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1 Continuum hypothesis

In the continuum model of fluids, physical quantities are considered to be varying continu-

ously in space, for example, we may speak of a velocity field ~u(~x, t) or a temperature field

T (~x, t). The “local” values of such quantities at a single point P in space should be under-

stood as average values over a small region of size Lp about P . This averaging procedure is

only meaningful if the region is large enough to contain many molecules and yet small when

compared to the length scale of the macroscopic phenomena under consideration. Specifi-

cally, if Lm represents the molecular length scale (∼ 10−9m) and Lf is the length scale of

the fluid motion being studied, we assume that there exists a scale separation such that

Lm ≪ Lp ≪ Lf .

Figure 1 illustrates such scale separation and show how a “local” density at a point can be

defined.

Within the continuum model, we define a fluid particle as a point which moves with the

velocity of the fluid at that point. Hence the trajectory of a fluid particle ~x(t) is given by

d~x

dt
= ~u(~x, t) . (1)

2 Example: channel flow

We shall introduce several basic concepts using a simple example. We consider a fluid of

constant density ρ0 flowing between two large parallel planes separated by a distance of 2a.

Figure 1: The continuum hypothesis (Batchelor, Introduction to Fluid Dynamics).
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Figure 2: Channel flow. The coordinate system is setup such that y = 0 is at the middle of

the channel and the z-direction is out of the page.

This configuration is called the channel flow. Pressures p1 and p2 are maintained at the

ends of the channel. Figure 2 summarizes our notations.

Since the planes are “large”, boundary effects in the x- and z-directions are ignored.

From experimental observations, we know that when the velocity ~u = (u, v, w) is not too

large, the flow is steady (i.e. ∂/∂t = 0) and unidirectional, hence we take v = w = 0. It

can be shown that ~u is independent of the streamwise coordinate for unidirectional flow

(see Problem Set 1), hence, together with the symmetry in the z-direction, our goal is to

determine the velocity profile u(y).

Boundary conditions. We shall employ the no-slip condition at the walls, i.e. there

is no relative tangential velocity between the walls and the fluid. For our present problem,

it means

u(a) = u(−a) = 0 . (2)

The justification for the no-slip condition lies in experimental observations.

Forces acting on a fluid. We consider the following types of force:

1. Body forces (volume forces) are forces externally applied to a fluid and is part of the

problem specification, they act on the whole volume of a fluid element.

2. Surface forces act across neighboring surfaces within a fluid and are of molecular origin.

The surface force per unit area is called the local stress.

(a) Pressure: stress acting normal to a surface.

(b) Viscous stress: opposes relative movements between neighboring fluid particles.

We now consider the various forces acting on a fluid element of sides ∆x, ∆y and ∆z in

our channel flow problem, see Fig. 2. There is no body force acting on the fluid element,

together with the assumption of steady unidirectional flow v = w = 0, we deduce that there

is no pressure gradient in the y- and z-direction, hence p = p(x) (see also Problem Set 1).

The net pressure force on the fluid element is therefore

p(x)∆y∆z − p(x+ dx)∆y∆z

= p(x)∆y∆z −

[

p(x) + ∆x
∂p

∂x

]

∆y∆z

= −
∂p

∂x
∆x∆y∆z . (3)
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Recall that viscous actions oppose relative movements, hence we expect viscous forces

to act on the upper and lower surfaces of the fluid element shown in Fig. 2. To proceed, we

need a relation between the viscous stress and the velocity.

Newtonian fluids. Throughout this course, we shall consider Newtonian fluids only,

meaning that the viscous stress τ is proportional to the velocity gradient. For our current

setup, this implies

τ = µ
∂u

∂y
, (4)

where the proportionality constant µ is called the viscosity. Air and water are examples of

Newtonian fluid while corn syrup and other polymer solutions are non-Newtonian. Using

the linear relation Eq. (4), the net viscous force acting on the fluid element is

− µ
∂u

∂y

∣
∣
∣
∣
y

∆x∆z + µ
∂u

∂y

∣
∣
∣
∣
y+dy

∆x∆z

=µ
∂2u

∂y2
∆x∆y∆z . (5)

As the flow is assumed to be steady, the fluid element is not accelerating and there is

no net force acting on it. Hence, we conclude there is a balance between the pressure force

and the viscous force. From Eq. (3) and Eq. (5), we have

∂p

∂x
= µ

∂2u

∂y2
. (6)

There is one more simplification we can make for a unidirectional flow. Since the pressure

gradient ∂p/∂x is responsible for the flow in the x-direction and we already know that

u = u(y) is independent of x, we expect ∂p/∂x = −G where G is a constant (see Problem

Set 1 for a rigorous derivation). Finally, using the boundary conditions Eq. (2), we get

d2u

dy2
= −

G

µ
, (7)

u(y) =
G

2µ
(a2 − y2) . (8)

Flux. The amount of a quantity with density q transported through an infinitesimal

area ∆~S in time ∆t by a velocity field ~u is equal to the product of q and the infinitesimal

volume ∆~S · ~u∆t. Hence the net rate of transfer across a finite surface S is

Φ =

∫

S

q~u · d~S . (9)

Φ is sometimes called flux, it is a scalar and is the amount flowing through per unit time.

