ø
÷; the sum 

of these transforms is the transform of 1(=1/p).

 4. (a) 
10
p

;

 (b) 
5

46 2

!
p

p
p

+
+

;

 (c) 
2

3
5

252p p–
–

+
;

 (d) 4
4

2
12p p+

+
+

;

 (e) 6
7

!
p

.

 5. (a) 5x3;

 (b) 2e−3x;

 (c) 2x2 + 3 sin 2x;

 (d) 1 − e−x;

 (e) x − sin x.

Section 49

 2. (a) 
1

peap ;

 (b) 
1

1p ep( )-
;

 (c) 
e p
p e

p

p

– –
( – )

1
12 ;

 (d) 
1

12

+ e
p

p–p

+
.
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Section 50

 1. (a) 5
2 6

!
( )p +

;

 (b) 
1

1
2

1 3p p+ +
–

!
( )

;

 (c) p
p

–
( – )

3
3 42 +

.

 2. (a) 2e−2x sin 3x;
 (b) 2e−3xx3;
 (c) e−x cos 2x + e−x sin 2x.

 3. (a) y(x) = −e−x + e2x;
 (b) y(x) = 3xe2x;
 (c) y(x) = 1 − e−x cos x;
 (d) y(x) = −5 + 6x − 3x2 + x3 + 5e−x;
 (e) y(x) = e−x sin 2x + e−x sin x.

 4. y x y e y ay xeax ax( ) ( )= + ¢ -0 0 0 .
 5. 1 − e−x.

 6. y e x e x ex x x= +3
2

1
2

1
2

2 2– – –sin cos – .

Section 51

 1. L
p a a

ax
a

x ax–

( )
sin

– cos1
2 2 2 2

1 1
2+

é

ë
ê

ù

û
ú = æ

è
ç

ö
ø
÷.

 2. (a) 
6 22 3

2 2 3

ap a
p a

–
( )+

;

 (b) 3
4 2p p

p .

 3. (a) y(x) = cx2ex;
 (b) y(x) = xe−x.
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 5. (a) log
b
a

;

 (b) tan-1 b
a

.

 8. (a) 
1

1p e p( )+ - .

Section 52

 2. (a) y(x) = cos x;
 (b) y(x) = e2x;
 (c) y(x) = e−x(x − 1)2;
 (d) y(x) = −2 sin x + 4 sin 2x.

 4. y = cx.

Section 53

 2. (a) 
1

1
a

at( cos )- ;

 (b) 
1

a b
e eat bt

–
( – );

 (c) 
1

12a
e atat( )- - ;

 (d) 1
2 2a b

a bt b at
–

( sin – sin ).

 4. (a) y e e et t t= +1
6

5
6

3 3 2– –– ;

 (b) y t e et t= +– – – –1
6

1
36

1
45

1
20

3 2 ;

 (c) y e t t tt= 2
1
3

2 23 2– – – – .
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 5. (a) y t f e e dt t
t

( ) ( )[ ]( ) ( )= -- - - -ò t tt t2

0
;

 (b) 1
20

1
4

1
5

1
2

3
4

1
4

3 2 2e e e t e et t t t t– – –– – –+ +and .

 7. A t
k

k
M

t h t
Mk

k
M

t

x t
Mk

f
k
M

t

( ) cos , ( ) sin ,

( ) ( )sin (

= -
æ

è
çç

ö

ø
÷÷ =

=

1
1

1

1 t --ò t t) .d
t

0

 8. (a) I t
E
R

e Rt L( ) [ ]/= - -0 1 ;

 (b) I t
E
L

e Rt L( ) /= -0 ;

 (c) I t
E

R L
t

E L
R L

e Rt L( ) sin( ) /=
+

- +
+

-0

2 2 2

0
2 2 2

w
w a w

w
,

where tan α = Lω/R.

Section 54

 1. (a) 
dy
dx

z

dz
dx

xy x z

=

= + 2 ;

 (b) dy
dx

z

dz
dx

w

dw
dx

w x z

=

=

= – 2 2.

 2. dx
dt

v

dv
dt

f t x y
m

dy
dt

v

dv
dt

g t x y
m

x

x

y

y

=

=

=

=

( , , )

( , , ) .
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Section 55

 5. (b) x c e c e

y c e c e

t t

t t

= +
=

ì
í
ï

îï
1

4
2

2

1
4

2
2

–

–– ;

 (c) x e e

y e e

t t

t t

= +
=

ì
í
ï

îï

3 2
3 2

4 2

4 2

–

–– .

 6. (b) x c e c e

y c e c e

t t

t t

= +
=

ì
í
ï

îï

2
3

1
4

2

1
4

2

–

–– ;

 (c) x c e c e t

y c e c e t

t t

t t

= + +
= +

ì
í
ï

îï

2 3 2
3 2 3

1
4

2

1
4

2

–

–

–
– – .

 8. x c e c te

y c e

t t

t

= +
=

ì
í
ï

îï
1 2

2 .

 9. (a) x c e

y c e

t

t

=
=

ì
í
ï

îï
1

2 .

Section 56

 1. (a) x c e c e

y c e c e

t t

t t

= +
=

ì
í
ï

îï

2 1 2

1 2

–

– ;+

 (b) x e c t c t

y e c t t c t

t

t

= +
= + + -

3
1 2

3
1 2

2 3 2 3
3 3 3 3 3

( cos sin )
[ (cos sin ) (sin coos )]3t

ì
í
ï

îï ;

 (c) x c e c t e

y c e c te

t t

t t

= + +
=

ì
í
ï

îï

– ( )
– ;

2 1 21
3

2
3

1
3

2
3

 (d) x c c e

y c c e

t

t

= +
=

ì
í
ï

îï

3
4 2

1 2
2

1 2
2

–

–+ ;

 (e) x c e

y c e

t

t

=
=

ì
í
ï

îï
1

2

2
3 ;

 

(f) x c e c t e

y c e c te

t t

t t

= +
=

ì
í
ï

îï
1

3
2

3

1
3

2
3

1– –

– –

( – )
– ;+



716 Differential Equations with Applications and Historical Notes

 (g) x c e c e

y c e c e

t t

t t

= +
=

ì
í
ï

îï

2 3
2

1
10

2
3

1
10

2
3– ;

 (h) x e c t c t

y e c t t c t t

t

t

= +
= - - +

3
1 2

3
1 2

2 2
2 2 2 2

( cos sin )
[ (sin cos ) (sin cos ))]

ì
í
ï

îï .

 5. (b) x t

y t

= +
=

ì
í
î

3 2
2 1–

Section 57

 1. x
d x
dt

dx cx
dx
dt

acx adx
dx
dt

2

2
2 2 3

2

= - + - + æ
è
ç

ö
ø
÷( ) ( ) .

 2. The fox curve is concave up whenever the rabbit curve is rising.

Section 58

 2. Put c = t1 − t2 and use uniqueness.
 3. They are the same except that the directions of all paths are reversed in 

passing from one to the other.
 4. (a) Every point is a critical point, and there are no paths.
 (b)  Every point on the y-axis is a critical point, and the paths are hori-

zontal half-lines directed out to the left and right from the y-axis.
 (c)  There are no critical points, and the paths are straight lines with 

slope 2 directed up to the right.
 (d)  The point (0,0) is the only critical point, and the paths are half-lines 

of all possible slopes directed in toward the origin.
 5. For equations (1) and (2), they are (0,0), (±π,0), (±2π,0), (±3π,0), . . .; and for 

equations (3), (0,0) is the only critical point.
 6. (a) (−2,0), (0,0), (1,0)

 (b) (2,2), (3,3)

 7. x c e

y c e e c

t

t t

=
= + +

ì
í
ï

îï
1

1 2.
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Section 59

 1. (a) (i) The critical points are the points on the x-axis;
 (ii) dy/dx = 2xy/(x2 + 1).
 (iii) y = c(x2 + 1).

