
Chapter  1

The basics of quantum mechanics

1.1 Why quantum mechanics is necessary for describing
molecular propert ies

we krow that all molccules are made of atoms which. in turn. contain nu-
clei and electrons. As I discuss in this introcjuctory section, the equations that
govern the motions of electrons and of nuclei are not the familiar Newton
equatrons.

F : m a ( l . l )

but a nerv set of equations called Schrodinger equations. when scientists first
studied the behavior of electrons and nuclei. thev tried to interpret therr ex-
perimental f indin-ss in terms of classical Newtonian motions. but such atrempts
eventually failed. They found that such srnall l ight particles behaved in a way that
simply is not consistent rvith the Neu'ton equations. Let me norv i l lustrate sorne
ofthe experimental data that gave rise to these paradoxes and shorv you how the
scientists ofthose early times then used these data ro suggest new equatrons that
these particles rnight obcy. I want to stress that the Schrcidinger equation was not
derived but postulated by these scientists. In fact, to date, rlo one has been able
to der i re the Schrc id inger  equat ion.

Fron.r the pioneering work of Bragg on ditrraction of x-rays fiom planes of
atoms or ions in crvstals, it was known that peaks in the intensity of dit l iacted
x-rays havin,u wavelength i rvould occur at scattering angles g determined by the
larnous Bragg equation:

nt :  24 t inp ( 1 . 2 )

where d is the spacing between neighborin,u planes of atoms or ions. These
quantities are illustrated in Fig. I . I . There are many such diffraction peaks, each
labe ledbyad i f f e ren tva lueo f  t he in rege r  n (n  -  1 ,2 .3 , . . . ) .TheBra -s -q fo rmu la
can be derived by considering when two photons, one scattering from the second
plane in the figure and the second scattering from the third plane, will undergo
constructive interference. This condition is met when the ,.extra path leneth,'
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covered by the second photon (i.e., the length front points A to B to C; is an
integer multiple of the wavelength of the photons.

The importance of these x-ray scatterin_e experiments to the study of electrons
and nuclei appears in tl.re experirnents of Davisson and Gernter. in 1927, u'ho
scattered electrons of(reasonably) f ixed kinetic energ)' E from metall ic crvstals.
These workers found that plots ofthe number ofscattered electrons as a function of
scattering angle d displayed "peaks" at angles 6 that obeyed a Bragg-l ike equation.
The startl ing thing about this observation is that electrons are particles. vet the
Bragg equation is based on the properties of waves. An important observation
derived fron.r the Davisson-Germer experiments was that the scattering angles 6
observed for electrons of kinetic energ.v E could be fit to the Bragg ni, : 2d sin0
equation if a wavelength were ascribed to these electrons that u'as defined by

) " : h l ( 2 m " E ) t ' 2 .  ( 1 . 3 )

where rl. is the mass of the eiectron and i is the constant introduced by Max
Planck and Albert Einstein in the eariy 1900s to relate a photon's energv,E to
its frequency y I'ia .E : /rt,. These amazing findings were among the earliest to
suggest that electrons, u,hich had always been viewed as particles, might have
some properties usually ascribed to waves. That is. as de Broglie suggested in
1925, an electron seems to have a wavelength inversely related to its momenfum,
and to display wave-type diffraction. I should mention that analogous diffraction
u'as also observed when other small light particles (e.g., protons. neutrons, nuclei,
and small atomic ions) were scattered from crystal planes. In all such cases,
Bragg-like diffraction is observed and the Bragg equation is found to govern the
scattering angles ifone assigns a wavelength to the scattering particle according to

) , : h l Q m E ) 1 t 2 ,  ( 1 . 4 )

where rl is the mass of the scattered particle and /r is Planck's consranr
(6.62 x l0-27 erg s) .
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The observation that electrons and other small l ight particles display ivave-like
behavior r.vas important because these particles are what all atoms and molecules
are made of. So, if we want to fully understand the motions and behavior of
molecules. rve must be sure that *e can adequately describe such properties for
their constitr"rents. Because the classical Newton ecluations do not contain tactors
that sr-rggcst wave properties for electrons or nuclei mo'",ing freely in space. the
above behaviors presented significant challenges.

Another problem that arose in early studies of atoms and molecules resulted
fiom the stLrdy of the photons emitted from atoms and ions that had been heated
or otherr.ise excited (e.g., by electric discharge). It was found that each kind
of atom (i.e., H or C or O) ernitted photons rvhose frequencies u were of very
characteristic values. An example of such emission spectra is shown in Fig. I .2
fbr hydrogen atoms. In the top panel, we see all of the l ines emitted with thcir
wavelengths indicated in nanometers. The other panels show horv these lines
have been analyzed (by scientists rvhose narnes are associated) into patterns that
relate to the specil ic energy levels between which transitions occur to emit the
corresponding photons.

In the early attempts to rationalize such spectra in terms of electronic motlous.
one described an electron as rnovins about the atomic nuclei in circular orbits
such as shor.vn in Fig. 1.3. A circular orbit was thought to be stable when the
outward centrifugal fbrce characterized by radius r. and speed u (rr.u2/r) on the
electron perf-ectl ir counterbalanced the inward attractit,e Coulomb force (Ze2 l121
exerted by the nucleus of charge Z:

Emiss ion
spectrum of atomic
hydrogen w i th  some
lines repeated below to
i l lus t ra te  the  ser ies  to
wh ich  they  be long.

n . r -  , ' t '  =  Ze -  l t  
-  .

This equation, in turn, allows one to relate the
Coulornbic energy Ze2 lr, and thus to express the

(  1 . 5 )

kinetic energy lrr.ul to the
tota l  energy E of  an orb i t  in
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terrns of the radius of the orbit:

I  - l
E  :  -  r t t . . r -  -  Z t ' - ,  r '  :  -  Z L ' -  /  t ' .

f ' ' 1
(  1 . 6 )

The energy characterizing an orbit ofradius r. relatil'e to the 6 : 0 reference
of energy at r --+ 3p. becomes more and more negative (i.e., lorver and lou,er) as r
becomes smaller. This relationship between outu'ard and inu,ard forces allou's
one to conclude that the electron should rnove faster as it moves closer to the
nucleus since r'2 : Ze7 l(rntr). Howeter. noq'here in this mclclel is a concept that
relates to the experimental fact that each atoll erlt i ts onll 'certain kinds of pho-
tons. lt u'as believed that photon er.nission occurred uficn an electron r.rrovirrr irr
a larger circular orbit lost energy and nroved to a sn.raller circular orbit. Hor.r'ever.
the Newtonian dynamics that produced the above equation r.vould allou' orbrts of
any radius. and hence any energy. to be follorved. Thus" it would appcar tlrat the
electron should be able to emit photons of any encrgy as it moved fi 'om orbit to
orbit.

The breakthrough that allowed scientists such as Niels Bohr to apply the
circular-orbit model to the observed spectral data invol','ed first introducins the
idea that the electron has a wavelength and that this u'avelensth i is related to
its nromentum by the de Broglie equation L- hlp. The key step in the Bohr
model u'as to also specify that the radius of the circular orbit be such that the
cilcurnference of the ctrcle2nr equal an integer (n) multiple of the u'avelen-gth i.
Only in this way will the electron's vu'ave experience constructive interference as
the electron orbits the nucleus. Thus, the Bohr relationship that is analogous to
the Bragg equation that determines at what angles constructive interference can
occur is

2 t r r  :  n ) . .  ( 1 .7 )

Both this equation and the analogous Bragg equation are illustrations of what we
call boundary conditions; they are extra conditions placed on the wavelength to
produce some desired character in the resultant wave ( in these cases, constructile
interference). Of course, there remains the question of why one must impose
these extra conditions when the Neu,tonian dynamics do not require them. The
resolution of this paradox is one of the things that quantum mechanics does.

Return ingto the above analys is  and using l , :  h lp:  h l (mv).2rr  :4) ' ,sg

weli as the force-balance equation m "r2 1 , : Z e2 I 12 , one can then solve for the
radii that stable Bohr orbits obey:

y  :1nh l2n)2  / (m"Ze2)

and, in turn. for the velocities ofelectrons in these orbits,

( l  8 )

v : ze2 lfuhl2tr). (  l . e )
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These trvo results then allorv one to express the sum ofthe

Coulomb potential (-Ze2 lrl energies as

g  :  - ! r , , z t  r '  1 tn l t  12 t  1 ' .) '

Just as in the Bragg diflraction result, rvhich specified at what angles special

high intensities occurred in the scattering, there are many stable Bohr orbits.

each labeled by a value of the integer ir. Those with small n have small

radii. high velocities and more negative total energies (n.b., the reference

zero of energy corresponds to the electron at r : oc, and with v :0). So.

it is the result that only certain orbits are "allowed" that causes only certain

energies to occur and thus only certain energies to be observed in the emitted
photolls.

It turned out that the Bohr formula for the energy levels (labeled by r) of

an electron moving about a nucleus could be used to explain the discrete l ine

emiss ion  spec t ra  o f  r l l  one -e lec t ron  a toms  and  i ons  { i . e . .  H .  He  .  L i - : .  e t c . ) t o

very high precision. in such an interpretation of the experimental data. one claims
that a photon of energy

h v = R ( t l n i - r l n i ) ( l . l r )

is emitted rvhen the atom or ion undergoes a transition fiom an orbit having
quantum number ni to a lower-energy orbit having nf. Here the symbol R is used
to denote the fbllo*ing collection of factors:

I
R  -  - n t , Z - e * l l l t r ) t l ' ( 1 . 1 2 )

The Bohr formula fbr energy levels did not agree as well w ith the observed pattern
of emission spectra for species containing more than a single electron. However,
it does give a reasonable fit, for example. to the Na atom spectra if one examrnes
only transitions involving the single valence electron. The primary reason for
the breakdorvn of the Bohr formula is the neglect of electron-electron Coulomb
repulsions in its derivation. Nevertheless. the success of this model made it clear
that discrete emission spectra could only be explained by introducing the concept
that not all orbits were "allowed". Only special orbits that obeyed a constructive-
intert-erence condition were really accessible to the electron's motions. This idea
that not all energies rvere allowecl but only certain "quantized" energies could
occur was essential to achieving even a qualitative sense of agreement r.vith the
experimental fact that emission spectra were discrete.

In summary, two experimental observations on the behavior of electrons that
were crucial to the abandonment of Newtonian dynamics were the observations
of electron diffraction and of discrete emission spectra. Both of these findings
seem to suggest that electrons have some wave characteristics and that these
waves have only certain allowed (i.e., quantized) wavelengths.

k inet ic  ( l r r . r ' : )  ancl

( 1 . r 0 )
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So. nou, rve have some idea why the Newton equations fail to account for

the dynan.rical nrotions of l ight and small ; lartrcles such as electrons and nuclei.

We see that extra conditions (e.g.. the Bragg condition or constraints on the de

Brogiie u'avelength) could be imposed to achievc some degree of agreenrenl u'ith

experimental observation. Hou'e'u'er, u'e sti l l  are lcft wondering r.i hat the equations

are that can be applied to properly describe such motior.rs and why the extra

conditions are needed. It turns out that a ner.r 'kind of equation based on cornbining
u'ave and particle properties needed to be developed to address such issues. These

are the so-called Schrddinger equations to ri 'hich we no\\ ' tunr our attention.