This terminology is somewhat ambiguous, in some contexts, flux refers to q~u which is a

vector and is the amount flowing through per unit time per unit area. For our channel flow,

we can compute the mass flux Φm through a square of sides 2a in the yz-plane as follow,

Φm =

∫ a

−a

∫ a

−a

ρ0u(y) dy dz =
4Gρ0a

4

3µ
. (10)
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3 Continuity equation

We now derive the equation that expresses the conservation of mass for a fluid. Consider

an arbitrary volume V bounded by the surface S in a fluid, the rate of mass flowing out of

V through S is ∮

S

ρ~u · d~S =

∫

V

∇ · (ρ~u) dV , (11)

where d~S is in the direction of the outward normal of S. On the other hand, the rate of

change of mass inside V is given by

d

dt

∫

V

ρdV . (12)

The conservation of mass then implies

∫

V

[
∂ρ

∂t
+∇ · (ρ~u)

]

dV = 0 . (13)

Since Eq. (13) is true for any arbitrary volume, we have

∂ρ

∂t
+∇ · (ρ~u) = 0 . (14)

4 The Navier-Stokes equation

To derive a form of Newton’s second law, or the momentum equation, suitable for a fluid,

our strategy is to follow a fluid particle along its trajectory and compute its rate of change

of momentum. This leads to the concept of substantive derivative.

Substantive derivative. Generally, for a scalar quantity T (x, y, z, t) varying with space

and time, the change in T corresponds to small changes in the space and time coordinates

is

∆T =
∂T

∂t
∆t+

∂T

∂x
∆x+

∂T

∂y
∆y +

∂T

∂z
∆z . (15)

If we now choose ∆x, ∆y and ∆z to be the components of a small displacement of a fluid

particle over time ∆t, then by the definition Eq. (1), the rate of change of T following the

fluid particle, denoted by D/Dt, is given by

DT

Dt
=

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
. (16)

The operator that gives the time rate of change along a fluid trajectory,

D

Dt
≡

∂

∂t
+ ~u · ∇ , (17)

is called the substantive derivative or the material derivative.

Applying Eq. (17) to the components of the velocity ~u(~x, t) gives the rate of change of

momentum density of a fluid particle as

ρ
∂~u

∂t
+ ρ(~u · ∇)~u . (18)

We now turn to the forces acting on a fluid particle. A rigorous derivation of the surface

force term is out of the scope of this course. In particular, the full expression of the viscous
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stress is rather complicated. Instead, inspired by Eq. (5) from our channel flow problem, we

quote that the viscous force per unit volume in the general case is

µ∇2~u (19)

for a Newtonian fluid. Expression (19) is an approximation, a very good one in most cases,

and becomes exact when µ is constant and ∇ · ~u = 0. Similarly, from Eq. (3), we have the

pressure force per unit volume equals

−∇p . (20)

Finally, denoting the body force density by ~f and collecting everything, we have the Navier-

Stokes equation,

∂~u

∂t
+ (~u · ∇)~u = −

1

ρ
∇p+ ν∇2~u+

~f

ρ
, (21)

where we have introduced the kinematic viscosity defined as ν ≡ µ/ρ. The nonlinear term

(~u · ∇)~u is called the inertial term.

5 Incompressible fluids

A fluid is incompressible if the density of a fluid particle is constant. In other words, the

rate of change of ρ(~x, t) following a particle path is zero,

Dρ

Dt
= 0 . (22)

The continuity equation Eq. (14) then reduces to

∇ · ~u = 0 . (23)

Condition for incompressibility. A special case for which Eq. (22) holds is when ρ

is a constant. We now derive a condition under which ρ can be considered as approximately

constant, in other words, the change in density ∆ρ is negligible, that is

∆ρ

ρ
≪ 1 . (24)

For simplicity, we shall restrict ourselves to isothermal flows so that any change in density

∆ρ is due to pressure variation only.

