Chapter 1
The basics of quantum mechanics

1.1 Why quantum mechanics is necessary for describing
molecular properties

We know that all molecules are made of atoms which, in turn, contain nu-
clei and electrons. As I discuss in this introductory section, the equations that
govern the motions of electrons and of nuclei are not the familiar Newton
equations,

F = ma. (1.1)

but a new set of equations called Schradinger equations. When scientists first
studied the behavior of electrons and nuclei. they tried to interpret their ex-
perimental findings in terms of classical Newtonian motions, but such attempts
eventually failed. They found that such small light particles behaved in a way that
simply is not consistent with the Newton equations. Let me now illustrate some
of the experimental data that gave rise to these paradoxes and show you how the
scientists of those early times then used these data to su rgest new equations that
these particles might obey. [ want to stress that the Schrédinger equation was not
derived but postulated by these scientists. In fact, to date, no one has been able
to derive the Schrédinger equation.

From the pioneering work of Bragg on diffraction of x-rays from planes of
atoms or ions in crystals, it was known that peaks in the intensity of diffracted
x-rays having wavelength  would occur at scattering angles 6 determined by the
famous Bragg equation:

na = 2dsiné, (1.2)

where d is the spacing between neighboring planes of atoms or ions. These
quantities are illustrated in Fig. 1.1. There are many such diffraction peaks, each
labeled by a different value of the integer n (n = 1, 2. 3, .. .). The Bragg formula
can be derived by considering when two photons, one scattering from the second
plane in the figure and the second scattering from the third plane, will undergo
constructive interference. This condition is met when the “extra path length”
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covered by the second photon (i.e., the length from points A to B to C) is an
integer multiple of the wavelength of the photons.

The importance of these x-ray scattering experiments to the study of electrons
and nuclei appears in the experiments of Davisson and Germer, in 1927, who
scattered electrons of (reasonably) fixed kinetic energy £ from metallic crystals.
These workers found that plots of the number of scattered electrons as a function of
scattering angle 6 displayed “peaks™ at angles 6 that obeyed a Bragg-like equation.
The startling thing about this observation is that electrons are particles, yet the
Bragg equation is based on the properties of waves. An important observation
derived from the Davisson—Germer experiments was that the scattering angles 6
observed for electrons of kinetic energy £ could be fit to the Bragg ni. = 2d sin 6
equation if a wavelength were ascribed to these electrons that was defined by

tad

A= h/2m.E)2, (1.3)

where m. is the mass of the electron and / is the constant introduced by Max
Planck and Albert Einstein in the early 1900s to relate a photon’s energy E to
its frequency v via £ = hv. These amazing findings were among the earliest to
suggest that electrons, which had always been viewed as particles, might have
some properties usually ascribed to waves. That is, as de Broglie suggested in
1925, an electron seems to have a wavelength inversely related to its momentum,
and to display wave-type diffraction. I should mention that analogous diffraction
was also observed when other small light particles (e.g., protons, neutrons, nuclei,
and small atomic ions) were scattered from crystal planes. In all such cases,
Bragg-like diffraction is observed and the Bragg equation is found to govern the
scattering angles if one assigns a wavelength to the scattering particle according to

A= h/(2mE)'?, (1.4)

where m is the mass of the scattered particle and % is Planck’s constant
(6.62 x 107 erg s).
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The observation that electrons and other small light particles display wave-like
behavior was important because these particles are what all atoms and molecules
are made of. So, if we want to fully understand the motions and behavior of
molecules, we must be sure that we can adequately describe such properties for
their constituents. Because the classical Newton equations do not contain factors
that suggest wave properties for electrons or nuclei moving freely in space, the
above behaviors presented significant challenges.

Another problem that arose in early studies of atoms and molecules resulted
from the study of the photons emitted from atoms and ions that had been heated
or otherwise excited (e.g., by electric discharge). It was found that each kind
of atom (i.e., H or C or O) emitted photons whose frequencies v were of very
characteristic values. An example of such emission spectra is shown in Fig. 1.2
for hydrogen atoms. In the top panel, we see all of the lines emitted with their
wavelengths indicated in nanometers. The other panels show how these lines
have been analyzed (by scientists whose names are associated) into patterns that
relate to the specific energy levels between which transitions occur to emit the
corresponding photons.

In the early attempts to rationalize such spectra in terms of electronic motions,
one described an electron as moving about the atomic nuclei in circular orbits
such as shown in Fig. 1.3. A circular orbit was thought to be stable when the
outward centrifugal force characterized by radius » and speed v (m.v*/r) on the
clectron perfectly counterbalanced the inward attractive Coulomb force (Ze?/#?)
exerted by the nucleus of charge Z:

mcvl/r = Ze://‘:. (1.5)

This equation, in turn, allows one to relate the kinetic energy %mev2 to the
Coulombic energy Ze?/r, and thus to express the total energy £ of an orbit in
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terms of the radius of the orbit:

1 5 5 -1_,
EF= ST — Zew[r = TZ("//‘. (1.6)

pe

The energy characterizing an orbit of radius 7, relative to the £ = 0 reference
of energy atr — o0, becomes more and more negative (i.e., lower and lower) as r
becomes smaller. This relationship between outward and inward forces allows
one to conclude that the electron should move faster as it moves closer to the
nucleus since v? = Ze” /(rm,). However, nowhere in this model is a concept that
relates to the experimental fact that each atom emits only certain kinds of pho-
tons. It was believed that photon emission occurred when an electron moving in
a larger circular orbit lost energy and moved to a smaller circular orbit. However.
the Newtonian dynamics that produced the above equation would allow orbits of
any radius. and hence any energy. to be followed. Thus. it would appear that the
electron should be able to emit photons of any energy as it moved from orbit to
orbit.

The breakthrough that allowed scientists such as Niels Bohr to apply the
circular-orbit model to the observed spectral data involved first introducing the
idea that the electron has a wavelength and that this wavelength % is related to
its momentum by the de Broglie equation » = /#/p. The key step in the Bohr
model was to also specify that the radius of the circular orbit be such that the
circumference of the circle 277 equal an integer (n) multiple of the wavelength ..
Only in this way will the electron’s wave experience constructive interference as
the electron orbits the nucleus. Thus, the Bohr relationship that is analogous to
the Bragg equation that determines at what angles constructive interference can
occur is

2nr = na. (1.7}

Both this equation and the analogous Bragg equation are illustrations of what we
call boundary conditions; they are extra conditions placed on the wavelength to
produce some desired character in the resultant wave (in these cases, constructive
interference). Of course, there remains the question of why one must impose
these extra conditions when the Newtonian dynamics do not require them. The
resolution of this paradox is one of the things that quantum mechanics does.

Returning to the above analysis and using A = &/p = h/(mv), 2nr = ni, as
well as the force-balance equation m.v?/r = Ze?/r?, one can then solve for the
radii that stable Bohr orbits obey:

r={(nh/2m) [(m.Ze) (1.8)
and, in turn, for the velocities of electrons in these orbits,

v = Zée*/(nh/2m). (1.9)
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These two results then allow one to express the sum of the kinetic (%mcv:) and
Coulomb potential (—Ze?/r) energies as

1 5 5
E:—;mL.Z"eV(n/z/Z:T)‘. (1.10)

Just as in the Bragg diffraction result, which specified at what angles special
high intensities occurred in the scattering, there are many stable Bohr orbits,
each labeled by a value of the integer n. Those with small # have small
radii, high velocities and more negative total energies (n.b., the reference
zero of energy corresponds to the electron at » = oc, and with v = 0). So,
it is the result that only certain orbits are “allowed” that causes only certain
energies to occur and thus only certain energies to be observed in the emitted
photons.

It turned out that the Bohr formula for the energy levels (labeled by n) of
an electron moving about a nucleus could be used to explain the discrete line
emission spectra of all one-electron atoms and ions (i.e., H, Het. Li*?, etc.) to
very high precision. In such an interpretation of the experimental data, one claims
that a photon of energy

hv =R (1/n; = 1/n}) (L11)

is emitted when the atom or ion undergoes a transition from an orbit having
quantum number #1; to a lower-energy orbit having sy Here the symbol R is used
to denote the following collection of factors:

1 5 R
R= ;ch‘eJ/(/z/..:'[)", (1.12)

The Bohr formula for energy levels did not agree as well with the observed pattern
of emission spectra for species containing more than a single electron. However,
it does give a reasonable fit, for example, to the Na atom spectra if one examines
only transitions involving the single valence electron. The primary reason for
the breakdown of the Bohr formula is the neglect of electron—electron Coulomb
repulsions in its derivation. Nevertheless, the success of this model made it clear
that discrete emission spectra could only be explained by introducing the concept
that not all orbits were “allowed”. Only special orbits that obeyed a constructive-
interference condition were really accessible to the electron’s motions. This idea
that not all energies were allowed, but only certain “quantized” energies could
occur was essential to achieving even a qualitative sense of agreement with the
experimental fact that emission spectra were discrete.

In summary, two experimental observations on the behavior of electrons that
were crucial to the abandonment of Newtonian dynamics were the observations
of electron diffraction and of discrete emission spectra. Both of these findings
seem to suggest that electrons have some wave characteristics and that these
waves have only certain allowed (i.e., quantized) wavelengths.
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So, now we have some idea why the Newton equations fail to account for
the dynamical motions of light and small particles such as clectrons and nuclei.
We see that extra conditions (e.g.. the Bragg condition or constraints on the de
Broglie wavelength} could be imposed to achieve some degree of agreement with
experimental observation. However, we still are left wondering what the equations
are that can be applied to properly describe such motions and why the extra
conditions are needed. It turns out that a new kind of equation based on combining
wave and particle properties needed to be developed to address such issues. These
are the so-called Schrdinger equations to which we now turn our attention.

