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1. Introduction. With the publication of Newton's Principia in 1687, classical 
particle mechanics received its first systematic  formulation. In the nearly  three 
centuries that have elapsed since that  date,  the foundations of this discipline 
have been re-examined and restated  a  great  number of times?. From the  stand- 
point of logical rigor and precision, however, none of the existing treatmenh of 
classical mechanics seems to be entirely free from serious defects: none of them 
comes even close to satisfying the  standards  set, let' us say, by Hilbert  in  his 
axiomatization of Euclidean geometry. 

* The  communicator is in  complete  disagreement  with  the view of  classical  mechanics 
expressed in  this  article.  He  agrees,  however,  that  strict  axiomatization of general  me- 
chanics-not merely  the  degenerate  and  conceptually  insignificant  special  case of particle 
mechanics-is urgently  required. While he  does  not  believe  the  present  work  achieves  any 
progress whatever  toward  the precision of the  concept of force, which always  has  been 
and  remains  still  the  central  conceptual  problem,  and  indeed  the  only  one  not  essentially 
trivial,  in  the  foundations of classical mechanics,  he hopes that  publication of this  paper 
may  arouse  the  interest of students of mechanics  and logic alike,  thus  perhaps  leading 
eventually  to  a  proper  solution of this  outstanding  but  neglected  problem. 

We are  grateful  to  Professor HERNAK RUBIN,  Professor  ALFRED TARSKI, and  Mr. 
ROBERT  VAUGHT  for a number of helpful  suggestions  in  connection  with  this  paper. 

?Among  the  works of the  eighteenth  and  nineteenth  centuries,  those of LAGRANGE, 
HERTZ,  and  MACH  are  outstanding. For more recent  works, see MARCOLOSQO [l], HAMEL 
[l], [2], and [3], and SIMOS [l]; (the  numbers  in  square  brackets  refer  to  items  in the Bibli- 
ography).  The  references  mentioned  are,  however,  only a small  part of the  enormous  lit- 
erature in physics,  mathematics,  and  philosophy  concerning  the  foundations of mechanics; 
in  fact,  nearly  every  textbook  in  the  subject  attempts  something  in  this  direction. 

s Thus,  although  HAMEL'S  formulation of mechanics is rightly  regarded as one of the 
clearest  existing  treatments of the  subject, we find  in HAMEL [2] (p. 3) ,  the  follow- 

253 



254 MCRINSEY, SUGAR, t SUPPES 

An outstanding deficiency of the  literature  has been the failure to make clear 
just what the primitive notions of particle mechanics are  taken  to be. The 
usual practice  has been to omit explicit mention of some of the primitives  actu- 
ally used, and such a practice leads almost inevitably to  an insufficient set of 
axioms4. One of our objectives in this paper is to give a set of axioms, based  on 
an explicitly stated list of primitive notions, which we believe are adequate for 
classical particle mechanics. 

I t  should be remarked that particle mechanics, like almost any other science 
in deductive form, involves an idealization of actual empirical knowledge-and 
is thus  better conceived as  a t,ool for dealing with the world, than  as a picture 
representing it. We are going to assume, for instance, that time  intervals can 
be arbitrarily small (an assumption for which there is no empirical evidence); 
and we shall set no positive lov-er bound to t.he mass of particles (though there 
seem to be  good empirical grounds for supposing there exists such a  bound). 
We incorporate  these idealizations into our system on the pragmatic ground that 
they simplify the  mathematics. We feel,  however, that it is very  important i n  
science to be aware just which assumptions of this  sort one  is making, since 
one might decide later to modify them: hence the desirability of t,he axiomat.ie 
approach. 

Any axiomatization of particle mechanics, moreover, must  have  still an addi- 
tional arbitrary  character,  due  to  the  fact  that physicists are  not  quite agreed 
among themselves as to what is to be meant by  a  particle. It mill not  do  to  say 
that  the concept of a particle is implicitly defined by the axioms of particle 
mechanics: for the problem is to  decide what is the  intuitive, informal notion 
of a particle which is t’o guide us in setting up such axioms. For example, should 
small bodies serve as our preliminary model of particles, or should we use centers 
of mass of bodies as our model? This is no pedantic  distinction, for there is an 
essential difference here when the question of an axiom of impenetrability arises; 
the first model suggests such an axi13m, while the second does not. In deciding 
such questions we have often been  influenced by considerations of convenience 
and elegance; thus in the above case of the two possible int’erpretat,ions of par- 
ticles, for instance, it appears  that  an axiom of impenetrability does nothing 
but complicate proofs, and me have accordingly omitted  any such axiom. 

We believe, nevertheless, that  the characterization of classical particle me- 
chanics presented here, while arbitrary in certain mays, does not seriously 
deviate in  any  substantive respect from the usual conceptions. Our sole aim 
has been to present an old subject in a  mathematically rigorous way, not to cre- 
ing strange axiom: “Die  Kräfte dk sind  durch  ihre ‘Ursachen’ bestimmt, d.  h. durch 1:ul.i- 
able, welche den  geometrischen  und physikalischen Zustand der umgebenden Materie 
darstellen. Diese Abhiingigkeit ist oindeutig  und im allgemeinen stet’ig und differenzier- 
bar.” One does not see how this axiom could intervene  in  the proofs of theorems, or in the 
solution of problem. 

4 An axiomatization of mechanics (but of relativistic,  rather  than classical, mechanics) 
which avoids this  defect, is to be found in HERMES [ll. But HERMES’ development appears 
to be defective in  other  directions (see ROSSER [l]). 

~~ ~~ 
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ate a new and unwanted branch of mechanics. Partial evidence for the ade- 
quacy of our axioms,is given by  Theorems 2 and 8. Stronger evidence would be 
afforded if one  could  show that a  system satisfies our  axioms for particle me- 
chanics if and only if it is isomorphic to  the system constituted  by the centers 
of mass in some set of rigid bodies; but  to do this  in  an exact way, one would, 
of course, have first to give an axiomatic  foundation of the mechanics of rigid 
bodies. 