Let us do some order of magnitude estimations. From the compressibility β of a fluid,

β ∼
1

V

∆V

∆p
∼

1

ρ

∆ρ

∆p
(25)

⇒
∆ρ

ρ
∼ β∆p (26)

Here, the symbol “∼” means “of the same order”. To estimate ∆p, we refer to the Navier-

Stokes equation Eq. (21). We assume the flow is steady or one in which temporal rate of

change is small ∂/∂t = 0 and there is no body force ~f = 0. We choose to consider the case
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where the viscous term is small, hence there is a dominant balance between the pressure

term and the inertial term,

(~u · ∇)~u ∼
1

ρ
∇p (27)

⇒
U ∆u

L
∼

∆p

ρL
, (28)

where U is a typical value of the velocity and L is a typical length scale in the problem.

For velocity difference, we can make the estimate ∆u ∼ U . On the other hand, since only

pressure difference is dynamically relevant, we have to keep ∆p as it is. Hence, by Eq. (28),

we get ∆p ∼ ρU2 and
∆ρ

ρ
∼ βρU2 ∼

U2

c2
= Ma2 , (29)

where c2 ∼ 1/βρ is the sound speed in the fluid and Ma ≡ U/c is called the Mach number.

Therefore, we arrive at the conclusion that the flow can be considered as incompressible if

Ma ≪ 1, that is the flow speed is much less than the sound speed in the fluid.

6 Energy budget

Consider a volume V in a fluid of constant density ρ0 bounded by a closed surface S. The

total kinetic energy in V is

K =
ρ0
2

∫

V

|~u|2 dV . (30)

An energy balance equation for the volume V can be obtained by taking the dot product of

~u and the Navier-Stokes equation and then integrating over V . Let us consider each term

separately as follow.

(i)
∫

V

~u ·
∂~u

∂t
dV =

∫

V

1

2

∂|~u|2

∂t
dV =

d

dt

1

2

∫

V

|~u|2 dV . (31)

(ii) Using the vector identity,

(~u · ∇)~u = (∇× ~u)× ~u+
1

2
∇u2 , (32)

and notice that (∇× ~u)× ~u is perpendicular to ~u, we have
∫

V

~u · [(~u · ∇)~u] dV =
1

2

∫

V

~u · ∇u2 dV =
1

2

∮

S

(u2 ~u) · d~S , (33)

where we have use ∇ · ~u in the last step.

(A mathematical digression. Instead of using the identity Eq. (32), we can also evaluate

~u · [(~u · ∇)~u] as follow. We shall use the summation convention and the definition
~A · ~B = AiBi . The ith component of the vector (~u · ∇)~u is (uj∂j)ui, so

~u · [(~u · ∇)~u] = ui(uj∂jui) = ∂j(uiujui)− ui∂j(uiuj)

= ∂j(uiujui)− uiuj∂jui (∵ ∂juj = 0)

∴ 2uiuj∂jui = ∂j(uiuiuj) . (34)

Hence, 2~u · [(~u · ∇)~u] = ∇ · (u2~u) and Eq. (33) follows.)
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(iii)
∫

V

~u · ∇p dV =

∫

V

∇ · (p~u) dV =

∮

S

(p~u) · d~S . (35)

(iv) For the x-component of the velocity u,

∫

V

u∇2udV =

∫

V

[
∇ · (u∇u)− |∇u|2

]
dV =

∮

S

u∇u · d~S −

∫

V

|∇u|2 dV . (36)

We have similar expressions for v and w.

(v)
∫

V

(~u · ~f ) dV = total power input into the volume V by the body force. (37)

Collecting all these results, we have the energy budget for the volume V ,

dK

dt
=−

∮

S

(
ρ0u

2

2

)

~u · d~S

+

∮

S

[−p~u+ µ(u∇u+ v∇v + w∇w)] · d~S

− µ

∫

V

(
|∇u|2 + |∇v|2 + |∇w|2

)
dV

+

∫

V

(~u · ~f ) dV . (38)

The change in kinetic energy inside V results from the action of the terms on the right-hand

side of Eq. (38). Comparing with Eq. (9), we recognize that the first term on the right is the

rate of transfer of kinetic energy out of V through S. The second and third terms are the

work done by the surface forces. Notice that the third term is non-negative and it represents

the dissipative action of the viscosity. The final term is the power input by the externally

applied body force.

7 Non-dimensionalization: the Reynolds number

We want to rewrite the Navier-Stokes equation in dimensionless form. The first step is to

identify typical values of the various variables involved. These typical values depend on the

problem configuration. We once again use the channel flow in Fig. 2 as an example:

variables ~x t ~u p

typical values L U from the problem configuration, L=a and U=u(0)

L/U no time scale provided by the problem specification

ρU2 see notes below

Note: The pressure difference cannot be varied independently of the velocity and its typical

value is not known a priori. There are two dimensionally correct combinations for pressure:

ρU2 and µU/L. We arbitrarily choose ρU2 and discuss the consequences of this choice later.