As I said earlier. no one has vet shown that the Schrodi-qer equation follou,s

deductivelir from some n.rore fundamental theory. That is. scientists did not de-
rive this equatiotr; they postulated it. Sorre idea of hou'the scientists o1'that era
"dreamed up" the Schriidinger equation can be had by exan-rir.ring thc tirre and

spatial depcndence that characterizes so-called traveling u,aves. lt should be noted
that the people rvho worked on these problcms kneu'a great dcal about u'aves
(e.g., sound w'aves and \\.ater \\ 'aves) and thc equations they obeyed. Moreover.

they kneu' that u,aves could sometimes display the characteristic of quantized

u'avelenqths or f i 'equencies (e.9.. fundamentals and overtones in sound u'a'" 'es).
They'kneu', for example. that r.r,a'u'es in one dinrension that are constrained at trvo
points (e.g.. a violin string held fixed at tu'o ends) undergo oscil latory motjon

in space and time with characteristic f i 'equencies and u'avelengths. For exan.rple.
the motion of the violin string just nrentioned can be described as having an

arnplitude A(r. t ) at a position -r alon-q its len-sth at t inle I gircn by

l ( , 1 - .  / ) :  , 4 ( . r - . 0 ) cos (2 . ' r y r ) .  ( 1 .13 )

where r, is its oscillation frequency. The arnplitude's spatial dependence also has

a sinusoidal dependence given by

I (,r. 0) : A sin(2r :; l).1. ( 1 . 1 . 1 )

where.), is the crest-to-crest length of the rvave. Two examples of such waves 1n
one dimension are shown in Fig. 1 .4. In these cases, the string is fixed at x : 0 and
at x : l, so the $,avelengths belonging to the two waves shown are ), : 2L and
),= L.lf the violin string were not clarnped at ir: I, the waves couid have
any value of ),. Horvever. because the string is attached at ir : l. the allowed
u'avelengths are quantized to obey

) " =  L l n .  ( 1 . 1 5 )

where  n :1 .2 ,3 .4 , . . .The  equa t i on  t ha t  such  waves  obey ,  ca l l ed  t he  wave
equation. reads

d 2 , 4 ( x , t )  .  d 2 A

L l l -  ( l \ -

sin(hx/LJ

(  r . l 6 )
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where c is the speed at which the wave travels. This speed depends on the com-
position of the material from which the violin string is made. Using the earlier
expressions for the -r- and t-dependences of the wave, A(x,t). we find that the
rvave s frequency and wavelength are related by the so-called dispersion equation:

v :  :  (c  ln ) :  . (  r .  r 7 )

or

c :  t v .  ( 1 . 1 8 )

This relationship implies, for example. that an instrument string made of a very
stiff material (large c) will produce a higher frequency tone for a given wavelength
(i.e., a given value of n) than wil l a string made of a softer material (smaller c).

For waves moving on the surface of, for example. a rectaneular two-
dimensional surface of lengths I,, and 1,,, one finds

l(.r. r. /) = sinln,:r r I L.,) sin(n,:ry I L, )cos(2zur) ( 1 . 1 9 )

Hence. the waves are quantized in two dimensions because their wavelengths
must be constrained to cause ,4(x.y. r) to vanish at_r : 0 and-r : Z. as well as
at -r, 

- 0 and,y : I,, for all times t. Let us now return to the issue of waves that
describe electrons moving.

The pioneers of quantum mechanics examined functional forms similar to
those shown above. For example, fbrms such as I : exp[*22 i( ur - .y / i)] were
considered because they correspond to periodic waves that evolve in -v ancl t under
no external ,t'- or l-dependent forces. Noticing that

(  1 .20 )

and using the de Broglie hypothesis X: hlp in the above equation. one finds

( r . 2 1 )

If I is supposed to relate to the motion of a particle of momentum p under no
external tbrces (since the waveform corresponds to this case), p2 can be related
to the energy E of the particle by E : p2 12m. So, the equation for I can be
rewrltten as

(1.22)

J t . J  / 2 2  \ r
; - : - l  .  l l(/.\- \ ,\ ,/

, l : . 1  . 7 1 . 2  \ l
- : - p - l  ,  |  , a

.1.\ '- \ tt /

' t i1 = -2,,r ( '* ) '  ,,.(1.\'- \ n /

or, aiternatively.

- ( * ) '# :  uo r  t  1 l \
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Returning to the time-dependence of l(.r ' . /) and using v : Elh. one can also
show that

( 1 . 2 4 )

which, using the first result. suggests that

( 1 . 2 s )

This is a primitive form of the Schrcidinger equation that we rvil l  address in much
more detail below. Briefly, what is important to keep in mind is that the use of
the de Broglie and PlanclCEinstein connections e,: h/p an<i E : lr,), both of
which involve the constant i. produces suggestive connections betrveen

(  r . 2 6 )

and bet."veen

( 1 . 2 7  |

or, alternatively. between

( 1 . 1 8 )

These connections between phl,sical properties (energy f and mornentump) and
differential operators are some ofthe unusual features ofquantum mechanics.

The above discussion about waves and quantized u,avelengths as rvell as the
obser"'ations about the wave equation and differential operators are not meant
to provide or even suggesr a derivation of the Schrodin_eer equation. Again the
scientists who invented quantum mechanics did not derive its rvorking equations.
Instead the equations and rules ofquantum mechanics have been postulated and
designed to be consistent u'ith laboratory observations. My students often find
this to be disconcerting because they are hoping and searching for an underlying
fundamental basis from vvhich the basic larvs of quantum mechanics follou, log-
icall1,. I try to remind them that this is not hou' theory u,orks. lnstead. one uses
experimental observation to postulate a rule or equation or theory,. and one then
tests the theory by making predictions that can be tested by further experiments.
Ifthe theory fails, it must be "refined", and this process continues until one has
a better and better theory. In this sense. quantum mechanics, with all of its un-
usual mathematical constructs and rules. should be viewed as arising from the
imaginations of scientists who tried to invent a theory that was consistent with
experimental data and which could be used to predict things that could then be
tested in the laboratory. Thus far, this theory has proven reliable, but, of course,

t h  1 d . 4  r  l t  \ : J : A' \ = /  
, t ,  

: -  
\ ; /  , . .

/  h  \  d A
i  ( ^  I  ' : E i t '

\ t l r  /  d l

, (+ )  #  and E

r  ,  1 / t 1 : d :
D- anc

\  2 : r  )  d t :

7.' and - , (:-'\ +
\ :1T / .1.\
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we are ahvays searching for a "new and improved" theory that describes how

small l ight particles move.

If it helps you to be more accepting of quantum theory, I should point out

that the quantLrm description of particles wil l reduce to the classical Newton

description under certain circumstances. In particular, when treating heavy par-

ticles (e.g., macroscopic masses and even heavier atoms), it is often possible to

use Ner,vton dynamics. Briefly. rve will discuss in more detail how the quantum

and classical dynamics sometimes coincide (in which case one is free to use

the simpler Neu,ton dvnamics). So. let us now move on to look at this strar.rge

Schrodinger equation that lve have been di-eressing about for so long.

1.2 The Schrodinger equation and its components

It has been well established that electrons moving in atoms and molecules do
not obey the classical Newton equations of motion. People long ago tried to treat
electronic nlotion classicallv. and tbund that features observed clearly in erperi-
mental mcasurements simply were not consistent with such a treatment. Attentpts
r,vere made to supplcrnent the classical eqr-rartions rvith conditions that could be
used to rationalize such observations. For eraniple. earlv rvorkers required that
the angular momentllm L : r x p be allowed to assume clnl,v integer multiples of
l/22 (lvhich is ofien abbrcviated as fi), which can be shorvn to be cquivalenr to
the Bohr postulate tt i : 2:rr. Hor,vever. unti l scientists realizecl that a ner',, set of
lar.ls. those of cluantum rlechanics. applied to l ight rnicroscopic particles. a rvide
gullexisted betr.leen laboratory obserlations of molecule-lcvel phenomena and
thc equations uscd to describe such behavior.

Quanturn rnechanics is cast in a languase that is not farnil iar to most students
of chemistry rvho are exarrinins the subject fbr the first t imc-. Its nrathernatical
content and horv it relatcs to experimental me asurements both recluire a -grc-at deal
of eftort to mastcr. With these thoughts in mind. I have organized this ntaterial in
a manner that f irst provides a brief introduction to the two prirnary constructs of
qLlantum mechanics operators and wave functions that obey a Schrodinger equa-
tion. Next. I dcmonstratc the application of these constructs to several chemically
relevant model problents. By learning the solutions of the Schrodinger eqLlatlon
fbr a f'ew model systems, the str"rdent can better appreciate the treatment of the
fundamental postulates of quantum mechanics as well as their relation to experi-
mental rreasurement for which the wave functions of the knolvn model oroblems
off!r inrportunt inrerpr,. 'rations.

1 .2.1 Ooerators

Each physical ly  measurable quant i ty  has a corresponding operator ,  The
eigenvalues of  the operator  te l l  the only values of  the corresponding phys-
ical property that can be observed.

t l
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Any experimentally measurable physical quantity F (e.g., energy. dipole mo_
ment. orbital angular momentum. spin angular momentum, l inear momentum,
kinetic energy) has a classical mechanicar expression in terms of the cartesian po_
sitions {q; } and momenta {p; } of the particles that comprise the system of interest.
Each such classical expression is assigned a correspondins quantum mechanical
operator F formed by replacing the lp1) in the classical form by the differentiar
operaror -i/1 0/0q 1ar.rd reaving the coordinates 97 that appear in F untouched.
For example. the classicar kinetic energy of y'y' particles (u,ith masses r?1) movlnir
in a potential field containing both quadratic and rinear coordinate-def"nd.n.e
can be written as

r : , I ,  l t ' i /2u, ,+ t /2k(q1-, t l ) ,  + t  (q,  -  q) , ) l

The quanturn mechanical operator associated with this .F is

Such an operator would occur when, for example, one describes the sum of'the
kinetic energies of a collection of particles (the f,:, ,,(7ti /2,,11rerm). plus rhe
sum of "Hooke's 

Lavu'' 'parabolic potentials tthe lfZy,,=t.t k(qr _ q!t '721, ana
(the last term in F) the interactions of the particles *itn ln .*r.rnaily appried
field whose potentiar energy varies linearry as the particles move aivay from their
equil ibrium positions {4,0}.

Let us try more exampres. The sum of the:-components of angular momenta
(recall that vector angurar momenfurn L is defined as L : r x p; ota collection
of ly' particles has the following classical expression:

t :  f  G iPv t - ) ' tP , i ) ,
-/= I ..'\'

and the corresponding operator is

t :,I, 
L*,# * )r (,' - q;')' + t' (q, -'ti')]

t : -t,.,:.Iu (', * - r', +)

p -  \ -' - ./--

( 1 . 2 9 )

(  I . 3 0 )

( r . 3 1 . )

(  r  .32)

(  1  .33)

If one transforms these cartesian coordinates and deri'atives into polar coordi_
nates, the above expression reduces to

F - - i l t f  a

i?' 3Qi

The r--component of the dipole moment for a coilection of 1y' particles has a
classical form of

Z1exi, (  r .34)
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for which the quantttm operator is

1 2

*'here Z 1e is the charge on theTth particle. Notice that in this case, classical and
quantum forms are identical because -F contains no momentum operators.

The mapping from F to F is straightforward only in terms of Cartesian coor-

dinates. To map a classical function .E, given in terms of curvilinear coordinates
(even ifthev are orthogonal), into its quantum operator is not at all straightfor-
ward. The mapping can always be done in terrns of Cartesian coordinates after
which a transtbrmation of the resulting coordinates and differential operators to

a curvilinear system can be performed.

The relationship of these quantum mechanical operators to experimental mea-
surement lies in the eigenvalues of the quantum operators. Each such operator
has a corresponding e igenvalue equat ion

F x ,  :  u , x , (  r .36)

in which the X7 are called eigenfunctions and the (scalar numbers) cv; are called
eigenvalues. All such eigenvalue equations are posed in terms of a given operator
(F in this case) and those functions {X/} that F acts on to produce the function
back again bLrt multiplied bv a constant (the eigenvalue). Because the operator
F usuall ir contains differential operators (coming from the momentum). these
equations are differential equations. Their solutions X, depend on the coordinates
that F contains as diflerential operators. An example wil l help clarif,v these points.
The differcntial operator d f d.r' acts on rvhat functions (of_r,) to generate the same
function back again but multiplied by a constant? The answer is functions of the
form exp(rl-r,) since

F :  I  Z , e x i , (  r .3s)

( 1 . 3 7 )

So. we say that exp(a_r,) is an ei-eenfunction of d ldy and a is the corresponding
eigenvalue.

As I wil l discuss in more detail shortly, the eigenvalues of the operator F tell us
the onlt, values ofthe physical property corresponding to the operator F that can
be observed in a laboratory measurement. Some F operators that we encounter
possess eigenvalues that are discrete or quantized. For such properties. laboratory
measurement will result in only those discrete values. Other F operators have
eigenvalues that can take on a continuous range of values; for these properties,
laboratory measurement can give any value in this continuous range.
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1.2.2 Wave funct ions

The eigenfunct ions of  a quantum mechanical  operator  depend on the
coordinates upon which the operator acts. The particular operator that
corresponds to the tota l  energy of  the system is  cal led the Hami l tonian
operator. The eigenfunctions of this particular operator are called wave
functions.