Besides our primitive notions and axioms, we shall also avail ourselves of 
yarious notions and  results of classical mathematics.  Thus our system is not 
completely formalized. But  it will  be clear how the process of formalization could 
be completed: it’ would  be necessary merely to add to our primitives the appro- 
priate  mathematical and logical notions (real number, addition  and multiplica- 
tion of real numbers, and  the like, and sentential connectives, quantifiers,  and 
the like),  and to supplement our axioms by the addition of appropriate  mathe- 
matical and logical axioms and rules. 

I t  will perhaps be helpful to  add a word about some of the mathematical 
notations we shall use, though most of them  are  standard. We denote the set 
whose  only  members are al, a, 0 , a, by (al ,  a2, , a,] and  the ordered 
n-tuple  whose k s t  member is al, whose  second member is ai, and so on, by 

If A and B are sets, then me denote  by A X B the Carlesian product of A and 
B :  i.e., the set of all ordered couples (u, b), where a B A and b E B. 

We  use the word “interval” to mean one-dimensional interval, which  can  be 
open, closed,  or half-closed, and finite, infinite, or half-infinite: i.e., any con- 
uected subset of the real numbers which contains at least two elements. 

We use the customary notation for derivatives. When a  function is said to 
have a  derivative  throughout  a closed interval [a, b], we mean that  the derivative 
exists at all interior points of the  interval,  that  the  righbhand derivative exists 
at  a, and  t’hat  the left-hand derivative exists at  b. 

By an (n-dimensional) vector we mean an ordered 1.2-tuple (al, . , a,} of real 
numbers. If (al, - , a,} is a vector and b is a real number, then we set 

(al, UZ, * ’ , a,}. 

 UI, , U,) = ( U I ,  , U,) b = (UI b, * , U, b). 

If (al, , a,,) and (bt, - - , bn) are  two vectors, then we set 

(al, * * an) + ( h ,  * * , bn) = (UI f b ,  0 * , G + b,) 

and 

(al, * 0 an) - (b17 a * , b,) = (al - bl, , U, - b,). 

If (al, - - , a,) is a vector, we set -(al, , u,) = {-ul, - , -a,). We shall 
denote  the n-dimensional vector all of  whose components are O by U,. 

We  call two vectors a and ß, neither of which  is Õn, parallel if there exists a 
real number k such that CY = h:.ß. 
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If = (al ,  0 m e , a,) is any  vector, we set j a I = da: + . . . + u i .  
If, for every t in an interval T the (numerical valued) functionsf&), , f n ( t )  

possess derivatives with respect to t, then we set 

We define higher derivatrives of vector functions in an analogous way. 
If each of the n infinite series 

zn1 + Xnz + * * 

is convergent, and if the series converge respectively to $1, 52, , zn, then we 
say  that  the series of vectors 

(2) (211, 521, * * GI) + (512, 522, * * X n J  + * * 

is convergent, and we set 

(z17 , G} ($111 , Xnl) + ($12, * , ~ 2 )  + * . 
If each of the series (1) is absolutely convergent, we also call (2) absolutely 
convergent. 

2. Primitive notions. Our system of particle mechanics is based on five primi- 
tive notions: P, T, m, s, and f. P and T are  sets, m is a  unary  function, s is a 
binary  function,  and f is a ternary function. 

The 'intended physical interpretation of P is as the set of particles. It must 
be borne in mind, however, that, because of the  abstract character of our axioms, 
we are not  restricted to physical models; thus in some  cases it may be useful to 
interpret P as a  set of numbers,  let us say, or a set of sets, or a set of functions 
over some domain. 
T is to be interpreted physically as a set of real numbers measuring elapsed 

times (in terms of some unit of time,  and measured from some origin of time). 
Thus we leave aside all problems connected with the measurement of time  (as 
well as of mms, distance, and force) ; this is not because we believe all such prob- 
lems have been  solved-or that  they  are unimportant-but merely because \ve 
consider it is possible to separate mechanics proper from such epistemological 
and experimental  question^.^ 

6 We may  add  that  the  attempt to  deal  with  both sorts of problems  simultaneously is 
in  our  opinion  responsible for much of the  confusion and  murkiness  characteristic of the 
usual discussions of the  foundations of. physics. 
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If p is a member of P (that is to  say, in the physical interpretation, if p is a 
particle), then m(p) is to be interpreted physically as  the numerical value of the 
mass of p .  

It would  be  possible to generalize our system,  by regarding mass as a function 
also of time;  and such a generalized system could find useful applications, for 
example, to  the theory of rockets (where, as the fuel is used up, t'he mass of the 
rocket decreases). But we have preferred to keep close to  the traditional esposi- 
tions-in  which mass has been regarded as  invariant over time. 

If p is in P ,  and t is in T ,  then s (p ,  t )  is an n-dimensional vect,or. For n = 3 
(or for n < 3, if  we are concerned with plane particle mechanics, or with o n e  
dimensional particle mechanics) s ( p ,  t )  is to be interpreted physically as  a vector 
giving the position of p at time t .  Although the most obviously useful physical 
interpretations of our system  are  obtained with n S 3, we have left n arbitrary 
because none of the theorems we prove depends on the value of n. 

It should be noticed that  the primitive s fixes the choice of a coordinate system. 
I t  would also be  possible to develop particle mechanics taking  as  a  primitive 
the  set of all admissible (inertial)  coordinate  systems? that is to  say, roughly 
speaking, the class of all coordinate systems with respect to which the particles 
in question satisfy Newton's Second Law. 

The  intended physical meaning of our last  privitive is slightly more compli- 
cated. In dealing with an empirical situation to which me wish to  apply the 
theory of particle mechanics, each particle is ordinarily subjected to a  number of 
different forces. It is true that the motion of the particle is determined solely by 
the  resultant of these forces; but in  most cases the problem is originally stated 
in terms of a variety of forces. In order to retain a reasonable amount of flexi- 
bility in our system, it  is  thus desirable to allow for the action of a  number of 
forces  on each particle; however, me assume that at most a countable infinity of 
forces act on a given particle. If p is a particle, therefore, and t is any element of 
T, we might denote these forces by: F l ( p ,  t ) ,  F&, t ) ,  . But, in order to avoid 
the cumbrousness of having an infinity of primitive functions in  the  system, me 
denote these forces by: f(p, t ,  l) ,  f ( p ,  t ,  2), - . Thus if p is any member of P, 
if t is any member of T ,  and if i is any member of the  set I of positive integers, 
then f(p, t ,  i) is a vector giving the components (parallel to  the axes of the co- 
ordinate  system) of the ith force acting on the particle p a t  the time l. (It is clear 
that  the ordering of the forces can be arbitrary:  thus  it  is  not of any  interest that 
f(p, t ,  1) is the  first, andf(p, t, 2) is the second, force acting on p at time t ;  it is 
important only that f(p, t ,  1) and f(p, t ,  2) may be distinct.) 