Define the dimensionless variables:

~x′ =
~x

L
, t′ =

U

L
t, ~u′ =

~u

U
, p′ =

p

ρU2
(39)
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and by substitution into the Navier-Stokes equation Eq. (21), we get

∂~u′

∂t′
+ (~u′ · ∇′)~u′ = −∇′p′ +

1

Re
∇′2~u′ , (40)

where the Reynolds number Re is defines as,

Re ≡
UL

ν
. (41)

The Reynolds number measures the relative size of the inertial term to the viscous term,

(~u · ∇)~u

ν∇2~u
∼

U2/L

νU/L2
= Re . (42)

The following are two reasons to consider the dimensionless form of the Navier-Stokes

equation:

1. Consider flows that satisfy the same non-dimensional boundary conditions and initial

conditions. If these flows have the same Re, then they are described by the same

non-dimensional solution. Hence, by solving Eq. (40) for one value of Re, we obtain a

family of infinitely many solutions. This is called dynamical similarity.

2. The relative magnitudes of the different terms in the equation are made explicit. For

example, let us consider the case of steady flow. Note that by the definitions Eq. (39),

the variables ~x′ and ~u′ are of order one O(1). Hence,

(~u′ · ∇′)~u′

︸ ︷︷ ︸

O(1)

= −∇′p′

︸︷︷︸

?

+
1

Re
∇′2~u′

︸ ︷︷ ︸

O(1)

. (43)

(a) High Reynolds number flow, Re ≫ 1:

(~u′ · ∇′)~u′ = −∇′p′ , (44a)

(~u · ∇)~u = −
1

ρ
∇p . (44b)

i. The viscosity µ becomes unimportant and does not appear in Eq. (44).

ii. Eq. (44) implies ∆p ∼ ρU2 and ∇′p′ ∼ O(1). Hence in this case, our initial

choice ρU2 indeed represents typical pressure difference.

iii. If we had defined p′ = p(L/µU) instead, we would get

(~u′ · ∇′)~u′ = −
1

Re
∇′p′ +

1

Re
∇′2~u′ . (45)

We cannot ignore the first term on the right even Re ≫ 1 since ∇′p′ is not

of O(1), in fact, ∇′p′ ∼ Re.

(b) Low Reynolds number flow, Re ≪ 1:

−∇′p′ +
1

Re
∇′2~u′ = 0 , (46a)

∇p = µ∇2~u . (46b)

i. The density ρ becomes irrelevant in this case.

ii. Eq. (46) implies ∆p ∼ µU/L and ∇′p′ ∼ 1/Re ≫ O(1).
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Figure 3: Evolution of a line element

8 Vorticity

The vorticity ~ω is defined as the curl of the velocity field,

~ω = ∇× ~u . (47)

Applying Stoke’s theorem to a surface S bounded by a closed curve C, we have
∫

S

~ω · d~S =

∮

C

~u · d~ℓ , (48)

indicating that the vorticity is related to rotational motions in a fluid. A flow with ~ω=0

everywhere is called an irrotational flow. We now show that the vorticity at a spatial point

is two times the local angular velocity at that point.

We first derive an equation describing the time evolution of a line element δ~x in a velocity

field ~u(~x, t). Referring to Fig. 3,

~x(t+∆t) = ~x(t) + ~u(~x, t)∆t , (49)

~x′(t+∆t) = ~x′(t) + ~u(~x′, t)∆t . (50)

Taylor expanding ~u(~x′, t) about ~x,

~u(~x′, t) = ~u(~x, t) + [δ~x(t) · ∇] ~u(~x, t) . (51)

Hence,

δ~x(t+∆t) = δ~x(t) + [δ~x(t) · ∇] ~u(~x, t)∆t , (52)

⇒
d

dt
δ~x = (δ~x · ∇)~u . (53)

To see how Eq. (53) gives us a physical interpretation of the vorticity, we decompose the

velocity gradient tensor ∇~u into a symmetric part and an anti-symmetric part,

d

dt
δxj = δxi∂iuj = δxi

∂iuj + ∂jui
2

+ δxi
∂iuj − ∂jui

2
︸ ︷︷ ︸

rij

. (54)

We identify that r12 = ω3/2, r31 = ω2/2 and r23 = ω1/2, i.e., rij = εijkωk/2 where εijk is

the Levi-Civita symbol. The last term in Eq. (54) becomes

δxirij =
1

2
εjkiωkδxi = (

~ω

2
× δ~x)j (55)

and so we recognize d(δxj)/dt = δxjrij describes a pure rotation of angular velocity ~ω/2.
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Figure 4: Fluid particles (a) moving in circles as well as spinning locally, ~ω 6= 0, (b) moving

in circles with fixed orientations, ~ω = 0, (c) traveling in straight lines but spinning locally,

~ω 6= 0.