A special case ofan operator corresponding to a phvsicall l,nreasurable quan-
titv is the Hamiltonian operator H that relates to the total enercy of the system.
The energy eigenstates ofthe svstem W are functions ofthe coordinates 1g;1
that  H depends on and of  t ime l .  The funct ion iV(r7; .1) l l :  W-V gives the
probabil ity densitv for observing the coordinates at the values q; at t irne l. For
a manv-particle system such as the H2o molecule" the u'ave function depends
on many coordinates.  For  H2O. i t  depends on the.x. . r . .  and:  (or  r .  0 .  and S1
coordinates of the ten electrons and the .r-. .r,. and: (or r. 0. and (t) coordinates oi'
the oxygen nucleus and ofthe two protons; a total of39 coordinates appear in v.

ln classical mechanics. the coordinatcs q7 and their correspondins momenta
p.i are functions of t inre. The state of the system is then described bl,spccifvine
q j(l) and p 1(t l.In quantum nte chanics. the concept that 17; is knor,"'n as a funr:tion
of t irne is replaced by the concept of the probabil itv dcnsitv for 1inding Q i ar ?
particular "'alue at a particular t ime lv(r7r. t)lr. Knorvledge of thc corresponding
momenta as functions of t ime is also relinquished in quantum nrechanics: lgain.
only knou'ledge of the probabil itv densiry for f inding 7r, r.vith any particular r,,aluc
at a particular t ime / remarns.

The Hamiltonian eigcnstates are especially irnportant in chenristry because
many of the tools that chemists use to study molecules probe the energy states of
the molecule. Forexample, nrost spectroscopic methods are dcsigned to deterrnine
u,hich energy state a molecule is in. However. there are other experimental melh-
ods that measure other properties (e.g., the :-cornponent of angular monrentun.r
or the total angular momentum).

As stated earlier, if the state of some molecular svstem is characterized b1'a
wave function w that happens to be an eigenfunction of a quanlum mechanical
operator F, one can immediately say something about what the outcome $,ill
be if the physical property F corresponding to the operator F is measured. In
particular, sir.rce

Fx t  :  ) " , x1 . (  r . 3 8 )

where i 7 is one of the eigenvalues of F. we know that the value i7 wili be observed
if the property F is measured while the rnolecule is described by the rvave funcrion
'4t : X.i . ln fact, once a measurement of a physical quantity F has been carried
out and a particular eigenvalue ).i has been observed- the system's rvave funcrion
v becomes the eigenfunction 1, that corresponds to that eigenvalue. That is, the
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act of making the measurement causes the system's wave function to become the
eigenfunction of the property that tvas measured

What happens if some other property G, r.vhose quantum mechanical operator
is G is measured in such a case? We knou' from what was said earlier thar some
ei_genvaltre pr of the operatorG lvil l  be observed in the measurement. But. wil l
the molecr-rlei wave function renrain, after G is measured the eigenfunction of
F, or wil l the measurement of G cause V to be altered in a way that makes the
molecule's state no longer an eigenfunction of F? It turns out that if the two
operators F and G obey the condition

F G = G F (  1 .39 )

then. when the property G is measured the wave function'Q : Xtrvil i  remain
unchanged. This propertv. that the order ofapplication ofthe two operators does
not matter. is called contmutation: that is, we sav the tu,o operators commute if
they obey this propertv. Let us see how this property leads to the conclusion about
V remaining unchanged if the tr,vo operators comnlute. In particulaq we apply
the G operator to the above eigenvalue equation:

C  F  7 . ,  :  G 1 i X  i . ( r..10)

andNext. rve use the comntutation to re-writc the leti-hand side of this equation.
use the fact  that  i ,  is  a scaiar  nurnberto thus obta ln

F  G 7 i :  r . Q 7 , ( 1 . - 1 l t

So. nor.v we scc that (G;1,) itself is an ei-uenfunction of F having eigenvalue
ir. So, unless there are l.nore than one eigenfirnctions of F corresponding to
the eigenr.aluc i; ( i.c.. unless this cigenvalue is degenerate). GX, n.rust itself be
proportional to 21r. We write this proportionalirv conclusion as

G X , :  l t i x , .  ( 1 . : 1 2 )

which means that X, is also an eigenfunction of G. This. in turn. means that
measuring the property G rvhile the system is described by the wave function
tp :  X idoes not  change the wave tunct ion:  i t  remains X, .

So. lvhen the operators corresponding to two physical properties commLlre,
once one measures one of the properties (and tl ius causes the system to be an
eigenfunction ofthat operator). subsequent measurcment ofthe second operator
wil l ( i i the eigenvalue of the first operator is not degenerate) produce a uniqtLe
eigenvalue ofthe second operator and wil l not change the system wave function.

If the two operators do not commute. one simply can not reach the above
conclusions. In such cases. measurement of the property corresponding to the
first operator rvil l  lead to one ofthe eigenvalues ofthat operator and cause the
system lvave function to become the corresponding eigenfunction. However,

1 5
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subsequent measurement of the second operator u'ill produce an eigenvalue of
that operator. but the system u'ave function will be changed to beconre an crgen-
function ofthe second operator and thus no longer the eigenfunction ofthe first.

1 .2 .3  The  Sch rod inge r  equa t i on

This equat ion is  an e igenvalue equat ion for  the energy or  Hami l tonian
operator; its eigenvalues provide the only allowed energy levels of the
sysrem.

The ti me-depe n dent eq u ati o n

l f  the Hami l tonian operator  conta ins the t ime var iable expl ic i t ly ,  one must
solve the time-dependent Schrodinger equation.

Before moving deeper into understanding what quantum mechanics "means".

it is useful to learn horv the wave functions V are found by applying the ba-
sic equation of quantun.r mechanics. the Schrodinger equation. to a few exactly
soluble model problems. Knorving the solutions to these "easy" vet chernically
very relevant models r.l, i l l  then facil i tate learnins more of the details about the
structure of quantum mechanics.

The Schrodinger equation is a differential equation depending on tirne and on
all ofthe spatial coordinates necessarl,to describe rhe system at hand (thirt1,-nine
for the H2O example cited above). lt is usually n,ritten

H tU : i 71  6 ry1 '6 , .  ( 1 .43 )

where v(qi, t.) is the unknown wave function and H is the operator correspond-
ing to the total energy of the system. This operator is called tl.re Har.niltonian
and is formed, as stated above, by first writing down the classical mechanical
expression for the total energy (kinetic plus potential) in Cartesian coordinates
and momenta and then replacing all classical momenta p; by their quantum
mechanical operators p j : -ih 0lSq.i .

Forthe H2o example used above, the classical mechanical energy of all thirteen
particles is

F _ l / r \ - e  - \ - 2 , " ' t' t  -  /_J  t . t . t  ?  , , "  
I

s . I p ;
+lr^-

r - f p j-  + l r *
-r- r ir \- Z'Zr'i I' - ' - ?  

r u h  I '
(  r .44)

where the indices i and j are used to label the l0 electrons whose 30 Cartesian
coordinates are lq il and a and b label the three nuclei u,hose charges are denoted
{Zo}, and whose nine cartesian coordinates are lqo}. The electron and nuclear
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masses are denoted rr. and {n,,}, respectively. The corresponding Hamiltonian
operator is

Notice that H is a second order differential operator in the space ofthe 39 Cartesian
coordinates that describe the positions ofrhe ren electrons and three nuclei. lt is
a second order operator because the momenta appear in the kinetic energy as pr2
and p;,and the quantum mechanical operator for each momentum p : _ f ttl I 0 q
is of first order.The Schrodinger equation for the H2o example at hand then
reads:

w

;l r!
\ y  :  l n -

A t

The Hamiltonian in this case contains / nowhere. An example of a case where 11
does contain / occurs when an oscil lating electric f ield E cos(ror) along the -r-axrs
interacts with the electrons and nuclei and a term

) 
Z,rX,,f.cos((r/ ) - f e;r7E cos(rr-rr) (1.47)

is added to the Hamiltonian. Here, xo and.,vi denote the.r coordinates of the ath
nucleus and the 7th electron. respectivelv.

The ti me-i ndepe ndent eq uatio n

lf the Hamiltonian operator does not contain the time variable explicit ly,
one can solve the time-independent Schrodinger equation.

In cases where the classical energy, and hence the quantum Hamiltonian, do
not contarn terms that are explicit ly rime dependent (e.g.. interactions with time
varying external electric or magnetic fields rvould add to the above classical
energy expression time dependent terms), the separations of variables techniques
can be used to reduce the Schrodinger equation to a time-independent equation.

In such cases, H is not explicit ly t ime dependent, so one can assume that
v (.q i ' t ) is of the form (n.b., this step is an example of the use of the separations
of variables method to solve a differential equation)

1 7

H=El  *# . : l * -+T l
.+[-*#.:+'#l . '15)

t  l-Ai- - 1\- " '  - \- Z,e:
' 7  

1  2 n , d q ;  ? ? r , ,  ? , . , "

- t l _ � l  a :  * 1 l Z , Z n e :' l l 2 n , ' d q . ;  2 ?  r r . h
(  1 .16)

V ( q , ,  t )  =  W ( q  i ) F ( t ) (  l . 4 E )
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Substituting this "ansatz" into the tir.ne-dependent Schrodin_ser equation gives

V ( q  1 )  i t t 0 F l ' d t  :  F Q ) H V ( q  t t . (  1 . 4 9 )

Div id ing by V(q 11F(t )  then g ives

F  t  t i h  t ) F l i t r t :  W  i [ H , ! ( 4 i  ) ] .  ( 1 . 5 0 )

Since F(l ) is only a function of t ime t. and tU (q 1) is only a function of the spatial
coordinates lq 1], and because the left-hand and riglit-hand sides must be equal
for all values of t and of lq i l , both the left- and right-hand sides must equal a
constant. lf this constant is called E. the two equations that are ernbodied in this
separated Schrodinger equation read as follou,s:

H V ( q , ) :  E V ( q , ) .

i f i d F ( t ) l d t :  E F ( t ) .

i f l d F ( r ) l d t :  E F ( t )

F(t) = gapl- i  E1171,

(  l . 5 l  )

i l . s l )

The first ofthese equations is called the tin-re-independent Sclrrodinger equatron: it
is a so-called eigenr,alue equation in u'hich one is asked to find functions that 1,ield
a constant multiple of ther.nselves when acted on by the Hamillonian operator.
Such functions are called eigenfunctions ofH and the corresponding coustallts are
cal led c ig.enra lues of  H.  For  example.  i f  H uere of ' rhe form (_� l i  '2 . \ l  t ; t :  ,  dQ: -

H" tlren functions of thc form exp(inrQ) would be eigenfunctions because

I  l i  d :  I  l n : h : l, -  - - l e x p ( i , , i @ ) : l *  f  c r p t i i r r d , ) .  l l . - i . l )
I  z t r a 6 , 1  '  [ : , r ,  J

In this case. rr 2tt2 
12 tvt is the eigenvalue. In this example. the Harri ltonian contains

the square of an angular momentum operator (recall earlier that u,'e shou'ed tlre
:-cornponent of angular momentum is to equal -ih d ldQ).

\Vhen the Schrcidinger equation can be separated to -senerate a time-
independent equation describing the spatial coordinate dependence ofthe u'ave
function, the ei_eenvalue E must be retumed to the equation determining F(t) to
find the time-dependent part of the wave function. By solving

once E is known. one obtains

and the full wave function can be written as

v (q  i . r ) :  w (q i )  exp ( -  i  E t  l t t ) .  (  1 .56 )

For the above example, the time dependence is erpressed by

( 1 . 5 4 )

( 1 . 5 5 )

F(r) : exp(-i r lnt2ti 1zll1itt1. (  l . s 7 )
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In summary, whenever the Hamiltonian does not depend on time explicitly,
one can solve the time-independent Schrodinger equation first and then obtain
rhe time dependence as exp(-i El/f i) once the energy E is known. In the case
of rnolecular structure theory, it is a quite daunting task even to approximately
soive the full Schrodinger equation because it is a partial differential equarion
depending on all of the coordinates of the electrons and nuclei in the molecule.
For this reason. there are various approximations that one usually implements
when attempting to study molecular structure r.rsing quantum mechanics.