 (b) (i) (0,0).
 (ii) dy/dx = −x/y;
 (iii) x2 + y2 = c2.

 (c) (i) There are no critical points;
 (ii) dy/dx = cos x;
 (iii) y = sin x + c.

 (d) (i) The critical points are the points on the y-axis;
 (ii) dy/dx = −2xy2;
 (iii) y = 1/(x2 + c) and y = 0.

 2. (a) (i) x c e

y c e

t

t

=
=

ì
í
ï

îï
1

2
– ;

 (ii) dy/dx = −y/x;
 (iii) xy = c;
 (iv) unstable.

 (b) (i) x c e

y c e

t

t

=
=

ì
í
ï

îï
1

2
2

–

– ;

 (ii) dy/dx = 2y/x;
 (iii) y = cx2;
 (iv) asymptotically stable.

 (c) (i) x c t c t

y c t c t

= +
= - +

ì
í
î

2 2 2 2
2 2

1 2

1 2

cos sin
sin cos ;

 (ii) 
dy
dx

x
y

= –
4

;

 (iii) x
c

y
c

2

2

2

24
1+ = ;

 (iv) stable but no asymptotically stable.
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Section 60

 1. (a) Unstable node;
 (b) Asymptotically stable spiral;
 (c) Unstable saddle point;
 (d) Stable but not asymptotically stable center;
 (e) Asymptotically stable node;
 (f) The critical point is not isolated;
 (g) Unstable spiral.
 3. (c) The critical point is (−3,2), the transformed system is

 

dx
dt

x y

dy
dt

x y

=

=

ì

í
ïï

î
ï
ï

2 2

11 8

–

– ,

and the critical point is an asymptotically stable node.
 4. (a) m2 + 2bm + a2 = 0; p = 2b, q = a2.
 (b)  (i)  A stable but not asymptotically stable center; the mass oscillates; 

the displacement x and velocity y = dx/dt are periodic functions 
of time.

 (ii)  An asymptotically stable spiral; the mass executes damped 
oscillations; x and dx/dt → 0 through smaller and smaller 
oscillations.

 (iii)  An asymptotically stable node; the mass does not oscillate; x and 
dx/dt → 0 without oscillating.

 (iv) The same as (iii).
 5. a2x2 − 2a1xy − b1y2 = c.

Section 61

 1. (a) Neither;
 (b) Positive definite;
 (c) Neither;
 (d) Negative definite.
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Section 62

 2. dy
dx

x y y
x xy

=
2

2

2 3

3 2

–
–

.

 3. Put D = −pq = (a1 + b2)(a1b2 − a2b1) > 0.
 4. No conclusion can be drawn about the stability properties of the non-

linear system (4) at (0,0) when the related linear system (3) has a center 
at (0,0).

 5. (a) Unstable spiral;
 (b) Asymptotically stable node.
 6. The critical point (0,0) is unstable if μ > 0 and asymptotically stable if 

μ < 0.

Section 63

 1. If f (0) = 0 and xf (x) < 0 for x ≠ 0, the critical point is an unstable saddle 
point.

 3. y2 − x2 + x4 = 2E; ( , )- 2 2 0/  is a center; (0,0) is a saddle point; and ( , )2 2 0  
is a center.

 4. When z = F(x) has a maximum, the critical point is a saddle point; when 
it has a minimum, the critical point is a center; and when it has a point 
of inflection, the critical point is a cusp.

Section 64

 2. (a) dr
dt

r r

d
dt

= -

= -

ì

í
ïï

î
ï
ï

( )

;

4

4

2

q

 (c) x
t t

ce

x t

y t

y
t t

c

t
= +

+

=
= -

ì
í
î

= - +

+

-

2 4

1

2 4
2 4

2 4

1

0

8

0

cos ( ) cos
sin .

sin ( )

ee t-

ì

í
ï
ï

î
ï
ï 8

,
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 4. (a) A periodic solution (Liénard’s theorem);
 (b) No periodic solution (Theorem B);
 (c) No periodic solution (Theorem A);
 (d) No periodic solution (Theorem B);
 (e) A periodic solution (Liénard’s theorem).

Section 66

 1. (a) ( )x c y c- + =2
2 2

1
2;

 (b) y = c1 sin (x − c2).

 2. y x x= -1
4

2( ).

 4. (a) c1 = r cos (θ − c2);
 (b) Same as (a).

Section 67

 3. (a) x
ad

a b c
y

bd
a b c

z
cd

a b c

=
+ +

=
+ +

=
+ +

2 2 2 2 2 2

2 2 2

, ,

.

 5. The catenary y c
x c

c
+ =

-æ

è
ç

ö

ø
÷l 1

2

1
cosh .

Section 68

 1. y
x

x x x= = + + + <1
1

1 12

–
,| |� ;

 

y x x y x x x x

y x x x x x x x

1 2
2 3

3
2 3 4 5 6

1 1
1
3

1
2
3

1
3

1
9

( ) , ( ) ,

( )

= + = + + +

= + + + + + + ++ 1
63

7x .
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 2. y ex=
2

1– ;

 

y x x y x x
x

y x x
x x

y x x
x x

1
2

2
2

4

3
2

4 6

4
2

4 6

2

2 2 3

2 2

( ) , ( ) ,

( ) ,

( )

= = +

= + +
×

= + +
× 33 2 3 4

8

+
× ×
x

.

 3. (a) y x
x x x

n
e e x en

n
x x x( )

! ! ( )!
( )= + + +

+
+ ® - - +

+2 3 1

2 3 1
1� ;

 (b) y x x
x x x x

n

x e x

n

n

x

( )
! ! ! ( )!

( )

= + + + + + +
+

é

ë
ê

ù

û
ú

® + + - -

+

1 2
2 3 4 1

1 2 1

2 3 4 1

�

;;

 (c) y x x x x
x

y x x
x

x x

1

2

2

2
2

1
2

1
2

1

( ) (sin )
!

,

( ) cos
!

( )

= - + + +

= - - +
æ

è
ç

ö

ø
÷ + + + + xx

y x x x
x

x x
x x

y x

3

3

3
2

3 4

4

3

3
1

3 4

!
,

( ) sin
! !

,

( )

= - - +
æ

è
ç

ö

ø
÷ + + + +

æ

è
ç

ö

ø
÷ +

== - + -
æ

è
ç

ö

ø
÷ + + + + +

×
æ

è
ç

ö

ø
÷ +cos

! ! !
.x

x x
x x

x x x
1

2 4
1

3 3 4 5

2 4
2

3 4 5

Section 69

 6. (a) All points (x0, y0) with y0 ≠ 0;
 (b)  All points (x0, y0) since f (x,y) = |y| satisfies a Lipschitz condition on 

every rectangle.
 7. All points (x0, y0).