As [ said earlier, no one has yet shown that the Schrédiger equation follows
deductively from some more fundamental theory. That is. scientists did not de-
rive this equation: they postulated it. Some idea of how the scientists of that era
“dreamed up” the Schriodinger equation can be had by examining the time and
spatial dependence that characterizes so-called traveling waves. It should be noted
that the people who worked on these problems knew a great deal about waves
(e.g., sound waves and water waves) and the equations they obeyed. Moreover,
they knew that waves could sometimes display the characteristic of quantized
wavelengths or frequencies (e.g., fundamentals and overtones in sound waves).
They knew, for example. that waves in one dimension that are constrained at two
points (e.g.. a violin string held fixed at two ends) undergo oscillatory motion
in space and time with characteristic frequencies and wavelengths. For example.
the motion of the violin string just mentioned can be described as having an
amplitude A(x, t) at a position x along its length at time 7 given by

Ax. 1) = A(x.0)cos(2mvt). (1.13)

where v is its oscillation frequency. The amplitude’s spatial dependence also has
a sinusoidal dependence given by

A(x,0) = Asin2rx/2). (1.14)

where 2 is the crest-to-crest length of the wave. Two examples of such waves in
one dimension are shown in Fig. 1.4. In these cases, the string is fixed atx = O and
atx = L, so the wavelengths belonging to the two waves shown are & = 2L and
A = L. If the violin string were not clamped at x = L, the waves could have
any value of A. However, because the string is attached at x = L. the allowed
wavelengths are quantized to obey

A=1L/n. (1.15)

where n = 1.2,3.4, ... The equation that such waves obey, called the wave
equation, reads
d>A(x, 1) s d*4

= —,
dr? dx?

(1.16)
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where c is the speed at which the wave travels. This speed depends on the com-
position of the material from which the violin string is made. Using the earlier
expressions for the x- and +dependences of the wave, A(x, 1), we find that the
wave's frequency and wavelength are related by the so-called dispersion equation:

v = (c/i)2 (1.17)
or
c = Av. (1.18)

This relationship implies, for example, that an instrument string made of a very
stiff material (large ) will produce a higher frequency tone for a given wavelength
(i.e., a given value of n) than will a string made of a softer material (smaller ¢).

For waves moving on the surface of, for example, a rectangular two-
dimensional surface of lengths L, and L, one finds

A(x, y oty = sin(neax /Ly )sin(n,wy /L, ycos(2mwvt). (1.19)

Hence, the waves are quantized in two dimensions because their wavelengths
must be constrained to cause 4(x. v, ) to vanishatx = Oand x = L, as well as
aty =0and y = L, for all times 7. Let us now return to the issue of waves that
describe electrons moving.

The pioneers of quantum mechanics examined functional forms similar to
those shown above. For example, forms such as 4 = exp[£27i(vt — x/1)] were
considered because they correspond to periodic waves that evolve in x and ¢ under
no external x- or -dependent forces. Noticing that

d* A4 27\"
= - .—) y (1.20)

dx? A

and using the de Broglie hypothesis A = 4/ p in the above equation. one finds

d*4 (2T’
— = DT — A. 121

dx- P ( h > ( )
If 4 1s supposed to relate to the motion of a particle of momentum p under no
external forces (since the waveform corresponds to this case), p* can be related
to the energy E of the particle by £ = p/2m. So, the equation for 4 can be
rewritten as

124 7\
i =—2mE<277> A, (1.22)

dx?

or, alternatively,

2 n
~<’_’> Ly (1.23)
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Returning to the time-dependence of A(x. t) and using v = £/, one can also
show that

27 ) di

i<h>d—{1~:EA. (1.24)

which, using the first result, suggests that

Ly oy e 129

27 ) dr 2 ) dx?
This is a primitive form of the Schrodinger equation that we will address in much
more detail below. Briefly, what is important to keep in mind is that the use of

the de Broglie and Planck/Einstein connections (% = h/p and £ = hv), both of
which involve the constant /. produces suggestive connections between

/ {
1<—7 2 oand E (1.26)
2n ) dr
and between
2 and 4 )2 @ (1.27)
and - —) — 2
P 27 ) dx? '
or, alternatively, between
d ) ( h d (1.28)
) an: -1 — — VL
£ 27 ) dx

These connections between physical properties (energy £ and momentum p) and
differential operators are some of the unusual features of quantum mechanics.
The above discussion about waves and quantized wavelengths as well as the
observations about the wave equation and differential operators are not meant
to provide or even suggest a derivation of the Schrédinger equation. Again the
scientists who invented quantum mechanics did not derive its working equations.
Instead, the equations and rules of quantum mechanics have been postulated and
designed to be consistent with laboratory observations. My students often find
this to be disconcerting because they are hoping and searching for an underlying
fundamental basis from which the basic laws of quantum mechanics follow log-
ically. I try to remind them that this is not how theory works. Instead, one uses
experimental observation to postulate a rule or equation or theory, and one then
tests the theory by making predictions that can be tested by further experiments.
If the theory fails, it must be “refined”, and this process continues until one has
a better and better theory. In this sense, quantum mechanics, with all of its un-
usual mathematical constructs and rules, should be viewed as arising from the
imaginations of scientists who tried to invent a theory that was consistent with
experimental data and which could be used to predict things that could then be
tested in the laboratory. Thus far, this theory has proven reliable, but, of course,
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we are always searching for a “new and improved” theory that describes how
small light particles move.

If it helps you to be more accepting of quantum theory, 1 should point out
that the quantum description of particles will reduce to the classical Newton
description under certain circumstances. In particular, when treating heavy par-
ticles {e.g.. macroscopic masses and even heavier atoms), it is often possible to
use Newton dynamics. Brietly, we will discuss in more detail how the quantum
and classical dynamics sometimes coincide (in which case one is free to use
the simpler Newton dynamics). So. let us now move on to look at this strange
Schrodinger equation that we have been digressing about for so long.

1.2 The Schrodinger equation and its components

It has been well established that electrons moving in atoms and molecules do
not obey the classical Newton equations of motion. People long ago tried to treat
electronic motion classically. and found that features observed clearly in experi-
mental measurements simply were not consistent with such a treatment. Attempts
were made to supplement the classical equations with conditions that could be
used to rationalize such observations. For example. early workers required that
the angular momentum L = r x p be allowed to assume only integer multiptes of
h/2z (which is often abbreviated as #), which can be shown to be equivalent to
the Bohr postulate 74 = 2. However, until scientists realized that a new set of
laws, those of quantum mechanics, applied to light microscopic particles, a wide
gulf existed between laboratory observations of molecule-level phenomena and
the equations used to describe such behavior.

Quantum mechanics is cast in a language that is not familiar to most students
of chemistry who are examining the subject for the first time. Its mathematical
content and how it relates to experimental measurements both require a great deal
of effort to master. With these thoughts in mind. [ have organized this material in
a manner that first provides a brief introduction to the two primary constructs of
quantum mechanics —operators and wave functions that obey a Schrodinger equa-
tion. Next, [ demonstrate the application of these constructs to several chemically
relevant model problems. By learning the solutions of the Schrédinger equation
for a few model systems, the student can better appreciate the treatment of the
fundamental postulates of quantum mechanics as well as their relation to experi-
mental measurement for which the wave functions of the known model problems
offer important interpretations.

1.2.1 Operators

Each physically measurable quantity has a corresponding operator. The
eigenvalues of the operator tell the only values of the corresponding phys-
ical property that can be observed.

11
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Any experimentally measurable physical quantity F' (e.g., energy. dipole mo-
ment, orbital angular momentum. spin angular momentum, linear momentum,
kinetic energy) has a classical mechanical expression in terms of the Cartesian po-
sitions {g;} and momenta { p;} of the particles that comprise the system of interest.
Each such classical expression is assigned a corresponding quantum mechanical
operator F formed by replacing the {p;} in the classical form by the differential
operator —i%1 8/34; and leaving the coordinates g, that appear in F untouched.
For example, the classical kinetic energy of N particles (with masses m;) moving
in a potential field containing both quadratic and linear coordinate-dependence
can be written as

F=Y [,;f/zm,, +1/2k (g = g’y + L (g — q;’)] . (1.29)

/=15

The quantum mechanical operator associated with this F is

F:H\[%:?+%k(q,—q,")'+L(q/—q,“)J. (1.30)
Such an operator would occur when, for example, one describes the sum of the
kinetic energies of a collection of particles (the 211 n(pE/2my) term), plus the
sum of “Hooke’s Law™ parabolic potentials (the V23 v kg —gP)), and
(the last term in F) the interactions of the particles with an externally applied
field whose potential energy varies linearly as the particles move away from their
equilibrium positions {g/}.

Let us try more examples. The sum of the z-components of angular momenta
(recall that vector angular momentum L is defined as L = r x p) of a collection
of N particles has the following classical expression:

F= Z (xjp)y "J'/pxj)v (131)
Jj=1.N

and the corresponding operator is

a a

F=-in X —y;,— ]. 1.32

.Z,(’av‘ “faxv> (1-32)
Jj=1.N - J

If one transforms these Cartesian coordinates and derivatives into polar coordi-

nates, the above expression reduces to

3

/';.N (3¢/

(1.33)

The x-component of the dipole moment for a collection of N particles has a
classical form of

F=3" Zex, (1.34)

J=IN
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for which the quantum operator is

F= Y Zex, (1.35)
=LV

where Z ;e is the charge on the jth particle. Notice that in this case, classical and
quantum forms are identical because F* contains no momentum operators.

The mapping from F to F is straightforward only in terms of Cartesian coor-
dinates. To map a classical function F', given in terms of curvilinear coordinates
(even if they are orthogonal), into its quantum operator is not at all straightfor-
ward. The mapping can always be done in terms of Cartesian coordinates after
which a transformation of the resulting coordinates and differential operators to
a curvilinear system can be performed.

The relationship of these quantum mechanical operators to experimental mea-
surement lies in the eigenvalues of the quantum operators. Each such operator
has a corresponding eigenvalue equation

Fx, =a,x; (1.36)

in which the x; are called eigenfunctions and the (scalar numbers) «; are called
eigenvalues. All such eigenvalue equations are posed in terms of a given operator
(F in this case) and those functions {y;} that F acts on to produce the function
back again but multiplied by a constant (the eigenvalue). Because the operator
F usually contains differential operators (coming from the momentum), these
equations are differential equations. Their solutions x; depend on the coordinates
that F contains as differential operators. An example will help clarify these points.
The differential operator d /d v acts on what functions (of v) to generate the same
function back again but multiplied by a constant? The answer is functions of the
form exp(ay) since

d_(e:({ﬂ(g}-)_) = aexp(ay). (1.37)
dv

So. we say that exp(av) is an eigenfunction of d/dy and a is the corresponding
eigenvalue.