We make  t'hroughout the assumption, which is customary  in modern mathe- 
mat,ics, that  the primitive functions are  not defined over any sets larger than 
t,hose mentioned in the axioms. Thus m(p) is defined only when p is in P ;  simi- 
larly s (p ,  t )  is defined only when p is in P and t is in T ;  and f(p, t ,  i) is defined 
only  when p is in P, t is in T, and i is in I .  Hence the function m, for example, is 
a certain set of ordered couples of the form ( p ,  s), where p belongs to P and z is 

'Such a procedure is used by HERUES for relativistic mechanics; see KERMES [l]. 
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a  real  number. It follows that  the primitives P and T are  actually definable:7 
thus we could define P to be the  set of t'he first elements of the couples constitut- 
ing m. In order to avoid an appearance of strangeness in our axiom system, we 
have nevertheless retained P and T as primitive notions. If the system were to  
be completely formalized (i.e., embedded, together with the necessary parts of 
mathematics, in a system of formal logic), then it would doubtless be better  to 
eliminate the notions P and T altogether;  but  it should be obvious what changes 
in the axiom system  this mould involve. 

3. Axioms. Using the five primit,ive notions which  were intuitively  charac- 
terized in the previous section, we now give our axioms for classical particle 
mechanics. Some remarks in justificat,ion of the axioms, and some suggestions 
for alternative axiomatizations, will  be given below. 

A  system I' = (P,  T ,  m, s, f} which satisfies Axioms Pl-PG is called an n-dimen- 
sional  system of particle mechanics (or sometimes, when there is no danger of 
ambiguity, simply a system of particle mechanics). 

Kinematical Axioms 
Axiom P l .  P i s  a non-empty,  finite set. 
Axiom P2. T i s   an  interval of real numbers. 
Ax iom P3. If p i s  in P and t i s  in T ,  then  sip, t )  i s   a n  n-dimensional vector such 

that d'/di2 s (p ,  t )  exists. 

Dynamical Axioms 
Axiom P4. If p i s  in P ,  then m(p) i s  a  positive real number, 
Ax iom P5. If p i s  in P and t i s  in T ,  then f (p ,  t, l), f(p, 5,2), , f j p ,   t ,  i), 

are n-dimensional vectors such that the series f(p, t, i) i s  absolutely convergent. 
Axiom P6, If p is in P and  t i s  in T ,  ¿hen 

The condition, in Axiom Pl, that P is non-empty, could be omitted  without 
any serious modification of the  system;  there seems to be little reason for con- 
sidering empty sets of particles, however, so we have  not made such  a gcneral- 
ization. 

The condition that P is finite is put in to make our system agree with the 
usual formulations of particle mechanics. In this connection it should be noticed 
that, if  we want  to be able to interpret  particles  as cent'ers of mass of rigid bodies, 
and if we suppose that rigid bodies always have non-zero volume, and cannot 
penetrate each other,  then at  least the possibility is excluded that,  there be an 
uncountable  infinity of particles. But  an essent'ial generalizat'ion of our axiom 

We shall aee in  Section 5, on the  other  hand,  that m, s, and! are mutually independent, 
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system would  be obtained if we were to replace P1 by the axiom: “P is 11011- 

empty,  and either finite or countably infinite.” If h i o m  P1 were to be liberalized 
in this way, however, then it would probably  be desirable to  add some additional 
axioms, so as to insure that  the  total mass and kinetic energy of the  system 
be finite. 

Referring back to  the explanation in Section 1 of the  term  “interval” we  see 
that Axiom P2 means simply that T is a connected set’ of real numbers (contain- 
ing a t  least two members). It might be thought that  it would  be preferable to 
suppose that T is always the set of all real numbers (in  which  case the primitive 
notion T ,  as well as Axiom P2, could be omitted).  This has the disadvantage, 
however, that in many applications it would be unnatural or inconvenient to 
suppose that  the motion of a  system of particles persists throughout  all time. 
Thus if  we wish to  study  the  trajectory of a cannon ball, it seems very natural 
to suppose that T starts at the moment the ball leaves the muzzle of the cannon. 
Or consider the case of two particles being pulled together by their  mutual 
gravitational attraction; here it is convenient to suppose that T is an open in- 
terval,  and that  the right-hand  end-point of T is the  instant of contact of the 
two particles; since the acceleration of the particles approaches infinity as  the 
particles approach contact, we cannot take T to include the moment of contact 
without  introducing discontinuities into  the accelerations. (To  treat. any larger 
interval of time, we would  need to resort to a different branch of mechanics- 
which might be  called “impact mechanics.”) 

The condition in  our Axiom P3, that  the function s be twice differentiable, is 
slightly more restrictive  than that imposed by  an axiom of Hamel, who requires 
(see Hamel [2], p. 2)  merely that s be piecewise twice differentiable. Our stronger 
axiom makes it easier to prove general theorems, however, and we believe that 
most applicat’ions can still be taken  care of by  the device of considering several 
successive realizat,ions of the axioms instead of a single one. Thus suppose that 
an object slides across the surface of a smooth horizontal table with a  constant 
velocity, and  then falls off the edge. Here the second derivative of the position 
vector (Le. ,  the acceleration) does not exist at  the  instant when the object is 
just at  the edge of the table. On the other  hand, at that instant,  the  left-hand  and 
right-hand second derivatives  both exist (the first is zero, and  the second is the 
acceleration of gravity). Hence we can deal with this  situation  by considering 
two realizations of our axiom system, with two consecutive intervals Tl and TI, 
of time: Tl lasts from the  start, of the motion  till the object reaches the edge of 
the  table;  and T2 begins with the object leaving the edge of the  table,  and  lasts 
till the end of the motion. 