Section 70

 1. y x

z x

=
= -

ì
í
î

cos
sin .
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A

Abel, Niels H., 484–486
formula,115, 122, 156
integral equation, 472
mechanical problem, 468–474
quoted on Gauss, 267

Absolute convergence, for improper 
integral, 452

Achieser, N. I., 275
Action, 608

principle of least, 609
Adams, John Couch, 218
Addition formula for Bessel 

functions, 442
Adjoint equation, 386–387 
Admissible functions, 584
Airy, Sir George B., 218

equation, 218, 387
functions, 218

Algebraic functions, 197
Amplitude, 138
Analytic function, 204, 237
Andrews, G. E., 175
Andronow, A. A., 558
Arago, F., 170–171
Arbitrary functions, 330
Arbitrary intervals, 319–321
Asymptotically stable critical 

point, 527
Autonomous systems, 513–517

of a system, 499, 530
Auxiliary equation, 123, 156, 162, 

499, 530
Auxiliary polynomial, 156
Ayoub, Raymond, 325

B

Ball, W. W. Rouse, 182
Barrow, Isaac, 180
Bell, E. T., 173, 267
Bendixson, Ivar Otto, 566
Bentley, Richard, 183

Bernoulli, Daniel, 47, 351, 359, 407
Bernoulli, James, 46, 172
Bernoulli, John, 40, 47–48, 171, 184, 581
Bernoulli

equation, 83
numbers, 322
polynomials, 323
solution, wave equation, 361

Bernoulli’s theorem, 46
Bertrand’s postulate, 277
Bessel, Friedrich W., 268–269, 393, 407
Bessel expansion theorem, 422–423
Bessel function(s)

addition formula for, 442
applications, 407–408
continued fractions, 444–445
differential equation, 407
first kind of order p, 409
generating function for, 441–442
identities, 419–421
initial conditions, 439–440
integral formula for, 443–444
integrals of, 410
J0(x), 205, 415, 421, 423
nonzero coefficients, 409
order 0, 205, 235, 409–410

graph, 410
order 1/2, 196, 235, 413
order 1, 235, 409–410, 421

graph, 410
orthogonality properties, 423–425
oscillation, 187, 190–191
and potential theory, 427–434
for real number, 418
recursion formula, 408
second kind, 413–416
spherical, 420
and vibrating membrane, 435–440
zeros of, 394

Bessel, Gauss’s letters to, 268
Bessel’s

inequality, 334
integral formula, 443–444
studies of planetary motion, 407
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Bessel’s equation, 3, 407
generalization, 469
general solution of, 413–416
normal form, 191, 193
of order p, 221
of order zero, 464–466
p = 0, solution, 219, 227, 365, 411

second solution, 217
p = 1/2 solution, 417
p = 1, solution, 235, 421
point at infinity, 244
vibrating chain, 363–364
vibrating membrane, 435–440

Bessel series, 421–422
Binomial coefficients, 208
Binomial series, 208
Binomial theorem, 208
Birkhoff, Garrett, 354, 643
Birkhoff, G. D., 575
Bliss, G. A., 591
Bochner, S., 607
Boltzmann, Ludwig, 478
Bolyai, Johann, 269
Bolyai, Wolfgang, 268
Bolzano–Weierstrass theorem, 194
Borderline case, 526, 530–531
Boundary conditions

homogeneous, 383
periodic, 388

Boundary value problems, 109, 
355, 380

regular, 384
singular, 384

Boundary values, 373
Bounded function, 302
Boyer, C. B., 171
Brachistochrone curve

calculus of variations, 45
circular path, 40
conservation of energy, 43
coordinate system, 42–43
differential equation, 43
Fermat’s principle of least time, 42
parameteric equations, cycloid, 44
Snell’s law of refraction, 42
total time, 41

Brachistochrone problem, 184, 581
Brahe, Tycho, 149
Broken line, 8

Brouncker, Lord, 173
Burden, R. L., 651

C

Cajori, F., 275
Calculus of variations

area of the surface of revolution, 583
brachistochrone problem, 581
Einstein’s relativity, 582
Euler’s differential equation

admissible functions, 584–585
chain rule, 586
differential geometry, 590
disturbed functions, 584
elementary calculus, 585–586
extremals, 587–588, 593
fixed choice of function, 587
geodesics, 590
stationary function/curve, 587, 592
stationary points, 587
stationary values, 587, 592
x and y missing from 

function, 588
x missing from function, 588–589
y missing from function, 588

Hamilton’s principle, 582
action/Hamilton’s integral, 

608, 610
Euler’s equations, 609
kinetic energy, 608, 610
Lagrange’s equations, 611–614
Lagrangian function, 609
moving particle force, 608
Newton’s second law of 

motion, 609
potential energy, 608
variational problems for double 

integrals, 614–618
isoperimetric problems

definition, 585
enclosed area, 585
finite side conditions, 602–605
integral side conditions, 597–601
Lagrange multipliers, 586–597
length of the curve, 585

Lagrange’s contributions, 606–607
length of the curve, 583
mathematical rigor, 584
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Schrödinger’s quantum 
mechanics, 582

time of descent, 583
Cantor, G., 289
Carathéodory, C., 584
Carnaham, B., 658
Carslaw, H. S., 169, 376
Cartan, E., 619
Catenary curve, 90
Cauchy, A. L., 484–486

equidimensional equation, 126
Centers, 523–524, 536–537
Central force, 148
Central gravitational forces, 149–151
Cesari, L., 545, 549, 567
Chaikin, C. E., 558
Characteristic, Euler, 178
Chebyshev, Pafnuty L., 276–277

equation, 218, 392
polynomials, 218

hypergeometric form, 272–273
minimax property, 274–275
nth Chebyshev polynomial, 270
orthogonality, 273–274

series, 274
Cheney, E. W., 275
Churchill, R. V., 461
Circle, Dirichlet problem for, 375
Circular error of pendulum clocks, 35
Circular membrane, 437–439
Clarke, Arthur A., 263
Clepsydra, 49
Closed interval, 108
Coddington, E. A., 384
Coefficient(s)

binomial, 208
Fourier, 289–300, 316, 327
undetermined, method of, 127–132

Cohen, I. Bernard, 180
Common logarithms, 673–675
Comparison test, improper integral, 452
Comparison theorem, Sturm, 194–196
Complete equation, 109
Complete orthonormal sequence, 326
Conant, James B., 48
Condition(s)

Dirichlet, 283
homogeneous boundary, 383
initial, 9

Lipschitz, 633–634
periodic boundary, 388

Conduction of heat, 354
Conductivity, thermal 366
Confluent hypergeometric equation, 

244–245
Confluent hypergeometric function, 245
Confocal conics, 49
Conic section, 151
Conservation of energy, 32, 559
Conservative dynamical system, 561
Conservative force, 609–610
Conservative systems, 557–562
Constant

Euler’s, 173
gravitational, 149
separation, 431, 438

Constant coefficients, 122–125
Constant of integration, 71
Conti, R., 545
Continued fraction, Lambert’s, 385, 393
Continuous function, piecewise, 452
Continuously compounded interest, 

20–21
Convergence

Fourier series, 301–306
improper integral, 449
interval of, 201
mean, 337
pointwise, 337
radius of, 200
uniform, 630