As I will discuss in more detail shortly, the eigenvalues of the operator F tell us
the onlv values of the physical property corresponding to the operator F that can
be observed in a laboratory measurement. Some F operators that we encounter
possess eigenvalues that are discrete or quantized. For such properties, laboratory
measurement will result in only those discrete values. Other F operators have
eigenvalues that can take on a continuous range of values; for these properties,
laboratory measurement can give any value in this continuous range.

13
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1.2.2 Wave functions

The eigenfunctions of a quantum mechanical operator depend on the
coordinates upon which the operator acts. The particular operator that
corresponds to the total energy of the system is called the Hamiltonian
operator. The eigenfunctions of this particular operator are called wave
functions.

A special case of an operator corresponding to a physically measurable quan-
tity is the Hamiltonian operator H that relates to the total energy of the system.
The energy eigenstates of the system W are functions of the coordinates {9}
that H depends on and of time 7. The function [W(q;.1)]> = W*W gives the
probability density for observing the coordinates at the values ¢, at time 7. For
a many-particle system such as the H,O molecule. the wave function depends
on many coordinates. For H,O, it depends on the x. v, and = (or r, 6. and ¢)
coordinates of the ten electrons and the x, v, and = (or . ¢, and ¢) coordinates of
the oxygen nucleus and of the two protons; a total of 39 coordinates appear in .

In classical mechanics, the coordinates ¢; and their corresponding momenta
p; are functions of time. The state of the system is then described by specifying
g;{r)and p;(r). In quantum mechanics, the concept that ¢ ; is known as a function
of time is replaced by the concept of the probability density for finding g;ata
particular value at a particular time [¥/(¢;. 1)|°. Knowledge of the corresponding
momenta as functions of time is also relinquished in quantum mechanics: again.
only knowledge of the probability density for finding p; with any particular value
at a particular time 7 remains.

The Hamiltonian eigenstates are especially important in chemistry because
many of the tools that chemists use to study molecules probe the energy states of
the molecule. Forexample, most spectroscopic methods are designed to determine
which energy state a molecule is in. However, there are other experimental meth-
ods that measure other properties (e.g., the -component of angular momentum
or the total angular momentum).

As stated earlier, if the state of some molecular system is characterized by a
wave function W that happens to be an eigenfunction of a quantum mechanical
operator F, one can immediately say something about what the outcome will
be if the physical property F corresponding to the operator F is measured. In
particular, since

Fx, =%, (1.38)

where 4 ; is one of the eigenvalues of F, we know that the value A ; will be observed
ifthe property F is measured while the molecule is described by the wave function
W = ;. In fact, once a measurement of a physical quantity F has been carried
out and a particular eigenvalue X ; has been observed, the system’s wave function
W becomes the eigenfunction x; that corresponds to that eigenvalue. That is, the
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act of making the measurement causes the system’s wave function to become the
eigenfunction of the property that was measured.

What happens if some other property G, whose quantum mechanical operator
is G is measured in such a case? We know from what was said earlier that some
eigenvalue 114 of the operator G will be observed in the measurement. But, will
the molecule’s wave function remain, after G is measured, the eigenfunction of
F, or will the measurement of G cause W to be altered in a way that makes the
molecule’s state no longer an eigenfunction of F? It turns out that if the two
operators F and G obey the condition

FG=GF, (1.39)

then. when the property G is measured, the wave function ¥ = x; will remain
unchanged. This property, that the order of application of the two operators does
not matter, is called commutation; that is, we say the two operators commute if
they obey this property. Let us see how this property leads to the conclusion about
W remaining unchanged if the two operators commute. In particular, we apply
the G operator to the above eigenvalue equation:

GFy, =Gy, (1.40)

Next, we use the commutation to re-write the left-hand side of this equation, and
use the fact that 4 ; is a scalar number to thus obtain

FGy, =2 Gy,. (141)

So, now we sce that (Gy;) itself is an eigenfunction of F having eigenvalue
;. So, unless there are more than one eigenfunctions of F corresponding to
the eigenvalue A; (i.c.. unless this eigenvalue is degenerate). G x; must itself be
proportional to x ;. We write this proportionality conclusion as

Gy, =px. (1.42)

which means that x, is also an eigenfunction of G. This. in turn. means that
measuring the property G while the system is described by the wave function
W = x; does not change the wave function: it remains x;.

So. when the operators corresponding to two physical properties commute,
once one measures one of the properties (and thus causes the system to be an
eigenfunction of that operator), subsequent measurement of the second operator
will (if the eigenvalue of the first operator is not degenerate) produce a unique
eigenvalue of the second operator and will not change the system wave function.

If the two operators do not commute, one simply can not reach the above
conclusions. In such cases. measurement of the property corresponding to the
first operator will lead to one of the eigenvalues of that operator and cause the
system wave function to become the corresponding eigenfunction. However,

15
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subsequent measurement of the second operator will produce an eigenvalue of
that operator, but the system wave function will be changed to become an eigen-
function of the second operator and thus no longer the eigenfunction of the first.

1.2.3 The Schrodinger equation

This equation is an eigenvalue equation for the energy or Hamiltonian
operator; its eigenvalues provide the only allowed energy ievels of the
system.

The time-dependent equation

If the Hamiltonian operator contains the time variable explicitly, one must
solve the time-dependent Schrédinger equation.

Before moving deeper into understanding what quantum mechanics “means”.
it is useful to learn how the wave functions W are found by applying the ba-
sic equation of quantum mechanics. the Schrédinger equation, to a few exactly
soluble model problems. Knowing the solutions to these “casy™ vet chemically
very relevant models will then facilitate learning more of the details about the
structure of quantum mechanics.

The Schrodinger equation is a differential equation depending on time and on
all of the spatial coordinates necessary to describe the system at hand (thirty-nine
for the H>O example cited above). It is usually written

HY =ihowv/or, (1.43)

where W(g;, t) is the unknown wave function and H is the operator correspond-
ing to the total energy of the system. This operator is called the Hamiltonian
and is formed, as stated above, by first writing down the classical mechanical
expression for the total energy (kinetic plus potential) in Cartesian coordinates
and momenta and then replacing all classical momenta p; by their quantum
mechanical operators p; = —i% d/dq,;.

Forthe H,O example used above, the classical mechanical energy of all thirteen
particles is

Fia

2 2
p: Z,Zpe
= 41/2y — 1, 1.44
" ; {zma " / ; T } ( )

’2 2 ZUZ

a.b

where the indices / and j are used to label the 10 electrons whose 30 Cartesian
coordinates are {g;} and a and b label the three nuclei whose charges are denoted
{Z.}, and whose nine Cartesian coordinates are {g.}. The electron and nuclear



The Schrédinger equation and its components

masses are denoted m. and {m,}, respectively. The corresponding Hamiltonian
operator is

| e Z,e
H = - —_—t = —_— i
Z { 2m, dg} * 2 Z ]

’1/ a Fia
®oar Z.Zpe?
—_—— o . 1.45
+Z[ 2mu36/3+2; Fah } (e

Notice that His asecond order differential operator in the space of the 39 Cartesian
coordinates that describe the positions of the ten electrons and three nuclei. It is
a second order operator because the momenta appear in the kinetic energy as p/2.
and p2, and the quantum mechanical operator for each momentum p = —ihd/dqg
is of first order.The Schrddinger equation for the H,;O example at hand then
reads:

5

o9t 1 e Z,e’
Z{~2nze@+§;r_,—; ]\y

Fia

B9 1 Z,Zse W
S - v =i 1.46
+Z{ 2m, 3. +2; } BT (1.46)

Vub

The Hamiltonian in this case contains ¢ nowhere. An example of a case where H
does contain ¢ occurs when an oscillating electric field E cos(wt) along the x-axis
interacts with the electrons and nuclei and a term

7

> Z,eX,Ecos(ewr) — > ex;Ecos(wr) (1.47)

is added to the Hamiltonian. Here, X, « and x; denote the x coordinates of the gth
nucleus and the jth electron, respectively.

The time-independent equation

If the Hamiltonian operator does not contain the time variable explicitly,
one can solve the time-independent Schrédinger equation.

In cases where the classical energy, and hence the quantum Hamiltonian, do
not contain terms that are explicitly time dependent (e.g., interactions with time
varying external electric or magnetic fields would add to the above classical
energy expression time dependent terms), the separations of variables techniques
can be used to reduce the Schrédinger equation to a time-independent equation.

In such cases, H is not explicitly time dependent, so one can assume that
W(q;, 1) is of the form (n.b., this step is an example of the use of the separations
of variables method to solve a differential equation)

W(g, 1) = W(g;)F(r). (1.48)

17
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Substituting this “ansatz™ into the time-dependent Schrédinger equation gives
W(g,)ihdF /ot = F(HHW(g,). (1.49)
Dividing by W(g;)F(¢) then gives
FUGhoF/an = W [HY(g,)]. (1.50)

Since F(7)is only a function of time 7. and W (g, ) is only a function of the spatial
coordinates {¢;}, and because the left-hand and right-hand sides must be equal
for all values of ¢ and of {g,}, both the left- and right-hand sides must equal a
constant. If this constant is called £. the two equations that are embodied in this
separated Schrédinger equation read as follows:

HV(g,) = EV(y,). (1.51)

ihdF(t)y/dr = EF(1). (1.52)

The first of these equations is called the time-independent Schrodinger equation: it
1s a so-called eigenvalue equation in which one is asked to find functions that vield
a constant multiple of themselves when acted on by the Hamiltonian operator.
Such functions are called eigenfunctions of H and the corresponding constants are
called eigenvalues of H. For example. if H were of the form (=/7 /2M)3% /d¢* =
H, then functions of the form exp(im¢) would be eigenfunctions because

mei
2M

N
(Vs

2o |
— t explim¢) =

T 2M 9¢? } explima).

Inthis case.m> 7 /2 M is the eigenvalue. In this example. the Hamiltonian contains
the square of an angular momentum operator (recall carlier that we showed the
z-component of angular momentum is to equal —ifid /d¢).