. I n   h i o m  P4 we have  taken mass to be always positive. The  apparently 
harmless generalization of allowing mass sometimes to be  zero  would have  the 
following inconvenient consequence: if m(p)  = O,  then Axiom P6 would impose 
no condition on the acceleration of the particle, and hence its motion would be 
quite  indeterminate. Simon (see Simon [l]) permits mass even to be negative; 
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but this generalization does not  appear to be very useful so far  as  regards ap- 
plications. 

Axiom P5 imposes the condition that  the sum of the forces acting on a  particle 
be absolutely convergent. This is done  in order that the motion of a particle be 
independent of the order of naming the forces applied to  it. 

Axiom  P6 contains a formulation of h’ewton’s Second Law. This  is  the only 
one of our axioms which  is ordinarily explicitly stated.  The kinematical axioms, 
in particular, are practically never mentioned. ,4ctually, however, PG does not 
by itself constitute  a sufficient basis for cl.assica1 particle mechanics: if  we com- 
bine P3 and P6 into a single axiom, the resulting five  axioms are  mutually  inde- 
pendent. Moreover, it should be apparent from the discussion above that  it is 
not altogether beyond question what other axioms besides PG should be assumed : 
to  state  the other axioms explicitly is to begin to  consider various  alternatives. 

We  close this section with a few remarks  about some  axioms which might  have 
been assumed, but were not. 

In  the first place, as was pointed out in Section 1, we do not  assume such an 
Axiom of Impenetrability as the following: “If pl  and pz are  distinct members 
of P ,  and if t is in T ,  then s(pl, t )  =l= s (pz ,  t).’’ This is  because we have in mind 
interpreting  the elements of P as  the cent’ers of mass of rigid bodies; and  it can 
easily happen  (as sometimes, for example, when a bullet is fired through the hole 
in a  doughnut)  that  the centers of mass of distinct bodies may at a  certain 
moment coincide. 

Secondly, we have  not assumed Newton%  First  Law;  but  this is a trivial conse- 
quence of our axioms  (see Theorem 1). 

Finally, we have  not  taken the  Third  Law  as  an axiom. We have  omitted  this 
law because it often happens in applications that one wants to consider a  system 
of particles where it is not true  that  to every  action  there is an equal and opposite 
reaction:  thus in exterior ballistics, for example, we never  consider the  perturba- 
tion of the earth’s  orbit occasioned by firing a cannon. The absence of this law 
as an axiom, however, is counterbalanced  by the fact that we can prove Theo- 
rem 8, which amounts  to saying that every model of our axioms can be embedded 
in a model which  also  satisfies Newton’s Third Law. 

Closely connected n-ith the  Third Law is the question of the distinction be- 
tween internal  and external forces. This distinction could have been made 
initially by replacing t’he primitive f by two nem primitives: g, to represent ex- 
ternal forces; and h, to represent internal forces. If p is in P ,  t is in T, and i is 
in I ,  then g ( p ,  t ,  i) is to be interpreted physically as  the i l h  external force acting 
on p at time t .  If p and q are in P ,  t is in T, and i is in I ,  then h(p, q, t, i) is to 
be interpreted physically as  the it’ internal force which the  particle q exerts on 
p at time t. The revised axioms  would be the following: P l ,  PZ, P3,  P4, as be- 
fore;  two axioms on g and h, similar to P5 on f ;  a seventh axiom, similar to P6, 
expressing Newton’s Second Law; an eighth axiom asserting that, for p and q 
in P, for t in T ,  and for i in I ,  h(p ,  q, .t, i) = -h(q, p ,  t ,  i); and finally a ninth 
axiom asserting that, for p and q in P ,  for t in T ,  and for i in I ,  the  three vectors 
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s ( p ,  t )  - S(Q, t ) ,  h ( p ,  q, t ,  i), and h(q,  p ,  t ,  i), unless one of them is ij,,, are all 
parallel.8 

We have chosen to use the single primitive 1, however,  instead of the  two 
primitives g and h for two reasons. In the first  place, to  incorporate  such  a  dis- 
tinction into  t'he  asiom system increases the difficulty of proving  theorems of 
an abstract algebraic  character (sur11 as  Theorems 4, 5 ,  C,, 7, and 8). Secondly, 
\re  are  not of the opinion this change in our  primitives would serve any  very use- 
ful purpose. This is chiefly for the reason that  the usual  notion of an  internal 
force is such that  not every  pair of balanced  forces is regarded  as internal; a ball 
hanging a t  rest on a string, for example,  is  acted 011 hy two balanced forces (the 
attraction of the  earth  and  the tension of the  string),  but  these forces would 
ordinarily both  be called external. Instead of introducing the new primitives g 
and h, we believe that  it  is formally more  simple and useful to  speak of sets of 
balanced pairs of forces, instead of speaking of internal forces. As a matter of 
fact, many  formulations of general dynamics  do  not  depend  in  any way on a dis- 
tinction het,ween internal  and external  forces, or on t,he  notion of one particle 
acting 011 

We non. make  these notions more precise by  introducing some formal defini- 
tions. 

Definition 1. Let ( P ,  T, m, s, j )  be an n-dimensional  system of particle me- 
chanics, let p and q be members of P ,  and  let i and j be members of I .  Then we 
say that  the i'h force acting on p and the j f h  force acting on q balance each  other if 
the following conditions are satisfied for every t in T :  

(1) f(P, 1,  i> = -f(% 4 j )  

Ti,, are all  parallel. 
(2) the vectors f ( p ,  t ,  i), f ( q ,  1, j ) ,  and s ( p ,  t )  - s(q, ¿), unless one of t'hem  is 

Definition 2. Let ( P ,  T ,  m, s, j )  be a  system of particle  mechanics, and let 