The Born-O ppen hei me r a pproxi m ati on
one of the most important approximations relating to applying quantum mechan-
ics to molecules is known as the Born-oppenheimer (Bo) approximation. The
basic idea behind this approximation involr.es realizing that in the full electrons-
plus-nuclei Hamiltonian operator introduced above,

t v

(  r . 5 8 )

the tirne scales ivith which the electrons and nuclei move are generally quite
difl 'erent. In particular. the heavy nuclei (i.e., even a H nucleus weighs nearly
2000 times what an electron weighs) move (i.e., vibrate and rotate) more slowly
than do the l irrhter electrons. Thus. r ', 'c expect the electrons to be able to ..adjust, '

their motions to the much rrrore slowly mo'n,ing nuclei. This observation motivates
r.rs to solve the Schrcidinger equation tbr the movement of the electrons in the
presence of f ixed nuclei as a vvilv ro represent the fully adjusted srate of the
electrons at any fixed positions ofthe nuclei.

The electronic Hamiltonian that pertains to the motions of the electrons in the
presence of so-called clarnped nuclei.

H : t l - , i  r ' -  - l \ - - " '
? 1  z n t  i t q :  2 ? ' ' , ,

* , - l _ f i r ; r r _ l
"  |  2nr , , ; )q , ]  2

H : \ - l - � ' i  " - * 1 t ' ' '
-  

I  l r t t , : t , 1 :  ) L , " . ,

- ' t a l
? , , " 1

7 7 . :
\ . . -  

z ! /  zxc

' ;  
t ' u .h

- r'Z{ lt /  , , ,  l '
(  1 . 5 9 )

produces as its eigenvalues. through the equation

HO1(q 1  i  r l , )  :  E  rk l , , ) , ! . t (q ,  I  q , ) . ( 1 . 6 0 )

energres ErGl,) that depend on where the nuclei are located (i.e., the {r7,,}
coordinates). As its eigenfunctions. one obtains what are called electronic wave
functions ltLrkti I r7,,)) which also depend on where the nuclei are located. The
energies E xQ") are what we usually call potential energy surfaces. An example
of such a surlace is shoivn in Fig. 1.5. This surface depends on two geometrical
coordinates {r7,,} a'd is a plot of one particular eigenvalue EL@,) vs. these two
coordinates.
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Although this plot has more information on it than we shall discuss nou'.

a few features are worth noting. There appear to be tl iree minima (i.e.. points

r,l,here the derir"atives of -87 rvith respect to both coordinates vanish and u'here

the surface has positive curvature). These points correspond" as we u'ill see to-

u,ard the end of this introductory material, to geometries of stable t.nolecular

structures. The surface also displays two first order saddle points (labeled tran-

sition structures A and B) that connect the three mininra. These points have zero

first derivative of E.r with respect to both coordinates but have one direction

of negative curvature. As we will show later, these points describe transition

states that play crucial roles in the kinetics of transitions among the three stable

geometries.

Keep in mind that Fig. 1.5 shows just one of the tJ surfaces; each molecule

has a ground-state surface (i.e., the one that is lowest in energ.v) as well as an

infinite number ofexcited-state surfaces. Let's nou'return to our discussion ofthe

BO model and ask what one does once one has such an energy surface in hand.

The motions of the nuclei are subsequently, within the^Bo model. as-

sumed to obey a Schrodinger equation in u'hich L"{-(h'l2nt,,)d!l\q;-l
1l2l,n ZoZ6e2 f ro.6] * E r@) defines a rotation-vibration Harniltonian for the

particular energy state E5 ofinterest. The rotational and I'ibrational energies and

wave functions belonging to each electronic state (i.e., for each value of the in-

dex K in E x@)) are then found by solving a Schrodinger equation rvith such a

Hamiltonian.
This BO model forms the basis of much of how chemists view tnolecular

structure and rnolecular spectroscopy. For exarnple, as applied to forrraldehyde

H2C:O, we speak of the singlet ground electronic state (with all electrons spin

paired and occupying the lowest energy orbitals) and its vibrational states as

Two-dimensional
potential energy surface
showing loca l  m in ima,
transit ion states and
paths  connect ing  them.

Second order saddle Potnl
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nell as the n --+ z* and ir --->lr* electronic states and their vibrational levels.
Although much more wil l be said about these concepts later in this text. the
student should be arvare of the concepts of electronic energy surfaces (i.e.. the

lExe,)]) and the vibration-rotarion states that belong ro each such surface.
Having been introduced to the concepts of operators, wave functions. the

Hamiltonian and its schrodin-eer equation, it is important to now consider several
examples of the applications of these concepts. The examples treated belorv were
chosen to provide the reader with vaiuable experience in solving the Schrodinger
equation: they were also chosen because they form the n]ost elementary chemical
models of electronic motions in conjugated molecules and in atoms, rotations of
l inear molecules, and vibrations of chemical bonds.

1.3 Your f irst application of quantum mechanics - motion
of a part icle in one dimension

This is a very important problem whose solutions chemists use to model
a wide variety of phenomena.

Let's begin by examining the motion of a single particle of mass ,n ln one
direction which rve wil l call "r rvhile r-rnder the influence of a potential denoterl
Z(,r). The classical expression for the total energy of such a system is .E :
p2 12n -t V(x), rvhere p is the momentum of the particle along ther-axis. To
focus on specific examples, consider horv this particle would move if I/(.r.1 i l 'ere
of the forms shor.vn in Fig. I .6. where the total energy E is denoted by the position
ofthe horizontal l ine.

1 .3 .1  C lass i ca l  p robab i l i t y  dens i t y

I would like you to imagine what the probability density would be for this particle
moving with total energy E and with I/(,r) varying as the three plots in Fig. L6

21

Three
characterist ic potentials
showing left  and r ight
c lass ica l  tu rn ing  po in ts
at energies denoted by
the  hor izon ta l  I ines .
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il lustrate. To conceptualize the probabil ity densitl ' .  imagine the particle to have a

blinking lan.rp attached to it and think of this lamp blinking say 100 times ftrr each

time interval it takes for the particle to complete a full transit from its lefi turning

point to its right turning point and back to the former. The turning points ,r-s and

-rR are the positions at which the particle, if i t were mo'"' ing under Ne\\'ton's iau's.

would reverse direction (as the momentum changes sign) and turn around. These

positions can be found by asking where the momentum goes to zero:

0 :  p : ( 2 m ( E  -  I ' ( . t ) ) r  r .  ( 1 . 6 i )

These are the positions rvhere all ofthe energy appears as potential energv E :

I/(.x ) and correspond in the above figures to the points rvhere the dark horlzontal

l ines touch the I '(r)plots as sho'uvn in the central plot.

The probabil ity density at any value of -r: represents the fraction of't ir l le the

particle spends at this value of ..r- (i.e.. u' ithin.r and,t * r/.r). Think of forrrl ing

this density' by allowing the blinking lantp attachcd to the particle to shed light

on a photo-eraphic plate that is exposed to tl i is l ight for many oscil lations o1-

the particle bet\\ 'een -r1 and;rp. Alternatively. one can express this probabil ity

amplitude P(r) by dividing the spatial distance r/.r" by the velocitl 'of the particle

at t l ie noint r:

P(- t )  :  (2m(E -  I " ( . r  ) )  
I  r r r r  r i r ( i . 6 2 )

Because E is constant throughout the particle's motion. P(,t)t l ' i l l  be small at,t

values u,here the particle is mo'u'ing quickly (i.e.. 'ui'here l/ is lou') and ri'ill be high

where the particle moves slowly 1r,r,here tr/ is high). So. the photographic plate

u'i l l  shou, a bright region where I/ is high (because the particle moves slou'ly in

such regions) and less brightness where tr' is lou'.

The bottom line is that the probabil ity densities anticipated by analyzing the

classical Newtonian dynamics of this one particle'uvould appear as the histogran.r

plots shown in Fig. 1 .7 i l lustrate. Where the particle has high kinetic energy (and

thus lower Z(.lr)), it spends less time and P(.t) is small. Where the particle moves

Classical
ty plots for the

three potentials shown
in  F ig .  1 .6 .
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slorvly. it spends more time and P(.r) is larger. For the plot on the ri_eht, /(,r)
is constant within the "box". so the speed is constant. hence p(.r) is constant
fLrr all .v values rvithin this one-dimensional box. I ask that you keep these piots
in nrind because they are very difrerent from what one finds when one solves
the Schrcidinger equation for this same problem. Also please keep in mind that
these plots represent what one expects if the particle were moving according to
classical Newtonian dynamics (w,hich we know it is notl).

1 .3 .2  Ouan tum t rea tmen t

To solve tbr the quantLlm mechanical wave functions and energies of this same
problem, we first write the Hamiltonian operator as discussed above by replacing
n Ov - l l l ( l  /L l . \ " .

h' , t :
I l : - ' - - l + l ' r r r

l i l t  t l . \ -

We then try to find solutions ry'(.r) to Hrlr : ErL that obey certain conditions.
These conditions are related ro the fact that iry'(.r)12 is supposed to be the prob-
abil ity density fbr f indine the particle betrveen -r and.r * r/.r. To keep things as
simple as possible, let's focus on the "box" potential / shorvn in the right side
of  F ig.  1.7.  This potent ia l .  expressed as a funct ion of  , r  is :  V(x\ :  cc for- r  < 0
and fbr,r > L: I/1.r1 : 0 fbr.r- between 0 and l.

The fact that tr/ is infinite for-r < 0 and for.r > l. and that the total energy E
must be finite. salts that /r must vanish in these two regions dt : 0 for_r < 0 and
forx > l). This condition means that the particle can not access these reslons
where the potential is infinite. Thc second condition that.nve make use of is that
/(-t ) must be continuous: this rrreans that rhe probabil ity of the particle being rt,r
can not be discontinuously related to the probabil ity ofit being at a nearby pornr.

1.3.3 Energ ies and wave funct ions

The second order dift-erential equation

il tlllr- ^ -;-. -t tr/\r)tlr : Etlt
l n t  d r '

(1 .6 .+ )

has two solutions (becar.rse it is a second order equation) in the region betrveen
" r : 0 a n d x : L :

/  :s in( l . r )  and ry '  :cos( , t - r ) .  rvhereAisdef inedas k : (2mElt t :1 | i1 .  (1.65)

Hence. the most general solution is some combination of these trvo:

23
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ty' : .1 sintA.r) + B cosrfr.r '.y. (  1 . 6 6 )
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Thefact thatry 'mustvanishat ,v :0tn.b. . r / rvanishesforx < 0andiscont inuous.
so it must r. 'anish at t lre point.r :0)means that the rveithting anrplitude of the
cos(Ax)term must r, 'anish because cos(Ar) : I at-t : 0. That is.

B  = 0 .  ( 1 . 6 7 )

The amplitude of the sin(rt,r) rerm is not affecred by the condition that {r vanish
ot.r : 0. since sin(t.r) itself r.anishes at,r : 0. So. nou,we knou,that {r is really
of the forn:

/ ( . r ) : . {  s i n ( t r - ) . ( 1 . 6 [ i )

The condition that 1/r also vanish at -v : I has trvo possible implications. Either
.4 :0  o r  f r  mus t  be  such  tha t  s i n (A l ) : 0 .  The  op t i on  I  : 0  wou ld  l ead  to
an answer ry' that vanishes at all values of -r and thus a probabil ity that vanishes
everywhere. This is unacceptable because it rvouid implv that the particle is never
observed anywhere.

The other possibil i ty is that sin(ft1) : 0. Let's explore this ansrver because rt
offers the first exanrple of energy quantization that you have probably encoun-
tered. As you know. the sine function vanishes at integral multiples of :r. Hence
AL must be some multiple of :r: let 's call the integer n and u'rite ZA : rz (using
the definition of fr) in the form:

L t } n E l l i t t ) :  n n .