Convergent series, 199
Convolutions, 469, 475–480
Convolution theorem, 469–470, 475–480
Cooling, Newton’s law of, 30
Coordinates, generalized, 607
Copernicus, N., 183
Cosine series, Fourier, 311
Cotangent, Euler’s partial fractions 

expansion of, 318
Coupled harmonic oscillators, 158
Courant, R., 179, 334, 416, 617
Crelle, August L., 485–486
Critically damped motion, 140
Critically damped vibration, 137–138
Critical points, 516

asymptotically stable, 527, 
537–538, 552–555
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borderline case, 526
centers, 523–524, 536–537
focus, 524
isolated, 527, 548
node, 520–522, 531–532, 534–536
of nonlinear systems, 547–555
path approaches, 521
path enters, 521
physical interpretation, 516
saddle points, 522–523, 532
simple, 548–552
spirals, 524–526, 532–534
stability for linear systems, 

529–539
stable, 527
two-dimensional vector field, 516
unstable, 527
vortex, 523

Curvature, mean, 617
Curve(s)

integral, 8
one-parameter family of, 8
pursuit, 88
stationary, 587

Cycloid, 44, 47–48, 88, 474, 592

D

d’Alembert, Jean le Rond, 355
formula, 363
principle, 355
solution of wave equation, 351

Damped vibrations, 138–141
Damping force, 138, 558
Damping, linear, 558
Darwin, Sir G. H., 574–575
Dating, radiocarbon, 25
Davis, Philip J., 354
Day, W. D., 480
Decay

exponential, 23
radioactive, 23

Dedekind, Richard, 265
Definite integral, 6
Degrees of freedom, 611
Delta function, Dirac, 457
de Moivre’s formula, 270
Dependent variable, 85–86
Descartes, René, 45

Differential equation, 1
complete, 109
exact, 70
linear, 81
normal form, 191
order, 3
ordinary, 3
ordinary point, 210
partial, 3
reduced, 109
singular point, 210, 219

irregular, 220
regular, 220

standard form, 191 (see also Equation)
Differential, exact, 70
Diophantus, 174
Dirac, P. A. M., 457

delta function, 457
Directed curve, 516
Dirichlet, P. G. L., 306–307

conditions, 283
kernel, 345
problem, 372–378, 433

for a circle, 373
theorem, 304

Discontinuity
jump, 301–302, 349
simple, 301–302

Discretization error
local, 651
total, 651

Distance, 281
between two functions, 333
mean, 153

Doubling time, 22
Douglas, J., 617
Dunnington, G. Waldo, 265
Dynamical problems, variable mass, 

103–105
Dynamical system, conservative, 557

E

e, 19
Eccentricity, 152–153
Eddington, Sir Arthur, 490
Eigenfunction expansion, 383
Eigenfunctions, 259, 356, 358, 360–361, 

380–381, 388–392
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Eigenvalues, 259, 356, 359, 380, 388–392
Einstein, A., 266, 285, 433, 514, 575, 582

on doubting the obvious, 433
on future of mathematical 

physics, 514
and Poincaré, 514
relativity impossible without 

Gauss, 266
on Riemannian geometry, 285
special theory of relativity, 104
use of calculus of variations, 582
variable mass and E = Mc2, 103

Electric circuits, 95–98
Electromotive force (emf), 95–96
Electrostatic dipole potential, 433–434
Electrostatic potential, 428
Elementary functions, 107, 197
Ellipse, 151
Elliptic integral, 36

first kind, 36
second kind, 36

Energy
conservation of, 32, 559
kinetic, 544
potential, 544

Equation(s)
Abel’s integral, 472
adjoint, 386
Airy’s, 218, 387
auxiliary, 123, 156, 462

of the system, 499
Bernoulli’s, 83
Bessel’s (see Bessel’s equation)
Chebyshev’s, 218, 241, 387, 392
complete, 109
differential (see Differential equation)
equidimensional, Euler’s, 126, 161, 

374, 386
Euler’s, for calculus of variations, 587
exact, 69–73
heat, 3, 366–371
Hermite’s, 218, 250, 387, 392
homogeneous, 65–67, 109
hypergeometric

confluent, 244
Gauss’s, 236–240
generalized, 281

indicial, 248, 280
integral (see Integral equation)

Lagrange’s, 607
Laguerre’s, 245, 329, 334
Laplace’s, 3, 316, 365
Legendre’s 3, 178, 387, 392
Liénard’s, 568–569
linear differential, 95
of motion, for undamped pendulum, 

34–37, 514
nonhomogeneous, 109
one-dimensional heat, 366
one-dimensional wave, 351, 357
Parseval’s 340–341
prey-predator, Volterra’s, 508
reduced, 109
Riccati (see Riccati equation)
Riemann’s, 278–287
Schrödinger wave, 259
second order linear, 81
self-adjoint, 384, 387
separable, 6
Sturm–Liouville, 391
two-dimensional Laplace, 373
van der Pol, 514, 517, 557, 572
wave (see Wave equation)

Equation of motion, 435–437
Equidimensional equation, 

Euler’s, 126, 374
Equilibrium point, 527
Equilibrium populations, 510–511
Erdélyi, A., 198, 237, 457
Error

circular, of pendulum clocks, 35
local discretization, 651
total discretization, 651
total relative, 647

Escape velocity, 38
Euclid’s theorem, 174
Euler, Leonhard, 170–179

characteristic, 178
circuit, 176
constant, 173
equation for calculus of 

variations, 582
equidimensional equation, 126, 161, 

374, 386
formula(s)

for complex numbers, 123
for Fourier coefficients, 289, 292, 326
for polyhedra, 177
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hypergeometric function, 237
identity for primes, 276
infinite product for the sine, 318
irrationality of e, 385
and Lagrange, 597
law of quadratic reciprocity, 263
method, 646

error, 650–652
exact and numerical solutions, 

648–649
geometric realization, 648
improved, 652–657
integral of differential 

equation, 646
piecewise-linear curve, 

647–648
system of equations, 662–663
total relative error, 647
zeroth order Taylor 

polynomial, 647
minimal surfaces, 616
partial fractions expansion of the 

cotangent, 318
path, 176
on sequence of primes, 277
sums of series, 172, 377, 406
theorem on homogeneous 

functions, 612
vibrating membrane, 435

Euler’s differential equation
admissible functions, 584–585
chain rule, 586
differential geometry, 590
disturbed functions, 584
elementary calculus, 585–586
extremals, 587–588, 593
fixed choice of function, 587
geodesics, 590
stationary function/curve, 587, 592
stationary points, 587
stationary values, 587, 592
x and y missing from function, 588
x missing from function, 588–589
y missing from function, 588

Ewing, G. M., 584
Exact differential, 70
Exact equations, 69–72
Expansion, eigenfunction, 361, 383
Expansion, Heaviside, 166

Expansion theorem
Bessel, 422, 440
Heaviside, 482
Legendre, 404

Existence and uniqueness theorems, 625
Picard’s theorem, 626–637
second order linear equation, 

638–641
Exponential 

decay, 23
functions, 19, 122, 669
growth, 21
order, 453–454, 459
shift rule, 168–169

Exponents, 208
Extremal, 584–588

F

Factorials, 679–680
Faires, J. D., 651
Fall

free, 32–33
retarded, 33–34

Fermat, Pierre de, 45
last theorem, 46
principle of least time, 42
two squares theorem, 46