Example 1: Rigid rotation of angular velocity ~Ω = Ωk̂. In cylindrical coordinates (r, φ, z),

~u = ~Ω× ~r = rΩ φ̂ , (56)

~ω = 2~Ω . (57)

The vorticity equals twice the angular velocity everywhere as expected.

Example 2: Line vortex of strength 2πK.

~u =
K

r
φ̂ , (58)

ωr = ωφ = 0 , (59)

ωz =
1

r

∂

∂r

(

r ·
K

r

)

= 0 if r 6= 0 (60)

and

∫

S

~ω · d~S =

∮

C

~u · d~ℓ = 2πK (61)

for C being a circle centered at the origin. Hence, the vorticity is zero everywhere except

on the axis.

Example 3: Shearing in the x-direction.

~u = u(y)̂i , (62)

~ω = −
∂u

∂y
k̂ 6= 0 . (63)

The vorticity is non-zero even the trajectories of all fluid elements are straight lines.

These examples illustrate that vorticity represents local changes in the orientation of

fluid particles, not their global motion in closed paths, see also Fig. 4. In fact, the definition

of the vorticity makes no reference to an axis of rotation.

9 Vorticity equation

For a constant density fluid, hence ∇ · ~u = 0, taking the curl of the Navier-Stokes equation

Eq. (21), we obtain the vorticity equation which describes the time evolution of the vorticity,

D~ω

Dt
= (~ω · ∇)~u+ ν∇2~ω + ~Sω , (64)
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~ω=(0, ωy, 0) ~ω=(ω′

x, ω
′

y, 0)

u(y)

tilting

~ω=(ω′

x, 0, 0)

ω′

x > ωx

~ω=(ωx, 0, 0)

u(x)

stretching

Figure 5: Vortex tilting (left) and vortex stretching (right).

where ~Sω ≡ ∇× (~f/ρ) is the vorticity source term. The term ν∇2~ω represents the diffusion

of vorticity. To understand the physical meaning of the first term on the right of Eq. (64),

let us consider the x-component vorticity ωx and ignore diffusion and source,

Dωx

Dt
= ωx

∂u

∂x
+ ωy

∂u

∂y
+ ωz

∂u

∂z
. (65)

Vortex tilting. The second term on the right of Eq. (65) has the following interpreta-

tion: as shown in Fig. 5, if ~ω initially points in the y-direction, the velocity gradient ∂u/∂y

“tilts” the vorticity vector in the xy-plane and thus generates an x-component ωx in ~ω.

Same goes for the last term in Eq. (65).

Vortex stretching. The first term on the right of Eq. (65) implies that as a fluid ele-

ment is being stretched in the x-direction by the velocity gradient ∂u/∂x, the x-component

vorticity ωx is amplified, see Fig. 5. This is because by the conservation of mass, the fluid

element is contracting in the other two directions, hence its moment of inertia decreases

while its angular velocity increases.

10 Circulation

The circulation Γ around a closed loop C is defined as,

Γ =

∮

C

~u · d~ℓ . (66)

Kelvin’s circulation theorem states that for inviscid flows with conservative body forces,

i.e., ν=0 and ~f = −∇φ in Eq. (21), circulation around a material loop is conserved:

D

Dt
Γ =

D

Dt

∮

S

~ω · d~S = 0 . (67)
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A consequence of Eq. (67) is that an inviscid irrotational flow remains irrotational. The

proof of Kelvin’s circulation theorem is as follow, for simplicity we assume constant density:

D

Dt

∮

C

~u · d~ℓ =

∮

C

D~u

Dt
· d~ℓ +

∮

C

~u ·
D(d~ℓ )

Dt

=
1

ρ

∮

C

(−∇p+ ~f ) · d~ℓ +

∮

C

~u · d~u

= −
1

ρ

∮

C

∇(p+ φ) · d~ℓ +
1

2

∮

C

d(u2)

= 0 . (68)

References

[1] D. J. Tritton, Physical Fluid Dynamics 2nd ed., Oxford University Press, 1988.

[2] G. K. Batchelor, Introduction to Fluid Dynamics, Cambridge University Press, 1967.

12