Solving this equation for the energy f , we obtain:

( r . 6 9 )

E : n1r2rt  l (2mt). (  r . 7 0 )

This result says that the only energy values that are capable of grving a wave
function ry'(x) that will obey the above conditions are these specific E r.alues. In
other words, not all energy vaiues are "allowed" in the sense that they can produce
ry' functions that are continuous and vanish in regions where z(x) is infinite. If
one uses an energy E that is not one ofthe allowed values and substitutes this E
into sin(*;r), the resultant function will not r,anish at x : L.I hope the solution to
this problem reminds you of the violin string that we discussed earlier. Recall that
the violin string being tied down at x : 0 and at -r : z gave rise to quantization
of the wavelength just as the conditions that ry' be continuous at;r- : 0 ar.rd x : Z
gave energy quantization.

Substituting k : nn /L into ry' : I sin(k,r) gives

VQ)= As in (nrx /L ) ( r . 7 r )

The value of I can be found by remembering that lq/ l2 is supposed to represent
the probability density for finding the particle at x. Such probability densities are
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supposed to be normalized. rneaning that their integral over all x values should
amount to unity. So, we can find I by requiring that

where the integral ranges from r : 0 to x : L. Looking up the integral of
sin:(a,r I and solving the above equation for the so-called normalization consranr
I gtves

25

f r

t  :  
J  

l l t t r  ) l i , / . t  :  l . - t  1 :  
; l  

s in2trz  x  I  L)  t tx .  0 .72)

A  :  ( 2 lD t t2

/(-r) : (21 11t rt sin(nr x I L)

( 1 . 7 3 )

and so

(  r .74)

The values that n can take on are n : l, 2. 3. . . .; the choice ie : 0 is unaccentable
because it would produce a wave function ry'(.t) that vanishes at all r.

The full ,r- and t-dependent wave functions are then given as

v ( , r . r ) : ( : ) ' r i n ' ' l ' '  r . r l - . t ' : : ' ! l  ( r . 7 5 )
\  L  /  L  L  l t t l  L - / l t  )

Notice that the spatial probabil ity density lv1,r. r)12 is not depenclent on time and
is equal to lry'(.r)12 because the complex exponential disappears when v*w is
formed. This means rhat the probabil ity of f inding the particle at various values
of "r is t ime-independent.

Another thing I want vou to notice is that, unlike the classical dynamics case.
not all energy values E are allor.ved. In the Newtonian dynamics situation, E could
be specified and the particie's momentum at any -r value was then determined to
within a sign. In contrast. in quantum mechanics one must determine, by solving
the Schrcidinger equation. rvhat the allowed l'alues of 6 are. These E values are
quantized meaning that they occur only for discrete values .t : ,2 r2h) /(2r, L2 )
determined bv a quantum number rr. by the mass of the particle m, andby char-
acteristics ofthe potential 11. in this case).

1.3.4 Probabi l i ty  densi t ies

Let's now look at sorne of the wave functions v(.r) and compare the proba-
bil ity densities lv(.r)ir that they represent to the classical probabil ity densities
discussed earlier. The n : 1 and n : 2 wave functions are shown in the top
of Fig. 1.8. The corresponding probabil it-v densities are shown below the wave
functions in two tbrmats (as n--v plots and shaded plots that could relate to the
flashing l ight way of monitoring the particle's location that u'e discussed earlier).
A more complete set of r.vave functions (for iz ranging from 1 to 7) are shown in
F ie .  1 .9 .
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Notice that as the quantum number n increases, the energy E also increases

lquadratically rvith n in this case) and the number of nodes in v also increases.
Also notice that the probability densities are very different from what we en-
countered earlier for the classical case. Fo[ example. look at the r : I and i l : 2
densities and compare them to the classical density i l lustrated in Fig. 1.10. The
classical density is easy to understand because we are familiar with classical dy-
namics. In this case, we say that P(.r) is constant within the box because the fact
that tr/ (.r ) is constant causes rhe kinetic energy and hence the speed ofthe particle
to remain constant. In contrast. the r : I quantum u'ave lirnction's p(.r) plot is
peaked in the rniddle of the box and falls to zero at the walls. The n :2 density
has two peaks P(-r) (one to the leti of the box midpoint. and one to the right). a
node at the box midpoint. and falls to zero at the walls. one thing that students
often ask me is "how does the particle ger from being in the lefi peak to being in
the right peak if i t has zero chance of ever bein_q at the midpoint where the node
is?" The diff icr"rlty rvith this question is rhat it is posed in a terminology thar asks
for a classical dynamics answer. That is. by asking "horv does the particle get . . ."
one is dernanding an answer that involves describing its motion (i.e.. it moves
from here at t ime t1 to there at t ime 11). Unfortunatell,. quantum mechanics does
not deal with issues such as a particle's trajectory (i.e.. rvhere it is at various tinres)
but only vu'ith its probabilty of being somewhere (i.e., lw l:;. The nc'xt section wil l
treat such paradoxical issues even firrther.

1 .3 .5  C lass i ca l  and  quan tum p robab i l i t y  dens i t i es
As.lust noted, it is tempting for most beginning students of quanturn mechanics
to attempt to lnterpret the qr-rantum behavior of a particle in classical terms.
However. this adventure is tull of daneerand bound to fail becar-rse srnall. l ight
particles simply do not move according to Nervton's larvs. To i l lustrate. lets try
to "undersrand" r'" 'hat kind of (classical) motion wor-rld be consistenr lvith the
ri : I or n :2 quanturn P(_r) plots shown in Fig. 1.8. However. as I hope 1,ou
anticipate. this attcrnpt at gaining classical understanding of a quantum result rvil l
not "work" in that it r '" ' i l l  lead to nonsensical results. My point in leading you ro
attempt such a classical understanding is to teach you that classical and quantum
results are simply different and that you must resist the urge to impose a classical
understanding on quantum results.

For the zr : I case, we note that P(x) is highest at the box midpoint and
vanishes at.r : 0 and,r : L. Ln a classical mechanics worlcl this would mean
that the particle moves slowly near-y : L/2 andmore quickly near -r : 0 and
r : L. Because the particle's totai energy E must remain constant as it moves.
in regions where it moves slowlv. the potential it experiences must be high.
and where it moves quickly, tr/ must be small. This analysis (n.b., based on
classical concepts) would lead us to conclude that the n : I p(i arises from tne
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particle moving in a potential that is high near.r : L /2 anrl loll, as -r: approaches
0 o r Z .

A similar analysis of the n :2 P(x) plot would lead us to conclude that the
particle for which this is the correct p(_r) rnust experience a potential that is
high midway between:r : 0 and x : L/2,high midu,ay beru,een .r : L 12 and
x = L,andvery lownearx :  L  /2andnear-r  :  0andr :  r .  Theseconclus ions
are"crazy" because n'e know that the potential t,(-r)for which we solved the
Schrodin-eer equation ro generate both of the wave funoions (and both probability
densities) is constant between -r : 0 and t : L. That is. ."ve know the same l,(-r )
applies to the particle moving in the l l : I and r : 2 states. whereas the classical
motion analysis offered above suggests that l,(l ) is different for these two cases.

what is wron-q rvith our attempt to understand the quantum p(.r) prots? The
mistake we made was in attempting to appry the equatio's and concepts of clas-
sical dynarnics to a P(.i-)prot that did not arise from classicar motion. Siniply
put' one can not ask how the particle is mo'ing (i.e.. what is its speed at vari-
ous positions) when the particle is undergoing quantum dynamics. Most students.
r,r'hen first experiencing quantum rvave functions and quantum probabilities, trv to
think of the particle moving in a classical way that is consistenl with the quantum
P(-r ). This attempt to retain a degree of classical understanding of the particle's
movement is always rnet with frustration, as I illustrated u,ith the above examole
and wil l i l lustrate later in other cases.

continuing with this first exarnple of hou'one solves the Schrodinger equatlon
and how one thinks of the quantized E 'alues and u,ave functions v, let me
offer a little more optimistic note than offered in the preceding discussion. If we
examine the w(.-v) plot shown in Fig. 1.9 fer n :7, and thi 'k orthe corresponding
P(;r) : lv(x)12, we note that the p(.r-) plot rvould look something l ike that shown
in Fig. 1.1 1. It would have seven maxima separated by six nodes. If we were to prot
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1 V (.r ) lr for a very large r value such as n : 55, we would find a P(,r) plot having

55 maxima separated by 54 nodes, with the maxima separated approximately

b) ,d is tances of (1/55I) .  Such a p lot ,  when v iewed in a "coarse gra ined" sense

1i.e.. focusinu with somewhat blurred vision on the positions and heights of

the maxima) looks very much like the classical P(,r)plot in which P(.r) is

constant for all -r. In fact, it is a general result of quantum mechanics that the

quanfum Pt.r) distributions fbr large quantum numbers take on the form of the

classical P(-r) for the same potential Z that was used to solve the Schrodinger

equation. It is also true that classical and quantum results agree when one is

dealing with heavy particles. For example, a given particle-in-a-box energv Cn :

n:h: I \2nt L2 ) u,ould be achieved for a heavier particle at higher n-values than for

a l ighter palticle. Hence, heavier particles, moving with a given energy E. have
higher r and thus more classical probabil ity distributions.

\! 'e rvil l  encounter this so-called quantum-classical correspondence principle

again "r,'hen 'nve examine other model problems. It is an important property of
solutions to the Schrodinger equation because it is what allows us to bridge the
"gap" betrveen using the Schrodinger equation to trear small, l ight particles and
the Newton equations for macroscopic (big, heavy) systems.

Another thing I u'ould l ike you to be arvare of concerning the solutions ry'
and .E to this Schrodinger equation is that each pair of wavc functions ry',, and
r/r,, belonging to dif l-erent qltantum numbers n and n'(and to different ener_qiesl
display a prope rt,v terrned orthonormality. This property means that not only are
tfr,, and, {r,, each normalized

29
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l :  l t r l t , , : , / t :  /  . a , , : l t ' .

J , J

but they are also orthogonal to each other

o = lr',t,,,r',t,,, a,

( 1 . 1 6 )

( 1 . 7 7 )

where the complex conjugate * of the first function appears only when the ry'
solutions contain imaginary components (you have only seen one such case thus
far - the exp(i l l  @ ) eigentunctions of the :-component of an-qular momentum). It
is common to write the integrals displaying the normalization and orthogonality
conditions in the fbllorvine so-called Dirac notation:

|  -  / r l r , ,  |  1 1 , , \  0 :  1 r l t , , '  r ! , , ) . ( 1 . 7 8 )

where the l) and (l si'mbols represent tb and lt*, respectively, and putting the
two together in the (l) construct implies the integration overthe variable that ry'
depends upon.

The orthogonality condition can be viewed as similar to the condition of two
vectors v1 and v2 being perpendicular. in which case their scalar (sometirnes
called "dot") product vanishes V l . vr : 0. I want you to keep this property in mind
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because you r.l ' i l l  soon see that it is a characteristic not only of these particle-in-

a-box wave functions but of all w,ar.,e functions obtained from any Schrodinger

equatlon.
In fact, the orthogonality property is even broader than the above discusston

suggests. It turns out that all quantum mechanical operators forrned as discussed

earlier (replacing Cartesian momenta p by the corresponding -ihd ldq operator

and leat' ing all Cartesian coordinates as thev are) can be shor'vn to be so-called

Hermitian operators. This rneans that they form Hermitian matrices u'hen they

are placed between pairs of functions and the coordinates are integrated over.

For example, the rnatrix representation of an operator F vu'hen acting on a set of

functions denoted {dr} is

F r  L  :  ( Q t t F t Q L t  :  
|  

* ; r r '  u , (  1 . 7 e )

For all of the operators formed following the rules stated earlier. one finds that

these matrices have the following property:

r _ r +r  J  I  -  r  / t . r  1 . 8 0 )

rvhich makes the matrices u'hat we call Hermitian. lf tlre functions upon u'hich

F acts and F itseif have no imaginary parts (i.e.. are real). then the tnatrices turn

out to be svmmetric:

Fr .L  :  F t . r (  r . 8 l  )

The importance of the Hermiticity oI symlnetry of these matrices lies in the fact

tl.rat it can be shown that such matrices have all real (i.e., not cor.t.rpler) eigenvalues

and have eigenvectors that are orthogonal.