Fermi, Enrico, 104
First order reaction, 22
Fischer, E., 342
Focal property of parabolas, 79
Focus, 524
Fomin, S. V., 584, 633
Force

central, 148
conservative, 610
damping, 514
gravitational, 149
restoring, 558

Forced vibrations, 142–144
Ford, Henry, 146
Fourier, J. B. J., 173, 299–300

coefficients, 289–299, 327, 361
cosine series, 314
series, 292, 327, 354

arbitrary intervals, 319–321
convergence, 301–306
cosine, 314
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even and odd functions, 310–315
Fourier coefficients, 289–299
mean convergence, 336–342
orthogonal functions, 325–333
sine, 314, 361

Fourier–Bessel series, 422
Fox-rabbit problem, 511
Fredholm, I., 385, 508
Freedom, degrees of, 611
Free fall, 32–33
Free vibration, 142
Frequency, 138

natural, 141
normal, 161
resonance, 144

Frobenius, F. G., 224
method of, 224
series, 224, 232–233

Function(s)
admissible, 584
Airy, 218
algebraic, 197
analytic, 204
Bessel (see Bessel functions)
bounded, 302
Dirac delta, 457
distance between two, 330
elementary, 197
even, 310
exponential order, 453
gamma, 410–413
generating

for Bessel functions, 407
of Legendre polynomials, 398

harmonic, 373
Hermite, of order n, 261
homogeneous, 66

Euler’s theorem on, 613
hypergeometric, 237

confluent, 244
inner product of two, 329
input, 475–476
Legendre, 214
Liapunov, 542–543
negative definite, 542
negative semidefinite, 542
normalized, 326, 379
norm of, 331
null, 331

odd, 315
orthogonal, 331, 379

sequence of, 325, 328
output, 475–476
periodic, 294
piecewise continuous, 452
piecewise smooth, 349
positive definite, 542
positive semidefinite, 542
Riemann’s zeta, 262
Schrödinger wave, 259
space, 330
spherical Bessel, 420
stationary, 587
transcendental, 197–198
unit impulse, 457
unit step, 475

Fundamental lemma, calculus of 
variations, 587

Fundamental theorem of calculus, 6

G

g, 2
Galileo, 40, 48, 183
Gamma function, 410–413
Gauss, Carl F., 262–270

and Abel, 485
complex numbers and 

quaternions, 619
hypergeometric equation, 236–240
hypergeometric function, 237
potential theory, 371
prime number theorem, 277
Riemannian geometry, 284
Riemann’s dissertation, 282

Gauss, Helen W., 262
Gay-Lussac, Joseph L., 484
Gelfand, I. M., 584
Gelfond, A. O., 385–386
Generalized coordinates, 607
Generalized hypergeometric 

equation, 281
General solution, 9, 101, 109
Generating function

Bessel functions, 441
Hermite polynomials, 253
Legendre polynomials, 398

Genus, 178
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Geodesics, 590
on cone, 594
on cylinder, 594, 606
in physics, 611
on sphere, 594, 604

Gibbs, J. W., 619
Global properties of paths, 564
Goldstine, Herman H., 644
Gradient, 608
Graph, 176
Graph theory, 176
Grassmann, H., 619
Gravitational

constant, 149
force, 149–151
potential, 428

Gravitation, Newton’s law of, 38, 149, 
483, 489

Gray, A., 440, 444
Green, George, 267
Green’s theorem, 567
Growth

exponential, 21
population, 21–22

H

Hadamard, J., 287
Haldane, J. B. S., 3
Half-life, 23
Halley, Edmund, 181
Halperin, I., 457
Hamilton, William Rowan, 618–619
Hamilton’s integral, 608, 610
Hamilton’s principle, 582

action/Hamilton’s integral, 608, 610
Euler’s equations, 609
kinetic energy, 608, 610
Lagrange’s equations

degrees of freedom, 611–612
generalized coordinates, 611–612
law of conservation of energy, 

613–614
Lagrangian function, 609
moving particle force, 608
Newton’s second law of motion, 609
potential energy, 608
variational problems for double 

integrals, 614–618

Hamming, R. W., 645
Hanging chain, 88–94
Hardy, G. H., 5, 175, 385
Harmonic functions, 373
Harmonic oscillators, 258–261

coupled, 155–160
Harmonic vibrations, simple, 137
Heat equation, 3, 366–371, 428–429

one-dimensional, 351
Heat, specific, 366
Heaviside, Oliver, 162, 478

expansion, 166
expansion theorem, 482

Heaviside’s methods, 162
Hegel, G. W., 264
Hermite, Charles, 261

equation, 218, 392, 486
functions

of order n, 256
orthogonality, 256–258

polynomials, 219
generating function, 253
harmonic oscillator, 258–261
independent series solutions, 251
orthogonality, 256–258
Rodrigues’ formula for, 255
two-term recursion formula, 251

series, 258
Herschel, Sir William, 183
Hersh, Reuben, 354
Heun, Karl, 653
Heun’s method, see Improved Euler 

method
Higher transcendental functions, 173
Hilbert, D., 267, 385, 415
Hiltebeitel, A., 266
Hobbes, Thomas, 183
Homogeneous

boundary conditions, 383
equations, 65–67, 109

constant coefficients, 122–125
general solution, 113–117, 

119–121
function, 66

Euler’s theorem, 613
linear systems, 491, 498–504

Homogeneous of degree, 66
Hooke, Robert, 181
Humboldt, F. H. A. von, 484
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Hurewicz, W., 549, 551, 567
Hurley, James F., 31
Huygens, Christiaan, 48
Hyperbola, 151
Hypergeometric equation, 394

confluent, 244
Gauss’s, 278
generalized, 281

Hypergeometric function, 237
confluent, 245

Hypergeometric series, 237

I

Identity
Euler’s, for primes, 286
Riemann’s, 280

Improper integral
absolute convergence, 452
comparison test, 452
convergence, 449

Improved Euler method, 652–657
Impulse, 479
Impulse function, unit, 457, 479
Impulsive response, 479–480
Indefinite integral, 5
Independent variable, 86–87
Index, 570
Indicial equation, 225, 232
Indicial response, 476
Inequality

Bessel’s, 334, 340–341
isoperimetric, 601
Minkowski, 332
Schwarz, 332
triangle, 333

Infinity, point at, 242–244
Initial condition, 9
Initial value problems, 108–109, 355
Inner product of two functions, 331
Inner product of two vectors, 329
Input function, 475
Integral curves, 8, 11
Integral, elliptic

first kind, 36
second kind, 36

Integral equation, 470
Abel’s, 472

Integral formula, Bessel’s, 443–445

Integral, improper, convergence 
of, 410, 449

Integral, Poisson’s, 372–379
Integral transformation, 448
Integrating factors, 74–79
Interest, continuously 

compounded, 20–21
Interval

closed, 108, 194, 290, 325, 389–390, 
491–493, 629

of convergence, 201
open, 108, 195, 389–390, 392

Inverse Laplace transform, 460
Inverse Laplace transformation, 460
Inverse operators, 163–164
Irregular singular point, 243
Isolated critical point, 519
Isoperimetric inequality, 601
Isoperimetric problems

definition, 585
enclosed area, 585
finite side conditions, 602–605
integral side conditions, 597–601
Lagrange multipliers, 586–597
length of the curve, 585