When the Schrédinger equation can be separated to generate a time-
independent equation describing the spatial coordinate dependence of the wave
function, the eigenvalue £ must be returned to the equation determining F(f) to
find the time-dependent part of the wave function. By solving

ihdF(t)/dt = EF(r) (1.54)
once £ is known, one obtains
F(t) = exp(—i Et/h), (1.55)
and the full wave function can be written as
W(g,.1) = W(q,)exp(—i E1/h). (1.56)
For the above example, the time dependence is expressed by

F(t) = exp(—it{m*IF [2M ) /1), (1.57)
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In summary, whenever the Hamiltonian does not depend on time explicitly,
one can solve the time-independent Schrédinger equation first and then obtain
the time dependence as exp(—i E1/h) once the energy E is known. In the case
of molecular structure theory, it is a quite daunting task even to approximately
solve the tull Schrédinger equation because it is a partial differential equation
depending on all of the coordinates of the electrons and nuclei in the molecule.
For this reason, there are various approximations that one usually implements
when attempting to study molecular structure using quantum mechanics.

The Born-Oppenheimer approximation

One of the most important approximations relating to applying quantum mechan-
ics to molecules is known as the Born—Oppenheimer (BO) approximation. The
basic idea behind this approximation involves realizing that in the full electrons-
plus-nuclei Hamiltonian operator introduced above,

CE & Z,&?
H = Z -
Z{ 2m, <)q' - 2 — 1. ; ¥ }
1 Z[,Zbez _
————+ = —_— 1. .58
+Z{ 7mudq~+22 - } (1:28)

h Fab

the time scales with which the electrons and nuclei move are generally quite
different. In particular. the heavy nuclei (i.e., even a H nucleus weighs nearly
2000 times what an electron weighs) move (i.e., vibrate and rotate) more slowly
than do the lighter electrons. Thus. we expect the electrons to be able to “adjust”
their motions to the much more slowly moving nuclei. This observation motivates
us to solve the Schrédinger equation for the movement of the electrons in the
presence of fixed nuclei as a way to represent the fully adjusted state of the
electrons at any fixed positions of the nuclei.

The electronic Hamiltonian that pertains to the motions of the electrons in the
presence of so-called clamped nuclei.

HZ—I

produces as its eigenvalues. through the equation

_Z“' Z.Z_" . (1.59)

,l/ Fiu

W

HWJ((I/ } ‘/c/) = E‘/(({u)l//./(‘/'/ | (/u)- (160)

energies Ex(g,) that depend on where the nuclei are located (i.e., the {q,}
coordinates). As its eigenfunctions, one obtains what are called electronic wave
functions {¥«(¢; | g.,)} which also depend on where the nuclei are located. The
energies £ (g, ) are what we usually call potential energy surfaces. An example
of such a surface is shown in Fig. 1.5. This surface depends on two geometrical
coordinates {¢,} and is a plot of one particular eigenvalue £,(q,) vs. these two
coordinates.
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Although this plot has more information on it than we shall discuss now.
a few features are worth noting. There appear to be three minima (i.e.. points
where the derivatives of E; with respect to both coordinates vanish and where
the surface has positive curvature). These points correspond, as we will see to-
ward the end of this introductory material, to geometries of stable molecular
structures. The surface also displays two first order saddle points (labeled tran-
sition structures A and B) that connect the three minima. These points have zero
first derivative of E,; with respect to both coordinates but have one direction
of negative curvature. As we will show later, these points describe transition
states that play crucial roles in the kinetics of transitions among the three stable
geometries.

Keep in mind that Fig. 1.5 shows just one of the E surfaces; each molecule
has a ground-state surface (i.e., the one that is lowest in energy) as well as an
infinite number of excited-state surfaces. Let’s now return to our discussion of the
BO model and ask what one does once one has such an energy surface in hand.

The motions of the nuclei are subsequently, within the BO model, as-
sumed to obey a Schrodinger equation in which S A= [2m )97 3q; +
1723, Z, Zhez/ra.b} + Ek(g,)definesa rotation—vibration Hamiltonian for the
particular energy state Ex of interest. The rotational and vibrational energies and
wave functions belonging to each electronic state (i.e., for each value of the in-
dex K in Ex(q,)) are then found by solving a Schrodinger equation with such a
Hamiltonian.

This BO mode! forms the basis of much of how chemists view molecular
structure and molecular spectroscopy. For example, as applied to formaldehyde
H,C=0, we speak of the singlet ground electronic state (with all electrons spin
paired and occupying the lowest energy orbitals) and its vibrational states as
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well as the » — 7% and m — 7* electronic states and their vibrational levels.
Although much more will be said about these concepts later in this text. the
student should be aware of the concepts of electronic energy surfaces (i.e.. the
| Ex{q.)}) and the vibration—rotation states that belong to each such surface.

Having been introduced to the concepts of operators, wave functions, the
Hamiltonian and its Schrédinger equation, it is important to now consider several
examples of the applications of these concepts. The examples treated below were
chosen to provide the reader with valuable experience in solving the Schrodinger
equation; they were also chosen because they form the most elementary chemical
models of electronic motions in conjugated molecules and in atoms, rotations of
linear molecules, and vibrations of chemical bonds.

1.3 Your first application of quantum mechanics - motion
of a particle in one dimension

This is a very important problem whose solutions chemists use to model
a wide variety of phenomena.

Let’s begin by examining the motion of a single particle of mass m in one
direction which we will call x while under the influence of a potential denoted
V(x). The classical expression for the total energy of such a system is £ =
p>/2m + V(x), where p is the momentum of the particle along the x-axis. To
focus on specific examples, consider how this particle would move if V' (x) were
of the forms shown in Fig. 1.6, where the total energy £ is denoted by the position
of the horizontal line.

1.3.1 Classical probability density

['would like you to imagine what the probability density would be for this particle
moving with total energy £ and with ¥(x) varying as the three plots in Fig. 1.6
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illustrate. To conceptualize the probability density, imagine the particle to have a
blinking lamp attached to it and think of this lamp biinking say 100 times for each
time interval it takes for the particle to complete a full transit from its left turning
point to its right turning point and back to the former. The turning points x and
1 are the positions at which the particle, if it were moving under Newton's laws.
would reverse direction (as the momentum changes sign) and turn around. These
positions can be found by asking where the momentum goes to zero:

0=p=Q2mE—Fp. (.61

These are the positions where all of the energy appears as potential energy £ =
V(x) and correspond in the above figures to the points where the dark horizontal
lines touch the F'(x) plots as shown in the central plot.

The probability density at any value of x represents the fraction of time the
particle spends at this value of x (i.e.. within x and x + @x). Think of forming
this density by allowing the blinking lamp attached to the particle to shed light
on a photographic plate that is exposed to this light for many oscillations of
the particle between x| and xg. Alternatively. one can express this probability
amplitude P(x) by dividing the spatial distance dxv by the velocity of the particle
at the point x:

P(x)=2m(E — )" dx. (1.62)

Because £ is constant throughout the particle’s motion. P(x) will be small at x
values where the particle is moving quickly (i.e., where ¥ is low) and will be high
where the particle moves slowly (where I is high). So, the photographic plate
will show a bright region where V' is high (because the particle moves slowly in
such regions) and less brightness where V' is low.

The bottom line is that the probability densities anticipated by analyzing the
classical Newtonian dynamics of this one particle would appear as the histogram
plots shown in Fig. 1.7 illustrate. Where the particle has high kinetic energy (and
thus lower V(x)), it spends less time and P(x) is small. Where the particle moves
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slowly. it spends more time and P(x) is larger. For the plot on the right, V(x)
is constant within the “box™, so the speed is constant, hence P(x) is constant
for all x values within this one-dimensional box. I ask that you keep these plots
in mind because they are very different from what one finds when one solves
the Schrodinger equation for this same problem. Also please keep in mind that
these plots represent what one expects if the particle were moving according to
classical Newtonian dynamics (which we know it is not!).

1.3.2 Quantum treatment

To solve for the quantum mechanical wave functions and energies of this same
problem, we first write the Hamiltonian operator as discussed above by replacing
pby —ihd/dx:

odl

H = -
2m dx?

Vi(x). (1.63)

We then try to find solutions ¥(x) to Hy = E that obey certain conditions.
These conditions are related to the fact that [ (x)|* is supposed to be the prob-
ability density for finding the particle between x and x + dx. To keep things as
simple as possible, let’s focus on the “box™ potential ¥ shown in the right side
of Fig. 1.7. This potential. expressed as a function of x is: V' (x) = oc forx < 0
and for v > L: V(x) =0 for x between 0 and L.

The fact that / is infinite for x < 0 and for x > 7. and that the total energy £
must be finite, says that vy must vanish in these two regions (¥ = 0 for ¥ < 0 and
for x > L). This condition means that the particle can not access these regions
where the potential is infinite. The second condition that we make use of is that
i (x) must be continuous: this means that the probability of the particle being at .x
can not be discontinuously related to the probability of it being at a nearby point.

1.3.3 Energies and wave functions
The second order differential equation

wodhy
o + V{xW = Ey (1.64)
2m dx*

has two solutions (because it is a second order equation) in the region between
Xx=0andx = L:

¥ =sin(kx) and ¥ = cos(kx). where kis definedas & = (2mE/h:)”2. (1.65)
Hence, the most general solution is some combination of these two:

¥ = Asin(kx) + Bcos(kx). (1.66)
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The fact that  must vanish atx = 0(n.b., ¥ vanishes forx < 0andis continuous.
so it must vanish at the point x = 0) means that the weighting amplitude of the
cos(kx ) term must vanish because cos(kx) = | at x = 0. That is.

B =0 (1.67)

The amplitude of the sin(kx) term is not affected by the condition that ¥ vanish
atx = 0, since sin(kx) itself vanishes at x = 0. So, now we know that y is really
of the form:

Y(x) = Asin(kx). (1.68)

The condition that v also vanish at x = L has two possible implications. Either
A =0 or k must be such that sin(kL) = 0. The option 4 = 0 would lead to
an answer ¢ that vanishes at all values of x and thus a probability that vanishes
everywhere. This is unacceptable because it would imply that the particle is never
observed anywhere.