So, all quantum mechanical operators, not just the Hamiltonian, have real

eigenvalues (this is good since these eigenvalues are rvhat can be measured in

any experimental observation of that property) and ortho-qonal eigenfunctions.

It is important to keep these facts in mind because we make use of them many

times throughout this text.

1.3.6 T ime propagat ion of  wave funct ions

For a system that exists in an eigenstate V(x) : (2lL)t12 sn(nitx lL) having an

energy En : n2r2h2 lQmLz),the time-dependent u'ave function is

v(x. r) :  (?)" ' , inff*r (-?), (  1 . 8 2 )

which can be generated by applying the so-called time evolution operator U(l' 0)

to the wave function at I : 0:

V(x. r)  :  U(r,  0)v(,r ,0) (  1 .83 )
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( 1 . 8 7 )

( r . 8 8 )

rvhere an explicit form for U(t, t ') is

L  ( r .  r ' \ : . *o  [ - " '  * ' ' ' " - l .  ( 1 .8+ . )
L n l

Thc- function V(.r, t) has a spatial probabil ity density that does not depend on

time because

v.(.r .  r)v(.r . , ,  :  ( ;)  "" '  (?) (  1 . 8 5 )

since exp(-rtE,' l/i) exp(itE,, l/i) : l. However it is possible to prepare systems
(even in real laboratory settings) in states that are not single eigenstates; we call

such states superposition states. For example, consider a particle moving along
the -r--axis within the "box" potential but in a state whose wave function at some
i n i t i a l t i m e / : 0 i s

, / l \ l :  / 1 7 r \  . . r 2 t l :  / l - z . r ' \u ( r o r : , , , ( ; ) ' ' ' (  
.  ) - , , ( ; ) , ' " ( ? )  

{ r 8 6 )

This isasr- rperposi t ionof then:  Iandz:2eigenstates.Theprobabi l i tvdensi ty

associated n i th  th is  funct ion is

r,r,r' : I | ;, '", (?) + / sin: (?) - r(?)
/  l r r \  / 1 . - r . r  t  I' t ' n (  

r  / t ' " (  .  , / i
The n : I and n : 2 components, the superposition V. and the probabil ity den-
sity at 1 : 0l V lr are shown in the first three panels of Fig. l. 1 2. It should be noted
that the probabil ity density associared with this superposition srate is not sym-
metric about the"r : I/2 rnidpointeven though the n : I andn : 2 component
wave functions and densities are. Such a density describes the particle localized
more strongly in the large-"v region of the box than in the small-,r region.

Now. let's consider the superposition wave function and its densitl, at later
times. Applying the time evolution operator exp(-itHl/i) to V(r,0) generates
this time-evolved tunction at t ime /:

v ( ; r  r1 :  * ' ( -# )  
{ ,  

' { i )  ' , , " (T ) - '  '

:  [ '  
' ( ; )  " ' ' ( ? ) ' - o ( -  i ) - ' '

"',"(?).-'(-+)]
The spatial probability density associated with this W is

'(?r) ",'" (?)l
,'G)"'

rv(r ,)r: :  j {(;), '" ,(+) .  (;), , ' ' , (?)
-'(?).o, [ru, - u,)if, ', (+),'" (?)] o 8e)
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At r : 0' this function clearly reduces to that u,ritten earlier for v(r.0). Notice
that as time evorves. this density changes because of the cos[(82 - E 1lt f t i l  factor
it contains' In particular, note that as r moves through a period of rength 6l :n h / ( E 2 - f r ). the cos factor cha'ges sign. That is. for r : 0. the cos factor is + l ;for l  :  r / i / (E2 -  t r ) ,  the cos factor is  _ l ; for  t  :2r / i l (Ez_ Er ) .  i t re turns to
* L The result of this time variation in the cos factor is that lV l: .lrun-c., in forn.rfrom that shown in the bottom left paner of Fig. l .12 to tr-ratshou,n in the bottomright panel (at t : trril(E2 - 6r)) and then back to the fbr'i in the bottom reftpanel (at t : 2tr11/(Ez - E t)). one can interpret this time variation as describing
the particlek probabil ity density (not its classicar positionl), init iaily Iocalized
toward the right side of the box, moving to the left and then back to the rr_qht.of course, this time evolution wil l continue over more and more cycres as trnreevolves.

This example iilustrates once again the difficulty with attempting to locarizeparticles tliat are being described by quantum wave-functions. For exampre. a par-ticle that is characterized by the eigenstate (2/ D) /2 sin(tr x I L) i, rn"rill*.,u ,"be detected fleor' i : L/2thannearir :0 orrj - r because the square of thisfunct ionis largenear-r  = L/2.Apart ic le inthestate (2 lDt /2r in1:n. .7t j ,smort
l ike l iz to be foundr€&rx :  L /4 and x :  3Lf4,butnotnear, r  :  0 ,  x  :  11t .sy

^l i.
/ \

f 1
i

I

d a
|I,

-1^
I

I
\

I
a
) L_] -

j f l f f  rhe  n :  1  and n :  2  wave func t ions ,  the i r  superpos i t ion ,  and theand t ime-evo lved probab i l i t y  dens i t ies  o f  the  superpos i t ion .
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.r = L. The issue of horv the particle in the latter state moves from being near
r = L f 4 to x : 3 L l4 is not something quantum mechanics deals rvith. euanfum
mechanics does not allow us to follow the particle's trajectory. which is what we

need to know when we ask how it moves from one place to another. Nevertheless.

superposition wave functions can offer" to some extent, the opportunity to tbllow
the motion of the particle. For example, the superposition state written above as
2 - r , : 12111112  s in ( l z - r lZ )  -2 - t / 2Q lL ) t / 2s in (2nx lL )hasap robab i l i t yamp l i -

tude that changes with time as shown in the figure. Moreover, this amplitude's
major peak does move from side to side within the box as time evolves. So, in
this case. we ciln say with what frequency the major peak moves back and forth.
In a sense. this allor.vs us to "follorv" the particle's movements. but only to the
extent that'"ve are satisfied with ascribing its location to the position of the major
peak in its probability distribution. That is, we can not really foilor.v its "precise"

location. but we can follor,v the location of where it is very likely to be found.
This is an important observation that I hope the student will keep fresh in mind. It
is also an important ingredient in modern quantum dynamics in which localized
wave packets, similar to superposed eigenstates, are used to detail the position
and speed of a particle's main probabil ity density peak.

Thc- above example illustrates how one time-evolves a \ryave function thar can
be expressed as a l inear combination (i.e.. superposition) of eigensrates of the
problem at hand. There is a large amount of current eftbrt in the theoreti-
cal chemistry community aimed at developing elicient approximations to the
exp(-i t H l l l) evolution operator that do not require V(.r. 0) to be explicit l_y rvrit-
ten as a sum of eigenstates. This is important because, for most systems of direct
relevance to molecules, one can not solve for the eigenstates; it is simply too
difficult to do so. You can find a significantly more detailed treatment of this
subject at the research-level in my TheoryPage web site and my el,tIC tertbook.
However. let's spend a little time on a brief introduction to what is involved.

The problem is ro express exp(-itHlh)V(qr), where V(qr) is some init ial
wave function but not an eigenstate, in a manner that does not require one
to first find the eigenstates {V7} of H and to expand V in terms of these
eigenstates:

v : f c , w ,
J

after which the desired ftlnction is written as

(  1.e0)

J 5

( l . e r )

The basic idea is to break H into its kinetic I and potential tr/ energy components
and to realize that the differential operators appear in I only. The importance
of this observation lies in the fact that I and Z do not commute, which means
thaL TV is not equal to ZI (n.b., for two quantities to commute means that their

"t (-#) v@,) : 1,,*, *, (-+)
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order of appearance does not t.natter). Why do they not conrmute'l Because I
contains second derivatives n'ith respect to the coordinates {q , } that I '  depends on,
so. for example, d2 I d q2 LI, @ )V ( q )l is not equal to Il (q ) d2 i d (12 V (r7 ). The fact
that r and l' do not commute is inrportant because the rnost common approach
to approxrmating exp(-rlH/fi) is to rvrite this single expor.rential in rerms of
exp(-itTlh) and exp(-lri.'/fi). However. the identity

*'(-f) :*'(-+) *'(-f) ( l  q 2 )

is not fully valid as one can see by expanding all three ofthe above exponential
factors as exp( . r ) :  I  * . r -  + x2/2!  * . . . .  and nor in_q thal  the r$,o s ides of  thc
above equation only a-eree if one can assulne thatTl': I 'L u,hich. as rve noted-
is not true.

In most r.nodern approaches to time propagation. one divides the time interval
r into nrany (i.e.. P of them) small t ime "slices" r : t / p. onc then expresses
the evolution operator as a product of P short-t ime propagators:

/  i t H \  /  r r H l  I  i t H \  r  i r H te x p ( - , ,  
/  

: . * o l - - ) . - o ( - ; , ) . - n ( -  
;  )

I  t  i r t l \ l r:  
L ' *n \ -  t  / l ( r . e 3 )

If one can develop an efficient rneans of propagating for a short time r. one
can then do so over and over again P times to achieve the desired full-t ime
propagation.

It can be shown that the exponential operator involl'ing 11 can better be ap-
pro.ximated in terms of the f and I/ exponential operators as follows:

/  r r H \  l  . t f t ' - V n \  /  i r r ' \  r  i r r \e x p \ -  
f t  / - . * p t , - .  

- - - F - l . * p ( -  
a  / . - o ( _ ; /  ( r . e _ r )

So. if one can be satisfied with propagating for very short tirne ir.rtervals (so that
the rl term can be neglected), one can indeed use

*'(-#) -*p(-+)-'(-T) ( r . e5 )

as an approximation for the propagator U(r, 0).
To progress further, one then expresses exp(-irT//1) acring on the initial

function v(q) in terms of the eigenfunctions of the kinetic energy operator
r. Note that these eigenfunctions do not depend on the nature of the poten-
tial z, so this step is valid for any and all potentials. The ei_eenfunctions of r :

* 1  , ^  r t  ,  ,  f-n- /  tntd' /ctq'  arc

, ! , , (q ) : ( * ) ' "  * r (T) ( 1 .e6)
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and they obey the following orthogonality
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J  
Vi , ta t t l r , , (q tdq :  3rp -  p l

and completeness relations

J 
rL,.t,t tr lr,",tt1 \lp = |rq - q t.

Writing V(q) as

v(q) :  I  Au -  ( ] ' )v(q ' )dq, .

and using the above expression for d(q - q') gives

rr (q ) : 
| | v,,u,,,t ';,,q' )rtt (q' ytq' tt p.

(  r .97)

(  r . e 8 )

(  1 .e9)

( 1 . 1 0 0 )

Tlren insertin-e the explicit expressions for t lr ,(c1) and r! ;(q' ) in terms of ,,ft ,,1c1 1 :
0 l2ir 1t r'z exp(i pr7 /fi) -erves

.  f  f l  I  t r :  1 i 7 r 4 1 7  |  1 r :  /  i p u  tQ t ' 7 t :  
J  I  \ ;  J  ' * o ( ; l  ( ; , )  . . - o ( - # )  Q r ' � 1  t ' t ' 1 ' t p  r r  r 0 r t

Now. allor.ving exp(-i r T lIt)to act on this form for W(r7) produces

/  i r T \  r r  /  ; ' , ' r t i \ /  I  \ ' '. . P (  n  ) w t q , :  J  J . ' p ( ' #  l l r ;  t
^ . *o  [? ,u : , ,  

, l  
f  : ) ' ' '  * , r , ror , r ,  ( r  r02)' L  h  ) \ h t

The integral over p above can be carried out analytically ancl gives

/  i r T \ .  1  m  r  :  /  f  i n r q _ 4 ' t : l. *P  (  n  )q , , t , :  ( : r , r , )  
7 . *o  L  , "  1  

\ t t t , t ' ) , t " t  .  r r . l 03 r

So, the f inal expression tbr the short-t ime propagated wave function is

v { , r . r ) : . * o [ - i r l i ' l  
t f  ,  n t  \ ' t  f  - . ^ f  i n t 1 t 1  - ( t 7 : 1

" ' ,  " - " u L  
/ r - j  ( . , , r /  

7 . * p L  , *  l V t t 1 ' t d , l .  
{ 1 . 1 0 + )

which is the working equation one uses to compute V (q , t )knowing V (4). Notice
that all one needs to kno."r, to apply this formula is the potentia 1 v (q) ateach pornt
ln space. one does not need to know any of the eigenfunctions of the Hamiltonian
to apply this method. Howe'u'er. one does have to use this formula over and over
agarn to propagate the initial wave function through many small time steps r to
achieve fr"rll propagation for the desired time interval t : pt.