* The  eighth  and  ninth axioms require that  the  internal  forces  satisfy  Sewton's  Third 
Law.  The  eighth axiom corresponds to  Khat  HAMEL ([2], p. 25) calls  thejirst complete  reac- 
f ion  p r i n c i p l e ,  and  the  ninth axiom to  what  he  calls  the s e c o d  complete  reaction  principle 
for particle  mechanics.  The  formulation of classical  particle  mechanics given by t,hese 
nine  axioms  corresponds closely to  the  unaxiomatieed,  intuitive  one given by Joos ([l], 
Chap. VI ) ,  and  by  BASACH ([l], Chap. V). However,  neither Joos nor  BANACH  permits a 
particle  to  exert  more  than  one force  on another;  in  addition,  both of these  authors  lump 
all  external  forces  together  and  introduce  a  notation  only for the resul tant  external  force. 
HAMEI, ( [ a ] ,  p. 25) gives nxioms which are  more  restrictive  than  these. If there  are li parti- 
cles in a  system,  he  permits to  act on a given particle  only  the k - 1 internal  forces  due 
to  the  other  particles. On the  other  hand,  APPELL ([l], p. 143) and  GRAMMEL ([l], p. 340) 
require  the  eighth  axiom  but  not  the  ninth-that is, they  do  not  require  that  the  force  ex- 
erted by one  particle  on  another be directed  along  the  line  joining  the  two  particles. 

These brief comparative  remarks  indicate  that  there is  no precise  agreement  concerning 
exactly  what  the  assumptions of classical particle  mechanics  are.  This difference of  opinion 
concerning  the  more  restrictive  kinds of assumptions, of which the  ninth axiom is  an  exam- 
ple, is a  partial  justification  for  the more general  axioms P1-6. 

Such  general  formulations  are  to be found,  for  instance, in OSGOOD ([l], Appendix D) 
and  MARCOLONGO ([l], vol. 2, Chap. III). 
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I-' X I be the Cartesian  product of l' and I :  i.e., the  set of all  ordered couples 
( p ,  i} such that p e P and i E I .  Then we call a  subset ,4 of P X I a balanced set, 
if there exist two  mutually exclusive sets d l  and .4:, whose union is -4, and a 
one-to-one  correspondence bemeen Al  and A ,  such that, whenever ( p ,  i) in dl 
corresponds to  (q ,  j} in 442, then the iLh forte  acting on p alid the j t h  force acting 
o11 q balance  each  other. 

Remark. It might  be  thought  that iust'ead of giving the  above  two definitions, 
one could simply define direct,ly a "set' of balanced  forces." The  inadequacy of 
such  a  procedure,  however,  can  be seen from t'he fact  that distinct  members of 
P X I can be associat,ed with  the same  force  vector. Thus suppose that P consists 
of just  three  elements, pl, pz,  and p ,  each  having  a  mass of 1;  and  that, for all 
t in T ,  s (p l ,  t )  = (t' + 2,  O),  s(p2, t )  = (-i', O), and s(p3, t )  = (-t' + 1, O), that 
f ( p l ,  t ,  1) = (2, O}, tha t j (p2 ,  t ,  1) = .f(pa, t ,  1.) = (-2,  O), und that, for i > 1, 
!(pl, t ,  i )  = f(pa, t ,  i) = f(pa, t ,  i) = (O, O). Then  if one speaks of the  set { ( 2 ,  O), 
( - 2 ,  O)) as a set of balanced forces, it is not clear  whether the force ( -2 ,  O) is 
to be construed  as  the first force acting on p,, or as  the first force acting on p,. 

For lat'er  purposes we shall need t'he  notion of a  Newtonian  system,  and  it is 
convenient Do define the  term  at t'his  point. 

Definition 3. A system (P ,  T ,  m, s, j )  is called Newtonian if the  set P X I is 
balanced. 

4. Theorems. While it would be inappropriate  to  take  up a great deal of space 
proving the  many propositions of particle  mechanics  usually stated  in  the t.ext- 
books, we shall  give  in  this  section  some  theorems which afford evidence that 
our  axioms are  actually  adequate  for  particle mechanics-as well as some t,heo- 
rems which are  interesting from an algebraic standpoint. Some of the easier 
proofs  have been omitt'ed. 

Our  first  theorem, as was mentioned  earlier,  is  a  formulation of Newton's  First 
Law. 

Theorem 1. Let l? = (P ,  T ,  m, s, f)  be an  n-dimensional system of particle me- 
chanics, and let p be a member of P such that, for all t in T ,  

Then there are n-dimensional vectors a and ß such that, ,for all t in T ,  
s (p ,  1 )  = + ßt. 

Proof. By Axioms P3,  P4, and PS. 
The following theorem  amounts t o  saying that  the whole history of a  system 

of particle  mechanics is determined by P,, T, m, f ,  and  appropriate  initial condi- 
tions. In  axiomatizing any  branch of deterministic  physics i t  is important Do be 
able to  prove such  a  theorem, since it gives partial evidence of the  adequacy of 
the axioms; in  the case of our  system, the proof is so easy t'hat we have  omitt'ed  it, 
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( P ,  T ,  m, s ,  j )  i s  a system of particle nzechanz"cs, and such that, jor i 

s ( p ,  to) = ai and d s(pi ,  t )  ' = pi. 
i 

dt k t 0  

In connection with  a  certain class of theorems  a  problem of 

= 1. ' f .  ~ r ,  

some philo- 
sophical interest  arises.  We  have in mind  those  theorems which are  ordinarily 
stated in the subjunct.ive mood as  contrary-to-fact  conditionals.  Recent philo- 
sophical  literature"  indicates how unsatisfactory an analysis we yet  have of' such 
assertions, and it consequently seems desirable to eliminate all use of them in a 
precisely formulated  axiomatizatioll of mechanics. We show how this  may  be 
done for one of the most  familiar of these  theorems:  namely,  the  assertion  that, 
the  center of mass of a system of particles moves as ij all t'he  mass were concen- 
frated there  and  t'he  resultant of all  t'he  "external" forces acted there.  Without8 
using the subjunctive mood this  theorem  can be  formulated  as follon-s. 

Theorem 3. Let ( P ,  T, m, s, f )  be a system of particle  mechanics, let -4 be a n y  
balanced  subset of P X I ,  let b be a n y  object,  and let 

(i) P' = ( b ]  

(iì) 

(iii) 

T h e n  (P', T', m', S', f') i s  a system of particle  mechanics. 
We remark that  the above  theorem  depends  upon the fact that P is a  finite 

set; if P were not  finite, (iii) and ( iv )  would not suffice to define s' andf'. 
Vow we turn to some  theorems about  systems of particle  mechanics which 

are analogous to certain  familiar  theorems of modern  algebra. In  particular, we 

lp See GOODMAX [l], and p p ~  14-15 of QUINE [l]. 
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examine some of the ways  in  which it is  possible  t,o construct new systems of 
particle mechanics from given  ones. 