The other possibility is that sin(kL) = 0. Let’s explore this answer because it
offers the first example of energy quantization that you have probably encoun-
tered. As you know, the sine function vanishes at integral multiples of . Hence
kL must be some multiple of 7; let’s call the integer » and write Lk = n (using
the definition of k) in the form:

LQRmE Y = nr. (1.69)
Solving this equation for the energy £, we obtain:
E = n*n?i/(2mL?). (1.70)

This result says that the only energy values that are capable of giving a wave
function v(x) that will obey the above conditions are these specific £ values. In
other words, not all energy values are “allowed” in the sense that they can produce
¥ functions that are continuous and vanish in regions where ¥ (x) is infinite. If
one uses an energy £ that is not one of the allowed values and substitutes this £
into sin(kx ), the resultant function will not vanish at x = L. I hope the solution to
this problem reminds you of the violin string that we discussed earlier. Recall that
the violin string being tied down at x = O and at x = L gave rise to quantization
of the wavelength just as the conditions that y be continuous atx = Qand x = L
gave energy quantization.
Substituting & = nxr/L into ¥ = A sin(kx) gives

Y(x) = Asin(nmx/L). (1.71)

The value of 4 can be found by remembering that {W? is supposed to represent
the probability density for finding the particle at x. Such probability densities are
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supposed to be normalized, meaning that their integral over all x values should
amount to unity. So, we can find 4 by requiring that

1=/W(x)|3dx = ]A|2/sin2(n7rx/L)d.\'. (1.72)

where the integral ranges from x =0 to x = L. Looking up the integral of
sin°(ax) and solving the above equation for the so-called normalization constant

A gives

A =2/ (1.73)

and so
Wi(x) = (2/L)? sin(nmx/L). (1.74)
The values thatn can take onaren = 1, 2. 3. .. ; the choice n = 0 is unacceptable

because it would produce a wave function ¥ (x) that vanishes at all x.
The full x- and -dependent wave functions are then given as

N 2)1"2 . Amx —itn?Tiw (1.75)
X, = — sin ——¢x —_— . .
"=\ L P o

Notice that the spatial probability density |W(x. #){? is not dependent on time and
is equal to [¥(x)]° because the complex exponential disappears when W*W is
formed. This means that the probability of finding the particle at various values
of x is time-independent.

Another thing [ want you to notice is that, unlike the classical dynamics case.
not all energy values £ are allowed. In the Newtonian dynamics situation, £ could
be specified and the particie’s momentum at any x value was then determined to
within a sign. In contrast, in quantum mechanics one must determine, by solving
the Schrédinger equation. what the allowed values of £ are. These E values are
quantized, meaning that they occur only for discrete values £ = i (2mLY)
determined by a quantum number 1, by the mass of the particle m, and by char-
acteristics of the potential (L in this case).

1.3.4 Probability densities

Let’s now look at some of the wave functions W(x) and compare the proba-
bility densities |W(x))* that they represent to the classical probability densities
discussed earlier. The n = 1 and #n = 2 wave functions are shown in the top
of Fig. 1.8. The corresponding probability densities are shown below the wave
functions in two formats (as x—v plots and shaded plots that could relate to the
flashing light way of monitoring the particle’s location that we discussed earlier).
A more complete set of wave functions (for # ranging from 1 to 7) are shown in
Fig. 1.9.
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Notice that as the quantum number # increases, the energy £ also increases
(quadratically with » in this case) and the number of nodes in W also increases.
Also notice that the probability densities are very different from what we en-
countered earlier for the classical case. For example, look atthen = l and n = 2
densities and compare them to the classical density illustrated in Fig. 1.10. The
classical density is easy to understand because we are familiar with classical dy-
namics. In this case, we say that P(x) is constant within the box because the fact
that V(x) is constant causes the kinetic energy and hence the speed of the particle
to remain constant. In contrast, the # = 1 quantum wave function’s P(x) plot is
peaked in the middle of the box and falls to zero at the walls. The # = 2 density
has two peaks P(x) (one to the left of the box midpoint, and one to the right), a
node at the box midpoint, and falls to zero at the walls. One thing that students
often ask me is “how does the particle get from being in the left peak to being in
the right peak if it has zero chance of ever being at the midpoint where the node
is?" The difficulty with this question is that it is posed in a terminology that asks
fora classical dynamics answer. That is, by asking “how does the particle get...”
one is demanding an answer that involves describing its motion (i.e., it moves
from here at time ¢; to there at time />). Unfortunately. quantum mechanics does
not deal with issues such as a particle’s trajectory (i.e.. where it is at various times)
but only with its probabilty of being somewhere (i.c., {W|?). The next section will
treat such paradoxical issues even further.

1.3.5 Classical and quantum probability densities

As just noted, it is tempting for most beginning students of quantum mechanics
to attempt to interpret the quantum behavior of a particle in classical terms.
However. this adventure is full of danger and bound to fail because small. light
particles simply do not move according to Newton's laws. To illustrate. let's try
to “understand™ what kind of (classical) motion would be consistent with the
n=1orn =2 quantum P(x) plots shown in Fig. 1.8. However. as I hope you
anticipate. this attempt at gaining classical understanding of a quantum result will
not “work™ in that it will lead to nonsensical results. My point in leading you to
attempt such a classical understanding is to teach you that classical and quantum
results are simply different and that you must resist the urge to impose a classical
understanding on quantum results.

For the n = | case, we note that P(x) is highest at the box midpoint and
vanishes at x = 0 and x = L. In a classical mechanics world, this would mean
that the particle moves slowly near x = L /2 and more quickly near x = 0 and
x = L. Because the particle’s total energy £ must remain constant as it moves,
in regions where it moves slowly, the potential it experiences must be high,
and where it moves quickly, ¥ must be small. This analysis (n.b., based on
classical concepts) would lead us to conclude that the n = 1 P(x) arises from the
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particle moving in a potential that is high near x = L /2 and low as x approaches
Oor L.

A similar analysis of the n = 2 P(x) plot would lead us to conclude that the
particle for which this is the correct P(x) must experience a potential that is
high midway between x = 0 and x = L /2, high midway between x = L /2 and
¥ = L,andverylow nearx = L /2and nearx = Oandx = L. These conclusions
are “crazy” because we know that the potential V(x) for which we solved the
Schrédinger equation to generate both of the wave functions (and both probability
densities) is constant between x = 0 and ¥ = L. That is. we know the same J7(x)
applies to the particle moving inthe n = 1 and n = 2 states, whereas the classical
motion analysis offered above suggests that ' (x) is different for these two cases.

What is wrong with our attempt to understand the quantum P(x) plots? The
mistake we made was in attempting to apply the equations and concepts of clas-
sical dynamics to a P(x) plot that did not arise from classical motion. Simply
put, one can not ask how the particle is moving (i.e.. what is its speed at vari-
ous positions) when the particle is undergoing quantum dynamics. Most students,
when first experiencing quantum wave functions and quantum probabilities, try to
think of the particle moving in a classical way that is consistent with the quantum
P(x). This attempt to retain a degree of classical understanding of the particle’s
movement is always met with frustration, as I illustrated with the above example
and will illustrate later in other cases.

Continuing with this first example of how one solves the Schréddinger equation
and how one thinks of the quantized E values and wave functions WV, let me
offer a little more optimistic note than offered in the preceding discussion. If we
examine the W (x) plot shown in Fig. 1.9 forn = 7, and think of the corresponding
P(x) = |¥(x)}%, we note that the P(x) plot would look something like that shown
inFig. 1.11. It would have seven maxima separated by six nodes. If we were to plot
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Iw(_r)|3 for a very large n value such as n = 55, we would find a P(x) plot having
55 maxima separated by 54 nodes, with the maxima separated approximately
py distances of {1/55L). Such a plot, when viewed in a “coarse grained” sense
(i’.e.. focusing with somewhat blurred vision on the positions and heights of
the maxima) looks very much like the classical P(x) plot in which P(x) is
constant for all x. In fact, it is a general result of quantum mechanics that the
quantum P(x) distributions for large quantum numbers take on the form of the
classical P(x) for the same potential V' that was used to solve the Schrodinger
equation. It is also true that classical and quantum results agree when one is
dealing with heavy particles. For example, a given particle-in-a-box energy £, =
nfi /(2m L?) would be achieved for a heavier particle at higher n-values than for
a lighter particle. Hence, heavier particles, moving with a given energy E. have
higher # and thus more classical probability distributions.

We will encounter this so-called quantum~classical correspondence principle
again when we examine other model problems. It is an important property of
solutions to the Schrodinger equation because it is what allows us to bridge the
“gap” between using the Schrédinger equation to treat small, light particles and
the Newton equations for macroscopic (big, heavy) systems.

Another thing | would like you to be aware of concerning the solutions
and £ to this Schrédinger equation is that each pair of wave functions ¥, and
¥, belonging to different quantum numbers » and #’ (and to different energies)
display a property termed orthonormality. This property means that not only are
¥, and ¥, each normalized

1=/wf,,\%/x=/>w,,r4:d.\-. (1.76)

but they are also orthogonal to each other
0= /(’1//,,)“1//,,' dx. (1.77)

where the complex conjugate * of the first function appears only when the ¥
solutions contain imaginary components (you have only seen one such case thus
far — the exp(im¢) eigenfunctions of the z-component of angular momentum). It
is common to write the integrals displaying the normalization and orthogonality
conditions in the following so-called Dirac notation:

| = <I//,, | WH> 0= <Wr1 E w11/>7 (178)

where the |) and (] symbols represent ¥ and *, respectively, and putting the
two together in the (|) construct implies the integration over the variable that
depends upon.

The orthogonality condition can be viewed as similar to the condition of two
vectors vy and v»> being perpendicular, in which case their scalar (sometimes
called “dot”) product vanishes v| - vo = 0.1 want you to keep this property in mind
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because you will soon see that it is a characteristic not only of these particle-in-
a-box wave functions but of all wave functions obtained from any Schrodinger
equation.