Because this type oftime propagation technique is a very active area ofresearch
in the theorv community. it is likely to continue to be refined and improved. Further
discussion of it is beyond the scope of this book, so I will not go further in this
direction.
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1.4 Free part icle motions in more dimensions
The number of  d imensions depends on the number of  par t icres and the
number of spatial {and other) dimensions needed to characterize the
position and motion of each particle.

1 .4 .1  The  Sch rod inge r  equa t i on
consider an electron of mass ri and charge e mo'rng on a tlvo-dimensionar
surface that defines the x, -r.plane (e.g., perhaps an electron is constrained to the
surface of a solid by a potentiar that binds it tightly ro a narro\\, regio' in the
---directio.). and assume that the electron experiences a constant and not trrne-
varvrng potential I1t at all points in this plane. The pertinent t inre-independent
Schrodinger cquat ion is

t  / a t  a t \ . .- t  
\ a " t '  

+  ' d r t  
) t ( r ' t ' ) *  

L i t l t ( x " r ' ) :  E f ( ' r " r ' )  ( 1  10 -5 )

The task at hand is to solve the above eigen'alue equation to deternrine the"allorved" energy states for this electron. Because there are no terms in this equa_
tion that couple motion in the; and l directions (e.g.. no ternls of the form,t,-r.b
or Sldx 0/Ev or x 0/8v),separation of'u'ariabres can be used rowrite y'r asaprod-
uct U(r. -r ') : l(.r)BLr,). Substitution of this forrn into the Schriidinger equarion,
followed by collecting together all r-dependent and all _r'-dependent terms, _qrves

r f  1 a ] A  r t  t a 2 a
2 * 7 a r ; -  2 - E  * : E - r t t '  

( l ' 1 0 6 )

Since the first term contains no r,-dependence and the second contains no
x-dependence. and because the right side ofthe equation is independent ofboth
x and -r,, both terms on the left must actually be constant (these two consranrs
are denoted E" and Er', respectiveiy). This observation ailows two seDarare
Schrcidinger equations to be written:

rt .  alA- - / - ' - - F -
z tn  d  x .

( 1 . 1 0 7 )

and

i l  ^ - ,  fB-  
2m 

b  
a i  

=  r ) ' '  ( l ' l o8 )

The total energy E can then be expressed in terms ofthese separate energies E,
and E, as E, + E:, : E - 20. Solutions to the x- and ,t,-Schrcidinge. .quations
are easily seen to be:

A(x):*o[,,. (+)"']

B(,r'):.*p[,r, (ry)"]

I  r  ' - l

.  |  / 2 n E .  t ' -  |a n o  e x p l - i l t  - . 1  |  ( l . t 0 9 t
L  \ t r  /  l

and .^o[ - , ,  (+) "1  ( r  ro)
L \ r )
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Trio independent solutions are obtained for each equation because the,r- and

.r.-space Schrodinger equations are both second order differential equations (i.e..

a second order differential equation has two independent solutions).

1,4.2 Boundary condi t ions

The boundary condi t ions,  not  the Schrodinger  equat ion,  determine
whether  the e igenvalues wi l l  be d iscrete or  cont inuous.

If the electron is entirely unconstrained within the -r. _r' plane, the energies E,
and 8.,. can assume any values: this means that the experimenter can "inject"

rhe electron onto the,r.r 'plane with any total energy E and any components
8., and ̂ t.,. along the two axes as long as E^ + E;. : E .In such a situation. one
speaks ofthe energies along both coordinates as being "in the continuuln" or'.not
quantized".

In contrast. if the electron is constrained to remain within a fixed area in the.r. ,r,
plane (e.g., a rectan-eular or circr.rlar region), then the situation is qualitatively dif '-
i'erent. constrainin-e the electron to any such specified area gives rise to boundary
conditions that impose additional requirements on the above A anJ B fLrnctrons.
These constraints can arise, for example, if the potential l, i i(.r. _r,) becornes verv
Iarge tbr,r. . i  values oulside the region, in r,vhich case rhe probabil ity of f incjine the
electron outside the region is v ery small. Such a case might represent. for e xample.
a situation in rvhich the ntolecular structurc ofthc sol id surface changes outsidc the
enclosed region in a \\ 'ay that is hi-uhly repulsive to rhe electron (e.g.. as in the case
of molecular corrals on metal strrfaces). This case could then represent a simple
model of so-called "corrals" in rvhich the particle is constrained to a finite resion
of space.

For exarnple. if rnotion is constrained to take place lvithin a rectaneular regron
def ined by 0.  - r  < l , :0  <, r .< 1. , .  then the cont inui ty  property  that  a l l  wave
tunctions rnust obev (because of their interpretation as probabil ity densities.
which must be continuous) causes I ("r ) to vanish at 0 and at r , . That is. because
.'1 must r. 'anish fbr.r < 0 and must l 'anish for.v > z.r, and because A is continuous.
i t m u s t v a n i s h a t , r : 0 a n d a t . r : 2 . , . L i k e r . r , i s e . B ( r r ) m u s t v a n i s h a t 0 a n d a t Z . . .
To inrplemc'nt these constraints for I (.r: ). one must linearly combine the above two
solut ionsexp[ i , r (2rr  E, l l i2 l t iz landexp[- r . r (2nE,y/ t2 l r iz l toachievei i funct ion
that vanishes at,r : 0:

'71

( r . l l  l )

one is allowed to l inearly combine solutions of the Schrodinger equation that
have the same energy (i.e., are de,eenerate) because Schrcidinger equations are

r(r1: e1p 
l', (rf)'"] -.*o 

[-,, {i+) 
"]
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li,ear differentiar equations' An analogous process must be appried to g(,r,) toachieve a function that vanishes at.r, : 0.

B(r -op f,.', (t+!\"'l -.*" f .. 12,,r, 1 :.1' L  \  t i  I  l -  
q \ r ) L - / 1  ( ; /  

J  
r n r 2 r

Further requirin-e A(.r) and B(rr) to,,,anish. respecti 'elrr at.r : Z.\ and _r, _ 2,.sr ies equat ions thar  can be obeyed only i f  , f ,  and E,  assunre par t icu lar  va lues:
T

. r n 1 , , , / 2 n E  t t : f  |  
, i a r E , 1 i : l

L  ( l -  )  l -  
e r n J - i r '  ( ;  )  l = '  r i  r . , r

and

f  ,  2 n t E  i ,  
, l  

[  /  ] 1 1 1 6 ,  r ,  r le r P  j i  r .  ( f  )  I  
' ^ n l - ' r ' \  

; -  )  l : ,  r r r 4 rL " , J L l
These equations are equivalent (i.e.. using exp(i.r) : cos-r, * i sin_i,)to

. , - [ ,  1 2 n t E ; l : l  l -  r l a i E ,  l r : ls ' n l r \ ( - - F - )  
l = . i n l z  (L  J  L  '  r i  /  J : u  

r r ' i r 5 t
Knou, ing thar  s in g vanishes ate -  nn, forz :  l .  2 .  3.  .  .  .  la l though the s in(zr)function 'u'anishes for n :0, this function'anishes for all -t or.r,, and is thereforeunacceptabre because it represents zero probabirity density at alr points in space).one concludes that the energies E, a'd. E, canassume o'ly'alues that obey

t  1 , , ,  t r  ,  l / 2

z , { 1 + r I  = r , o .
\ / r /

.  1 2 n E ,  \ r ' 2r ' I  ' . - l  : n , r ,
\ f l /

^r ,  -  nlr2rt
zilr Li

nl  n2t l
t n d k -d f  f u  t ,  =  

T ;8 .  u i t h  n \  and

( t . l l 6 )

( 1 . t 1 7 )

( l . r l 8 )

t l ,  =  1 . 2 . 3 , . . .  ( l . l  1 9 )

It is important to stress that it is the imposition of boundary conditions, ex-pressing the fact that the electron is spatia'y constrained that gives ,se toquantized energies. In the absence of spatial confinement" or wjth confinementonly at;r : 0 or Z, or only at y _ 0 or 2.,, quantized energies would rot berealized.

In this exampre, confinement of the erectron to a finite interval along boththe 'r and 'r" coordinates yields energies that are quantized along both axes. Ifthe electron is confined "t:lg:l".oJrdinur. 1.g., u.t*".n 0 < x < 2..) bur notalong the other (i.e., Blu) is eitherrestrictea ioi,anist aty - 0 or at .1, : L,. orat neirherpoinl). then the toral energy E lies in th,is quantizld u,i r, i, ""t. Anarogs orsuch ;:Tl'.::T;:li.*r;:,TiffT
iinear triatomic morecure hus mo.i than enouj energy in one of its bonds to
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ruprure it but not much ener,{y in the other bond; the first bond,s ener-ev lies in
the continuum. br"rt the second bond's energy is quantized.

Perhaps more interesting is the case in which the bond with the higher dissoci_
ation energv is ercited to a level that is not enough to break it but that is in excess
ofthe dissociation energy ofthe weaker bond. In this case. one has tw.o degenerate
states: (i) the stron-s bond having hi-eh internal ener-qy and the weak bond having
low energy (/r). and (i i) the stron_e bond having l itt le energy and the weak bond
ha'ing more than enough energy to rupture it (tL). Althou_eh an experimenr may
prepare the molecule in a state that contains only the former component (1.e.,
rlt : Crltr -f C1r2. with cr - l. c: : 0), coupring betrveen the two degenerate
functions (induced by terms in the Hamiltonian H that have been ignored in
defining ry'1 and ry'2) usually causes the true wave function W : exp(_il Hih){.,
to acquire a component of the second function as time evolves. In such a case, one
speaks of internal vibrational energy relaxation (IVR) giving rise to unimolecular
decomposition of the nrolecule.

1.4.3 Energ ies and wave funct ions for  bound states
For discrete energy revers, the energies are specified functions that de-
pend on quantum numbers, one for each degree of freedom that isquantized.

Returning to the situarion i 'which motion is constrained along both ares. the
resultant total energies and wave functions (obtained by inserting the quantum
ener_cy levels into the expressions for '1(,r- )g( r.)) are as follor,",s:

-  , l : iT -  tT
'  

2 n L i

n :n - l r
t r _
L ' - :  

- .
tn t  L l .

E : E , + 8 , + t r / o .

(  r . 1  2 0 )

(  r .  r 2 l )

1 . t 2 2 )

?a

1  |  \ :  /  I  \  T  , : , ,y ' ( ,  r  : (+)  (#) 'L*o("F)  - . *o(#) ]
. [ . -o( +)-.- ,(- i : ) ]

w i t h  n ,  a n d  i l ,  =  ! . 2 , 3 , . . .  (  L . l : l )

The two (1/2Dt/2 factors are incruded to guarantee that ry' is normalized:

( L 12,{)

Normalization allows ltL (x , y)r2 to be properly identif ied as a probabil iry density
for f inding the electron at a point-lr. r,.

t  wo.1, ) l2dx t tv :  I



40 T h e  b a s i c s  o f  q u a n t u m  m e c h a n i c s

Shou'n in Fig. l. l3 are plots of four such two-dimensional u,ave functions
for  r r .  and n,  va lues of  (1,1) ,  (2,1) ,  (1.2)  and (2.2) .  respect i 'c l .v .  Nore that  the
functions vanish on the boundaries of the box, and notice hou, t lre nurnber of
nodes (i.e.. zeroes encountered as the r.r,ave function oscil lates fi-om positive to
ne-qati\:e) is related to the r- and n.,. quantun nurnbers and to the energy. This
pattern of more nodes signifying higher ener_rly is one that u,e encounter again
and again in quantum mechanics and is something the student should be able
to use to "guess" the relative energies of war.e fur.rctions when their plots are at
hand. Finally, you should also notice that. as in the one-dimensional box case.
an)'attempt to classically interpret the probabil it ies p(-r. -r,) corresponding to the
above quanturn \4'ave functions wil l result in failure. As in the one-dinrensionai
case. the classical P(.:r '. 1,) would be constant along slices of f ixed.r- and varyinu _i,
orslicesoffired,r'andvarying-r r.r, ithintheboxbecausethespeedisconstantthere.
Hou'ever, the quar.rtum P(x, t,) plots, at least for small quantum numbers, are not
constant. For large r, and n ,. values, the quantum p(r, l,) plots wil l again, via the
quanturn-classical correspondence principle. approach the (constant) classical
P(.r., i,) form.