Definifion 4. If (x1, . - , x,) and (YI, . , y,) are Tectmors (not necessarily hav- 
ing  the same number of components), we set (51, e * - , xr) €9 (YI, - a , ya) = 

suming r-dimensional vectors as values, and if g is a function defined over the 
same domain D, and assuming s-dimensional vectors as values, then by f €9 g 
we mean the function h such t’hat, for every 5 ill D,  h(x) = ,f(s) @ g(z). (Thus, 
if f(1) = (1, 2) and g(1) = (2, 3, d>, then (f @ g) (1) = (1, 2,  2, 3, 4).) If r = 
( P ,  T, m ,  s, f} and I” = ( P ,  T, m ,  S’, 7 )  are systems of particle mechanics, then 
by r @ r’ we mean the system ( P ,  T ,  m, s @ S’, f @ j”’}; we c d 1  r @ F’ the 
concatenation of r and r’. 

Theorem 4. Ij I’ = ( P ,  T ,  m, s, f} is a n  r-dimensional system of particle m e -  
chanics, and r’ = (P ,  T, m, s’, f ’ )  is  an s-dimensional system of particla  mechanics, 
then I’ €9 I” is an ( r  + s)-tlimensional system of particle  mechanics. 

Theorem 5.  I j  r is any n-dimensional system. of particle  mechanics,  then  there 
exist n uniquely  determined  one-dimensional  systems of particle  mechanics, Al, 

whose sum is n, then  there exists exactly  one rdimensiorzal system of particle me- 
chanics, rl., and exactly  one s-dimensional system of particle  mechanics, r l ,  slrch 

We notice that  the operation of concatenation has certain properties in com- 
mon with  the operation of forming the direct union of two algebras. It is because 
of this analogy that  it sometimes suffices,  in order to prove a theorem about 
34imensional mechanics, to prove it  about one-dimensional mechanics; this 
device has often been  used in  intuitive developments of mechanics. 

It is worthy of remark that Theorems i and 5 would not necessarily still 
remain true if  we mere to strengthen our axioms  in various ways. In order to 
make  this point clear, we define  now a special class of systems of particle me- 
chanics; examples of syst,ems satisfying the conditions of this definition are  to 
be found in the domains of celestial mechanics and electrostatics. 

Definition 5.  Let r = (P ,  T ,  m, s, f) be an n-dimensional system of particle 
mechanics, where P = {p,, , pr) .  Then we call r an .uZ¿ra-cZassical system if 
there exist r* functions B i ,  j (for i, j = 1, , r ) ,  each of which  is a real-valued 
function of a real variable, and such that, for all t in T, 

(x,, - * , xr, y], . , ya). If f is a  function defined  over some domain D, and as- 

A2, * , An, such  that F = A1 d3 A, @ €9 An. I f  r and s are positive  integers 

that r = r, CB ra. 

(i) ei, j = e j ,  i ;  

(ìi) f(pi, t )  j )  = e i ,  j (  l s(Pi, t )  - s ( P ~ )  t )  I )[s(P~, O - dpj, t>], for 
i , j  = 1, , r ;  

(iii) f(pi, t ,  j )  = ön for i = 1, - , r,  and j > r. 
From  this definition it is immediat’ely clear that every ultra-classical system 

is Newtonian. 
It is easy to construct  two ultra-classical syst’ems whose concatenation is not 

ultra-classical ; moreover, not every two-dimensional ultra-classical system can 
be represented as a concatenation of one-dimensional ultra-classical systems. 

It is of interest to notice, however, that Theorem 5 remains true if we replace 
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“system”  by “Pl‘ewtonian system.”  But  the  concatenation of tzwo Newtonian 
systems is not necessarily Kewtonian. 

We turn now to a notion which is analogous to  the notion of a  subalgebra of 
an algebra. 

Definition 6. Let r = ( P ,  T ,  m, s, f )  be a system of particle  mechanics;  let 
P‘ be a  non-empty  subset of P ;  and  let m’, S‘ ,  and f’ be the functions m, s, and 
f with t,heir first arguments  restricted to  P’: thus m’, for example, is defined only 
over P’, and, for all p in P’, m’(p) = m(p). Then we call I” = (P’, T ,  m’, S’, f’) 
a sttbsystem of I’. 

Theorem G. Every  subsystem of a system of particle mechanics i s  again a system 
of particle mechanics. 

Rnnark. We notice,  on the other  hand,  that a subsystem of a  Yewtonian  sys- 
tem is not necessarily Kewtonian;  nor is a sub-system of an ultra-classical  sys- 
tem necessarily ultra-classical. 

Definition 7. Two  systems ( P ,  T ,  m, s, f )  and (P’, T’, m’, S’, J’} of particle 
mechanics are called disjoin¿ if P and P’ are  mutually exclusive. 

Definifion 8. Let T’ = ( P ,   T ,  m, s, f )  and I” -- (P‘, T’, m‘, S’, J’) be  disjoint 
systems of particle  mechanics  such that T’ = T .  Then by the sum of r and I”, 
which we denot,e by r + I”, me mean the system I’” = (P”, T”, m”, s”, f”) 
where: 

(i) T” = T ;  
(ii) P” is the set-theoretical  sum of P and P’; 
(iii) If p is in P ,  then,  for  every t in T, and for  every  positive  integer i, 

m’’(?)> = m@) 

$”(P, t> = S b ,  t> 

Yb, t, i) = f b ,  t ,  i>; 
( i v )  If p is in PØ, then,  for  every t in T ,  and for  every  positive  integer i, 

m”(P> = m’(Pl 

S”(P? t> = 5’(P, 0 
f ” ( P ,  t ,  i> = m ,  1, i>. 