J

Jacobi, C. G. J., 198, 269, 282, 486, 574
on Abel, 486, 574
and Gauss, 269

Jaeger, J. C., 169
Jeans, Sir James, 490
Jump discontinuities, 301, 361

K

Kac, Mark, 481
Kant, Immanuel, 183, 269
Kellogg, O. D., 433
Kepler, Johannes, 149, 183
Kepler’s law

first law, 149–151
second law, 148–149
third law, 153–154

Kernel
Dirichlet, 345
of integral transformations, 448

Kinetic energy, 33, 608



732 Index

Kirchhoff, Gustav R., 97
Kirchhoff’s law, 97
Klein, F., 264
Kolmogorov, A. N., 633
Königsberg bridges, 173, 176
Kruskal, M. D., 643
Kummer, Ernst, 307
Kutta, M. W., 657

L

Lagrange, Joseph L., 606–607
equations, 607, 611–614
multiplier, 596–599
variation of parameters, 135

Lagrangian, 609
Laguerre, Edmond, 245

equation, 245, 392
polynomials, 245

Lambert, Johann H., 30, 385
continued fraction for tangent, 420
law of absorption, 30

Lanczos, C., 266
Laplace, Pierre S., 483–484, 619

equation, 3, 371, 427
two-dimensional, 373

transform, 448
algebraic equation, 458
change of variable, 454
derivatives and integrals, 463–468
exponential order, 453–454, 459
general properties, 466
general transformation, 448
improper integral, 449
integral transformations, 448
inverse, 460
linearity, 450, 457
piecewise continuous function, 

452–454
power series, 450–451
rational function, 454
transform pairs, 461

transformation, 448
inverse, 460

Law
of absorption, Lambert’s, 30
conservation of energy, 613
of gravitation, Newton’s, 38, 

149, 483, 489

Kepler’s
first, 149–151
second, 148–149
third, 153–154

of mass action, 29
of motion, Newton’s second, 1, 137, 

148, 609
Ohm’s, 96
parallelogram, 336
of refraction, Snell’s, 42

Lawyers, 263
Least action, principle of, 609
Least squares approximation, 

405–406
Least time, Fermat’s principle of, 42, 619
Lebedev, N. N., 404
Lebesgue, Henri, 289, 342
Legendre, Adrien M., 263, 394, 445, 

485–486
equation, 3, 212, 392
expansion theorem, 404
functions, 214
polynomials, 214

applications, 393
binomial formula, 397
gamma function, 393
generating function, 398
hypergeometric equation, 394
least squares approximation, 

405–406
Legendre series, 402–405
nth polynomial, 395
orthogonality, 400–402
power series solutions, 394
Rodrigues’ formula, 397
sphere, steady-state temperatures, 

430–433
series, 402–405

Leibniz, G. W., 180–181, 185
rule, 477

Leigh, E. R., 805
Levinson, N., 384
Liapunov, A. M., 541, 551

direct method, 541–546
function, 543–545

Libby, Willard, 25–26
Liénard, Alfred, 569–570

equation, 569
theorem, 569–570, 576–580
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Lindemann, F., 385
Linear algebra, 117
Linear combination, 110, 493
Linear damping, 558
Linear differential equations, 

95–98, 107
second order, 107

Linear equations, 81–82
Linearity, 450, 457
Linearization, 510, 548
Linearly dependent, 113–114, 494
Linearly independent, 113–114, 494
Linear spring, 557
Linear systems

general theory, 492
homogeneous, 491, 498–504
linearly dependent, 494
linearly independent, 494
nonhomogeneous, 491
stability for, 529–539

Linear transformation, 448
Linearization, 548

method of, 510
Liouville, Joseph, 384–386
Liouville’s theorem, 385
Lipschitz, R., 633
Lipschitz condition, 633, 640
Lobachevsky, N., 269
Local discretization error, 651
Local truncation error, 653
Locke, John, 183
Logarithmic decrement, 144
Lorentz, G. G., 275
Lotka, A. J., 508

M

Major cases for critical points, 530
Manuel, Frank E., 186
Mass action, law of, 29
Mathews, G. B., 440, 444
Maxwell, James Clerk, 179, 267, 478
Mead, D. G., 5, 385
Mean convergence, 337
Mean curvature, 617
Mean distance, 153
Mean square error, 337
Mechanical problem, Abel’s, 471
Mechanistic determinism, 490

Membrane, 435
vibrating, Euler’s theory of, 407, 

435–440
Method of Frobenius, 224
Method of linearization, 510
Method of separation of variables, 358, 

368, 372, 374, 430, 437
Method of successive approximations, 

Picard’s, 623
Metric space, 333
Millikan, Robert A., 161
Minimal surfaces, Euler’s 

problem of, 616
Minimax property of Chebyshev 

polynomials, 274–275
Minkowski, Hermann, 333–334

inequality, 332
Mixing, 24–26
Morehead, J., 266
Motion

equation of, for undamped 
pendulum, 34–37, 560

Newton’s second law of, 1, 137, 
148, 609

Motion of particle determination
circular path, 31
free fall, 32–33
vertical path, 31

Multiplier, Lagrange, 596–599
Multiterm Taylor methods, 655–656

N

Natural frequency, 141
Natural logarithms, 670–672
n-body problem, 488
Negative definite function, 542
Negative semidefinite function, 542–543
Newton, Isaac, 45, 154, 179–186, 483

law of cooling, 30
law of gravitation, 146–154
second law of motion, 1, 103, 137, 148, 

357, 435, 609
Nodes, 363, 365, 520–522, 531–532, 

534–536
critical point, 520–521

Nonexact equations, 74–78
Nonhomogeneous equation, 109, 127
Nonhomogeneous linear systems, 491
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Nonlinear mechanics, 557–562
Nonlinear spring

hard, 563
soft, 563

Nonlinear systems, 507–512, 547–555
Normal distribution curve

differential equation, 62–64
examples, 61–62
frequency density, 53
histogram, 52–53
improper integrals, 54–57
mass density function, 53
mean, 52–54, 58
normal distribution function, 60
normal probability density 

function, 57
points of inflection, 58
probability density function, 53
standard deviation, 54, 58
standard normal distribution, 60
standard normal probability 

density, 59
Normal form, differential equation, 191
Normal frequencies, 161
Normalized functions, 326, 379
Normal probability density function, 57
Norm of a function, 331
Norm of a vector, 329
Null function, 331
Numbers, Bernoulli, 322
Numerical methods

benchmark problem, 645–646
computational procedures, 645
difference equation, 643–644
discrete sequence of points, 645
Euler method

error, 650–652
exact and numerical solutions, 

648–649
geometric realization, 648
integral of differential 

equation, 646
piecewise-linear curve, 647–648
system of equations, 662–663
total relative error, 647
zeroth order Taylor 

polynomial, 647
Heun, 653
higher order methods, 657–660

improved Euler method, 652–657
linear second order equations, 643
multiterm Taylor, 655–656
power series solutions, 643
predictor–corrector, 653
real-number line 

approximation, 644
Runge–Kutta, 657–660, 663–664
single-step, 645

O

Ohm, G. S., 96
Ohm’s law, 96
One-dimensional heat equation, 368
One-dimensional wave equation, 

351, 357
One-parameter family of curves, 11
Open interval, 108, 195, 389–390, 392
Operator, differential, 162, 428

inverse, 164
Operator methods

exponential shift rule, 168–169
inverse operators, 163–164
partial fractions decompositions, 

165–166
series expansions, 166–168
successive integrations, 164–165

Order
of differential equation, 2
exponential, function of, 453

Ordinary differential equation, 2–4
Ordinary point, 210
Ore, O., 486
Orthogonal functions, 325–333

sequence of, 325
Orthogonality

Bessel functions, 423–425
Chebyshev polynomials, 273–274
Fourier coefficients, 299
Hermite polynomials, 256–258
Legendre polynomials, 400–402