In fact, the orthogonality property is even broader than the above discussion
suggests. It turns out that all quantum mechanical operators formed as discussed
earlier (replacing Cartesian momenta p by the corresponding —ifid /dg operator
and leaving all Cartesian coordinates as they are) can be shown to be so-called
Hermitian operators. This means that they form Hermitian matrices when they
are placed between pairs of functions and the coordinates are integrated over.
For example, the matrix representation of an operator F when acting on a set of
functions denoted {¢,} is

Fry={¢:/IFld,) =f¢}Fd>./ dg. (1.79)

For all of the operators formed following the rules stated earlier, one finds that
these matrices have the following property:

Fro=F,. (1.80)

which makes the matrices what we call Hermitian. If the functions upon which
F acts and F itself have no imaginary parts (i.e., are real), then the matrices turn
out to be symmetric:

Fi,=F. (1.81)

The importance of the Hermiticity or symmetry of these matrices lies in the fact
that it can be shown that such matrices have all real (i.e., not complex) eigenvalues
and have eigenvectors that are orthogonal.

So, all quantum mechanical operators, not just the Hamiltonian, have real
eigenvalues (this is good since these eigenvalues are what can be measured in
any experimental observation of that property) and orthogonal eigenfunctions.
It is important to keep these facts in mind because we make use of them many
times throughout this text.

1.3.6 Time propagation of wave functions

For a system that exists in an eigenstate W(x) = (2/L)"/? sin(nmx /L) having an
energy E, = n’mw?h?/(2mL?), the time-dependent wave function is

2\'"* | nnx itE,
V(x,t)=| — in — — , 1.
(x,1) (L) sin 7 exp< P ) (1.82)

which can be generated by applying the so-called time evolution operator U(r, 0)
to the wave function at = 0:

W(x.1)=U(, 0)¥(x, 0), (1.83)
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where an explicit form for U(t, t') is

1.84
h (1.54)

The function W(x, r) has a spatial probability density that does not depend on

Uty =exp [—IU—CE—)—IK} .

time because
niTx

P, HW(x. 1) = (%) sin’ (T> (1.85)

since exp(—itE, /h) exp(itE, /h) = 1. However, it is possible to prepare systems
(even in real laboratory settings) in states that are not single eigenstates; we call
such states superposition states. For example, consider a particle moving along
the x-axis within the “box” potential but in a state whose wave function at some
initial time z = 0 is

2N\ 17 L2\ 27x
w(x,())zz*'-(z) sin(%)—?."”‘(z) sin<Z‘>. (1.86)

Thisis a superposition ofthen = [ andn = 2 eigenstates. The probability density

associated with this function is
12 ., /lzx n 2 ., 27x 2 2
—sin” [ —— —sin" | — ) =2 —
LT LA\ L
sin (%)m( Z”)} (1.87)

The n = 1 and n = 2 components, the superposition ¥, and the probability den-
sity at 7 = 0]W|* are shown in the first three panels of Fig. 1.12. It should be noted
that the probability density associated with this superposition state is not sym-
metric about the ¥ = L /2 midpoint even though the n = 1 and n = 2 component
wave functions and densities are. Such a density describes the particle localized
more strongly in the large-x region of the box than in the small-x region.

Now, let’s consider the superposition wave function and its density at later
times. Applying the time evolution operator exp(—itzH/#) to W(x. 0) generates
this time-evolved function at time ¢:

itH o 2\ < lrx 12 2 ) 1/2 y <27[X>
—_— 2 fe —_ —_— -— - J— ln ——
P\ r) M\ 3 7
L, (2N Imx itE L2\
() () (1) ()
2nx it £
X sin(%) exp (—l h->:l (1.88)

The spatial probability density associated with this ¥ is

[Wix,n)? = ! {<E> sin’ (m) + <£> sin® (27”)
2 L L L L
-2 (3) cos [(E«, - EI)EJ sin (br_r) sin (M_r)} . (1.89)
L - h L L

W=

([N

X

il

W(x, )
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sin(nav/L) forn=1 and 2
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The n=1and n= 2 wave functions, their superposition, and the
t =0 and time-evolved probability densities of the superposition.

At ¢t = 0, this function clearly reduces to that written earlier for W(x, 0). Notice
that as time evolves, this density changes because of the Cos{(£> — Ey)t /1] factor
it contains. In particular, note that as moves through a period of length 8t =
wh/(Es — E)).the cos factor changes sign. That s, for# = 0. the cos factoris +1;
fort = mh/(E, — EY), the cos factor is —1; for 1 = 2rh/(E; — E}), it returns to
+1. The result of this time variation in the cos factor is that | /]2 changes in form
from that shown in the bottom left panel of Fig. 1.12 to that shown in the bottom
right panel (at / = 7h/(E; — Ey)) and then back to the form in the bottom left
panel(att = 2nhi/(E, — E, ))- One can interpret this time variation as describing
the particle’s probability density (not its classical position!), initially localized
toward the right side of the box, moving to the left and then back to the right.
Of course, this time evolution will continue over more and more cycles as time
evolves,

This example illustrates once again the difficulty with attempting to localize
particles that are being described by quantum wave functions. For example, a par-
ticle that is characterized by the eigenstate (2/L)!/2 sin(1zx /L) is more likely to
be detected near x = L/2 than near x = 0 or x = L because the square of this
function is large nearx = /2. A particle inthe state (2/L)"/2 sin(27rx /L ) is most
likely to be found near x = L/4 and x = 3L /4, but not near x = O.x=1/2 or
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v = L. The issue of how the particle in the latter state moves from being near
x = L/4twox = 3L /4isnot something quantum mechanics deals with. Quantum
mechanics does not allow us to follow the particle’s trajectory. which is what we
need to know when we ask how it moves from one place to another. Nevertheless,
superposition wave functions can offer, to some extent, the opportunity to follow
the motion of the particle. For example, the superposition state written above as
27122/ L) sin(lwx /L) — 27Y2(2/L)"? sin(2x /L) has a probability ampli-
tude that changes with time as shown in the figure. Moreover, this amplitude’s
major peak does move from side to side within the box as time evolves. So, in
this case, we can say with what frequency the major peak moves back and forth.
In a sense, this allows us to “follow” the particle’s movements, but only to the
extent that we are satisfied with ascribing its location to the position of the major
peak in its probability distribution. That is, we can not really follow its “precise”
location, but we can follow the location of where it is very likely to be found.
This is an important observation that [ hope the student will keep fresh in mind. It
is also an important ingredient in modern quantum dynamics in which localized
wave packets, similar to superposed eigenstates, are used to detail the position
and speed of a particle’s main probability density peak.

The above example illustrates how one time-evolves a wave function that can
be expressed as a linear combination (i.e., superposition) of eigenstates of the
problem at hand. There is a large amount of current effort in the theoreti-
cal chemistry community aimed at developing efficient approximations to the
exp(—it H /) evolution operator that do not require W(x, 0) to be explicitly writ-
ten as a sum of eigenstates. This is important because, for most systems of direct
relevance to molecules, one can not solve for the eigenstates; it is simply too
difficult to do so. You can find a significantly more detailed treatment of this
subject at the research-level in my TheoryPage web site and my OMJIC textbook.
However. let’s spend a little time on a brief introduction to what is involved.

The problem is to express exp(—it H /)W (q,), where W(q;) is some initial
wave function but not an eigenstate, in a manner that does not require one
to first find the eigenstates {¥,} of H and to expand W in terms of these
eigenstates:

M :chwj (1.90)
J

after which the desired function is written as

il itE
GXP(_%‘> \IJ(QJ)ZZC/‘I’JCXI)(—I hl> (191)
J

The basic idea is to break H into its kinetic 7 and potential } energy components
and to realize that the differential operators appear in T only. The importance
of this observation lies in the fact that 7 and ¥ do not commute, which means
that 7V is not equal to VT (n.b., for two quantities to commute means that their
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order of appearance does not matter). Why do they not commute? Because T
contains second derivatives with respect to the coordinates {¢, } that I depends on,
so, for example, dz/dq:[V(q)\U(q)] is not equal to V(q) d*/dy~ W(q). The fact
that 7" and /" do not commute is important because the most common approach
to approximating exp(—irH/h) is to write this single exponential in terms of
exp(—itT/h) and exp(—irV'/h). However, the identity

izH) itV ( z‘zT) (1.92
pl— | =exp| ~—— | exp| —— .
exy ( n p 7 p 5 )

is not fully valid as one can see by expanding all three of the above exponential
factors as exp(x) = 1+ x +x-/2! + ---. and noting that the two sides of the
above equation only agree if one can assume that 7F = 1’7, which, as we noted,
1S not true.

In most modern approaches to time propagation, one divides the time interval
t into many (i.e., P of them) small time “slices” T = 7/P. One then expresses
the evolution operator as a product of P short-time propagators:

ITH’ < itH ( irH)
Y xp [ — xp | —
exp( > )e p T exp p
itH\]"
exp ——~—) . (1.93)
h

If one can develop an efficient means of propagating for a short time t, one
can then do so over and over again P times to achieve the desired full-time
propagation.

It can be shown that the exponential operator involving H can better be ap-
proximated in terms of the 7 and V" exponential operators as follows:

( itH ( TV = VT) ( itV itl 1.94)
exp{ ~——— | ~exp| —1"———"Jexp{ ——— Jexp| ——=} . .9
P 7 p ‘ 7 p 7 p 7 (

So. if one can be satisfied with propagating for very short time intervals (so that
the 7° term can be neglected), one can indeed use

ox itH itV it7 1.95)
——— jxexp| ——— Jexp | ——— .
P 7 p 7 p W (

as an approximation for the propagator U(z, 0).