Theorem 7 .  If r = ( P ,  T ,  m, s, f} and r’ = {P’, T’, m’, s‘,y) are disjoint n-&- 
mensional  systems of particle mechanics  such  that T’ = T ,  then I’ + r’ is also a 
sgsiem of particle mechanics.  Moreover r and I” are subsystems of F f r’. 

The following theorem,” as was mentioned  earlier,  constitutes  our  justification 
for not including  Newton’s Third Law as an axiom. 

We are  indebted to Professor HERMAN RUBIN for  an  improvement  in  the  formulation 
of this’theorem. 

Historically,  the  theorem  is  reminiscent of HERTZ’S use of “conceded”  particles  to 
embed  every  system of particles  in a “free”  system  obeying  his  fundamental  Principle of 
the  Straightest  Path.  See  HERTZ [l], Chap. V. 



Theorem 8. Every system of particle  mechanics i s  a suhsyslem of a  Newtowian 
system. 

Proof. We shall  carry  out  the proof only for the special  case of a 2-dimensional 
system  containing  just one particle;  it should be obvious what changes ~vould 
be necessary to  take care of the general case. 

We begin with EL felv words esplaining the  intuitive idea  back of this proof. 
Suppose,  for  simplicity, we are given a particle p ,  in the first quadrant 1vit.h 
arbitrary forces acting on it. We place a  particle  "on  top of" p , ,  and  three  parti- 
cles  in the  other  three  quadrants placed symmet,rically  with respect, to  t.he x- 
and y-axes. It is  then possible to  introduce forces on the four new particles so 
as to make the resulting  system  Sewtoniaa. 

We now turn  to  the formal proof. 
It is convenient  t'o  introduce  t\vo  functions  each of which singles out a com- 

ponent of a  t,w-dimensional  vector. If (x1 ,  x?) is any two-dimensional vector, we 
set Ol((zl, Q)) = zl and 49 ((x,, G)) = .z2. 

Let I', = ( ( p l  1 ,  T ,  ml, SI, ,#'J be a 2-dimensional  system of particle mechanics. 
Let I'* = ( ( p ? ) ,  T ,  mz, s?, SZ) be related t'o rl as follows: 

s&2, 1) = sl(p1, t ) ,  for every t in T, 

Let r3 = ( ( P S [ ,  T, m3, s3,f~) be a two-dimensional system  related to rl and r2 
as follows: 

f&, t ,  i) = (O,  O) for i > Z. 
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f6(p6, t ,  i) = (O, Q) for i > 2. 

Clearly r2, r3, r4, and rS are  all 2-dimensional systems of particle mechanics. 
By Theorem i, the system r = Pl + r2 + r3 + r4 + I'S is also a system of 
particle mechanics, and I', is a subsystem of I'. Moreover, it is easily seen from 
the construction that I' is Newtonian. 

From  the proof of the above theorem we conclude that  an n-dimensional 
system of particle mechanics containing k particles can  be embedded in a Nem- 
tonian system with k ( l  + 2") particles. This bound can in some  cases  be im- 
proved;  thus  it is easy to show that a  l-dimensional system containing k particles 
c m  be embedded in a Kentonian system  with 1: + 1 particles. 

It is interesting to not'ice that Theorem 8 could not be proved if  we adopted 
the Axiom of Impenetrability stated in Section 3. This is seen by considering any 
system containing just one particle, which is subjected to  an infinity of non- 
vanishing forces, no two of which are collinear. In order to embed such a system 
in a Kewtonian system satisfying the Axiom of Impenetrability, me should have 
to  add, for  each force, a  particle lying along its line of action, which  would 
violate Axiom Pl. 

Even assuming the Axiom of Impenetrability, however, it is possible to prove 
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an embedding  theorem if  we generalize the notion of a Sewtonian system  by 
dropping the requirement that a  pair of balanced forces lie along the line con- 
necting  the  two partic1es;l2 if r = (P ,  T ,  m, s, f} is  a  system of part’icle mechanics, 
where T is a  finite closed interval,  then I’ can be embedded  in  a generalized Sew- 
tonian  system r’; moreover, if r satisfies the Axiom of Impenetrability,  then 
I” too  can  be taken  to  satisfy  this axiom. 

6. Independence of Primitive Notions. We now turn  to  the  (luestio:) of the 
independence of our  primitive  notions. As was ment,ioned in Section 1, the  sets 
P and T are definable  in terms of the  functions m, s, and f ;  we shall show, on 
the other  hand,  that m, s, andf  are not definable in  terms of the other  primitives. 
This is done by  the method of Padoa.13 All the  system^'^ employed are  ultra- 
classical, and hence, a forliori, Newtonian  systems of particle mechanics-which 
shows that m, f, and s mould remain  mutually  independent  even if  we added 
Newton’s Third  Law to our set, of axioms. 

Independence of m. Let P be the  set whose only member is 1, and let T t x  the 
set of all real  numbers.  Let 

ml(1) = 1 

and 

mZ(1) = 2. 

For  any 1 in T, let 

s(1, t )  = (1, 1, 1). 

For  any 1 in T, and for any posltive integer i, let 

Then  it is easily verified that (P ,  T ,  ml, s, ,f) and (P ,  T ,  rnz, s, f )  are  both  systems 
of particle  mechanics (and  indeed, ultra-classical systems of particle mechanics). 
This shows, however, that m is  not definable ia  terms of P, T ,  s, and  f ;  for if m 
were definable, then  there could be only one m, for given P, T ,  s, and f, which 
would satisfy  our axioms. 

12 Compare  the  discussion  in  Footnote 8. 
la For an  explanation of this  method, see M c K m s E Y  [l], PAD0.4 [l], or T A R S K I  [l]. 
l4  It should  be  noticed  that  each of the six systems t o  follow  gives a proof of the con- 

sistency of particle mechanics-or, properly  speaking, a proof that  particle mechanics is 
consistent if analysis is consistent.  Here we use the  notion  of  consistency  in its usual iogi- 
cal sense (that  the  axioms  do  not  imply a contradiction),  not  in  the  sense of HAMEL (see 
HAMEL [2], pp. 4042) ,  who thinks  of  a  consistency  problem as the  problem of showing, 
for a given set of equations  involving  forces,  that  there  exists a system of mechanics satis- 
fying  the  equations  (thus  he  uses  the  notion as it  is used, for  example,  in  algebra, when 
one  calls a set of simultaneous  equations  “consistent” i f  they possess a solution). 