P lo t s  o f  t he
( a )  ( 1 , 1 ) ,  ( b )  ( 2 , 1 ) ,  ( c )
{ 1 , 2 )  a n d  \ d l  Q , 2 l  w a v e
fu  nc t io  ns .

rffi)
wl
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1.4.4 Quant ized act ion can a lso be used to der ive
energy levels

There is another approach that can be used to find energy levels and is especially
straightforward to use for systems whose Schrodinger equations are separable.
The so-called classical action (denoted s) of a particre moving with momentum p
along a path leading from initial coordinate q1 at initial time ri to a final coordinate
qr .ar  t ime r ;  is  def ined by

s = 
/ * " 'R.o{ .

4 1

( r . 1 2 5 )

Here. the momentufir vector p contains the momenta along all coordinates of the
system. and the coordinate vector q likewise contains the coordinates along all
such degrees of freedom. For example, in the two-dimensional particle-in-a-box
problem considered above, q : ("r.. ir) has two components as does p : (p,.p,,),
and the action integral is

( r . r 2 6 )

In computin-u such actions, it is essential to keep in mind the sign of the momentum
as the particle moves from its init ial to its f inal positions. An example wil l help
clarify' these matters.

For systems such as the above particle-in-a-box example for which the Hamil-
tonian is separable, the action integral decomposes into a sum ofsuch integrals.
one fbr each degree of freedom. In this trvo-dimensional example, the additivity
of  H.

H  :  t i ,  -  H ,  : +  -  +  +  v t y t 1  v l v t
2n 2n

ti ;;t: fi a2
; :  

- r  I ' { . t ) -  : - : - ;  *  l ' (  r ' ) .
t t t t  t t . Y -  l l l l  d l ' -

means that p. and p.r. can be independently solved for in terms of the potentials
v(r) and I,'(,u) as well as the energies 6. and 6,, associated with each separate
degree of freedom:

p ,  :  + r / 2 i ( . 1 r l o ) ) ,
, / = -

P t =  t t t l b - , - Y l . v l l ;

the signs on p, and pr, must be chosen to properly reflect the motion that the
particle is actually undergoing. Substituting these expressions into the action
rntegral yields

s : s , + , s , ( 1 . 1 3 ( ) )

( r . 1 2 7 )

(  r . r 28 )

( 1 . 1 2 9 )

f  f i : r f  f . t fxt
:  

J, , , , ,  
t  f2n1E, -  v(t))rr  *  

Jr, , , ,  
t  Jrm@,- vtr t)) t / .v.  (r . l - l l )
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The relationship between these classical action integrals and the existence ol
quantized energy levels has been shown to involve equating the classical action
for rnotion on a closed path to an integral multiple of planck's corlstant:

s . rn . "d  =  f q t=c ' � : t t  p .dq  :  r i l r  ( ,  :  l .  ] . 3 . : 1 .  . . . ) .  ( 1 .132 )

Applied to each of the independent coordinates of the trvo-dirnensional particle-
in-a-box problem, this expression reads

l , = L  r  - ' r

n . , l t  =  |  , 2 t n ( E ,  -  I ' ( , r ) )  d t  +  |  -  ! f / x ( l '  J r ( . r D . / r .  ( l  l j j )
J . -o  - l  ,= r  .

f , = t  r  f , t

n , h :  I  t t 2 m ( E ,  - 1 " ( . r . ) )  t l r +  |  * r , 1 i 1 E  _ � t 1 r y 1  , l r .  i l . 1 3 . 1 )
J r : 0  " l  t : t ,

Notice that the signs of the niomenta are positive in each of the first inre-
gra ls  appear ing above (because the par t ic le  is  mo' ing f i .om.r :  ( )  to . r - :1 , .
and analosously for . t  - l t to t ion.  and thus has posi r i re  nrontcntu l l r  rnd nelar i r t
in  each of  the second inregrals  (because the rnot ion is  f rom.r :  l ,  to  - i - :0
(and analogously for.r '-motion) and thus the particle has negative nromentum).
With in the region bounded by 0 .  - r -  < l . :0  <, r .  < 2, .  thc potent la l  vanishes"
so i/(x) : l ' lr ') : 0. Using this fact. and re'ersing the upper anti lou,er l inrits.
and thus the si-sn. in the second integrals above. one obtains

n , h  : 2  [ ' = t '  , ' 7 , , , q  d r  : 2 r 5 u ,  P  1 , .

n, h :  2 [  

'='  

1Zn t,  t l t .  :  2{r, ,  tr ,  L,

Solving for E, and 8,. one f inds

-  ( n , h 1 2

6r i  l - ;

-  ( n ' h \ 2

sn L l

These are the sarne quantized energy levels that arose when the u,ave functron
boundary conditions were matched atx : 0. r : 2., and,l : 0..1, : 1,,. In this
case! one says that the Bohr*sommerfeld quantization condition.

nh : 
lo't=o"" 

p.de,

( l . l i 5 )

(  1 . 1  3 6 )

( r . r 3 7 )

( 1 . 1 3 8 )

( 1 . r 3 e )

has been used to obtain the result.
The use of action quantization as illustrated above has become a very important

tool. It has allowed scientists to make great progress toward bridging the gap
between classical and quantum descriptions of molecular dynamics. In particular,
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by using classical concepts such as trajectories and then appending quantal action

conditions. people have been able to develop so-called semi-classical models of

molecular dynarnics. In such models, one is able to retain a great deal of classical

understanding whiie building in quantum effects such as energy quantization.

zero-point energies. and interf'erences.

1.4.5 Ouant ized act ion does not  a lways work

Unfortunately. the approach of quantizing the action does not always yield the

correct erpression for the quantized energies. For example. when applied to

the so-called harmonic oscil lator problem that we wil l study in quantum form

later. which serves as the simplest reasonable model fbr vibration of a diatomic

molecule AB. one expresses the total energy as

e : { + \ , '  ( l . l . r o )
t l t t

where4 :  m  ̂ ntBl0n A f  r rs)  is thereducedmassof the AB diatom.f r  is the force

constant describing the bond between A and B. r is the bond-length displacement.

and p is the momentum along the bond len-eth. The quantized action requirement
then reads

( l . l . 1 l )

This in te-ura l  is  carr ied out  between y = - (28lk) l ' l  and CE lk l  
'1 .  the le f t  and

right turning points of the oscil latory motion. and back again to form a closed path.

Carrying out this integral and equating itto nh gives the followin_q expression
for thc energy E:

( 1 . 1 4 2 )

rvhere the qLlantum nunrber ri is allorved to assume integer values ranging from
n : 0. l. 2. to infinitv. The problem rvith this result is that it is wrong! As experi-
mental data clearly shor'",. the lowest energy levels for the vibrations of a rnolecule
do not have E :0: thev have a "zero-point" energy that is approrimately equal
Lo I l2( h l21 11.1; I p\ti: . So. although the action quantization condition yields en-
ergies whose spacings are reasonablv in agreement rvith laboratory data tbl lorv-
energy states (e.g.. such states have approxirnately constant spacings), it fails to
predict the zero-point energy content of such vibrations. As we wil l see l irter, a
proper quantum rrechanical treatment of the harmonic oscil lator yields enc'rgies
of the ibrm
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,h  :  I  p  d,  :  I  l ' , ( ' -  1 , ' ) ] ' ' , ,

,  , . 1 2
I I  I K \

6 - : , , .  l - l
: : r  \ l L /

E  :  ( , , . : )  ( * ) ( : )  
"

( 1 . 1 4 3 )

which dif fers from the oction-bascd result by the proper zero-point energy.
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Even u'ith such diff iculties knou'n. nruch progress has been made in extending
the most elementary action-based methods to more and more svstems by introduc_
ing. for exanrple. rules that alloll the quantum number n to assume half-integer
as ' "vel l  as in te-qervalues.  Clear l1, .  i1 'n  u 'ere a l lowed to equal  l /2 .3/2.512. . . . ,
the earlier action integral would have produced the correct result. However. hou,
does one know when to allorv r? to assume only integer or only harf-integer or
both integer and half-integer values? The ansr.vers to this question are beyond the
scope ofthis text and constitute an active area ofresearch. For no$,. it is enough
for the student to be aware that one can often find energy levels by, using action
integrals. but one rrrust be careful in doing so because solnetlmes the answers are
wrong.

Before leaving this section. it is worth noting that the appearance of half-
rnteger quantum numbers does not onlv occur in the harmonic oscil lator case. 

-lb

il lustrate. let us consider the r_- angular momentum operator discussed earlier.
As we showed this operator. when con.rputed as the ---component of r x p, can
be wr i t ten in  polar  ( r .0 .6)  coordinates as

L_ :  - ihd  /d0 . ( l . l 4 l )

The eigenfunctions ofthis operator ha'e the forrr exp(i a@). and the eigenvalues
are nfi. Because geometries with azimuthal angles equal 1o @ or equal to Q * 2r
are exactl) 'the same geometries, the fu'ction exp(i a(t)should be exactly the same
as exp(ia(Q 't hr 1). This can onry be the case if a is an integer. Thus. one con-
cludes that only integral multiples offi can be'.allowed" values ofthe:-cornponent
of angular momenturn. Experimentalry,, one measures the:-component of an an-
-eular momentum bi, placing the system possessing the a'gular momentum in a
magnetic field of strength B and obser'ing how many ---corxponent energy states
arise. For example, a boron atom with its 2p orbital has one unit of orbital angular
momentum. so one finds three separate ;-co,lponent 'alues r.l,hich are usually
denoted nt : -7, m :0, and nt = L Another example is offered by the scan_
dium atom rvith one unpaired electron in a d orbital: this atom,s states split into
five (rr = -2, -1. 0. 1, 2) z--component states. In each case. one finds ZL + l
values of the r/r quantum number, and, because r is a' integer. 2L + l is an odd
integer. Both of these observations are consistent with the expectation that onlv
integer values can occur for Z, eigenvalues.

However. it has been observed that some species do not possess 3 or 5 or 7 or
9:-component states but an even number ofsuch states. In particular. when elec-
trons, protons, or neutrons are subjected to the kind of magnetic field experiment
mentioned abo'e, these particles are observed to have only two z-componenr
eigenvalues. Because, as we discuss later in this text. all an-qular momenta have
.?-component eigenvalues that are separated from one another by unit muiti_
ples of fi. one is forced to conclude that these three fundamental building-block
particles have :-component eigenvalues of u2ri and. -r /2h. The appearance of
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half-integer angular momenta is not consistent with the observation made earlier

that @ and Q + 2;r correspond to exactly the same physical point in coordinate

space, u'hich, in turn, implies that only full- integer angular momenta are possible.

The resolution of the above paradox (i.e., horv can half-integer angular mo-

menta exist?) involved realizing that some angular momenta correspond not to

the r x p angular momenta of a physical mass rotating. but. instead are intrinsic

properties of certain particles. That is, the intrinsic angular momenta of elec-

trons, protons, and neutrons can not be viewed as arising from rotation of some

mass that comprises these particles. Instead such intrinsic angular momenta are

fundamental 
"built in" characteristics of these particles. For example. the trvo

I l2l1 and -112h angular momentum states of an electron, usually denoted o and
p. respectively. are two internal states ofthe electron that are degenerate in the
absence of a magnetic field but which represent fwo distinct states of the elec-
tron. Analogousl,v, a proton has I l2h and -l l2li states, as do neutrons. All such
half-integer angular momentum states can not be accounted for using classical
mechanics but are knorvn to arise in quantum mechanics.
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