Orthogonal sequence, 331
complete, 341

Orthogonal trajectories, 11–17
Orthogonal vectors, 329
Orthonormal sequence, 326
Oscillator, harmonic, 258–261

coupled harmonic, 155–160
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Output function, 475–476
Overdamped motion, 140
Overdamped vibration, 140

P

Parabola, 151–152
focal property of, 79

Parallelogram law, 336
Parameter(s), 11

variation of, 133–135, 506
Parseval des Chênes, M., 342–343
Parseval’s equation, 342
Partial differential equation, 3; See 

also Heat equation; Laplace’s 
equation; Wave equation

Partial fractions decompositions of 
operators, 165–166

Particular solutions
exponential shift rule, 168–169
Heaviside’s methods, 162
inverse operators, 163–164
partial fractions decompositions of 

operators, 165–166
series expansions of operators, 

166–168
successive integrations, 164–165

Partitions, theory of, 175
Pascal, B., 45
Path, 443, 515

approaches the critical point, 543
enters the critical point, 520
Euler, 176
global properties of, 564

Pauling, Linus, 29, 161
Peano, Guiseppe, 633
Peano’s theorem, 633
Pendulum, undamped, 34–37, 560
Pepys, Samuel, 183
Period, 35, 138, 294, 564
Periodic boundary conditions, 388
Periodic function, 305
Periodic solution, 563–570
Periods of revolution of planets, 

153–155
Phase

plane, 514–517
portrait, 517

Philosophers, 264, 269

Picard, Emile, 623
method of successive 

approximations, 623–625
theorem, 8–9, 488

continuous function satisfying 
Lipschitz condition, 634–637

first order linear equation, 634
hypotheses, 628
inequality, 629, 632–633
Lipschitz condition, 633
mean value theorem, 628, 632
nth partial sum of series of 

functions, 627–628
Peano’s theorem, 633
sequence of functions, 627
series of constants, 630
statement, 626
uniform convergence, 630–631

Piecewise continuous function, 452–454
Piecewise smooth function, 349
Planck, Max, 610
Planetary motion, Bessel’s studies 

of, 407
Planets, periods of revolution, 153–154
Plateau, J., 617
Plateau’s problem, 617
Poincaré, Jules H., 198, 259, 513, 549, 

566, 574–576
Poincaré–Bendixson theorem, 563–570
Point

critical, 516
asymptotically stable, 527
borderline cases for, 530, 534–539
center, 523
focus, 524
isolated, 516
major cases for, 530–534
node, 520–521
path approaches, 519
path enters, 520
saddle point, 522
simple, 547–555
spiral, 524–528
stable, 527
unstable, 527
vortex, 523

equilibrium, 527
at infinity, 242–244
ordinary, 210–219
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singular, 210, 219
irregular, 220
regular, 219–226

Pointwise convergence theorem, 
345–350

Poisson, Siméon D., 377–378
integral, 376–377

Polya, G., 175, 179, 595, 601
Polyhedra

Euler’s formula for, 177
regular, 177

Polynomials
auxiliary, 156
Bernoulli, 323
Chebyshev, 218, 242, 270–275

minimax property of, 274–275
orthogonality of, 273–274

Hermite, 219, 250–261
generating function of, 253
Rodrigues’ formula for, 255

Laguerre, 245
Legendre (see Legendre polynomials)

Population growth, 21–22
Populations, equilibrium of, 510
Portrait, phase, 517
Positive definite function, 542
Positive semidefinite function, 542
Potential, 427

electrostatic, 428
electrostatic dipole, 433–434
gravitational, 428

Potential energy, 608
Potential theory, 371, 428
Powers and roots, 676–678
Power series, 197–204, 206–207, 450

interval of convergence, 201
radius of convergence, 200

Predictor–corrector methods, 653
Prey-predator equations, Volterra’s, 

507–512
Prime number theorem, 277
Principle

of conservation of energy, 32–33
Dirichlet, 267, 283, 307
Hamilton’s, 285, 582, 608–611
of least action, 609
of least time, Fermat’s, 42, 619
of potential theory, 307
of superposition, 133, 478

Problem
Abel’s mechanical, 471
air pressure, 30
bacteria, 27
bead on circle, 50
boundary value, 109, 355, 380

regular 384
singular, 384

brachistochrone, 40, 45, 47, 184, 581
brine, 24, 29, 84, 101
bugs on table, 51
buoy, 144–145
chain on table, 50
chemical reaction, 29
clepsydra, 49
confocal conics, 49
destroyer hunting submarine, 51
Dirichlet, 373, 433

for a circle, 372–379
dog–rabbit, 92–93
earth explodes, 155
escape velocity, 38
falling raindrop, 104
football, 49
geodesics

on cone, 594
on cylinder, 594, 606
on sphere, 594

hanging chain, 88, 90, 606
hole drilled through earth, 39, 

88, 145
initial value, 125, 626, 638, 641, 650
isoperimetric, 595–606
Königsberg bridge, 173, 176
Lambert’s law of absorption, 30
law of mass action, 29
minimal surface

Euler’s, 616–617
of revolution, 590–591

mirror, 78–79
mothball, 49
n-body, 488
Newton’s law of cooling, 30
one-dimensional wave, 362
path of boat, 93–94
Plateau’s, 617
President and Prime Minister, 51
radioactive decay, 22–23
radon seepage, 84
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relativity, 104
rocket, 103–104
rope wound around post, 50
rotating can of water, 50
snowplow, 49
Sturm–Liouville, 326

regular, 384, 387, 392
singular, 384, 392

tank, 49
tapered column, 51
tautochrone, 473, 484
terminal velocity, 37
Torricelli’s law, 49
Torricelli’s theorem, 48
tractrix, 91, 95
tunnel through earth, 145
vibrating chain, 363–364
Wren’s theorem, 47

Pseudosphere, 91
Pure resonance, 145
Pursuit curves, 88–94
Pythagorean theorem, 336

Q

Quantized energy levels, 261

R

Radioactive decay, 22–23
Radiocarbon, 25–26
Radiocarbon dating technique, 25–26
Radius of convergence, 200
Radó, T., 617
Radon seepage, 84
Rainville, E. D., 281
Rapoport, Anatol, 102
Rate constant, 23
Ratio test, 200
Reaction

first order, 22
second order, 29

Recursion formula, 213
three-term, 217
two-term, 216, 218

Reduced equation, 109
Reduction of order, 85–87
Refraction, Snell’s law of, 42
Regular polyhedra, 177

Regular singular points, 219–226, 
229–235

Regular Sturm–Liouville problem, 384
Relative error, total, 647
Relativity, Einstein’s special 

theory of, 104
Resonance, 143

frequency, 144
phenomenon, 143–144
pure, 145

Response
impulsive, 479
indicial, 476

Restoring force, 558
Retarded fall, 33–34
Riccati, J. F., 101

equation, 101
special, 426

Riemann, Bernhard, 186, 198, 
281–287, 289, 299, 304, 
307, 334,354

Riemann–Roch theorem, 283
equation, 278–281
identity, 281
zeta function, 286

Riesz, F., 342
Riesz–Fischer theorem, 342
Ritt, J. F., 5, 385, 420
Robbins, H., 179, 334
Rodrigues, Olinde, 397
Rodrigues’ formula, 397

for Hermite polynomials, 255
for Legendre polynomials, 397

Rogosinski, W., 304
Round-off error, 650, 652
Runge, Carl, 653, 657
Runge–Kutta methods, 657–660, 