To progress further, one then expresses exp(—it T /) acting on the initial
function W(g) in terms of the eigenfunctions of the kinetic energy operator
T. Note that these eigenfunctions do not depend on the nature of the poten-
tial ¥, so this step is valid for any and all potentials. The eigenfunctions of 7 =

—-71'2/2111d2/dq2 are
L\ (ipg
= (L) s (2) 5o

@
b
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and they obey the following orthogonality

/w;f(q)w,,w)dq =8p ~p) (1.97)
and completeness relations

/ Vpl@W (g )dp = 8lg — ¢, (1.98)
Writing W(g) as

Yig) = /é(q —q)W(g)Hdy'. (1.99)

and using the above expression for §(g — q') gives
Y(g) = / Ulg)¥ (g Wig g dp. (1.100)

Then inserting the explicit expressions for ¥ ,(q)and v, *(¢") in terms of Y,lg) =
(1/27)12 exp(ipg /B gives

l 1,2 in ] 142 .
W(‘[)Z//(;) exp (%) (;) \p( l:’)\b(q Ydg'dp. (1.101)

Now, allowing exp(—it7'/7) to act on this form for W(q) produces

2

itp*tt 112
R S R AU //cxp 2mh ) 27

12
xexp{g(q—ﬁﬂ]<ﬁ> V(g Ydg'dp.  (1.102)

The integral over p above can be carried out analytically and gives

itT B m v im(g —q'y , }
exp (*T) v = (575) /P [_'7—7—] Haddg. (1103

So, the final expression for the short-time propagated wave function is

ithyg) mo\ 12 im{g —q'y7 o
R xp| M4 =) (1104
Yig.7) up[ - ](errfz) /exp{ 5o V(') dg (1.104)

which is the working equation one uses to compute W(g. t)knowing ¥(g). Notice
thatall one needs to know to apply this formula is the potential ¥ (g) at each point
in space. One does not need to know any of the eigenfunctions of the Hamiltonian
to apply this method. However, one does have to use this formula over and over
again to propagate the initial wave function through many small time steps 1 to
achieve full propagation for the desired time interval ¢ = Pr.

Because this type of time propagation technique is a very active area of research
in the theory community. it is likely to continue to be refined and improved. Further
discussion of it is beyond the scope of this book, so I will not go further in this
direction.
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1.4 Free particle motions in more dimensions

The number of dimensions depends on the number of particles and the
number of spatial (and other) dimensions needed to characterize the
position and motion of each particle.

1.4.1 The Schrédinger equation

Consider an electron of mass m and charge e moving on a two-dimensional
surface that defines the x. y plane (e.g., perhaps an electron is constrained to the
surface of a solid by a potential that binds it tightly to a narrow region in the
=-direction), and assume that the electron experiences a constant and not time-
varying potential ¥ at all points in this plane. The pertinent time-independent
Schrodinger equation is

7o a2 92
5ol T Y )+ Ve (x ) = Evr(x. ), (1.105)
2m (dx2 91? )

The task at hand is to solve the above eigenvalue equation to determine the

“allowed” energy states for this electron. Because there are no terms in this equa-

tion that couple motion in the x and y directions (e.g.. no terms of the form x“y"

ord/dx d/dy or x 8/dy), separation of variables can be used to write Y as a prod-

uct ¥(x. v) = A(x)B(»). Substitution of this form into the Schrédinger equation,

followed by collecting together all x-dependent and all y-dependent terms, gives
P 184 1138

————— — — — L — E_ V.. 1.106

2m 4 8x2  2m B o2 v (1.106)
Since the first term contains no y-dependence and the second contains no
x-dependence. and because the right side of the equation is independent of both
x and v, both terms on the left must actually be constant (these two constants
are denoted £, and E,, respectively). This observation allows two separate

Schrédinger equations to be written:

—% 47 27/71 = Ex, (1.107)
and
—f— B 8 = Ey. (1.108)
2m dy?

The total energy £ can then be expressed in terms of these separate energies E,
and E, as £, + E, = E — V. Solutions to the x- and y-Schrddinger equations
are easily seen to be:

12 12
A(x) = exp [ix (2’7;5") ] and exp [—ix (2’;721'?") :, s (1.109)

12 12
B(y) = exp [iy (#) :’ and exp [-iy (217}1}215‘,) J . (1110
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Two independent solutions are obtained for each equation because the x- and
v-space Schrdinger equations are both second order differential equations (i.e..
é second order differential equation has two independent solutions).

1.4.2 Boundary conditions

The boundary conditions, not the Schrédinger equation, determine
whether the eigenvalues will be discrete or continuous.

If the electron is entirely unconstrained within the x. y plane, the energies E,
and £ can assume any values; this means that the experimenter can “inject”
the electron onto the x. ) plane with any total energy £ and any components
E, and £, along the two axes as long as £, + £, = E. In such a situation, one
speaks of the energies along both coordinates as being “in the continuum™ or “not
quantized”.

In contrast. if the electron is constrained to remain within a fixed area in the x. v
plane (e.g., arectangular or circular region), then the situation is qualitatively dif-
ferent. Constraining the electron to any such specified area gives rise to boundary
conditions that impose additional requirements on the above 4 and B functions.
These constraints can arise. for example, if the potential ¥y(x. v) becomes very
large for x. v values outside the region, in which case the probability of finding the
electron outside the region is very small. Such a case might represent. for example,
asituation in which the molecular structure of the solid surface changes outside the
enclosed region in a way that is highly repulsive to the electron (e.g.,as in the case
of molecular corrals on metal surfaces). This case could then represent a simple
model of so-called ““corrals™ in which the particle is constrained to a finite region
of space.

For example, if motion is constrained to take place within a rectangular region
definedby 0 <x < L,:0 < v < L, then the continuity property that all wave
functions must obey (because of their interpretation as probability densities,
which must be continuous) causes 4(x) to vanish at 0 and at L. That is, because
A mustvanish forx < Oand mustvanish forx > L, andbecause A is continuous,
itmust vanishatx = Oandaty = L. Likewise, B(y)must vanishat O and at L,..
To implement these constraints for A(x). one must linearly combine the above two
solutions exp[ix(2m E, /#7)'/?] and exp[~ix(2mE, /H*)V/?] to achieve a function
that vanishes at x = 0:

C2mEN'Y? C[2mEN'?
Alx) =exp|ix < —exp | —ix 5 . (L11h
i I/

One is allowed to linearly combine solutions of the Schrodinger equation that
have the same energy (i.e., are degenerate) because Schrédinger equations are
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linear differential equations. An analogous process must be applied to B(y) to
achieve a function that vanishes at y=20:

Eo\ 12 dImE N\
B(y)=exp | iv [ 2 ) — exp —i}'( 7 ) . (1.112)
I/ i

Further requiring A(x) and B(v) to vanish. respectively. at x = [ and y=1=L,
gives equations that can be obeyed only if £, and £, assume particular values:

2mE, 172 2mE, 172
exp|iL, (ﬂ) —exp|—iL, <L) =0, (1.113)
# e
2mE N\ 2mE N
exp|iL, (#) —exp | —il, <L> = 0. (1.114)
T3 "\

These equations are equivalent (i.e., using exp(ix) = cosx +; sinx) to

2mE N 2mE N
sm[L\.( ':) J:sin[L, <"+> 0. (1.115)
3 >

Knowing that sin & vanishes at 0 =nm.forn=1223_ (although the sin(n)
function vanishes for n = 0, this function vanishes forall x or ¥, and is therefore
unacceptable because it represents zero probability density at all points in space),
one concludes that the energies £, and £, can assume only values that obey

and

2mE, N\
L\.< ";7 ) ——_— (1.116)
T
2mE, N\
L, (%) = n,x, (1.117)
n2r3
E, == 1.118
or x 2mL?2 ( )
nlxip )
and E, = 2’7, with n, and n, =1 2. 3, ... (1.119)
m ¥ .

It is important to stress that it is the imposition of boundary conditions, ex-
pressing the fact that the electron is spatially constrained, that gives rise to
quantized energies. In the absence of spatial confinement, or with confinement
onlyatx =0or L, or only at y =0 or Ly, quantized energies would nor be
realized.

In this example, confinement of the electron to a finite interval along both
the x and y coordinates yields energies that are quantized along both axes. If
the electron is confined along one coordinate (e.g.,between 0 < x < L) but not
along the other (i.e., B(y) is either restricted to vanish at y = 0 or at y=1L,or
at neither point), then the total energy £ lies in the continuum; its £, component
Is quantized but E\ is not. Analogs of such cases arise, for example, when a
linear triatomic molecule has more than enough energy in one of it bonds to
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rupture it but not much energy in the other bond: the first bond’s energy lies in
the continuum. but the second bond’s energy is quantized.

Perhaps more interesting is the case in which the bond with the higher dissoci-
ation energy is excited to a level that is not enough to break it but that is in excess
of the dissociation energy of the weaker bond. In this case, one has two degenerate
states: (i) the strong bond having high internal energy and the weak bond having
low energy (). and (ii) the strong bond having little energy and the weak bond
having more than enough energy to rupture it (). Although an experiment may
prepare the molecule in a state that contains only the former component (i.e.,
v =C + G with Cp = 1, G, = 0), coupling between the two degenerate
functions (induced by terms in the Hamiltonian H that have been ignored in
defining ¥ and ¥) usually causes the true wave function ¥ = exp(—it H/hyyr
to acquire a component of the second function as time evolves. In such a case, one
speaks of internal vibrational energy relaxation (IVR) giving rise to unimolecular
decomposition of the molecule.

1.4.3 Energies and wave functions for bound states

For discrete energy levels, the energies are specified functions that de-
pend on quantum numbers, one for each degree of freedom that is
quantized.

Returning to the situation in which motion is constrained along both axes, the
resultant total energies and wave functions (obtained by inserting the quantum
energy levels into the expressions for A(x )B(y)) are as follows:

il
E == (1.120)
2mlL:
d E n%n—:ﬁ: 1.121
an \—2n1Li. (1.121)
E=E +E, +V, (1.122)
o | : I : in.rx —in.Tx
veen =5 2. ) PP\ ) el
in.my in,my
X 1ex - — €X - .
PUTL P\TTL
withn, andn, =1.2,3, ... (1.123)
The two (1/2L)!/? factors are included to guarantee that v is normalized:
/m(x.y)ﬁdx dv = 1. (1.124)

Normalization allows |/ (x, v)|? to be properly identified as a probability density
for finding the electron at a point x, V.
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Plots of the
(a) (1,1), (b} (2,1}, (c)
(1,2) and {d} (2,2} wave
functions.