I 

a 

1 
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Independence of s. Let P = { 1, 21, and  let T = [2, 31. Let 

m(1) = m(2) = 1. 

For every t in T ,  let 

Sl(1, 1) = (t' - t ,  t ,  4) 

SL(2, 2) = ( - t 2  + 1, t, 4): 

&(l, t) = ( t ,  o,  o) 
4 2 ,  t )  = ( - t2 ,  o,  o). 

and let 

For every t in T, let 

f u ,  4 2 )  = (2, o, 0) 

m ,  t ,  1) = (-2, o, o), 
and for i =/= 2 and j is 1, let 

f u ,  t ,  i) = f@, t ,  j >  = (o, o, 0). 

Then (P ,  T ,  m, SI, f )  and ( P ,  T, m, SP, f) are ultra-classical systems of particle 
mechanics. 
Independence of f. Let P = [ 1, 2, 31, and let T = [l, 21. Let 

m(1) = m(2) = m(3) = 1. 

For all t in T, let 

41, 1) = ( tZ,  o, o) 
s(2, 2) = ( - t2 ,  o, o} 
4 3 ,  t )  = (o, o, o). 

For all t in T, let 

fl(L t ,  2) = (2, o,  o) 

!dl, 1, i) = (o, o, o) 

f@, 1, 1) = (-2, o, o) 

for i -i 2 

for i =C. 1 

for  all i. 



270 MCKINSEY, SUGAR, L SUPPES 

For  all t in T ,  let 

for i 4 (2, 31 

for i d {l, 31 

f&, t ,  i> = (0, o, 0) for i t {l, 2 ) .  

Then {P,  T ,  m, fi, s} and (P ,  T ,  m, fi, s} are (ultra-classical)  systems of particle 
mechanics. 

Remarks. All the systems described above  in  order to prove  independence 
have a highly  trivial  character.  Nevertheless,  some of the results  established 
(namely, that m and f are  not definable) may seem  a little surprising,  in view 
of the  fact  that it has been rather generally held that mass and force are defin- 
able.  We  shall  try t,o dispel misunderstanding  by  considering  some of the defini- 
tions that  have been proposed. 

Kirchhoff (in Kirchhoff [l]) proposes that me define the force  acting  on  a  body 
simply  as  the product’ of the mass of the body  by  its  a~celeration;’~  this would 
not merely  eliminate the primitive  notion f, but mould make  it unnecessary to 
postulate  Newton’s Second Law. This  procedure, however, would enable one to 
define only the resultant’  force  acting  on  a particle-not the originally  given 
forces. Thus, using the notation of t’his paper, if we set (for all p in P and t in T )  
R(p, t )  = c%1 f(p, t ,  i), then Kirchhoff’s suggestion would provide  a  definition 
for the function R, but  not  for  the  function f. There  is  thus no  contradiction 
between Kirchhoff’s suggestion and our proof of the independence of f. 

Mach“ proposes to  define the relative masses of two  particles as  the inverse 
ratio of their  “mutually induced”  accelerations when they  are isolated  from  other 
particles. In  our terms  this  means  the following: suppose that (P ,  T, m, s, f} 

15 HAMEL (in HAMEL [3], p. 7) objects  to  this  proposed  definition on the  ground: “Wäre 
sie  richtig,  dann wäre die  Mechanik  keine  Naturwissenschaft  mehr,  sondern  eine  Tauto- 
logie!” It is clear,  however,  that  even if KIRCHHOFF’S definition were adopted,  ot,her axioms 
would  be  needed. 

16 See MACH [l], pp. 264277. For a  more  recent  formulation of MACH’S views on this 
subject,  see LISDSAY & MARCENAU [l], pp. 92-93. 
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and 

since the system is Newtonian, however, 

and hence 

if d2/dt2 s(pl, t )  and d2/dtZ s (pz ,  t )  arenot zero, therefore, thequantity (m(pl)/m(pz)) 
is equal to  the ratio of the absolute values of d’/di2 s(pz,  t )  and d2/dt2 s(p1, t ) .  

With regard to this proposed definition, we notice at once that, in its present 
form, it applies only to Newtonian  systems containing just  two particles-and, 
indeed, even to such systems only under the hypothesis that  the  resultant forces 
are nor identically zero. Moreover, Pendse ([l], [2], [3])has shown that  it is not 
possible to extend Mach’s “definition” to Newtonian systems cont,aining an 
arbitrary number of particles;  in  particular, Pendse shows that for more than 
seven part’icles, a knowledge of the  “mutually induced” accelerations of the  parti- 
cles is not in general  sufficient for a unique determination of the ratios of the 
masses of the part’icles.’’ 

Mach’s idea was probably that,,,when dealing with a given particle  in  a given 
system I’, an experimenter could determine its mass by putting it into a New- 
tonian system of the kind described, and  then  put it back into I’, with the assump- 
tion that  the mass mould remain invariant. In our terms, however, there is no 
way of carrying out these shiftings of a particle from one system to another; 
Mach’s suggestion would  allow a  formal definition of mass only in case  one  were 
dealing with a greatly extended system, which would contain, among other things, 
the notion of an experimenter; it is not at all clear, however, that  it would  be 
possible to axiomatize such an extended system  in  a satisfact’ory way. 

We should like to point out,  in closing this discussion, that, in order to be sure 
that one notion is independent of others it is not always necessary to know pre- 
cisely what axioms are to be imposed on the notions: it is sufficient if one can feel . 

1’ I n  this connection, see SIMON [l]. 
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certa,in that each of two models is a  realization of whatever axioms one would 
want  to impose. Thus if anyone mere to hold, for example, that in particle 
mechanics  mass  is  definable  in  terms of position and force, then he  should  main- 
tain  that  not  both  the  systems (P ,  T, ml, s, f} and (P ,  T ,  m2, s, f )  of our independ- 
ence proof are  actually  systems of particle  mechanics;  he would have  to assume 
an axiom, in a word, which would rule out  the possibility of a  system  consisting 
of a single particle,  lying  quietly at rest  all by itself,  acted on  by no forces. 
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