663–664

S

Saddle points, 522–523, 532
Sansone, G., 545
Sarton, George, 607
Sawtooth functions, 453
Schrödinger, Erwin, 259, 582

wave equation, 259
wave functions, 259

Schuster, M. L., 576
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Schwarz, H. A., 334
inequality, 332

Scribner, Charles, Jr., 575
Second law, Kepler’s, 149
Second law of motion, Newton’s, 1, 103, 

137, 148, 357, 435, 609
Second order linear equation, 

638–641
Second order reaction, 29
Section, conic, 151
Seeley, R. T., 376
Self-adjoint equations, 382, 387
Separable equations, 6
Separation constant, 431
Separation theorem, Sturm, 190
Separation of variables, method of, 17, 

358, 368, 372, 374, 430, 437
Separatrix, 561
Sequence

complete, 331
orthornormal, 326, 379

Sequence of functions, orthogonal, 325
Series

Bessel, 422
binomial, 208
Chebyshev, 274
convergent, 199
expansions of operators, 166–168
Fourier, 292, 327, 354

cosine, 314
sine, 314, 361

Fourier–Bessel, 422
Frobenius, 224
Hermite, 258
hypergeometric, 237
Legendre, 402–405
power, 199
sum of, 199
Taylor, 203

Shifting formula, 460
Shift rule, exponential, 168
Simmons, George F., 292, 306, 322, 477
Simple critical point, 547–557
Simple discontinuity, 301
Simple harmonic vibrations, 137–141
Simpson’s rule, 657–658
Sine, Euler’s infinite product for, 318
Sine series, Fourier, 314, 361

Single-step methods, 645
Singular point, 210

irregular, 220
regular, 220

Singular Sturm–Liouville problems, 384
Smith, D. E., 284
Smooth function, piecewise, 349
Snell, Willebrord, 42

law of refraction, 42
Solution

general, 9, 110, 113–119
linearly dependent, 494
linearly independent, 494
particular, 9
periodic, 563–572
trivial, 110, 492

Space, metric, 333
Special functions, 197–198
Special Riccati equation, 426
Special theory of relativity, Einstein’s, 

104
Specific heat, 366
Spherical Bessel functions, 420
Spirals, 524–526, 532–534
Spring

linear, 557
nonlinear

hard, 563
soft, 563

Stable critical point, 527
Standard form, differential equation, 

191
Standard normal probability density, 59
Standing waves, 365
Stationary function, 587
Stationary value, 587
Steady-state, 143, 371
Steinmetz, Charles Proteus, 146
Step function, unit, 475
Stephens, E., 169
Stoker, J. J., 558
String

stretched, 351
struck, 365
vibrating, 356

Sturm, J. C. F., 190
comparison theorem, 194–196
separation theorem, 187–193
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Sturm–Liouville
equation, 391
expansion, 383
problems, 379–384

regular, 384, 392
singular, 384, 392

Successive approximations
crude approximation, 622
existence and uniqueness 

theorems, 625
Picard’s theorem, 626–637
second order linear equation, 

638–641
initial value problem, 621
integral equation, 621–622
Picard’s method of, 623–625

Successive integrations, 164–165
Superposition, principle of, 133, 478
System

autonomous, 513–519
auxiliary equation of, 499, 530
conservative dynamical, 557
linear homogeneous, 491
linear nonhomogeneous, 491
uncoupled, 503

Sz.-Nagy, Béla, 304, 326, 354, 376
Szegö, G., 601

T

Tangent, Lambert’s continued fraction 
for, 393

Tautochrone, 48
problem, 473
property, 48

Taylor methods, multiterm, 655–656
Taylor’s formula, 203
Taylor’s series, 203–204
Terminal velocity, 34
Test

comparison, 452
ratio, 200

Theory of partitions, 175
Theory of relativity, Einstein’s 

special, 104
Thermal conductivity, 366
Third law, Kepler’s, 153–155, 181
Tietze, H., 263

Titchmarsh, E. C., 287, 304, 384
Toeplitz, O., 334
Topology, 173, 283
Torricelli, Evangelista, 48

law, 49
theorem, 48

Total discretization error, 651
Total relative error, 647
Total truncation error, 658
Tractrix, 91
Trajectory, 515
Transcendental functions, higher, 197

elementary, 197
Transcendental numbers, 385–386
Transform, 448

inverse Laplace, 460
Laplace, 448

Transformation, 448
integral, 448
inverse Laplace, 460
Laplace, 448
linear, 448

Transient, 143
Triangle inequality, 333
Tricomi, F. G., 520, 549
Trigonometric functions, 667–668
Trivial solution, 110, 492
Truesdell, C., 179, 437
Two-dimensional fluid motion, 

516–517
Two-dimensional Laplace equation, 373
Two-dimensional wave equation, 437
Two-term recursion formulas, 216

U

Ulam, Stanislaw, 481
Uncoupled system, 503
Undamped pendulum, 560
Undamped simple harmonic vibrations, 

137–138
Undamped vibration, 137
Underdamped vibration, 140
Undetermined coefficients, 127–132
Uniform convergence, 630
Uniqueness theorem, 108
Unit impulse function, 479
Unit step function, 475
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Universe
Euler’s attitude toward, 179
Jeans’ definition of, 490

Unstable critical point, 527

V

van der Pol, Balthasar, 570
equation, 514, 572–573

van der Waerden, B. L., 595
Variable mass, 103–105
Variables, method of separation of, 17, 

358, 368, 372, 374, 430, 437
Variation of parameters

for linear equations, 133–135
for linear systems, 506

Vavilov, S. I., 184
Vector(s)

inner product of, 329
norm of, 329
orthogonal, 329

Velocity
escape, 38
terminal, 34, 37

Vibrating membrane, 421, 435–440
Vibrating string, 356

stretched, 351
struck, 365

Vibration(s)
critically damped, 140
damped, 138–141
definition, 136
forced, 142–144
free, 142
overdamped, 140
undamped simple harmonic 

vibrations, 137–138
underdamped, 140

Vicar of Bray, 484
Voltaire, 171

Volterra, Vito, 508
Volterra’s prey-predator equations, 

507–512
Vortex, 523–524

W

Wallis, John, 172, 185
Waltershausen, W. S. von, 262
Watson, G. N., 101, 281, 408, 416, 

420, 422
Wave equation, 3, 428

one-dimensional, 351, 357
Bernoulli’s solution, 361
d’Alembert’s solution, 363

Schrödinger’s, 261
two-dimensional, 437

Wave function, Schrödinger, 261
Wave, standing, 365
Weierstrass, Karl, 289, 334
Weight function for orthogonal 

sequence, 379
Westfall, Richard S., 186
Whewell, William, 183
Whittaker, E. T., 281
Wilkes, J. O., 658
Wren, Sir Christopher, 47, 181–182
Wren’s theorem, 47
Wright, E. M., 175
Wronski, Hoëné, 115
Wronskian, 115–117, 134, 189–190, 

493–494

Z

Zabusky, N. J., 643
Zero of a function, 113
Zeros of Bessel functions, 421–422
Zeta function, Riemann’s, 286
Zeuner, F. E., 25
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