The basics of quantum mechanics

(a)

Shown in Fig. 1.13 are plots of four such two-dimensional wave functions
for 1, and n, values of (1,1), (2,1), (1.2) and (2.2), respectively. Note that the
functions vanish on the boundaries of the box, and notice how the number of
nodes (i.e.. zeroes encountered as the wave function oscillates from positive to
negative) is related to the n, and 1, quantum numbers and to the energy. This
pattern of more nodes signifying higher energy is one that we encounter again
and again in quantum mechanics and is something the student should be able
to use to “guess” the relative energies of wave functions when their plots are at
hand. Finally, you should also notice that. as in the one-dimensional box case,
any attempt to classically interpret the probabilities P(x. v) corresponding to the
above quantum wave functions will result in failure. As in the one-dimensional
case. the classical P(x, y) would be constant along slices of fixed x and varying v
orslices of fixed y and varying x within the box because the speedis constant there.
However, the quantum P(x, ¥) plots, at least for small quantum numbers, are not
constant. For large n, and n,. values, the quantum P(x, »)plots will again, via the
quantum-—classical correspondence principle. approach the (constant) classical
P(x.y) form.
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1.4.4 Quantized action can also be used to derive
energy levels

There is another approach that can be used to find energy levels and is especially
straightforward to use for systems whose Schrodinger equations are separable.
The so-called classical action (denoted S) of a particle moving with momentum p
along a path leading from initial coordinate q; at initial time ¢, to a final coordinate
qr at time # is defined by

ariy
S:/ p-dq. (1.125)
q

i i
Here. the momentum vector p contains the momenta along all coordinates of the
system, and the coordinate vector q likewise contains the coordinates along all
such degrees of freedom. For example, in the two-dimensional particle-in-a-box
problem considered above, q = (x.y) has two components as does P =(p:.pv)
and the action integral is

YeivEiy
S= / (prdx + p,d,). (1.126)

X
Incomputing suchactions, it is essential to keep in mind the sign of the momentum
as the particle moves from its initial to its final positions. An example will help
clarify these matters.

For systems such as the above particle-in-a-box example for which the Hamil-
tonian is separable, the action integral decomposes into a sum of such integrals,
one for each degree of freedom. In this two-dimensional example, the additivity
of H.

:op ,
H=H +H =202 L yyivon
2m 2m
oo ) Pl o) L127)
= — X)— — —— ), 12
2m dx*? 2m dy? ! (

means that p, and p,. can be independently solved for in terms of the potentials
V{x)and V(v) as well as the energies £, and £, associated with each separate
degree of freedom:

pe = E£V2m(E, — V(x)), (1.128)
py = V2m(E, = V(y)); (1.129)

the signs on p. and p, must be chosen to properly reflect the motion that the
particle is actually undergoing. Substituting these expressions into the action
integral yields

S=5.+5, (1.130)

Risls

= / "y V2m(E, = V(x)) dx +/ +V2m(E, — V() dy. (1.131)

il Vist;
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The relationship between these classical action integrals and the existence of
quantized energy levels has been shown to involve equating the classical action
for motion on a closed path to an integral multiple of Planck’s constant:

qe=q,y
Stosed =/ pdg=nh  (n=1.2.3.4...). (1.132)
q

.
i

Applied to each of the independent coordinates of the two-dimensional particle-
in-a-box problem, this expression reads

r=0

v=L, ———
n.h :/ V2m(E, = V(x)) dx + / — V2m(E, — V(x)) dx. (1.133)

=0 Ja=L,

v=1L, v=t}
mh= [ VaE =T+ [ - IE ST a3
v=4 Jr=1L,

Notice that the signs of the momenta are positive in each of the first inte-
grals appearing above (because the particle is moving from x = 0 to ¥ = Ly,
and analogously for y-motion, and thus has positive momentum) and negative
in each of the second integrals (because the motion is from x = L.tox =90
(and analogously for y-motion) and thus the particle has negative momentum).
Within the region bounded by 0 < x < L,:0 < ) = L, the potential vanishes,
so I"(x) = ¥(») = 0. Using this fact, and reversing the upper and lower limits,
and thus the sign. in the second integrals above, one obtains

=Ly
noh = 2/ V2mE,.dx =22mE, L,. (1.135)
x=0
i=L,
nh = 2/ VInE. dv =2/2mE, L,. (1.136)
r=0

Solving for £, and E . one finds

(nchy
YT Rl (L.137)
Y
= (S”rhzl , (1.138)

These are the same quantized energy levels that arose when the wave function
boundary conditions were matched at x = 0, x = L, and y=0.y =L, Inthis
case, one says that the Bohr-Sommerfeld quantization condition,

ar=q;’tf
nh =/ p-dq. (1.139)
CIEg
has been used to obtain the result,
The use of action quantization as illustrated above has become a very important
tool. It has allowed scientists to make great progress toward bridging the gap
between classical and quantum descriptions of molecular dynamics. In particular,
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by using classical concepts such as trajectories and then appending quantal action
conditions, people have been able to develop so-called semi-classical models of
molecular dynamics. In such models, one is able to retain a great deal of classical
understanding while building in quantum effects such as energy quantization,
zero-point energies, and interferences.

1.4.5 Quantized action does not always work

Unfortunately, the approach of quantizing the action does not always yield the

correct expression for the quantized energies. For example, when applied to

the so-called harmonic oscillator problem that we will study in quantum form

later, which serves as the simplest reasonable model for vibration of a diatomic
molecule AB, one expresses the total energy as
p k.

E =4 -x- 1.140

2n 2 ( )

where ;t = mamg/(ms + mp)isthereduced mass ofthe AB diatom, k is the force

constant describing the bond between A and B, x is the bond-length displacement,

and p is the momentum along the bond length. The quantized action requirement

then reads
3 12
nh = /p dy = / [2/4 (E - ;.\':)} dx. (1.141)

This integral is carried out between x = —(2£/k)!/* and (2E / k)"/~. the left and
right turning points of the oscillatory motion. and back again to form a closed path.
Carrying out this integral and equating it to n# gives the following expression
for the energy E£:

ho(kN\"?
E:n—(—) . (1.142)
27 \u

where the quantum number # is allowed to assume integer values ranging from
n = 0. 1. 2, to infinity. The problem with this result is that it is wrong! As experi-
mental data clearly show, the lowest energy levels for the vibrations of a molecule
do not have £ = 0: they have a “zero-point” energy that is approximately equal
to 1/2(h /2 )(k/1)" 2. So. although the action quantization condition yields en-
ergies whose spacings are reasonably in agreement with laboratory data for low-
energy states {e.g.. such states have approximately constant spacings), it fails to
predict the zero-point energy content of such vibrations. As we will see later, a
proper quantum mechanical treatment of the harmonic oscillator yields energies

of the form
1\ [ A kN2
E = — — 1.143
<n+2><2ﬂ><u) ( )

which differs from the action-based result by the proper zero-point energy.
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The basics of quantum mechanics

Even with such difficulties known, much progress has been made in extending
the most elementary action-based methods to more and more systems by introduc-
ing. for example, rules that allow the quantum number 1 to assume half-integer
as well as integer values. Clearly. if n were allowed to equal 1/2,3/2,5/2.....
the earlier action integral would have produced the correct result. However, how
does one know when to allow # to assume only integer or only half-integer or
both integer and half-integer values? The answers 1o this question are beyond the
scope of this text and constitute an active area of research. For now. it is enough
for the student to be aware that one can often find energy levels by using action
integrals, but one must be careful in doing so because sometimes the answers are
wrong.

Before leaving this section, it is worth noting that the appearance of half-
integer quantum numbers does not only occur in the harmonic oscillator case. To
iflustrate. let us consider the L. angular momentum operator discussed earlier.
As we showed. this operator, when computed as the z-component of r x p, can
be written in polar (1. 6, ¢) coordinates as

L.=—itd/d¢. (1.144)

The eigenfunctions of this operator have the form exp(iag), and the eigenvalues
are ahi. Because geometries with azimuthal angles equal to ¢ orequal to ¢ + 27
are exactly the same geometries, the function exp(ia¢) should be exactly the same
as exp(ia(¢ + 2 )). This can only be the case if g is an integer. Thus, one con-
ciudes that only integral multiples of 7 can be “altowed” values of the z-component
of angular momentum. Experimentally, one measures the z-component of an an-
gular momentum by placing the system possessing the angular momentum in a
magnetic field of strength B and observing how many z-component energy states
arise. For example, a boron atom with its 2p orbital has one unit of orbital angular
momentum, so one finds three separate z-component values which are usually

denoted m = —1, m = 0, and m = 1. Another example is offered by the scan-
dium atom with one unpaired electron in a d orbital; this atom’s states split into
five (m = -2, 1,0, 1, 2) z-component states. In each case, one finds 2L + 1

values of the m quantum number, and, because L is an integer, 2L + 1 is an odd
integer. Both of these observations are consistent with the expectation that only
integer values can occur for L eigenvalues.

However, it has been observed that some species do not possess 3 or 5 or 7 or
9 z-component states but an even number of such states. In particular, when elec-
trons, protons, or neutrons are subjected to the kind of magnetic field experiment
mentioned above, these particles are observed to have only two z-component
ergenvalues. Because, as we discuss later in this text, all angular momenta have
z-component eigenvalues that are separated from one another by unit multi-
ples of 7, one is forced to conclude that these three fundamental building-block
particies have z-component eigenvalues of 1/2% and — 1 /2h. The appearance of



Free particle motions in more dimensions

half-integer angular momenta is not consistent with the observation made earlier
that ¢ and ¢ + 27 correspond to exactly the same physical point in coordinate
space, which, in turn, implies that only full-integer angular momenta are possible.

The resolution of the above paradox (i.e., how can half-integer angular mo-
menta exist?) involved realizing that some angular momenta correspond not to
the r x p angular momenta of a physical mass rotating, but, instead, are intrinsic
properties of certain particles. That is, the intrinsic angular momenta of elec-
trons, protons, and neutrons can not be viewed as arising from rotation of some
mass that comprises these particles. Instead, such intrinsic angular momenta are
fundamental “built in” characteristics of these particles. For example, the two
1/2% and —1/2fi angular momentum states of an electron, usually denoted o and
B. respectively, are two internal states of the electron that are degenerate in the
absence of a magnetic field but which represent two distinct states of the elec-
tron. Analogously, a proton has 1/24 and —1/27 states, as do neutrons. All such
half-integer angular momentum states can not be accounted for using classical
mechanics but are known to arise in quantum mechanics.

45



